1 | //===- RegAllocFast.cpp - A fast register allocator for debug code --------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | /// \file This register allocator allocates registers to a basic block at a |
10 | /// time, attempting to keep values in registers and reusing registers as |
11 | /// appropriate. |
12 | // |
13 | //===----------------------------------------------------------------------===// |
14 | |
15 | #include "llvm/CodeGen/RegAllocFast.h" |
16 | #include "llvm/ADT/ArrayRef.h" |
17 | #include "llvm/ADT/DenseMap.h" |
18 | #include "llvm/ADT/IndexedMap.h" |
19 | #include "llvm/ADT/MapVector.h" |
20 | #include "llvm/ADT/SmallSet.h" |
21 | #include "llvm/ADT/SmallVector.h" |
22 | #include "llvm/ADT/SparseSet.h" |
23 | #include "llvm/ADT/Statistic.h" |
24 | #include "llvm/CodeGen/MachineBasicBlock.h" |
25 | #include "llvm/CodeGen/MachineFrameInfo.h" |
26 | #include "llvm/CodeGen/MachineFunction.h" |
27 | #include "llvm/CodeGen/MachineFunctionPass.h" |
28 | #include "llvm/CodeGen/MachineInstr.h" |
29 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
30 | #include "llvm/CodeGen/MachineOperand.h" |
31 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
32 | #include "llvm/CodeGen/RegAllocCommon.h" |
33 | #include "llvm/CodeGen/RegAllocRegistry.h" |
34 | #include "llvm/CodeGen/RegisterClassInfo.h" |
35 | #include "llvm/CodeGen/TargetInstrInfo.h" |
36 | #include "llvm/CodeGen/TargetOpcodes.h" |
37 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
38 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
39 | #include "llvm/InitializePasses.h" |
40 | #include "llvm/MC/MCRegisterInfo.h" |
41 | #include "llvm/Pass.h" |
42 | #include "llvm/Support/Debug.h" |
43 | #include "llvm/Support/ErrorHandling.h" |
44 | #include "llvm/Support/raw_ostream.h" |
45 | #include <cassert> |
46 | #include <tuple> |
47 | #include <vector> |
48 | |
49 | using namespace llvm; |
50 | |
51 | #define DEBUG_TYPE "regalloc" |
52 | |
53 | STATISTIC(NumStores, "Number of stores added" ); |
54 | STATISTIC(NumLoads, "Number of loads added" ); |
55 | STATISTIC(NumCoalesced, "Number of copies coalesced" ); |
56 | |
57 | // FIXME: Remove this switch when all testcases are fixed! |
58 | static cl::opt<bool> IgnoreMissingDefs("rafast-ignore-missing-defs" , |
59 | cl::Hidden); |
60 | |
61 | static RegisterRegAlloc fastRegAlloc("fast" , "fast register allocator" , |
62 | createFastRegisterAllocator); |
63 | |
64 | namespace { |
65 | |
66 | /// Assign ascending index for instructions in machine basic block. The index |
67 | /// can be used to determine dominance between instructions in same MBB. |
68 | class InstrPosIndexes { |
69 | public: |
70 | void unsetInitialized() { IsInitialized = false; } |
71 | |
72 | void init(const MachineBasicBlock &MBB) { |
73 | CurMBB = &MBB; |
74 | Instr2PosIndex.clear(); |
75 | uint64_t LastIndex = 0; |
76 | for (const MachineInstr &MI : MBB) { |
77 | LastIndex += InstrDist; |
78 | Instr2PosIndex[&MI] = LastIndex; |
79 | } |
80 | } |
81 | |
82 | /// Set \p Index to index of \p MI. If \p MI is new inserted, it try to assign |
83 | /// index without affecting existing instruction's index. Return true if all |
84 | /// instructions index has been reassigned. |
85 | bool getIndex(const MachineInstr &MI, uint64_t &Index) { |
86 | if (!IsInitialized) { |
87 | init(MBB: *MI.getParent()); |
88 | IsInitialized = true; |
89 | Index = Instr2PosIndex.at(Val: &MI); |
90 | return true; |
91 | } |
92 | |
93 | assert(MI.getParent() == CurMBB && "MI is not in CurMBB" ); |
94 | auto It = Instr2PosIndex.find(Val: &MI); |
95 | if (It != Instr2PosIndex.end()) { |
96 | Index = It->second; |
97 | return false; |
98 | } |
99 | |
100 | // Distance is the number of consecutive unassigned instructions including |
101 | // MI. Start is the first instruction of them. End is the next of last |
102 | // instruction of them. |
103 | // e.g. |
104 | // |Instruction| A | B | C | MI | D | E | |
105 | // | Index | 1024 | | | | | 2048 | |
106 | // |
107 | // In this case, B, C, MI, D are unassigned. Distance is 4, Start is B, End |
108 | // is E. |
109 | unsigned Distance = 1; |
110 | MachineBasicBlock::const_iterator Start = MI.getIterator(), |
111 | End = std::next(x: Start); |
112 | while (Start != CurMBB->begin() && |
113 | !Instr2PosIndex.count(Val: &*std::prev(x: Start))) { |
114 | --Start; |
115 | ++Distance; |
116 | } |
117 | while (End != CurMBB->end() && !Instr2PosIndex.count(Val: &*(End))) { |
118 | ++End; |
119 | ++Distance; |
120 | } |
121 | |
122 | // LastIndex is initialized to last used index prior to MI or zero. |
123 | // In previous example, LastIndex is 1024, EndIndex is 2048; |
124 | uint64_t LastIndex = |
125 | Start == CurMBB->begin() ? 0 : Instr2PosIndex.at(Val: &*std::prev(x: Start)); |
126 | uint64_t Step; |
127 | if (End == CurMBB->end()) |
128 | Step = static_cast<uint64_t>(InstrDist); |
129 | else { |
130 | // No instruction uses index zero. |
131 | uint64_t EndIndex = Instr2PosIndex.at(Val: &*End); |
132 | assert(EndIndex > LastIndex && "Index must be ascending order" ); |
133 | unsigned NumAvailableIndexes = EndIndex - LastIndex - 1; |
134 | // We want index gap between two adjacent MI is as same as possible. Given |
135 | // total A available indexes, D is number of consecutive unassigned |
136 | // instructions, S is the step. |
137 | // |<- S-1 -> MI <- S-1 -> MI <- A-S*D ->| |
138 | // There're S-1 available indexes between unassigned instruction and its |
139 | // predecessor. There're A-S*D available indexes between the last |
140 | // unassigned instruction and its successor. |
141 | // Ideally, we want |
142 | // S-1 = A-S*D |
143 | // then |
144 | // S = (A+1)/(D+1) |
145 | // An valid S must be integer greater than zero, so |
146 | // S <= (A+1)/(D+1) |
147 | // => |
148 | // A-S*D >= 0 |
149 | // That means we can safely use (A+1)/(D+1) as step. |
150 | // In previous example, Step is 204, Index of B, C, MI, D is 1228, 1432, |
151 | // 1636, 1840. |
152 | Step = (NumAvailableIndexes + 1) / (Distance + 1); |
153 | } |
154 | |
155 | // Reassign index for all instructions if number of new inserted |
156 | // instructions exceed slot or all instructions are new. |
157 | if (LLVM_UNLIKELY(!Step || (!LastIndex && Step == InstrDist))) { |
158 | init(MBB: *CurMBB); |
159 | Index = Instr2PosIndex.at(Val: &MI); |
160 | return true; |
161 | } |
162 | |
163 | for (auto I = Start; I != End; ++I) { |
164 | LastIndex += Step; |
165 | Instr2PosIndex[&*I] = LastIndex; |
166 | } |
167 | Index = Instr2PosIndex.at(Val: &MI); |
168 | return false; |
169 | } |
170 | |
171 | private: |
172 | bool IsInitialized = false; |
173 | enum { InstrDist = 1024 }; |
174 | const MachineBasicBlock *CurMBB = nullptr; |
175 | DenseMap<const MachineInstr *, uint64_t> Instr2PosIndex; |
176 | }; |
177 | |
178 | class RegAllocFastImpl { |
179 | public: |
180 | RegAllocFastImpl(const RegAllocFilterFunc F = nullptr, |
181 | bool ClearVirtRegs_ = true) |
182 | : ShouldAllocateRegisterImpl(F), StackSlotForVirtReg(-1), |
183 | ClearVirtRegs(ClearVirtRegs_) {} |
184 | |
185 | private: |
186 | MachineFrameInfo *MFI = nullptr; |
187 | MachineRegisterInfo *MRI = nullptr; |
188 | const TargetRegisterInfo *TRI = nullptr; |
189 | const TargetInstrInfo *TII = nullptr; |
190 | RegisterClassInfo RegClassInfo; |
191 | const RegAllocFilterFunc ShouldAllocateRegisterImpl; |
192 | |
193 | /// Basic block currently being allocated. |
194 | MachineBasicBlock *MBB = nullptr; |
195 | |
196 | /// Maps virtual regs to the frame index where these values are spilled. |
197 | IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; |
198 | |
199 | /// Everything we know about a live virtual register. |
200 | struct LiveReg { |
201 | MachineInstr *LastUse = nullptr; ///< Last instr to use reg. |
202 | Register VirtReg; ///< Virtual register number. |
203 | MCPhysReg PhysReg = 0; ///< Currently held here. |
204 | bool LiveOut = false; ///< Register is possibly live out. |
205 | bool Reloaded = false; ///< Register was reloaded. |
206 | bool Error = false; ///< Could not allocate. |
207 | |
208 | explicit LiveReg(Register VirtReg) : VirtReg(VirtReg) {} |
209 | explicit LiveReg() {} |
210 | |
211 | unsigned getSparseSetIndex() const { return VirtReg.virtRegIndex(); } |
212 | }; |
213 | |
214 | using LiveRegMap = SparseSet<LiveReg, identity<unsigned>, uint16_t>; |
215 | /// This map contains entries for each virtual register that is currently |
216 | /// available in a physical register. |
217 | LiveRegMap LiveVirtRegs; |
218 | |
219 | /// Stores assigned virtual registers present in the bundle MI. |
220 | DenseMap<Register, LiveReg> BundleVirtRegsMap; |
221 | |
222 | DenseMap<Register, SmallVector<MachineOperand *, 2>> LiveDbgValueMap; |
223 | /// List of DBG_VALUE that we encountered without the vreg being assigned |
224 | /// because they were placed after the last use of the vreg. |
225 | DenseMap<Register, SmallVector<MachineInstr *, 1>> DanglingDbgValues; |
226 | |
227 | /// Has a bit set for every virtual register for which it was determined |
228 | /// that it is alive across blocks. |
229 | BitVector MayLiveAcrossBlocks; |
230 | |
231 | /// State of a register unit. |
232 | enum RegUnitState { |
233 | /// A free register is not currently in use and can be allocated |
234 | /// immediately without checking aliases. |
235 | regFree, |
236 | |
237 | /// A pre-assigned register has been assigned before register allocation |
238 | /// (e.g., setting up a call parameter). |
239 | regPreAssigned, |
