| 1 | //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the SelectionDAG::LegalizeVectors method. |
| 10 | // |
| 11 | // The vector legalizer looks for vector operations which might need to be |
| 12 | // scalarized and legalizes them. This is a separate step from Legalize because |
| 13 | // scalarizing can introduce illegal types. For example, suppose we have an |
| 14 | // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition |
| 15 | // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the |
| 16 | // operation, which introduces nodes with the illegal type i64 which must be |
| 17 | // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; |
| 18 | // the operation must be unrolled, which introduces nodes with the illegal |
| 19 | // type i8 which must be promoted. |
| 20 | // |
| 21 | // This does not legalize vector manipulations like ISD::BUILD_VECTOR, |
| 22 | // or operations that happen to take a vector which are custom-lowered; |
| 23 | // the legalization for such operations never produces nodes |
| 24 | // with illegal types, so it's okay to put off legalizing them until |
| 25 | // SelectionDAG::Legalize runs. |
| 26 | // |
| 27 | //===----------------------------------------------------------------------===// |
| 28 | |
| 29 | #include "llvm/ADT/DenseMap.h" |
| 30 | #include "llvm/ADT/SmallVector.h" |
| 31 | #include "llvm/Analysis/TargetLibraryInfo.h" |
| 32 | #include "llvm/Analysis/VectorUtils.h" |
| 33 | #include "llvm/CodeGen/ISDOpcodes.h" |
| 34 | #include "llvm/CodeGen/SelectionDAG.h" |
| 35 | #include "llvm/CodeGen/SelectionDAGNodes.h" |
| 36 | #include "llvm/CodeGen/TargetLowering.h" |
| 37 | #include "llvm/CodeGen/ValueTypes.h" |
| 38 | #include "llvm/CodeGenTypes/MachineValueType.h" |
| 39 | #include "llvm/IR/DataLayout.h" |
| 40 | #include "llvm/Support/Casting.h" |
| 41 | #include "llvm/Support/Compiler.h" |
| 42 | #include "llvm/Support/Debug.h" |
| 43 | #include "llvm/Support/ErrorHandling.h" |
| 44 | #include <cassert> |
| 45 | #include <cstdint> |
| 46 | #include <iterator> |
| 47 | #include <utility> |
| 48 | |
| 49 | using namespace llvm; |
| 50 | |
| 51 | #define DEBUG_TYPE "legalizevectorops" |
| 52 | |
| 53 | namespace { |
| 54 | |
| 55 | class VectorLegalizer { |
| 56 | SelectionDAG& DAG; |
| 57 | const TargetLowering &TLI; |
| 58 | bool Changed = false; // Keep track of whether anything changed |
| 59 | |
| 60 | /// For nodes that are of legal width, and that have more than one use, this |
| 61 | /// map indicates what regularized operand to use. This allows us to avoid |
| 62 | /// legalizing the same thing more than once. |
| 63 | SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; |
| 64 | |
| 65 | /// Adds a node to the translation cache. |
| 66 | void AddLegalizedOperand(SDValue From, SDValue To) { |
| 67 | LegalizedNodes.insert(KV: std::make_pair(x&: From, y&: To)); |
| 68 | // If someone requests legalization of the new node, return itself. |
| 69 | if (From != To) |
| 70 | LegalizedNodes.insert(KV: std::make_pair(x&: To, y&: To)); |
| 71 | } |
| 72 | |
| 73 | /// Legalizes the given node. |
| 74 | SDValue LegalizeOp(SDValue Op); |
| 75 | |
| 76 | /// Assuming the node is legal, "legalize" the results. |
| 77 | SDValue TranslateLegalizeResults(SDValue Op, SDNode *Result); |
| 78 | |
| 79 | /// Make sure Results are legal and update the translation cache. |
| 80 | SDValue RecursivelyLegalizeResults(SDValue Op, |
| 81 | MutableArrayRef<SDValue> Results); |
| 82 | |
| 83 | /// Wrapper to interface LowerOperation with a vector of Results. |
| 84 | /// Returns false if the target wants to use default expansion. Otherwise |
| 85 | /// returns true. If return is true and the Results are empty, then the |
| 86 | /// target wants to keep the input node as is. |
| 87 | bool LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results); |
| 88 | |
| 89 | /// Implements unrolling a VSETCC. |
| 90 | SDValue UnrollVSETCC(SDNode *Node); |
| 91 | |
| 92 | /// Implement expand-based legalization of vector operations. |
| 93 | /// |
| 94 | /// This is just a high-level routine to dispatch to specific code paths for |
| 95 | /// operations to legalize them. |
| 96 | void Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results); |
| 97 | |
| 98 | /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if |
| 99 | /// FP_TO_SINT isn't legal. |
| 100 | void ExpandFP_TO_UINT(SDNode *Node, SmallVectorImpl<SDValue> &Results); |
| 101 | |
| 102 | /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if |
| 103 | /// SINT_TO_FLOAT and SHR on vectors isn't legal. |
| 104 | void ExpandUINT_TO_FLOAT(SDNode *Node, SmallVectorImpl<SDValue> &Results); |
| 105 | |
| 106 | /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. |
| 107 | SDValue ExpandSEXTINREG(SDNode *Node); |
| 108 | |
| 109 | /// Implement expansion for ANY_EXTEND_VECTOR_INREG. |
| 110 | /// |
| 111 | /// Shuffles the low lanes of the operand into place and bitcasts to the proper |
| 112 | /// type. The contents of the bits in the extended part of each element are |
| 113 | /// undef. |
| 114 | SDValue ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node); |
| 115 | |
| 116 | /// Implement expansion for SIGN_EXTEND_VECTOR_INREG. |
| 117 | /// |
| 118 | /// Shuffles the low lanes of the operand into place, bitcasts to the proper |
| 119 | /// type, then shifts left and arithmetic shifts right to introduce a sign |
| 120 | /// extension. |
| 121 | SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node); |
| 122 | |
| 123 | /// Implement expansion for ZERO_EXTEND_VECTOR_INREG. |
| 124 | /// |
| 125 | /// Shuffles the low lanes of the operand into place and blends zeros into |
| 126 | /// the remaining lanes, finally bitcasting to the proper type. |
| 127 | SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node); |
| 128 | |
| 129 | /// Expand bswap of vectors into a shuffle if legal. |
| 130 | SDValue ExpandBSWAP(SDNode *Node); |
| 131 | |
| 132 | /// Implement vselect in terms of XOR, AND, OR when blend is not |
| 133 | /// supported by the target. |
| 134 | SDValue ExpandVSELECT(SDNode *Node); |
| 135 | SDValue ExpandVP_SELECT(SDNode *Node); |
| 136 | SDValue ExpandVP_MERGE(SDNode *Node); |
| 137 | SDValue ExpandVP_REM(SDNode *Node); |
| 138 | SDValue ExpandVP_FNEG(SDNode *Node); |
| 139 | SDValue ExpandVP_FABS(SDNode *Node); |
| 140 | SDValue ExpandVP_FCOPYSIGN(SDNode *Node); |
| 141 | SDValue ExpandSELECT(SDNode *Node); |
| 142 | std::pair<SDValue, SDValue> ExpandLoad(SDNode *N); |
| 143 | SDValue ExpandStore(SDNode *N); |
| 144 | SDValue ExpandFNEG(SDNode *Node); |
| 145 | SDValue ExpandFABS(SDNode *Node); |
| 146 | SDValue ExpandFCOPYSIGN(SDNode *Node); |
| 147 | void ExpandFSUB(SDNode *Node, SmallVectorImpl<SDValue> &Results); |
| 148 | void ExpandSETCC(SDNode *Node, SmallVectorImpl<SDValue> &Results); |
| 149 | SDValue ExpandBITREVERSE(SDNode *Node); |
| 150 | void ExpandUADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results); |
| 151 | void ExpandSADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results); |
| 152 | void ExpandMULO(SDNode *Node, SmallVectorImpl<SDValue> &Results); |
| 153 | void ExpandFixedPointDiv(SDNode *Node, SmallVectorImpl<SDValue> &Results); |
| 154 | void ExpandStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results); |
| 155 | void ExpandREM(SDNode *Node, SmallVectorImpl<SDValue> &Results); |
| 156 | |
| 157 | bool tryExpandVecMathCall(SDNode *Node, RTLIB::Libcall LC, |
| 158 | SmallVectorImpl<SDValue> &Results); |
| 159 | bool tryExpandVecMathCall(SDNode *Node, RTLIB::Libcall Call_F32, |
| 160 | RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, |
| 161 | RTLIB::Libcall Call_F128, |
| 162 | RTLIB::Libcall Call_PPCF128, |
| 163 | SmallVectorImpl<SDValue> &Results); |
| 164 | |
| 165 | void UnrollStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results); |
| 166 | |
| 167 | /// Implements vector promotion. |
| 168 | /// |
| 169 | /// This is essentially just bitcasting the operands to a different type and |
| 170 | /// bitcasting the result back to the original type. |
| 171 | void Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results); |
| 172 | |
| 173 | /// Implements [SU]INT_TO_FP vector promotion. |
| 174 | /// |
| 175 | /// This is a [zs]ext of the input operand to a larger integer type. |
| 176 | void PromoteINT_TO_FP(SDNode *Node, SmallVectorImpl<SDValue> &Results); |
| 177 | |
| 178 | /// Implements FP_TO_[SU]INT vector promotion of the result type. |
| 179 | /// |
| 180 | /// It is promoted to a larger integer type. The result is then |
| 181 | /// truncated back to the original type. |
| 182 | void PromoteFP_TO_INT(SDNode *Node, SmallVectorImpl<SDValue> &Results); |
| 183 | |
| 184 | /// Implements vector setcc operation promotion. |
| 185 | /// |
| 186 | /// All vector operands are promoted to a vector type with larger element |
| 187 | /// type. |
| 188 | void PromoteSETCC(SDNode *Node, SmallVectorImpl<SDValue> &Results); |
| 189 | |
| 190 | void PromoteSTRICT(SDNode *Node, SmallVectorImpl<SDValue> &Results); |
| 191 | |
| 192 | /// Calculate the reduction using a type of higher precision and round the |
| 193 | /// result to match the original type. Setting NonArithmetic signifies the |
| 194 | /// rounding of the result does not affect its value. |
| 195 | void PromoteFloatVECREDUCE(SDNode *Node, SmallVectorImpl<SDValue> &Results, |
| 196 | bool NonArithmetic); |
| 197 | |
| 198 | public: |
| 199 | VectorLegalizer(SelectionDAG& dag) : |
| 200 | DAG(dag), TLI(dag.getTargetLoweringInfo()) {} |
| 201 | |
| 202 | /// Begin legalizer the vector operations in the DAG. |
| 203 | bool Run(); |
| 204 | }; |
| 205 | |
| 206 | } // end anonymous namespace |
| 207 | |
| 208 | bool VectorLegalizer::Run() { |
| 209 | // Before we start legalizing vector nodes, check if there are any vectors. |
