1 | //===--- SelectOptimize.cpp - Convert select to branches if profitable ---===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This pass converts selects to conditional jumps when profitable. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "llvm/CodeGen/SelectOptimize.h" |
14 | #include "llvm/ADT/SetVector.h" |
15 | #include "llvm/ADT/SmallVector.h" |
16 | #include "llvm/ADT/Statistic.h" |
17 | #include "llvm/Analysis/BlockFrequencyInfo.h" |
18 | #include "llvm/Analysis/BranchProbabilityInfo.h" |
19 | #include "llvm/Analysis/LoopInfo.h" |
20 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
21 | #include "llvm/Analysis/ProfileSummaryInfo.h" |
22 | #include "llvm/Analysis/TargetTransformInfo.h" |
23 | #include "llvm/CodeGen/Passes.h" |
24 | #include "llvm/CodeGen/TargetLowering.h" |
25 | #include "llvm/CodeGen/TargetPassConfig.h" |
26 | #include "llvm/CodeGen/TargetSchedule.h" |
27 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
28 | #include "llvm/IR/BasicBlock.h" |
29 | #include "llvm/IR/Dominators.h" |
30 | #include "llvm/IR/Function.h" |
31 | #include "llvm/IR/IRBuilder.h" |
32 | #include "llvm/IR/Instruction.h" |
33 | #include "llvm/IR/PatternMatch.h" |
34 | #include "llvm/IR/ProfDataUtils.h" |
35 | #include "llvm/InitializePasses.h" |
36 | #include "llvm/Pass.h" |
37 | #include "llvm/Support/ScaledNumber.h" |
38 | #include "llvm/Target/TargetMachine.h" |
39 | #include "llvm/Transforms/Utils/SizeOpts.h" |
40 | #include <algorithm> |
41 | #include <queue> |
42 | #include <stack> |
43 | |
44 | using namespace llvm; |
45 | using namespace llvm::PatternMatch; |
46 | |
47 | #define DEBUG_TYPE "select-optimize" |
48 | |
49 | STATISTIC(NumSelectOptAnalyzed, |
50 | "Number of select groups considered for conversion to branch" ); |
51 | STATISTIC(NumSelectConvertedExpColdOperand, |
52 | "Number of select groups converted due to expensive cold operand" ); |
53 | STATISTIC(NumSelectConvertedHighPred, |
54 | "Number of select groups converted due to high-predictability" ); |
55 | STATISTIC(NumSelectUnPred, |
56 | "Number of select groups not converted due to unpredictability" ); |
57 | STATISTIC(NumSelectColdBB, |
58 | "Number of select groups not converted due to cold basic block" ); |
59 | STATISTIC(NumSelectConvertedLoop, |
60 | "Number of select groups converted due to loop-level analysis" ); |
61 | STATISTIC(NumSelectsConverted, "Number of selects converted" ); |
62 | |
63 | static cl::opt<unsigned> ColdOperandThreshold( |
64 | "cold-operand-threshold" , |
65 | cl::desc("Maximum frequency of path for an operand to be considered cold." ), |
66 | cl::init(Val: 20), cl::Hidden); |
67 | |
68 | static cl::opt<unsigned> ColdOperandMaxCostMultiplier( |
69 | "cold-operand-max-cost-multiplier" , |
70 | cl::desc("Maximum cost multiplier of TCC_expensive for the dependence " |
71 | "slice of a cold operand to be considered inexpensive." ), |
72 | cl::init(Val: 1), cl::Hidden); |
73 | |
74 | static cl::opt<unsigned> |
75 | GainGradientThreshold("select-opti-loop-gradient-gain-threshold" , |
76 | cl::desc("Gradient gain threshold (%)." ), |
77 | cl::init(Val: 25), cl::Hidden); |
78 | |
79 | static cl::opt<unsigned> |
80 | GainCycleThreshold("select-opti-loop-cycle-gain-threshold" , |
81 | cl::desc("Minimum gain per loop (in cycles) threshold." ), |
82 | cl::init(Val: 4), cl::Hidden); |
83 | |
84 | static cl::opt<unsigned> GainRelativeThreshold( |
85 | "select-opti-loop-relative-gain-threshold" , |
86 | cl::desc( |
87 | "Minimum relative gain per loop threshold (1/X). Defaults to 12.5%" ), |
88 | cl::init(Val: 8), cl::Hidden); |
89 | |
90 | static cl::opt<unsigned> MispredictDefaultRate( |
91 | "mispredict-default-rate" , cl::Hidden, cl::init(Val: 25), |
92 | cl::desc("Default mispredict rate (initialized to 25%)." )); |
93 | |
94 | static cl::opt<bool> |
95 | DisableLoopLevelHeuristics("disable-loop-level-heuristics" , cl::Hidden, |
96 | cl::init(Val: false), |
97 | cl::desc("Disable loop-level heuristics." )); |
98 | |
99 | namespace { |
100 | |
101 | class SelectOptimizeImpl { |
102 | const TargetMachine *TM = nullptr; |
103 | const TargetSubtargetInfo *TSI = nullptr; |
104 | const TargetLowering *TLI = nullptr; |
105 | const TargetTransformInfo *TTI = nullptr; |
106 | const LoopInfo *LI = nullptr; |
107 | BlockFrequencyInfo *BFI; |
108 | ProfileSummaryInfo *PSI = nullptr; |
109 | OptimizationRemarkEmitter *ORE = nullptr; |
110 | TargetSchedModel TSchedModel; |
111 | |
112 | public: |
113 | SelectOptimizeImpl() = default; |
114 | SelectOptimizeImpl(const TargetMachine *TM) : TM(TM){}; |
115 | PreservedAnalyses run(Function &F, FunctionAnalysisManager &FAM); |
116 | bool runOnFunction(Function &F, Pass &P); |
117 | |
118 | using Scaled64 = ScaledNumber<uint64_t>; |
119 | |
120 | struct CostInfo { |
121 | /// Predicated cost (with selects as conditional moves). |
122 | Scaled64 PredCost; |
123 | /// Non-predicated cost (with selects converted to branches). |
124 | Scaled64 NonPredCost; |
125 | }; |
126 | |
127 | /// SelectLike is an abstraction over SelectInst and other operations that can |
128 | /// act like selects. For example Or(Zext(icmp), X) can be treated like |
129 | /// select(icmp, X|1, X). |
130 | class SelectLike { |
131 | /// The select (/or) instruction. |
132 | Instruction *I; |
133 | /// Whether this select is inverted, "not(cond), FalseVal, TrueVal", as |
134 | /// opposed to the original condition. |
135 | bool Inverted = false; |
136 | |
137 | /// The index of the operand that depends on condition. Only for select-like |
138 | /// instruction such as Or/Add. |
139 | unsigned CondIdx; |
140 | |
141 | public: |
142 | SelectLike(Instruction *I, bool Inverted = false, unsigned CondIdx = 0) |
143 | : I(I), Inverted(Inverted), CondIdx(CondIdx) {} |
144 | |
145 | Instruction *getI() { return I; } |
146 | const Instruction *getI() const { return I; } |
147 | |
148 | Type *getType() const { return I->getType(); } |
149 | |
150 | unsigned getConditionOpIndex() { return CondIdx; }; |
151 | |
152 | /// Return the true value for the SelectLike instruction. Note this may not |
153 | /// exist for all SelectLike instructions. For example, for `or(zext(c), x)` |
154 | /// the true value would be `or(x,1)`. As this value does not exist, nullptr |
155 | /// is returned. |
156 | Value *getTrueValue(bool HonorInverts = true) const { |
157 | if (Inverted && HonorInverts) |
158 | return getFalseValue(/*HonorInverts=*/false); |
159 | if (auto *Sel = dyn_cast<SelectInst>(Val: I)) |
160 | return Sel->getTrueValue(); |
161 | // Or(zext) case - The true value is Or(X), so return nullptr as the value |
162 | // does not yet exist. |
163 | if (isa<BinaryOperator>(Val: I)) |
164 | return nullptr; |
165 | |
166 | llvm_unreachable("Unhandled case in getTrueValue" ); |
167 | } |
168 | |
169 | /// Return the false value for the SelectLike instruction. For example the |
170 | /// getFalseValue of a select or `x` in `or(zext(c), x)` (which is |
171 | /// `select(c, x|1, x)`) |
172 | Value *getFalseValue(bool HonorInverts = true) const { |
173 | if (Inverted && HonorInverts) |
174 | return getTrueValue(/*HonorInverts=*/false); |
175 | if (auto *Sel = dyn_cast<SelectInst>(Val: I)) |
176 | return Sel->getFalseValue(); |
177 | // We are on the branch where the condition is zero, which means BinOp |
178 | // does not perform any computation, and we can simply return the operand |
179 | // that is not related to the condition |
180 | if (auto *BO = dyn_cast<BinaryOperator>(Val: I)) |
181 | return BO->getOperand(i_nocapture: 1 - CondIdx); |
182 | |
183 | llvm_unreachable("Unhandled case in getFalseValue" ); |
184 | } |
185 | |
186 | /// Return the NonPredCost cost of the op on \p isTrue branch, given the |
187 | /// costs in \p InstCostMap. This may need to be generated for select-like |
188 | /// instructions. |
189 | Scaled64 getOpCostOnBranch( |
190 | bool IsTrue, const DenseMap<const Instruction *, CostInfo> &InstCostMap, |
191 | const TargetTransformInfo *TTI) { |
192 | auto *V = IsTrue ? getTrueValue() : getFalseValue(); |
193 | if (V) { |
194 | if (auto *IV = dyn_cast<Instruction>(Val: V)) { |
195 | auto It = InstCostMap.find(Val: IV); |
196 | return It != InstCostMap.end() ? It->second.NonPredCost |
