1 | //===- RDFGraph.cpp -------------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // Target-independent, SSA-based data flow graph for register data flow (RDF). |
10 | // |
11 | #include "llvm/CodeGen/RDFGraph.h" |
12 | #include "llvm/ADT/BitVector.h" |
13 | #include "llvm/ADT/STLExtras.h" |
14 | #include "llvm/ADT/SetVector.h" |
15 | #include "llvm/CodeGen/MachineBasicBlock.h" |
16 | #include "llvm/CodeGen/MachineDominanceFrontier.h" |
17 | #include "llvm/CodeGen/MachineDominators.h" |
18 | #include "llvm/CodeGen/MachineFunction.h" |
19 | #include "llvm/CodeGen/MachineInstr.h" |
20 | #include "llvm/CodeGen/MachineOperand.h" |
21 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
22 | #include "llvm/CodeGen/RDFRegisters.h" |
23 | #include "llvm/CodeGen/TargetInstrInfo.h" |
24 | #include "llvm/CodeGen/TargetLowering.h" |
25 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
26 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
27 | #include "llvm/IR/Function.h" |
28 | #include "llvm/MC/LaneBitmask.h" |
29 | #include "llvm/MC/MCInstrDesc.h" |
30 | #include "llvm/Support/ErrorHandling.h" |
31 | #include "llvm/Support/raw_ostream.h" |
32 | #include <cassert> |
33 | #include <cstdint> |
34 | #include <cstring> |
35 | #include <iterator> |
36 | #include <set> |
37 | #include <utility> |
38 | #include <vector> |
39 | |
40 | // Printing functions. Have them here first, so that the rest of the code |
41 | // can use them. |
42 | namespace llvm::rdf { |
43 | |
44 | raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterRef> &P) { |
45 | P.G.getPRI().print(OS, A: P.Obj); |
46 | return OS; |
47 | } |
48 | |
49 | raw_ostream &operator<<(raw_ostream &OS, const Print<NodeId> &P) { |
50 | if (P.Obj == 0) |
51 | return OS << "null" ; |
52 | auto NA = P.G.addr<NodeBase *>(N: P.Obj); |
53 | uint16_t Attrs = NA.Addr->getAttrs(); |
54 | uint16_t Kind = NodeAttrs::kind(T: Attrs); |
55 | uint16_t Flags = NodeAttrs::flags(T: Attrs); |
56 | switch (NodeAttrs::type(T: Attrs)) { |
57 | case NodeAttrs::Code: |
58 | switch (Kind) { |
59 | case NodeAttrs::Func: |
60 | OS << 'f'; |
61 | break; |
62 | case NodeAttrs::Block: |
63 | OS << 'b'; |
64 | break; |
65 | case NodeAttrs::Stmt: |
66 | OS << 's'; |
67 | break; |
68 | case NodeAttrs::Phi: |
69 | OS << 'p'; |
70 | break; |
71 | default: |
72 | OS << "c?" ; |
73 | break; |
74 | } |
75 | break; |
76 | case NodeAttrs::Ref: |
77 | if (Flags & NodeAttrs::Undef) |
78 | OS << '/'; |
79 | if (Flags & NodeAttrs::Dead) |
80 | OS << '\\'; |
81 | if (Flags & NodeAttrs::Preserving) |
82 | OS << '+'; |
83 | if (Flags & NodeAttrs::Clobbering) |
84 | OS << '~'; |
85 | switch (Kind) { |
86 | case NodeAttrs::Use: |
87 | OS << 'u'; |
88 | break; |
89 | case NodeAttrs::Def: |
90 | OS << 'd'; |
91 | break; |
92 | case NodeAttrs::Block: |
93 | OS << 'b'; |
94 | break; |
95 | default: |
96 | OS << "r?" ; |
97 | break; |
98 | } |
99 | break; |
100 | default: |
101 | OS << '?'; |
102 | break; |
103 | } |
104 | OS << P.Obj; |
105 | if (Flags & NodeAttrs::Shadow) |
106 | OS << '"'; |
107 | return OS; |
108 | } |
109 | |
110 | static void (raw_ostream &OS, const Ref RA, |
111 | const DataFlowGraph &G) { |
112 | OS << Print(RA.Id, G) << '<' << Print(RA.Addr->getRegRef(G), G) << '>'; |
113 | if (RA.Addr->getFlags() & NodeAttrs::Fixed) |
114 | OS << '!'; |
115 | } |
116 | |
117 | raw_ostream &operator<<(raw_ostream &OS, const Print<Def> &P) { |
118 | printRefHeader(OS, RA: P.Obj, G: P.G); |
119 | OS << '('; |
120 | if (NodeId N = P.Obj.Addr->getReachingDef()) |
121 | OS << Print(N, P.G); |
122 | OS << ','; |
123 | if (NodeId N = P.Obj.Addr->getReachedDef()) |
124 | OS << Print(N, P.G); |
125 | OS << ','; |
126 | if (NodeId N = P.Obj.Addr->getReachedUse()) |
127 | OS << Print(N, P.G); |
128 | OS << "):" ; |
129 | if (NodeId N = P.Obj.Addr->getSibling()) |
130 | OS << Print(N, P.G); |
131 | return OS; |
132 | } |
133 | |
134 | raw_ostream &operator<<(raw_ostream &OS, const Print<Use> &P) { |
135 | printRefHeader(OS, RA: P.Obj, G: P.G); |
136 | OS << '('; |
137 | if (NodeId N = P.Obj.Addr->getReachingDef()) |
138 | OS << Print(N, P.G); |
139 | OS << "):" ; |
140 | if (NodeId N = P.Obj.Addr->getSibling()) |
141 | OS << Print(N, P.G); |
142 | return OS; |
143 | } |
144 | |
145 | raw_ostream &operator<<(raw_ostream &OS, const Print<PhiUse> &P) { |
146 | printRefHeader(OS, RA: P.Obj, G: P.G); |
147 | OS << '('; |
148 | if (NodeId N = P.Obj.Addr->getReachingDef()) |
149 | OS << Print(N, P.G); |
150 | OS << ','; |
151 | if (NodeId N = P.Obj.Addr->getPredecessor()) |
152 | OS << Print(N, P.G); |
153 | OS << "):" ; |
154 | if (NodeId N = P.Obj.Addr->getSibling()) |
155 | OS << Print(N, P.G); |
156 | return OS; |
157 | } |
158 | |
159 | raw_ostream &operator<<(raw_ostream &OS, const Print<Ref> &P) { |
160 | switch (P.Obj.Addr->getKind()) { |
161 | case NodeAttrs::Def: |
162 | OS << PrintNode<DefNode *>(P.Obj, P.G); |
163 | break; |
164 | case NodeAttrs::Use: |
165 | if (P.Obj.Addr->getFlags() & NodeAttrs::PhiRef) |
166 | OS << PrintNode<PhiUseNode *>(P.Obj, P.G); |
167 | else |
168 | OS << PrintNode<UseNode *>(P.Obj, P.G); |
169 | break; |
170 | } |
171 | return OS; |
172 | } |
173 | |
174 | raw_ostream &operator<<(raw_ostream &OS, const Print<NodeList> &P) { |
175 | unsigned N = P.Obj.size(); |
176 | for (auto I : P.Obj) { |
177 | OS << Print(I.Id, P.G); |
178 | if (--N) |
179 | OS << ' '; |
180 | } |
181 | return OS; |
182 | } |
183 | |
184 | raw_ostream &operator<<(raw_ostream &OS, const Print<NodeSet> &P) { |
185 | unsigned N = P.Obj.size(); |
186 | for (auto I : P.Obj) { |
187 | OS << Print(I, P.G); |
188 | if (--N) |
189 | OS << ' '; |
190 | } |
191 | return OS; |
192 | } |
193 | |
194 | namespace { |
195 | |
196 | template <typename T> struct PrintListV { |
197 | PrintListV(const NodeList &L, const DataFlowGraph &G) : List(L), G(G) {} |
198 | |
199 | using Type = T; |
200 | const NodeList &List; |
201 | const DataFlowGraph &G; |
202 | }; |
203 | |
204 | template <typename T> |
205 | raw_ostream &operator<<(raw_ostream &OS, const PrintListV<T> &P) { |
206 | unsigned N = P.List.size(); |
207 | for (NodeAddr<T> A : P.List) { |
208 | OS << PrintNode<T>(A, P.G); |
209 | if (--N) |
210 | OS << ", " ; |
211 | } |
212 | return OS; |
213 | } |
214 | |
215 | } // end anonymous namespace |
216 | |
217 | raw_ostream &operator<<(raw_ostream &OS, const Print<Phi> &P) { |
218 | OS << Print(P.Obj.Id, P.G) << ": phi [" |
219 | << PrintListV<RefNode *>(P.Obj.Addr->members(G: P.G), P.G) << ']'; |
220 | return OS; |
221 | } |
222 | |
223 | raw_ostream &operator<<(raw_ostream &OS, const Print<Stmt> &P) { |
224 | const MachineInstr &MI = *P.Obj.Addr->getCode(); |
225 | unsigned Opc = MI.getOpcode(); |
226 | OS << Print(P.Obj.Id, P.G) << ": " << P.G.getTII().getName(Opcode: Opc); |
227 | // Print the target for calls and branches (for readability). |
228 | if (MI.isCall() || MI.isBranch()) { |
229 | MachineInstr::const_mop_iterator T = |
230 | llvm::find_if(Range: MI.operands(), P: [](const MachineOperand &Op) -> bool { |
231 | return Op.isMBB() || Op.isGlobal() || Op.isSymbol(); |
232 | }); |
233 | if (T != MI.operands_end()) { |
234 | OS << ' '; |
235 | if (T->isMBB()) |
236 | OS << printMBBReference(MBB: *T->getMBB()); |
237 | else if (T->isGlobal()) |
238 | OS << T->getGlobal()->getName(); |
239 | else if (T->isSymbol()) |
240 | OS << T->getSymbolName(); |
241 | } |
242 | } |
243 | OS << " [" << PrintListV<RefNode *>(P.Obj.Addr->members(G: P.G), P.G) << ']'; |
244 | return OS; |
245 | } |
246 | |
247 | raw_ostream &operator<<(raw_ostream &OS, const Print<Instr> &P) { |
248 | switch (P.Obj.Addr->getKind()) { |
249 | case NodeAttrs::Phi: |
250 | OS << PrintNode<PhiNode *>(P.Obj, P.G); |
251 | break; |
252 | case NodeAttrs::Stmt: |
253 | OS << PrintNode<StmtNode *>(P.Obj, P.G); |
254 | break; |
255 | default: |
256 | OS << "instr? " << Print(P.Obj.Id, P.G); |
257 | break; |
258 | } |
259 | return OS; |
260 | } |
261 | |
262 | raw_ostream &operator<<(raw_ostream &OS, const Print<Block> &P) { |
263 | MachineBasicBlock *BB = P.Obj.Addr->getCode(); |
264 | unsigned NP = BB->pred_size(); |
265 | std::vector<int> Ns; |
266 | auto PrintBBs = [&OS](const std::vector<int> &Ns) -> void { |
267 | unsigned N = Ns.size(); |
268 | for (int I : Ns) { |
269 | OS << "%bb." << I; |
270 | if (--N) |
271 | OS << ", " ; |
272 | } |
273 | }; |
274 | |
275 | OS << Print(P.Obj.Id, P.G) << ": --- " << printMBBReference(MBB: *BB) |
276 | << " --- preds(" << NP << "): " ; |
277 | for (MachineBasicBlock *B : BB->predecessors()) |
278 | Ns.push_back(x: B->getNumber()); |