| 210 | bool HasVectors = false; |
| 211 | for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), |
| 212 | E = std::prev(x: DAG.allnodes_end()); I != std::next(x: E); ++I) { |
| 213 | // Check if the values of the nodes contain vectors. We don't need to check |
| 214 | // the operands because we are going to check their values at some point. |
| 215 | HasVectors = llvm::any_of(Range: I->values(), P: [](EVT T) { return T.isVector(); }); |
| 216 | |
| 217 | // If we found a vector node we can start the legalization. |
| 218 | if (HasVectors) |
| 219 | break; |
| 220 | } |
| 221 | |
| 222 | // If this basic block has no vectors then no need to legalize vectors. |
| 223 | if (!HasVectors) |
| 224 | return false; |
| 225 | |
| 226 | // The legalize process is inherently a bottom-up recursive process (users |
| 227 | // legalize their uses before themselves). Given infinite stack space, we |
| 228 | // could just start legalizing on the root and traverse the whole graph. In |
| 229 | // practice however, this causes us to run out of stack space on large basic |
| 230 | // blocks. To avoid this problem, compute an ordering of the nodes where each |
| 231 | // node is only legalized after all of its operands are legalized. |
| 232 | DAG.AssignTopologicalOrder(); |
| 233 | for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), |
| 234 | E = std::prev(x: DAG.allnodes_end()); I != std::next(x: E); ++I) |
| 235 | LegalizeOp(Op: SDValue(&*I, 0)); |
| 236 | |
| 237 | // Finally, it's possible the root changed. Get the new root. |
| 238 | SDValue OldRoot = DAG.getRoot(); |
| 239 | assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?" ); |
| 240 | DAG.setRoot(LegalizedNodes[OldRoot]); |
| 241 | |
| 242 | LegalizedNodes.clear(); |
| 243 | |
| 244 | // Remove dead nodes now. |
| 245 | DAG.RemoveDeadNodes(); |
| 246 | |
| 247 | return Changed; |
| 248 | } |
| 249 | |
| 250 | SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDNode *Result) { |
| 251 | assert(Op->getNumValues() == Result->getNumValues() && |
| 252 | "Unexpected number of results" ); |
| 253 | // Generic legalization: just pass the operand through. |
| 254 | for (unsigned i = 0, e = Op->getNumValues(); i != e; ++i) |
| 255 | AddLegalizedOperand(From: Op.getValue(R: i), To: SDValue(Result, i)); |
| 256 | return SDValue(Result, Op.getResNo()); |
| 257 | } |
| 258 | |
| 259 | SDValue |
| 260 | VectorLegalizer::RecursivelyLegalizeResults(SDValue Op, |
| 261 | MutableArrayRef<SDValue> Results) { |
| 262 | assert(Results.size() == Op->getNumValues() && |
| 263 | "Unexpected number of results" ); |
| 264 | // Make sure that the generated code is itself legal. |
| 265 | for (unsigned i = 0, e = Results.size(); i != e; ++i) { |
| 266 | Results[i] = LegalizeOp(Op: Results[i]); |
| 267 | AddLegalizedOperand(From: Op.getValue(R: i), To: Results[i]); |
| 268 | } |
| 269 | |
| 270 | return Results[Op.getResNo()]; |
| 271 | } |
| 272 | |
| 273 | SDValue VectorLegalizer::LegalizeOp(SDValue Op) { |
| 274 | // Note that LegalizeOp may be reentered even from single-use nodes, which |
| 275 | // means that we always must cache transformed nodes. |
| 276 | DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Val: Op); |
| 277 | if (I != LegalizedNodes.end()) return I->second; |
| 278 | |
| 279 | // Legalize the operands |
| 280 | SmallVector<SDValue, 8> Ops; |
| 281 | for (const SDValue &Oper : Op->op_values()) |
| 282 | Ops.push_back(Elt: LegalizeOp(Op: Oper)); |
| 283 | |
| 284 | SDNode *Node = DAG.UpdateNodeOperands(N: Op.getNode(), Ops); |
| 285 | |
| 286 | bool HasVectorValueOrOp = |
| 287 | llvm::any_of(Range: Node->values(), P: [](EVT T) { return T.isVector(); }) || |
| 288 | llvm::any_of(Range: Node->op_values(), |
| 289 | P: [](SDValue O) { return O.getValueType().isVector(); }); |
| 290 | if (!HasVectorValueOrOp) |
| 291 | return TranslateLegalizeResults(Op, Result: Node); |
| 292 | |
| 293 | TargetLowering::LegalizeAction Action = TargetLowering::Legal; |
| 294 | EVT ValVT; |
| 295 | switch (Op.getOpcode()) { |
| 296 | default: |
| 297 | return TranslateLegalizeResults(Op, Result: Node); |
| 298 | case ISD::LOAD: { |
| 299 | LoadSDNode *LD = cast<LoadSDNode>(Val: Node); |
| 300 | ISD::LoadExtType ExtType = LD->getExtensionType(); |
| 301 | EVT LoadedVT = LD->getMemoryVT(); |
| 302 | if (LoadedVT.isVector() && ExtType != ISD::NON_EXTLOAD) |
| 303 | Action = TLI.getLoadExtAction(ExtType, ValVT: LD->getValueType(ResNo: 0), MemVT: LoadedVT); |
| 304 | break; |
| 305 | } |
| 306 | case ISD::STORE: { |
| 307 | StoreSDNode *ST = cast<StoreSDNode>(Val: Node); |
| 308 | EVT StVT = ST->getMemoryVT(); |
| 309 | MVT ValVT = ST->getValue().getSimpleValueType(); |
| 310 | if (StVT.isVector() && ST->isTruncatingStore()) |
| 311 | Action = TLI.getTruncStoreAction(ValVT, MemVT: StVT); |
| 312 | break; |
| 313 | } |
| 314 | case ISD::MERGE_VALUES: |
| 315 | Action = TLI.getOperationAction(Op: Node->getOpcode(), VT: Node->getValueType(ResNo: 0)); |
| 316 | // This operation lies about being legal: when it claims to be legal, |
| 317 | // it should actually be expanded. |
| 318 | if (Action == TargetLowering::Legal) |
| 319 | Action = TargetLowering::Expand; |
| 320 | break; |
| 321 | #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ |
| 322 | case ISD::STRICT_##DAGN: |
| 323 | #include "llvm/IR/ConstrainedOps.def" |
| 324 | ValVT = Node->getValueType(ResNo: 0); |
| 325 | if (Op.getOpcode() == ISD::STRICT_SINT_TO_FP || |
| 326 | Op.getOpcode() == ISD::STRICT_UINT_TO_FP) |
| 327 | ValVT = Node->getOperand(Num: 1).getValueType(); |
| 328 | if (Op.getOpcode() == ISD::STRICT_FSETCC || |
| 329 | Op.getOpcode() == ISD::STRICT_FSETCCS) { |
| 330 | MVT OpVT = Node->getOperand(Num: 1).getSimpleValueType(); |
| 331 | ISD::CondCode CCCode = cast<CondCodeSDNode>(Val: Node->getOperand(Num: 3))->get(); |
| 332 | Action = TLI.getCondCodeAction(CC: CCCode, VT: OpVT); |
| 333 | if (Action == TargetLowering::Legal) |
| 334 | Action = TLI.getOperationAction(Op: Node->getOpcode(), VT: OpVT); |
| 335 | } else { |
| 336 | Action = TLI.getOperationAction(Op: Node->getOpcode(), VT: ValVT); |
| 337 | } |
| 338 | // If we're asked to expand a strict vector floating-point operation, |
| 339 | // by default we're going to simply unroll it. That is usually the |
| 340 | // best approach, except in the case where the resulting strict (scalar) |
| 341 | // operations would themselves use the fallback mutation to non-strict. |
| 342 | // In that specific case, just do the fallback on the vector op. |
| 343 | if (Action == TargetLowering::Expand && !TLI.isStrictFPEnabled() && |
| 344 | TLI.getStrictFPOperationAction(Op: Node->getOpcode(), VT: ValVT) == |
| 345 | TargetLowering::Legal) { |
| 346 | EVT EltVT = ValVT.getVectorElementType(); |
| 347 | if (TLI.getOperationAction(Op: Node->getOpcode(), VT: EltVT) |
| 348 | == TargetLowering::Expand && |
| 349 | TLI.getStrictFPOperationAction(Op: Node->getOpcode(), VT: EltVT) |
| 350 | == TargetLowering::Legal) |
| 351 | Action = TargetLowering::Legal; |
| 352 | } |
| 353 | break; |
| 354 | case ISD::ADD: |
| 355 | case ISD::SUB: |
| 356 | case ISD::MUL: |
| 357 | case ISD::MULHS: |
| 358 | case ISD::MULHU: |
| 359 | case ISD::SDIV: |
| 360 | case ISD::UDIV: |
| 361 | case ISD::SREM: |
| 362 | case ISD::UREM: |
| 363 | case ISD::SDIVREM: |
| 364 | case ISD::UDIVREM: |
| 365 | case ISD::FADD: |
| 366 | case ISD::FSUB: |
| 367 | case ISD::FMUL: |
| 368 | case ISD::FDIV: |
| 369 | case ISD::FREM: |
| 370 | case ISD::AND: |
| 371 | case ISD::OR: |
| 372 | case ISD::XOR: |
| 373 | case ISD::SHL: |
| 374 | case ISD::SRA: |
| 375 | case ISD::SRL: |
| 376 | case ISD::FSHL: |
| 377 | case ISD::FSHR: |
| 378 | case ISD::ROTL: |
| 379 | case ISD::ROTR: |
| 380 | case ISD::ABS: |
| 381 | case ISD::ABDS: |
| 382 | case ISD::ABDU: |
| 383 | case ISD::AVGCEILS: |
| 384 | case ISD::AVGCEILU: |
| 385 | case ISD::AVGFLOORS: |
| 386 | case ISD::AVGFLOORU: |
| 387 | case ISD::BSWAP: |
| 388 | case ISD::BITREVERSE: |
| 389 | case ISD::CTLZ: |
| 390 | case ISD::CTTZ: |
| 391 | case ISD::CTLZ_ZERO_UNDEF: |
| 392 | case ISD::CTTZ_ZERO_UNDEF: |
| 393 | case ISD::CTPOP: |
| 394 | case ISD::SELECT: |
| 395 | case ISD::VSELECT: |
| 396 | case ISD::SELECT_CC: |
| 397 | case ISD::ZERO_EXTEND: |
| 398 | case ISD::ANY_EXTEND: |
| 399 | case ISD::TRUNCATE: |
| 400 | case ISD::SIGN_EXTEND: |
| 401 | case ISD::FP_TO_SINT: |
| 402 | case ISD::FP_TO_UINT: |
| 403 | case ISD::FNEG: |
| 404 | case ISD::FABS: |
| 405 | case ISD::FMINNUM: |
| 406 | case ISD::FMAXNUM: |
| 407 | case ISD::FMINNUM_IEEE: |
| 408 | case ISD::FMAXNUM_IEEE: |
| 409 | case ISD::FMINIMUM: |
| 410 | case ISD::FMAXIMUM: |
| 411 | case ISD::FMINIMUMNUM: |
| 412 | case ISD::FMAXIMUMNUM: |
| 413 | case ISD::FCOPYSIGN: |
| 414 | case ISD::FSQRT: |
| 415 | case ISD::FSIN: |
| 416 | case ISD::FCOS: |
| 417 | case ISD::FTAN: |
| 418 | case ISD::FASIN: |
| 419 | case ISD::FACOS: |
| 420 | case ISD::FATAN: |
| 421 | case ISD::FATAN2: |
| 422 | case ISD::FSINH: |
| 423 | case ISD::FCOSH: |
| 424 | case ISD::FTANH: |
| 425 | case ISD::FLDEXP: |
| 426 | case ISD::FPOWI: |
| 427 | case ISD::FPOW: |
| 428 | case ISD::FLOG: |
| 429 | case ISD::FLOG2: |
| 430 | case ISD::FLOG10: |
| 431 | case ISD::FEXP: |
| 432 | case ISD::FEXP2: |
| 433 | case ISD::FEXP10: |
| 434 | case ISD::FCEIL: |
| 435 | case ISD::FTRUNC: |
| 436 | case ISD::FRINT: |
| 437 | case ISD::FNEARBYINT: |
| 438 | case ISD::FROUND: |
| 439 | case ISD::FROUNDEVEN: |
| 440 | case ISD::FFLOOR: |
| 441 | case ISD::FP_ROUND: |
| 442 | case ISD::FP_EXTEND: |
| 443 | case ISD::FPTRUNC_ROUND: |
| 444 | case ISD::FMA: |
| 445 | case ISD::SIGN_EXTEND_INREG: |
| 446 | case ISD::ANY_EXTEND_VECTOR_INREG: |
| 447 | case ISD::SIGN_EXTEND_VECTOR_INREG: |
| 448 | case ISD::ZERO_EXTEND_VECTOR_INREG: |