197 | : Scaled64::getZero(); |
198 | } |
199 | return Scaled64::getZero(); |
200 | } |
201 | // If getTrue(False)Value() return nullptr, it means we are dealing with |
202 | // select-like instructions on the branch where the actual computation is |
203 | // happening. In that case the cost is equal to the cost of computation + |
204 | // cost of non-dependant on condition operand |
205 | InstructionCost Cost = TTI->getArithmeticInstrCost( |
206 | Opcode: getI()->getOpcode(), Ty: I->getType(), CostKind: TargetTransformInfo::TCK_Latency, |
207 | Opd1Info: {.Kind: TargetTransformInfo::OK_AnyValue, .Properties: TargetTransformInfo::OP_None}, |
208 | Opd2Info: {.Kind: TTI::OK_UniformConstantValue, .Properties: TTI::OP_PowerOf2}); |
209 | auto TotalCost = Scaled64::get(N: Cost.getValue()); |
210 | if (auto *OpI = dyn_cast<Instruction>(Val: I->getOperand(i: 1 - CondIdx))) { |
211 | auto It = InstCostMap.find(Val: OpI); |
212 | if (It != InstCostMap.end()) |
213 | TotalCost += It->second.NonPredCost; |
214 | } |
215 | return TotalCost; |
216 | } |
217 | }; |
218 | |
219 | private: |
220 | // Select groups consist of consecutive select-like instructions with the same |
221 | // condition. Between select-likes could be any number of auxiliary |
222 | // instructions related to the condition like not, zext, ashr/lshr |
223 | struct SelectGroup { |
224 | Value *Condition; |
225 | SmallVector<SelectLike, 2> Selects; |
226 | }; |
227 | using SelectGroups = SmallVector<SelectGroup, 2>; |
228 | |
229 | // Converts select instructions of a function to conditional jumps when deemed |
230 | // profitable. Returns true if at least one select was converted. |
231 | bool optimizeSelects(Function &F); |
232 | |
233 | // Heuristics for determining which select instructions can be profitably |
234 | // conveted to branches. Separate heuristics for selects in inner-most loops |
235 | // and the rest of code regions (base heuristics for non-inner-most loop |
236 | // regions). |
237 | void optimizeSelectsBase(Function &F, SelectGroups &ProfSIGroups); |
238 | void optimizeSelectsInnerLoops(Function &F, SelectGroups &ProfSIGroups); |
239 | |
240 | // Converts to branches the select groups that were deemed |
241 | // profitable-to-convert. |
242 | void convertProfitableSIGroups(SelectGroups &ProfSIGroups); |
243 | |
244 | // Splits selects of a given basic block into select groups. |
245 | void collectSelectGroups(BasicBlock &BB, SelectGroups &SIGroups); |
246 | |
247 | // Determines for which select groups it is profitable converting to branches |
248 | // (base and inner-most-loop heuristics). |
249 | void findProfitableSIGroupsBase(SelectGroups &SIGroups, |
250 | SelectGroups &ProfSIGroups); |
251 | void findProfitableSIGroupsInnerLoops(const Loop *L, SelectGroups &SIGroups, |
252 | SelectGroups &ProfSIGroups); |
253 | |
254 | // Determines if a select group should be converted to a branch (base |
255 | // heuristics). |
256 | bool isConvertToBranchProfitableBase(const SelectGroup &ASI); |
257 | |
258 | // Returns true if there are expensive instructions in the cold value |
259 | // operand's (if any) dependence slice of any of the selects of the given |
260 | // group. |
261 | bool hasExpensiveColdOperand(const SelectGroup &ASI); |
262 | |
263 | // For a given source instruction, collect its backwards dependence slice |
264 | // consisting of instructions exclusively computed for producing the operands |
265 | // of the source instruction. |
266 | void getExclBackwardsSlice(Instruction *I, std::stack<Instruction *> &Slice, |
267 | Instruction *SI, bool ForSinking = false); |
268 | |
269 | // Returns true if the condition of the select is highly predictable. |
270 | bool isSelectHighlyPredictable(const SelectLike SI); |
271 | |
272 | // Loop-level checks to determine if a non-predicated version (with branches) |
273 | // of the given loop is more profitable than its predicated version. |
274 | bool checkLoopHeuristics(const Loop *L, const CostInfo LoopDepth[2]); |
275 | |
276 | // Computes instruction and loop-critical-path costs for both the predicated |
277 | // and non-predicated version of the given loop. |
278 | bool computeLoopCosts(const Loop *L, const SelectGroups &SIGroups, |
279 | DenseMap<const Instruction *, CostInfo> &InstCostMap, |
280 | CostInfo *LoopCost); |
281 | |
282 | // Returns a set of all the select instructions in the given select groups. |
283 | SmallDenseMap<const Instruction *, SelectLike, 2> |
284 | getSImap(const SelectGroups &SIGroups); |
285 | |
286 | // Returns a map from select-like instructions to the corresponding select |
287 | // group. |
288 | SmallDenseMap<const Instruction *, const SelectGroup *, 2> |
289 | getSGmap(const SelectGroups &SIGroups); |
290 | |
291 | // Returns the latency cost of a given instruction. |
292 | std::optional<uint64_t> computeInstCost(const Instruction *I); |
293 | |
294 | // Returns the misprediction cost of a given select when converted to branch. |
295 | Scaled64 getMispredictionCost(const SelectLike SI, const Scaled64 CondCost); |
296 | |
297 | // Returns the cost of a branch when the prediction is correct. |
298 | Scaled64 getPredictedPathCost(Scaled64 TrueCost, Scaled64 FalseCost, |
299 | const SelectLike SI); |
300 | |
301 | // Returns true if the target architecture supports lowering a given select. |
302 | bool isSelectKindSupported(const SelectLike SI); |
303 | }; |
304 | |
305 | class SelectOptimize : public FunctionPass { |
306 | SelectOptimizeImpl Impl; |
307 | |
308 | public: |
309 | static char ID; |
310 | |
311 | SelectOptimize() : FunctionPass(ID) { |
312 | initializeSelectOptimizePass(*PassRegistry::getPassRegistry()); |
313 | } |
314 | |
315 | bool runOnFunction(Function &F) override { |
316 | return Impl.runOnFunction(F, P&: *this); |
317 | } |
318 | |
319 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
320 | AU.addRequired<ProfileSummaryInfoWrapperPass>(); |
321 | AU.addRequired<TargetPassConfig>(); |
322 | AU.addRequired<TargetTransformInfoWrapperPass>(); |
323 | AU.addRequired<LoopInfoWrapperPass>(); |
324 | AU.addRequired<BlockFrequencyInfoWrapperPass>(); |
325 | AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); |
326 | } |
327 | }; |
328 | |
329 | } // namespace |
330 | |
331 | PreservedAnalyses SelectOptimizePass::run(Function &F, |
332 | FunctionAnalysisManager &FAM) { |
333 | SelectOptimizeImpl Impl(TM); |
334 | return Impl.run(F, FAM); |
335 | } |
336 | |
337 | char SelectOptimize::ID = 0; |
338 | |
339 | INITIALIZE_PASS_BEGIN(SelectOptimize, DEBUG_TYPE, "Optimize selects" , false, |
340 | false) |
341 | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) |
342 | INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) |
343 | INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) |
344 | INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) |
345 | INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) |
346 | INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) |
347 | INITIALIZE_PASS_END(SelectOptimize, DEBUG_TYPE, "Optimize selects" , false, |
348 | false) |
349 | |
350 | FunctionPass *llvm::createSelectOptimizePass() { return new SelectOptimize(); } |
351 | |
352 | PreservedAnalyses SelectOptimizeImpl::run(Function &F, |
353 | FunctionAnalysisManager &FAM) { |
354 | TSI = TM->getSubtargetImpl(F); |
355 | TLI = TSI->getTargetLowering(); |
356 | |
357 | // If none of the select types are supported then skip this pass. |
358 | // This is an optimization pass. Legality issues will be handled by |
359 | // instruction selection. |
360 | if (!TLI->isSelectSupported(TargetLowering::ScalarValSelect) && |
361 | !TLI->isSelectSupported(TargetLowering::ScalarCondVectorVal) && |
362 | !TLI->isSelectSupported(TargetLowering::VectorMaskSelect)) |
363 | return PreservedAnalyses::all(); |
364 | |
365 | TTI = &FAM.getResult<TargetIRAnalysis>(IR&: F); |
366 | if (!TTI->enableSelectOptimize()) |
367 | return PreservedAnalyses::all(); |
368 | |
369 | PSI = FAM.getResult<ModuleAnalysisManagerFunctionProxy>(IR&: F) |
370 | .getCachedResult<ProfileSummaryAnalysis>(IR&: *F.getParent()); |
371 | assert(PSI && "This pass requires module analysis pass `profile-summary`!" ); |
372 | BFI = &FAM.getResult<BlockFrequencyAnalysis>(IR&: F); |
