| 1 | //===--- SelectOptimize.cpp - Convert select to branches if profitable ---===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This pass converts selects to conditional jumps when profitable. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "llvm/CodeGen/SelectOptimize.h" |
| 14 | #include "llvm/ADT/SetVector.h" |
| 15 | #include "llvm/ADT/SmallVector.h" |
| 16 | #include "llvm/ADT/Statistic.h" |
| 17 | #include "llvm/Analysis/BlockFrequencyInfo.h" |
| 18 | #include "llvm/Analysis/BranchProbabilityInfo.h" |
| 19 | #include "llvm/Analysis/LoopInfo.h" |
| 20 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| 21 | #include "llvm/Analysis/ProfileSummaryInfo.h" |
| 22 | #include "llvm/Analysis/TargetTransformInfo.h" |
| 23 | #include "llvm/CodeGen/Passes.h" |
| 24 | #include "llvm/CodeGen/TargetLowering.h" |
| 25 | #include "llvm/CodeGen/TargetPassConfig.h" |
| 26 | #include "llvm/CodeGen/TargetSchedule.h" |
| 27 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 28 | #include "llvm/IR/BasicBlock.h" |
| 29 | #include "llvm/IR/Dominators.h" |
| 30 | #include "llvm/IR/Function.h" |
| 31 | #include "llvm/IR/IRBuilder.h" |
| 32 | #include "llvm/IR/Instruction.h" |
| 33 | #include "llvm/IR/PatternMatch.h" |
| 34 | #include "llvm/IR/ProfDataUtils.h" |
| 35 | #include "llvm/InitializePasses.h" |
| 36 | #include "llvm/Pass.h" |
| 37 | #include "llvm/Support/ScaledNumber.h" |
| 38 | #include "llvm/Target/TargetMachine.h" |
| 39 | #include "llvm/Transforms/Utils/SizeOpts.h" |
| 40 | #include <algorithm> |
| 41 | #include <queue> |
| 42 | #include <stack> |
| 43 | |
| 44 | using namespace llvm; |
| 45 | using namespace llvm::PatternMatch; |
| 46 | |
| 47 | #define DEBUG_TYPE "select-optimize" |
| 48 | |
| 49 | STATISTIC(NumSelectOptAnalyzed, |
| 50 | "Number of select groups considered for conversion to branch" ); |
| 51 | STATISTIC(NumSelectConvertedExpColdOperand, |
| 52 | "Number of select groups converted due to expensive cold operand" ); |
| 53 | STATISTIC(NumSelectConvertedHighPred, |
| 54 | "Number of select groups converted due to high-predictability" ); |
| 55 | STATISTIC(NumSelectUnPred, |
| 56 | "Number of select groups not converted due to unpredictability" ); |
| 57 | STATISTIC(NumSelectColdBB, |
| 58 | "Number of select groups not converted due to cold basic block" ); |
| 59 | STATISTIC(NumSelectConvertedLoop, |
| 60 | "Number of select groups converted due to loop-level analysis" ); |
| 61 | STATISTIC(NumSelectsConverted, "Number of selects converted" ); |
| 62 | |
| 63 | static cl::opt<unsigned> ColdOperandThreshold( |
| 64 | "cold-operand-threshold" , |
| 65 | cl::desc("Maximum frequency of path for an operand to be considered cold." ), |
| 66 | cl::init(Val: 20), cl::Hidden); |
| 67 | |
| 68 | static cl::opt<unsigned> ColdOperandMaxCostMultiplier( |
| 69 | "cold-operand-max-cost-multiplier" , |
| 70 | cl::desc("Maximum cost multiplier of TCC_expensive for the dependence " |
| 71 | "slice of a cold operand to be considered inexpensive." ), |
| 72 | cl::init(Val: 1), cl::Hidden); |
| 73 | |
| 74 | static cl::opt<unsigned> |
| 75 | GainGradientThreshold("select-opti-loop-gradient-gain-threshold" , |
| 76 | cl::desc("Gradient gain threshold (%)." ), |
| 77 | cl::init(Val: 25), cl::Hidden); |
| 78 | |
| 79 | static cl::opt<unsigned> |
| 80 | GainCycleThreshold("select-opti-loop-cycle-gain-threshold" , |
| 81 | cl::desc("Minimum gain per loop (in cycles) threshold." ), |
| 82 | cl::init(Val: 4), cl::Hidden); |
| 83 | |
| 84 | static cl::opt<unsigned> GainRelativeThreshold( |
| 85 | "select-opti-loop-relative-gain-threshold" , |
| 86 | cl::desc( |
| 87 | "Minimum relative gain per loop threshold (1/X). Defaults to 12.5%" ), |
| 88 | cl::init(Val: 8), cl::Hidden); |
| 89 | |
| 90 | static cl::opt<unsigned> MispredictDefaultRate( |
| 91 | "mispredict-default-rate" , cl::Hidden, cl::init(Val: 25), |
| 92 | cl::desc("Default mispredict rate (initialized to 25%)." )); |
| 93 | |
| 94 | static cl::opt<bool> |
| 95 | DisableLoopLevelHeuristics("disable-loop-level-heuristics" , cl::Hidden, |
| 96 | cl::init(Val: false), |
| 97 | cl::desc("Disable loop-level heuristics." )); |
| 98 | |
| 99 | namespace { |
| 100 | |
| 101 | class SelectOptimizeImpl { |
| 102 | const TargetMachine *TM = nullptr; |
| 103 | const TargetSubtargetInfo *TSI = nullptr; |
| 104 | const TargetLowering *TLI = nullptr; |
| 105 | const TargetTransformInfo *TTI = nullptr; |
| 106 | const LoopInfo *LI = nullptr; |
| 107 | BlockFrequencyInfo *BFI; |
| 108 | ProfileSummaryInfo *PSI = nullptr; |
| 109 | OptimizationRemarkEmitter *ORE = nullptr; |
| 110 | TargetSchedModel TSchedModel; |
| 111 | |
| 112 | public: |
| 113 | SelectOptimizeImpl() = default; |
| 114 | SelectOptimizeImpl(const TargetMachine *TM) : TM(TM){}; |
| 115 | PreservedAnalyses run(Function &F, FunctionAnalysisManager &FAM); |
| 116 | bool runOnFunction(Function &F, Pass &P); |
| 117 | |
| 118 | using Scaled64 = ScaledNumber<uint64_t>; |
| 119 | |
| 120 | struct CostInfo { |
| 121 | /// Predicated cost (with selects as conditional moves). |
| 122 | Scaled64 PredCost; |
| 123 | /// Non-predicated cost (with selects converted to branches). |
| 124 | Scaled64 NonPredCost; |
| 125 | }; |
| 126 | |
| 127 | /// SelectLike is an abstraction over SelectInst and other operations that can |
| 128 | /// act like selects. For example Or(Zext(icmp), X) can be treated like |
| 129 | /// select(icmp, X|1, X). |
| 130 | class SelectLike { |
| 131 | /// The select (/or) instruction. |
| 132 | Instruction *I; |
| 133 | /// Whether this select is inverted, "not(cond), FalseVal, TrueVal", as |
| 134 | /// opposed to the original condition. |
| 135 | bool Inverted = false; |
| 136 | |
| 137 | /// The index of the operand that depends on condition. Only for select-like |
| 138 | /// instruction such as Or/Add. |
| 139 | unsigned CondIdx; |
| 140 | |
| 141 | public: |
| 142 | SelectLike(Instruction *I, bool Inverted = false, unsigned CondIdx = 0) |
| 143 | : I(I), Inverted(Inverted), CondIdx(CondIdx) {} |
| 144 | |
| 145 | Instruction *getI() { return I; } |
| 146 | const Instruction *getI() const { return I; } |
| 147 | |
| 148 | Type *getType() const { return I->getType(); } |
| 149 | |
| 150 | unsigned getConditionOpIndex() { return CondIdx; }; |
| 151 | |
| 152 | /// Return the true value for the SelectLike instruction. Note this may not |
| 153 | /// exist for all SelectLike instructions. For example, for `or(zext(c), x)` |
| 154 | /// the true value would be `or(x,1)`. As this value does not exist, nullptr |
| 155 | /// is returned. |
| 156 | Value *getTrueValue(bool HonorInverts = true) const { |
| 157 | if (Inverted && HonorInverts) |
| 158 | return getFalseValue(/*HonorInverts=*/false); |
| 159 | if (auto *Sel = dyn_cast<SelectInst>(Val: I)) |
| 160 | return Sel->getTrueValue(); |
| 161 | // Or(zext) case - The true value is Or(X), so return nullptr as the value |
| 162 | // does not yet exist. |
| 163 | if (isa<BinaryOperator>(Val: I)) |
| 164 | return nullptr; |
| 165 | |
| 166 | llvm_unreachable("Unhandled case in getTrueValue" ); |
| 167 | } |
| 168 | |
| 169 | /// Return the false value for the SelectLike instruction. For example the |
| 170 | /// getFalseValue of a select or `x` in `or(zext(c), x)` (which is |
| 171 | /// `select(c, x|1, x)`) |
| 172 | Value *getFalseValue(bool HonorInverts = true) const { |
| 173 | if (Inverted && HonorInverts) |
| 174 | return getTrueValue(/*HonorInverts=*/false); |
| 175 | if (auto *Sel = dyn_cast<SelectInst>(Val: I)) |
| 176 | return Sel->getFalseValue(); |
| 177 | // We are on the branch where the condition is zero, which means BinOp |
| 178 | // does not perform any computation, and we can simply return the operand |
| 179 | // that is not related to the condition |
| 180 | if (auto *BO = dyn_cast<BinaryOperator>(Val: I)) |
| 181 | return BO->getOperand(i_nocapture: 1 - CondIdx); |
| 182 | |
| 183 | llvm_unreachable("Unhandled case in getFalseValue" ); |
| 184 | } |
| 185 | |
| 186 | /// Return the NonPredCost cost of the op on \p isTrue branch, given the |
| 187 | /// costs in \p InstCostMap. This may need to be generated for select-like |
| 188 | /// instructions. |
| 189 | Scaled64 getOpCostOnBranch( |
| 190 | bool IsTrue, const DenseMap<const Instruction *, CostInfo> &InstCostMap, |
| 191 | const TargetTransformInfo *TTI) { |
| 192 | auto *V = IsTrue ? getTrueValue() : getFalseValue(); |
| 193 | if (V) { |
| 194 | if (auto *IV = dyn_cast<Instruction>(Val: V)) { |
| 195 | auto It = InstCostMap.find(Val: IV); |
| 196 | return It != InstCostMap.end() ? It->second.NonPredCost |