240 | |
241 | /// Used temporarily in reloadAtBegin() to mark register units that are |
242 | /// live-in to the basic block. |
243 | regLiveIn, |
244 | |
245 | /// A register state may also be a virtual register number, indication |
246 | /// that the physical register is currently allocated to a virtual |
247 | /// register. In that case, LiveVirtRegs contains the inverse mapping. |
248 | }; |
249 | |
250 | /// Maps each physical register to a RegUnitState enum or virtual register. |
251 | std::vector<unsigned> RegUnitStates; |
252 | |
253 | SmallVector<MachineInstr *, 32> Coalesced; |
254 | |
255 | /// Track register units that are used in the current instruction, and so |
256 | /// cannot be allocated. |
257 | /// |
258 | /// In the first phase (tied defs/early clobber), we consider also physical |
259 | /// uses, afterwards, we don't. If the lowest bit isn't set, it's a solely |
260 | /// physical use (markPhysRegUsedInInstr), otherwise, it's a normal use. To |
261 | /// avoid resetting the entire vector after every instruction, we track the |
262 | /// instruction "generation" in the remaining 31 bits -- this means, that if |
263 | /// UsedInInstr[Idx] < InstrGen, the register unit is unused. InstrGen is |
264 | /// never zero and always incremented by two. |
265 | /// |
266 | /// Don't allocate inline storage: the number of register units is typically |
267 | /// quite large (e.g., AArch64 > 100, X86 > 200, AMDGPU > 1000). |
268 | uint32_t InstrGen; |
269 | SmallVector<unsigned, 0> UsedInInstr; |
270 | |
271 | SmallVector<unsigned, 8> DefOperandIndexes; |
272 | // Register masks attached to the current instruction. |
273 | SmallVector<const uint32_t *> RegMasks; |
274 | |
275 | // Assign index for each instruction to quickly determine dominance. |
276 | InstrPosIndexes PosIndexes; |
277 | |
278 | void setPhysRegState(MCRegister PhysReg, unsigned NewState); |
279 | bool isPhysRegFree(MCRegister PhysReg) const; |
280 | |
281 | /// Mark a physreg as used in this instruction. |
282 | void markRegUsedInInstr(MCPhysReg PhysReg) { |
283 | for (MCRegUnit Unit : TRI->regunits(Reg: PhysReg)) |
284 | UsedInInstr[Unit] = InstrGen | 1; |
285 | } |
286 | |
287 | // Check if physreg is clobbered by instruction's regmask(s). |
288 | bool isClobberedByRegMasks(MCRegister PhysReg) const { |
289 | return llvm::any_of(Range: RegMasks, P: [PhysReg](const uint32_t *Mask) { |
290 | return MachineOperand::clobbersPhysReg(RegMask: Mask, PhysReg); |
291 | }); |
292 | } |
293 | |
294 | /// Check if a physreg or any of its aliases are used in this instruction. |
295 | bool isRegUsedInInstr(MCRegister PhysReg, bool LookAtPhysRegUses) const { |
296 | if (LookAtPhysRegUses && isClobberedByRegMasks(PhysReg)) |
297 | return true; |
298 | for (MCRegUnit Unit : TRI->regunits(Reg: PhysReg)) |
299 | if (UsedInInstr[Unit] >= (InstrGen | !LookAtPhysRegUses)) |
300 | return true; |
301 | return false; |
302 | } |
303 | |
304 | /// Mark physical register as being used in a register use operand. |
305 | /// This is only used by the special livethrough handling code. |
306 | void markPhysRegUsedInInstr(MCRegister PhysReg) { |
307 | for (MCRegUnit Unit : TRI->regunits(Reg: PhysReg)) { |
308 | assert(UsedInInstr[Unit] <= InstrGen && "non-phys use before phys use?" ); |
309 | UsedInInstr[Unit] = InstrGen; |
310 | } |
311 | } |
312 | |
313 | /// Remove mark of physical register being used in the instruction. |
314 | void unmarkRegUsedInInstr(MCRegister PhysReg) { |
315 | for (MCRegUnit Unit : TRI->regunits(Reg: PhysReg)) |
316 | UsedInInstr[Unit] = 0; |
317 | } |
318 | |
319 | enum : unsigned { |
320 | spillClean = 50, |
321 | spillDirty = 100, |
322 | spillPrefBonus = 20, |
323 | spillImpossible = ~0u |
324 | }; |
325 | |
326 | public: |
327 | bool ClearVirtRegs; |
328 | |
329 | bool runOnMachineFunction(MachineFunction &MF); |
330 | |
331 | private: |
332 | void allocateBasicBlock(MachineBasicBlock &MBB); |
333 | |
334 | void addRegClassDefCounts(MutableArrayRef<unsigned> RegClassDefCounts, |
335 | Register Reg) const; |
336 | |
337 | void findAndSortDefOperandIndexes(const MachineInstr &MI); |
338 | |
339 | void allocateInstruction(MachineInstr &MI); |
340 | void handleDebugValue(MachineInstr &MI); |
341 | void handleBundle(MachineInstr &MI); |
342 | |
343 | bool usePhysReg(MachineInstr &MI, MCRegister PhysReg); |
344 | bool definePhysReg(MachineInstr &MI, MCRegister PhysReg); |
345 | bool displacePhysReg(MachineInstr &MI, MCRegister PhysReg); |
346 | void freePhysReg(MCRegister PhysReg); |
347 | |
348 | unsigned calcSpillCost(MCPhysReg PhysReg) const; |
349 | |
350 | LiveRegMap::iterator findLiveVirtReg(Register VirtReg) { |
351 | return LiveVirtRegs.find(Key: VirtReg.virtRegIndex()); |
352 | } |
353 | |
354 | LiveRegMap::const_iterator findLiveVirtReg(Register VirtReg) const { |
355 | return LiveVirtRegs.find(Key: VirtReg.virtRegIndex()); |
356 | } |
357 | |
358 | void assignVirtToPhysReg(MachineInstr &MI, LiveReg &, MCRegister PhysReg); |
359 | void allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint, |
360 | bool LookAtPhysRegUses = false); |
361 | void allocVirtRegUndef(MachineOperand &MO); |
362 | void assignDanglingDebugValues(MachineInstr &Def, Register VirtReg, |
363 | MCRegister Reg); |
364 | bool defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum, |
365 | Register VirtReg); |
366 | bool defineVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg, |
367 | bool LookAtPhysRegUses = false); |
368 | bool useVirtReg(MachineInstr &MI, MachineOperand &MO, Register VirtReg); |
369 | |
370 | MCPhysReg getErrorAssignment(const LiveReg &LR, MachineInstr &MI, |
371 | const TargetRegisterClass &RC); |
372 | |
373 | MachineBasicBlock::iterator |
374 | getMBBBeginInsertionPoint(MachineBasicBlock &MBB, |
375 | SmallSet<Register, 2> &PrologLiveIns) const; |
376 | |
377 | void reloadAtBegin(MachineBasicBlock &MBB); |
378 | bool setPhysReg(MachineInstr &MI, MachineOperand &MO, |
379 | const LiveReg &Assignment); |
380 | |
381 | Register traceCopies(Register VirtReg) const; |
382 | Register traceCopyChain(Register Reg) const; |
383 | |
384 | bool shouldAllocateRegister(const Register Reg) const; |
385 | int getStackSpaceFor(Register VirtReg); |
386 | void spill(MachineBasicBlock::iterator Before, Register VirtReg, |
387 | MCPhysReg AssignedReg, bool Kill, bool LiveOut); |
388 | void reload(MachineBasicBlock::iterator Before, Register VirtReg, |
389 | MCPhysReg PhysReg); |
390 | |
391 | bool mayLiveOut(Register VirtReg); |
392 | bool mayLiveIn(Register VirtReg); |
393 | |
394 | bool mayBeSpillFromInlineAsmBr(const MachineInstr &MI) const; |
395 | |
396 | void dumpState() const; |
397 | }; |
398 | |
399 | class RegAllocFast : public MachineFunctionPass { |
400 | RegAllocFastImpl Impl; |
401 | |
402 | public: |
403 | static char ID; |
404 | |
405 | RegAllocFast(const RegAllocFilterFunc F = nullptr, bool ClearVirtRegs_ = true) |
406 | : MachineFunctionPass(ID), Impl(F, ClearVirtRegs_) {} |
407 | |
408 | bool runOnMachineFunction(MachineFunction &MF) override { |
409 | return Impl.runOnMachineFunction(MF); |
410 | } |
411 | |
412 | StringRef getPassName() const override { return "Fast Register Allocator" ; } |
413 | |
414 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
415 | AU.setPreservesCFG(); |
416 | MachineFunctionPass::getAnalysisUsage(AU); |
417 | } |
418 | |
419 | MachineFunctionProperties getRequiredProperties() const override { |
420 | return MachineFunctionProperties().setNoPHIs(); |
421 | } |
422 | |
423 | MachineFunctionProperties getSetProperties() const override { |
424 | if (Impl.ClearVirtRegs) { |
425 | return MachineFunctionProperties().setNoVRegs(); |
426 | } |
427 | |
428 | return MachineFunctionProperties(); |
429 | } |
430 | |
431 | MachineFunctionProperties getClearedProperties() const override { |
432 | return MachineFunctionProperties().setIsSSA(); |
433 | } |
434 | }; |
435 | |
436 | } // end anonymous namespace |
437 | |
438 | char RegAllocFast::ID = 0; |
439 | |
440 | INITIALIZE_PASS(RegAllocFast, "regallocfast" , "Fast Register Allocator" , false, |
441 | false) |
442 | |
443 | bool RegAllocFastImpl::shouldAllocateRegister(const Register Reg) const { |
444 | assert(Reg.isVirtual()); |
445 | if (!ShouldAllocateRegisterImpl) |
446 | return true; |
447 | |
448 | return ShouldAllocateRegisterImpl(*TRI, *MRI, Reg); |
449 | } |
450 | |
451 | void RegAllocFastImpl::setPhysRegState(MCRegister PhysReg, unsigned NewState) { |
452 | for (MCRegUnit Unit : TRI->regunits(Reg: PhysReg)) |
453 | RegUnitStates[Unit] = NewState; |
454 | } |
455 | |
456 | bool RegAllocFastImpl::isPhysRegFree(MCRegister PhysReg) const { |
457 | for (MCRegUnit Unit : TRI->regunits(Reg: PhysReg)) { |
458 | if (RegUnitStates[Unit] != regFree) |
459 | return false; |
460 | } |
461 | return true; |
462 | } |
463 | |
464 | /// This allocates space for the specified virtual register to be held on the |
465 | /// stack. |
466 | int RegAllocFastImpl::getStackSpaceFor(Register VirtReg) { |
467 | // Find the location Reg would belong... |
468 | int SS = StackSlotForVirtReg[VirtReg]; |
469 | // Already has space allocated? |
470 | if (SS != -1) |
471 | return SS; |
472 | |
473 | // Allocate a new stack object for this spill location... |
474 | const TargetRegisterClass &RC = *MRI->getRegClass(Reg: VirtReg); |
475 | unsigned Size = TRI->getSpillSize(RC); |
476 | Align Alignment = TRI->getSpillAlign(RC); |
477 | int FrameIdx = MFI->CreateSpillStackObject(Size, Alignment); |
478 | |