| 449 | case ISD::SMIN: |
| 450 | case ISD::SMAX: |
| 451 | case ISD::UMIN: |
| 452 | case ISD::UMAX: |
| 453 | case ISD::SMUL_LOHI: |
| 454 | case ISD::UMUL_LOHI: |
| 455 | case ISD::SADDO: |
| 456 | case ISD::UADDO: |
| 457 | case ISD::SSUBO: |
| 458 | case ISD::USUBO: |
| 459 | case ISD::SMULO: |
| 460 | case ISD::UMULO: |
| 461 | case ISD::FCANONICALIZE: |
| 462 | case ISD::FFREXP: |
| 463 | case ISD::FMODF: |
| 464 | case ISD::FSINCOS: |
| 465 | case ISD::FSINCOSPI: |
| 466 | case ISD::SADDSAT: |
| 467 | case ISD::UADDSAT: |
| 468 | case ISD::SSUBSAT: |
| 469 | case ISD::USUBSAT: |
| 470 | case ISD::SSHLSAT: |
| 471 | case ISD::USHLSAT: |
| 472 | case ISD::FP_TO_SINT_SAT: |
| 473 | case ISD::FP_TO_UINT_SAT: |
| 474 | case ISD::MGATHER: |
| 475 | case ISD::VECTOR_COMPRESS: |
| 476 | case ISD::SCMP: |
| 477 | case ISD::UCMP: |
| 478 | Action = TLI.getOperationAction(Op: Node->getOpcode(), VT: Node->getValueType(ResNo: 0)); |
| 479 | break; |
| 480 | case ISD::SMULFIX: |
| 481 | case ISD::SMULFIXSAT: |
| 482 | case ISD::UMULFIX: |
| 483 | case ISD::UMULFIXSAT: |
| 484 | case ISD::SDIVFIX: |
| 485 | case ISD::SDIVFIXSAT: |
| 486 | case ISD::UDIVFIX: |
| 487 | case ISD::UDIVFIXSAT: { |
| 488 | unsigned Scale = Node->getConstantOperandVal(Num: 2); |
| 489 | Action = TLI.getFixedPointOperationAction(Op: Node->getOpcode(), |
| 490 | VT: Node->getValueType(ResNo: 0), Scale); |
| 491 | break; |
| 492 | } |
| 493 | case ISD::LROUND: |
| 494 | case ISD::LLROUND: |
| 495 | case ISD::LRINT: |
| 496 | case ISD::LLRINT: |
| 497 | case ISD::SINT_TO_FP: |
| 498 | case ISD::UINT_TO_FP: |
| 499 | case ISD::VECREDUCE_ADD: |
| 500 | case ISD::VECREDUCE_MUL: |
| 501 | case ISD::VECREDUCE_AND: |
| 502 | case ISD::VECREDUCE_OR: |
| 503 | case ISD::VECREDUCE_XOR: |
| 504 | case ISD::VECREDUCE_SMAX: |
| 505 | case ISD::VECREDUCE_SMIN: |
| 506 | case ISD::VECREDUCE_UMAX: |
| 507 | case ISD::VECREDUCE_UMIN: |
| 508 | case ISD::VECREDUCE_FADD: |
| 509 | case ISD::VECREDUCE_FMAX: |
| 510 | case ISD::VECREDUCE_FMAXIMUM: |
| 511 | case ISD::VECREDUCE_FMIN: |
| 512 | case ISD::VECREDUCE_FMINIMUM: |
| 513 | case ISD::VECREDUCE_FMUL: |
| 514 | case ISD::VECTOR_FIND_LAST_ACTIVE: |
| 515 | Action = TLI.getOperationAction(Op: Node->getOpcode(), |
| 516 | VT: Node->getOperand(Num: 0).getValueType()); |
| 517 | break; |
| 518 | case ISD::VECREDUCE_SEQ_FADD: |
| 519 | case ISD::VECREDUCE_SEQ_FMUL: |
| 520 | Action = TLI.getOperationAction(Op: Node->getOpcode(), |
| 521 | VT: Node->getOperand(Num: 1).getValueType()); |
| 522 | break; |
| 523 | case ISD::SETCC: { |
| 524 | MVT OpVT = Node->getOperand(Num: 0).getSimpleValueType(); |
| 525 | ISD::CondCode CCCode = cast<CondCodeSDNode>(Val: Node->getOperand(Num: 2))->get(); |
| 526 | Action = TLI.getCondCodeAction(CC: CCCode, VT: OpVT); |
| 527 | if (Action == TargetLowering::Legal) |
| 528 | Action = TLI.getOperationAction(Op: Node->getOpcode(), VT: OpVT); |
| 529 | break; |
| 530 | } |
| 531 | case ISD::PARTIAL_REDUCE_UMLA: |
| 532 | case ISD::PARTIAL_REDUCE_SMLA: |
| 533 | case ISD::PARTIAL_REDUCE_SUMLA: |
| 534 | Action = |
| 535 | TLI.getPartialReduceMLAAction(Opc: Op.getOpcode(), AccVT: Node->getValueType(ResNo: 0), |
| 536 | InputVT: Node->getOperand(Num: 1).getValueType()); |
| 537 | break; |
| 538 | |
| 539 | #define BEGIN_REGISTER_VP_SDNODE(VPID, LEGALPOS, ...) \ |
| 540 | case ISD::VPID: { \ |
| 541 | EVT LegalizeVT = LEGALPOS < 0 ? Node->getValueType(-(1 + LEGALPOS)) \ |
| 542 | : Node->getOperand(LEGALPOS).getValueType(); \ |
| 543 | if (ISD::VPID == ISD::VP_SETCC) { \ |
| 544 | ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get(); \ |
| 545 | Action = TLI.getCondCodeAction(CCCode, LegalizeVT.getSimpleVT()); \ |
| 546 | if (Action != TargetLowering::Legal) \ |
| 547 | break; \ |
| 548 | } \ |
| 549 | /* Defer non-vector results to LegalizeDAG. */ \ |
| 550 | if (!Node->getValueType(0).isVector() && \ |
| 551 | Node->getValueType(0) != MVT::Other) { \ |
| 552 | Action = TargetLowering::Legal; \ |
| 553 | break; \ |
| 554 | } \ |
| 555 | Action = TLI.getOperationAction(Node->getOpcode(), LegalizeVT); \ |
| 556 | } break; |
| 557 | #include "llvm/IR/VPIntrinsics.def" |
| 558 | } |
| 559 | |
| 560 | LLVM_DEBUG(dbgs() << "\nLegalizing vector op: " ; Node->dump(&DAG)); |
| 561 | |
| 562 | SmallVector<SDValue, 8> ResultVals; |
| 563 | switch (Action) { |
| 564 | default: llvm_unreachable("This action is not supported yet!" ); |
| 565 | case TargetLowering::Promote: |
| 566 | assert((Op.getOpcode() != ISD::LOAD && Op.getOpcode() != ISD::STORE) && |
| 567 | "This action is not supported yet!" ); |
| 568 | LLVM_DEBUG(dbgs() << "Promoting\n" ); |
| 569 | Promote(Node, Results&: ResultVals); |
| 570 | assert(!ResultVals.empty() && "No results for promotion?" ); |
| 571 | break; |
| 572 | case TargetLowering::Legal: |
| 573 | LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n" ); |
| 574 | break; |
| 575 | case TargetLowering::Custom: |
| 576 | LLVM_DEBUG(dbgs() << "Trying custom legalization\n" ); |
| 577 | if (LowerOperationWrapper(N: Node, Results&: ResultVals)) |
| 578 | break; |
| 579 | LLVM_DEBUG(dbgs() << "Could not custom legalize node\n" ); |
| 580 | [[fallthrough]]; |
| 581 | case TargetLowering::Expand: |
| 582 | LLVM_DEBUG(dbgs() << "Expanding\n" ); |
| 583 | Expand(Node, Results&: ResultVals); |
| 584 | break; |
| 585 | } |
| 586 | |
| 587 | if (ResultVals.empty()) |
| 588 | return TranslateLegalizeResults(Op, Result: Node); |
| 589 | |
| 590 | Changed = true; |
| 591 | return RecursivelyLegalizeResults(Op, Results: ResultVals); |
| 592 | } |
| 593 | |
| 594 | // FIXME: This is very similar to TargetLowering::LowerOperationWrapper. Can we |
| 595 | // merge them somehow? |
| 596 | bool VectorLegalizer::LowerOperationWrapper(SDNode *Node, |
| 597 | SmallVectorImpl<SDValue> &Results) { |
| 598 | SDValue Res = TLI.LowerOperation(Op: SDValue(Node, 0), DAG); |
| 599 | |
| 600 | if (!Res.getNode()) |
| 601 | return false; |
| 602 | |
| 603 | if (Res == SDValue(Node, 0)) |
| 604 | return true; |
| 605 | |
| 606 | // If the original node has one result, take the return value from |
| 607 | // LowerOperation as is. It might not be result number 0. |
| 608 | if (Node->getNumValues() == 1) { |
| 609 | Results.push_back(Elt: Res); |
| 610 | return true; |
| 611 | } |
| 612 | |
| 613 | // If the original node has multiple results, then the return node should |
| 614 | // have the same number of results. |
| 615 | assert((Node->getNumValues() == Res->getNumValues()) && |
| 616 | "Lowering returned the wrong number of results!" ); |
| 617 | |
| 618 | // Places new result values base on N result number. |
| 619 | for (unsigned I = 0, E = Node->getNumValues(); I != E; ++I) |
| 620 | Results.push_back(Elt: Res.getValue(R: I)); |
| 621 | |
| 622 | return true; |
| 623 | } |
| 624 | |
| 625 | void VectorLegalizer::PromoteSETCC(SDNode *Node, |
| 626 | SmallVectorImpl<SDValue> &Results) { |
| 627 | MVT VecVT = Node->getOperand(Num: 0).getSimpleValueType(); |
| 628 | MVT NewVecVT = TLI.getTypeToPromoteTo(Op: Node->getOpcode(), VT: VecVT); |
| 629 | |
| 630 | unsigned ExtOp = VecVT.isFloatingPoint() ? ISD::FP_EXTEND : ISD::ANY_EXTEND; |
| 631 | |
| 632 | SDLoc DL(Node); |
| 633 | SmallVector<SDValue, 5> Operands(Node->getNumOperands()); |
| 634 | |
| 635 | Operands[0] = DAG.getNode(Opcode: ExtOp, DL, VT: NewVecVT, Operand: Node->getOperand(Num: 0)); |
| 636 | Operands[1] = DAG.getNode(Opcode: ExtOp, DL, VT: NewVecVT, Operand: Node->getOperand(Num: 1)); |
| 637 | Operands[2] = Node->getOperand(Num: 2); |
| 638 | |
| 639 | if (Node->getOpcode() == ISD::VP_SETCC) { |
| 640 | Operands[3] = Node->getOperand(Num: 3); // mask |
| 641 | Operands[4] = Node->getOperand(Num: 4); // evl |
| 642 | } |
| 643 | |
| 644 | SDValue Res = DAG.getNode(Opcode: Node->getOpcode(), DL, VT: Node->getSimpleValueType(ResNo: 0), |
| 645 | Ops: Operands, Flags: Node->getFlags()); |
| 646 | |
| 647 | Results.push_back(Elt: Res); |
| 648 | } |
| 649 | |
| 650 | void VectorLegalizer::PromoteSTRICT(SDNode *Node, |
| 651 | SmallVectorImpl<SDValue> &Results) { |
| 652 | MVT VecVT = Node->getOperand(Num: 1).getSimpleValueType(); |
| 653 | MVT NewVecVT = TLI.getTypeToPromoteTo(Op: Node->getOpcode(), VT: VecVT); |
| 654 | |
| 655 | assert(VecVT.isFloatingPoint()); |
| 656 | |
| 657 | SDLoc DL(Node); |
| 658 | SmallVector<SDValue, 5> Operands(Node->getNumOperands()); |
| 659 | SmallVector<SDValue, 2> Chains; |
| 660 | |
| 661 | for (unsigned j = 1; j != Node->getNumOperands(); ++j) |
| 662 | if (Node->getOperand(Num: j).getValueType().isVector() && |
| 663 | !(ISD::isVPOpcode(Opcode: Node->getOpcode()) && |
| 664 | ISD::getVPMaskIdx(Opcode: Node->getOpcode()) == j)) // Skip mask operand. |
| 665 | { |
| 666 | // promote the vector operand. |
| 667 | SDValue Ext = |
| 668 | DAG.getNode(Opcode: ISD::STRICT_FP_EXTEND, DL, ResultTys: {NewVecVT, MVT::Other}, |
| 669 | Ops: {Node->getOperand(Num: 0), Node->getOperand(Num: j)}); |
| 670 | Operands[j] = Ext.getValue(R: 0); |
| 671 | Chains.push_back(Elt: Ext.getValue(R: 1)); |
| 672 | } else |
| 673 | Operands[j] = Node->getOperand(Num: j); // Skip no vector operand. |
| 674 | |
| 675 | SDVTList VTs = DAG.getVTList(VT1: NewVecVT, VT2: Node->getValueType(ResNo: 1)); |
| 676 | |
| 677 | Operands[0] = DAG.getNode(Opcode: ISD::TokenFactor, DL, VT: MVT::Other, Ops: Chains); |
| 678 | |
| 679 | SDValue Res = |
| 680 | DAG.getNode(Opcode: Node->getOpcode(), DL, VTList: VTs, Ops: Operands, Flags: Node->getFlags()); |
| 681 | |
| 682 | SDValue Round = |
| 683 | DAG.getNode(Opcode: ISD::STRICT_FP_ROUND, DL, ResultTys: {VecVT, MVT::Other}, |
| 684 | Ops: {Res.getValue(R: 1), Res.getValue(R: 0), |
| 685 | DAG.getIntPtrConstant(Val: 0, DL, /*isTarget=*/true)}); |
| 686 | |
| 687 | Results.push_back(Elt: Round.getValue(R: 0)); |
| 688 | Results.push_back(Elt: Round.getValue(R: 1)); |