| 197 | : Scaled64::getZero(); |
| 198 | } |
| 199 | return Scaled64::getZero(); |
| 200 | } |
| 201 | // If getTrue(False)Value() return nullptr, it means we are dealing with |
| 202 | // select-like instructions on the branch where the actual computation is |
| 203 | // happening. In that case the cost is equal to the cost of computation + |
| 204 | // cost of non-dependant on condition operand |
| 205 | InstructionCost Cost = TTI->getArithmeticInstrCost( |
| 206 | Opcode: getI()->getOpcode(), Ty: I->getType(), CostKind: TargetTransformInfo::TCK_Latency, |
| 207 | Opd1Info: {.Kind: TargetTransformInfo::OK_AnyValue, .Properties: TargetTransformInfo::OP_None}, |
| 208 | Opd2Info: {.Kind: TTI::OK_UniformConstantValue, .Properties: TTI::OP_PowerOf2}); |
| 209 | auto TotalCost = Scaled64::get(N: Cost.getValue()); |
| 210 | if (auto *OpI = dyn_cast<Instruction>(Val: I->getOperand(i: 1 - CondIdx))) { |
| 211 | auto It = InstCostMap.find(Val: OpI); |
| 212 | if (It != InstCostMap.end()) |
| 213 | TotalCost += It->second.NonPredCost; |
| 214 | } |
| 215 | return TotalCost; |
| 216 | } |
| 217 | }; |
| 218 | |
| 219 | private: |
| 220 | // Select groups consist of consecutive select-like instructions with the same |
| 221 | // condition. Between select-likes could be any number of auxiliary |
| 222 | // instructions related to the condition like not, zext, ashr/lshr |
| 223 | struct SelectGroup { |
| 224 | Value *Condition; |
| 225 | SmallVector<SelectLike, 2> Selects; |
| 226 | }; |
| 227 | using SelectGroups = SmallVector<SelectGroup, 2>; |
| 228 | |
| 229 | // Converts select instructions of a function to conditional jumps when deemed |
| 230 | // profitable. Returns true if at least one select was converted. |
| 231 | bool optimizeSelects(Function &F); |
| 232 | |
| 233 | // Heuristics for determining which select instructions can be profitably |
| 234 | // conveted to branches. Separate heuristics for selects in inner-most loops |
| 235 | // and the rest of code regions (base heuristics for non-inner-most loop |
| 236 | // regions). |
| 237 | void optimizeSelectsBase(Function &F, SelectGroups &ProfSIGroups); |
| 238 | void optimizeSelectsInnerLoops(Function &F, SelectGroups &ProfSIGroups); |
| 239 | |
| 240 | // Converts to branches the select groups that were deemed |
| 241 | // profitable-to-convert. |
| 242 | void convertProfitableSIGroups(SelectGroups &ProfSIGroups); |
| 243 | |
| 244 | // Splits selects of a given basic block into select groups. |
| 245 | void collectSelectGroups(BasicBlock &BB, SelectGroups &SIGroups); |
| 246 | |
| 247 | // Determines for which select groups it is profitable converting to branches |
| 248 | // (base and inner-most-loop heuristics). |
| 249 | void findProfitableSIGroupsBase(SelectGroups &SIGroups, |
| 250 | SelectGroups &ProfSIGroups); |
| 251 | void findProfitableSIGroupsInnerLoops(const Loop *L, SelectGroups &SIGroups, |
| 252 | SelectGroups &ProfSIGroups); |
| 253 | |
| 254 | // Determines if a select group should be converted to a branch (base |
| 255 | // heuristics). |
| 256 | bool isConvertToBranchProfitableBase(const SelectGroup &ASI); |
| 257 | |
| 258 | // Returns true if there are expensive instructions in the cold value |
| 259 | // operand's (if any) dependence slice of any of the selects of the given |
| 260 | // group. |
| 261 | bool hasExpensiveColdOperand(const SelectGroup &ASI); |
| 262 | |
| 263 | // For a given source instruction, collect its backwards dependence slice |
| 264 | // consisting of instructions exclusively computed for producing the operands |
| 265 | // of the source instruction. |
| 266 | void getExclBackwardsSlice(Instruction *I, std::stack<Instruction *> &Slice, |
| 267 | Instruction *SI, bool ForSinking = false); |
| 268 | |
| 269 | // Returns true if the condition of the select is highly predictable. |
| 270 | bool isSelectHighlyPredictable(const SelectLike SI); |
| 271 | |
| 272 | // Loop-level checks to determine if a non-predicated version (with branches) |
| 273 | // of the given loop is more profitable than its predicated version. |
| 274 | bool checkLoopHeuristics(const Loop *L, const CostInfo LoopDepth[2]); |
| 275 | |
| 276 | // Computes instruction and loop-critical-path costs for both the predicated |
| 277 | // and non-predicated version of the given loop. |
| 278 | bool computeLoopCosts(const Loop *L, const SelectGroups &SIGroups, |
| 279 | DenseMap<const Instruction *, CostInfo> &InstCostMap, |
| 280 | CostInfo *LoopCost); |
| 281 | |
| 282 | // Returns a set of all the select instructions in the given select groups. |
| 283 | SmallDenseMap<const Instruction *, SelectLike, 2> |
| 284 | getSImap(const SelectGroups &SIGroups); |
| 285 | |
| 286 | // Returns a map from select-like instructions to the corresponding select |
| 287 | // group. |
| 288 | SmallDenseMap<const Instruction *, const SelectGroup *, 2> |
| 289 | getSGmap(const SelectGroups &SIGroups); |
| 290 | |
| 291 | // Returns the latency cost of a given instruction. |
| 292 | std::optional<uint64_t> computeInstCost(const Instruction *I); |
| 293 | |
| 294 | // Returns the misprediction cost of a given select when converted to branch. |
| 295 | Scaled64 getMispredictionCost(const SelectLike SI, const Scaled64 CondCost); |
| 296 | |
| 297 | // Returns the cost of a branch when the prediction is correct. |
| 298 | Scaled64 getPredictedPathCost(Scaled64 TrueCost, Scaled64 FalseCost, |
| 299 | const SelectLike SI); |
| 300 | |
| 301 | // Returns true if the target architecture supports lowering a given select. |
| 302 | bool isSelectKindSupported(const SelectLike SI); |
| 303 | }; |
| 304 | |
| 305 | class SelectOptimize : public FunctionPass { |
| 306 | SelectOptimizeImpl Impl; |
| 307 | |
| 308 | public: |
| 309 | static char ID; |
| 310 | |
| 311 | SelectOptimize() : FunctionPass(ID) { |
| 312 | initializeSelectOptimizePass(*PassRegistry::getPassRegistry()); |
| 313 | } |
| 314 | |
| 315 | bool runOnFunction(Function &F) override { |
| 316 | return Impl.runOnFunction(F, P&: *this); |
| 317 | } |
| 318 | |
| 319 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 320 | AU.addRequired<ProfileSummaryInfoWrapperPass>(); |
| 321 | AU.addRequired<TargetPassConfig>(); |
| 322 | AU.addRequired<TargetTransformInfoWrapperPass>(); |
| 323 | AU.addRequired<LoopInfoWrapperPass>(); |
| 324 | AU.addRequired<BlockFrequencyInfoWrapperPass>(); |
| 325 | AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); |
| 326 | } |
| 327 | }; |
| 328 | |
| 329 | } // namespace |
| 330 | |
| 331 | PreservedAnalyses SelectOptimizePass::run(Function &F, |
| 332 | FunctionAnalysisManager &FAM) { |
| 333 | SelectOptimizeImpl Impl(TM); |
| 334 | return Impl.run(F, FAM); |
| 335 | } |
| 336 | |
| 337 | char SelectOptimize::ID = 0; |
| 338 | |
| 339 | INITIALIZE_PASS_BEGIN(SelectOptimize, DEBUG_TYPE, "Optimize selects" , false, |
| 340 | false) |
| 341 | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) |
| 342 | INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) |
| 343 | INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) |
| 344 | INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) |
| 345 | INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) |
| 346 | INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) |
| 347 | INITIALIZE_PASS_END(SelectOptimize, DEBUG_TYPE, "Optimize selects" , false, |
| 348 | false) |
| 349 | |
| 350 | FunctionPass *llvm::createSelectOptimizePass() { return new SelectOptimize(); } |
| 351 | |
| 352 | PreservedAnalyses SelectOptimizeImpl::run(Function &F, |
| 353 | FunctionAnalysisManager &FAM) { |
| 354 | TSI = TM->getSubtargetImpl(F); |
| 355 | TLI = TSI->getTargetLowering(); |
| 356 | |
| 357 | // If none of the select types are supported then skip this pass. |
| 358 | // This is an optimization pass. Legality issues will be handled by |
| 359 | // instruction selection. |
| 360 | if (!TLI->isSelectSupported(TargetLowering::ScalarValSelect) && |
| 361 | !TLI->isSelectSupported(TargetLowering::ScalarCondVectorVal) && |
| 362 | !TLI->isSelectSupported(TargetLowering::VectorMaskSelect)) |
| 363 | return PreservedAnalyses::all(); |
| 364 | |
| 365 | TTI = &FAM.getResult<TargetIRAnalysis>(IR&: F); |
| 366 | if (!TTI->enableSelectOptimize()) |
| 367 | return PreservedAnalyses::all(); |
| 368 | |
| 369 | PSI = FAM.getResult<ModuleAnalysisManagerFunctionProxy>(IR&: F) |
| 370 | .getCachedResult<ProfileSummaryAnalysis>(IR&: *F.getParent()); |
| 371 | assert(PSI && "This pass requires module analysis pass `profile-summary`!" ); |
| 372 | BFI = &FAM.getResult<BlockFrequencyAnalysis>(IR&: F); |