479 | // Assign the slot. |
480 | StackSlotForVirtReg[VirtReg] = FrameIdx; |
481 | return FrameIdx; |
482 | } |
483 | |
484 | static bool dominates(InstrPosIndexes &PosIndexes, const MachineInstr &A, |
485 | const MachineInstr &B) { |
486 | uint64_t IndexA, IndexB; |
487 | PosIndexes.getIndex(MI: A, Index&: IndexA); |
488 | if (LLVM_UNLIKELY(PosIndexes.getIndex(B, IndexB))) |
489 | PosIndexes.getIndex(MI: A, Index&: IndexA); |
490 | return IndexA < IndexB; |
491 | } |
492 | |
493 | /// Returns true if \p MI is a spill of a live-in physical register in a block |
494 | /// targeted by an INLINEASM_BR. Such spills must precede reloads of live-in |
495 | /// virtual registers, so that we do not reload from an uninitialized stack |
496 | /// slot. |
497 | bool RegAllocFastImpl::mayBeSpillFromInlineAsmBr(const MachineInstr &MI) const { |
498 | int FI; |
499 | auto *MBB = MI.getParent(); |
500 | if (MBB->isInlineAsmBrIndirectTarget() && TII->isStoreToStackSlot(MI, FrameIndex&: FI) && |
501 | MFI->isSpillSlotObjectIndex(ObjectIdx: FI)) |
502 | for (const auto &Op : MI.operands()) |
503 | if (Op.isReg() && MBB->isLiveIn(Reg: Op.getReg())) |
504 | return true; |
505 | return false; |
506 | } |
507 | |
508 | /// Returns false if \p VirtReg is known to not live out of the current block. |
509 | bool RegAllocFastImpl::mayLiveOut(Register VirtReg) { |
510 | if (MayLiveAcrossBlocks.test(Idx: VirtReg.virtRegIndex())) { |
511 | // Cannot be live-out if there are no successors. |
512 | return !MBB->succ_empty(); |
513 | } |
514 | |
515 | const MachineInstr *SelfLoopDef = nullptr; |
516 | |
517 | // If this block loops back to itself, it is necessary to check whether the |
518 | // use comes after the def. |
519 | if (MBB->isSuccessor(MBB)) { |
520 | // Find the first def in the self loop MBB. |
521 | for (const MachineInstr &DefInst : MRI->def_instructions(Reg: VirtReg)) { |
522 | if (DefInst.getParent() != MBB) { |
523 | MayLiveAcrossBlocks.set(VirtReg.virtRegIndex()); |
524 | return true; |
525 | } else { |
526 | if (!SelfLoopDef || dominates(PosIndexes, A: DefInst, B: *SelfLoopDef)) |
527 | SelfLoopDef = &DefInst; |
528 | } |
529 | } |
530 | if (!SelfLoopDef) { |
531 | MayLiveAcrossBlocks.set(VirtReg.virtRegIndex()); |
532 | return true; |
533 | } |
534 | } |
535 | |
536 | // See if the first \p Limit uses of the register are all in the current |
537 | // block. |
538 | static const unsigned Limit = 8; |
539 | unsigned C = 0; |
540 | for (const MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg: VirtReg)) { |
541 | if (UseInst.getParent() != MBB || ++C >= Limit) { |
542 | MayLiveAcrossBlocks.set(VirtReg.virtRegIndex()); |
543 | // Cannot be live-out if there are no successors. |
544 | return !MBB->succ_empty(); |
545 | } |
546 | |
547 | if (SelfLoopDef) { |
548 | // Try to handle some simple cases to avoid spilling and reloading every |
549 | // value inside a self looping block. |
550 | if (SelfLoopDef == &UseInst || |
551 | !dominates(PosIndexes, A: *SelfLoopDef, B: UseInst)) { |
552 | MayLiveAcrossBlocks.set(VirtReg.virtRegIndex()); |
553 | return true; |
554 | } |
555 | } |
556 | } |
557 | |
558 | return false; |
559 | } |
560 | |
561 | /// Returns false if \p VirtReg is known to not be live into the current block. |
562 | bool RegAllocFastImpl::mayLiveIn(Register VirtReg) { |
563 | if (MayLiveAcrossBlocks.test(Idx: VirtReg.virtRegIndex())) |
564 | return !MBB->pred_empty(); |
565 | |
566 | // See if the first \p Limit def of the register are all in the current block. |
567 | static const unsigned Limit = 8; |
568 | unsigned C = 0; |
569 | for (const MachineInstr &DefInst : MRI->def_instructions(Reg: VirtReg)) { |
570 | if (DefInst.getParent() != MBB || ++C >= Limit) { |
571 | MayLiveAcrossBlocks.set(VirtReg.virtRegIndex()); |
572 | return !MBB->pred_empty(); |
573 | } |
574 | } |
575 | |
576 | return false; |
577 | } |
578 | |
579 | /// Insert spill instruction for \p AssignedReg before \p Before. Update |
580 | /// DBG_VALUEs with \p VirtReg operands with the stack slot. |
581 | void RegAllocFastImpl::spill(MachineBasicBlock::iterator Before, |
582 | Register VirtReg, MCPhysReg AssignedReg, bool Kill, |
583 | bool LiveOut) { |
584 | LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI) << " in " |
585 | << printReg(AssignedReg, TRI)); |
586 | int FI = getStackSpaceFor(VirtReg); |
587 | LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n'); |
588 | |
589 | const TargetRegisterClass &RC = *MRI->getRegClass(Reg: VirtReg); |
590 | TII->storeRegToStackSlot(MBB&: *MBB, MI: Before, SrcReg: AssignedReg, isKill: Kill, FrameIndex: FI, RC: &RC, TRI, |
591 | VReg: VirtReg); |
592 | ++NumStores; |
593 | |
594 | MachineBasicBlock::iterator FirstTerm = MBB->getFirstTerminator(); |
595 | |
596 | // When we spill a virtual register, we will have spill instructions behind |
597 | // every definition of it, meaning we can switch all the DBG_VALUEs over |
598 | // to just reference the stack slot. |
599 | SmallVectorImpl<MachineOperand *> &LRIDbgOperands = LiveDbgValueMap[VirtReg]; |
600 | SmallMapVector<MachineInstr *, SmallVector<const MachineOperand *>, 2> |
601 | SpilledOperandsMap; |
602 | for (MachineOperand *MO : LRIDbgOperands) |
603 | SpilledOperandsMap[MO->getParent()].push_back(Elt: MO); |
604 | for (const auto &MISpilledOperands : SpilledOperandsMap) { |
605 | MachineInstr &DBG = *MISpilledOperands.first; |
606 | // We don't have enough support for tracking operands of DBG_VALUE_LISTs. |
607 | if (DBG.isDebugValueList()) |
608 | continue; |
609 | MachineInstr *NewDV = buildDbgValueForSpill( |
610 | BB&: *MBB, I: Before, Orig: *MISpilledOperands.first, FrameIndex: FI, SpilledOperands: MISpilledOperands.second); |
611 | assert(NewDV->getParent() == MBB && "dangling parent pointer" ); |
612 | (void)NewDV; |
613 | LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV); |
614 | |
615 | if (LiveOut) { |
616 | // We need to insert a DBG_VALUE at the end of the block if the spill slot |
617 | // is live out, but there is another use of the value after the |
618 | // spill. This will allow LiveDebugValues to see the correct live out |
619 | // value to propagate to the successors. |
620 | MachineInstr *ClonedDV = MBB->getParent()->CloneMachineInstr(Orig: NewDV); |
621 | MBB->insert(I: FirstTerm, MI: ClonedDV); |
622 | LLVM_DEBUG(dbgs() << "Cloning debug info due to live out spill\n" ); |
623 | } |
624 | |
625 | // Rewrite unassigned dbg_values to use the stack slot. |
626 | // TODO We can potentially do this for list debug values as well if we know |
627 | // how the dbg_values are getting unassigned. |
628 | if (DBG.isNonListDebugValue()) { |
629 | MachineOperand &MO = DBG.getDebugOperand(Index: 0); |
630 | if (MO.isReg() && MO.getReg() == 0) { |
631 | updateDbgValueForSpill(Orig&: DBG, FrameIndex: FI, Reg: 0); |
632 | } |
633 | } |
634 | } |
635 | // Now this register is spilled there is should not be any DBG_VALUE |
636 | // pointing to this register because they are all pointing to spilled value |
637 | // now. |
638 | LRIDbgOperands.clear(); |
639 | } |
640 | |
641 | /// Insert reload instruction for \p PhysReg before \p Before. |
642 | void RegAllocFastImpl::reload(MachineBasicBlock::iterator Before, |
643 | Register VirtReg, MCPhysReg PhysReg) { |
644 | LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into " |
645 | << printReg(PhysReg, TRI) << '\n'); |
646 | int FI = getStackSpaceFor(VirtReg); |
647 | const TargetRegisterClass &RC = *MRI->getRegClass(Reg: VirtReg); |
648 | TII->loadRegFromStackSlot(MBB&: *MBB, MI: Before, DestReg: PhysReg, FrameIndex: FI, RC: &RC, TRI, VReg: VirtReg); |
649 | ++NumLoads; |
650 | } |
651 | |
652 | /// Get basic block begin insertion point. |
653 | /// This is not just MBB.begin() because surprisingly we have EH_LABEL |
654 | /// instructions marking the begin of a basic block. This means we must insert |
655 | /// new instructions after such labels... |
656 | MachineBasicBlock::iterator RegAllocFastImpl::getMBBBeginInsertionPoint( |
657 | MachineBasicBlock &MBB, SmallSet<Register, 2> &PrologLiveIns) const { |
658 | MachineBasicBlock::iterator I = MBB.begin(); |
659 | while (I != MBB.end()) { |
660 | if (I->isLabel()) { |
661 | ++I; |
662 | continue; |
663 | } |
664 | |
665 | // Skip prologues and inlineasm_br spills to place reloads afterwards. |
666 | if (!TII->isBasicBlockPrologue(MI: *I) && !mayBeSpillFromInlineAsmBr(MI: *I)) |
667 | break; |
668 | |
669 | // However if a prolog instruction reads a register that needs to be |
670 | // reloaded, the reload should be inserted before the prolog. |
671 | for (MachineOperand &MO : I->operands()) { |
672 | if (MO.isReg()) |
673 | PrologLiveIns.insert(V: MO.getReg()); |
674 | } |
675 | |
676 | ++I; |
677 | } |
678 | |
679 | return I; |
680 | } |
681 | |
682 | /// Reload all currently assigned virtual registers. |
683 | void RegAllocFastImpl::reloadAtBegin(MachineBasicBlock &MBB) { |
684 | if (LiveVirtRegs.empty()) |
685 | return; |
686 | |
687 | for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) { |
688 | MCRegister Reg = P.PhysReg; |
689 | // Set state to live-in. This possibly overrides mappings to virtual |
690 | // registers but we don't care anymore at this point. |
691 | setPhysRegState(PhysReg: Reg, NewState: regLiveIn); |
692 | } |
693 | |
694 | SmallSet<Register, 2> PrologLiveIns; |
695 | |
696 | // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order |
697 | // of spilling here is deterministic, if arbitrary. |
698 | MachineBasicBlock::iterator InsertBefore = |