| 689 | } |
| 690 | |
| 691 | void VectorLegalizer::PromoteFloatVECREDUCE(SDNode *Node, |
| 692 | SmallVectorImpl<SDValue> &Results, |
| 693 | bool NonArithmetic) { |
| 694 | MVT OpVT = Node->getOperand(Num: 0).getSimpleValueType(); |
| 695 | assert(OpVT.isFloatingPoint() && "Expected floating point reduction!" ); |
| 696 | MVT NewOpVT = TLI.getTypeToPromoteTo(Op: Node->getOpcode(), VT: OpVT); |
| 697 | |
| 698 | SDLoc DL(Node); |
| 699 | SDValue NewOp = DAG.getNode(Opcode: ISD::FP_EXTEND, DL, VT: NewOpVT, Operand: Node->getOperand(Num: 0)); |
| 700 | SDValue Rdx = |
| 701 | DAG.getNode(Opcode: Node->getOpcode(), DL, VT: NewOpVT.getVectorElementType(), Operand: NewOp, |
| 702 | Flags: Node->getFlags()); |
| 703 | SDValue Res = |
| 704 | DAG.getNode(Opcode: ISD::FP_ROUND, DL, VT: Node->getValueType(ResNo: 0), N1: Rdx, |
| 705 | N2: DAG.getIntPtrConstant(Val: NonArithmetic, DL, /*isTarget=*/true)); |
| 706 | Results.push_back(Elt: Res); |
| 707 | } |
| 708 | |
| 709 | void VectorLegalizer::Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results) { |
| 710 | // For a few operations there is a specific concept for promotion based on |
| 711 | // the operand's type. |
| 712 | switch (Node->getOpcode()) { |
| 713 | case ISD::SINT_TO_FP: |
| 714 | case ISD::UINT_TO_FP: |
| 715 | case ISD::STRICT_SINT_TO_FP: |
| 716 | case ISD::STRICT_UINT_TO_FP: |
| 717 | // "Promote" the operation by extending the operand. |
| 718 | PromoteINT_TO_FP(Node, Results); |
| 719 | return; |
| 720 | case ISD::FP_TO_UINT: |
| 721 | case ISD::FP_TO_SINT: |
| 722 | case ISD::STRICT_FP_TO_UINT: |
| 723 | case ISD::STRICT_FP_TO_SINT: |
| 724 | // Promote the operation by extending the operand. |
| 725 | PromoteFP_TO_INT(Node, Results); |
| 726 | return; |
| 727 | case ISD::VP_SETCC: |
| 728 | case ISD::SETCC: |
| 729 | // Promote the operation by extending the operand. |
| 730 | PromoteSETCC(Node, Results); |
| 731 | return; |
| 732 | case ISD::STRICT_FADD: |
| 733 | case ISD::STRICT_FSUB: |
| 734 | case ISD::STRICT_FMUL: |
| 735 | case ISD::STRICT_FDIV: |
| 736 | case ISD::STRICT_FSQRT: |
| 737 | case ISD::STRICT_FMA: |
| 738 | PromoteSTRICT(Node, Results); |
| 739 | return; |
| 740 | case ISD::VECREDUCE_FADD: |
| 741 | PromoteFloatVECREDUCE(Node, Results, /*NonArithmetic=*/false); |
| 742 | return; |
| 743 | case ISD::VECREDUCE_FMAX: |
| 744 | case ISD::VECREDUCE_FMAXIMUM: |
| 745 | case ISD::VECREDUCE_FMIN: |
| 746 | case ISD::VECREDUCE_FMINIMUM: |
| 747 | PromoteFloatVECREDUCE(Node, Results, /*NonArithmetic=*/true); |
| 748 | return; |
| 749 | case ISD::FP_ROUND: |
| 750 | case ISD::FP_EXTEND: |
| 751 | // These operations are used to do promotion so they can't be promoted |
| 752 | // themselves. |
| 753 | llvm_unreachable("Don't know how to promote this operation!" ); |
| 754 | case ISD::VP_FABS: |
| 755 | case ISD::VP_FCOPYSIGN: |
| 756 | case ISD::VP_FNEG: |
| 757 | // Promoting fabs, fneg, and fcopysign changes their semantics. |
| 758 | llvm_unreachable("These operations should not be promoted" ); |
| 759 | } |
| 760 | |
| 761 | // There are currently two cases of vector promotion: |
| 762 | // 1) Bitcasting a vector of integers to a different type to a vector of the |
| 763 | // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64. |
| 764 | // 2) Extending a vector of floats to a vector of the same number of larger |
| 765 | // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32. |
| 766 | assert(Node->getNumValues() == 1 && |
| 767 | "Can't promote a vector with multiple results!" ); |
| 768 | MVT VT = Node->getSimpleValueType(ResNo: 0); |
| 769 | MVT NVT = TLI.getTypeToPromoteTo(Op: Node->getOpcode(), VT); |
| 770 | SDLoc dl(Node); |
| 771 | SmallVector<SDValue, 4> Operands(Node->getNumOperands()); |
| 772 | |
| 773 | for (unsigned j = 0; j != Node->getNumOperands(); ++j) { |
| 774 | // Do not promote the mask operand of a VP OP. |
| 775 | bool SkipPromote = ISD::isVPOpcode(Opcode: Node->getOpcode()) && |
| 776 | ISD::getVPMaskIdx(Opcode: Node->getOpcode()) == j; |
| 777 | if (Node->getOperand(Num: j).getValueType().isVector() && !SkipPromote) |
| 778 | if (Node->getOperand(Num: j) |
| 779 | .getValueType() |
| 780 | .getVectorElementType() |
| 781 | .isFloatingPoint() && |
| 782 | NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()) |
| 783 | if (ISD::isVPOpcode(Opcode: Node->getOpcode())) { |
| 784 | unsigned EVLIdx = |
| 785 | *ISD::getVPExplicitVectorLengthIdx(Opcode: Node->getOpcode()); |
| 786 | unsigned MaskIdx = *ISD::getVPMaskIdx(Opcode: Node->getOpcode()); |
| 787 | Operands[j] = |
| 788 | DAG.getNode(Opcode: ISD::VP_FP_EXTEND, DL: dl, VT: NVT, N1: Node->getOperand(Num: j), |
| 789 | N2: Node->getOperand(Num: MaskIdx), N3: Node->getOperand(Num: EVLIdx)); |
| 790 | } else { |
| 791 | Operands[j] = |
| 792 | DAG.getNode(Opcode: ISD::FP_EXTEND, DL: dl, VT: NVT, Operand: Node->getOperand(Num: j)); |
| 793 | } |
| 794 | else |
| 795 | Operands[j] = DAG.getNode(Opcode: ISD::BITCAST, DL: dl, VT: NVT, Operand: Node->getOperand(Num: j)); |
| 796 | else |
| 797 | Operands[j] = Node->getOperand(Num: j); |
| 798 | } |
| 799 | |
| 800 | SDValue Res = |
| 801 | DAG.getNode(Opcode: Node->getOpcode(), DL: dl, VT: NVT, Ops: Operands, Flags: Node->getFlags()); |
| 802 | |
| 803 | if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) || |
| 804 | (VT.isVector() && VT.getVectorElementType().isFloatingPoint() && |
| 805 | NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())) |
| 806 | if (ISD::isVPOpcode(Opcode: Node->getOpcode())) { |
| 807 | unsigned EVLIdx = *ISD::getVPExplicitVectorLengthIdx(Opcode: Node->getOpcode()); |
| 808 | unsigned MaskIdx = *ISD::getVPMaskIdx(Opcode: Node->getOpcode()); |
| 809 | Res = DAG.getNode(Opcode: ISD::VP_FP_ROUND, DL: dl, VT, N1: Res, |
| 810 | N2: Node->getOperand(Num: MaskIdx), N3: Node->getOperand(Num: EVLIdx)); |
| 811 | } else { |
| 812 | Res = DAG.getNode(Opcode: ISD::FP_ROUND, DL: dl, VT, N1: Res, |
| 813 | N2: DAG.getIntPtrConstant(Val: 0, DL: dl, /*isTarget=*/true)); |
| 814 | } |
| 815 | else |
| 816 | Res = DAG.getNode(Opcode: ISD::BITCAST, DL: dl, VT, Operand: Res); |
| 817 | |
| 818 | Results.push_back(Elt: Res); |
| 819 | } |
| 820 | |
| 821 | void VectorLegalizer::PromoteINT_TO_FP(SDNode *Node, |
| 822 | SmallVectorImpl<SDValue> &Results) { |
| 823 | // INT_TO_FP operations may require the input operand be promoted even |
| 824 | // when the type is otherwise legal. |
| 825 | bool IsStrict = Node->isStrictFPOpcode(); |
| 826 | MVT VT = Node->getOperand(Num: IsStrict ? 1 : 0).getSimpleValueType(); |
| 827 | MVT NVT = TLI.getTypeToPromoteTo(Op: Node->getOpcode(), VT); |
| 828 | assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && |
| 829 | "Vectors have different number of elements!" ); |
| 830 | |
| 831 | SDLoc dl(Node); |
| 832 | SmallVector<SDValue, 4> Operands(Node->getNumOperands()); |
| 833 | |
| 834 | unsigned Opc = (Node->getOpcode() == ISD::UINT_TO_FP || |
| 835 | Node->getOpcode() == ISD::STRICT_UINT_TO_FP) |
| 836 | ? ISD::ZERO_EXTEND |
| 837 | : ISD::SIGN_EXTEND; |
| 838 | for (unsigned j = 0; j != Node->getNumOperands(); ++j) { |
| 839 | if (Node->getOperand(Num: j).getValueType().isVector()) |
| 840 | Operands[j] = DAG.getNode(Opcode: Opc, DL: dl, VT: NVT, Operand: Node->getOperand(Num: j)); |
| 841 | else |
| 842 | Operands[j] = Node->getOperand(Num: j); |
| 843 | } |
| 844 | |
| 845 | if (IsStrict) { |
| 846 | SDValue Res = DAG.getNode(Opcode: Node->getOpcode(), DL: dl, |
| 847 | ResultTys: {Node->getValueType(ResNo: 0), MVT::Other}, Ops: Operands); |
| 848 | Results.push_back(Elt: Res); |
| 849 | Results.push_back(Elt: Res.getValue(R: 1)); |
| 850 | return; |
| 851 | } |
| 852 | |
| 853 | SDValue Res = |
| 854 | DAG.getNode(Opcode: Node->getOpcode(), DL: dl, VT: Node->getValueType(ResNo: 0), Ops: Operands); |
| 855 | Results.push_back(Elt: Res); |
| 856 | } |
| 857 | |
| 858 | // For FP_TO_INT we promote the result type to a vector type with wider |
| 859 | // elements and then truncate the result. This is different from the default |
| 860 | // PromoteVector which uses bitcast to promote thus assumning that the |
| 861 | // promoted vector type has the same overall size. |
| 862 | void VectorLegalizer::PromoteFP_TO_INT(SDNode *Node, |
| 863 | SmallVectorImpl<SDValue> &Results) { |
| 864 | MVT VT = Node->getSimpleValueType(ResNo: 0); |
| 865 | MVT NVT = TLI.getTypeToPromoteTo(Op: Node->getOpcode(), VT); |
| 866 | bool IsStrict = Node->isStrictFPOpcode(); |
| 867 | assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && |
| 868 | "Vectors have different number of elements!" ); |
| 869 | |
| 870 | unsigned NewOpc = Node->getOpcode(); |
| 871 | // Change FP_TO_UINT to FP_TO_SINT if possible. |
| 872 | // TODO: Should we only do this if FP_TO_UINT itself isn't legal? |
| 873 | if (NewOpc == ISD::FP_TO_UINT && |
| 874 | TLI.isOperationLegalOrCustom(Op: ISD::FP_TO_SINT, VT: NVT)) |
| 875 | NewOpc = ISD::FP_TO_SINT; |
| 876 | |
| 877 | if (NewOpc == ISD::STRICT_FP_TO_UINT && |
| 878 | TLI.isOperationLegalOrCustom(Op: ISD::STRICT_FP_TO_SINT, VT: NVT)) |
| 879 | NewOpc = ISD::STRICT_FP_TO_SINT; |
| 880 | |
| 881 | SDLoc dl(Node); |
| 882 | SDValue Promoted, Chain; |
| 883 | if (IsStrict) { |
| 884 | Promoted = DAG.getNode(Opcode: NewOpc, DL: dl, ResultTys: {NVT, MVT::Other}, |
| 885 | Ops: {Node->getOperand(Num: 0), Node->getOperand(Num: 1)}); |
| 886 | Chain = Promoted.getValue(R: 1); |
| 887 | } else |
| 888 | Promoted = DAG.getNode(Opcode: NewOpc, DL: dl, VT: NVT, Operand: Node->getOperand(Num: 0)); |
| 889 | |
| 890 | // Assert that the converted value fits in the original type. If it doesn't |
| 891 | // (eg: because the value being converted is too big), then the result of the |
| 892 | // original operation was undefined anyway, so the assert is still correct. |