| 373 | |
| 374 | // When optimizing for size, selects are preferable over branches. |
| 375 | if (llvm::shouldOptimizeForSize(F: &F, PSI, BFI)) |
| 376 | return PreservedAnalyses::all(); |
| 377 | |
| 378 | LI = &FAM.getResult<LoopAnalysis>(IR&: F); |
| 379 | ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(IR&: F); |
| 380 | TSchedModel.init(TSInfo: TSI); |
| 381 | |
| 382 | bool Changed = optimizeSelects(F); |
| 383 | return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); |
| 384 | } |
| 385 | |
| 386 | bool SelectOptimizeImpl::runOnFunction(Function &F, Pass &P) { |
| 387 | TM = &P.getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); |
| 388 | TSI = TM->getSubtargetImpl(F); |
| 389 | TLI = TSI->getTargetLowering(); |
| 390 | |
| 391 | // If none of the select types are supported then skip this pass. |
| 392 | // This is an optimization pass. Legality issues will be handled by |
| 393 | // instruction selection. |
| 394 | if (!TLI->isSelectSupported(TargetLowering::ScalarValSelect) && |
| 395 | !TLI->isSelectSupported(TargetLowering::ScalarCondVectorVal) && |
| 396 | !TLI->isSelectSupported(TargetLowering::VectorMaskSelect)) |
| 397 | return false; |
| 398 | |
| 399 | TTI = &P.getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); |
| 400 | |
| 401 | if (!TTI->enableSelectOptimize()) |
| 402 | return false; |
| 403 | |
| 404 | LI = &P.getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
| 405 | BFI = &P.getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); |
| 406 | PSI = &P.getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); |
| 407 | ORE = &P.getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); |
| 408 | TSchedModel.init(TSInfo: TSI); |
| 409 | |
| 410 | // When optimizing for size, selects are preferable over branches. |
| 411 | if (llvm::shouldOptimizeForSize(F: &F, PSI, BFI)) |
| 412 | return false; |
| 413 | |
| 414 | return optimizeSelects(F); |
| 415 | } |
| 416 | |
| 417 | bool SelectOptimizeImpl::optimizeSelects(Function &F) { |
| 418 | // Determine for which select groups it is profitable converting to branches. |
| 419 | SelectGroups ProfSIGroups; |
| 420 | // Base heuristics apply only to non-loops and outer loops. |
| 421 | optimizeSelectsBase(F, ProfSIGroups); |
| 422 | // Separate heuristics for inner-most loops. |
| 423 | optimizeSelectsInnerLoops(F, ProfSIGroups); |
| 424 | |
| 425 | // Convert to branches the select groups that were deemed |
| 426 | // profitable-to-convert. |
| 427 | convertProfitableSIGroups(ProfSIGroups); |
| 428 | |
| 429 | // Code modified if at least one select group was converted. |
| 430 | return !ProfSIGroups.empty(); |
| 431 | } |
| 432 | |
| 433 | void SelectOptimizeImpl::optimizeSelectsBase(Function &F, |
| 434 | SelectGroups &ProfSIGroups) { |
| 435 | // Collect all the select groups. |
| 436 | SelectGroups SIGroups; |
| 437 | for (BasicBlock &BB : F) { |
| 438 | // Base heuristics apply only to non-loops and outer loops. |
| 439 | Loop *L = LI->getLoopFor(BB: &BB); |
| 440 | if (L && L->isInnermost()) |
| 441 | continue; |
| 442 | collectSelectGroups(BB, SIGroups); |
| 443 | } |
| 444 | |
| 445 | // Determine for which select groups it is profitable converting to branches. |
| 446 | findProfitableSIGroupsBase(SIGroups, ProfSIGroups); |
| 447 | } |
| 448 | |
| 449 | void SelectOptimizeImpl::optimizeSelectsInnerLoops(Function &F, |
| 450 | SelectGroups &ProfSIGroups) { |
| 451 | SmallVector<Loop *, 4> Loops(LI->begin(), LI->end()); |
| 452 | // Need to check size on each iteration as we accumulate child loops. |
| 453 | for (unsigned long i = 0; i < Loops.size(); ++i) |
| 454 | llvm::append_range(C&: Loops, R: Loops[i]->getSubLoops()); |
| 455 | |
| 456 | for (Loop *L : Loops) { |
| 457 | if (!L->isInnermost()) |
| 458 | continue; |
| 459 | |
| 460 | SelectGroups SIGroups; |
| 461 | for (BasicBlock *BB : L->getBlocks()) |
| 462 | collectSelectGroups(BB&: *BB, SIGroups); |
| 463 | |
| 464 | findProfitableSIGroupsInnerLoops(L, SIGroups, ProfSIGroups); |
| 465 | } |
| 466 | } |
| 467 | |
| 468 | /// Returns optimised value on \p IsTrue branch. For SelectInst that would be |
| 469 | /// either True or False value. For (BinaryOperator) instructions, where the |
| 470 | /// condition may be skipped, the operation will use a non-conditional operand. |
| 471 | /// For example, for `or(V,zext(cond))` this function would return V. |
| 472 | /// However, if the conditional operand on \p IsTrue branch matters, we create a |
| 473 | /// clone of instruction at the end of that branch \p B and replace the |
| 474 | /// condition operand with a constant. |
| 475 | /// |
| 476 | /// Also /p OptSelects contains previously optimised select-like instructions. |
| 477 | /// If the current value uses one of the optimised values, we can optimise it |
| 478 | /// further by replacing it with the corresponding value on the given branch |
| 479 | static Value *getTrueOrFalseValue( |
| 480 | SelectOptimizeImpl::SelectLike &SI, bool isTrue, |
| 481 | SmallDenseMap<Instruction *, std::pair<Value *, Value *>, 2> &OptSelects, |
| 482 | BasicBlock *B) { |
| 483 | Value *V = isTrue ? SI.getTrueValue() : SI.getFalseValue(); |
| 484 | if (V) { |
| 485 | if (auto *IV = dyn_cast<Instruction>(Val: V)) |
| 486 | if (auto It = OptSelects.find(Val: IV); It != OptSelects.end()) |
| 487 | return isTrue ? It->second.first : It->second.second; |
| 488 | return V; |
| 489 | } |
| 490 | |
| 491 | auto *BO = cast<BinaryOperator>(Val: SI.getI()); |
| 492 | assert((BO->getOpcode() == Instruction::Add || |
| 493 | BO->getOpcode() == Instruction::Or || |
| 494 | BO->getOpcode() == Instruction::Sub) && |
| 495 | "Only currently handling Add, Or and Sub binary operators." ); |
| 496 | |
| 497 | auto *CBO = BO->clone(); |
| 498 | auto CondIdx = SI.getConditionOpIndex(); |
| 499 | auto *AuxI = cast<Instruction>(Val: CBO->getOperand(i: CondIdx)); |
| 500 | if (isa<ZExtInst>(Val: AuxI) || isa<LShrOperator>(Val: AuxI)) { |
| 501 | CBO->setOperand(i: CondIdx, Val: ConstantInt::get(Ty: CBO->getType(), V: 1)); |
| 502 | } else { |
| 503 | assert((isa<AShrOperator>(AuxI) || isa<SExtInst>(AuxI)) && |
| 504 | "Unexpected opcode" ); |
| 505 | CBO->setOperand(i: CondIdx, Val: ConstantInt::get(Ty: CBO->getType(), V: -1)); |
| 506 | } |
| 507 | |
| 508 | unsigned OtherIdx = 1 - CondIdx; |
| 509 | if (auto *IV = dyn_cast<Instruction>(Val: CBO->getOperand(i: OtherIdx))) { |
| 510 | if (auto It = OptSelects.find(Val: IV); It != OptSelects.end()) |
| 511 | CBO->setOperand(i: OtherIdx, Val: isTrue ? It->second.first : It->second.second); |
| 512 | } |
| 513 | CBO->insertBefore(InsertPos: B->getTerminator()->getIterator()); |
| 514 | return CBO; |
| 515 | } |
| 516 | |
| 517 | void SelectOptimizeImpl::convertProfitableSIGroups(SelectGroups &ProfSIGroups) { |
| 518 | for (SelectGroup &ASI : ProfSIGroups) { |
| 519 | // The code transformation here is a modified version of the sinking |
| 520 | // transformation in CodeGenPrepare::optimizeSelectInst with a more |
| 521 | // aggressive strategy of which instructions to sink. |
| 522 | // |
| 523 | // TODO: eliminate the redundancy of logic transforming selects to branches |
| 524 | // by removing CodeGenPrepare::optimizeSelectInst and optimizing here |
| 525 | // selects for all cases (with and without profile information). |
| 526 | |
| 527 | // Transform a sequence like this: |
| 528 | // start: |
| 529 | // %cmp = cmp uge i32 %a, %b |
| 530 | // %sel = select i1 %cmp, i32 %c, i32 %d |
| 531 | // |
| 532 | // Into: |
| 533 | // start: |
| 534 | // %cmp = cmp uge i32 %a, %b |
| 535 | // %cmp.frozen = freeze %cmp |
| 536 | // br i1 %cmp.frozen, label %select.true, label %select.false |
| 537 | // select.true: |
| 538 | // br label %select.end |
| 539 | // select.false: |
| 540 | // br label %select.end |
| 541 | // select.end: |
| 542 | // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] |
| 543 | // |
| 544 | // %cmp should be frozen, otherwise it may introduce undefined behavior. |
| 545 | // In addition, we may sink instructions that produce %c or %d into the |
| 546 | // destination(s) of the new branch. |
| 547 | // If the true or false blocks do not contain a sunken instruction, that |
| 548 | // block and its branch may be optimized away. In that case, one side of the |
| 549 | // first branch will point directly to select.end, and the corresponding PHI |
| 550 | // predecessor block will be the start block. |
| 551 | |
| 552 | // Find all the instructions that can be soundly sunk to the true/false |