373 | |
374 | // When optimizing for size, selects are preferable over branches. |
375 | if (llvm::shouldOptimizeForSize(F: &F, PSI, BFI)) |
376 | return PreservedAnalyses::all(); |
377 | |
378 | LI = &FAM.getResult<LoopAnalysis>(IR&: F); |
379 | ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(IR&: F); |
380 | TSchedModel.init(TSInfo: TSI); |
381 | |
382 | bool Changed = optimizeSelects(F); |
383 | return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); |
384 | } |
385 | |
386 | bool SelectOptimizeImpl::runOnFunction(Function &F, Pass &P) { |
387 | TM = &P.getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); |
388 | TSI = TM->getSubtargetImpl(F); |
389 | TLI = TSI->getTargetLowering(); |
390 | |
391 | // If none of the select types are supported then skip this pass. |
392 | // This is an optimization pass. Legality issues will be handled by |
393 | // instruction selection. |
394 | if (!TLI->isSelectSupported(TargetLowering::ScalarValSelect) && |
395 | !TLI->isSelectSupported(TargetLowering::ScalarCondVectorVal) && |
396 | !TLI->isSelectSupported(TargetLowering::VectorMaskSelect)) |
397 | return false; |
398 | |
399 | TTI = &P.getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); |
400 | |
401 | if (!TTI->enableSelectOptimize()) |
402 | return false; |
403 | |
404 | LI = &P.getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
405 | BFI = &P.getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); |
406 | PSI = &P.getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); |
407 | ORE = &P.getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); |
408 | TSchedModel.init(TSInfo: TSI); |
409 | |
410 | // When optimizing for size, selects are preferable over branches. |
411 | if (llvm::shouldOptimizeForSize(F: &F, PSI, BFI)) |
412 | return false; |
413 | |
414 | return optimizeSelects(F); |
415 | } |
416 | |
417 | bool SelectOptimizeImpl::optimizeSelects(Function &F) { |
418 | // Determine for which select groups it is profitable converting to branches. |
419 | SelectGroups ProfSIGroups; |
420 | // Base heuristics apply only to non-loops and outer loops. |
421 | optimizeSelectsBase(F, ProfSIGroups); |
422 | // Separate heuristics for inner-most loops. |
423 | optimizeSelectsInnerLoops(F, ProfSIGroups); |
424 | |
425 | // Convert to branches the select groups that were deemed |
426 | // profitable-to-convert. |
427 | convertProfitableSIGroups(ProfSIGroups); |
428 | |
429 | // Code modified if at least one select group was converted. |
430 | return !ProfSIGroups.empty(); |
431 | } |
432 | |
433 | void SelectOptimizeImpl::optimizeSelectsBase(Function &F, |
434 | SelectGroups &ProfSIGroups) { |
435 | // Collect all the select groups. |
436 | SelectGroups SIGroups; |
437 | for (BasicBlock &BB : F) { |
438 | // Base heuristics apply only to non-loops and outer loops. |
439 | Loop *L = LI->getLoopFor(BB: &BB); |
440 | if (L && L->isInnermost()) |
441 | continue; |
442 | collectSelectGroups(BB, SIGroups); |
443 | } |
444 | |
445 | // Determine for which select groups it is profitable converting to branches. |
446 | findProfitableSIGroupsBase(SIGroups, ProfSIGroups); |
447 | } |
448 | |
449 | void SelectOptimizeImpl::optimizeSelectsInnerLoops(Function &F, |
450 | SelectGroups &ProfSIGroups) { |
451 | SmallVector<Loop *, 4> Loops(LI->begin(), LI->end()); |
452 | // Need to check size on each iteration as we accumulate child loops. |
453 | for (unsigned long i = 0; i < Loops.size(); ++i) |
454 | llvm::append_range(C&: Loops, R: Loops[i]->getSubLoops()); |
455 | |
456 | for (Loop *L : Loops) { |
457 | if (!L->isInnermost()) |
458 | continue; |
459 | |
460 | SelectGroups SIGroups; |
461 | for (BasicBlock *BB : L->getBlocks()) |
462 | collectSelectGroups(BB&: *BB, SIGroups); |
463 | |
464 | findProfitableSIGroupsInnerLoops(L, SIGroups, ProfSIGroups); |
465 | } |
466 | } |
467 | |
468 | /// Returns optimised value on \p IsTrue branch. For SelectInst that would be |
469 | /// either True or False value. For (BinaryOperator) instructions, where the |
470 | /// condition may be skipped, the operation will use a non-conditional operand. |
471 | /// For example, for `or(V,zext(cond))` this function would return V. |
472 | /// However, if the conditional operand on \p IsTrue branch matters, we create a |
473 | /// clone of instruction at the end of that branch \p B and replace the |
474 | /// condition operand with a constant. |
475 | /// |
476 | /// Also /p OptSelects contains previously optimised select-like instructions. |
477 | /// If the current value uses one of the optimised values, we can optimise it |
478 | /// further by replacing it with the corresponding value on the given branch |
479 | static Value *getTrueOrFalseValue( |
480 | SelectOptimizeImpl::SelectLike &SI, bool isTrue, |
481 | SmallDenseMap<Instruction *, std::pair<Value *, Value *>, 2> &OptSelects, |
482 | BasicBlock *B) { |
483 | Value *V = isTrue ? SI.getTrueValue() : SI.getFalseValue(); |
484 | if (V) { |
485 | if (auto *IV = dyn_cast<Instruction>(Val: V)) |
486 | if (auto It = OptSelects.find(Val: IV); It != OptSelects.end()) |
487 | return isTrue ? It->second.first : It->second.second; |
488 | return V; |
489 | } |
490 | |
491 | auto *BO = cast<BinaryOperator>(Val: SI.getI()); |
492 | assert((BO->getOpcode() == Instruction::Add || |
493 | BO->getOpcode() == Instruction::Or || |
494 | BO->getOpcode() == Instruction::Sub) && |
495 | "Only currently handling Add, Or and Sub binary operators." ); |
496 | |
497 | auto *CBO = BO->clone(); |
498 | auto CondIdx = SI.getConditionOpIndex(); |
499 | auto *AuxI = cast<Instruction>(Val: CBO->getOperand(i: CondIdx)); |
500 | if (isa<ZExtInst>(Val: AuxI) || isa<LShrOperator>(Val: AuxI)) { |
501 | CBO->setOperand(i: CondIdx, Val: ConstantInt::get(Ty: CBO->getType(), V: 1)); |
502 | } else { |
503 | assert((isa<AShrOperator>(AuxI) || isa<SExtInst>(AuxI)) && |
504 | "Unexpected opcode" ); |
505 | CBO->setOperand(i: CondIdx, Val: ConstantInt::get(Ty: CBO->getType(), V: -1)); |
506 | } |
507 | |
508 | unsigned OtherIdx = 1 - CondIdx; |
509 | if (auto *IV = dyn_cast<Instruction>(Val: CBO->getOperand(i: OtherIdx))) { |
510 | if (auto It = OptSelects.find(Val: IV); It != OptSelects.end()) |
511 | CBO->setOperand(i: OtherIdx, Val: isTrue ? It->second.first : It->second.second); |
512 | } |
513 | CBO->insertBefore(InsertPos: B->getTerminator()->getIterator()); |
514 | return CBO; |
515 | } |
516 | |
517 | void SelectOptimizeImpl::convertProfitableSIGroups(SelectGroups &ProfSIGroups) { |
518 | for (SelectGroup &ASI : ProfSIGroups) { |
519 | // The code transformation here is a modified version of the sinking |
520 | // transformation in CodeGenPrepare::optimizeSelectInst with a more |
521 | // aggressive strategy of which instructions to sink. |
522 | // |
523 | // TODO: eliminate the redundancy of logic transforming selects to branches |
524 | // by removing CodeGenPrepare::optimizeSelectInst and optimizing here |
525 | // selects for all cases (with and without profile information). |
526 | |
527 | // Transform a sequence like this: |
528 | // start: |
529 | // %cmp = cmp uge i32 %a, %b |
530 | // %sel = select i1 %cmp, i32 %c, i32 %d |
531 | // |
532 | // Into: |
533 | // start: |
534 | // %cmp = cmp uge i32 %a, %b |
535 | // %cmp.frozen = freeze %cmp |
536 | // br i1 %cmp.frozen, label %select.true, label %select.false |
537 | // select.true: |
538 | // br label %select.end |
539 | // select.false: |
540 | // br label %select.end |
541 | // select.end: |
542 | // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] |
543 | // |
544 | // %cmp should be frozen, otherwise it may introduce undefined behavior. |
545 | // In addition, we may sink instructions that produce %c or %d into the |
546 | // destination(s) of the new branch. |
547 | // If the true or false blocks do not contain a sunken instruction, that |
548 | // block and its branch may be optimized away. In that case, one side of the |
549 | // first branch will point directly to select.end, and the corresponding PHI |
550 | // predecessor block will be the start block. |
551 | |
552 | // Find all the instructions that can be soundly sunk to the true/false |