| 893 | if (Node->getOpcode() == ISD::FP_TO_UINT || |
| 894 | Node->getOpcode() == ISD::STRICT_FP_TO_UINT) |
| 895 | NewOpc = ISD::AssertZext; |
| 896 | else |
| 897 | NewOpc = ISD::AssertSext; |
| 898 | |
| 899 | Promoted = DAG.getNode(Opcode: NewOpc, DL: dl, VT: NVT, N1: Promoted, |
| 900 | N2: DAG.getValueType(VT.getScalarType())); |
| 901 | Promoted = DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT, Operand: Promoted); |
| 902 | Results.push_back(Elt: Promoted); |
| 903 | if (IsStrict) |
| 904 | Results.push_back(Elt: Chain); |
| 905 | } |
| 906 | |
| 907 | std::pair<SDValue, SDValue> VectorLegalizer::ExpandLoad(SDNode *N) { |
| 908 | LoadSDNode *LD = cast<LoadSDNode>(Val: N); |
| 909 | return TLI.scalarizeVectorLoad(LD, DAG); |
| 910 | } |
| 911 | |
| 912 | SDValue VectorLegalizer::ExpandStore(SDNode *N) { |
| 913 | StoreSDNode *ST = cast<StoreSDNode>(Val: N); |
| 914 | SDValue TF = TLI.scalarizeVectorStore(ST, DAG); |
| 915 | return TF; |
| 916 | } |
| 917 | |
| 918 | void VectorLegalizer::Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results) { |
| 919 | switch (Node->getOpcode()) { |
| 920 | case ISD::LOAD: { |
| 921 | std::pair<SDValue, SDValue> Tmp = ExpandLoad(N: Node); |
| 922 | Results.push_back(Elt: Tmp.first); |
| 923 | Results.push_back(Elt: Tmp.second); |
| 924 | return; |
| 925 | } |
| 926 | case ISD::STORE: |
| 927 | Results.push_back(Elt: ExpandStore(N: Node)); |
| 928 | return; |
| 929 | case ISD::MERGE_VALUES: |
| 930 | for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) |
| 931 | Results.push_back(Elt: Node->getOperand(Num: i)); |
| 932 | return; |
| 933 | case ISD::SIGN_EXTEND_INREG: |
| 934 | if (SDValue Expanded = ExpandSEXTINREG(Node)) { |
| 935 | Results.push_back(Elt: Expanded); |
| 936 | return; |
| 937 | } |
| 938 | break; |
| 939 | case ISD::ANY_EXTEND_VECTOR_INREG: |
| 940 | Results.push_back(Elt: ExpandANY_EXTEND_VECTOR_INREG(Node)); |
| 941 | return; |
| 942 | case ISD::SIGN_EXTEND_VECTOR_INREG: |
| 943 | Results.push_back(Elt: ExpandSIGN_EXTEND_VECTOR_INREG(Node)); |
| 944 | return; |
| 945 | case ISD::ZERO_EXTEND_VECTOR_INREG: |
| 946 | Results.push_back(Elt: ExpandZERO_EXTEND_VECTOR_INREG(Node)); |
| 947 | return; |
| 948 | case ISD::BSWAP: |
| 949 | if (SDValue Expanded = ExpandBSWAP(Node)) { |
| 950 | Results.push_back(Elt: Expanded); |
| 951 | return; |
| 952 | } |
| 953 | break; |
| 954 | case ISD::VP_BSWAP: |
| 955 | Results.push_back(Elt: TLI.expandVPBSWAP(N: Node, DAG)); |
| 956 | return; |
| 957 | case ISD::VSELECT: |
| 958 | if (SDValue Expanded = ExpandVSELECT(Node)) { |
| 959 | Results.push_back(Elt: Expanded); |
| 960 | return; |
| 961 | } |
| 962 | break; |
| 963 | case ISD::VP_SELECT: |
| 964 | if (SDValue Expanded = ExpandVP_SELECT(Node)) { |
| 965 | Results.push_back(Elt: Expanded); |
| 966 | return; |
| 967 | } |
| 968 | break; |
| 969 | case ISD::VP_SREM: |
| 970 | case ISD::VP_UREM: |
| 971 | if (SDValue Expanded = ExpandVP_REM(Node)) { |
| 972 | Results.push_back(Elt: Expanded); |
| 973 | return; |
| 974 | } |
| 975 | break; |
| 976 | case ISD::VP_FNEG: |
| 977 | if (SDValue Expanded = ExpandVP_FNEG(Node)) { |
| 978 | Results.push_back(Elt: Expanded); |
| 979 | return; |
| 980 | } |
| 981 | break; |
| 982 | case ISD::VP_FABS: |
| 983 | if (SDValue Expanded = ExpandVP_FABS(Node)) { |
| 984 | Results.push_back(Elt: Expanded); |
| 985 | return; |
| 986 | } |
| 987 | break; |
| 988 | case ISD::VP_FCOPYSIGN: |
| 989 | if (SDValue Expanded = ExpandVP_FCOPYSIGN(Node)) { |
| 990 | Results.push_back(Elt: Expanded); |
| 991 | return; |
| 992 | } |
| 993 | break; |
| 994 | case ISD::SELECT: |
| 995 | if (SDValue Expanded = ExpandSELECT(Node)) { |
| 996 | Results.push_back(Elt: Expanded); |
| 997 | return; |
| 998 | } |
| 999 | break; |
| 1000 | case ISD::SELECT_CC: { |
| 1001 | if (Node->getValueType(ResNo: 0).isScalableVector()) { |
| 1002 | EVT CondVT = TLI.getSetCCResultType( |
| 1003 | DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT: Node->getValueType(ResNo: 0)); |
| 1004 | SDValue SetCC = |
| 1005 | DAG.getNode(Opcode: ISD::SETCC, DL: SDLoc(Node), VT: CondVT, N1: Node->getOperand(Num: 0), |
| 1006 | N2: Node->getOperand(Num: 1), N3: Node->getOperand(Num: 4)); |
| 1007 | Results.push_back(Elt: DAG.getSelect(DL: SDLoc(Node), VT: Node->getValueType(ResNo: 0), Cond: SetCC, |
| 1008 | LHS: Node->getOperand(Num: 2), |
| 1009 | RHS: Node->getOperand(Num: 3))); |
| 1010 | return; |
| 1011 | } |
| 1012 | break; |
| 1013 | } |
| 1014 | case ISD::FP_TO_UINT: |
| 1015 | ExpandFP_TO_UINT(Node, Results); |
| 1016 | return; |
| 1017 | case ISD::UINT_TO_FP: |
| 1018 | ExpandUINT_TO_FLOAT(Node, Results); |
| 1019 | return; |
| 1020 | case ISD::FNEG: |
| 1021 | if (SDValue Expanded = ExpandFNEG(Node)) { |
| 1022 | Results.push_back(Elt: Expanded); |
| 1023 | return; |
| 1024 | } |
| 1025 | break; |
| 1026 | case ISD::FABS: |
| 1027 | if (SDValue Expanded = ExpandFABS(Node)) { |
| 1028 | Results.push_back(Elt: Expanded); |
| 1029 | return; |
| 1030 | } |
| 1031 | break; |
| 1032 | case ISD::FCOPYSIGN: |
| 1033 | if (SDValue Expanded = ExpandFCOPYSIGN(Node)) { |
| 1034 | Results.push_back(Elt: Expanded); |
| 1035 | return; |
| 1036 | } |
| 1037 | break; |
| 1038 | case ISD::FSUB: |
| 1039 | ExpandFSUB(Node, Results); |
| 1040 | return; |
| 1041 | case ISD::SETCC: |
| 1042 | case ISD::VP_SETCC: |
| 1043 | ExpandSETCC(Node, Results); |
| 1044 | return; |
| 1045 | case ISD::ABS: |
| 1046 | if (SDValue Expanded = TLI.expandABS(N: Node, DAG)) { |
| 1047 | Results.push_back(Elt: Expanded); |
| 1048 | return; |
| 1049 | } |
| 1050 | break; |
| 1051 | case ISD::ABDS: |
| 1052 | case ISD::ABDU: |
| 1053 | if (SDValue Expanded = TLI.expandABD(N: Node, DAG)) { |
| 1054 | Results.push_back(Elt: Expanded); |
| 1055 | return; |
| 1056 | } |
| 1057 | break; |
| 1058 | case ISD::AVGCEILS: |
| 1059 | case ISD::AVGCEILU: |
| 1060 | case ISD::AVGFLOORS: |
| 1061 | case ISD::AVGFLOORU: |
| 1062 | if (SDValue Expanded = TLI.expandAVG(N: Node, DAG)) { |
| 1063 | Results.push_back(Elt: Expanded); |
| 1064 | return; |
| 1065 | } |
| 1066 | break; |
| 1067 | case ISD::BITREVERSE: |
| 1068 | if (SDValue Expanded = ExpandBITREVERSE(Node)) { |
| 1069 | Results.push_back(Elt: Expanded); |
| 1070 | return; |
| 1071 | } |
| 1072 | break; |
| 1073 | case ISD::VP_BITREVERSE: |
| 1074 | if (SDValue Expanded = TLI.expandVPBITREVERSE(N: Node, DAG)) { |
| 1075 | Results.push_back(Elt: Expanded); |
| 1076 | return; |
| 1077 | } |
| 1078 | break; |
| 1079 | case ISD::CTPOP: |
| 1080 | if (SDValue Expanded = TLI.expandCTPOP(N: Node, DAG)) { |
| 1081 | Results.push_back(Elt: Expanded); |
| 1082 | return; |
| 1083 | } |
| 1084 | break; |
| 1085 | case ISD::VP_CTPOP: |
| 1086 | if (SDValue Expanded = TLI.expandVPCTPOP(N: Node, DAG)) { |
| 1087 | Results.push_back(Elt: Expanded); |
| 1088 | return; |
| 1089 | } |
| 1090 | break; |
| 1091 | case ISD::CTLZ: |
| 1092 | case ISD::CTLZ_ZERO_UNDEF: |
| 1093 | if (SDValue Expanded = TLI.expandCTLZ(N: Node, DAG)) { |
| 1094 | Results.push_back(Elt: Expanded); |
| 1095 | return; |
| 1096 | } |
| 1097 | break; |
| 1098 | case ISD::VP_CTLZ: |
| 1099 | case ISD::VP_CTLZ_ZERO_UNDEF: |
| 1100 | if (SDValue Expanded = TLI.expandVPCTLZ(N: Node, DAG)) { |
| 1101 | Results.push_back(Elt: Expanded); |
| 1102 | return; |
| 1103 | } |
| 1104 | break; |
| 1105 | case ISD::CTTZ: |
| 1106 | case ISD::CTTZ_ZERO_UNDEF: |
| 1107 | if (SDValue Expanded = TLI.expandCTTZ(N: Node, DAG)) { |
| 1108 | Results.push_back(Elt: Expanded); |
| 1109 | return; |
| 1110 | } |
| 1111 | break; |
| 1112 | case ISD::VP_CTTZ: |
| 1113 | case ISD::VP_CTTZ_ZERO_UNDEF: |
| 1114 | if (SDValue Expanded = TLI.expandVPCTTZ(N: Node, DAG)) { |
| 1115 | Results.push_back(Elt: Expanded); |
| 1116 | return; |
| 1117 | } |
| 1118 | break; |
| 1119 | case ISD::FSHL: |
| 1120 | case ISD::VP_FSHL: |
| 1121 | case ISD::FSHR: |
| 1122 | case ISD::VP_FSHR: |
| 1123 | if (SDValue Expanded = TLI.expandFunnelShift(N: Node, DAG)) { |
| 1124 | Results.push_back(Elt: Expanded); |
| 1125 | return; |
| 1126 | } |
| 1127 | break; |
| 1128 | case ISD::ROTL: |
| 1129 | case ISD::ROTR: |
| 1130 | if (SDValue Expanded = TLI.expandROT(N: Node, AllowVectorOps: false /*AllowVectorOps*/, DAG)) { |
| 1131 | Results.push_back(Elt: Expanded); |
| 1132 | return; |
| 1133 | } |
| 1134 | break; |
| 1135 | case ISD::FMINNUM: |
| 1136 | case ISD::FMAXNUM: |
| 1137 | if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(N: Node, DAG)) { |
| 1138 | Results.push_back(Elt: Expanded); |
| 1139 | return; |
| 1140 | } |
| 1141 | break; |
| 1142 | case ISD::FMINIMUM: |
| 1143 | case ISD::FMAXIMUM: |
| 1144 | Results.push_back(Elt: TLI.expandFMINIMUM_FMAXIMUM(N: Node, DAG)); |
| 1145 | return; |
| 1146 | case ISD::FMINIMUMNUM: |
| 1147 | case ISD::FMAXIMUMNUM: |
| 1148 | Results.push_back(Elt: TLI.expandFMINIMUMNUM_FMAXIMUMNUM(N: Node, DAG)); |
| 1149 | return; |
| 1150 | case ISD::SMIN: |
| 1151 | case ISD::SMAX: |
| 1152 | case ISD::UMIN: |
| 1153 | case ISD::UMAX: |
| 1154 | if (SDValue Expanded = TLI.expandIntMINMAX(Node, DAG)) { |
| 1155 | Results.push_back(Elt: Expanded); |
| 1156 | return; |
| 1157 | } |
| 1158 | break; |
| 1159 | case ISD::UADDO: |
| 1160 | case ISD::USUBO: |
| 1161 | ExpandUADDSUBO(Node, Results); |
| 1162 | return; |
| 1163 | case ISD::SADDO: |
| 1164 | case ISD::SSUBO: |
| 1165 | ExpandSADDSUBO(Node, Results); |
| 1166 | return; |
| 1167 | case ISD::UMULO: |
| 1168 | case ISD::SMULO: |
| 1169 | ExpandMULO(Node, Results); |
| 1170 | return; |
| 1171 | case ISD::USUBSAT: |
| 1172 | case ISD::SSUBSAT: |
| 1173 | case ISD::UADDSAT: |
| 1174 | case ISD::SADDSAT: |
| 1175 | if (SDValue Expanded = TLI.expandAddSubSat(Node, DAG)) { |
| 1176 | Results.push_back(Elt: Expanded); |
| 1177 | return; |
| 1178 | } |
| 1179 | break; |
| 1180 | case ISD::USHLSAT: |