| 553 | // blocks. These are instructions that are computed solely for producing the |
| 554 | // operands of the select instructions in the group and can be sunk without |
| 555 | // breaking the semantics of the LLVM IR (e.g., cannot sink instructions |
| 556 | // with side effects). |
| 557 | SmallVector<std::stack<Instruction *>, 2> TrueSlices, FalseSlices; |
| 558 | typedef std::stack<Instruction *>::size_type StackSizeType; |
| 559 | StackSizeType maxTrueSliceLen = 0, maxFalseSliceLen = 0; |
| 560 | for (SelectLike &SI : ASI.Selects) { |
| 561 | if (!isa<SelectInst>(Val: SI.getI())) |
| 562 | continue; |
| 563 | // For each select, compute the sinkable dependence chains of the true and |
| 564 | // false operands. |
| 565 | if (auto *TI = dyn_cast_or_null<Instruction>(Val: SI.getTrueValue())) { |
| 566 | std::stack<Instruction *> TrueSlice; |
| 567 | getExclBackwardsSlice(I: TI, Slice&: TrueSlice, SI: SI.getI(), ForSinking: true); |
| 568 | maxTrueSliceLen = std::max(a: maxTrueSliceLen, b: TrueSlice.size()); |
| 569 | TrueSlices.push_back(Elt: TrueSlice); |
| 570 | } |
| 571 | if (auto *FI = dyn_cast_or_null<Instruction>(Val: SI.getFalseValue())) { |
| 572 | if (isa<SelectInst>(Val: SI.getI()) || !FI->hasOneUse()) { |
| 573 | std::stack<Instruction *> FalseSlice; |
| 574 | getExclBackwardsSlice(I: FI, Slice&: FalseSlice, SI: SI.getI(), ForSinking: true); |
| 575 | maxFalseSliceLen = std::max(a: maxFalseSliceLen, b: FalseSlice.size()); |
| 576 | FalseSlices.push_back(Elt: FalseSlice); |
| 577 | } |
| 578 | } |
| 579 | } |
| 580 | // In the case of multiple select instructions in the same group, the order |
| 581 | // of non-dependent instructions (instructions of different dependence |
| 582 | // slices) in the true/false blocks appears to affect performance. |
| 583 | // Interleaving the slices seems to experimentally be the optimal approach. |
| 584 | // This interleaving scheduling allows for more ILP (with a natural downside |
| 585 | // of increasing a bit register pressure) compared to a simple ordering of |
| 586 | // one whole chain after another. One would expect that this ordering would |
| 587 | // not matter since the scheduling in the backend of the compiler would |
| 588 | // take care of it, but apparently the scheduler fails to deliver optimal |
| 589 | // ILP with a naive ordering here. |
| 590 | SmallVector<Instruction *, 2> TrueSlicesInterleaved, FalseSlicesInterleaved; |
| 591 | for (StackSizeType IS = 0; IS < maxTrueSliceLen; ++IS) { |
| 592 | for (auto &S : TrueSlices) { |
| 593 | if (!S.empty()) { |
| 594 | TrueSlicesInterleaved.push_back(Elt: S.top()); |
| 595 | S.pop(); |
| 596 | } |
| 597 | } |
| 598 | } |
| 599 | for (StackSizeType IS = 0; IS < maxFalseSliceLen; ++IS) { |
| 600 | for (auto &S : FalseSlices) { |
| 601 | if (!S.empty()) { |
| 602 | FalseSlicesInterleaved.push_back(Elt: S.top()); |
| 603 | S.pop(); |
| 604 | } |
| 605 | } |
| 606 | } |
| 607 | |
| 608 | // We split the block containing the select(s) into two blocks. |
| 609 | SelectLike &SI = ASI.Selects.front(); |
| 610 | SelectLike &LastSI = ASI.Selects.back(); |
| 611 | BasicBlock *StartBlock = SI.getI()->getParent(); |
| 612 | BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI.getI())); |
| 613 | // With RemoveDIs turned off, SplitPt can be a dbg.* intrinsic. With |
| 614 | // RemoveDIs turned on, SplitPt would instead point to the next |
| 615 | // instruction. To match existing dbg.* intrinsic behaviour with RemoveDIs, |
| 616 | // tell splitBasicBlock that we want to include any DbgVariableRecords |
| 617 | // attached to SplitPt in the splice. |
| 618 | SplitPt.setHeadBit(true); |
| 619 | BasicBlock *EndBlock = StartBlock->splitBasicBlock(I: SplitPt, BBName: "select.end" ); |
| 620 | BFI->setBlockFreq(BB: EndBlock, Freq: BFI->getBlockFreq(BB: StartBlock)); |
| 621 | // Delete the unconditional branch that was just created by the split. |
| 622 | StartBlock->getTerminator()->eraseFromParent(); |
| 623 | |
| 624 | // Move any debug/pseudo and auxiliary instructions that were in-between the |
| 625 | // select group to the newly-created end block. |
| 626 | SmallVector<Instruction *, 2> SinkInstrs; |
| 627 | auto DIt = SI.getI()->getIterator(); |
| 628 | auto NIt = ASI.Selects.begin(); |
| 629 | while (&*DIt != LastSI.getI()) { |
| 630 | if (NIt != ASI.Selects.end() && &*DIt == NIt->getI()) |
| 631 | ++NIt; |
| 632 | else |
| 633 | SinkInstrs.push_back(Elt: &*DIt); |
| 634 | DIt++; |
| 635 | } |
| 636 | auto InsertionPoint = EndBlock->getFirstInsertionPt(); |
| 637 | for (auto *DI : SinkInstrs) |
| 638 | DI->moveBeforePreserving(MovePos: InsertionPoint); |
| 639 | |
| 640 | // Duplicate implementation for DbgRecords, the non-instruction debug-info |
| 641 | // format. Helper lambda for moving DbgRecords to the end block. |
| 642 | auto TransferDbgRecords = [&](Instruction &I) { |
| 643 | for (auto &DbgRecord : |
| 644 | llvm::make_early_inc_range(Range: I.getDbgRecordRange())) { |
| 645 | DbgRecord.removeFromParent(); |
| 646 | EndBlock->insertDbgRecordBefore(DR: &DbgRecord, |
| 647 | Here: EndBlock->getFirstInsertionPt()); |
| 648 | } |
| 649 | }; |
| 650 | |
| 651 | // Iterate over all instructions in between SI and LastSI, not including |
| 652 | // SI itself. These are all the variable assignments that happen "in the |
| 653 | // middle" of the select group. |
| 654 | auto R = make_range(x: std::next(x: SI.getI()->getIterator()), |
| 655 | y: std::next(x: LastSI.getI()->getIterator())); |
| 656 | llvm::for_each(Range&: R, F: TransferDbgRecords); |
| 657 | |
| 658 | // These are the new basic blocks for the conditional branch. |
| 659 | // At least one will become an actual new basic block. |
| 660 | BasicBlock *TrueBlock = nullptr, *FalseBlock = nullptr; |
| 661 | BranchInst *TrueBranch = nullptr, *FalseBranch = nullptr; |
| 662 | // Checks if select-like instruction would materialise on the given branch |
| 663 | auto HasSelectLike = [](SelectGroup &SG, bool IsTrue) { |
| 664 | for (auto &SL : SG.Selects) { |
| 665 | if ((IsTrue ? SL.getTrueValue() : SL.getFalseValue()) == nullptr) |
| 666 | return true; |
| 667 | } |
| 668 | return false; |
| 669 | }; |
| 670 | if (!TrueSlicesInterleaved.empty() || HasSelectLike(ASI, true)) { |
| 671 | TrueBlock = BasicBlock::Create(Context&: EndBlock->getContext(), Name: "select.true.sink" , |
| 672 | Parent: EndBlock->getParent(), InsertBefore: EndBlock); |
| 673 | TrueBranch = BranchInst::Create(IfTrue: EndBlock, InsertBefore: TrueBlock); |
| 674 | TrueBranch->setDebugLoc(LastSI.getI()->getDebugLoc()); |
| 675 | for (Instruction *TrueInst : TrueSlicesInterleaved) |
| 676 | TrueInst->moveBefore(InsertPos: TrueBranch->getIterator()); |
| 677 | } |
| 678 | if (!FalseSlicesInterleaved.empty() || HasSelectLike(ASI, false)) { |
| 679 | FalseBlock = |
| 680 | BasicBlock::Create(Context&: EndBlock->getContext(), Name: "select.false.sink" , |
| 681 | Parent: EndBlock->getParent(), InsertBefore: EndBlock); |
| 682 | FalseBranch = BranchInst::Create(IfTrue: EndBlock, InsertBefore: FalseBlock); |
| 683 | FalseBranch->setDebugLoc(LastSI.getI()->getDebugLoc()); |
| 684 | for (Instruction *FalseInst : FalseSlicesInterleaved) |
| 685 | FalseInst->moveBefore(InsertPos: FalseBranch->getIterator()); |
| 686 | } |
| 687 | // If there was nothing to sink, then arbitrarily choose the 'false' side |
| 688 | // for a new input value to the PHI. |
| 689 | if (TrueBlock == FalseBlock) { |
| 690 | assert(TrueBlock == nullptr && |
| 691 | "Unexpected basic block transform while optimizing select" ); |
| 692 | |
| 693 | FalseBlock = BasicBlock::Create(Context&: StartBlock->getContext(), Name: "select.false" , |
| 694 | Parent: EndBlock->getParent(), InsertBefore: EndBlock); |
| 695 | auto *FalseBranch = BranchInst::Create(IfTrue: EndBlock, InsertBefore: FalseBlock); |
| 696 | FalseBranch->setDebugLoc(SI.getI()->getDebugLoc()); |
| 697 | } |
| 698 | |
| 699 | // Insert the real conditional branch based on the original condition. |
| 700 | // If we did not create a new block for one of the 'true' or 'false' paths |
| 701 | // of the condition, it means that side of the branch goes to the end block |
| 702 | // directly and the path originates from the start block from the point of |
| 703 | // view of the new PHI. |
| 704 | BasicBlock *TT, *FT; |
| 705 | if (TrueBlock == nullptr) { |
| 706 | TT = EndBlock; |
| 707 | FT = FalseBlock; |
| 708 | TrueBlock = StartBlock; |
| 709 | } else if (FalseBlock == nullptr) { |
| 710 | TT = TrueBlock; |
| 711 | FT = EndBlock; |
| 712 | FalseBlock = StartBlock; |
| 713 | } else { |
| 714 | TT = TrueBlock; |
| 715 | FT = FalseBlock; |