553 | // blocks. These are instructions that are computed solely for producing the |
554 | // operands of the select instructions in the group and can be sunk without |
555 | // breaking the semantics of the LLVM IR (e.g., cannot sink instructions |
556 | // with side effects). |
557 | SmallVector<std::stack<Instruction *>, 2> TrueSlices, FalseSlices; |
558 | typedef std::stack<Instruction *>::size_type StackSizeType; |
559 | StackSizeType maxTrueSliceLen = 0, maxFalseSliceLen = 0; |
560 | for (SelectLike &SI : ASI.Selects) { |
561 | if (!isa<SelectInst>(Val: SI.getI())) |
562 | continue; |
563 | // For each select, compute the sinkable dependence chains of the true and |
564 | // false operands. |
565 | if (auto *TI = dyn_cast_or_null<Instruction>(Val: SI.getTrueValue())) { |
566 | std::stack<Instruction *> TrueSlice; |
567 | getExclBackwardsSlice(I: TI, Slice&: TrueSlice, SI: SI.getI(), ForSinking: true); |
568 | maxTrueSliceLen = std::max(a: maxTrueSliceLen, b: TrueSlice.size()); |
569 | TrueSlices.push_back(Elt: TrueSlice); |
570 | } |
571 | if (auto *FI = dyn_cast_or_null<Instruction>(Val: SI.getFalseValue())) { |
572 | if (isa<SelectInst>(Val: SI.getI()) || !FI->hasOneUse()) { |
573 | std::stack<Instruction *> FalseSlice; |
574 | getExclBackwardsSlice(I: FI, Slice&: FalseSlice, SI: SI.getI(), ForSinking: true); |
575 | maxFalseSliceLen = std::max(a: maxFalseSliceLen, b: FalseSlice.size()); |
576 | FalseSlices.push_back(Elt: FalseSlice); |
577 | } |
578 | } |
579 | } |
580 | // In the case of multiple select instructions in the same group, the order |
581 | // of non-dependent instructions (instructions of different dependence |
582 | // slices) in the true/false blocks appears to affect performance. |
583 | // Interleaving the slices seems to experimentally be the optimal approach. |
584 | // This interleaving scheduling allows for more ILP (with a natural downside |
585 | // of increasing a bit register pressure) compared to a simple ordering of |
586 | // one whole chain after another. One would expect that this ordering would |
587 | // not matter since the scheduling in the backend of the compiler would |
588 | // take care of it, but apparently the scheduler fails to deliver optimal |
589 | // ILP with a naive ordering here. |
590 | SmallVector<Instruction *, 2> TrueSlicesInterleaved, FalseSlicesInterleaved; |
591 | for (StackSizeType IS = 0; IS < maxTrueSliceLen; ++IS) { |
592 | for (auto &S : TrueSlices) { |
593 | if (!S.empty()) { |
594 | TrueSlicesInterleaved.push_back(Elt: S.top()); |
595 | S.pop(); |
596 | } |
597 | } |
598 | } |
599 | for (StackSizeType IS = 0; IS < maxFalseSliceLen; ++IS) { |
600 | for (auto &S : FalseSlices) { |
601 | if (!S.empty()) { |
602 | FalseSlicesInterleaved.push_back(Elt: S.top()); |
603 | S.pop(); |
604 | } |
605 | } |
606 | } |
607 | |
608 | // We split the block containing the select(s) into two blocks. |
609 | SelectLike &SI = ASI.Selects.front(); |
610 | SelectLike &LastSI = ASI.Selects.back(); |
611 | BasicBlock *StartBlock = SI.getI()->getParent(); |
612 | BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI.getI())); |
613 | // With RemoveDIs turned off, SplitPt can be a dbg.* intrinsic. With |
614 | // RemoveDIs turned on, SplitPt would instead point to the next |
615 | // instruction. To match existing dbg.* intrinsic behaviour with RemoveDIs, |
616 | // tell splitBasicBlock that we want to include any DbgVariableRecords |
617 | // attached to SplitPt in the splice. |
618 | SplitPt.setHeadBit(true); |
619 | BasicBlock *EndBlock = StartBlock->splitBasicBlock(I: SplitPt, BBName: "select.end" ); |
620 | BFI->setBlockFreq(BB: EndBlock, Freq: BFI->getBlockFreq(BB: StartBlock)); |
621 | // Delete the unconditional branch that was just created by the split. |
622 | StartBlock->getTerminator()->eraseFromParent(); |
623 | |
624 | // Move any debug/pseudo and auxiliary instructions that were in-between the |
625 | // select group to the newly-created end block. |
626 | SmallVector<Instruction *, 2> SinkInstrs; |
627 | auto DIt = SI.getI()->getIterator(); |
628 | auto NIt = ASI.Selects.begin(); |
629 | while (&*DIt != LastSI.getI()) { |
630 | if (NIt != ASI.Selects.end() && &*DIt == NIt->getI()) |
631 | ++NIt; |
632 | else |
633 | SinkInstrs.push_back(Elt: &*DIt); |
634 | DIt++; |
635 | } |
636 | auto InsertionPoint = EndBlock->getFirstInsertionPt(); |
637 | for (auto *DI : SinkInstrs) |
638 | DI->moveBeforePreserving(MovePos: InsertionPoint); |
639 | |
640 | // Duplicate implementation for DbgRecords, the non-instruction debug-info |
641 | // format. Helper lambda for moving DbgRecords to the end block. |
642 | auto TransferDbgRecords = [&](Instruction &I) { |
643 | for (auto &DbgRecord : |
644 | llvm::make_early_inc_range(Range: I.getDbgRecordRange())) { |
645 | DbgRecord.removeFromParent(); |
646 | EndBlock->insertDbgRecordBefore(DR: &DbgRecord, |
647 | Here: EndBlock->getFirstInsertionPt()); |
648 | } |
649 | }; |
650 | |
651 | // Iterate over all instructions in between SI and LastSI, not including |
652 | // SI itself. These are all the variable assignments that happen "in the |
653 | // middle" of the select group. |
654 | auto R = make_range(x: std::next(x: SI.getI()->getIterator()), |
655 | y: std::next(x: LastSI.getI()->getIterator())); |
656 | llvm::for_each(Range&: R, F: TransferDbgRecords); |
657 | |
658 | // These are the new basic blocks for the conditional branch. |
659 | // At least one will become an actual new basic block. |
660 | BasicBlock *TrueBlock = nullptr, *FalseBlock = nullptr; |
661 | BranchInst *TrueBranch = nullptr, *FalseBranch = nullptr; |
662 | // Checks if select-like instruction would materialise on the given branch |
663 | auto HasSelectLike = [](SelectGroup &SG, bool IsTrue) { |
664 | for (auto &SL : SG.Selects) { |
665 | if ((IsTrue ? SL.getTrueValue() : SL.getFalseValue()) == nullptr) |
666 | return true; |
667 | } |
668 | return false; |
669 | }; |
670 | if (!TrueSlicesInterleaved.empty() || HasSelectLike(ASI, true)) { |
671 | TrueBlock = BasicBlock::Create(Context&: EndBlock->getContext(), Name: "select.true.sink" , |
672 | Parent: EndBlock->getParent(), InsertBefore: EndBlock); |
673 | TrueBranch = BranchInst::Create(IfTrue: EndBlock, InsertBefore: TrueBlock); |
674 | TrueBranch->setDebugLoc(LastSI.getI()->getDebugLoc()); |
675 | for (Instruction *TrueInst : TrueSlicesInterleaved) |
676 | TrueInst->moveBefore(InsertPos: TrueBranch->getIterator()); |
677 | } |
678 | if (!FalseSlicesInterleaved.empty() || HasSelectLike(ASI, false)) { |
679 | FalseBlock = |
680 | BasicBlock::Create(Context&: EndBlock->getContext(), Name: "select.false.sink" , |
681 | Parent: EndBlock->getParent(), InsertBefore: EndBlock); |
682 | FalseBranch = BranchInst::Create(IfTrue: EndBlock, InsertBefore: FalseBlock); |
683 | FalseBranch->setDebugLoc(LastSI.getI()->getDebugLoc()); |
684 | for (Instruction *FalseInst : FalseSlicesInterleaved) |
685 | FalseInst->moveBefore(InsertPos: FalseBranch->getIterator()); |
686 | } |
687 | // If there was nothing to sink, then arbitrarily choose the 'false' side |
688 | // for a new input value to the PHI. |
689 | if (TrueBlock == FalseBlock) { |
690 | assert(TrueBlock == nullptr && |
691 | "Unexpected basic block transform while optimizing select" ); |
692 | |
693 | FalseBlock = BasicBlock::Create(Context&: StartBlock->getContext(), Name: "select.false" , |
694 | Parent: EndBlock->getParent(), InsertBefore: EndBlock); |
695 | auto *FalseBranch = BranchInst::Create(IfTrue: EndBlock, InsertBefore: FalseBlock); |
696 | FalseBranch->setDebugLoc(SI.getI()->getDebugLoc()); |
697 | } |
698 | |
699 | // Insert the real conditional branch based on the original condition. |
700 | // If we did not create a new block for one of the 'true' or 'false' paths |
701 | // of the condition, it means that side of the branch goes to the end block |
702 | // directly and the path originates from the start block from the point of |
703 | // view of the new PHI. |
704 | BasicBlock *TT, *FT; |
705 | if (TrueBlock == nullptr) { |
706 | TT = EndBlock; |
707 | FT = FalseBlock; |
708 | TrueBlock = StartBlock; |
709 | } else if (FalseBlock == nullptr) { |
710 | TT = TrueBlock; |
711 | FT = EndBlock; |
712 | FalseBlock = StartBlock; |
713 | } else { |