| 1181 | case ISD::SSHLSAT: |
| 1182 | if (SDValue Expanded = TLI.expandShlSat(Node, DAG)) { |
| 1183 | Results.push_back(Elt: Expanded); |
| 1184 | return; |
| 1185 | } |
| 1186 | break; |
| 1187 | case ISD::FP_TO_SINT_SAT: |
| 1188 | case ISD::FP_TO_UINT_SAT: |
| 1189 | // Expand the fpsosisat if it is scalable to prevent it from unrolling below. |
| 1190 | if (Node->getValueType(ResNo: 0).isScalableVector()) { |
| 1191 | if (SDValue Expanded = TLI.expandFP_TO_INT_SAT(N: Node, DAG)) { |
| 1192 | Results.push_back(Elt: Expanded); |
| 1193 | return; |
| 1194 | } |
| 1195 | } |
| 1196 | break; |
| 1197 | case ISD::SMULFIX: |
| 1198 | case ISD::UMULFIX: |
| 1199 | if (SDValue Expanded = TLI.expandFixedPointMul(Node, DAG)) { |
| 1200 | Results.push_back(Elt: Expanded); |
| 1201 | return; |
| 1202 | } |
| 1203 | break; |
| 1204 | case ISD::SMULFIXSAT: |
| 1205 | case ISD::UMULFIXSAT: |
| 1206 | // FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly |
| 1207 | // why. Maybe it results in worse codegen compared to the unroll for some |
| 1208 | // targets? This should probably be investigated. And if we still prefer to |
| 1209 | // unroll an explanation could be helpful. |
| 1210 | break; |
| 1211 | case ISD::SDIVFIX: |
| 1212 | case ISD::UDIVFIX: |
| 1213 | ExpandFixedPointDiv(Node, Results); |
| 1214 | return; |
| 1215 | case ISD::SDIVFIXSAT: |
| 1216 | case ISD::UDIVFIXSAT: |
| 1217 | break; |
| 1218 | #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ |
| 1219 | case ISD::STRICT_##DAGN: |
| 1220 | #include "llvm/IR/ConstrainedOps.def" |
| 1221 | ExpandStrictFPOp(Node, Results); |
| 1222 | return; |
| 1223 | case ISD::VECREDUCE_ADD: |
| 1224 | case ISD::VECREDUCE_MUL: |
| 1225 | case ISD::VECREDUCE_AND: |
| 1226 | case ISD::VECREDUCE_OR: |
| 1227 | case ISD::VECREDUCE_XOR: |
| 1228 | case ISD::VECREDUCE_SMAX: |
| 1229 | case ISD::VECREDUCE_SMIN: |
| 1230 | case ISD::VECREDUCE_UMAX: |
| 1231 | case ISD::VECREDUCE_UMIN: |
| 1232 | case ISD::VECREDUCE_FADD: |
| 1233 | case ISD::VECREDUCE_FMUL: |
| 1234 | case ISD::VECREDUCE_FMAX: |
| 1235 | case ISD::VECREDUCE_FMIN: |
| 1236 | case ISD::VECREDUCE_FMAXIMUM: |
| 1237 | case ISD::VECREDUCE_FMINIMUM: |
| 1238 | Results.push_back(Elt: TLI.expandVecReduce(Node, DAG)); |
| 1239 | return; |
| 1240 | case ISD::PARTIAL_REDUCE_UMLA: |
| 1241 | case ISD::PARTIAL_REDUCE_SMLA: |
| 1242 | case ISD::PARTIAL_REDUCE_SUMLA: |
| 1243 | Results.push_back(Elt: TLI.expandPartialReduceMLA(Node, DAG)); |
| 1244 | return; |
| 1245 | case ISD::VECREDUCE_SEQ_FADD: |
| 1246 | case ISD::VECREDUCE_SEQ_FMUL: |
| 1247 | Results.push_back(Elt: TLI.expandVecReduceSeq(Node, DAG)); |
| 1248 | return; |
| 1249 | case ISD::SREM: |
| 1250 | case ISD::UREM: |
| 1251 | ExpandREM(Node, Results); |
| 1252 | return; |
| 1253 | case ISD::VP_MERGE: |
| 1254 | if (SDValue Expanded = ExpandVP_MERGE(Node)) { |
| 1255 | Results.push_back(Elt: Expanded); |
| 1256 | return; |
| 1257 | } |
| 1258 | break; |
| 1259 | case ISD::FREM: |
| 1260 | if (tryExpandVecMathCall(Node, Call_F32: RTLIB::REM_F32, Call_F64: RTLIB::REM_F64, |
| 1261 | Call_F80: RTLIB::REM_F80, Call_F128: RTLIB::REM_F128, |
| 1262 | Call_PPCF128: RTLIB::REM_PPCF128, Results)) |
| 1263 | return; |
| 1264 | |
| 1265 | break; |
| 1266 | case ISD::FSINCOS: |
| 1267 | case ISD::FSINCOSPI: { |
| 1268 | EVT VT = Node->getValueType(ResNo: 0).getVectorElementType(); |
| 1269 | RTLIB::Libcall LC = Node->getOpcode() == ISD::FSINCOS |
| 1270 | ? RTLIB::getSINCOS(RetVT: VT) |
| 1271 | : RTLIB::getSINCOSPI(RetVT: VT); |
| 1272 | if (DAG.expandMultipleResultFPLibCall(LC, Node, Results)) |
| 1273 | return; |
| 1274 | break; |
| 1275 | } |
| 1276 | case ISD::FMODF: { |
| 1277 | RTLIB::Libcall LC = |
| 1278 | RTLIB::getMODF(RetVT: Node->getValueType(ResNo: 0).getVectorElementType()); |
| 1279 | if (DAG.expandMultipleResultFPLibCall(LC, Node, Results, |
| 1280 | /*CallRetResNo=*/0)) |
| 1281 | return; |
| 1282 | break; |
| 1283 | } |
| 1284 | case ISD::VECTOR_COMPRESS: |
| 1285 | Results.push_back(Elt: TLI.expandVECTOR_COMPRESS(Node, DAG)); |
| 1286 | return; |
| 1287 | case ISD::VECTOR_FIND_LAST_ACTIVE: |
| 1288 | Results.push_back(Elt: TLI.expandVectorFindLastActive(N: Node, DAG)); |
| 1289 | return; |
| 1290 | case ISD::SCMP: |
| 1291 | case ISD::UCMP: |
| 1292 | Results.push_back(Elt: TLI.expandCMP(Node, DAG)); |
| 1293 | return; |
| 1294 | |
| 1295 | case ISD::FADD: |
| 1296 | case ISD::FMUL: |
| 1297 | case ISD::FMA: |
| 1298 | case ISD::FDIV: |
| 1299 | case ISD::FCEIL: |
| 1300 | case ISD::FFLOOR: |
| 1301 | case ISD::FNEARBYINT: |
| 1302 | case ISD::FRINT: |
| 1303 | case ISD::FROUND: |
| 1304 | case ISD::FROUNDEVEN: |
| 1305 | case ISD::FTRUNC: |
| 1306 | case ISD::FSQRT: |
| 1307 | if (SDValue Expanded = TLI.expandVectorNaryOpBySplitting(Node, DAG)) { |
| 1308 | Results.push_back(Elt: Expanded); |
| 1309 | return; |
| 1310 | } |
| 1311 | break; |
| 1312 | } |
| 1313 | |
| 1314 | SDValue Unrolled = DAG.UnrollVectorOp(N: Node); |
| 1315 | if (Node->getNumValues() == 1) { |
| 1316 | Results.push_back(Elt: Unrolled); |
| 1317 | } else { |
| 1318 | assert(Node->getNumValues() == Unrolled->getNumValues() && |
| 1319 | "VectorLegalizer Expand returned wrong number of results!" ); |
| 1320 | for (unsigned I = 0, E = Unrolled->getNumValues(); I != E; ++I) |
| 1321 | Results.push_back(Elt: Unrolled.getValue(R: I)); |
| 1322 | } |
| 1323 | } |
| 1324 | |
| 1325 | SDValue VectorLegalizer::ExpandSELECT(SDNode *Node) { |
| 1326 | // Lower a select instruction where the condition is a scalar and the |
| 1327 | // operands are vectors. Lower this select to VSELECT and implement it |
| 1328 | // using XOR AND OR. The selector bit is broadcasted. |
| 1329 | EVT VT = Node->getValueType(ResNo: 0); |
| 1330 | SDLoc DL(Node); |
| 1331 | |
| 1332 | SDValue Mask = Node->getOperand(Num: 0); |
| 1333 | SDValue Op1 = Node->getOperand(Num: 1); |
| 1334 | SDValue Op2 = Node->getOperand(Num: 2); |
| 1335 | |
| 1336 | assert(VT.isVector() && !Mask.getValueType().isVector() |
| 1337 | && Op1.getValueType() == Op2.getValueType() && "Invalid type" ); |
| 1338 | |
| 1339 | // If we can't even use the basic vector operations of |
| 1340 | // AND,OR,XOR, we will have to scalarize the op. |
| 1341 | // Notice that the operation may be 'promoted' which means that it is |
| 1342 | // 'bitcasted' to another type which is handled. |
| 1343 | // Also, we need to be able to construct a splat vector using either |
| 1344 | // BUILD_VECTOR or SPLAT_VECTOR. |
| 1345 | // FIXME: Should we also permit fixed-length SPLAT_VECTOR as a fallback to |
| 1346 | // BUILD_VECTOR? |
| 1347 | if (TLI.getOperationAction(Op: ISD::AND, VT) == TargetLowering::Expand || |
| 1348 | TLI.getOperationAction(Op: ISD::XOR, VT) == TargetLowering::Expand || |
| 1349 | TLI.getOperationAction(Op: ISD::OR, VT) == TargetLowering::Expand || |
| 1350 | TLI.getOperationAction(Op: VT.isFixedLengthVector() ? ISD::BUILD_VECTOR |
| 1351 | : ISD::SPLAT_VECTOR, |
| 1352 | VT) == TargetLowering::Expand) |
| 1353 | return SDValue(); |
| 1354 | |
| 1355 | // Generate a mask operand. |
| 1356 | EVT MaskTy = VT.changeVectorElementTypeToInteger(); |
| 1357 | |
| 1358 | // What is the size of each element in the vector mask. |
| 1359 | EVT BitTy = MaskTy.getScalarType(); |
| 1360 | |
| 1361 | Mask = DAG.getSelect(DL, VT: BitTy, Cond: Mask, LHS: DAG.getAllOnesConstant(DL, VT: BitTy), |
| 1362 | RHS: DAG.getConstant(Val: 0, DL, VT: BitTy)); |
| 1363 | |
| 1364 | // Broadcast the mask so that the entire vector is all one or all zero. |
| 1365 | Mask = DAG.getSplat(VT: MaskTy, DL, Op: Mask); |
| 1366 | |
| 1367 | // Bitcast the operands to be the same type as the mask. |
| 1368 | // This is needed when we select between FP types because |
| 1369 | // the mask is a vector of integers. |
| 1370 | Op1 = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: MaskTy, Operand: Op1); |
| 1371 | Op2 = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: MaskTy, Operand: Op2); |
| 1372 | |
| 1373 | SDValue NotMask = DAG.getNOT(DL, Val: Mask, VT: MaskTy); |
| 1374 | |
| 1375 | Op1 = DAG.getNode(Opcode: ISD::AND, DL, VT: MaskTy, N1: Op1, N2: Mask); |
| 1376 | Op2 = DAG.getNode(Opcode: ISD::AND, DL, VT: MaskTy, N1: Op2, N2: NotMask); |
| 1377 | SDValue Val = DAG.getNode(Opcode: ISD::OR, DL, VT: MaskTy, N1: Op1, N2: Op2); |
| 1378 | return DAG.getNode(Opcode: ISD::BITCAST, DL, VT: Node->getValueType(ResNo: 0), Operand: Val); |
| 1379 | } |
| 1380 | |
| 1381 | SDValue VectorLegalizer::ExpandSEXTINREG(SDNode *Node) { |
| 1382 | EVT VT = Node->getValueType(ResNo: 0); |
| 1383 | |
| 1384 | // Make sure that the SRA and SHL instructions are available. |
| 1385 | if (TLI.getOperationAction(Op: ISD::SRA, VT) == TargetLowering::Expand || |
| 1386 | TLI.getOperationAction(Op: ISD::SHL, VT) == TargetLowering::Expand) |
| 1387 | return SDValue(); |
| 1388 | |
| 1389 | SDLoc DL(Node); |
| 1390 | EVT OrigTy = cast<VTSDNode>(Val: Node->getOperand(Num: 1))->getVT(); |
| 1391 | |
| 1392 | unsigned BW = VT.getScalarSizeInBits(); |
| 1393 | unsigned OrigBW = OrigTy.getScalarSizeInBits(); |
| 1394 | SDValue ShiftSz = DAG.getConstant(Val: BW - OrigBW, DL, VT); |
| 1395 | |
| 1396 | SDValue Op = DAG.getNode(Opcode: ISD::SHL, DL, VT, N1: Node->getOperand(Num: 0), N2: ShiftSz); |
| 1397 | return DAG.getNode(Opcode: ISD::SRA, DL, VT, N1: Op, N2: ShiftSz); |
| 1398 | } |
| 1399 | |
| 1400 | // Generically expand a vector anyext in register to a shuffle of the relevant |
| 1401 | // lanes into the appropriate locations, with other lanes left undef. |
| 1402 | SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node) { |
| 1403 | SDLoc DL(Node); |
| 1404 | EVT VT = Node->getValueType(ResNo: 0); |
| 1405 | int NumElements = VT.getVectorNumElements(); |
| 1406 | SDValue Src = Node->getOperand(Num: 0); |
| 1407 | EVT SrcVT = Src.getValueType(); |