699 | getMBBBeginInsertionPoint(MBB, PrologLiveIns); |
700 | for (const LiveReg &LR : LiveVirtRegs) { |
701 | MCPhysReg PhysReg = LR.PhysReg; |
702 | if (PhysReg == 0 || LR.Error) |
703 | continue; |
704 | |
705 | MCRegUnit FirstUnit = *TRI->regunits(Reg: PhysReg).begin(); |
706 | if (RegUnitStates[FirstUnit] == regLiveIn) |
707 | continue; |
708 | |
709 | assert((&MBB != &MBB.getParent()->front() || IgnoreMissingDefs) && |
710 | "no reload in start block. Missing vreg def?" ); |
711 | |
712 | if (PrologLiveIns.count(V: PhysReg)) { |
713 | // FIXME: Theoretically this should use an insert point skipping labels |
714 | // but I'm not sure how labels should interact with prolog instruction |
715 | // that need reloads. |
716 | reload(Before: MBB.begin(), VirtReg: LR.VirtReg, PhysReg); |
717 | } else |
718 | reload(Before: InsertBefore, VirtReg: LR.VirtReg, PhysReg); |
719 | } |
720 | LiveVirtRegs.clear(); |
721 | } |
722 | |
723 | /// Handle the direct use of a physical register. Check that the register is |
724 | /// not used by a virtreg. Kill the physreg, marking it free. This may add |
725 | /// implicit kills to MO->getParent() and invalidate MO. |
726 | bool RegAllocFastImpl::usePhysReg(MachineInstr &MI, MCRegister Reg) { |
727 | assert(Register::isPhysicalRegister(Reg) && "expected physreg" ); |
728 | bool displacedAny = displacePhysReg(MI, PhysReg: Reg); |
729 | setPhysRegState(PhysReg: Reg, NewState: regPreAssigned); |
730 | markRegUsedInInstr(PhysReg: Reg); |
731 | return displacedAny; |
732 | } |
733 | |
734 | bool RegAllocFastImpl::definePhysReg(MachineInstr &MI, MCRegister Reg) { |
735 | bool displacedAny = displacePhysReg(MI, PhysReg: Reg); |
736 | setPhysRegState(PhysReg: Reg, NewState: regPreAssigned); |
737 | return displacedAny; |
738 | } |
739 | |
740 | /// Mark PhysReg as reserved or free after spilling any virtregs. This is very |
741 | /// similar to defineVirtReg except the physreg is reserved instead of |
742 | /// allocated. |
743 | bool RegAllocFastImpl::displacePhysReg(MachineInstr &MI, MCRegister PhysReg) { |
744 | bool displacedAny = false; |
745 | |
746 | for (MCRegUnit Unit : TRI->regunits(Reg: PhysReg)) { |
747 | switch (unsigned VirtReg = RegUnitStates[Unit]) { |
748 | default: { |
749 | LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); |
750 | assert(LRI != LiveVirtRegs.end() && "datastructures in sync" ); |
751 | MachineBasicBlock::iterator ReloadBefore = |
752 | std::next(x: (MachineBasicBlock::iterator)MI.getIterator()); |
753 | while (mayBeSpillFromInlineAsmBr(MI: *ReloadBefore)) |
754 | ++ReloadBefore; |
755 | reload(Before: ReloadBefore, VirtReg, PhysReg: LRI->PhysReg); |
756 | |
757 | setPhysRegState(PhysReg: LRI->PhysReg, NewState: regFree); |
758 | LRI->PhysReg = 0; |
759 | LRI->Reloaded = true; |
760 | displacedAny = true; |
761 | break; |
762 | } |
763 | case regPreAssigned: |
764 | RegUnitStates[Unit] = regFree; |
765 | displacedAny = true; |
766 | break; |
767 | case regFree: |
768 | break; |
769 | } |
770 | } |
771 | return displacedAny; |
772 | } |
773 | |
774 | void RegAllocFastImpl::freePhysReg(MCRegister PhysReg) { |
775 | LLVM_DEBUG(dbgs() << "Freeing " << printReg(PhysReg, TRI) << ':'); |
776 | |
777 | MCRegUnit FirstUnit = *TRI->regunits(Reg: PhysReg).begin(); |
778 | switch (unsigned VirtReg = RegUnitStates[FirstUnit]) { |
779 | case regFree: |
780 | LLVM_DEBUG(dbgs() << '\n'); |
781 | return; |
782 | case regPreAssigned: |
783 | LLVM_DEBUG(dbgs() << '\n'); |
784 | setPhysRegState(PhysReg, NewState: regFree); |
785 | return; |
786 | default: { |
787 | LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); |
788 | assert(LRI != LiveVirtRegs.end()); |
789 | LLVM_DEBUG(dbgs() << ' ' << printReg(LRI->VirtReg, TRI) << '\n'); |
790 | setPhysRegState(PhysReg: LRI->PhysReg, NewState: regFree); |
791 | LRI->PhysReg = 0; |
792 | } |
793 | return; |
794 | } |
795 | } |
796 | |
797 | /// Return the cost of spilling clearing out PhysReg and aliases so it is free |
798 | /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases |
799 | /// disabled - it can be allocated directly. |
800 | /// \returns spillImpossible when PhysReg or an alias can't be spilled. |
801 | unsigned RegAllocFastImpl::calcSpillCost(MCPhysReg PhysReg) const { |
802 | for (MCRegUnit Unit : TRI->regunits(Reg: PhysReg)) { |
803 | switch (unsigned VirtReg = RegUnitStates[Unit]) { |
804 | case regFree: |
805 | break; |
806 | case regPreAssigned: |
807 | LLVM_DEBUG(dbgs() << "Cannot spill pre-assigned " |
808 | << printReg(PhysReg, TRI) << '\n'); |
809 | return spillImpossible; |
810 | default: { |
811 | bool SureSpill = StackSlotForVirtReg[VirtReg] != -1 || |
812 | findLiveVirtReg(VirtReg)->LiveOut; |
813 | return SureSpill ? spillClean : spillDirty; |
814 | } |
815 | } |
816 | } |
817 | return 0; |
818 | } |
819 | |
820 | void RegAllocFastImpl::assignDanglingDebugValues(MachineInstr &Definition, |
821 | Register VirtReg, |
822 | MCRegister Reg) { |
823 | auto UDBGValIter = DanglingDbgValues.find(Val: VirtReg); |
824 | if (UDBGValIter == DanglingDbgValues.end()) |
825 | return; |
826 | |
827 | SmallVectorImpl<MachineInstr *> &Dangling = UDBGValIter->second; |
828 | for (MachineInstr *DbgValue : Dangling) { |
829 | assert(DbgValue->isDebugValue()); |
830 | if (!DbgValue->hasDebugOperandForReg(Reg: VirtReg)) |
831 | continue; |
832 | |
833 | // Test whether the physreg survives from the definition to the DBG_VALUE. |
834 | MCPhysReg SetToReg = Reg; |
835 | unsigned Limit = 20; |
836 | for (MachineBasicBlock::iterator I = std::next(x: Definition.getIterator()), |
837 | E = DbgValue->getIterator(); |
838 | I != E; ++I) { |
839 | if (I->modifiesRegister(Reg, TRI) || --Limit == 0) { |
840 | LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue |
841 | << '\n'); |
842 | SetToReg = 0; |
843 | break; |
844 | } |
845 | } |
846 | for (MachineOperand &MO : DbgValue->getDebugOperandsForReg(Reg: VirtReg)) { |
847 | MO.setReg(SetToReg); |
848 | if (SetToReg != 0) |
849 | MO.setIsRenamable(); |
850 | } |
851 | } |
852 | Dangling.clear(); |
853 | } |
854 | |
855 | /// This method updates local state so that we know that PhysReg is the |
856 | /// proper container for VirtReg now. The physical register must not be used |
857 | /// for anything else when this is called. |
858 | void RegAllocFastImpl::assignVirtToPhysReg(MachineInstr &AtMI, LiveReg &LR, |
859 | MCRegister PhysReg) { |
860 | Register VirtReg = LR.VirtReg; |
861 | LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to " |
862 | << printReg(PhysReg, TRI) << '\n'); |
863 | assert(LR.PhysReg == 0 && "Already assigned a physreg" ); |
864 | assert(PhysReg != 0 && "Trying to assign no register" ); |
865 | LR.PhysReg = PhysReg; |
866 | setPhysRegState(PhysReg, NewState: VirtReg.id()); |
867 | |
868 | assignDanglingDebugValues(Definition&: AtMI, VirtReg, Reg: PhysReg); |
869 | } |
870 | |
871 | static bool isCoalescable(const MachineInstr &MI) { return MI.isFullCopy(); } |
872 | |
873 | Register RegAllocFastImpl::traceCopyChain(Register Reg) const { |
874 | static const unsigned ChainLengthLimit = 3; |
875 | unsigned C = 0; |
876 | do { |
877 | if (Reg.isPhysical()) |
878 | return Reg; |
879 | assert(Reg.isVirtual()); |
880 | |
881 | MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg); |
882 | if (!VRegDef || !isCoalescable(MI: *VRegDef)) |
883 | return 0; |
884 | Reg = VRegDef->getOperand(i: 1).getReg(); |
885 | } while (++C <= ChainLengthLimit); |
886 | return 0; |
887 | } |
888 | |
889 | /// Check if any of \p VirtReg's definitions is a copy. If it is follow the |
890 | /// chain of copies to check whether we reach a physical register we can |
891 | /// coalesce with. |
892 | Register RegAllocFastImpl::traceCopies(Register VirtReg) const { |
893 | static const unsigned DefLimit = 3; |
894 | unsigned C = 0; |
895 | for (const MachineInstr &MI : MRI->def_instructions(Reg: VirtReg)) { |
896 | if (isCoalescable(MI)) { |
897 | Register Reg = MI.getOperand(i: 1).getReg(); |
898 | Reg = traceCopyChain(Reg); |
899 | if (Reg.isValid()) |
900 | return Reg; |
901 | } |
902 | |
903 | if (++C >= DefLimit) |
904 | break; |
905 | } |
906 | return Register(); |
907 | } |
908 | |
909 | /// Allocates a physical register for VirtReg. |
910 | void RegAllocFastImpl::allocVirtReg(MachineInstr &MI, LiveReg &LR, |
911 | Register Hint0, bool LookAtPhysRegUses) { |
912 | const Register VirtReg = LR.VirtReg; |
913 | assert(LR.PhysReg == 0); |
914 | |
915 | const TargetRegisterClass &RC = *MRI->getRegClass(Reg: VirtReg); |
916 | LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg) |
917 | << " in class " << TRI->getRegClassName(&RC) |
918 | << " with hint " << printReg(Hint0, TRI) << '\n'); |
919 | |
920 | // Take hint when possible. |
921 | if (Hint0.isPhysical() && MRI->isAllocatable(PhysReg: Hint0) && RC.contains(Reg: Hint0) && |
922 | !isRegUsedInInstr(PhysReg: Hint0, LookAtPhysRegUses)) { |
923 | // Take hint if the register is currently free. |
924 | if (isPhysRegFree(PhysReg: Hint0)) { |
925 | LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI) |
926 | << '\n'); |
927 | assignVirtToPhysReg(AtMI&: MI, LR, PhysReg: Hint0); |
928 | return; |
929 | } else { |
930 | LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint0, TRI) |
931 | << " occupied\n" ); |
932 | } |
933 | } else { |
934 | Hint0 = Register(); |
935 | } |
936 | |
937 | // Try other hint. |
938 | Register Hint1 = traceCopies(VirtReg); |
939 | if (Hint1.isPhysical() && MRI->isAllocatable(PhysReg: Hint1) && RC.contains(Reg: Hint1) && |