714 | TT = TrueBlock; |
715 | FT = FalseBlock; |
716 | } |
717 | IRBuilder<> IB(SI.getI()); |
718 | auto *CondFr = |
719 | IB.CreateFreeze(V: ASI.Condition, Name: ASI.Condition->getName() + ".frozen" ); |
720 | |
721 | SmallDenseMap<Instruction *, std::pair<Value *, Value *>, 2> INS; |
722 | |
723 | // Use reverse iterator because later select may use the value of the |
724 | // earlier select, and we need to propagate value through earlier select |
725 | // to get the PHI operand. |
726 | InsertionPoint = EndBlock->begin(); |
727 | for (SelectLike &SI : ASI.Selects) { |
728 | // The select itself is replaced with a PHI Node. |
729 | PHINode *PN = PHINode::Create(Ty: SI.getType(), NumReservedValues: 2, NameStr: "" ); |
730 | PN->insertBefore(InsertPos: InsertionPoint); |
731 | PN->takeName(V: SI.getI()); |
732 | // Current instruction might be a condition of some other group, so we |
733 | // need to replace it there to avoid dangling pointer |
734 | if (PN->getType()->isIntegerTy(Bitwidth: 1)) { |
735 | for (auto &SG : ProfSIGroups) { |
736 | if (SG.Condition == SI.getI()) |
737 | SG.Condition = PN; |
738 | } |
739 | } |
740 | SI.getI()->replaceAllUsesWith(V: PN); |
741 | auto *TV = getTrueOrFalseValue(SI, isTrue: true, OptSelects&: INS, B: TrueBlock); |
742 | auto *FV = getTrueOrFalseValue(SI, isTrue: false, OptSelects&: INS, B: FalseBlock); |
743 | INS[PN] = {TV, FV}; |
744 | PN->addIncoming(V: TV, BB: TrueBlock); |
745 | PN->addIncoming(V: FV, BB: FalseBlock); |
746 | PN->setDebugLoc(SI.getI()->getDebugLoc()); |
747 | ++NumSelectsConverted; |
748 | } |
749 | IB.CreateCondBr(Cond: CondFr, True: TT, False: FT, MDSrc: SI.getI()); |
750 | |
751 | // Remove the old select instructions, now that they are not longer used. |
752 | for (SelectLike &SI : ASI.Selects) |
753 | SI.getI()->eraseFromParent(); |
754 | } |
755 | } |
756 | |
757 | void SelectOptimizeImpl::collectSelectGroups(BasicBlock &BB, |
758 | SelectGroups &SIGroups) { |
759 | // Represents something that can be considered as select instruction. |
760 | // Auxiliary instruction are instructions that depends on a condition and have |
761 | // zero or some constant value on True/False branch, such as: |
762 | // * ZExt(1bit) |
763 | // * SExt(1bit) |
764 | // * Not(1bit) |
765 | // * A(L)Shr(Val), ValBitSize - 1, where there is a condition like `Val <= 0` |
766 | // earlier in the BB. For conditions that check the sign of the Val compiler |
767 | // may generate shifts instead of ZExt/SExt. |
768 | struct SelectLikeInfo { |
769 | Value *Cond; |
770 | bool IsAuxiliary; |
771 | bool IsInverted; |
772 | unsigned ConditionIdx; |
773 | }; |
774 | |
775 | DenseMap<Value *, SelectLikeInfo> SelectInfo; |
776 | // Keeps visited comparisons to help identify AShr/LShr variants of auxiliary |
777 | // instructions. |
778 | SmallSetVector<CmpInst *, 4> SeenCmp; |
779 | |
780 | // Check if the instruction is SelectLike or might be part of SelectLike |
781 | // expression, put information into SelectInfo and return the iterator to the |
782 | // inserted position. |
783 | auto ProcessSelectInfo = [&SelectInfo, &SeenCmp](Instruction *I) { |
784 | if (auto *Cmp = dyn_cast<CmpInst>(Val: I)) { |
785 | SeenCmp.insert(X: Cmp); |
786 | return SelectInfo.end(); |
787 | } |
788 | |
789 | Value *Cond; |
790 | if (match(V: I, P: m_OneUse(SubPattern: m_ZExtOrSExt(Op: m_Value(V&: Cond)))) && |
791 | Cond->getType()->isIntegerTy(Bitwidth: 1)) { |
792 | bool Inverted = match(V: Cond, P: m_Not(V: m_Value(V&: Cond))); |
793 | return SelectInfo.insert(KV: {I, {.Cond: Cond, .IsAuxiliary: true, .IsInverted: Inverted, .ConditionIdx: 0}}).first; |
794 | } |
795 | |
796 | if (match(V: I, P: m_Not(V: m_Value(V&: Cond)))) { |
797 | return SelectInfo.insert(KV: {I, {.Cond: Cond, .IsAuxiliary: true, .IsInverted: true, .ConditionIdx: 0}}).first; |
798 | } |
799 | |
800 | // Select instruction are what we are usually looking for. |
801 | if (match(V: I, P: m_Select(C: m_Value(V&: Cond), L: m_Value(), R: m_Value()))) { |
802 | bool Inverted = match(V: Cond, P: m_Not(V: m_Value(V&: Cond))); |
803 | return SelectInfo.insert(KV: {I, {.Cond: Cond, .IsAuxiliary: false, .IsInverted: Inverted, .ConditionIdx: 0}}).first; |
804 | } |
805 | Value *Val; |
806 | ConstantInt *Shift; |
807 | if (match(V: I, P: m_Shr(L: m_Value(V&: Val), R: m_ConstantInt(CI&: Shift))) && |
808 | I->getType()->getIntegerBitWidth() == Shift->getZExtValue() + 1) { |
809 | for (auto *CmpI : SeenCmp) { |
810 | auto Pred = CmpI->getPredicate(); |
811 | if (Val != CmpI->getOperand(i_nocapture: 0)) |
812 | continue; |
813 | if ((Pred == CmpInst::ICMP_SGT && |
814 | match(V: CmpI->getOperand(i_nocapture: 1), P: m_ConstantInt<-1>())) || |
815 | (Pred == CmpInst::ICMP_SGE && |
816 | match(V: CmpI->getOperand(i_nocapture: 1), P: m_Zero())) || |
817 | (Pred == CmpInst::ICMP_SLT && |
818 | match(V: CmpI->getOperand(i_nocapture: 1), P: m_Zero())) || |
819 | (Pred == CmpInst::ICMP_SLE && |
820 | match(V: CmpI->getOperand(i_nocapture: 1), P: m_ConstantInt<-1>()))) { |
821 | bool Inverted = |
822 | Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE; |
823 | return SelectInfo.insert(KV: {I, {.Cond: CmpI, .IsAuxiliary: true, .IsInverted: Inverted, .ConditionIdx: 0}}).first; |
824 | } |
825 | } |
826 | return SelectInfo.end(); |
827 | } |
828 | |
829 | // An BinOp(Aux(X), Y) can also be treated like a select, with condition X |
830 | // and values Y|1 and Y. |
831 | // `Aux` can be either `ZExt(1bit)`, `SExt(1bit)` or `XShr(Val), ValBitSize |
832 | // - 1` `BinOp` can be Add, Sub, Or |
833 | Value *X; |
834 | auto MatchZExtOrSExtPattern = |
835 | m_c_BinOp(L: m_Value(), R: m_OneUse(SubPattern: m_ZExtOrSExt(Op: m_Value(V&: X)))); |
836 | auto MatchShiftPattern = |
837 | m_c_BinOp(L: m_Value(), R: m_OneUse(SubPattern: m_Shr(L: m_Value(V&: X), R: m_ConstantInt(CI&: Shift)))); |
838 | |
839 | // This check is unnecessary, but it prevents costly access to the |
840 | // SelectInfo map. |
841 | if ((match(V: I, P: MatchZExtOrSExtPattern) && X->getType()->isIntegerTy(Bitwidth: 1)) || |
842 | (match(V: I, P: MatchShiftPattern) && |
843 | X->getType()->getIntegerBitWidth() == Shift->getZExtValue() + 1)) { |
844 | if (I->getOpcode() != Instruction::Add && |
845 | I->getOpcode() != Instruction::Sub && |
846 | I->getOpcode() != Instruction::Or) |
847 | return SelectInfo.end(); |
848 | |
849 | if (I->getOpcode() == Instruction::Or && I->getType()->isIntegerTy(Bitwidth: 1)) |
850 | return SelectInfo.end(); |
851 | |
852 | // Iterate through operands and find dependant on recognised sign |
853 | // extending auxiliary select-like instructions. The operand index does |
854 | // not matter for Add and Or. However, for Sub, we can only safely |
855 | // transform when the operand is second. |
856 | unsigned Idx = I->getOpcode() == Instruction::Sub ? 1 : 0; |
857 | for (; Idx < 2; Idx++) { |
858 | auto *Op = I->getOperand(i: Idx); |
859 | auto It = SelectInfo.find(Val: Op); |
860 | if (It != SelectInfo.end() && It->second.IsAuxiliary) { |
861 | Cond = It->second.Cond; |
862 | bool Inverted = It->second.IsInverted; |
863 | return SelectInfo.insert(KV: {I, {.Cond: Cond, .IsAuxiliary: false, .IsInverted: Inverted, .ConditionIdx: Idx}}).first; |
864 | } |
865 | } |
866 | } |
867 | return SelectInfo.end(); |
868 | }; |
869 | |
870 | bool AlreadyProcessed = false; |
871 | BasicBlock::iterator BBIt = BB.begin(); |
872 | DenseMap<Value *, SelectLikeInfo>::iterator It; |
873 | while (BBIt != BB.end()) { |
874 | Instruction *I = &*BBIt++; |
875 | if (I->isDebugOrPseudoInst()) |
876 | continue; |
877 | |
878 | if (!AlreadyProcessed) |
879 | It = ProcessSelectInfo(I); |
880 | else |
881 | AlreadyProcessed = false; |
882 | |
883 | if (It == SelectInfo.end() || It->second.IsAuxiliary) |
884 | continue; |
885 | |
886 | if (!TTI->shouldTreatInstructionLikeSelect(I)) |
887 | continue; |
888 | |
889 | Value *Cond = It->second.Cond; |
890 | // Vector conditions are not supported. |
891 | if (!Cond->getType()->isIntegerTy(Bitwidth: 1)) |
892 | continue; |
893 | |
894 | SelectGroup SIGroup = {.Condition: Cond, .Selects: {}}; |
895 | SIGroup.Selects.emplace_back(Args&: I, Args&: It->second.IsInverted, |
896 | Args&: It->second.ConditionIdx); |
897 | |