279 | PrintBBs(Ns); |
280 | |
281 | unsigned NS = BB->succ_size(); |
282 | OS << " succs(" << NS << "): " ; |
283 | Ns.clear(); |
284 | for (MachineBasicBlock *B : BB->successors()) |
285 | Ns.push_back(x: B->getNumber()); |
286 | PrintBBs(Ns); |
287 | OS << '\n'; |
288 | |
289 | for (auto I : P.Obj.Addr->members(G: P.G)) |
290 | OS << PrintNode<InstrNode *>(I, P.G) << '\n'; |
291 | return OS; |
292 | } |
293 | |
294 | raw_ostream &operator<<(raw_ostream &OS, const Print<Func> &P) { |
295 | OS << "DFG dump:[\n" |
296 | << Print(P.Obj.Id, P.G) |
297 | << ": Function: " << P.Obj.Addr->getCode()->getName() << '\n'; |
298 | for (auto I : P.Obj.Addr->members(G: P.G)) |
299 | OS << PrintNode<BlockNode *>(I, P.G) << '\n'; |
300 | OS << "]\n" ; |
301 | return OS; |
302 | } |
303 | |
304 | raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterSet> &P) { |
305 | OS << '{'; |
306 | for (auto I : P.Obj) |
307 | OS << ' ' << Print(I, P.G); |
308 | OS << " }" ; |
309 | return OS; |
310 | } |
311 | |
312 | raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterAggr> &P) { |
313 | OS << P.Obj; |
314 | return OS; |
315 | } |
316 | |
317 | raw_ostream &operator<<(raw_ostream &OS, |
318 | const Print<DataFlowGraph::DefStack> &P) { |
319 | for (auto I = P.Obj.top(), E = P.Obj.bottom(); I != E;) { |
320 | OS << Print(I->Id, P.G) << '<' << Print(I->Addr->getRegRef(G: P.G), P.G) |
321 | << '>'; |
322 | I.down(); |
323 | if (I != E) |
324 | OS << ' '; |
325 | } |
326 | return OS; |
327 | } |
328 | |
329 | // Node allocation functions. |
330 | // |
331 | // Node allocator is like a slab memory allocator: it allocates blocks of |
332 | // memory in sizes that are multiples of the size of a node. Each block has |
333 | // the same size. Nodes are allocated from the currently active block, and |
334 | // when it becomes full, a new one is created. |
335 | // There is a mapping scheme between node id and its location in a block, |
336 | // and within that block is described in the header file. |
337 | // |
338 | void NodeAllocator::startNewBlock() { |
339 | void *T = MemPool.Allocate(Size: NodesPerBlock * NodeMemSize, Alignment: NodeMemSize); |
340 | char *P = static_cast<char *>(T); |
341 | Blocks.push_back(x: P); |
342 | // Check if the block index is still within the allowed range, i.e. less |
343 | // than 2^N, where N is the number of bits in NodeId for the block index. |
344 | // BitsPerIndex is the number of bits per node index. |
345 | assert((Blocks.size() < ((size_t)1 << (8 * sizeof(NodeId) - BitsPerIndex))) && |
346 | "Out of bits for block index" ); |
347 | ActiveEnd = P; |
348 | } |
349 | |
350 | bool NodeAllocator::needNewBlock() { |
351 | if (Blocks.empty()) |
352 | return true; |
353 | |
354 | char *ActiveBegin = Blocks.back(); |
355 | uint32_t Index = (ActiveEnd - ActiveBegin) / NodeMemSize; |
356 | return Index >= NodesPerBlock; |
357 | } |
358 | |
359 | Node NodeAllocator::New() { |
360 | if (needNewBlock()) |
361 | startNewBlock(); |
362 | |
363 | uint32_t ActiveB = Blocks.size() - 1; |
364 | uint32_t Index = (ActiveEnd - Blocks[ActiveB]) / NodeMemSize; |
365 | Node NA = {reinterpret_cast<NodeBase *>(ActiveEnd), makeId(Block: ActiveB, Index)}; |
366 | ActiveEnd += NodeMemSize; |
367 | return NA; |
368 | } |
369 | |
370 | NodeId NodeAllocator::id(const NodeBase *P) const { |
371 | uintptr_t A = reinterpret_cast<uintptr_t>(P); |
372 | for (unsigned i = 0, n = Blocks.size(); i != n; ++i) { |
373 | uintptr_t B = reinterpret_cast<uintptr_t>(Blocks[i]); |
374 | if (A < B || A >= B + NodesPerBlock * NodeMemSize) |
375 | continue; |
376 | uint32_t Idx = (A - B) / NodeMemSize; |
377 | return makeId(Block: i, Index: Idx); |
378 | } |
379 | llvm_unreachable("Invalid node address" ); |
380 | } |
381 | |
382 | void NodeAllocator::clear() { |
383 | MemPool.Reset(); |
384 | Blocks.clear(); |
385 | ActiveEnd = nullptr; |
386 | } |
387 | |
388 | // Insert node NA after "this" in the circular chain. |
389 | void NodeBase::append(Node NA) { |
390 | NodeId Nx = Next; |
391 | // If NA is already "next", do nothing. |
392 | if (Next != NA.Id) { |
393 | Next = NA.Id; |
394 | NA.Addr->Next = Nx; |
395 | } |
396 | } |
397 | |
398 | // Fundamental node manipulator functions. |
399 | |
400 | // Obtain the register reference from a reference node. |
401 | RegisterRef RefNode::getRegRef(const DataFlowGraph &G) const { |
402 | assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref); |
403 | if (NodeAttrs::flags(T: Attrs) & NodeAttrs::PhiRef) |
404 | return G.unpack(PR: RefData.PR); |
405 | assert(RefData.Op != nullptr); |
406 | return G.makeRegRef(Op: *RefData.Op); |
407 | } |
408 | |
409 | // Set the register reference in the reference node directly (for references |
410 | // in phi nodes). |
411 | void RefNode::setRegRef(RegisterRef RR, DataFlowGraph &G) { |
412 | assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref); |
413 | assert(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef); |
414 | RefData.PR = G.pack(RR); |
415 | } |
416 | |
417 | // Set the register reference in the reference node based on a machine |
418 | // operand (for references in statement nodes). |
419 | void RefNode::setRegRef(MachineOperand *Op, DataFlowGraph &G) { |
420 | assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref); |
421 | assert(!(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef)); |
422 | (void)G; |
423 | RefData.Op = Op; |
424 | } |
425 | |
426 | // Get the owner of a given reference node. |
427 | Node RefNode::getOwner(const DataFlowGraph &G) { |
428 | Node NA = G.addr<NodeBase *>(N: getNext()); |
429 | |
430 | while (NA.Addr != this) { |
431 | if (NA.Addr->getType() == NodeAttrs::Code) |
432 | return NA; |
433 | NA = G.addr<NodeBase *>(N: NA.Addr->getNext()); |
434 | } |
435 | llvm_unreachable("No owner in circular list" ); |
436 | } |
437 | |
438 | // Connect the def node to the reaching def node. |
439 | void DefNode::linkToDef(NodeId Self, Def DA) { |
440 | RefData.RD = DA.Id; |
441 | RefData.Sib = DA.Addr->getReachedDef(); |
442 | DA.Addr->setReachedDef(Self); |
443 | } |
444 | |
445 | // Connect the use node to the reaching def node. |
446 | void UseNode::linkToDef(NodeId Self, Def DA) { |
447 | RefData.RD = DA.Id; |
448 | RefData.Sib = DA.Addr->getReachedUse(); |
449 | DA.Addr->setReachedUse(Self); |
450 | } |
451 | |
452 | // Get the first member of the code node. |
453 | Node CodeNode::getFirstMember(const DataFlowGraph &G) const { |
454 | if (CodeData.FirstM == 0) |
455 | return Node(); |
456 | return G.addr<NodeBase *>(N: CodeData.FirstM); |
457 | } |
458 | |
459 | // Get the last member of the code node. |
460 | Node CodeNode::getLastMember(const DataFlowGraph &G) const { |
461 | if (CodeData.LastM == 0) |
462 | return Node(); |
463 | return G.addr<NodeBase *>(N: CodeData.LastM); |
464 | } |
465 | |
466 | // Add node NA at the end of the member list of the given code node. |
467 | void CodeNode::addMember(Node NA, const DataFlowGraph &G) { |
468 | Node ML = getLastMember(G); |
469 | if (ML.Id != 0) { |
470 | ML.Addr->append(NA); |
471 | } else { |
472 | CodeData.FirstM = NA.Id; |
473 | NodeId Self = G.id(P: this); |
474 | NA.Addr->setNext(Self); |
475 | } |
476 | CodeData.LastM = NA.Id; |
477 | } |
478 | |
479 | // Add node NA after member node MA in the given code node. |
480 | void CodeNode::addMemberAfter(Node MA, Node NA, const DataFlowGraph &G) { |
481 | MA.Addr->append(NA); |
482 | if (CodeData.LastM == MA.Id) |
483 | CodeData.LastM = NA.Id; |
484 | } |
485 | |
486 | // Remove member node NA from the given code node. |
487 | void CodeNode::removeMember(Node NA, const DataFlowGraph &G) { |
488 | Node MA = getFirstMember(G); |
489 | assert(MA.Id != 0); |
490 | |
491 | // Special handling if the member to remove is the first member. |
492 | if (MA.Id == NA.Id) { |
493 | if (CodeData.LastM == MA.Id) { |
494 | // If it is the only member, set both first and last to 0. |
495 | CodeData.FirstM = CodeData.LastM = 0; |
496 | } else { |
497 | // Otherwise, advance the first member. |
498 | CodeData.FirstM = MA.Addr->getNext(); |
499 | } |
500 | return; |
501 | } |
502 | |
503 | while (MA.Addr != this) { |
504 | NodeId MX = MA.Addr->getNext(); |
505 | if (MX == NA.Id) { |
506 | MA.Addr->setNext(NA.Addr->getNext()); |
507 | // If the member to remove happens to be the last one, update the |
508 | // LastM indicator. |
509 | if (CodeData.LastM == NA.Id) |
510 | CodeData.LastM = MA.Id; |
511 | return; |
512 | } |
513 | MA = G.addr<NodeBase *>(N: MX); |
514 | } |
515 | llvm_unreachable("No such member" ); |
516 | } |
517 | |