940 | !isRegUsedInInstr(PhysReg: Hint1, LookAtPhysRegUses)) { |
941 | // Take hint if the register is currently free. |
942 | if (isPhysRegFree(PhysReg: Hint1)) { |
943 | LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI) |
944 | << '\n'); |
945 | assignVirtToPhysReg(AtMI&: MI, LR, PhysReg: Hint1); |
946 | return; |
947 | } else { |
948 | LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint1, TRI) |
949 | << " occupied\n" ); |
950 | } |
951 | } else { |
952 | Hint1 = Register(); |
953 | } |
954 | |
955 | MCPhysReg BestReg = 0; |
956 | unsigned BestCost = spillImpossible; |
957 | ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(RC: &RC); |
958 | for (MCPhysReg PhysReg : AllocationOrder) { |
959 | LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' '); |
960 | if (isRegUsedInInstr(PhysReg, LookAtPhysRegUses)) { |
961 | LLVM_DEBUG(dbgs() << "already used in instr.\n" ); |
962 | continue; |
963 | } |
964 | |
965 | unsigned Cost = calcSpillCost(PhysReg); |
966 | LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n'); |
967 | // Immediate take a register with cost 0. |
968 | if (Cost == 0) { |
969 | assignVirtToPhysReg(AtMI&: MI, LR, PhysReg); |
970 | return; |
971 | } |
972 | |
973 | if (PhysReg == Hint0 || PhysReg == Hint1) |
974 | Cost -= spillPrefBonus; |
975 | |
976 | if (Cost < BestCost) { |
977 | BestReg = PhysReg; |
978 | BestCost = Cost; |
979 | } |
980 | } |
981 | |
982 | if (!BestReg) { |
983 | // Nothing we can do: Report an error and keep going with an invalid |
984 | // allocation. |
985 | LR.PhysReg = getErrorAssignment(LR, MI, RC); |
986 | LR.Error = true; |
987 | return; |
988 | } |
989 | |
990 | displacePhysReg(MI, PhysReg: BestReg); |
991 | assignVirtToPhysReg(AtMI&: MI, LR, PhysReg: BestReg); |
992 | } |
993 | |
994 | void RegAllocFastImpl::allocVirtRegUndef(MachineOperand &MO) { |
995 | assert(MO.isUndef() && "expected undef use" ); |
996 | Register VirtReg = MO.getReg(); |
997 | assert(VirtReg.isVirtual() && "Expected virtreg" ); |
998 | if (!shouldAllocateRegister(Reg: VirtReg)) |
999 | return; |
1000 | |
1001 | LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); |
1002 | MCPhysReg PhysReg; |
1003 | bool IsRenamable = true; |
1004 | if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { |
1005 | PhysReg = LRI->PhysReg; |
1006 | } else { |
1007 | const TargetRegisterClass &RC = *MRI->getRegClass(Reg: VirtReg); |
1008 | ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(RC: &RC); |
1009 | if (AllocationOrder.empty()) { |
1010 | // All registers in the class were reserved. |
1011 | // |
1012 | // It might be OK to take any entry from the class as this is an undef |
1013 | // use, but accepting this would give different behavior than greedy and |
1014 | // basic. |
1015 | PhysReg = getErrorAssignment(LR: *LRI, MI&: *MO.getParent(), RC); |
1016 | LRI->Error = true; |
1017 | IsRenamable = false; |
1018 | } else |
1019 | PhysReg = AllocationOrder.front(); |
1020 | } |
1021 | |
1022 | unsigned SubRegIdx = MO.getSubReg(); |
1023 | if (SubRegIdx != 0) { |
1024 | PhysReg = TRI->getSubReg(Reg: PhysReg, Idx: SubRegIdx); |
1025 | MO.setSubReg(0); |
1026 | } |
1027 | MO.setReg(PhysReg); |
1028 | MO.setIsRenamable(IsRenamable); |
1029 | } |
1030 | |
1031 | /// Variation of defineVirtReg() with special handling for livethrough regs |
1032 | /// (tied or earlyclobber) that may interfere with preassigned uses. |
1033 | /// \return true if MI's MachineOperands were re-arranged/invalidated. |
1034 | bool RegAllocFastImpl::defineLiveThroughVirtReg(MachineInstr &MI, |
1035 | unsigned OpNum, |
1036 | Register VirtReg) { |
1037 | if (!shouldAllocateRegister(Reg: VirtReg)) |
1038 | return false; |
1039 | LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); |
1040 | if (LRI != LiveVirtRegs.end()) { |
1041 | MCPhysReg PrevReg = LRI->PhysReg; |
1042 | if (PrevReg != 0 && isRegUsedInInstr(PhysReg: PrevReg, LookAtPhysRegUses: true)) { |
1043 | LLVM_DEBUG(dbgs() << "Need new assignment for " << printReg(PrevReg, TRI) |
1044 | << " (tied/earlyclobber resolution)\n" ); |
1045 | freePhysReg(PhysReg: PrevReg); |
1046 | LRI->PhysReg = 0; |
1047 | allocVirtReg(MI, LR&: *LRI, Hint0: 0, LookAtPhysRegUses: true); |
1048 | MachineBasicBlock::iterator InsertBefore = |
1049 | std::next(x: (MachineBasicBlock::iterator)MI.getIterator()); |
1050 | LLVM_DEBUG(dbgs() << "Copy " << printReg(LRI->PhysReg, TRI) << " to " |
1051 | << printReg(PrevReg, TRI) << '\n'); |
1052 | BuildMI(BB&: *MBB, I: InsertBefore, MIMD: MI.getDebugLoc(), |
1053 | MCID: TII->get(Opcode: TargetOpcode::COPY), DestReg: PrevReg) |
1054 | .addReg(RegNo: LRI->PhysReg, flags: llvm::RegState::Kill); |
1055 | } |
1056 | MachineOperand &MO = MI.getOperand(i: OpNum); |
1057 | if (MO.getSubReg() && !MO.isUndef()) { |
1058 | LRI->LastUse = &MI; |
1059 | } |
1060 | } |
1061 | return defineVirtReg(MI, OpNum, VirtReg, LookAtPhysRegUses: true); |
1062 | } |
1063 | |
1064 | /// Allocates a register for VirtReg definition. Typically the register is |
1065 | /// already assigned from a use of the virtreg, however we still need to |
1066 | /// perform an allocation if: |
1067 | /// - It is a dead definition without any uses. |
1068 | /// - The value is live out and all uses are in different basic blocks. |
1069 | /// |
1070 | /// \return true if MI's MachineOperands were re-arranged/invalidated. |
1071 | bool RegAllocFastImpl::defineVirtReg(MachineInstr &MI, unsigned OpNum, |
1072 | Register VirtReg, bool LookAtPhysRegUses) { |
1073 | assert(VirtReg.isVirtual() && "Not a virtual register" ); |
1074 | if (!shouldAllocateRegister(Reg: VirtReg)) |
1075 | return false; |
1076 | MachineOperand &MO = MI.getOperand(i: OpNum); |
1077 | LiveRegMap::iterator LRI; |
1078 | bool New; |
1079 | std::tie(args&: LRI, args&: New) = LiveVirtRegs.insert(Val: LiveReg(VirtReg)); |
1080 | if (New) { |
1081 | if (!MO.isDead()) { |
1082 | if (mayLiveOut(VirtReg)) { |
1083 | LRI->LiveOut = true; |
1084 | } else { |
1085 | // It is a dead def without the dead flag; add the flag now. |
1086 | MO.setIsDead(true); |
1087 | } |
1088 | } |
1089 | } |
1090 | if (LRI->PhysReg == 0) { |
1091 | allocVirtReg(MI, LR&: *LRI, Hint0: 0, LookAtPhysRegUses); |
1092 | } else { |
1093 | assert((!isRegUsedInInstr(LRI->PhysReg, LookAtPhysRegUses) || LRI->Error) && |
1094 | "TODO: preassign mismatch" ); |
1095 | LLVM_DEBUG(dbgs() << "In def of " << printReg(VirtReg, TRI) |
1096 | << " use existing assignment to " |
1097 | << printReg(LRI->PhysReg, TRI) << '\n'); |
1098 | } |
1099 | |
1100 | MCPhysReg PhysReg = LRI->PhysReg; |
1101 | if (LRI->Reloaded || LRI->LiveOut) { |
1102 | if (!MI.isImplicitDef()) { |
1103 | MachineBasicBlock::iterator SpillBefore = |
1104 | std::next(x: (MachineBasicBlock::iterator)MI.getIterator()); |
1105 | LLVM_DEBUG(dbgs() << "Spill Reason: LO: " << LRI->LiveOut |
1106 | << " RL: " << LRI->Reloaded << '\n'); |
1107 | bool Kill = LRI->LastUse == nullptr; |
1108 | spill(Before: SpillBefore, VirtReg, AssignedReg: PhysReg, Kill, LiveOut: LRI->LiveOut); |
1109 | |
1110 | // We need to place additional spills for each indirect destination of an |
1111 | // INLINEASM_BR. |
1112 | if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) { |
1113 | int FI = StackSlotForVirtReg[VirtReg]; |
1114 | const TargetRegisterClass &RC = *MRI->getRegClass(Reg: VirtReg); |
1115 | for (MachineOperand &MO : MI.operands()) { |
1116 | if (MO.isMBB()) { |
1117 | MachineBasicBlock *Succ = MO.getMBB(); |
1118 | TII->storeRegToStackSlot(MBB&: *Succ, MI: Succ->begin(), SrcReg: PhysReg, isKill: Kill, FrameIndex: FI, |
1119 | RC: &RC, TRI, VReg: VirtReg); |
1120 | ++NumStores; |
1121 | Succ->addLiveIn(PhysReg); |
1122 | } |
1123 | } |
1124 | } |
1125 | |
1126 | LRI->LastUse = nullptr; |
1127 | } |
1128 | LRI->LiveOut = false; |
1129 | LRI->Reloaded = false; |
1130 | } |
1131 | if (MI.getOpcode() == TargetOpcode::BUNDLE) { |
1132 | BundleVirtRegsMap[VirtReg] = *LRI; |
1133 | } |
1134 | markRegUsedInInstr(PhysReg); |
1135 | return setPhysReg(MI, MO, Assignment: *LRI); |
1136 | } |
1137 | |
1138 | /// Allocates a register for a VirtReg use. |
1139 | /// \return true if MI's MachineOperands were re-arranged/invalidated. |
1140 | bool RegAllocFastImpl::useVirtReg(MachineInstr &MI, MachineOperand &MO, |
1141 | Register VirtReg) { |
1142 | assert(VirtReg.isVirtual() && "Not a virtual register" ); |
1143 | if (!shouldAllocateRegister(Reg: VirtReg)) |
1144 | return false; |
1145 | LiveRegMap::iterator LRI; |
1146 | bool New; |
1147 | std::tie(args&: LRI, args&: New) = LiveVirtRegs.insert(Val: LiveReg(VirtReg)); |
1148 | if (New) { |
1149 | if (!MO.isKill()) { |
1150 | if (mayLiveOut(VirtReg)) { |
1151 | LRI->LiveOut = true; |
1152 | } else { |
1153 | // It is a last (killing) use without the kill flag; add the flag now. |
1154 | MO.setIsKill(true); |
1155 | } |
1156 | } |
1157 | } else { |
1158 | assert((!MO.isKill() || LRI->LastUse == &MI) && "Invalid kill flag" ); |
1159 | } |
1160 | |
1161 | // If necessary allocate a register. |
1162 | if (LRI->PhysReg == 0) { |
1163 | assert(!MO.isTied() && "tied op should be allocated" ); |
1164 | Register Hint; |
1165 | if (MI.isCopy() && MI.getOperand(i: 1).getSubReg() == 0) { |
1166 | Hint = MI.getOperand(i: 0).getReg(); |
1167 | if (Hint.isVirtual()) { |
1168 | assert(!shouldAllocateRegister(Hint)); |
1169 | Hint = Register(); |
1170 | } else { |
1171 | assert(Hint.isPhysical() && |
1172 | "Copy destination should already be assigned" ); |
1173 | } |
1174 | } |