898 | // If the select type is not supported, no point optimizing it. |
899 | // Instruction selection will take care of it. |
900 | if (!isSelectKindSupported(SI: SIGroup.Selects.front())) |
901 | continue; |
902 | |
903 | while (BBIt != BB.end()) { |
904 | Instruction *NI = &*BBIt; |
905 | // Debug/pseudo instructions should be skipped and not prevent the |
906 | // formation of a select group. |
907 | if (NI->isDebugOrPseudoInst()) { |
908 | ++BBIt; |
909 | continue; |
910 | } |
911 | |
912 | It = ProcessSelectInfo(NI); |
913 | if (It == SelectInfo.end()) { |
914 | AlreadyProcessed = true; |
915 | break; |
916 | } |
917 | |
918 | // Auxiliary with same condition |
919 | auto [CurrCond, IsAux, IsRev, CondIdx] = It->second; |
920 | if (Cond != CurrCond) { |
921 | AlreadyProcessed = true; |
922 | break; |
923 | } |
924 | |
925 | if (!IsAux) |
926 | SIGroup.Selects.emplace_back(Args&: NI, Args&: IsRev, Args&: CondIdx); |
927 | ++BBIt; |
928 | } |
929 | LLVM_DEBUG({ |
930 | dbgs() << "New Select group (" << SIGroup.Selects.size() << ") with\n" ; |
931 | for (auto &SI : SIGroup.Selects) |
932 | dbgs() << " " << *SI.getI() << "\n" ; |
933 | }); |
934 | |
935 | SIGroups.push_back(Elt: SIGroup); |
936 | } |
937 | } |
938 | |
939 | void SelectOptimizeImpl::findProfitableSIGroupsBase( |
940 | SelectGroups &SIGroups, SelectGroups &ProfSIGroups) { |
941 | for (SelectGroup &ASI : SIGroups) { |
942 | ++NumSelectOptAnalyzed; |
943 | if (isConvertToBranchProfitableBase(ASI)) |
944 | ProfSIGroups.push_back(Elt: ASI); |
945 | } |
946 | } |
947 | |
948 | static void EmitAndPrintRemark(OptimizationRemarkEmitter *ORE, |
949 | DiagnosticInfoOptimizationBase &Rem) { |
950 | LLVM_DEBUG(dbgs() << Rem.getMsg() << "\n" ); |
951 | ORE->emit(OptDiag&: Rem); |
952 | } |
953 | |
954 | void SelectOptimizeImpl::findProfitableSIGroupsInnerLoops( |
955 | const Loop *L, SelectGroups &SIGroups, SelectGroups &ProfSIGroups) { |
956 | NumSelectOptAnalyzed += SIGroups.size(); |
957 | // For each select group in an inner-most loop, |
958 | // a branch is more preferable than a select/conditional-move if: |
959 | // i) conversion to branches for all the select groups of the loop satisfies |
960 | // loop-level heuristics including reducing the loop's critical path by |
961 | // some threshold (see SelectOptimizeImpl::checkLoopHeuristics); and |
962 | // ii) the total cost of the select group is cheaper with a branch compared |
963 | // to its predicated version. The cost is in terms of latency and the cost |
964 | // of a select group is the cost of its most expensive select instruction |
965 | // (assuming infinite resources and thus fully leveraging available ILP). |
966 | |
967 | DenseMap<const Instruction *, CostInfo> InstCostMap; |
968 | CostInfo LoopCost[2] = {{.PredCost: Scaled64::getZero(), .NonPredCost: Scaled64::getZero()}, |
969 | {.PredCost: Scaled64::getZero(), .NonPredCost: Scaled64::getZero()}}; |
970 | if (!computeLoopCosts(L, SIGroups, InstCostMap, LoopCost) || |
971 | !checkLoopHeuristics(L, LoopDepth: LoopCost)) { |
972 | return; |
973 | } |
974 | |
975 | for (SelectGroup &ASI : SIGroups) { |
976 | // Assuming infinite resources, the cost of a group of instructions is the |
977 | // cost of the most expensive instruction of the group. |
978 | Scaled64 SelectCost = Scaled64::getZero(), BranchCost = Scaled64::getZero(); |
979 | for (SelectLike &SI : ASI.Selects) { |
980 | const auto &ICM = InstCostMap[SI.getI()]; |
981 | SelectCost = std::max(a: SelectCost, b: ICM.PredCost); |
982 | BranchCost = std::max(a: BranchCost, b: ICM.NonPredCost); |
983 | } |
984 | if (BranchCost < SelectCost) { |
985 | OptimizationRemark OR(DEBUG_TYPE, "SelectOpti" , |
986 | ASI.Selects.front().getI()); |
987 | OR << "Profitable to convert to branch (loop analysis). BranchCost=" |
988 | << BranchCost.toString() << ", SelectCost=" << SelectCost.toString() |
989 | << ". " ; |
990 | EmitAndPrintRemark(ORE, Rem&: OR); |
991 | ++NumSelectConvertedLoop; |
992 | ProfSIGroups.push_back(Elt: ASI); |
993 | } else { |
994 | OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti" , |
995 | ASI.Selects.front().getI()); |
996 | ORmiss << "Select is more profitable (loop analysis). BranchCost=" |
997 | << BranchCost.toString() |
998 | << ", SelectCost=" << SelectCost.toString() << ". " ; |
999 | EmitAndPrintRemark(ORE, Rem&: ORmiss); |
1000 | } |
1001 | } |
1002 | } |
1003 | |
1004 | bool SelectOptimizeImpl::isConvertToBranchProfitableBase( |
1005 | const SelectGroup &ASI) { |
1006 | const SelectLike &SI = ASI.Selects.front(); |
1007 | LLVM_DEBUG(dbgs() << "Analyzing select group containing " << *SI.getI() |
1008 | << "\n" ); |
1009 | OptimizationRemark OR(DEBUG_TYPE, "SelectOpti" , SI.getI()); |
1010 | OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti" , SI.getI()); |
1011 | |
1012 | // Skip cold basic blocks. Better to optimize for size for cold blocks. |
1013 | if (PSI->isColdBlock(BB: SI.getI()->getParent(), BFI)) { |
1014 | ++NumSelectColdBB; |
1015 | ORmiss << "Not converted to branch because of cold basic block. " ; |
1016 | EmitAndPrintRemark(ORE, Rem&: ORmiss); |
1017 | return false; |
1018 | } |
1019 | |
1020 | // If unpredictable, branch form is less profitable. |
1021 | if (SI.getI()->getMetadata(KindID: LLVMContext::MD_unpredictable)) { |
1022 | ++NumSelectUnPred; |
1023 | ORmiss << "Not converted to branch because of unpredictable branch. " ; |
1024 | EmitAndPrintRemark(ORE, Rem&: ORmiss); |
1025 | return false; |
1026 | } |
1027 | |
1028 | // If highly predictable, branch form is more profitable, unless a |
1029 | // predictable select is inexpensive in the target architecture. |
1030 | if (isSelectHighlyPredictable(SI) && TLI->isPredictableSelectExpensive()) { |
1031 | ++NumSelectConvertedHighPred; |
1032 | OR << "Converted to branch because of highly predictable branch. " ; |
1033 | EmitAndPrintRemark(ORE, Rem&: OR); |
1034 | return true; |
1035 | } |
1036 | |
1037 | // Look for expensive instructions in the cold operand's (if any) dependence |
1038 | // slice of any of the selects in the group. |
1039 | if (hasExpensiveColdOperand(ASI)) { |
1040 | ++NumSelectConvertedExpColdOperand; |
1041 | OR << "Converted to branch because of expensive cold operand." ; |
1042 | EmitAndPrintRemark(ORE, Rem&: OR); |
1043 | return true; |
1044 | } |
1045 | |
1046 | // If latch has a select group with several elements, it is usually profitable |
1047 | // to convert it to branches. We let `optimizeSelectsInnerLoops` decide if |
1048 | // conversion is profitable for innermost loops. |
1049 | auto *BB = SI.getI()->getParent(); |
1050 | auto *L = LI->getLoopFor(BB); |
1051 | if (L && !L->isInnermost() && L->getLoopLatch() == BB && |
1052 | ASI.Selects.size() >= 3) { |
1053 | OR << "Converted to branch because select group in the latch block is big." ; |
1054 | EmitAndPrintRemark(ORE, Rem&: OR); |
1055 | return true; |
1056 | } |
1057 | |
1058 | ORmiss << "Not profitable to convert to branch (base heuristic)." ; |
1059 | EmitAndPrintRemark(ORE, Rem&: ORmiss); |
1060 | return false; |
1061 | } |
1062 | |
1063 | static InstructionCost divideNearest(InstructionCost Numerator, |
1064 | uint64_t Denominator) { |
1065 | return (Numerator + (Denominator / 2)) / Denominator; |
1066 | } |
1067 | |
1068 | static bool (const SelectOptimizeImpl::SelectLike SI, |
1069 | uint64_t &TrueVal, uint64_t &FalseVal) { |
1070 | if (isa<SelectInst>(Val: SI.getI())) |
1071 | return extractBranchWeights(I: *SI.getI(), TrueVal, FalseVal); |
1072 | return false; |
1073 | } |
1074 | |
1075 | bool SelectOptimizeImpl::hasExpensiveColdOperand(const SelectGroup &ASI) { |
1076 | bool ColdOperand = false; |
1077 | uint64_t TrueWeight, FalseWeight, TotalWeight; |
1078 | if (extractBranchWeights(SI: ASI.Selects.front(), TrueVal&: TrueWeight, FalseVal&: FalseWeight)) { |
1079 | uint64_t MinWeight = std::min(a: TrueWeight, b: FalseWeight); |
1080 | TotalWeight = TrueWeight + FalseWeight; |
1081 | // Is there a path with frequency <ColdOperandThreshold% (default:20%) ? |
1082 | ColdOperand = TotalWeight * ColdOperandThreshold > 100 * MinWeight; |
1083 | } else if (PSI->hasProfileSummary()) { |
1084 | OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti" , |
1085 | ASI.Selects.front().getI()); |