518 | // Return the list of all members of the code node. |
519 | NodeList CodeNode::members(const DataFlowGraph &G) const { |
520 | static auto True = [](Node) -> bool { return true; }; |
521 | return members_if(P: True, G); |
522 | } |
523 | |
524 | // Return the owner of the given instr node. |
525 | Node InstrNode::getOwner(const DataFlowGraph &G) { |
526 | Node NA = G.addr<NodeBase *>(N: getNext()); |
527 | |
528 | while (NA.Addr != this) { |
529 | assert(NA.Addr->getType() == NodeAttrs::Code); |
530 | if (NA.Addr->getKind() == NodeAttrs::Block) |
531 | return NA; |
532 | NA = G.addr<NodeBase *>(N: NA.Addr->getNext()); |
533 | } |
534 | llvm_unreachable("No owner in circular list" ); |
535 | } |
536 | |
537 | // Add the phi node PA to the given block node. |
538 | void BlockNode::addPhi(Phi PA, const DataFlowGraph &G) { |
539 | Node M = getFirstMember(G); |
540 | if (M.Id == 0) { |
541 | addMember(NA: PA, G); |
542 | return; |
543 | } |
544 | |
545 | assert(M.Addr->getType() == NodeAttrs::Code); |
546 | if (M.Addr->getKind() == NodeAttrs::Stmt) { |
547 | // If the first member of the block is a statement, insert the phi as |
548 | // the first member. |
549 | CodeData.FirstM = PA.Id; |
550 | PA.Addr->setNext(M.Id); |
551 | } else { |
552 | // If the first member is a phi, find the last phi, and append PA to it. |
553 | assert(M.Addr->getKind() == NodeAttrs::Phi); |
554 | Node MN = M; |
555 | do { |
556 | M = MN; |
557 | MN = G.addr<NodeBase *>(N: M.Addr->getNext()); |
558 | assert(MN.Addr->getType() == NodeAttrs::Code); |
559 | } while (MN.Addr->getKind() == NodeAttrs::Phi); |
560 | |
561 | // M is the last phi. |
562 | addMemberAfter(MA: M, NA: PA, G); |
563 | } |
564 | } |
565 | |
566 | // Find the block node corresponding to the machine basic block BB in the |
567 | // given func node. |
568 | Block FuncNode::findBlock(const MachineBasicBlock *BB, |
569 | const DataFlowGraph &G) const { |
570 | auto EqBB = [BB](Node NA) -> bool { return Block(NA).Addr->getCode() == BB; }; |
571 | NodeList Ms = members_if(P: EqBB, G); |
572 | if (!Ms.empty()) |
573 | return Ms[0]; |
574 | return Block(); |
575 | } |
576 | |
577 | // Get the block node for the entry block in the given function. |
578 | Block FuncNode::getEntryBlock(const DataFlowGraph &G) { |
579 | MachineBasicBlock *EntryB = &getCode()->front(); |
580 | return findBlock(BB: EntryB, G); |
581 | } |
582 | |
583 | // Target operand information. |
584 | // |
585 | |
586 | // For a given instruction, check if there are any bits of RR that can remain |
587 | // unchanged across this def. |
588 | bool TargetOperandInfo::isPreserving(const MachineInstr &In, |
589 | unsigned OpNum) const { |
590 | return TII.isPredicated(MI: In); |
591 | } |
592 | |
593 | // Check if the definition of RR produces an unspecified value. |
594 | bool TargetOperandInfo::isClobbering(const MachineInstr &In, |
595 | unsigned OpNum) const { |
596 | const MachineOperand &Op = In.getOperand(i: OpNum); |
597 | if (Op.isRegMask()) |
598 | return true; |
599 | assert(Op.isReg()); |
600 | if (In.isCall()) |
601 | if (Op.isDef() && Op.isDead()) |
602 | return true; |
603 | return false; |
604 | } |
605 | |
606 | // Check if the given instruction specifically requires |
607 | bool TargetOperandInfo::isFixedReg(const MachineInstr &In, |
608 | unsigned OpNum) const { |
609 | if (In.isCall() || In.isReturn() || In.isInlineAsm()) |
610 | return true; |
611 | // Check for a tail call. |
612 | if (In.isBranch()) |
613 | for (const MachineOperand &O : In.operands()) |
614 | if (O.isGlobal() || O.isSymbol()) |
615 | return true; |
616 | |
617 | const MCInstrDesc &D = In.getDesc(); |
618 | if (D.implicit_defs().empty() && D.implicit_uses().empty()) |
619 | return false; |
620 | const MachineOperand &Op = In.getOperand(i: OpNum); |
621 | // If there is a sub-register, treat the operand as non-fixed. Currently, |
622 | // fixed registers are those that are listed in the descriptor as implicit |
623 | // uses or defs, and those lists do not allow sub-registers. |
624 | if (Op.getSubReg() != 0) |
625 | return false; |
626 | Register Reg = Op.getReg(); |
627 | ArrayRef<MCPhysReg> ImpOps = |
628 | Op.isDef() ? D.implicit_defs() : D.implicit_uses(); |
629 | return is_contained(Range&: ImpOps, Element: Reg); |
630 | } |
631 | |
632 | // |
633 | // The data flow graph construction. |
634 | // |
635 | |
636 | DataFlowGraph::DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii, |
637 | const TargetRegisterInfo &tri, |
638 | const MachineDominatorTree &mdt, |
639 | const MachineDominanceFrontier &mdf) |
640 | : DefaultTOI(std::make_unique<TargetOperandInfo>(args: tii)), MF(mf), TII(tii), |
641 | TRI(tri), PRI(tri, mf), MDT(mdt), MDF(mdf), TOI(*DefaultTOI), |
642 | LiveIns(PRI) {} |
643 | |
644 | DataFlowGraph::DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii, |
645 | const TargetRegisterInfo &tri, |
646 | const MachineDominatorTree &mdt, |
647 | const MachineDominanceFrontier &mdf, |
648 | const TargetOperandInfo &toi) |
649 | : MF(mf), TII(tii), TRI(tri), PRI(tri, mf), MDT(mdt), MDF(mdf), TOI(toi), |
650 | LiveIns(PRI) {} |
651 | |
652 | // The implementation of the definition stack. |
653 | // Each register reference has its own definition stack. In particular, |
654 | // for a register references "Reg" and "Reg:subreg" will each have their |
655 | // own definition stacks. |
656 | |
657 | // Construct a stack iterator. |
658 | DataFlowGraph::DefStack::Iterator::Iterator(const DataFlowGraph::DefStack &S, |
659 | bool Top) |
660 | : DS(S) { |
661 | if (!Top) { |
662 | // Initialize to bottom. |
663 | Pos = 0; |
664 | return; |
665 | } |
666 | // Initialize to the top, i.e. top-most non-delimiter (or 0, if empty). |
667 | Pos = DS.Stack.size(); |
668 | while (Pos > 0 && DS.isDelimiter(P: DS.Stack[Pos - 1])) |
669 | Pos--; |
670 | } |
671 | |
672 | // Return the size of the stack, including block delimiters. |
673 | unsigned DataFlowGraph::DefStack::size() const { |
674 | unsigned S = 0; |
675 | for (auto I = top(), E = bottom(); I != E; I.down()) |
676 | S++; |
677 | return S; |
678 | } |
679 | |
680 | // Remove the top entry from the stack. Remove all intervening delimiters |
681 | // so that after this, the stack is either empty, or the top of the stack |
682 | // is a non-delimiter. |
683 | void DataFlowGraph::DefStack::pop() { |
684 | assert(!empty()); |
685 | unsigned P = nextDown(P: Stack.size()); |
686 | Stack.resize(new_size: P); |
687 | } |
688 | |
689 | // Push a delimiter for block node N on the stack. |
690 | void DataFlowGraph::DefStack::start_block(NodeId N) { |
691 | assert(N != 0); |
692 | Stack.push_back(x: Def(nullptr, N)); |
693 | } |
694 | |
695 | // Remove all nodes from the top of the stack, until the delimited for |
696 | // block node N is encountered. Remove the delimiter as well. In effect, |
697 | // this will remove from the stack all definitions from block N. |
698 | void DataFlowGraph::DefStack::clear_block(NodeId N) { |
699 | assert(N != 0); |
700 | unsigned P = Stack.size(); |
701 | while (P > 0) { |
702 | bool Found = isDelimiter(P: Stack[P - 1], N); |
703 | P--; |
704 | if (Found) |
705 | break; |
706 | } |
707 | // This will also remove the delimiter, if found. |
708 | Stack.resize(new_size: P); |
709 | } |
710 | |
711 | // Move the stack iterator up by one. |
712 | unsigned DataFlowGraph::DefStack::nextUp(unsigned P) const { |
713 | // Get the next valid position after P (skipping all delimiters). |
714 | // The input position P does not have to point to a non-delimiter. |
715 | unsigned SS = Stack.size(); |
716 | bool IsDelim; |
717 | assert(P < SS); |
718 | do { |
719 | P++; |
720 | IsDelim = isDelimiter(P: Stack[P - 1]); |
721 | } while (P < SS && IsDelim); |
722 | assert(!IsDelim); |
723 | return P; |
724 | } |
725 | |
726 | // Move the stack iterator down by one. |
727 | unsigned DataFlowGraph::DefStack::nextDown(unsigned P) const { |
728 | // Get the preceding valid position before P (skipping all delimiters). |
729 | // The input position P does not have to point to a non-delimiter. |
730 | assert(P > 0 && P <= Stack.size()); |
731 | bool IsDelim = isDelimiter(P: Stack[P - 1]); |
732 | do { |
733 | if (--P == 0) |
734 | break; |
735 | IsDelim = isDelimiter(P: Stack[P - 1]); |
736 | } while (P > 0 && IsDelim); |
737 | assert(!IsDelim); |
738 | return P; |
739 | } |
740 | |
741 | // Register information. |
742 | |
743 | RegisterAggr DataFlowGraph::getLandingPadLiveIns() const { |
744 | RegisterAggr LR(getPRI()); |
745 | const Function &F = MF.getFunction(); |