1175 | allocVirtReg(MI, LR&: *LRI, Hint0: Hint, LookAtPhysRegUses: false); |
1176 | } |
1177 | |
1178 | LRI->LastUse = &MI; |
1179 | |
1180 | if (MI.getOpcode() == TargetOpcode::BUNDLE) { |
1181 | BundleVirtRegsMap[VirtReg] = *LRI; |
1182 | } |
1183 | markRegUsedInInstr(PhysReg: LRI->PhysReg); |
1184 | return setPhysReg(MI, MO, Assignment: *LRI); |
1185 | } |
1186 | |
1187 | /// Query a physical register to use as a filler in contexts where the |
1188 | /// allocation has failed. This will raise an error, but not abort the |
1189 | /// compilation. |
1190 | MCPhysReg RegAllocFastImpl::getErrorAssignment(const LiveReg &LR, |
1191 | MachineInstr &MI, |
1192 | const TargetRegisterClass &RC) { |
1193 | MachineFunction &MF = *MI.getMF(); |
1194 | |
1195 | // Avoid repeating the error every time a register is used. |
1196 | bool EmitError = !MF.getProperties().hasFailedRegAlloc(); |
1197 | if (EmitError) |
1198 | MF.getProperties().setFailedRegAlloc(); |
1199 | |
1200 | // If the allocation order was empty, all registers in the class were |
1201 | // probably reserved. Fall back to taking the first register in the class, |
1202 | // even if it's reserved. |
1203 | ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(RC: &RC); |
1204 | if (AllocationOrder.empty()) { |
1205 | const Function &Fn = MF.getFunction(); |
1206 | if (EmitError) { |
1207 | Fn.getContext().diagnose(DI: DiagnosticInfoRegAllocFailure( |
1208 | "no registers from class available to allocate" , Fn, |
1209 | MI.getDebugLoc())); |
1210 | } |
1211 | |
1212 | ArrayRef<MCPhysReg> RawRegs = RC.getRegisters(); |
1213 | assert(!RawRegs.empty() && "register classes cannot have no registers" ); |
1214 | return RawRegs.front(); |
1215 | } |
1216 | |
1217 | if (!LR.Error && EmitError) { |
1218 | // Nothing we can do: Report an error and keep going with an invalid |
1219 | // allocation. |
1220 | if (MI.isInlineAsm()) { |
1221 | MI.emitInlineAsmError( |
1222 | ErrMsg: "inline assembly requires more registers than available" ); |
1223 | } else { |
1224 | const Function &Fn = MBB->getParent()->getFunction(); |
1225 | Fn.getContext().diagnose(DI: DiagnosticInfoRegAllocFailure( |
1226 | "ran out of registers during register allocation" , Fn, |
1227 | MI.getDebugLoc())); |
1228 | } |
1229 | } |
1230 | |
1231 | return AllocationOrder.front(); |
1232 | } |
1233 | |
1234 | /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. |
1235 | /// \return true if MI's MachineOperands were re-arranged/invalidated. |
1236 | bool RegAllocFastImpl::setPhysReg(MachineInstr &MI, MachineOperand &MO, |
1237 | const LiveReg &Assignment) { |
1238 | MCPhysReg PhysReg = Assignment.PhysReg; |
1239 | assert(PhysReg && "assignments should always be to a valid physreg" ); |
1240 | |
1241 | if (LLVM_UNLIKELY(Assignment.Error)) { |
1242 | // Make sure we don't set renamable in error scenarios, as we may have |
1243 | // assigned to a reserved register. |
1244 | if (MO.isUse()) |
1245 | MO.setIsUndef(true); |
1246 | } |
1247 | |
1248 | if (!MO.getSubReg()) { |
1249 | MO.setReg(PhysReg); |
1250 | MO.setIsRenamable(!Assignment.Error); |
1251 | return false; |
1252 | } |
1253 | |
1254 | // Handle subregister index. |
1255 | MO.setReg(TRI->getSubReg(Reg: PhysReg, Idx: MO.getSubReg())); |
1256 | MO.setIsRenamable(!Assignment.Error); |
1257 | |
1258 | // Note: We leave the subreg number around a little longer in case of defs. |
1259 | // This is so that the register freeing logic in allocateInstruction can still |
1260 | // recognize this as subregister defs. The code there will clear the number. |
1261 | if (!MO.isDef()) |
1262 | MO.setSubReg(0); |
1263 | |
1264 | // A kill flag implies killing the full register. Add corresponding super |
1265 | // register kill. |
1266 | if (MO.isKill()) { |
1267 | MI.addRegisterKilled(IncomingReg: PhysReg, RegInfo: TRI, AddIfNotFound: true); |
1268 | // Conservatively assume implicit MOs were re-arranged |
1269 | return true; |
1270 | } |
1271 | |
1272 | // A <def,read-undef> of a sub-register requires an implicit def of the full |
1273 | // register. |
1274 | if (MO.isDef() && MO.isUndef()) { |
1275 | if (MO.isDead()) |
1276 | MI.addRegisterDead(Reg: PhysReg, RegInfo: TRI, AddIfNotFound: true); |
1277 | else |
1278 | MI.addRegisterDefined(Reg: PhysReg, RegInfo: TRI); |
1279 | // Conservatively assume implicit MOs were re-arranged |
1280 | return true; |
1281 | } |
1282 | return false; |
1283 | } |
1284 | |
1285 | #ifndef NDEBUG |
1286 | |
1287 | void RegAllocFastImpl::dumpState() const { |
1288 | for (unsigned Unit = 1, UnitE = TRI->getNumRegUnits(); Unit != UnitE; |
1289 | ++Unit) { |
1290 | switch (unsigned VirtReg = RegUnitStates[Unit]) { |
1291 | case regFree: |
1292 | break; |
1293 | case regPreAssigned: |
1294 | dbgs() << " " << printRegUnit(Unit, TRI) << "[P]" ; |
1295 | break; |
1296 | case regLiveIn: |
1297 | llvm_unreachable("Should not have regLiveIn in map" ); |
1298 | default: { |
1299 | dbgs() << ' ' << printRegUnit(Unit, TRI) << '=' << printReg(VirtReg); |
1300 | LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); |
1301 | assert(I != LiveVirtRegs.end() && "have LiveVirtRegs entry" ); |
1302 | if (I->LiveOut || I->Reloaded) { |
1303 | dbgs() << '['; |
1304 | if (I->LiveOut) |
1305 | dbgs() << 'O'; |
1306 | if (I->Reloaded) |
1307 | dbgs() << 'R'; |
1308 | dbgs() << ']'; |
1309 | } |
1310 | assert(TRI->hasRegUnit(I->PhysReg, Unit) && "inverse mapping present" ); |
1311 | break; |
1312 | } |
1313 | } |
1314 | } |
1315 | dbgs() << '\n'; |
1316 | // Check that LiveVirtRegs is the inverse. |
1317 | for (const LiveReg &LR : LiveVirtRegs) { |
1318 | Register VirtReg = LR.VirtReg; |
1319 | assert(VirtReg.isVirtual() && "Bad map key" ); |
1320 | MCPhysReg PhysReg = LR.PhysReg; |
1321 | if (PhysReg != 0) { |
1322 | assert(Register::isPhysicalRegister(PhysReg) && "mapped to physreg" ); |
1323 | for (MCRegUnit Unit : TRI->regunits(PhysReg)) { |
1324 | assert(RegUnitStates[Unit] == VirtReg && "inverse map valid" ); |
1325 | } |
1326 | } |
1327 | } |
1328 | } |
1329 | #endif |
1330 | |
1331 | /// Count number of defs consumed from each register class by \p Reg |
1332 | void RegAllocFastImpl::addRegClassDefCounts( |
1333 | MutableArrayRef<unsigned> RegClassDefCounts, Register Reg) const { |
1334 | assert(RegClassDefCounts.size() == TRI->getNumRegClasses()); |
1335 | |
1336 | if (Reg.isVirtual()) { |
1337 | if (!shouldAllocateRegister(Reg)) |
1338 | return; |
1339 | const TargetRegisterClass *OpRC = MRI->getRegClass(Reg); |
1340 | for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses(); |
1341 | RCIdx != RCIdxEnd; ++RCIdx) { |
1342 | const TargetRegisterClass *IdxRC = TRI->getRegClass(i: RCIdx); |
1343 | // FIXME: Consider aliasing sub/super registers. |
1344 | if (OpRC->hasSubClassEq(RC: IdxRC)) |
1345 | ++RegClassDefCounts[RCIdx]; |
1346 | } |
1347 | |
1348 | return; |
1349 | } |
1350 | |
1351 | for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses(); |
1352 | RCIdx != RCIdxEnd; ++RCIdx) { |
1353 | const TargetRegisterClass *IdxRC = TRI->getRegClass(i: RCIdx); |
1354 | for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) { |
1355 | if (IdxRC->contains(Reg: *Alias)) { |
1356 | ++RegClassDefCounts[RCIdx]; |
1357 | break; |
1358 | } |
1359 | } |
1360 | } |
1361 | } |
1362 | |
1363 | /// Compute \ref DefOperandIndexes so it contains the indices of "def" operands |
1364 | /// that are to be allocated. Those are ordered in a way that small classes, |
1365 | /// early clobbers and livethroughs are allocated first. |
1366 | void RegAllocFastImpl::findAndSortDefOperandIndexes(const MachineInstr &MI) { |
1367 | DefOperandIndexes.clear(); |
1368 | |
1369 | LLVM_DEBUG(dbgs() << "Need to assign livethroughs\n" ); |
1370 | for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) { |
1371 | const MachineOperand &MO = MI.getOperand(i: I); |
1372 | if (!MO.isReg()) |
1373 | continue; |
1374 | Register Reg = MO.getReg(); |
1375 | if (MO.readsReg()) { |
1376 | if (Reg.isPhysical()) { |
1377 | LLVM_DEBUG(dbgs() << "mark extra used: " << printReg(Reg, TRI) << '\n'); |
1378 | markPhysRegUsedInInstr(PhysReg: Reg); |
1379 | } |
1380 | } |
1381 | |
1382 | if (MO.isDef() && Reg.isVirtual() && shouldAllocateRegister(Reg)) |
1383 | DefOperandIndexes.push_back(Elt: I); |
1384 | } |
1385 | |
1386 | // Most instructions only have one virtual def, so there's no point in |
1387 | // computing the possible number of defs for every register class. |
1388 | if (DefOperandIndexes.size() <= 1) |
1389 | return; |
1390 | |
1391 | // Track number of defs which may consume a register from the class. This is |
1392 | // used to assign registers for possibly-too-small classes first. Example: |
1393 | // defs are eax, 3 * gr32_abcd, 2 * gr32 => we want to assign the gr32_abcd |
1394 | // registers first so that the gr32 don't use the gr32_abcd registers before |
1395 | // we assign these. |
1396 | SmallVector<unsigned> RegClassDefCounts(TRI->getNumRegClasses(), 0); |
1397 | |
1398 | for (const MachineOperand &MO : MI.all_defs()) |
1399 | addRegClassDefCounts(RegClassDefCounts, Reg: MO.getReg()); |
1400 | |
1401 | llvm::sort(C&: DefOperandIndexes, Comp: [&](unsigned I0, unsigned I1) { |
1402 | const MachineOperand &MO0 = MI.getOperand(i: I0); |
1403 | const MachineOperand &MO1 = MI.getOperand(i: I1); |
1404 | Register Reg0 = MO0.getReg(); |
1405 | Register Reg1 = MO1.getReg(); |
1406 | const TargetRegisterClass &RC0 = *MRI->getRegClass(Reg: Reg0); |
1407 | const TargetRegisterClass &RC1 = *MRI->getRegClass(Reg: Reg1); |
1408 | |