| 716 | } |
| 717 | IRBuilder<> IB(SI.getI()); |
| 718 | auto *CondFr = |
| 719 | IB.CreateFreeze(V: ASI.Condition, Name: ASI.Condition->getName() + ".frozen" ); |
| 720 | |
| 721 | SmallDenseMap<Instruction *, std::pair<Value *, Value *>, 2> INS; |
| 722 | |
| 723 | // Use reverse iterator because later select may use the value of the |
| 724 | // earlier select, and we need to propagate value through earlier select |
| 725 | // to get the PHI operand. |
| 726 | InsertionPoint = EndBlock->begin(); |
| 727 | for (SelectLike &SI : ASI.Selects) { |
| 728 | // The select itself is replaced with a PHI Node. |
| 729 | PHINode *PN = PHINode::Create(Ty: SI.getType(), NumReservedValues: 2, NameStr: "" ); |
| 730 | PN->insertBefore(InsertPos: InsertionPoint); |
| 731 | PN->takeName(V: SI.getI()); |
| 732 | // Current instruction might be a condition of some other group, so we |
| 733 | // need to replace it there to avoid dangling pointer |
| 734 | if (PN->getType()->isIntegerTy(Bitwidth: 1)) { |
| 735 | for (auto &SG : ProfSIGroups) { |
| 736 | if (SG.Condition == SI.getI()) |
| 737 | SG.Condition = PN; |
| 738 | } |
| 739 | } |
| 740 | SI.getI()->replaceAllUsesWith(V: PN); |
| 741 | auto *TV = getTrueOrFalseValue(SI, isTrue: true, OptSelects&: INS, B: TrueBlock); |
| 742 | auto *FV = getTrueOrFalseValue(SI, isTrue: false, OptSelects&: INS, B: FalseBlock); |
| 743 | INS[PN] = {TV, FV}; |
| 744 | PN->addIncoming(V: TV, BB: TrueBlock); |
| 745 | PN->addIncoming(V: FV, BB: FalseBlock); |
| 746 | PN->setDebugLoc(SI.getI()->getDebugLoc()); |
| 747 | ++NumSelectsConverted; |
| 748 | } |
| 749 | IB.CreateCondBr(Cond: CondFr, True: TT, False: FT, MDSrc: SI.getI()); |
| 750 | |
| 751 | // Remove the old select instructions, now that they are not longer used. |
| 752 | for (SelectLike &SI : ASI.Selects) |
| 753 | SI.getI()->eraseFromParent(); |
| 754 | } |
| 755 | } |
| 756 | |
| 757 | void SelectOptimizeImpl::collectSelectGroups(BasicBlock &BB, |
| 758 | SelectGroups &SIGroups) { |
| 759 | // Represents something that can be considered as select instruction. |
| 760 | // Auxiliary instruction are instructions that depends on a condition and have |
| 761 | // zero or some constant value on True/False branch, such as: |
| 762 | // * ZExt(1bit) |
| 763 | // * SExt(1bit) |
| 764 | // * Not(1bit) |
| 765 | // * A(L)Shr(Val), ValBitSize - 1, where there is a condition like `Val <= 0` |
| 766 | // earlier in the BB. For conditions that check the sign of the Val compiler |
| 767 | // may generate shifts instead of ZExt/SExt. |
| 768 | struct SelectLikeInfo { |
| 769 | Value *Cond; |
| 770 | bool IsAuxiliary; |
| 771 | bool IsInverted; |
| 772 | unsigned ConditionIdx; |
| 773 | }; |
| 774 | |
| 775 | DenseMap<Value *, SelectLikeInfo> SelectInfo; |
| 776 | // Keeps visited comparisons to help identify AShr/LShr variants of auxiliary |
| 777 | // instructions. |
| 778 | SmallSetVector<CmpInst *, 4> SeenCmp; |
| 779 | |
| 780 | // Check if the instruction is SelectLike or might be part of SelectLike |
| 781 | // expression, put information into SelectInfo and return the iterator to the |
| 782 | // inserted position. |
| 783 | auto ProcessSelectInfo = [&SelectInfo, &SeenCmp](Instruction *I) { |
| 784 | if (auto *Cmp = dyn_cast<CmpInst>(Val: I)) { |
| 785 | SeenCmp.insert(X: Cmp); |
| 786 | return SelectInfo.end(); |
| 787 | } |
| 788 | |
| 789 | Value *Cond; |
| 790 | if (match(V: I, P: m_OneUse(SubPattern: m_ZExtOrSExt(Op: m_Value(V&: Cond)))) && |
| 791 | Cond->getType()->isIntegerTy(Bitwidth: 1)) { |
| 792 | bool Inverted = match(V: Cond, P: m_Not(V: m_Value(V&: Cond))); |
| 793 | return SelectInfo.insert(KV: {I, {.Cond: Cond, .IsAuxiliary: true, .IsInverted: Inverted, .ConditionIdx: 0}}).first; |
| 794 | } |
| 795 | |
| 796 | if (match(V: I, P: m_Not(V: m_Value(V&: Cond)))) { |
| 797 | return SelectInfo.insert(KV: {I, {.Cond: Cond, .IsAuxiliary: true, .IsInverted: true, .ConditionIdx: 0}}).first; |
| 798 | } |
| 799 | |
| 800 | // Select instruction are what we are usually looking for. |
| 801 | if (match(V: I, P: m_Select(C: m_Value(V&: Cond), L: m_Value(), R: m_Value()))) { |
| 802 | bool Inverted = match(V: Cond, P: m_Not(V: m_Value(V&: Cond))); |
| 803 | return SelectInfo.insert(KV: {I, {.Cond: Cond, .IsAuxiliary: false, .IsInverted: Inverted, .ConditionIdx: 0}}).first; |
| 804 | } |
| 805 | Value *Val; |
| 806 | ConstantInt *Shift; |
| 807 | if (match(V: I, P: m_Shr(L: m_Value(V&: Val), R: m_ConstantInt(CI&: Shift))) && |
| 808 | I->getType()->getIntegerBitWidth() == Shift->getZExtValue() + 1) { |
| 809 | for (auto *CmpI : SeenCmp) { |
| 810 | auto Pred = CmpI->getPredicate(); |
| 811 | if (Val != CmpI->getOperand(i_nocapture: 0)) |
| 812 | continue; |
| 813 | if ((Pred == CmpInst::ICMP_SGT && |
| 814 | match(V: CmpI->getOperand(i_nocapture: 1), P: m_ConstantInt<-1>())) || |
| 815 | (Pred == CmpInst::ICMP_SGE && |
| 816 | match(V: CmpI->getOperand(i_nocapture: 1), P: m_Zero())) || |
| 817 | (Pred == CmpInst::ICMP_SLT && |
| 818 | match(V: CmpI->getOperand(i_nocapture: 1), P: m_Zero())) || |
| 819 | (Pred == CmpInst::ICMP_SLE && |
| 820 | match(V: CmpI->getOperand(i_nocapture: 1), P: m_ConstantInt<-1>()))) { |
| 821 | bool Inverted = |
| 822 | Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE; |
| 823 | return SelectInfo.insert(KV: {I, {.Cond: CmpI, .IsAuxiliary: true, .IsInverted: Inverted, .ConditionIdx: 0}}).first; |
| 824 | } |
| 825 | } |
| 826 | return SelectInfo.end(); |
| 827 | } |
| 828 | |
| 829 | // An BinOp(Aux(X), Y) can also be treated like a select, with condition X |
| 830 | // and values Y|1 and Y. |
| 831 | // `Aux` can be either `ZExt(1bit)`, `SExt(1bit)` or `XShr(Val), ValBitSize |
| 832 | // - 1` `BinOp` can be Add, Sub, Or |
| 833 | Value *X; |
| 834 | auto MatchZExtOrSExtPattern = |
| 835 | m_c_BinOp(L: m_Value(), R: m_OneUse(SubPattern: m_ZExtOrSExt(Op: m_Value(V&: X)))); |
| 836 | auto MatchShiftPattern = |
| 837 | m_c_BinOp(L: m_Value(), R: m_OneUse(SubPattern: m_Shr(L: m_Value(V&: X), R: m_ConstantInt(CI&: Shift)))); |
| 838 | |
| 839 | // This check is unnecessary, but it prevents costly access to the |
| 840 | // SelectInfo map. |
| 841 | if ((match(V: I, P: MatchZExtOrSExtPattern) && X->getType()->isIntegerTy(Bitwidth: 1)) || |
| 842 | (match(V: I, P: MatchShiftPattern) && |
| 843 | X->getType()->getIntegerBitWidth() == Shift->getZExtValue() + 1)) { |
| 844 | if (I->getOpcode() != Instruction::Add && |
| 845 | I->getOpcode() != Instruction::Sub && |
| 846 | I->getOpcode() != Instruction::Or) |
| 847 | return SelectInfo.end(); |
| 848 | |
| 849 | if (I->getOpcode() == Instruction::Or && I->getType()->isIntegerTy(Bitwidth: 1)) |
| 850 | return SelectInfo.end(); |
| 851 | |
| 852 | // Iterate through operands and find dependant on recognised sign |
| 853 | // extending auxiliary select-like instructions. The operand index does |
| 854 | // not matter for Add and Or. However, for Sub, we can only safely |
| 855 | // transform when the operand is second. |
| 856 | unsigned Idx = I->getOpcode() == Instruction::Sub ? 1 : 0; |
| 857 | for (; Idx < 2; Idx++) { |
| 858 | auto *Op = I->getOperand(i: Idx); |
| 859 | auto It = SelectInfo.find(Val: Op); |
| 860 | if (It != SelectInfo.end() && It->second.IsAuxiliary) { |
| 861 | Cond = It->second.Cond; |
| 862 | bool Inverted = It->second.IsInverted; |
| 863 | return SelectInfo.insert(KV: {I, {.Cond: Cond, .IsAuxiliary: false, .IsInverted: Inverted, .ConditionIdx: Idx}}).first; |
| 864 | } |
| 865 | } |
| 866 | } |
| 867 | return SelectInfo.end(); |
| 868 | }; |
| 869 | |
| 870 | bool AlreadyProcessed = false; |
| 871 | BasicBlock::iterator BBIt = BB.begin(); |
| 872 | DenseMap<Value *, SelectLikeInfo>::iterator It; |
| 873 | while (BBIt != BB.end()) { |
| 874 | Instruction *I = &*BBIt++; |
| 875 | if (I->isDebugOrPseudoInst()) |
| 876 | continue; |
| 877 | |
| 878 | if (!AlreadyProcessed) |
| 879 | It = ProcessSelectInfo(I); |
| 880 | else |
| 881 | AlreadyProcessed = false; |
| 882 | |
| 883 | if (It == SelectInfo.end() || It->second.IsAuxiliary) |
| 884 | continue; |
| 885 | |
| 886 | if (!TTI->shouldTreatInstructionLikeSelect(I)) |
| 887 | continue; |
| 888 | |
| 889 | Value *Cond = It->second.Cond; |
| 890 | // Vector conditions are not supported. |
| 891 | if (!Cond->getType()->isIntegerTy(Bitwidth: 1)) |
| 892 | continue; |
| 893 | |
| 894 | SelectGroup SIGroup = {.Condition: Cond, .Selects: {}}; |
| 895 | SIGroup.Selects.emplace_back(Args&: I, Args&: It->second.IsInverted, |
| 896 | Args&: It->second.ConditionIdx); |
| 897 | |
| 898 | // If the select type is not supported, no point optimizing it. |