746 | const Constant *PF = F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr; |
747 | const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); |
748 | if (RegisterId R = TLI.getExceptionPointerRegister(PersonalityFn: PF)) |
749 | LR.insert(RR: RegisterRef(R)); |
750 | if (!isFuncletEHPersonality(Pers: classifyEHPersonality(Pers: PF))) { |
751 | if (RegisterId R = TLI.getExceptionSelectorRegister(PersonalityFn: PF)) |
752 | LR.insert(RR: RegisterRef(R)); |
753 | } |
754 | return LR; |
755 | } |
756 | |
757 | // Node management functions. |
758 | |
759 | // Get the pointer to the node with the id N. |
760 | NodeBase *DataFlowGraph::ptr(NodeId N) const { |
761 | if (N == 0) |
762 | return nullptr; |
763 | return Memory.ptr(N); |
764 | } |
765 | |
766 | // Get the id of the node at the address P. |
767 | NodeId DataFlowGraph::id(const NodeBase *P) const { |
768 | if (P == nullptr) |
769 | return 0; |
770 | return Memory.id(P); |
771 | } |
772 | |
773 | // Allocate a new node and set the attributes to Attrs. |
774 | Node DataFlowGraph::newNode(uint16_t Attrs) { |
775 | Node P = Memory.New(); |
776 | P.Addr->init(); |
777 | P.Addr->setAttrs(Attrs); |
778 | return P; |
779 | } |
780 | |
781 | // Make a copy of the given node B, except for the data-flow links, which |
782 | // are set to 0. |
783 | Node DataFlowGraph::cloneNode(const Node B) { |
784 | Node NA = newNode(Attrs: 0); |
785 | memcpy(dest: NA.Addr, src: B.Addr, n: sizeof(NodeBase)); |
786 | // Ref nodes need to have the data-flow links reset. |
787 | if (NA.Addr->getType() == NodeAttrs::Ref) { |
788 | Ref RA = NA; |
789 | RA.Addr->setReachingDef(0); |
790 | RA.Addr->setSibling(0); |
791 | if (NA.Addr->getKind() == NodeAttrs::Def) { |
792 | Def DA = NA; |
793 | DA.Addr->setReachedDef(0); |
794 | DA.Addr->setReachedUse(0); |
795 | } |
796 | } |
797 | return NA; |
798 | } |
799 | |
800 | // Allocation routines for specific node types/kinds. |
801 | |
802 | Use DataFlowGraph::newUse(Instr Owner, MachineOperand &Op, uint16_t Flags) { |
803 | Use UA = newNode(Attrs: NodeAttrs::Ref | NodeAttrs::Use | Flags); |
804 | UA.Addr->setRegRef(Op: &Op, G&: *this); |
805 | return UA; |
806 | } |
807 | |
808 | PhiUse DataFlowGraph::newPhiUse(Phi Owner, RegisterRef RR, Block PredB, |
809 | uint16_t Flags) { |
810 | PhiUse PUA = newNode(Attrs: NodeAttrs::Ref | NodeAttrs::Use | Flags); |
811 | assert(Flags & NodeAttrs::PhiRef); |
812 | PUA.Addr->setRegRef(RR, G&: *this); |
813 | PUA.Addr->setPredecessor(PredB.Id); |
814 | return PUA; |
815 | } |
816 | |
817 | Def DataFlowGraph::newDef(Instr Owner, MachineOperand &Op, uint16_t Flags) { |
818 | Def DA = newNode(Attrs: NodeAttrs::Ref | NodeAttrs::Def | Flags); |
819 | DA.Addr->setRegRef(Op: &Op, G&: *this); |
820 | return DA; |
821 | } |
822 | |
823 | Def DataFlowGraph::newDef(Instr Owner, RegisterRef RR, uint16_t Flags) { |
824 | Def DA = newNode(Attrs: NodeAttrs::Ref | NodeAttrs::Def | Flags); |
825 | assert(Flags & NodeAttrs::PhiRef); |
826 | DA.Addr->setRegRef(RR, G&: *this); |
827 | return DA; |
828 | } |
829 | |
830 | Phi DataFlowGraph::newPhi(Block Owner) { |
831 | Phi PA = newNode(Attrs: NodeAttrs::Code | NodeAttrs::Phi); |
832 | Owner.Addr->addPhi(PA, G: *this); |
833 | return PA; |
834 | } |
835 | |
836 | Stmt DataFlowGraph::newStmt(Block Owner, MachineInstr *MI) { |
837 | Stmt SA = newNode(Attrs: NodeAttrs::Code | NodeAttrs::Stmt); |
838 | SA.Addr->setCode(MI); |
839 | Owner.Addr->addMember(NA: SA, G: *this); |
840 | return SA; |
841 | } |
842 | |
843 | Block DataFlowGraph::newBlock(Func Owner, MachineBasicBlock *BB) { |
844 | Block BA = newNode(Attrs: NodeAttrs::Code | NodeAttrs::Block); |
845 | BA.Addr->setCode(BB); |
846 | Owner.Addr->addMember(NA: BA, G: *this); |
847 | return BA; |
848 | } |
849 | |
850 | Func DataFlowGraph::newFunc(MachineFunction *MF) { |
851 | Func FA = newNode(Attrs: NodeAttrs::Code | NodeAttrs::Func); |
852 | FA.Addr->setCode(MF); |
853 | return FA; |
854 | } |
855 | |
856 | // Build the data flow graph. |
857 | void DataFlowGraph::build(const Config &config) { |
858 | reset(); |
859 | BuildCfg = config; |
860 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
861 | ReservedRegs = MRI.getReservedRegs(); |
862 | bool SkipReserved = BuildCfg.Options & BuildOptions::OmitReserved; |
863 | |
864 | auto Insert = [](auto &Set, auto &&Range) { |
865 | Set.insert(Range.begin(), Range.end()); |
866 | }; |
867 | |
868 | if (BuildCfg.TrackRegs.empty()) { |
869 | std::set<RegisterId> BaseSet; |
870 | if (BuildCfg.Classes.empty()) { |
871 | // Insert every register. |
872 | for (unsigned R = 1, E = getPRI().getTRI().getNumRegs(); R != E; ++R) |
873 | BaseSet.insert(x: R); |
874 | } else { |
875 | for (const TargetRegisterClass *RC : BuildCfg.Classes) { |
876 | for (MCPhysReg R : *RC) |
877 | BaseSet.insert(x: R); |
878 | } |
879 | } |
880 | for (RegisterId R : BaseSet) { |
881 | if (SkipReserved && ReservedRegs[R]) |
882 | continue; |
883 | Insert(TrackedUnits, getPRI().getUnits(RR: RegisterRef(R))); |
884 | } |
885 | } else { |
886 | // Track set in Config overrides everything. |
887 | for (unsigned R : BuildCfg.TrackRegs) { |
888 | if (SkipReserved && ReservedRegs[R]) |
889 | continue; |
890 | Insert(TrackedUnits, getPRI().getUnits(RR: RegisterRef(R))); |
891 | } |
892 | } |
893 | |
894 | TheFunc = newFunc(MF: &MF); |
895 | |
896 | if (MF.empty()) |
897 | return; |
898 | |
899 | for (MachineBasicBlock &B : MF) { |
900 | Block BA = newBlock(Owner: TheFunc, BB: &B); |
901 | BlockNodes.insert(x: std::make_pair(x: &B, y&: BA)); |
902 | for (MachineInstr &I : B) { |
903 | if (I.isDebugInstr()) |
904 | continue; |
905 | buildStmt(BA, In&: I); |
906 | } |
907 | } |
908 | |
909 | Block EA = TheFunc.Addr->getEntryBlock(G: *this); |
910 | NodeList Blocks = TheFunc.Addr->members(G: *this); |
911 | |
912 | // Collect function live-ins and entry block live-ins. |
913 | MachineBasicBlock &EntryB = *EA.Addr->getCode(); |
914 | assert(EntryB.pred_empty() && "Function entry block has predecessors" ); |
915 | for (std::pair<MCRegister, Register> P : MRI.liveins()) |
916 | LiveIns.insert(RR: RegisterRef(P.first)); |
917 | if (MRI.tracksLiveness()) { |
918 | for (auto I : EntryB.liveins()) |
919 | LiveIns.insert(RR: RegisterRef(I.PhysReg, I.LaneMask)); |
920 | } |
921 | |
922 | // Add function-entry phi nodes for the live-in registers. |
923 | for (RegisterRef RR : LiveIns.refs()) { |
924 | if (RR.isReg() && !isTracked(RR)) // isReg is likely guaranteed |
925 | continue; |
926 | Phi PA = newPhi(Owner: EA); |
927 | uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving; |
928 | Def DA = newDef(Owner: PA, RR, Flags: PhiFlags); |
929 | PA.Addr->addMember(NA: DA, G: *this); |
930 | } |
931 | |
932 | // Add phis for landing pads. |
933 | // Landing pads, unlike usual backs blocks, are not entered through |
934 | // branches in the program, or fall-throughs from other blocks. They |
935 | // are entered from the exception handling runtime and target's ABI |
936 | // may define certain registers as defined on entry to such a block. |
937 | RegisterAggr EHRegs = getLandingPadLiveIns(); |
938 | if (!EHRegs.empty()) { |
939 | for (Block BA : Blocks) { |
940 | const MachineBasicBlock &B = *BA.Addr->getCode(); |
941 | if (!B.isEHPad()) |
942 | continue; |
943 | |
944 | // Prepare a list of NodeIds of the block's predecessors. |
945 | NodeList Preds; |
946 | for (MachineBasicBlock *PB : B.predecessors()) |
947 | Preds.push_back(Elt: findBlock(BB: PB)); |
948 | |
949 | // Build phi nodes for each live-in. |
950 | for (RegisterRef RR : EHRegs.refs()) { |
951 | if (RR.isReg() && !isTracked(RR)) |
952 | continue; |
953 | Phi PA = newPhi(Owner: BA); |
954 | uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving; |
955 | // Add def: |
956 | Def DA = newDef(Owner: PA, RR, Flags: PhiFlags); |
957 | PA.Addr->addMember(NA: DA, G: *this); |
958 | // Add uses (no reaching defs for phi uses): |
959 | for (Block PBA : Preds) { |
960 | PhiUse PUA = newPhiUse(Owner: PA, RR, PredB: PBA); |
961 | PA.Addr->addMember(NA: PUA, G: *this); |
962 | } |
963 | } |
964 | } |
965 | } |
966 | |
967 | // Build a map "PhiM" which will contain, for each block, the set |
968 | // of references that will require phi definitions in that block. |
969 | // "PhiClobberM" map contains references that require phis for clobbering defs |
970 | BlockRefsMap PhiM(getPRI()); |
971 | BlockRefsMap PhiClobberM(getPRI()); |
972 | for (Block BA : Blocks) |
973 | recordDefsForDF(PhiM, PhiClobberM, BA); |
974 | for (Block BA : Blocks) |
975 | buildPhis(PhiM, BA); |
976 | |