| 1408 | int NumSrcElements = SrcVT.getVectorNumElements(); |
| 1409 | |
| 1410 | // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector |
| 1411 | // into a larger vector type. |
| 1412 | if (SrcVT.bitsLE(VT)) { |
| 1413 | assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 && |
| 1414 | "ANY_EXTEND_VECTOR_INREG vector size mismatch" ); |
| 1415 | NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits(); |
| 1416 | SrcVT = EVT::getVectorVT(Context&: *DAG.getContext(), VT: SrcVT.getScalarType(), |
| 1417 | NumElements: NumSrcElements); |
| 1418 | Src = DAG.getInsertSubvector(DL, Vec: DAG.getUNDEF(VT: SrcVT), SubVec: Src, Idx: 0); |
| 1419 | } |
| 1420 | |
| 1421 | // Build a base mask of undef shuffles. |
| 1422 | SmallVector<int, 16> ShuffleMask; |
| 1423 | ShuffleMask.resize(N: NumSrcElements, NV: -1); |
| 1424 | |
| 1425 | // Place the extended lanes into the correct locations. |
| 1426 | int ExtLaneScale = NumSrcElements / NumElements; |
| 1427 | int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; |
| 1428 | for (int i = 0; i < NumElements; ++i) |
| 1429 | ShuffleMask[i * ExtLaneScale + EndianOffset] = i; |
| 1430 | |
| 1431 | return DAG.getNode( |
| 1432 | Opcode: ISD::BITCAST, DL, VT, |
| 1433 | Operand: DAG.getVectorShuffle(VT: SrcVT, dl: DL, N1: Src, N2: DAG.getUNDEF(VT: SrcVT), Mask: ShuffleMask)); |
| 1434 | } |
| 1435 | |
| 1436 | SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node) { |
| 1437 | SDLoc DL(Node); |
| 1438 | EVT VT = Node->getValueType(ResNo: 0); |
| 1439 | SDValue Src = Node->getOperand(Num: 0); |
| 1440 | EVT SrcVT = Src.getValueType(); |
| 1441 | |
| 1442 | // First build an any-extend node which can be legalized above when we |
| 1443 | // recurse through it. |
| 1444 | SDValue Op = DAG.getNode(Opcode: ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Operand: Src); |
| 1445 | |
| 1446 | // Now we need sign extend. Do this by shifting the elements. Even if these |
| 1447 | // aren't legal operations, they have a better chance of being legalized |
| 1448 | // without full scalarization than the sign extension does. |
| 1449 | unsigned EltWidth = VT.getScalarSizeInBits(); |
| 1450 | unsigned SrcEltWidth = SrcVT.getScalarSizeInBits(); |
| 1451 | SDValue ShiftAmount = DAG.getConstant(Val: EltWidth - SrcEltWidth, DL, VT); |
| 1452 | return DAG.getNode(Opcode: ISD::SRA, DL, VT, |
| 1453 | N1: DAG.getNode(Opcode: ISD::SHL, DL, VT, N1: Op, N2: ShiftAmount), |
| 1454 | N2: ShiftAmount); |
| 1455 | } |
| 1456 | |
| 1457 | // Generically expand a vector zext in register to a shuffle of the relevant |
| 1458 | // lanes into the appropriate locations, a blend of zero into the high bits, |
| 1459 | // and a bitcast to the wider element type. |
| 1460 | SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node) { |
| 1461 | SDLoc DL(Node); |
| 1462 | EVT VT = Node->getValueType(ResNo: 0); |
| 1463 | int NumElements = VT.getVectorNumElements(); |
| 1464 | SDValue Src = Node->getOperand(Num: 0); |
| 1465 | EVT SrcVT = Src.getValueType(); |
| 1466 | int NumSrcElements = SrcVT.getVectorNumElements(); |
| 1467 | |
| 1468 | // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector |
| 1469 | // into a larger vector type. |
| 1470 | if (SrcVT.bitsLE(VT)) { |
| 1471 | assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 && |
| 1472 | "ZERO_EXTEND_VECTOR_INREG vector size mismatch" ); |
| 1473 | NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits(); |
| 1474 | SrcVT = EVT::getVectorVT(Context&: *DAG.getContext(), VT: SrcVT.getScalarType(), |
| 1475 | NumElements: NumSrcElements); |
| 1476 | Src = DAG.getInsertSubvector(DL, Vec: DAG.getUNDEF(VT: SrcVT), SubVec: Src, Idx: 0); |
| 1477 | } |
| 1478 | |
| 1479 | // Build up a zero vector to blend into this one. |
| 1480 | SDValue Zero = DAG.getConstant(Val: 0, DL, VT: SrcVT); |
| 1481 | |
| 1482 | // Shuffle the incoming lanes into the correct position, and pull all other |
| 1483 | // lanes from the zero vector. |
| 1484 | auto ShuffleMask = llvm::to_vector<16>(Range: llvm::seq<int>(Begin: 0, End: NumSrcElements)); |
| 1485 | |
| 1486 | int ExtLaneScale = NumSrcElements / NumElements; |
| 1487 | int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; |
| 1488 | for (int i = 0; i < NumElements; ++i) |
| 1489 | ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; |
| 1490 | |
| 1491 | return DAG.getNode(Opcode: ISD::BITCAST, DL, VT, |
| 1492 | Operand: DAG.getVectorShuffle(VT: SrcVT, dl: DL, N1: Zero, N2: Src, Mask: ShuffleMask)); |
| 1493 | } |
| 1494 | |
| 1495 | static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) { |
| 1496 | int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; |
| 1497 | for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) |
| 1498 | for (int J = ScalarSizeInBytes - 1; J >= 0; --J) |
| 1499 | ShuffleMask.push_back(Elt: (I * ScalarSizeInBytes) + J); |
| 1500 | } |
| 1501 | |
| 1502 | SDValue VectorLegalizer::ExpandBSWAP(SDNode *Node) { |
| 1503 | EVT VT = Node->getValueType(ResNo: 0); |
| 1504 | |
| 1505 | // Scalable vectors can't use shuffle expansion. |
| 1506 | if (VT.isScalableVector()) |
| 1507 | return TLI.expandBSWAP(N: Node, DAG); |
| 1508 | |
| 1509 | // Generate a byte wise shuffle mask for the BSWAP. |
| 1510 | SmallVector<int, 16> ShuffleMask; |
| 1511 | createBSWAPShuffleMask(VT, ShuffleMask); |
| 1512 | EVT ByteVT = EVT::getVectorVT(Context&: *DAG.getContext(), VT: MVT::i8, NumElements: ShuffleMask.size()); |
| 1513 | |
| 1514 | // Only emit a shuffle if the mask is legal. |
| 1515 | if (TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) { |
| 1516 | SDLoc DL(Node); |
| 1517 | SDValue Op = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: ByteVT, Operand: Node->getOperand(Num: 0)); |
| 1518 | Op = DAG.getVectorShuffle(VT: ByteVT, dl: DL, N1: Op, N2: DAG.getUNDEF(VT: ByteVT), Mask: ShuffleMask); |
| 1519 | return DAG.getNode(Opcode: ISD::BITCAST, DL, VT, Operand: Op); |
| 1520 | } |
| 1521 | |
| 1522 | // If we have the appropriate vector bit operations, it is better to use them |
| 1523 | // than unrolling and expanding each component. |
| 1524 | if (TLI.isOperationLegalOrCustom(Op: ISD::SHL, VT) && |
| 1525 | TLI.isOperationLegalOrCustom(Op: ISD::SRL, VT) && |
| 1526 | TLI.isOperationLegalOrCustomOrPromote(Op: ISD::AND, VT) && |
| 1527 | TLI.isOperationLegalOrCustomOrPromote(Op: ISD::OR, VT)) |
| 1528 | return TLI.expandBSWAP(N: Node, DAG); |
| 1529 | |
| 1530 | // Otherwise let the caller unroll. |
| 1531 | return SDValue(); |
| 1532 | } |
| 1533 | |
| 1534 | SDValue VectorLegalizer::ExpandBITREVERSE(SDNode *Node) { |
| 1535 | EVT VT = Node->getValueType(ResNo: 0); |
| 1536 | |
| 1537 | // We can't unroll or use shuffles for scalable vectors. |
| 1538 | if (VT.isScalableVector()) |
| 1539 | return TLI.expandBITREVERSE(N: Node, DAG); |
| 1540 | |
| 1541 | // If we have the scalar operation, it's probably cheaper to unroll it. |
| 1542 | if (TLI.isOperationLegalOrCustom(Op: ISD::BITREVERSE, VT: VT.getScalarType())) |
| 1543 | return SDValue(); |
| 1544 | |
| 1545 | // If the vector element width is a whole number of bytes, test if its legal |
| 1546 | // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte |
| 1547 | // vector. This greatly reduces the number of bit shifts necessary. |
| 1548 | unsigned ScalarSizeInBits = VT.getScalarSizeInBits(); |
| 1549 | if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) { |
| 1550 | SmallVector<int, 16> BSWAPMask; |
| 1551 | createBSWAPShuffleMask(VT, ShuffleMask&: BSWAPMask); |
| 1552 | |
| 1553 | EVT ByteVT = EVT::getVectorVT(Context&: *DAG.getContext(), VT: MVT::i8, NumElements: BSWAPMask.size()); |
| 1554 | if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) && |
| 1555 | (TLI.isOperationLegalOrCustom(Op: ISD::BITREVERSE, VT: ByteVT) || |
| 1556 | (TLI.isOperationLegalOrCustom(Op: ISD::SHL, VT: ByteVT) && |
| 1557 | TLI.isOperationLegalOrCustom(Op: ISD::SRL, VT: ByteVT) && |
| 1558 | TLI.isOperationLegalOrCustomOrPromote(Op: ISD::AND, VT: ByteVT) && |
| 1559 | TLI.isOperationLegalOrCustomOrPromote(Op: ISD::OR, VT: ByteVT)))) { |
| 1560 | SDLoc DL(Node); |
| 1561 | SDValue Op = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: ByteVT, Operand: Node->getOperand(Num: 0)); |
| 1562 | Op = DAG.getVectorShuffle(VT: ByteVT, dl: DL, N1: Op, N2: DAG.getUNDEF(VT: ByteVT), |
| 1563 | Mask: BSWAPMask); |
| 1564 | Op = DAG.getNode(Opcode: ISD::BITREVERSE, DL, VT: ByteVT, Operand: Op); |
| 1565 | Op = DAG.getNode(Opcode: ISD::BITCAST, DL, VT, Operand: Op); |
| 1566 | return Op; |
| 1567 | } |
| 1568 | } |
| 1569 | |
| 1570 | // If we have the appropriate vector bit operations, it is better to use them |
| 1571 | // than unrolling and expanding each component. |
| 1572 | if (TLI.isOperationLegalOrCustom(Op: ISD::SHL, VT) && |
| 1573 | TLI.isOperationLegalOrCustom(Op: ISD::SRL, VT) && |
| 1574 | TLI.isOperationLegalOrCustomOrPromote(Op: ISD::AND, VT) && |
| 1575 | TLI.isOperationLegalOrCustomOrPromote(Op: ISD::OR, VT)) |
| 1576 | return TLI.expandBITREVERSE(N: Node, DAG); |
| 1577 | |
| 1578 | // Otherwise unroll. |
| 1579 | return SDValue(); |
| 1580 | } |
| 1581 | |
| 1582 | SDValue VectorLegalizer::ExpandVSELECT(SDNode *Node) { |
| 1583 | // Implement VSELECT in terms of XOR, AND, OR |
| 1584 | // on platforms which do not support blend natively. |
| 1585 | SDLoc DL(Node); |
| 1586 | |
| 1587 | SDValue Mask = Node->getOperand(Num: 0); |
| 1588 | SDValue Op1 = Node->getOperand(Num: 1); |
| 1589 | SDValue Op2 = Node->getOperand(Num: 2); |
| 1590 | |
| 1591 | EVT VT = Mask.getValueType(); |
| 1592 | |
| 1593 | // If we can't even use the basic vector operations of |
| 1594 | // AND,OR,XOR, we will have to scalarize the op. |
| 1595 | // Notice that the operation may be 'promoted' which means that it is |