1409 | // Identify regclass that are easy to use up completely just in this |
1410 | // instruction. |
1411 | unsigned ClassSize0 = RegClassInfo.getOrder(RC: &RC0).size(); |
1412 | unsigned ClassSize1 = RegClassInfo.getOrder(RC: &RC1).size(); |
1413 | |
1414 | bool SmallClass0 = ClassSize0 < RegClassDefCounts[RC0.getID()]; |
1415 | bool SmallClass1 = ClassSize1 < RegClassDefCounts[RC1.getID()]; |
1416 | if (SmallClass0 > SmallClass1) |
1417 | return true; |
1418 | if (SmallClass0 < SmallClass1) |
1419 | return false; |
1420 | |
1421 | // Allocate early clobbers and livethrough operands first. |
1422 | bool Livethrough0 = MO0.isEarlyClobber() || MO0.isTied() || |
1423 | (MO0.getSubReg() == 0 && !MO0.isUndef()); |
1424 | bool Livethrough1 = MO1.isEarlyClobber() || MO1.isTied() || |
1425 | (MO1.getSubReg() == 0 && !MO1.isUndef()); |
1426 | if (Livethrough0 > Livethrough1) |
1427 | return true; |
1428 | if (Livethrough0 < Livethrough1) |
1429 | return false; |
1430 | |
1431 | // Tie-break rule: operand index. |
1432 | return I0 < I1; |
1433 | }); |
1434 | } |
1435 | |
1436 | // Returns true if MO is tied and the operand it's tied to is not Undef (not |
1437 | // Undef is not the same thing as Def). |
1438 | static bool isTiedToNotUndef(const MachineOperand &MO) { |
1439 | if (!MO.isTied()) |
1440 | return false; |
1441 | const MachineInstr &MI = *MO.getParent(); |
1442 | unsigned TiedIdx = MI.findTiedOperandIdx(OpIdx: MI.getOperandNo(I: &MO)); |
1443 | const MachineOperand &TiedMO = MI.getOperand(i: TiedIdx); |
1444 | return !TiedMO.isUndef(); |
1445 | } |
1446 | |
1447 | void RegAllocFastImpl::allocateInstruction(MachineInstr &MI) { |
1448 | // The basic algorithm here is: |
1449 | // 1. Mark registers of def operands as free |
1450 | // 2. Allocate registers to use operands and place reload instructions for |
1451 | // registers displaced by the allocation. |
1452 | // |
1453 | // However we need to handle some corner cases: |
1454 | // - pre-assigned defs and uses need to be handled before the other def/use |
1455 | // operands are processed to avoid the allocation heuristics clashing with |
1456 | // the pre-assignment. |
1457 | // - The "free def operands" step has to come last instead of first for tied |
1458 | // operands and early-clobbers. |
1459 | |
1460 | InstrGen += 2; |
1461 | // In the event we ever get more than 2**31 instructions... |
1462 | if (LLVM_UNLIKELY(InstrGen == 0)) { |
1463 | UsedInInstr.assign(NumElts: UsedInInstr.size(), Elt: 0); |
1464 | InstrGen = 2; |
1465 | } |
1466 | RegMasks.clear(); |
1467 | BundleVirtRegsMap.clear(); |
1468 | |
1469 | // Scan for special cases; Apply pre-assigned register defs to state. |
1470 | bool HasPhysRegUse = false; |
1471 | bool HasRegMask = false; |
1472 | bool HasVRegDef = false; |
1473 | bool HasDef = false; |
1474 | bool HasEarlyClobber = false; |
1475 | bool NeedToAssignLiveThroughs = false; |
1476 | for (MachineOperand &MO : MI.operands()) { |
1477 | if (MO.isReg()) { |
1478 | Register Reg = MO.getReg(); |
1479 | if (Reg.isVirtual()) { |
1480 | if (!shouldAllocateRegister(Reg)) |
1481 | continue; |
1482 | if (MO.isDef()) { |
1483 | HasDef = true; |
1484 | HasVRegDef = true; |
1485 | if (MO.isEarlyClobber()) { |
1486 | HasEarlyClobber = true; |
1487 | NeedToAssignLiveThroughs = true; |
1488 | } |
1489 | if (isTiedToNotUndef(MO) || (MO.getSubReg() != 0 && !MO.isUndef())) |
1490 | NeedToAssignLiveThroughs = true; |
1491 | } |
1492 | } else if (Reg.isPhysical()) { |
1493 | if (!MRI->isReserved(PhysReg: Reg)) { |
1494 | if (MO.isDef()) { |
1495 | HasDef = true; |
1496 | bool displacedAny = definePhysReg(MI, Reg); |
1497 | if (MO.isEarlyClobber()) |
1498 | HasEarlyClobber = true; |
1499 | if (!displacedAny) |
1500 | MO.setIsDead(true); |
1501 | } |
1502 | if (MO.readsReg()) |
1503 | HasPhysRegUse = true; |
1504 | } |
1505 | } |
1506 | } else if (MO.isRegMask()) { |
1507 | HasRegMask = true; |
1508 | RegMasks.push_back(Elt: MO.getRegMask()); |
1509 | } |
1510 | } |
1511 | |
1512 | // Allocate virtreg defs. |
1513 | if (HasDef) { |
1514 | if (HasVRegDef) { |
1515 | // Note that Implicit MOs can get re-arranged by defineVirtReg(), so loop |
1516 | // multiple times to ensure no operand is missed. |
1517 | bool ReArrangedImplicitOps = true; |
1518 | |
1519 | // Special handling for early clobbers, tied operands or subregister defs: |
1520 | // Compared to "normal" defs these: |
1521 | // - Must not use a register that is pre-assigned for a use operand. |
1522 | // - In order to solve tricky inline assembly constraints we change the |
1523 | // heuristic to figure out a good operand order before doing |
1524 | // assignments. |
1525 | if (NeedToAssignLiveThroughs) { |
1526 | while (ReArrangedImplicitOps) { |
1527 | ReArrangedImplicitOps = false; |
1528 | findAndSortDefOperandIndexes(MI); |
1529 | for (unsigned OpIdx : DefOperandIndexes) { |
1530 | MachineOperand &MO = MI.getOperand(i: OpIdx); |
1531 | LLVM_DEBUG(dbgs() << "Allocating " << MO << '\n'); |
1532 | Register Reg = MO.getReg(); |
1533 | if (MO.isEarlyClobber() || isTiedToNotUndef(MO) || |
1534 | (MO.getSubReg() && !MO.isUndef())) { |
1535 | ReArrangedImplicitOps = defineLiveThroughVirtReg(MI, OpNum: OpIdx, VirtReg: Reg); |
1536 | } else { |
1537 | ReArrangedImplicitOps = defineVirtReg(MI, OpNum: OpIdx, VirtReg: Reg); |
1538 | } |
1539 | // Implicit operands of MI were re-arranged, |
1540 | // re-compute DefOperandIndexes. |
1541 | if (ReArrangedImplicitOps) |
1542 | break; |
1543 | } |
1544 | } |
1545 | } else { |
1546 | // Assign virtual register defs. |
1547 | while (ReArrangedImplicitOps) { |
1548 | ReArrangedImplicitOps = false; |
1549 | for (MachineOperand &MO : MI.all_defs()) { |
1550 | Register Reg = MO.getReg(); |
1551 | if (Reg.isVirtual()) { |
1552 | ReArrangedImplicitOps = |
1553 | defineVirtReg(MI, OpNum: MI.getOperandNo(I: &MO), VirtReg: Reg); |
1554 | if (ReArrangedImplicitOps) |
1555 | break; |
1556 | } |
1557 | } |
1558 | } |
1559 | } |
1560 | } |
1561 | |
1562 | // Free registers occupied by defs. |
1563 | // Iterate operands in reverse order, so we see the implicit super register |
1564 | // defs first (we added them earlier in case of <def,read-undef>). |
1565 | for (MachineOperand &MO : reverse(C: MI.all_defs())) { |
1566 | Register Reg = MO.getReg(); |
1567 | |
1568 | // subreg defs don't free the full register. We left the subreg number |
1569 | // around as a marker in setPhysReg() to recognize this case here. |
1570 | if (Reg.isPhysical() && MO.getSubReg() != 0) { |
1571 | MO.setSubReg(0); |
1572 | continue; |
1573 | } |
1574 | |
1575 | assert((!MO.isTied() || !isClobberedByRegMasks(MO.getReg())) && |
1576 | "tied def assigned to clobbered register" ); |
1577 | |
1578 | // Do not free tied operands and early clobbers. |
1579 | if (isTiedToNotUndef(MO) || MO.isEarlyClobber()) |
1580 | continue; |
1581 | if (!Reg) |
1582 | continue; |
1583 | if (Reg.isVirtual()) { |
1584 | assert(!shouldAllocateRegister(Reg)); |
1585 | continue; |
1586 | } |
1587 | assert(Reg.isPhysical()); |
1588 | if (MRI->isReserved(PhysReg: Reg)) |
1589 | continue; |
1590 | freePhysReg(PhysReg: Reg); |
1591 | unmarkRegUsedInInstr(PhysReg: Reg); |
1592 | } |
1593 | } |
1594 | |
1595 | // Displace clobbered registers. |
1596 | if (HasRegMask) { |
1597 | assert(!RegMasks.empty() && "expected RegMask" ); |
1598 | // MRI bookkeeping. |
1599 | for (const auto *RM : RegMasks) |
1600 | MRI->addPhysRegsUsedFromRegMask(RegMask: RM); |
1601 | |
1602 | // Displace clobbered registers. |
1603 | for (const LiveReg &LR : LiveVirtRegs) { |
1604 | MCPhysReg PhysReg = LR.PhysReg; |
1605 | if (PhysReg != 0 && isClobberedByRegMasks(PhysReg)) |
1606 | displacePhysReg(MI, PhysReg); |
1607 | } |
1608 | } |
1609 | |
1610 | // Apply pre-assigned register uses to state. |
1611 | if (HasPhysRegUse) { |
1612 | for (MachineOperand &MO : MI.operands()) { |
1613 | if (!MO.isReg() || !MO.readsReg()) |
1614 | continue; |
1615 | Register Reg = MO.getReg(); |
1616 | if (!Reg.isPhysical()) |
1617 | continue; |
1618 | if (MRI->isReserved(PhysReg: Reg)) |
1619 | continue; |
1620 | if (!usePhysReg(MI, Reg)) |
1621 | MO.setIsKill(true); |
1622 | } |
1623 | } |
1624 | |
1625 | // Allocate virtreg uses and insert reloads as necessary. |
1626 | // Implicit MOs can get moved/removed by useVirtReg(), so loop multiple |
1627 | // times to ensure no operand is missed. |
1628 | bool HasUndefUse = false; |
1629 | bool ReArrangedImplicitMOs = true; |
1630 | while (ReArrangedImplicitMOs) { |
1631 | ReArrangedImplicitMOs = false; |
1632 | for (MachineOperand &MO : MI.operands()) { |
1633 | if (!MO.isReg() || !MO.isUse()) |
1634 | continue; |
1635 | Register Reg = MO.getReg(); |
1636 | if (!Reg.isVirtual() || !shouldAllocateRegister(Reg)) |
1637 | continue; |
1638 | |
1639 | if (MO.isUndef()) { |
1640 | HasUndefUse = true; |
1641 | continue; |
1642 | } |
1643 | |
1644 | // Populate MayLiveAcrossBlocks in case the use block is allocated before |
1645 | // the def block (removing the vreg uses). |
1646 | mayLiveIn(VirtReg: Reg); |
1647 | |
1648 | assert(!MO.isInternalRead() && "Bundles not supported" ); |
1649 | assert(MO.readsReg() && "reading use" ); |
1650 | ReArrangedImplicitMOs = useVirtReg(MI, MO, VirtReg: Reg); |
1651 | if (ReArrangedImplicitMOs) |
1652 | break; |
1653 | } |
1654 | } |
1655 | |
1656 | // Allocate undef operands. This is a separate step because in a situation |
1657 | // like ` = OP undef %X, %X` both operands need the same register assign |
1658 | // so we should perform the normal assignment first. |