977 | // Link all the refs. This will recursively traverse the dominator tree. |
978 | // Phis for clobbering defs are added here. |
979 | DefStackMap DM; |
980 | linkBlockRefs(DefM&: DM, PhiClobberM, BA: EA); |
981 | |
982 | // Finally, remove all unused phi nodes. |
983 | if (!(BuildCfg.Options & BuildOptions::KeepDeadPhis)) |
984 | removeUnusedPhis(); |
985 | } |
986 | |
987 | RegisterRef DataFlowGraph::makeRegRef(unsigned Reg, unsigned Sub) const { |
988 | assert(RegisterRef::isRegId(Reg) || RegisterRef::isMaskId(Reg)); |
989 | assert(Reg != 0); |
990 | if (Sub != 0) |
991 | Reg = TRI.getSubReg(Reg, Idx: Sub); |
992 | return RegisterRef(Reg); |
993 | } |
994 | |
995 | RegisterRef DataFlowGraph::makeRegRef(const MachineOperand &Op) const { |
996 | assert(Op.isReg() || Op.isRegMask()); |
997 | if (Op.isReg()) |
998 | return makeRegRef(Reg: Op.getReg(), Sub: Op.getSubReg()); |
999 | return RegisterRef(getPRI().getRegMaskId(RM: Op.getRegMask()), |
1000 | LaneBitmask::getAll()); |
1001 | } |
1002 | |
1003 | // For each stack in the map DefM, push the delimiter for block B on it. |
1004 | void DataFlowGraph::markBlock(NodeId B, DefStackMap &DefM) { |
1005 | // Push block delimiters. |
1006 | for (auto &P : DefM) |
1007 | P.second.start_block(N: B); |
1008 | } |
1009 | |
1010 | // Remove all definitions coming from block B from each stack in DefM. |
1011 | void DataFlowGraph::releaseBlock(NodeId B, DefStackMap &DefM) { |
1012 | // Pop all defs from this block from the definition stack. Defs that were |
1013 | // added to the map during the traversal of instructions will not have a |
1014 | // delimiter, but for those, the whole stack will be emptied. |
1015 | for (auto &P : DefM) |
1016 | P.second.clear_block(N: B); |
1017 | |
1018 | // Finally, remove empty stacks from the map. |
1019 | for (auto I = DefM.begin(), E = DefM.end(), NextI = I; I != E; I = NextI) { |
1020 | NextI = std::next(x: I); |
1021 | // This preserves the validity of iterators other than I. |
1022 | if (I->second.empty()) |
1023 | DefM.erase(position: I); |
1024 | } |
1025 | } |
1026 | |
1027 | // Push all definitions from the instruction node IA to an appropriate |
1028 | // stack in DefM. |
1029 | void DataFlowGraph::pushAllDefs(Instr IA, DefStackMap &DefM) { |
1030 | pushClobbers(IA, DM&: DefM); |
1031 | pushDefs(IA, DM&: DefM); |
1032 | } |
1033 | |
1034 | // Push all definitions from the instruction node IA to an appropriate |
1035 | // stack in DefM. |
1036 | void DataFlowGraph::pushClobbers(Instr IA, DefStackMap &DefM) { |
1037 | NodeSet Visited; |
1038 | std::set<RegisterId> Defined; |
1039 | |
1040 | // The important objectives of this function are: |
1041 | // - to be able to handle instructions both while the graph is being |
1042 | // constructed, and after the graph has been constructed, and |
1043 | // - maintain proper ordering of definitions on the stack for each |
1044 | // register reference: |
1045 | // - if there are two or more related defs in IA (i.e. coming from |
1046 | // the same machine operand), then only push one def on the stack, |
1047 | // - if there are multiple unrelated defs of non-overlapping |
1048 | // subregisters of S, then the stack for S will have both (in an |
1049 | // unspecified order), but the order does not matter from the data- |
1050 | // -flow perspective. |
1051 | |
1052 | for (Def DA : IA.Addr->members_if(P: IsDef, G: *this)) { |
1053 | if (Visited.count(x: DA.Id)) |
1054 | continue; |
1055 | if (!(DA.Addr->getFlags() & NodeAttrs::Clobbering)) |
1056 | continue; |
1057 | |
1058 | NodeList Rel = getRelatedRefs(IA, RA: DA); |
1059 | Def PDA = Rel.front(); |
1060 | RegisterRef RR = PDA.Addr->getRegRef(G: *this); |
1061 | |
1062 | // Push the definition on the stack for the register and all aliases. |
1063 | // The def stack traversal in linkNodeUp will check the exact aliasing. |
1064 | DefM[RR.Reg].push(DA); |
1065 | Defined.insert(x: RR.Reg); |
1066 | for (RegisterId A : getPRI().getAliasSet(Reg: RR.Reg)) { |
1067 | if (RegisterRef::isRegId(Id: A) && !isTracked(RR: RegisterRef(A))) |
1068 | continue; |
1069 | // Check that we don't push the same def twice. |
1070 | assert(A != RR.Reg); |
1071 | if (!Defined.count(x: A)) |
1072 | DefM[A].push(DA); |
1073 | } |
1074 | // Mark all the related defs as visited. |
1075 | for (Node T : Rel) |
1076 | Visited.insert(x: T.Id); |
1077 | } |
1078 | } |
1079 | |
1080 | // Push all definitions from the instruction node IA to an appropriate |
1081 | // stack in DefM. |
1082 | void DataFlowGraph::pushDefs(Instr IA, DefStackMap &DefM) { |
1083 | NodeSet Visited; |
1084 | #ifndef NDEBUG |
1085 | std::set<RegisterId> Defined; |
1086 | #endif |
1087 | |
1088 | // The important objectives of this function are: |
1089 | // - to be able to handle instructions both while the graph is being |
1090 | // constructed, and after the graph has been constructed, and |
1091 | // - maintain proper ordering of definitions on the stack for each |
1092 | // register reference: |
1093 | // - if there are two or more related defs in IA (i.e. coming from |
1094 | // the same machine operand), then only push one def on the stack, |
1095 | // - if there are multiple unrelated defs of non-overlapping |
1096 | // subregisters of S, then the stack for S will have both (in an |
1097 | // unspecified order), but the order does not matter from the data- |
1098 | // -flow perspective. |
1099 | |
1100 | for (Def DA : IA.Addr->members_if(P: IsDef, G: *this)) { |
1101 | if (Visited.count(x: DA.Id)) |
1102 | continue; |
1103 | if (DA.Addr->getFlags() & NodeAttrs::Clobbering) |
1104 | continue; |
1105 | |
1106 | NodeList Rel = getRelatedRefs(IA, RA: DA); |
1107 | Def PDA = Rel.front(); |
1108 | RegisterRef RR = PDA.Addr->getRegRef(G: *this); |
1109 | #ifndef NDEBUG |
1110 | // Assert if the register is defined in two or more unrelated defs. |
1111 | // This could happen if there are two or more def operands defining it. |
1112 | if (!Defined.insert(RR.Reg).second) { |
1113 | MachineInstr *MI = Stmt(IA).Addr->getCode(); |
1114 | dbgs() << "Multiple definitions of register: " << Print(RR, *this) |
1115 | << " in\n " << *MI << "in " << printMBBReference(*MI->getParent()) |
1116 | << '\n'; |
1117 | llvm_unreachable(nullptr); |
1118 | } |
1119 | #endif |
1120 | // Push the definition on the stack for the register and all aliases. |
1121 | // The def stack traversal in linkNodeUp will check the exact aliasing. |
1122 | DefM[RR.Reg].push(DA); |
1123 | for (RegisterId A : getPRI().getAliasSet(Reg: RR.Reg)) { |
1124 | if (RegisterRef::isRegId(Id: A) && !isTracked(RR: RegisterRef(A))) |
1125 | continue; |
1126 | // Check that we don't push the same def twice. |
1127 | assert(A != RR.Reg); |
1128 | DefM[A].push(DA); |
1129 | } |
1130 | // Mark all the related defs as visited. |
1131 | for (Node T : Rel) |
1132 | Visited.insert(x: T.Id); |
1133 | } |
1134 | } |
1135 | |
1136 | // Return the list of all reference nodes related to RA, including RA itself. |
1137 | // See "getNextRelated" for the meaning of a "related reference". |
1138 | NodeList DataFlowGraph::getRelatedRefs(Instr IA, Ref RA) const { |
1139 | assert(IA.Id != 0 && RA.Id != 0); |
1140 | |
1141 | NodeList Refs; |
1142 | NodeId Start = RA.Id; |
1143 | do { |
1144 | Refs.push_back(Elt: RA); |
1145 | RA = getNextRelated(IA, RA); |
1146 | } while (RA.Id != 0 && RA.Id != Start); |
1147 | return Refs; |
1148 | } |
1149 | |
1150 | // Clear all information in the graph. |
1151 | void DataFlowGraph::reset() { |
1152 | Memory.clear(); |
1153 | BlockNodes.clear(); |
1154 | TrackedUnits.clear(); |
1155 | ReservedRegs.clear(); |
1156 | TheFunc = Func(); |
1157 | } |
1158 | |
1159 | // Return the next reference node in the instruction node IA that is related |
1160 | // to RA. Conceptually, two reference nodes are related if they refer to the |
1161 | // same instance of a register access, but differ in flags or other minor |
1162 | // characteristics. Specific examples of related nodes are shadow reference |
1163 | // nodes. |
1164 | // Return the equivalent of nullptr if there are no more related references. |
1165 | Ref DataFlowGraph::getNextRelated(Instr IA, Ref RA) const { |
1166 | assert(IA.Id != 0 && RA.Id != 0); |
1167 | |
1168 | auto IsRelated = [this, RA](Ref TA) -> bool { |
1169 | if (TA.Addr->getKind() != RA.Addr->getKind()) |
1170 | return false; |
1171 | if (!getPRI().equal_to(A: TA.Addr->getRegRef(G: *this), |
1172 | B: RA.Addr->getRegRef(G: *this))) { |
1173 | return false; |
1174 | } |
1175 | return true; |
1176 | }; |
1177 | |
1178 | RegisterRef RR = RA.Addr->getRegRef(G: *this); |