1086 | ORmiss << "Profile data available but missing branch-weights metadata for " |
1087 | "select instruction. " ; |
1088 | EmitAndPrintRemark(ORE, Rem&: ORmiss); |
1089 | } |
1090 | if (!ColdOperand) |
1091 | return false; |
1092 | // Check if the cold path's dependence slice is expensive for any of the |
1093 | // selects of the group. |
1094 | for (SelectLike SI : ASI.Selects) { |
1095 | Instruction *ColdI = nullptr; |
1096 | uint64_t HotWeight; |
1097 | if (TrueWeight < FalseWeight) { |
1098 | ColdI = dyn_cast_or_null<Instruction>(Val: SI.getTrueValue()); |
1099 | HotWeight = FalseWeight; |
1100 | } else { |
1101 | ColdI = dyn_cast_or_null<Instruction>(Val: SI.getFalseValue()); |
1102 | HotWeight = TrueWeight; |
1103 | } |
1104 | if (ColdI) { |
1105 | std::stack<Instruction *> ColdSlice; |
1106 | getExclBackwardsSlice(I: ColdI, Slice&: ColdSlice, SI: SI.getI()); |
1107 | InstructionCost SliceCost = 0; |
1108 | while (!ColdSlice.empty()) { |
1109 | SliceCost += TTI->getInstructionCost(U: ColdSlice.top(), |
1110 | CostKind: TargetTransformInfo::TCK_Latency); |
1111 | ColdSlice.pop(); |
1112 | } |
1113 | // The colder the cold value operand of the select is the more expensive |
1114 | // the cmov becomes for computing the cold value operand every time. Thus, |
1115 | // the colder the cold operand is the more its cost counts. |
1116 | // Get nearest integer cost adjusted for coldness. |
1117 | InstructionCost AdjSliceCost = |
1118 | divideNearest(Numerator: SliceCost * HotWeight, Denominator: TotalWeight); |
1119 | if (AdjSliceCost >= |
1120 | ColdOperandMaxCostMultiplier * TargetTransformInfo::TCC_Expensive) |
1121 | return true; |
1122 | } |
1123 | } |
1124 | return false; |
1125 | } |
1126 | |
1127 | // Check if it is safe to move LoadI next to the SI. |
1128 | // Conservatively assume it is safe only if there is no instruction |
1129 | // modifying memory in-between the load and the select instruction. |
1130 | static bool isSafeToSinkLoad(Instruction *LoadI, Instruction *SI) { |
1131 | // Assume loads from different basic blocks are unsafe to move. |
1132 | if (LoadI->getParent() != SI->getParent()) |
1133 | return false; |
1134 | auto It = LoadI->getIterator(); |
1135 | while (&*It != SI) { |
1136 | if (It->mayWriteToMemory()) |
1137 | return false; |
1138 | It++; |
1139 | } |
1140 | return true; |
1141 | } |
1142 | |
1143 | // For a given source instruction, collect its backwards dependence slice |
1144 | // consisting of instructions exclusively computed for the purpose of producing |
1145 | // the operands of the source instruction. As an approximation |
1146 | // (sufficiently-accurate in practice), we populate this set with the |
1147 | // instructions of the backwards dependence slice that only have one-use and |
1148 | // form an one-use chain that leads to the source instruction. |
1149 | void SelectOptimizeImpl::getExclBackwardsSlice(Instruction *I, |
1150 | std::stack<Instruction *> &Slice, |
1151 | Instruction *SI, |
1152 | bool ForSinking) { |
1153 | SmallPtrSet<Instruction *, 2> Visited; |
1154 | std::queue<Instruction *> Worklist; |
1155 | Worklist.push(x: I); |
1156 | while (!Worklist.empty()) { |
1157 | Instruction *II = Worklist.front(); |
1158 | Worklist.pop(); |
1159 | |
1160 | // Avoid cycles. |
1161 | if (!Visited.insert(Ptr: II).second) |
1162 | continue; |
1163 | |
1164 | if (!II->hasOneUse()) |
1165 | continue; |
1166 | |
1167 | // Cannot soundly sink instructions with side-effects. |
1168 | // Terminator or phi instructions cannot be sunk. |
1169 | // Avoid sinking other select instructions (should be handled separetely). |
1170 | if (ForSinking && (II->isTerminator() || II->mayHaveSideEffects() || |
1171 | isa<SelectInst>(Val: II) || isa<PHINode>(Val: II))) |
1172 | continue; |
1173 | |
1174 | // Avoid sinking loads in order not to skip state-modifying instructions, |
1175 | // that may alias with the loaded address. |
1176 | // Only allow sinking of loads within the same basic block that are |
1177 | // conservatively proven to be safe. |
1178 | if (ForSinking && II->mayReadFromMemory() && !isSafeToSinkLoad(LoadI: II, SI)) |
1179 | continue; |
1180 | |
1181 | // Avoid considering instructions with less frequency than the source |
1182 | // instruction (i.e., avoid colder code regions of the dependence slice). |
1183 | if (BFI->getBlockFreq(BB: II->getParent()) < BFI->getBlockFreq(BB: I->getParent())) |
1184 | continue; |
1185 | |
1186 | // Eligible one-use instruction added to the dependence slice. |
1187 | Slice.push(x: II); |
1188 | |
1189 | // Explore all the operands of the current instruction to expand the slice. |
1190 | for (Value *Op : II->operand_values()) |
1191 | if (auto *OpI = dyn_cast<Instruction>(Val: Op)) |
1192 | Worklist.push(x: OpI); |
1193 | } |
1194 | } |
1195 | |
1196 | bool SelectOptimizeImpl::isSelectHighlyPredictable(const SelectLike SI) { |
1197 | uint64_t TrueWeight, FalseWeight; |
1198 | if (extractBranchWeights(SI, TrueVal&: TrueWeight, FalseVal&: FalseWeight)) { |
1199 | uint64_t Max = std::max(a: TrueWeight, b: FalseWeight); |
1200 | uint64_t Sum = TrueWeight + FalseWeight; |
1201 | if (Sum != 0) { |
1202 | auto Probability = BranchProbability::getBranchProbability(Numerator: Max, Denominator: Sum); |
1203 | if (Probability > TTI->getPredictableBranchThreshold()) |
1204 | return true; |
1205 | } |
1206 | } |
1207 | return false; |
1208 | } |
1209 | |
1210 | bool SelectOptimizeImpl::checkLoopHeuristics(const Loop *L, |
1211 | const CostInfo LoopCost[2]) { |
1212 | // Loop-level checks to determine if a non-predicated version (with branches) |
1213 | // of the loop is more profitable than its predicated version. |
1214 | |
1215 | if (DisableLoopLevelHeuristics) |
1216 | return true; |
1217 | |
1218 | OptimizationRemarkMissed ORmissL(DEBUG_TYPE, "SelectOpti" , |
1219 | &*L->getHeader()->getFirstNonPHIIt()); |
1220 | |
1221 | if (LoopCost[0].NonPredCost > LoopCost[0].PredCost || |
1222 | LoopCost[1].NonPredCost >= LoopCost[1].PredCost) { |
1223 | ORmissL << "No select conversion in the loop due to no reduction of loop's " |
1224 | "critical path. " ; |
1225 | EmitAndPrintRemark(ORE, Rem&: ORmissL); |
1226 | return false; |
1227 | } |
1228 | |
1229 | Scaled64 Gain[2] = {LoopCost[0].PredCost - LoopCost[0].NonPredCost, |
1230 | LoopCost[1].PredCost - LoopCost[1].NonPredCost}; |
1231 | |
1232 | // Profitably converting to branches need to reduce the loop's critical path |
1233 | // by at least some threshold (absolute gain of GainCycleThreshold cycles and |
1234 | // relative gain of 12.5%). |
1235 | if (Gain[1] < Scaled64::get(N: GainCycleThreshold) || |
1236 | Gain[1] * Scaled64::get(N: GainRelativeThreshold) < LoopCost[1].PredCost) { |
1237 | Scaled64 RelativeGain = Scaled64::get(N: 100) * Gain[1] / LoopCost[1].PredCost; |
1238 | ORmissL << "No select conversion in the loop due to small reduction of " |
1239 | "loop's critical path. Gain=" |
1240 | << Gain[1].toString() |
1241 | << ", RelativeGain=" << RelativeGain.toString() << "%. " ; |
1242 | EmitAndPrintRemark(ORE, Rem&: ORmissL); |
1243 | return false; |
1244 | } |
1245 | |
1246 | // If the loop's critical path involves loop-carried dependences, the gradient |
1247 | // of the gain needs to be at least GainGradientThreshold% (defaults to 25%). |
1248 | // This check ensures that the latency reduction for the loop's critical path |
1249 | // keeps decreasing with sufficient rate beyond the two analyzed loop |
1250 | // iterations. |
1251 | if (Gain[1] > Gain[0]) { |
1252 | Scaled64 GradientGain = Scaled64::get(N: 100) * (Gain[1] - Gain[0]) / |
1253 | (LoopCost[1].PredCost - LoopCost[0].PredCost); |
1254 | if (GradientGain < Scaled64::get(N: GainGradientThreshold)) { |
1255 | ORmissL << "No select conversion in the loop due to small gradient gain. " |
1256 | "GradientGain=" |
1257 | << GradientGain.toString() << "%. " ; |
1258 | EmitAndPrintRemark(ORE, Rem&: ORmissL); |
1259 | return false; |
1260 | } |
1261 | } |
1262 | // If the gain decreases it is not profitable to convert. |
1263 | else if (Gain[1] < Gain[0]) { |
1264 | ORmissL |
1265 | << "No select conversion in the loop due to negative gradient gain. " ; |
1266 | EmitAndPrintRemark(ORE, Rem&: ORmissL); |
1267 | return false; |