1659 | if (HasUndefUse) { |
1660 | for (MachineOperand &MO : MI.all_uses()) { |
1661 | Register Reg = MO.getReg(); |
1662 | if (!Reg.isVirtual() || !shouldAllocateRegister(Reg)) |
1663 | continue; |
1664 | |
1665 | assert(MO.isUndef() && "Should only have undef virtreg uses left" ); |
1666 | allocVirtRegUndef(MO); |
1667 | } |
1668 | } |
1669 | |
1670 | // Free early clobbers. |
1671 | if (HasEarlyClobber) { |
1672 | for (MachineOperand &MO : reverse(C: MI.all_defs())) { |
1673 | if (!MO.isEarlyClobber()) |
1674 | continue; |
1675 | assert(!MO.getSubReg() && "should be already handled in def processing" ); |
1676 | |
1677 | Register Reg = MO.getReg(); |
1678 | if (!Reg) |
1679 | continue; |
1680 | if (Reg.isVirtual()) { |
1681 | assert(!shouldAllocateRegister(Reg)); |
1682 | continue; |
1683 | } |
1684 | assert(Reg.isPhysical() && "should have register assigned" ); |
1685 | |
1686 | // We sometimes get odd situations like: |
1687 | // early-clobber %x0 = INSTRUCTION %x0 |
1688 | // which is semantically questionable as the early-clobber should |
1689 | // apply before the use. But in practice we consider the use to |
1690 | // happen before the early clobber now. Don't free the early clobber |
1691 | // register in this case. |
1692 | if (MI.readsRegister(Reg, TRI)) |
1693 | continue; |
1694 | |
1695 | freePhysReg(PhysReg: Reg); |
1696 | } |
1697 | } |
1698 | |
1699 | LLVM_DEBUG(dbgs() << "<< " << MI); |
1700 | if (MI.isCopy() && MI.getOperand(i: 0).getReg() == MI.getOperand(i: 1).getReg() && |
1701 | MI.getNumOperands() == 2) { |
1702 | LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n" ); |
1703 | Coalesced.push_back(Elt: &MI); |
1704 | } |
1705 | } |
1706 | |
1707 | void RegAllocFastImpl::handleDebugValue(MachineInstr &MI) { |
1708 | // Ignore DBG_VALUEs that aren't based on virtual registers. These are |
1709 | // mostly constants and frame indices. |
1710 | assert(MI.isDebugValue() && "not a DBG_VALUE*" ); |
1711 | for (const auto &MO : MI.debug_operands()) { |
1712 | if (!MO.isReg()) |
1713 | continue; |
1714 | Register Reg = MO.getReg(); |
1715 | if (!Reg.isVirtual()) |
1716 | continue; |
1717 | if (!shouldAllocateRegister(Reg)) |
1718 | continue; |
1719 | |
1720 | // Already spilled to a stackslot? |
1721 | int SS = StackSlotForVirtReg[Reg]; |
1722 | if (SS != -1) { |
1723 | // Modify DBG_VALUE now that the value is in a spill slot. |
1724 | updateDbgValueForSpill(Orig&: MI, FrameIndex: SS, Reg); |
1725 | LLVM_DEBUG(dbgs() << "Rewrite DBG_VALUE for spilled memory: " << MI); |
1726 | continue; |
1727 | } |
1728 | |
1729 | // See if this virtual register has already been allocated to a physical |
1730 | // register or spilled to a stack slot. |
1731 | LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg: Reg); |
1732 | SmallVector<MachineOperand *> DbgOps( |
1733 | llvm::make_pointer_range(Range: MI.getDebugOperandsForReg(Reg))); |
1734 | |
1735 | if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { |
1736 | // Update every use of Reg within MI. |
1737 | for (auto &RegMO : DbgOps) |
1738 | setPhysReg(MI, MO&: *RegMO, Assignment: *LRI); |
1739 | } else { |
1740 | DanglingDbgValues[Reg].push_back(Elt: &MI); |
1741 | } |
1742 | |
1743 | // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so |
1744 | // that future spills of Reg will have DBG_VALUEs. |
1745 | LiveDbgValueMap[Reg].append(in_start: DbgOps.begin(), in_end: DbgOps.end()); |
1746 | } |
1747 | } |
1748 | |
1749 | void RegAllocFastImpl::handleBundle(MachineInstr &MI) { |
1750 | MachineBasicBlock::instr_iterator BundledMI = MI.getIterator(); |
1751 | ++BundledMI; |
1752 | while (BundledMI->isBundledWithPred()) { |
1753 | for (MachineOperand &MO : BundledMI->operands()) { |
1754 | if (!MO.isReg()) |
1755 | continue; |
1756 | |
1757 | Register Reg = MO.getReg(); |
1758 | if (!Reg.isVirtual() || !shouldAllocateRegister(Reg)) |
1759 | continue; |
1760 | |
1761 | DenseMap<Register, LiveReg>::iterator DI = BundleVirtRegsMap.find(Val: Reg); |
1762 | assert(DI != BundleVirtRegsMap.end() && "Unassigned virtual register" ); |
1763 | |
1764 | setPhysReg(MI, MO, Assignment: DI->second); |
1765 | } |
1766 | |
1767 | ++BundledMI; |
1768 | } |
1769 | } |
1770 | |
1771 | void RegAllocFastImpl::allocateBasicBlock(MachineBasicBlock &MBB) { |
1772 | this->MBB = &MBB; |
1773 | LLVM_DEBUG(dbgs() << "\nAllocating " << MBB); |
1774 | |
1775 | PosIndexes.unsetInitialized(); |
1776 | RegUnitStates.assign(n: TRI->getNumRegUnits(), val: regFree); |
1777 | assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?" ); |
1778 | |
1779 | for (const auto &LiveReg : MBB.liveouts()) |
1780 | setPhysRegState(PhysReg: LiveReg.PhysReg, NewState: regPreAssigned); |
1781 | |
1782 | Coalesced.clear(); |
1783 | |
1784 | // Traverse block in reverse order allocating instructions one by one. |
1785 | for (MachineInstr &MI : reverse(C&: MBB)) { |
1786 | LLVM_DEBUG(dbgs() << "\n>> " << MI << "Regs:" ; dumpState()); |
1787 | |
1788 | // Special handling for debug values. Note that they are not allowed to |
1789 | // affect codegen of the other instructions in any way. |
1790 | if (MI.isDebugValue()) { |
1791 | handleDebugValue(MI); |
1792 | continue; |
1793 | } |
1794 | |
1795 | allocateInstruction(MI); |
1796 | |
1797 | // Once BUNDLE header is assigned registers, same assignments need to be |
1798 | // done for bundled MIs. |
1799 | if (MI.getOpcode() == TargetOpcode::BUNDLE) { |
1800 | handleBundle(MI); |
1801 | } |
1802 | } |
1803 | |
1804 | LLVM_DEBUG(dbgs() << "Begin Regs:" ; dumpState()); |
1805 | |
1806 | // Spill all physical registers holding virtual registers now. |
1807 | LLVM_DEBUG(dbgs() << "Loading live registers at begin of block.\n" ); |
1808 | reloadAtBegin(MBB); |
1809 | |
1810 | // Erase all the coalesced copies. We are delaying it until now because |
1811 | // LiveVirtRegs might refer to the instrs. |
1812 | for (MachineInstr *MI : Coalesced) |
1813 | MBB.erase(I: MI); |
1814 | NumCoalesced += Coalesced.size(); |
1815 | |
1816 | for (auto &UDBGPair : DanglingDbgValues) { |
1817 | for (MachineInstr *DbgValue : UDBGPair.second) { |
1818 | assert(DbgValue->isDebugValue() && "expected DBG_VALUE" ); |
1819 | // Nothing to do if the vreg was spilled in the meantime. |
1820 | if (!DbgValue->hasDebugOperandForReg(Reg: UDBGPair.first)) |
1821 | continue; |
1822 | LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue |
1823 | << '\n'); |
1824 | DbgValue->setDebugValueUndef(); |
1825 | } |
1826 | } |
1827 | DanglingDbgValues.clear(); |
1828 | |
1829 | LLVM_DEBUG(MBB.dump()); |
1830 | } |
1831 | |
1832 | bool RegAllocFastImpl::runOnMachineFunction(MachineFunction &MF) { |
1833 | LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" |
1834 | << "********** Function: " << MF.getName() << '\n'); |
1835 | MRI = &MF.getRegInfo(); |
1836 | const TargetSubtargetInfo &STI = MF.getSubtarget(); |
1837 | TRI = STI.getRegisterInfo(); |
1838 | TII = STI.getInstrInfo(); |
1839 | MFI = &MF.getFrameInfo(); |
1840 | MRI->freezeReservedRegs(); |
1841 | RegClassInfo.runOnMachineFunction(MF); |
1842 | unsigned NumRegUnits = TRI->getNumRegUnits(); |
1843 | InstrGen = 0; |
1844 | UsedInInstr.assign(NumElts: NumRegUnits, Elt: 0); |
1845 | |
1846 | // initialize the virtual->physical register map to have a 'null' |
1847 | // mapping for all virtual registers |
1848 | unsigned NumVirtRegs = MRI->getNumVirtRegs(); |
1849 | StackSlotForVirtReg.resize(s: NumVirtRegs); |
1850 | LiveVirtRegs.setUniverse(NumVirtRegs); |
1851 | MayLiveAcrossBlocks.clear(); |
1852 | MayLiveAcrossBlocks.resize(N: NumVirtRegs); |
1853 | |
1854 | // Loop over all of the basic blocks, eliminating virtual register references |
1855 | for (MachineBasicBlock &MBB : MF) |
1856 | allocateBasicBlock(MBB); |
1857 | |
1858 | if (ClearVirtRegs) { |
1859 | // All machine operands and other references to virtual registers have been |
1860 | // replaced. Remove the virtual registers. |
1861 | MRI->clearVirtRegs(); |
1862 | } |
1863 | |
1864 | StackSlotForVirtReg.clear(); |
1865 | LiveDbgValueMap.clear(); |
1866 | return true; |
1867 | } |
1868 | |
1869 | PreservedAnalyses RegAllocFastPass::run(MachineFunction &MF, |
1870 | MachineFunctionAnalysisManager &) { |
1871 | MFPropsModifier _(*this, MF); |
1872 | RegAllocFastImpl Impl(Opts.Filter, Opts.ClearVRegs); |
1873 | bool Changed = Impl.runOnMachineFunction(MF); |
1874 | if (!Changed) |
1875 | return PreservedAnalyses::all(); |
1876 | auto PA = getMachineFunctionPassPreservedAnalyses(); |
1877 | PA.preserveSet<CFGAnalyses>(); |
1878 | return PA; |
1879 | } |
1880 | |
1881 | void RegAllocFastPass::printPipeline( |
1882 | raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { |
1883 | bool PrintFilterName = Opts.FilterName != "all" ; |
1884 | bool PrintNoClearVRegs = !Opts.ClearVRegs; |
1885 | bool PrintSemicolon = PrintFilterName && PrintNoClearVRegs; |
1886 | |
1887 | OS << "regallocfast" ; |
1888 | if (PrintFilterName || PrintNoClearVRegs) { |
1889 | OS << '<'; |
1890 | if (PrintFilterName) |
1891 | OS << "filter=" << Opts.FilterName; |
1892 | if (PrintSemicolon) |
1893 | OS << ';'; |
1894 | if (PrintNoClearVRegs) |
1895 | OS << "no-clear-vregs" ; |
1896 | OS << '>'; |
1897 | } |
1898 | } |
1899 | |
1900 | FunctionPass *llvm::createFastRegisterAllocator() { return new RegAllocFast(); } |
1901 | |
1902 | FunctionPass *llvm::createFastRegisterAllocator(RegAllocFilterFunc Ftor, |
1903 | bool ClearVirtRegs) { |
1904 | return new RegAllocFast(Ftor, ClearVirtRegs); |
1905 | } |
1906 | |