1179 | if (IA.Addr->getKind() == NodeAttrs::Stmt) { |
1180 | auto Cond = [&IsRelated, RA](Ref TA) -> bool { |
1181 | return IsRelated(TA) && &RA.Addr->getOp() == &TA.Addr->getOp(); |
1182 | }; |
1183 | return RA.Addr->getNextRef(RR, P: Cond, NextOnly: true, G: *this); |
1184 | } |
1185 | |
1186 | assert(IA.Addr->getKind() == NodeAttrs::Phi); |
1187 | auto Cond = [&IsRelated, RA](Ref TA) -> bool { |
1188 | if (!IsRelated(TA)) |
1189 | return false; |
1190 | if (TA.Addr->getKind() != NodeAttrs::Use) |
1191 | return true; |
1192 | // For phi uses, compare predecessor blocks. |
1193 | return PhiUse(TA).Addr->getPredecessor() == |
1194 | PhiUse(RA).Addr->getPredecessor(); |
1195 | }; |
1196 | return RA.Addr->getNextRef(RR, P: Cond, NextOnly: true, G: *this); |
1197 | } |
1198 | |
1199 | // Find the next node related to RA in IA that satisfies condition P. |
1200 | // If such a node was found, return a pair where the second element is the |
1201 | // located node. If such a node does not exist, return a pair where the |
1202 | // first element is the element after which such a node should be inserted, |
1203 | // and the second element is a null-address. |
1204 | template <typename Predicate> |
1205 | std::pair<Ref, Ref> DataFlowGraph::locateNextRef(Instr IA, Ref RA, |
1206 | Predicate P) const { |
1207 | assert(IA.Id != 0 && RA.Id != 0); |
1208 | |
1209 | Ref NA; |
1210 | NodeId Start = RA.Id; |
1211 | while (true) { |
1212 | NA = getNextRelated(IA, RA); |
1213 | if (NA.Id == 0 || NA.Id == Start) |
1214 | break; |
1215 | if (P(NA)) |
1216 | break; |
1217 | RA = NA; |
1218 | } |
1219 | |
1220 | if (NA.Id != 0 && NA.Id != Start) |
1221 | return std::make_pair(x&: RA, y&: NA); |
1222 | return std::make_pair(x&: RA, y: Ref()); |
1223 | } |
1224 | |
1225 | // Get the next shadow node in IA corresponding to RA, and optionally create |
1226 | // such a node if it does not exist. |
1227 | Ref DataFlowGraph::getNextShadow(Instr IA, Ref RA, bool Create) { |
1228 | assert(IA.Id != 0 && RA.Id != 0); |
1229 | |
1230 | uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow; |
1231 | auto IsShadow = [Flags](Ref TA) -> bool { |
1232 | return TA.Addr->getFlags() == Flags; |
1233 | }; |
1234 | auto Loc = locateNextRef(IA, RA, P: IsShadow); |
1235 | if (Loc.second.Id != 0 || !Create) |
1236 | return Loc.second; |
1237 | |
1238 | // Create a copy of RA and mark is as shadow. |
1239 | Ref NA = cloneNode(B: RA); |
1240 | NA.Addr->setFlags(Flags | NodeAttrs::Shadow); |
1241 | IA.Addr->addMemberAfter(MA: Loc.first, NA, G: *this); |
1242 | return NA; |
1243 | } |
1244 | |
1245 | // Create a new statement node in the block node BA that corresponds to |
1246 | // the machine instruction MI. |
1247 | void DataFlowGraph::buildStmt(Block BA, MachineInstr &In) { |
1248 | Stmt SA = newStmt(Owner: BA, MI: &In); |
1249 | |
1250 | auto isCall = [](const MachineInstr &In) -> bool { |
1251 | if (In.isCall()) |
1252 | return true; |
1253 | // Is tail call? |
1254 | if (In.isBranch()) { |
1255 | for (const MachineOperand &Op : In.operands()) |
1256 | if (Op.isGlobal() || Op.isSymbol()) |
1257 | return true; |
1258 | // Assume indirect branches are calls. This is for the purpose of |
1259 | // keeping implicit operands, and so it won't hurt on intra-function |
1260 | // indirect branches. |
1261 | if (In.isIndirectBranch()) |
1262 | return true; |
1263 | } |
1264 | return false; |
1265 | }; |
1266 | |
1267 | auto isDefUndef = [this](const MachineInstr &In, RegisterRef DR) -> bool { |
1268 | // This instruction defines DR. Check if there is a use operand that |
1269 | // would make DR live on entry to the instruction. |
1270 | for (const MachineOperand &Op : In.all_uses()) { |
1271 | if (Op.getReg() == 0 || Op.isUndef()) |
1272 | continue; |
1273 | RegisterRef UR = makeRegRef(Op); |
1274 | if (getPRI().alias(RA: DR, RB: UR)) |
1275 | return false; |
1276 | } |
1277 | return true; |
1278 | }; |
1279 | |
1280 | bool IsCall = isCall(In); |
1281 | unsigned NumOps = In.getNumOperands(); |
1282 | |
1283 | // Avoid duplicate implicit defs. This will not detect cases of implicit |
1284 | // defs that define registers that overlap, but it is not clear how to |
1285 | // interpret that in the absence of explicit defs. Overlapping explicit |
1286 | // defs are likely illegal already. |
1287 | BitVector DoneDefs(TRI.getNumRegs()); |
1288 | // Process explicit defs first. |
1289 | for (unsigned OpN = 0; OpN < NumOps; ++OpN) { |
1290 | MachineOperand &Op = In.getOperand(i: OpN); |
1291 | if (!Op.isReg() || !Op.isDef() || Op.isImplicit()) |
1292 | continue; |
1293 | Register R = Op.getReg(); |
1294 | if (!R || !R.isPhysical() || !isTracked(RR: RegisterRef(R))) |
1295 | continue; |
1296 | uint16_t Flags = NodeAttrs::None; |
1297 | if (TOI.isPreserving(In, OpNum: OpN)) { |
1298 | Flags |= NodeAttrs::Preserving; |
1299 | // If the def is preserving, check if it is also undefined. |
1300 | if (isDefUndef(In, makeRegRef(Op))) |
1301 | Flags |= NodeAttrs::Undef; |
1302 | } |
1303 | if (TOI.isClobbering(In, OpNum: OpN)) |
1304 | Flags |= NodeAttrs::Clobbering; |
1305 | if (TOI.isFixedReg(In, OpNum: OpN)) |
1306 | Flags |= NodeAttrs::Fixed; |
1307 | if (IsCall && Op.isDead()) |
1308 | Flags |= NodeAttrs::Dead; |
1309 | Def DA = newDef(Owner: SA, Op, Flags); |
1310 | SA.Addr->addMember(NA: DA, G: *this); |
1311 | assert(!DoneDefs.test(R)); |
1312 | DoneDefs.set(R); |
1313 | } |
1314 | |
1315 | // Process reg-masks (as clobbers). |
1316 | BitVector DoneClobbers(TRI.getNumRegs()); |
1317 | for (unsigned OpN = 0; OpN < NumOps; ++OpN) { |
1318 | MachineOperand &Op = In.getOperand(i: OpN); |
1319 | if (!Op.isRegMask()) |
1320 | continue; |
1321 | uint16_t Flags = NodeAttrs::Clobbering | NodeAttrs::Fixed | NodeAttrs::Dead; |
1322 | Def DA = newDef(Owner: SA, Op, Flags); |
1323 | SA.Addr->addMember(NA: DA, G: *this); |
1324 | // Record all clobbered registers in DoneDefs. |
1325 | const uint32_t *RM = Op.getRegMask(); |
1326 | for (unsigned i = 1, e = TRI.getNumRegs(); i != e; ++i) { |
1327 | if (!isTracked(RR: RegisterRef(i))) |
1328 | continue; |
1329 | if (!(RM[i / 32] & (1u << (i % 32)))) |
1330 | DoneClobbers.set(i); |
1331 | } |
1332 | } |
1333 | |
1334 | // Process implicit defs, skipping those that have already been added |
1335 | // as explicit. |
1336 | for (unsigned OpN = 0; OpN < NumOps; ++OpN) { |
1337 | MachineOperand &Op = In.getOperand(i: OpN); |
1338 | if (!Op.isReg() || !Op.isDef() || !Op.isImplicit()) |
1339 | continue; |
1340 | Register R = Op.getReg(); |
1341 | if (!R || !R.isPhysical() || !isTracked(RR: RegisterRef(R)) || DoneDefs.test(Idx: R)) |
1342 | continue; |
1343 | RegisterRef RR = makeRegRef(Op); |
1344 | uint16_t Flags = NodeAttrs::None; |
1345 | if (TOI.isPreserving(In, OpNum: OpN)) { |
1346 | Flags |= NodeAttrs::Preserving; |
1347 | // If the def is preserving, check if it is also undefined. |
1348 | if (isDefUndef(In, RR)) |
1349 | Flags |= NodeAttrs::Undef; |
1350 | } |
1351 | if (TOI.isClobbering(In, OpNum: OpN)) |
1352 | Flags |= NodeAttrs::Clobbering; |
1353 | if (TOI.isFixedReg(In, OpNum: OpN)) |
1354 | Flags |= NodeAttrs::Fixed; |
1355 | if (IsCall && Op.isDead()) { |
1356 | if (DoneClobbers.test(Idx: R)) |
1357 | continue; |
1358 | Flags |= NodeAttrs::Dead; |
1359 | } |
1360 | Def DA = newDef(Owner: SA, Op, Flags); |
1361 | SA.Addr->addMember(NA: DA, G: *this); |
1362 | DoneDefs.set(R); |
1363 | } |
1364 | |
1365 | for (unsigned OpN = 0; OpN < NumOps; ++OpN) { |
1366 | MachineOperand &Op = In.getOperand(i: OpN); |
1367 | if (!Op.isReg() || !Op.isUse()) |
1368 | continue; |
1369 | Register R = Op.getReg(); |
1370 | if (!R || !R.isPhysical() || !isTracked(RR: RegisterRef(R))) |
1371 | continue; |
1372 | uint16_t Flags = NodeAttrs::None; |
1373 | if (Op.isUndef()) |
1374 | Flags |= NodeAttrs::Undef; |
1375 | if (TOI.isFixedReg(In, OpNum: OpN)) |
1376 | Flags |= NodeAttrs::Fixed; |
1377 | Use UA = newUse(Owner: SA, Op, Flags); |
1378 | SA.Addr->addMember(NA: UA, G: *this); |
1379 | } |
1380 | } |
1381 | |
1382 | // Scan all defs in the block node BA and record in PhiM the locations of |
1383 | // phi nodes corresponding to these defs. |
1384 | // Clobbering defs in BA are recorded in PhiClobberM |
1385 | void DataFlowGraph::recordDefsForDF(BlockRefsMap &PhiM, |
1386 | BlockRefsMap &PhiClobberM, Block BA) { |
1387 | // Check all defs from block BA and record them in each block in BA's |
1388 | // iterated dominance frontier. This information will later be used to |
1389 | // create phi nodes. |
1390 | MachineBasicBlock *BB = BA.Addr->getCode(); |