| 899 | // Instruction selection will take care of it. |
| 900 | if (!isSelectKindSupported(SI: SIGroup.Selects.front())) |
| 901 | continue; |
| 902 | |
| 903 | while (BBIt != BB.end()) { |
| 904 | Instruction *NI = &*BBIt; |
| 905 | // Debug/pseudo instructions should be skipped and not prevent the |
| 906 | // formation of a select group. |
| 907 | if (NI->isDebugOrPseudoInst()) { |
| 908 | ++BBIt; |
| 909 | continue; |
| 910 | } |
| 911 | |
| 912 | It = ProcessSelectInfo(NI); |
| 913 | if (It == SelectInfo.end()) { |
| 914 | AlreadyProcessed = true; |
| 915 | break; |
| 916 | } |
| 917 | |
| 918 | // Auxiliary with same condition |
| 919 | auto [CurrCond, IsAux, IsRev, CondIdx] = It->second; |
| 920 | if (Cond != CurrCond) { |
| 921 | AlreadyProcessed = true; |
| 922 | break; |
| 923 | } |
| 924 | |
| 925 | if (!IsAux) |
| 926 | SIGroup.Selects.emplace_back(Args&: NI, Args&: IsRev, Args&: CondIdx); |
| 927 | ++BBIt; |
| 928 | } |
| 929 | LLVM_DEBUG({ |
| 930 | dbgs() << "New Select group (" << SIGroup.Selects.size() << ") with\n" ; |
| 931 | for (auto &SI : SIGroup.Selects) |
| 932 | dbgs() << " " << *SI.getI() << "\n" ; |
| 933 | }); |
| 934 | |
| 935 | SIGroups.push_back(Elt: SIGroup); |
| 936 | } |
| 937 | } |
| 938 | |
| 939 | void SelectOptimizeImpl::findProfitableSIGroupsBase( |
| 940 | SelectGroups &SIGroups, SelectGroups &ProfSIGroups) { |
| 941 | for (SelectGroup &ASI : SIGroups) { |
| 942 | ++NumSelectOptAnalyzed; |
| 943 | if (isConvertToBranchProfitableBase(ASI)) |
| 944 | ProfSIGroups.push_back(Elt: ASI); |
| 945 | } |
| 946 | } |
| 947 | |
| 948 | static void EmitAndPrintRemark(OptimizationRemarkEmitter *ORE, |
| 949 | DiagnosticInfoOptimizationBase &Rem) { |
| 950 | LLVM_DEBUG(dbgs() << Rem.getMsg() << "\n" ); |
| 951 | ORE->emit(OptDiag&: Rem); |
| 952 | } |
| 953 | |
| 954 | void SelectOptimizeImpl::findProfitableSIGroupsInnerLoops( |
| 955 | const Loop *L, SelectGroups &SIGroups, SelectGroups &ProfSIGroups) { |
| 956 | NumSelectOptAnalyzed += SIGroups.size(); |
| 957 | // For each select group in an inner-most loop, |
| 958 | // a branch is more preferable than a select/conditional-move if: |
| 959 | // i) conversion to branches for all the select groups of the loop satisfies |
| 960 | // loop-level heuristics including reducing the loop's critical path by |
| 961 | // some threshold (see SelectOptimizeImpl::checkLoopHeuristics); and |
| 962 | // ii) the total cost of the select group is cheaper with a branch compared |
| 963 | // to its predicated version. The cost is in terms of latency and the cost |
| 964 | // of a select group is the cost of its most expensive select instruction |
| 965 | // (assuming infinite resources and thus fully leveraging available ILP). |
| 966 | |
| 967 | DenseMap<const Instruction *, CostInfo> InstCostMap; |
| 968 | CostInfo LoopCost[2] = {{.PredCost: Scaled64::getZero(), .NonPredCost: Scaled64::getZero()}, |
| 969 | {.PredCost: Scaled64::getZero(), .NonPredCost: Scaled64::getZero()}}; |
| 970 | if (!computeLoopCosts(L, SIGroups, InstCostMap, LoopCost) || |
| 971 | !checkLoopHeuristics(L, LoopDepth: LoopCost)) { |
| 972 | return; |
| 973 | } |
| 974 | |
| 975 | for (SelectGroup &ASI : SIGroups) { |
| 976 | // Assuming infinite resources, the cost of a group of instructions is the |
| 977 | // cost of the most expensive instruction of the group. |
| 978 | Scaled64 SelectCost = Scaled64::getZero(), BranchCost = Scaled64::getZero(); |
| 979 | for (SelectLike &SI : ASI.Selects) { |
| 980 | const auto &ICM = InstCostMap[SI.getI()]; |
| 981 | SelectCost = std::max(a: SelectCost, b: ICM.PredCost); |
| 982 | BranchCost = std::max(a: BranchCost, b: ICM.NonPredCost); |
| 983 | } |
| 984 | if (BranchCost < SelectCost) { |
| 985 | OptimizationRemark OR(DEBUG_TYPE, "SelectOpti" , |
| 986 | ASI.Selects.front().getI()); |
| 987 | OR << "Profitable to convert to branch (loop analysis). BranchCost=" |
| 988 | << BranchCost.toString() << ", SelectCost=" << SelectCost.toString() |
| 989 | << ". " ; |
| 990 | EmitAndPrintRemark(ORE, Rem&: OR); |
| 991 | ++NumSelectConvertedLoop; |
| 992 | ProfSIGroups.push_back(Elt: ASI); |
| 993 | } else { |
| 994 | OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti" , |
| 995 | ASI.Selects.front().getI()); |
| 996 | ORmiss << "Select is more profitable (loop analysis). BranchCost=" |
| 997 | << BranchCost.toString() |
| 998 | << ", SelectCost=" << SelectCost.toString() << ". " ; |
| 999 | EmitAndPrintRemark(ORE, Rem&: ORmiss); |
| 1000 | } |
| 1001 | } |
| 1002 | } |
| 1003 | |
| 1004 | bool SelectOptimizeImpl::isConvertToBranchProfitableBase( |
| 1005 | const SelectGroup &ASI) { |
| 1006 | const SelectLike &SI = ASI.Selects.front(); |
| 1007 | LLVM_DEBUG(dbgs() << "Analyzing select group containing " << *SI.getI() |
| 1008 | << "\n" ); |
| 1009 | OptimizationRemark OR(DEBUG_TYPE, "SelectOpti" , SI.getI()); |
| 1010 | OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti" , SI.getI()); |
| 1011 | |
| 1012 | // Skip cold basic blocks. Better to optimize for size for cold blocks. |
| 1013 | if (PSI->isColdBlock(BB: SI.getI()->getParent(), BFI)) { |
| 1014 | ++NumSelectColdBB; |
| 1015 | ORmiss << "Not converted to branch because of cold basic block. " ; |
| 1016 | EmitAndPrintRemark(ORE, Rem&: ORmiss); |
| 1017 | return false; |
| 1018 | } |
| 1019 | |
| 1020 | // If unpredictable, branch form is less profitable. |
| 1021 | if (SI.getI()->getMetadata(KindID: LLVMContext::MD_unpredictable)) { |
| 1022 | ++NumSelectUnPred; |
| 1023 | ORmiss << "Not converted to branch because of unpredictable branch. " ; |
| 1024 | EmitAndPrintRemark(ORE, Rem&: ORmiss); |
| 1025 | return false; |
| 1026 | } |
| 1027 | |
| 1028 | // If highly predictable, branch form is more profitable, unless a |
| 1029 | // predictable select is inexpensive in the target architecture. |
| 1030 | if (isSelectHighlyPredictable(SI) && TLI->isPredictableSelectExpensive()) { |
| 1031 | ++NumSelectConvertedHighPred; |
| 1032 | OR << "Converted to branch because of highly predictable branch. " ; |
| 1033 | EmitAndPrintRemark(ORE, Rem&: OR); |
| 1034 | return true; |
| 1035 | } |
| 1036 | |
| 1037 | // Look for expensive instructions in the cold operand's (if any) dependence |
| 1038 | // slice of any of the selects in the group. |
| 1039 | if (hasExpensiveColdOperand(ASI)) { |
| 1040 | ++NumSelectConvertedExpColdOperand; |
| 1041 | OR << "Converted to branch because of expensive cold operand." ; |
| 1042 | EmitAndPrintRemark(ORE, Rem&: OR); |
| 1043 | return true; |
| 1044 | } |
| 1045 | |
| 1046 | // If latch has a select group with several elements, it is usually profitable |
| 1047 | // to convert it to branches. We let `optimizeSelectsInnerLoops` decide if |
| 1048 | // conversion is profitable for innermost loops. |
| 1049 | auto *BB = SI.getI()->getParent(); |
| 1050 | auto *L = LI->getLoopFor(BB); |
| 1051 | if (L && !L->isInnermost() && L->getLoopLatch() == BB && |
| 1052 | ASI.Selects.size() >= 3) { |
| 1053 | OR << "Converted to branch because select group in the latch block is big." ; |
| 1054 | EmitAndPrintRemark(ORE, Rem&: OR); |
| 1055 | return true; |
| 1056 | } |
| 1057 | |
| 1058 | ORmiss << "Not profitable to convert to branch (base heuristic)." ; |
| 1059 | EmitAndPrintRemark(ORE, Rem&: ORmiss); |
| 1060 | return false; |
| 1061 | } |
| 1062 | |
| 1063 | static InstructionCost divideNearest(InstructionCost Numerator, |
| 1064 | uint64_t Denominator) { |
| 1065 | return (Numerator + (Denominator / 2)) / Denominator; |
| 1066 | } |
| 1067 | |
| 1068 | static bool (const SelectOptimizeImpl::SelectLike SI, |
| 1069 | uint64_t &TrueVal, uint64_t &FalseVal) { |
| 1070 | if (isa<SelectInst>(Val: SI.getI())) |
| 1071 | return extractBranchWeights(I: *SI.getI(), TrueVal, FalseVal); |
| 1072 | return false; |
| 1073 | } |
| 1074 | |
| 1075 | bool SelectOptimizeImpl::hasExpensiveColdOperand(const SelectGroup &ASI) { |
| 1076 | bool ColdOperand = false; |
| 1077 | uint64_t TrueWeight, FalseWeight, TotalWeight; |
| 1078 | if (extractBranchWeights(SI: ASI.Selects.front(), TrueVal&: TrueWeight, FalseVal&: FalseWeight)) { |
| 1079 | uint64_t MinWeight = std::min(a: TrueWeight, b: FalseWeight); |
| 1080 | TotalWeight = TrueWeight + FalseWeight; |
| 1081 | // Is there a path with frequency <ColdOperandThreshold% (default:20%) ? |
| 1082 | ColdOperand = TotalWeight * ColdOperandThreshold > 100 * MinWeight; |
| 1083 | } else if (PSI->hasProfileSummary()) { |
| 1084 | OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti" , |
| 1085 | ASI.Selects.front().getI()); |