1268 | } |
1269 | |
1270 | // Non-predicated version of the loop is more profitable than its |
1271 | // predicated version. |
1272 | return true; |
1273 | } |
1274 | |
1275 | // Computes instruction and loop-critical-path costs for both the predicated |
1276 | // and non-predicated version of the given loop. |
1277 | // Returns false if unable to compute these costs due to invalid cost of loop |
1278 | // instruction(s). |
1279 | bool SelectOptimizeImpl::computeLoopCosts( |
1280 | const Loop *L, const SelectGroups &SIGroups, |
1281 | DenseMap<const Instruction *, CostInfo> &InstCostMap, CostInfo *LoopCost) { |
1282 | LLVM_DEBUG(dbgs() << "Calculating Latency / IPredCost / INonPredCost of loop " |
1283 | << L->getHeader()->getName() << "\n" ); |
1284 | const auto SImap = getSImap(SIGroups); |
1285 | const auto SGmap = getSGmap(SIGroups); |
1286 | // Compute instruction and loop-critical-path costs across two iterations for |
1287 | // both predicated and non-predicated version. |
1288 | const unsigned Iterations = 2; |
1289 | for (unsigned Iter = 0; Iter < Iterations; ++Iter) { |
1290 | // Cost of the loop's critical path. |
1291 | CostInfo &MaxCost = LoopCost[Iter]; |
1292 | for (BasicBlock *BB : L->getBlocks()) { |
1293 | for (const Instruction &I : *BB) { |
1294 | if (I.isDebugOrPseudoInst()) |
1295 | continue; |
1296 | // Compute the predicated and non-predicated cost of the instruction. |
1297 | Scaled64 IPredCost = Scaled64::getZero(), |
1298 | INonPredCost = Scaled64::getZero(); |
1299 | |
1300 | // Assume infinite resources that allow to fully exploit the available |
1301 | // instruction-level parallelism. |
1302 | // InstCost = InstLatency + max(Op1Cost, Op2Cost, … OpNCost) |
1303 | for (const Use &U : I.operands()) { |
1304 | auto UI = dyn_cast<Instruction>(Val: U.get()); |
1305 | if (!UI) |
1306 | continue; |
1307 | if (auto It = InstCostMap.find(Val: UI); It != InstCostMap.end()) { |
1308 | IPredCost = std::max(a: IPredCost, b: It->second.PredCost); |
1309 | INonPredCost = std::max(a: INonPredCost, b: It->second.NonPredCost); |
1310 | } |
1311 | } |
1312 | auto ILatency = computeInstCost(I: &I); |
1313 | if (!ILatency) { |
1314 | OptimizationRemarkMissed ORmissL(DEBUG_TYPE, "SelectOpti" , &I); |
1315 | ORmissL << "Invalid instruction cost preventing analysis and " |
1316 | "optimization of the inner-most loop containing this " |
1317 | "instruction. " ; |
1318 | EmitAndPrintRemark(ORE, Rem&: ORmissL); |
1319 | return false; |
1320 | } |
1321 | IPredCost += Scaled64::get(N: *ILatency); |
1322 | INonPredCost += Scaled64::get(N: *ILatency); |
1323 | |
1324 | // For a select that can be converted to branch, |
1325 | // compute its cost as a branch (non-predicated cost). |
1326 | // |
1327 | // BranchCost = PredictedPathCost + MispredictCost |
1328 | // PredictedPathCost = TrueOpCost * TrueProb + FalseOpCost * FalseProb |
1329 | // MispredictCost = max(MispredictPenalty, CondCost) * MispredictRate |
1330 | if (auto It = SImap.find(Val: &I); It != SImap.end()) { |
1331 | auto SI = It->second; |
1332 | const auto *SG = SGmap.at(Val: &I); |
1333 | Scaled64 TrueOpCost = SI.getOpCostOnBranch(IsTrue: true, InstCostMap, TTI); |
1334 | Scaled64 FalseOpCost = SI.getOpCostOnBranch(IsTrue: false, InstCostMap, TTI); |
1335 | Scaled64 PredictedPathCost = |
1336 | getPredictedPathCost(TrueCost: TrueOpCost, FalseCost: FalseOpCost, SI); |
1337 | |
1338 | Scaled64 CondCost = Scaled64::getZero(); |
1339 | if (auto *CI = dyn_cast<Instruction>(Val: SG->Condition)) |
1340 | if (auto It = InstCostMap.find(Val: CI); It != InstCostMap.end()) |
1341 | CondCost = It->second.NonPredCost; |
1342 | Scaled64 MispredictCost = getMispredictionCost(SI, CondCost); |
1343 | |
1344 | INonPredCost = PredictedPathCost + MispredictCost; |
1345 | } |
1346 | LLVM_DEBUG(dbgs() << " " << ILatency << "/" << IPredCost << "/" |
1347 | << INonPredCost << " for " << I << "\n" ); |
1348 | |
1349 | InstCostMap[&I] = {.PredCost: IPredCost, .NonPredCost: INonPredCost}; |
1350 | MaxCost.PredCost = std::max(a: MaxCost.PredCost, b: IPredCost); |
1351 | MaxCost.NonPredCost = std::max(a: MaxCost.NonPredCost, b: INonPredCost); |
1352 | } |
1353 | } |
1354 | LLVM_DEBUG(dbgs() << "Iteration " << Iter + 1 |
1355 | << " MaxCost = " << MaxCost.PredCost << " " |
1356 | << MaxCost.NonPredCost << "\n" ); |
1357 | } |
1358 | return true; |
1359 | } |
1360 | |
1361 | SmallDenseMap<const Instruction *, SelectOptimizeImpl::SelectLike, 2> |
1362 | SelectOptimizeImpl::getSImap(const SelectGroups &SIGroups) { |
1363 | SmallDenseMap<const Instruction *, SelectLike, 2> SImap; |
1364 | for (const SelectGroup &ASI : SIGroups) |
1365 | for (const SelectLike &SI : ASI.Selects) |
1366 | SImap.try_emplace(Key: SI.getI(), Args: SI); |
1367 | return SImap; |
1368 | } |
1369 | |
1370 | SmallDenseMap<const Instruction *, const SelectOptimizeImpl::SelectGroup *, 2> |
1371 | SelectOptimizeImpl::getSGmap(const SelectGroups &SIGroups) { |
1372 | SmallDenseMap<const Instruction *, const SelectGroup *, 2> SImap; |
1373 | for (const SelectGroup &ASI : SIGroups) |
1374 | for (const SelectLike &SI : ASI.Selects) |
1375 | SImap.try_emplace(Key: SI.getI(), Args: &ASI); |
1376 | return SImap; |
1377 | } |
1378 | |
1379 | std::optional<uint64_t> |
1380 | SelectOptimizeImpl::computeInstCost(const Instruction *I) { |
1381 | InstructionCost ICost = |
1382 | TTI->getInstructionCost(U: I, CostKind: TargetTransformInfo::TCK_Latency); |
1383 | if (ICost.isValid()) |
1384 | return std::optional<uint64_t>(ICost.getValue()); |
1385 | return std::nullopt; |
1386 | } |
1387 | |
1388 | ScaledNumber<uint64_t> |
1389 | SelectOptimizeImpl::getMispredictionCost(const SelectLike SI, |
1390 | const Scaled64 CondCost) { |
1391 | uint64_t MispredictPenalty = TSchedModel.getMCSchedModel()->MispredictPenalty; |
1392 | |
1393 | // Account for the default misprediction rate when using a branch |
1394 | // (conservatively set to 25% by default). |
1395 | uint64_t MispredictRate = MispredictDefaultRate; |
1396 | // If the select condition is obviously predictable, then the misprediction |
1397 | // rate is zero. |
1398 | if (isSelectHighlyPredictable(SI)) |
1399 | MispredictRate = 0; |
1400 | |
1401 | // CondCost is included to account for cases where the computation of the |
1402 | // condition is part of a long dependence chain (potentially loop-carried) |
1403 | // that would delay detection of a misprediction and increase its cost. |
1404 | Scaled64 MispredictCost = |
1405 | std::max(a: Scaled64::get(N: MispredictPenalty), b: CondCost) * |
1406 | Scaled64::get(N: MispredictRate); |
1407 | MispredictCost /= Scaled64::get(N: 100); |
1408 | |
1409 | return MispredictCost; |
1410 | } |
1411 | |
1412 | // Returns the cost of a branch when the prediction is correct. |
1413 | // TrueCost * TrueProbability + FalseCost * FalseProbability. |
1414 | ScaledNumber<uint64_t> |
1415 | SelectOptimizeImpl::getPredictedPathCost(Scaled64 TrueCost, Scaled64 FalseCost, |
1416 | const SelectLike SI) { |
1417 | Scaled64 PredPathCost; |
1418 | uint64_t TrueWeight, FalseWeight; |
1419 | if (extractBranchWeights(SI, TrueVal&: TrueWeight, FalseVal&: FalseWeight)) { |
1420 | uint64_t SumWeight = TrueWeight + FalseWeight; |
1421 | if (SumWeight != 0) { |
1422 | PredPathCost = TrueCost * Scaled64::get(N: TrueWeight) + |
1423 | FalseCost * Scaled64::get(N: FalseWeight); |
1424 | PredPathCost /= Scaled64::get(N: SumWeight); |
1425 | return PredPathCost; |
1426 | } |
1427 | } |
1428 | // Without branch weight metadata, we assume 75% for the one path and 25% for |
1429 | // the other, and pick the result with the biggest cost. |
1430 | PredPathCost = std::max(a: TrueCost * Scaled64::get(N: 3) + FalseCost, |
1431 | b: FalseCost * Scaled64::get(N: 3) + TrueCost); |
1432 | PredPathCost /= Scaled64::get(N: 4); |
1433 | return PredPathCost; |
1434 | } |
1435 | |
1436 | bool SelectOptimizeImpl::isSelectKindSupported(const SelectLike SI) { |
1437 | TargetLowering::SelectSupportKind SelectKind; |
1438 | if (SI.getType()->isVectorTy()) |
1439 | SelectKind = TargetLowering::ScalarCondVectorVal; |
1440 | else |
1441 | SelectKind = TargetLowering::ScalarValSelect; |
1442 | return TLI->isSelectSupported(SelectKind); |
1443 | } |
1444 | |