1391 | assert(BB); |
1392 | auto DFLoc = MDF.find(B: BB); |
1393 | if (DFLoc == MDF.end() || DFLoc->second.empty()) |
1394 | return; |
1395 | |
1396 | // Traverse all instructions in the block and collect the set of all |
1397 | // defined references. For each reference there will be a phi created |
1398 | // in the block's iterated dominance frontier. |
1399 | // This is done to make sure that each defined reference gets only one |
1400 | // phi node, even if it is defined multiple times. |
1401 | RegisterAggr Defs(getPRI()); |
1402 | RegisterAggr ClobberDefs(getPRI()); |
1403 | for (Instr IA : BA.Addr->members(G: *this)) { |
1404 | for (Ref RA : IA.Addr->members_if(P: IsDef, G: *this)) { |
1405 | RegisterRef RR = RA.Addr->getRegRef(G: *this); |
1406 | if (!isTracked(RR)) |
1407 | continue; |
1408 | if (RR.isReg()) |
1409 | Defs.insert(RR); |
1410 | // Clobbering def |
1411 | else if (RR.isMask()) |
1412 | ClobberDefs.insert(RR); |
1413 | } |
1414 | } |
1415 | |
1416 | // Calculate the iterated dominance frontier of BB. |
1417 | const MachineDominanceFrontier::DomSetType &DF = DFLoc->second; |
1418 | SetVector<MachineBasicBlock *> IDF(llvm::from_range, DF); |
1419 | for (unsigned i = 0; i < IDF.size(); ++i) { |
1420 | auto F = MDF.find(B: IDF[i]); |
1421 | if (F != MDF.end()) |
1422 | IDF.insert_range(R: F->second); |
1423 | } |
1424 | |
1425 | // Finally, add the set of defs to each block in the iterated dominance |
1426 | // frontier. |
1427 | for (auto *DB : IDF) { |
1428 | Block DBA = findBlock(BB: DB); |
1429 | PhiM[DBA.Id].insert(RG: Defs); |
1430 | PhiClobberM[DBA.Id].insert(RG: ClobberDefs); |
1431 | } |
1432 | } |
1433 | |
1434 | // Given the locations of phi nodes in the map PhiM, create the phi nodes |
1435 | // that are located in the block node BA. |
1436 | void DataFlowGraph::buildPhis(BlockRefsMap &PhiM, Block BA, |
1437 | const DefStackMap &DefM) { |
1438 | // Check if this blocks has any DF defs, i.e. if there are any defs |
1439 | // that this block is in the iterated dominance frontier of. |
1440 | auto HasDF = PhiM.find(Key: BA.Id); |
1441 | if (HasDF == PhiM.end() || HasDF->second.empty()) |
1442 | return; |
1443 | |
1444 | // Prepare a list of NodeIds of the block's predecessors. |
1445 | NodeList Preds; |
1446 | const MachineBasicBlock *MBB = BA.Addr->getCode(); |
1447 | for (MachineBasicBlock *PB : MBB->predecessors()) |
1448 | Preds.push_back(Elt: findBlock(BB: PB)); |
1449 | |
1450 | RegisterAggr PhiDefs(getPRI()); |
1451 | // DefM will be non empty when we are building phis |
1452 | // for clobbering defs |
1453 | if (!DefM.empty()) { |
1454 | for (Instr IA : BA.Addr->members_if(P: IsPhi, G: *this)) { |
1455 | for (Def DA : IA.Addr->members_if(P: IsDef, G: *this)) { |
1456 | auto DR = DA.Addr->getRegRef(G: *this); |
1457 | PhiDefs.insert(RR: DR); |
1458 | } |
1459 | } |
1460 | } |
1461 | |
1462 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
1463 | const RegisterAggr &Defs = PhiM[BA.Id]; |
1464 | uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving; |
1465 | |
1466 | for (RegisterRef RR : Defs.refs()) { |
1467 | if (!DefM.empty()) { |
1468 | auto F = DefM.find(x: RR.Reg); |
1469 | // Do not create a phi for unallocatable registers, or for registers |
1470 | // that are never livein to BA. |
1471 | // If a phi exists for RR, do not create another. |
1472 | if (!MRI.isAllocatable(PhysReg: RR.Reg) || PhiDefs.hasCoverOf(RR) || |
1473 | F == DefM.end() || F->second.empty()) |
1474 | continue; |
1475 | // Do not create a phi, if all reaching defs are clobbering |
1476 | auto RDef = F->second.top(); |
1477 | if (RDef->Addr->getFlags() & NodeAttrs::Clobbering) |
1478 | continue; |
1479 | PhiDefs.insert(RR); |
1480 | } |
1481 | Phi PA = newPhi(Owner: BA); |
1482 | PA.Addr->addMember(NA: newDef(Owner: PA, RR, Flags: PhiFlags), G: *this); |
1483 | |
1484 | // Add phi uses. |
1485 | for (Block PBA : Preds) { |
1486 | PA.Addr->addMember(NA: newPhiUse(Owner: PA, RR, PredB: PBA), G: *this); |
1487 | } |
1488 | } |
1489 | } |
1490 | |
1491 | // Remove any unneeded phi nodes that were created during the build process. |
1492 | void DataFlowGraph::removeUnusedPhis() { |
1493 | // This will remove unused phis, i.e. phis where each def does not reach |
1494 | // any uses or other defs. This will not detect or remove circular phi |
1495 | // chains that are otherwise dead. Unused/dead phis are created during |
1496 | // the build process and this function is intended to remove these cases |
1497 | // that are easily determinable to be unnecessary. |
1498 | |
1499 | SetVector<NodeId> PhiQ; |
1500 | for (Block BA : TheFunc.Addr->members(G: *this)) { |
1501 | for (auto P : BA.Addr->members_if(P: IsPhi, G: *this)) |
1502 | PhiQ.insert(X: P.Id); |
1503 | } |
1504 | |
1505 | static auto HasUsedDef = [](NodeList &Ms) -> bool { |
1506 | for (Node M : Ms) { |
1507 | if (M.Addr->getKind() != NodeAttrs::Def) |
1508 | continue; |
1509 | Def DA = M; |
1510 | if (DA.Addr->getReachedDef() != 0 || DA.Addr->getReachedUse() != 0) |
1511 | return true; |
1512 | } |
1513 | return false; |
1514 | }; |
1515 | |
1516 | // Any phi, if it is removed, may affect other phis (make them dead). |
1517 | // For each removed phi, collect the potentially affected phis and add |
1518 | // them back to the queue. |
1519 | while (!PhiQ.empty()) { |
1520 | auto PA = addr<PhiNode *>(N: PhiQ[0]); |
1521 | PhiQ.remove(X: PA.Id); |
1522 | NodeList Refs = PA.Addr->members(G: *this); |
1523 | if (HasUsedDef(Refs)) |
1524 | continue; |
1525 | for (Ref RA : Refs) { |
1526 | if (NodeId RD = RA.Addr->getReachingDef()) { |
1527 | auto RDA = addr<DefNode *>(N: RD); |
1528 | Instr OA = RDA.Addr->getOwner(G: *this); |
1529 | if (IsPhi(BA: OA)) |
1530 | PhiQ.insert(X: OA.Id); |
1531 | } |
1532 | if (RA.Addr->isDef()) |
1533 | unlinkDef(DA: RA, RemoveFromOwner: true); |
1534 | else |
1535 | unlinkUse(UA: RA, RemoveFromOwner: true); |
1536 | } |
1537 | Block BA = PA.Addr->getOwner(G: *this); |
1538 | BA.Addr->removeMember(NA: PA, G: *this); |
1539 | } |
1540 | } |
1541 | |
1542 | // For a given reference node TA in an instruction node IA, connect the |
1543 | // reaching def of TA to the appropriate def node. Create any shadow nodes |
1544 | // as appropriate. |
1545 | template <typename T> |
1546 | void DataFlowGraph::linkRefUp(Instr IA, NodeAddr<T> TA, DefStack &DS) { |
1547 | if (DS.empty()) |
1548 | return; |
1549 | RegisterRef RR = TA.Addr->getRegRef(*this); |
1550 | NodeAddr<T> TAP; |
1551 | |
1552 | // References from the def stack that have been examined so far. |
1553 | RegisterAggr Defs(getPRI()); |
1554 | |
1555 | for (auto I = DS.top(), E = DS.bottom(); I != E; I.down()) { |
1556 | RegisterRef QR = I->Addr->getRegRef(G: *this); |
1557 | |
1558 | // Skip all defs that we have already seen. |
1559 | // If this completes a cover of RR, stop the stack traversal. |
1560 | bool Seen = Defs.hasCoverOf(RR: QR); |
1561 | if (Seen) |
1562 | continue; |
1563 | |
1564 | bool Cover = Defs.insert(RR: QR).hasCoverOf(RR); |
1565 | |
1566 | // The reaching def. |
1567 | Def RDA = *I; |
1568 | |
1569 | // Pick the reached node. |
1570 | if (TAP.Id == 0) { |
1571 | TAP = TA; |
1572 | } else { |
1573 | // Mark the existing ref as "shadow" and create a new shadow. |
1574 | TAP.Addr->setFlags(TAP.Addr->getFlags() | NodeAttrs::Shadow); |
1575 | TAP = getNextShadow(IA, RA: TAP, Create: true); |
1576 | } |
1577 | |
1578 | // Create the link. |
1579 | TAP.Addr->linkToDef(TAP.Id, RDA); |
1580 | |
1581 | if (Cover) |
1582 | break; |
1583 | } |
1584 | } |
1585 | |
1586 | // Create data-flow links for all reference nodes in the statement node SA. |
1587 | template <typename Predicate> |
1588 | void DataFlowGraph::linkStmtRefs(DefStackMap &DefM, Stmt SA, Predicate P) { |
1589 | #ifndef NDEBUG |
1590 | RegisterSet Defs(getPRI()); |
1591 | #endif |
1592 | |
1593 | // Link all nodes (upwards in the data-flow) with their reaching defs. |
1594 | for (Ref RA : SA.Addr->members_if(P, *this)) { |
1595 | uint16_t Kind = RA.Addr->getKind(); |
1596 | assert(Kind == NodeAttrs::Def || Kind == NodeAttrs::Use); |
1597 | RegisterRef RR = RA.Addr->getRegRef(G: *this); |
1598 | #ifndef NDEBUG |
1599 | // Do not expect multiple defs of the same reference. |
1600 | assert(Kind != NodeAttrs::Def || !Defs.count(RR)); |
1601 | Defs.insert(RR); |
1602 | #endif |
1603 | |
1604 | auto F = DefM.find(x: RR.Reg); |
1605 | if (F == DefM.end()) |
1606 | continue; |
1607 | DefStack &DS = F->second; |
1608 | if (Kind == NodeAttrs::Use) |
1609 | linkRefUp<UseNode *>(IA: SA, TA: RA, DS); |
1610 | else if (Kind == NodeAttrs::Def) |