| 1086 | ORmiss << "Profile data available but missing branch-weights metadata for " |
| 1087 | "select instruction. " ; |
| 1088 | EmitAndPrintRemark(ORE, Rem&: ORmiss); |
| 1089 | } |
| 1090 | if (!ColdOperand) |
| 1091 | return false; |
| 1092 | // Check if the cold path's dependence slice is expensive for any of the |
| 1093 | // selects of the group. |
| 1094 | for (SelectLike SI : ASI.Selects) { |
| 1095 | Instruction *ColdI = nullptr; |
| 1096 | uint64_t HotWeight; |
| 1097 | if (TrueWeight < FalseWeight) { |
| 1098 | ColdI = dyn_cast_or_null<Instruction>(Val: SI.getTrueValue()); |
| 1099 | HotWeight = FalseWeight; |
| 1100 | } else { |
| 1101 | ColdI = dyn_cast_or_null<Instruction>(Val: SI.getFalseValue()); |
| 1102 | HotWeight = TrueWeight; |
| 1103 | } |
| 1104 | if (ColdI) { |
| 1105 | std::stack<Instruction *> ColdSlice; |
| 1106 | getExclBackwardsSlice(I: ColdI, Slice&: ColdSlice, SI: SI.getI()); |
| 1107 | InstructionCost SliceCost = 0; |
| 1108 | while (!ColdSlice.empty()) { |
| 1109 | SliceCost += TTI->getInstructionCost(U: ColdSlice.top(), |
| 1110 | CostKind: TargetTransformInfo::TCK_Latency); |
| 1111 | ColdSlice.pop(); |
| 1112 | } |
| 1113 | // The colder the cold value operand of the select is the more expensive |
| 1114 | // the cmov becomes for computing the cold value operand every time. Thus, |
| 1115 | // the colder the cold operand is the more its cost counts. |
| 1116 | // Get nearest integer cost adjusted for coldness. |
| 1117 | InstructionCost AdjSliceCost = |
| 1118 | divideNearest(Numerator: SliceCost * HotWeight, Denominator: TotalWeight); |
| 1119 | if (AdjSliceCost >= |
| 1120 | ColdOperandMaxCostMultiplier * TargetTransformInfo::TCC_Expensive) |
| 1121 | return true; |
| 1122 | } |
| 1123 | } |
| 1124 | return false; |
| 1125 | } |
| 1126 | |
| 1127 | // Check if it is safe to move LoadI next to the SI. |
| 1128 | // Conservatively assume it is safe only if there is no instruction |
| 1129 | // modifying memory in-between the load and the select instruction. |
| 1130 | static bool isSafeToSinkLoad(Instruction *LoadI, Instruction *SI) { |
| 1131 | // Assume loads from different basic blocks are unsafe to move. |
| 1132 | if (LoadI->getParent() != SI->getParent()) |
| 1133 | return false; |
| 1134 | auto It = LoadI->getIterator(); |
| 1135 | while (&*It != SI) { |
| 1136 | if (It->mayWriteToMemory()) |
| 1137 | return false; |
| 1138 | It++; |
| 1139 | } |
| 1140 | return true; |
| 1141 | } |
| 1142 | |
| 1143 | // For a given source instruction, collect its backwards dependence slice |
| 1144 | // consisting of instructions exclusively computed for the purpose of producing |
| 1145 | // the operands of the source instruction. As an approximation |
| 1146 | // (sufficiently-accurate in practice), we populate this set with the |
| 1147 | // instructions of the backwards dependence slice that only have one-use and |
| 1148 | // form an one-use chain that leads to the source instruction. |
| 1149 | void SelectOptimizeImpl::getExclBackwardsSlice(Instruction *I, |
| 1150 | std::stack<Instruction *> &Slice, |
| 1151 | Instruction *SI, |
| 1152 | bool ForSinking) { |
| 1153 | SmallPtrSet<Instruction *, 2> Visited; |
| 1154 | std::queue<Instruction *> Worklist; |
| 1155 | Worklist.push(x: I); |
| 1156 | while (!Worklist.empty()) { |
| 1157 | Instruction *II = Worklist.front(); |
| 1158 | Worklist.pop(); |
| 1159 | |
| 1160 | // Avoid cycles. |
| 1161 | if (!Visited.insert(Ptr: II).second) |
| 1162 | continue; |
| 1163 | |
| 1164 | if (!II->hasOneUse()) |
| 1165 | continue; |
| 1166 | |
| 1167 | // Cannot soundly sink instructions with side-effects. |
| 1168 | // Terminator or phi instructions cannot be sunk. |
| 1169 | // Avoid sinking other select instructions (should be handled separetely). |
| 1170 | if (ForSinking && (II->isTerminator() || II->mayHaveSideEffects() || |
| 1171 | isa<SelectInst>(Val: II) || isa<PHINode>(Val: II))) |
| 1172 | continue; |
| 1173 | |
| 1174 | // Avoid sinking loads in order not to skip state-modifying instructions, |
| 1175 | // that may alias with the loaded address. |
| 1176 | // Only allow sinking of loads within the same basic block that are |
| 1177 | // conservatively proven to be safe. |
| 1178 | if (ForSinking && II->mayReadFromMemory() && !isSafeToSinkLoad(LoadI: II, SI)) |
| 1179 | continue; |
| 1180 | |
| 1181 | // Avoid considering instructions with less frequency than the source |
| 1182 | // instruction (i.e., avoid colder code regions of the dependence slice). |
| 1183 | if (BFI->getBlockFreq(BB: II->getParent()) < BFI->getBlockFreq(BB: I->getParent())) |
| 1184 | continue; |
| 1185 | |
| 1186 | // Eligible one-use instruction added to the dependence slice. |
| 1187 | Slice.push(x: II); |
| 1188 | |
| 1189 | // Explore all the operands of the current instruction to expand the slice. |
| 1190 | for (Value *Op : II->operand_values()) |
| 1191 | if (auto *OpI = dyn_cast<Instruction>(Val: Op)) |
| 1192 | Worklist.push(x: OpI); |
| 1193 | } |
| 1194 | } |
| 1195 | |
| 1196 | bool SelectOptimizeImpl::isSelectHighlyPredictable(const SelectLike SI) { |
| 1197 | uint64_t TrueWeight, FalseWeight; |
| 1198 | if (extractBranchWeights(SI, TrueVal&: TrueWeight, FalseVal&: FalseWeight)) { |
| 1199 | uint64_t Max = std::max(a: TrueWeight, b: FalseWeight); |
| 1200 | uint64_t Sum = TrueWeight + FalseWeight; |
| 1201 | if (Sum != 0) { |
| 1202 | auto Probability = BranchProbability::getBranchProbability(Numerator: Max, Denominator: Sum); |
| 1203 | if (Probability > TTI->getPredictableBranchThreshold()) |
| 1204 | return true; |
| 1205 | } |
| 1206 | } |
| 1207 | return false; |
| 1208 | } |
| 1209 | |
| 1210 | bool SelectOptimizeImpl::checkLoopHeuristics(const Loop *L, |
| 1211 | const CostInfo LoopCost[2]) { |
| 1212 | // Loop-level checks to determine if a non-predicated version (with branches) |
| 1213 | // of the loop is more profitable than its predicated version. |
| 1214 | |
| 1215 | if (DisableLoopLevelHeuristics) |
| 1216 | return true; |
| 1217 | |
| 1218 | OptimizationRemarkMissed ORmissL(DEBUG_TYPE, "SelectOpti" , |
| 1219 | &*L->getHeader()->getFirstNonPHIIt()); |
| 1220 | |
| 1221 | if (LoopCost[0].NonPredCost > LoopCost[0].PredCost || |
| 1222 | LoopCost[1].NonPredCost >= LoopCost[1].PredCost) { |
| 1223 | ORmissL << "No select conversion in the loop due to no reduction of loop's " |
| 1224 | "critical path. " ; |
| 1225 | EmitAndPrintRemark(ORE, Rem&: ORmissL); |
| 1226 | return false; |
| 1227 | } |
| 1228 | |
| 1229 | Scaled64 Gain[2] = {LoopCost[0].PredCost - LoopCost[0].NonPredCost, |
| 1230 | LoopCost[1].PredCost - LoopCost[1].NonPredCost}; |
| 1231 | |
| 1232 | // Profitably converting to branches need to reduce the loop's critical path |
| 1233 | // by at least some threshold (absolute gain of GainCycleThreshold cycles and |
| 1234 | // relative gain of 12.5%). |
| 1235 | if (Gain[1] < Scaled64::get(N: GainCycleThreshold) || |
| 1236 | Gain[1] * Scaled64::get(N: GainRelativeThreshold) < LoopCost[1].PredCost) { |
| 1237 | Scaled64 RelativeGain = Scaled64::get(N: 100) * Gain[1] / LoopCost[1].PredCost; |
| 1238 | ORmissL << "No select conversion in the loop due to small reduction of " |
| 1239 | "loop's critical path. Gain=" |
| 1240 | << Gain[1].toString() |
| 1241 | << ", RelativeGain=" << RelativeGain.toString() << "%. " ; |
| 1242 | EmitAndPrintRemark(ORE, Rem&: ORmissL); |
| 1243 | return false; |
| 1244 | } |
| 1245 | |
| 1246 | // If the loop's critical path involves loop-carried dependences, the gradient |
| 1247 | // of the gain needs to be at least GainGradientThreshold% (defaults to 25%). |
| 1248 | // This check ensures that the latency reduction for the loop's critical path |
| 1249 | // keeps decreasing with sufficient rate beyond the two analyzed loop |
| 1250 | // iterations. |
| 1251 | if (Gain[1] > Gain[0]) { |
| 1252 | Scaled64 GradientGain = Scaled64::get(N: 100) * (Gain[1] - Gain[0]) / |
| 1253 | (LoopCost[1].PredCost - LoopCost[0].PredCost); |
| 1254 | if (GradientGain < Scaled64::get(N: GainGradientThreshold)) { |
| 1255 | ORmissL << "No select conversion in the loop due to small gradient gain. " |
| 1256 | "GradientGain=" |
| 1257 | << GradientGain.toString() << "%. " ; |
| 1258 | EmitAndPrintRemark(ORE, Rem&: ORmissL); |
| 1259 | return false; |
| 1260 | } |
| 1261 | } |
| 1262 | // If the gain decreases it is not profitable to convert. |
| 1263 | else if (Gain[1] < Gain[0]) { |
| 1264 | ORmissL |
| 1265 | << "No select conversion in the loop due to negative gradient gain. " ; |
| 1266 | EmitAndPrintRemark(ORE, Rem&: ORmissL); |
| 1267 | return false; |
| 1268 | } |
| 1269 | |
| 1270 | // Non-predicated version of the loop is more profitable than its |
| 1271 | // predicated version. |
| 1272 | return true; |
| 1273 | } |
| 1274 | |
| 1275 | // Computes instruction and loop-critical-path costs for both the predicated |
| 1276 | // and non-predicated version of the given loop. |
| 1277 | // Returns false if unable to compute these costs due to invalid cost of loop |
| 1278 | // instruction(s). |
| 1279 | bool SelectOptimizeImpl::computeLoopCosts( |
| 1280 | const Loop *L, const SelectGroups &SIGroups, |
| 1281 | DenseMap<const Instruction *, CostInfo> &InstCostMap, CostInfo *LoopCost) { |
| 1282 | LLVM_DEBUG(dbgs() << "Calculating Latency / IPredCost / INonPredCost of loop " |
| 1283 | << L->getHeader()->getName() << "\n" ); |
| 1284 | const auto SImap = getSImap(SIGroups); |
| 1285 | const auto SGmap = getSGmap(SIGroups); |
| 1286 | // Compute instruction and loop-critical-path costs across two iterations for |
| 1287 | // both predicated and non-predicated version. |
| 1288 | const unsigned Iterations = 2; |
| 1289 | for (unsigned Iter = 0; Iter < Iterations; ++Iter) { |
| 1290 | // Cost of the loop's critical path. |
| 1291 | CostInfo &MaxCost = LoopCost[Iter]; |
| 1292 | for (BasicBlock *BB : L->getBlocks()) { |
| 1293 | for (const Instruction &I : *BB) { |
| 1294 | if (I.isDebugOrPseudoInst()) |
| 1295 | continue; |
| 1296 | // Compute the predicated and non-predicated cost of the instruction. |
| 1297 | Scaled64 IPredCost = Scaled64::getZero(), |
| 1298 | INonPredCost = Scaled64::getZero(); |
| 1299 | |
| 1300 | // Assume infinite resources that allow to fully exploit the available |
| 1301 | // instruction-level parallelism. |
| 1302 | // InstCost = InstLatency + max(Op1Cost, Op2Cost, … OpNCost) |
| 1303 | for (const Use &U : I.operands()) { |
| 1304 | auto UI = dyn_cast<Instruction>(Val: U.get()); |
| 1305 | if (!UI) |
| 1306 | continue; |
| 1307 | if (auto It = InstCostMap.find(Val: UI); It != InstCostMap.end()) { |
| 1308 | IPredCost = std::max(a: IPredCost, b: It->second.PredCost); |
| 1309 | INonPredCost = std::max(a: INonPredCost, b: It->second.NonPredCost); |
| 1310 | } |
| 1311 | } |
| 1312 | auto ILatency = computeInstCost(I: &I); |
| 1313 | if (!ILatency) { |
| 1314 | OptimizationRemarkMissed ORmissL(DEBUG_TYPE, "SelectOpti" , &I); |
| 1315 | ORmissL << "Invalid instruction cost preventing analysis and " |
| 1316 | "optimization of the inner-most loop containing this " |
| 1317 | "instruction. " ; |
| 1318 | EmitAndPrintRemark(ORE, Rem&: ORmissL); |
| 1319 | return false; |
| 1320 | } |
| 1321 | IPredCost += Scaled64::get(N: *ILatency); |
| 1322 | INonPredCost += Scaled64::get(N: *ILatency); |
| 1323 | |
| 1324 | // For a select that can be converted to branch, |
| 1325 | // compute its cost as a branch (non-predicated cost). |
| 1326 | // |
| 1327 | // BranchCost = PredictedPathCost + MispredictCost |
| 1328 | // PredictedPathCost = TrueOpCost * TrueProb + FalseOpCost * FalseProb |
| 1329 | // MispredictCost = max(MispredictPenalty, CondCost) * MispredictRate |
| 1330 | if (auto It = SImap.find(Val: &I); It != SImap.end()) { |
| 1331 | auto SI = It->second; |
| 1332 | const auto *SG = SGmap.at(Val: &I); |
| 1333 | Scaled64 TrueOpCost = SI.getOpCostOnBranch(IsTrue: true, InstCostMap, TTI); |
| 1334 | Scaled64 FalseOpCost = SI.getOpCostOnBranch(IsTrue: false, InstCostMap, TTI); |
| 1335 | Scaled64 PredictedPathCost = |
| 1336 | getPredictedPathCost(TrueCost: TrueOpCost, FalseCost: FalseOpCost, SI); |
| 1337 | |
| 1338 | Scaled64 CondCost = Scaled64::getZero(); |
| 1339 | if (auto *CI = dyn_cast<Instruction>(Val: SG->Condition)) |
| 1340 | if (auto It = InstCostMap.find(Val: CI); It != InstCostMap.end()) |
| 1341 | CondCost = It->second.NonPredCost; |
| 1342 | Scaled64 MispredictCost = getMispredictionCost(SI, CondCost); |
| 1343 | |
| 1344 | INonPredCost = PredictedPathCost + MispredictCost; |
| 1345 | } |
| 1346 | LLVM_DEBUG(dbgs() << " " << ILatency << "/" << IPredCost << "/" |
| 1347 | << INonPredCost << " for " << I << "\n" ); |
| 1348 | |
| 1349 | InstCostMap[&I] = {.PredCost: IPredCost, .NonPredCost: INonPredCost}; |
| 1350 | MaxCost.PredCost = std::max(a: MaxCost.PredCost, b: IPredCost); |
| 1351 | MaxCost.NonPredCost = std::max(a: MaxCost.NonPredCost, b: INonPredCost); |
| 1352 | } |
| 1353 | } |
| 1354 | LLVM_DEBUG(dbgs() << "Iteration " << Iter + 1 |
| 1355 | << " MaxCost = " << MaxCost.PredCost << " " |
| 1356 | << MaxCost.NonPredCost << "\n" ); |
| 1357 | } |
| 1358 | return true; |
| 1359 | } |
| 1360 | |
| 1361 | SmallDenseMap<const Instruction *, SelectOptimizeImpl::SelectLike, 2> |
| 1362 | SelectOptimizeImpl::getSImap(const SelectGroups &SIGroups) { |
| 1363 | SmallDenseMap<const Instruction *, SelectLike, 2> SImap; |
| 1364 | for (const SelectGroup &ASI : SIGroups) |
| 1365 | for (const SelectLike &SI : ASI.Selects) |
| 1366 | SImap.try_emplace(Key: SI.getI(), Args: SI); |
| 1367 | return SImap; |
| 1368 | } |
| 1369 | |
| 1370 | SmallDenseMap<const Instruction *, const SelectOptimizeImpl::SelectGroup *, 2> |
| 1371 | SelectOptimizeImpl::getSGmap(const SelectGroups &SIGroups) { |
| 1372 | SmallDenseMap<const Instruction *, const SelectGroup *, 2> SImap; |
| 1373 | for (const SelectGroup &ASI : SIGroups) |
| 1374 | for (const SelectLike &SI : ASI.Selects) |
| 1375 | SImap.try_emplace(Key: SI.getI(), Args: &ASI); |
| 1376 | return SImap; |
| 1377 | } |
| 1378 | |
| 1379 | std::optional<uint64_t> |
| 1380 | SelectOptimizeImpl::computeInstCost(const Instruction *I) { |
| 1381 | InstructionCost ICost = |
| 1382 | TTI->getInstructionCost(U: I, CostKind: TargetTransformInfo::TCK_Latency); |
| 1383 | if (ICost.isValid()) |
| 1384 | return std::optional<uint64_t>(ICost.getValue()); |
| 1385 | return std::nullopt; |
| 1386 | } |
| 1387 | |
| 1388 | ScaledNumber<uint64_t> |
| 1389 | SelectOptimizeImpl::getMispredictionCost(const SelectLike SI, |
| 1390 | const Scaled64 CondCost) { |
| 1391 | uint64_t MispredictPenalty = TSchedModel.getMCSchedModel()->MispredictPenalty; |
| 1392 | |
| 1393 | // Account for the default misprediction rate when using a branch |
| 1394 | // (conservatively set to 25% by default). |
| 1395 | uint64_t MispredictRate = MispredictDefaultRate; |
| 1396 | // If the select condition is obviously predictable, then the misprediction |
| 1397 | // rate is zero. |
| 1398 | if (isSelectHighlyPredictable(SI)) |
| 1399 | MispredictRate = 0; |
| 1400 | |
| 1401 | // CondCost is included to account for cases where the computation of the |
| 1402 | // condition is part of a long dependence chain (potentially loop-carried) |
| 1403 | // that would delay detection of a misprediction and increase its cost. |
| 1404 | Scaled64 MispredictCost = |
| 1405 | std::max(a: Scaled64::get(N: MispredictPenalty), b: CondCost) * |
| 1406 | Scaled64::get(N: MispredictRate); |
| 1407 | MispredictCost /= Scaled64::get(N: 100); |
| 1408 | |
| 1409 | return MispredictCost; |
| 1410 | } |
| 1411 | |
| 1412 | // Returns the cost of a branch when the prediction is correct. |
| 1413 | // TrueCost * TrueProbability + FalseCost * FalseProbability. |
| 1414 | ScaledNumber<uint64_t> |
| 1415 | SelectOptimizeImpl::getPredictedPathCost(Scaled64 TrueCost, Scaled64 FalseCost, |
| 1416 | const SelectLike SI) { |
| 1417 | Scaled64 PredPathCost; |
| 1418 | uint64_t TrueWeight, FalseWeight; |
| 1419 | if (extractBranchWeights(SI, TrueVal&: TrueWeight, FalseVal&: FalseWeight)) { |
| 1420 | uint64_t SumWeight = TrueWeight + FalseWeight; |
| 1421 | if (SumWeight != 0) { |
| 1422 | PredPathCost = TrueCost * Scaled64::get(N: TrueWeight) + |
| 1423 | FalseCost * Scaled64::get(N: FalseWeight); |
| 1424 | PredPathCost /= Scaled64::get(N: SumWeight); |
| 1425 | return PredPathCost; |
| 1426 | } |
| 1427 | } |
| 1428 | // Without branch weight metadata, we assume 75% for the one path and 25% for |
| 1429 | // the other, and pick the result with the biggest cost. |
| 1430 | PredPathCost = std::max(a: TrueCost * Scaled64::get(N: 3) + FalseCost, |
| 1431 | b: FalseCost * Scaled64::get(N: 3) + TrueCost); |
| 1432 | PredPathCost /= Scaled64::get(N: 4); |
| 1433 | return PredPathCost; |
| 1434 | } |
| 1435 | |
| 1436 | bool SelectOptimizeImpl::isSelectKindSupported(const SelectLike SI) { |
| 1437 | TargetLowering::SelectSupportKind SelectKind; |
| 1438 | if (SI.getType()->isVectorTy()) |
| 1439 | SelectKind = TargetLowering::ScalarCondVectorVal; |
| 1440 | else |
| 1441 | SelectKind = TargetLowering::ScalarValSelect; |
| 1442 | return TLI->isSelectSupported(SelectKind); |
| 1443 | } |
| 1444 | |