1611 | linkRefUp<DefNode *>(IA: SA, TA: RA, DS); |
1612 | else |
1613 | llvm_unreachable("Unexpected node in instruction" ); |
1614 | } |
1615 | } |
1616 | |
1617 | // Create data-flow links for all instructions in the block node BA. This |
1618 | // will include updating any phi nodes in BA. |
1619 | void DataFlowGraph::linkBlockRefs(DefStackMap &DefM, BlockRefsMap &PhiClobberM, |
1620 | Block BA) { |
1621 | // Create phi nodes for clobbering defs. |
1622 | // Since a huge number of registers can get clobbered, it would result in many |
1623 | // phi nodes being created in the graph. Only create phi nodes that have a non |
1624 | // clobbering reaching def. Use DefM to get not clobbering defs reaching a |
1625 | // block. |
1626 | buildPhis(PhiM&: PhiClobberM, BA, DefM); |
1627 | |
1628 | // Push block delimiters. |
1629 | markBlock(B: BA.Id, DefM); |
1630 | |
1631 | auto IsClobber = [](Ref RA) -> bool { |
1632 | return IsDef(BA: RA) && (RA.Addr->getFlags() & NodeAttrs::Clobbering); |
1633 | }; |
1634 | auto IsNoClobber = [](Ref RA) -> bool { |
1635 | return IsDef(BA: RA) && !(RA.Addr->getFlags() & NodeAttrs::Clobbering); |
1636 | }; |
1637 | |
1638 | assert(BA.Addr && "block node address is needed to create a data-flow link" ); |
1639 | // For each non-phi instruction in the block, link all the defs and uses |
1640 | // to their reaching defs. For any member of the block (including phis), |
1641 | // push the defs on the corresponding stacks. |
1642 | for (Instr IA : BA.Addr->members(G: *this)) { |
1643 | // Ignore phi nodes here. They will be linked part by part from the |
1644 | // predecessors. |
1645 | if (IA.Addr->getKind() == NodeAttrs::Stmt) { |
1646 | linkStmtRefs(DefM, SA: IA, P: IsUse); |
1647 | linkStmtRefs(DefM, SA: IA, P: IsClobber); |
1648 | } |
1649 | |
1650 | // Push the definitions on the stack. |
1651 | pushClobbers(IA, DefM); |
1652 | |
1653 | if (IA.Addr->getKind() == NodeAttrs::Stmt) |
1654 | linkStmtRefs(DefM, SA: IA, P: IsNoClobber); |
1655 | |
1656 | pushDefs(IA, DefM); |
1657 | } |
1658 | |
1659 | // Recursively process all children in the dominator tree. |
1660 | MachineDomTreeNode *N = MDT.getNode(BB: BA.Addr->getCode()); |
1661 | for (auto *I : *N) { |
1662 | MachineBasicBlock *SB = I->getBlock(); |
1663 | Block SBA = findBlock(BB: SB); |
1664 | linkBlockRefs(DefM, PhiClobberM, BA: SBA); |
1665 | } |
1666 | |
1667 | // Link the phi uses from the successor blocks. |
1668 | auto IsUseForBA = [BA](Node NA) -> bool { |
1669 | if (NA.Addr->getKind() != NodeAttrs::Use) |
1670 | return false; |
1671 | assert(NA.Addr->getFlags() & NodeAttrs::PhiRef); |
1672 | return PhiUse(NA).Addr->getPredecessor() == BA.Id; |
1673 | }; |
1674 | |
1675 | RegisterAggr EHLiveIns = getLandingPadLiveIns(); |
1676 | MachineBasicBlock *MBB = BA.Addr->getCode(); |
1677 | |
1678 | for (MachineBasicBlock *SB : MBB->successors()) { |
1679 | bool IsEHPad = SB->isEHPad(); |
1680 | Block SBA = findBlock(BB: SB); |
1681 | for (Instr IA : SBA.Addr->members_if(P: IsPhi, G: *this)) { |
1682 | // Do not link phi uses for landing pad live-ins. |
1683 | if (IsEHPad) { |
1684 | // Find what register this phi is for. |
1685 | Ref RA = IA.Addr->getFirstMember(G: *this); |
1686 | assert(RA.Id != 0); |
1687 | if (EHLiveIns.hasCoverOf(RR: RA.Addr->getRegRef(G: *this))) |
1688 | continue; |
1689 | } |
1690 | // Go over each phi use associated with MBB, and link it. |
1691 | for (auto U : IA.Addr->members_if(P: IsUseForBA, G: *this)) { |
1692 | PhiUse PUA = U; |
1693 | RegisterRef RR = PUA.Addr->getRegRef(G: *this); |
1694 | linkRefUp<UseNode *>(IA, TA: PUA, DS&: DefM[RR.Reg]); |
1695 | } |
1696 | } |
1697 | } |
1698 | |
1699 | // Pop all defs from this block from the definition stacks. |
1700 | releaseBlock(B: BA.Id, DefM); |
1701 | } |
1702 | |
1703 | // Remove the use node UA from any data-flow and structural links. |
1704 | void DataFlowGraph::unlinkUseDF(Use UA) { |
1705 | NodeId RD = UA.Addr->getReachingDef(); |
1706 | NodeId Sib = UA.Addr->getSibling(); |
1707 | |
1708 | if (RD == 0) { |
1709 | assert(Sib == 0); |
1710 | return; |
1711 | } |
1712 | |
1713 | auto RDA = addr<DefNode *>(N: RD); |
1714 | auto TA = addr<UseNode *>(N: RDA.Addr->getReachedUse()); |
1715 | if (TA.Id == UA.Id) { |
1716 | RDA.Addr->setReachedUse(Sib); |
1717 | return; |
1718 | } |
1719 | |
1720 | while (TA.Id != 0) { |
1721 | NodeId S = TA.Addr->getSibling(); |
1722 | if (S == UA.Id) { |
1723 | TA.Addr->setSibling(UA.Addr->getSibling()); |
1724 | return; |
1725 | } |
1726 | TA = addr<UseNode *>(N: S); |
1727 | } |
1728 | } |
1729 | |
1730 | // Remove the def node DA from any data-flow and structural links. |
1731 | void DataFlowGraph::unlinkDefDF(Def DA) { |
1732 | // |
1733 | // RD |
1734 | // | reached |
1735 | // | def |
1736 | // : |
1737 | // . |
1738 | // +----+ |
1739 | // ... -- | DA | -- ... -- 0 : sibling chain of DA |
1740 | // +----+ |
1741 | // | | reached |
1742 | // | : def |
1743 | // | . |
1744 | // | ... : Siblings (defs) |
1745 | // | |
1746 | // : reached |
1747 | // . use |
1748 | // ... : sibling chain of reached uses |
1749 | |
1750 | NodeId RD = DA.Addr->getReachingDef(); |
1751 | |
1752 | // Visit all siblings of the reached def and reset their reaching defs. |
1753 | // Also, defs reached by DA are now "promoted" to being reached by RD, |
1754 | // so all of them will need to be spliced into the sibling chain where |
1755 | // DA belongs. |
1756 | auto getAllNodes = [this](NodeId N) -> NodeList { |
1757 | NodeList Res; |
1758 | while (N) { |
1759 | auto RA = addr<RefNode *>(N); |
1760 | // Keep the nodes in the exact sibling order. |
1761 | Res.push_back(Elt: RA); |
1762 | N = RA.Addr->getSibling(); |
1763 | } |
1764 | return Res; |
1765 | }; |
1766 | NodeList ReachedDefs = getAllNodes(DA.Addr->getReachedDef()); |
1767 | NodeList ReachedUses = getAllNodes(DA.Addr->getReachedUse()); |
1768 | |
1769 | if (RD == 0) { |
1770 | for (Ref I : ReachedDefs) |
1771 | I.Addr->setSibling(0); |
1772 | for (Ref I : ReachedUses) |
1773 | I.Addr->setSibling(0); |
1774 | } |
1775 | for (Def I : ReachedDefs) |
1776 | I.Addr->setReachingDef(RD); |
1777 | for (Use I : ReachedUses) |
1778 | I.Addr->setReachingDef(RD); |
1779 | |
1780 | NodeId Sib = DA.Addr->getSibling(); |
1781 | if (RD == 0) { |
1782 | assert(Sib == 0); |
1783 | return; |
1784 | } |
1785 | |
1786 | // Update the reaching def node and remove DA from the sibling list. |
1787 | auto RDA = addr<DefNode *>(N: RD); |
1788 | auto TA = addr<DefNode *>(N: RDA.Addr->getReachedDef()); |
1789 | if (TA.Id == DA.Id) { |
1790 | // If DA is the first reached def, just update the RD's reached def |
1791 | // to the DA's sibling. |
1792 | RDA.Addr->setReachedDef(Sib); |
1793 | } else { |
1794 | // Otherwise, traverse the sibling list of the reached defs and remove |
1795 | // DA from it. |
1796 | while (TA.Id != 0) { |
1797 | NodeId S = TA.Addr->getSibling(); |
1798 | if (S == DA.Id) { |
1799 | TA.Addr->setSibling(Sib); |
1800 | break; |
1801 | } |
1802 | TA = addr<DefNode *>(N: S); |
1803 | } |
1804 | } |
1805 | |
1806 | // Splice the DA's reached defs into the RDA's reached def chain. |
1807 | if (!ReachedDefs.empty()) { |
1808 | auto Last = Def(ReachedDefs.back()); |
1809 | Last.Addr->setSibling(RDA.Addr->getReachedDef()); |
1810 | RDA.Addr->setReachedDef(ReachedDefs.front().Id); |
1811 | } |
1812 | // Splice the DA's reached uses into the RDA's reached use chain. |
1813 | if (!ReachedUses.empty()) { |
1814 | auto Last = Use(ReachedUses.back()); |
1815 | Last.Addr->setSibling(RDA.Addr->getReachedUse()); |
1816 | RDA.Addr->setReachedUse(ReachedUses.front().Id); |
1817 | } |
1818 | } |
1819 | |
1820 | bool DataFlowGraph::isTracked(RegisterRef RR) const { |
1821 | return !disjoint(A: getPRI().getUnits(RR), B: TrackedUnits); |
1822 | } |
1823 | |
1824 | bool DataFlowGraph::hasUntrackedRef(Stmt S, bool IgnoreReserved) const { |
1825 | SmallVector<MachineOperand *> Ops; |
1826 | |
1827 | for (Ref R : S.Addr->members(G: *this)) { |
1828 | Ops.push_back(Elt: &R.Addr->getOp()); |
1829 | RegisterRef RR = R.Addr->getRegRef(G: *this); |
1830 | if (IgnoreReserved && RR.isReg() && ReservedRegs[RR.idx()]) |
1831 | continue; |
1832 | if (!isTracked(RR)) |
1833 | return true; |
1834 | } |
1835 | for (const MachineOperand &Op : S.Addr->getCode()->operands()) { |
1836 | if (!Op.isReg() && !Op.isRegMask()) |
1837 | continue; |
1838 | if (!llvm::is_contained(Range&: Ops, Element: &Op)) |
1839 | return true; |
1840 | } |
1841 | return false; |
1842 | } |
1843 | |
1844 | } // end namespace llvm::rdf |
1845 | |