| 1596 | // 'bitcasted' to another type which is handled. |
| 1597 | if (TLI.getOperationAction(Op: ISD::AND, VT) == TargetLowering::Expand || |
| 1598 | TLI.getOperationAction(Op: ISD::XOR, VT) == TargetLowering::Expand || |
| 1599 | TLI.getOperationAction(Op: ISD::OR, VT) == TargetLowering::Expand) |
| 1600 | return SDValue(); |
| 1601 | |
| 1602 | // This operation also isn't safe with AND, OR, XOR when the boolean type is |
| 1603 | // 0/1 and the select operands aren't also booleans, as we need an all-ones |
| 1604 | // vector constant to mask with. |
| 1605 | // FIXME: Sign extend 1 to all ones if that's legal on the target. |
| 1606 | auto BoolContents = TLI.getBooleanContents(Type: Op1.getValueType()); |
| 1607 | if (BoolContents != TargetLowering::ZeroOrNegativeOneBooleanContent && |
| 1608 | !(BoolContents == TargetLowering::ZeroOrOneBooleanContent && |
| 1609 | Op1.getValueType().getVectorElementType() == MVT::i1)) |
| 1610 | return SDValue(); |
| 1611 | |
| 1612 | // If the mask and the type are different sizes, unroll the vector op. This |
| 1613 | // can occur when getSetCCResultType returns something that is different in |
| 1614 | // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. |
| 1615 | if (VT.getSizeInBits() != Op1.getValueSizeInBits()) |
| 1616 | return SDValue(); |
| 1617 | |
| 1618 | // Bitcast the operands to be the same type as the mask. |
| 1619 | // This is needed when we select between FP types because |
| 1620 | // the mask is a vector of integers. |
| 1621 | Op1 = DAG.getNode(Opcode: ISD::BITCAST, DL, VT, Operand: Op1); |
| 1622 | Op2 = DAG.getNode(Opcode: ISD::BITCAST, DL, VT, Operand: Op2); |
| 1623 | |
| 1624 | SDValue NotMask = DAG.getNOT(DL, Val: Mask, VT); |
| 1625 | |
| 1626 | Op1 = DAG.getNode(Opcode: ISD::AND, DL, VT, N1: Op1, N2: Mask); |
| 1627 | Op2 = DAG.getNode(Opcode: ISD::AND, DL, VT, N1: Op2, N2: NotMask); |
| 1628 | SDValue Val = DAG.getNode(Opcode: ISD::OR, DL, VT, N1: Op1, N2: Op2); |
| 1629 | return DAG.getNode(Opcode: ISD::BITCAST, DL, VT: Node->getValueType(ResNo: 0), Operand: Val); |
| 1630 | } |
| 1631 | |
| 1632 | SDValue VectorLegalizer::ExpandVP_SELECT(SDNode *Node) { |
| 1633 | // Implement VP_SELECT in terms of VP_XOR, VP_AND and VP_OR on platforms which |
| 1634 | // do not support it natively. |
| 1635 | SDLoc DL(Node); |
| 1636 | |
| 1637 | SDValue Mask = Node->getOperand(Num: 0); |
| 1638 | SDValue Op1 = Node->getOperand(Num: 1); |
| 1639 | SDValue Op2 = Node->getOperand(Num: 2); |
| 1640 | SDValue EVL = Node->getOperand(Num: 3); |
| 1641 | |
| 1642 | EVT VT = Mask.getValueType(); |
| 1643 | |
| 1644 | // If we can't even use the basic vector operations of |
| 1645 | // VP_AND,VP_OR,VP_XOR, we will have to scalarize the op. |
| 1646 | if (TLI.getOperationAction(Op: ISD::VP_AND, VT) == TargetLowering::Expand || |
| 1647 | TLI.getOperationAction(Op: ISD::VP_XOR, VT) == TargetLowering::Expand || |
| 1648 | TLI.getOperationAction(Op: ISD::VP_OR, VT) == TargetLowering::Expand) |
| 1649 | return SDValue(); |
| 1650 | |
| 1651 | // This operation also isn't safe when the operands aren't also booleans. |
| 1652 | if (Op1.getValueType().getVectorElementType() != MVT::i1) |
| 1653 | return SDValue(); |
| 1654 | |
| 1655 | SDValue Ones = DAG.getAllOnesConstant(DL, VT); |
| 1656 | SDValue NotMask = DAG.getNode(Opcode: ISD::VP_XOR, DL, VT, N1: Mask, N2: Ones, N3: Ones, N4: EVL); |
| 1657 | |
| 1658 | Op1 = DAG.getNode(Opcode: ISD::VP_AND, DL, VT, N1: Op1, N2: Mask, N3: Ones, N4: EVL); |
| 1659 | Op2 = DAG.getNode(Opcode: ISD::VP_AND, DL, VT, N1: Op2, N2: NotMask, N3: Ones, N4: EVL); |
| 1660 | return DAG.getNode(Opcode: ISD::VP_OR, DL, VT, N1: Op1, N2: Op2, N3: Ones, N4: EVL); |
| 1661 | } |
| 1662 | |
| 1663 | SDValue VectorLegalizer::ExpandVP_MERGE(SDNode *Node) { |
| 1664 | // Implement VP_MERGE in terms of VSELECT. Construct a mask where vector |
| 1665 | // indices less than the EVL/pivot are true. Combine that with the original |
| 1666 | // mask for a full-length mask. Use a full-length VSELECT to select between |
| 1667 | // the true and false values. |
| 1668 | SDLoc DL(Node); |
| 1669 | |
| 1670 | SDValue Mask = Node->getOperand(Num: 0); |
| 1671 | SDValue Op1 = Node->getOperand(Num: 1); |
| 1672 | SDValue Op2 = Node->getOperand(Num: 2); |
| 1673 | SDValue EVL = Node->getOperand(Num: 3); |
| 1674 | |
| 1675 | EVT MaskVT = Mask.getValueType(); |
| 1676 | bool IsFixedLen = MaskVT.isFixedLengthVector(); |
| 1677 | |
| 1678 | EVT EVLVecVT = EVT::getVectorVT(Context&: *DAG.getContext(), VT: EVL.getValueType(), |
| 1679 | EC: MaskVT.getVectorElementCount()); |
| 1680 | |
| 1681 | // If we can't construct the EVL mask efficiently, it's better to unroll. |
| 1682 | if ((IsFixedLen && |
| 1683 | !TLI.isOperationLegalOrCustom(Op: ISD::BUILD_VECTOR, VT: EVLVecVT)) || |
| 1684 | (!IsFixedLen && |
| 1685 | (!TLI.isOperationLegalOrCustom(Op: ISD::STEP_VECTOR, VT: EVLVecVT) || |
| 1686 | !TLI.isOperationLegalOrCustom(Op: ISD::SPLAT_VECTOR, VT: EVLVecVT)))) |
| 1687 | return SDValue(); |
| 1688 | |
| 1689 | // If using a SETCC would result in a different type than the mask type, |
| 1690 | // unroll. |
| 1691 | if (TLI.getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), |
| 1692 | VT: EVLVecVT) != MaskVT) |
| 1693 | return SDValue(); |
| 1694 | |
| 1695 | SDValue StepVec = DAG.getStepVector(DL, ResVT: EVLVecVT); |
| 1696 | SDValue SplatEVL = DAG.getSplat(VT: EVLVecVT, DL, Op: EVL); |
| 1697 | SDValue EVLMask = |
| 1698 | DAG.getSetCC(DL, VT: MaskVT, LHS: StepVec, RHS: SplatEVL, Cond: ISD::CondCode::SETULT); |
| 1699 | |
| 1700 | SDValue FullMask = DAG.getNode(Opcode: ISD::AND, DL, VT: MaskVT, N1: Mask, N2: EVLMask); |
| 1701 | return DAG.getSelect(DL, VT: Node->getValueType(ResNo: 0), Cond: FullMask, LHS: Op1, RHS: Op2); |
| 1702 | } |
| 1703 | |
| 1704 | SDValue VectorLegalizer::ExpandVP_REM(SDNode *Node) { |
| 1705 | // Implement VP_SREM/UREM in terms of VP_SDIV/VP_UDIV, VP_MUL, VP_SUB. |
| 1706 | EVT VT = Node->getValueType(ResNo: 0); |
| 1707 | |
| 1708 | unsigned DivOpc = Node->getOpcode() == ISD::VP_SREM ? ISD::VP_SDIV : ISD::VP_UDIV; |
| 1709 | |
| 1710 | if (!TLI.isOperationLegalOrCustom(Op: DivOpc, VT) || |
| 1711 | !TLI.isOperationLegalOrCustom(Op: ISD::VP_MUL, VT) || |
| 1712 | !TLI.isOperationLegalOrCustom(Op: ISD::VP_SUB, VT)) |
| 1713 | return SDValue(); |
| 1714 | |
| 1715 | SDLoc DL(Node); |
| 1716 | |
| 1717 | SDValue Dividend = Node->getOperand(Num: 0); |
| 1718 | SDValue Divisor = Node->getOperand(Num: 1); |
| 1719 | SDValue Mask = Node->getOperand(Num: 2); |
| 1720 | SDValue EVL = Node->getOperand(Num: 3); |
| 1721 | |
| 1722 | // X % Y -> X-X/Y*Y |
| 1723 | SDValue Div = DAG.getNode(Opcode: DivOpc, DL, VT, N1: Dividend, N2: Divisor, N3: Mask, N4: EVL); |
| 1724 | SDValue Mul = DAG.getNode(Opcode: ISD::VP_MUL, DL, VT, N1: Divisor, N2: Div, N3: Mask, N4: EVL); |
| 1725 | return DAG.getNode(Opcode: ISD::VP_SUB, DL, VT, N1: Dividend, N2: Mul, N3: Mask, N4: EVL); |
| 1726 | } |
| 1727 | |
| 1728 | SDValue VectorLegalizer::ExpandVP_FNEG(SDNode *Node) { |
| 1729 | EVT VT = Node->getValueType(ResNo: 0); |
| 1730 | EVT IntVT = VT.changeVectorElementTypeToInteger(); |
| 1731 | |
| 1732 | if (!TLI.isOperationLegalOrCustom(Op: ISD::VP_XOR, VT: IntVT)) |
| 1733 | return SDValue(); |
| 1734 | |
| 1735 | SDValue Mask = Node->getOperand(Num: 1); |
| 1736 | SDValue EVL = Node->getOperand(Num: 2); |
| 1737 | |
| 1738 | SDLoc DL(Node); |
| 1739 | SDValue Cast = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: IntVT, Operand: Node->getOperand(Num: 0)); |
| 1740 | SDValue SignMask = DAG.getConstant( |
| 1741 | Val: APInt::getSignMask(BitWidth: IntVT.getScalarSizeInBits()), DL, VT: IntVT); |
| 1742 | SDValue Xor = DAG.getNode(Opcode: ISD::VP_XOR, DL, VT: IntVT, N1: Cast, N2: SignMask, N3: Mask, N4: EVL); |
| 1743 | return DAG.getNode(Opcode: ISD::BITCAST, DL, VT, Operand: Xor); |
| 1744 | } |
| 1745 | |
| 1746 | SDValue VectorLegalizer::ExpandVP_FABS(SDNode *Node) { |
| 1747 | EVT VT = Node->getValueType(ResNo: 0); |
| 1748 | EVT IntVT = VT.changeVectorElementTypeToInteger(); |
| 1749 | |
| 1750 | if (!TLI.isOperationLegalOrCustom(Op: ISD::VP_AND, VT: IntVT)) |
| 1751 | return SDValue(); |
| 1752 | |
| 1753 | SDValue Mask = Node->getOperand(Num: 1); |
| 1754 | SDValue EVL = Node->getOperand(Num: 2); |
| 1755 | |
| 1756 | SDLoc DL(Node); |
| 1757 | SDValue Cast = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: IntVT, Operand: Node->getOperand(Num: 0)); |
| 1758 | SDValue ClearSignMask = DAG.getConstant( |
| 1759 | Val: APInt::getSignedMaxValue(numBits: IntVT.getScalarSizeInBits()), DL, VT: IntVT); |
| 1760 | SDValue ClearSign = |
| 1761 | DAG.getNode(Opcode: ISD::VP_AND, DL, VT: IntVT, N1: Cast, N2: ClearSignMask, N3: Mask, N4: EVL); |
| 1762 | return DAG.getNode(Opcode: ISD::BITCAST, DL, VT, Operand: ClearSign); |
| 1763 | } |
| 1764 | |
| 1765 | SDValue VectorLegalizer::ExpandVP_FCOPYSIGN(SDNode *Node) { |
| 1766 | EVT VT = Node->getValueType(ResNo: 0); |
| 1767 | |
| 1768 | if (VT != Node->getOperand(Num: 1).getValueType()) |
| 1769 | return SDValue(); |
| 1770 | |
| 1771 | EVT IntVT = VT.changeVectorElementTypeToInteger(); |
| 1772 | if (!TLI.isOperationLegalOrCustom(Op: ISD::VP_AND, VT: IntVT) || |
| 1773 | !TLI.isOperationLegalOrCustom(Op: ISD::VP_XOR, VT: IntVT)) |
| 1774 | return SDValue(); |
| 1775 | |
| 1776 | SDValue Mask = Node->getOperand(Num: 2); |
| 1777 | SDValue EVL = Node->getOperand(Num: 3); |
| 1778 | |
| 1779 | SDLoc DL(Node); |
| 1780 | SDValue Mag = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: IntVT, Operand: Node->getOperand(Num: 0)); |
| 1781 | SDValue Sign = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: IntVT, Operand: Node->getOperand(Num: 1)); |
| 1782 | |
| 1783 | SDValue SignMask = DAG.getConstant( |
| 1784 | Val: APInt::getSignMask(BitWidth: IntVT.getScalarSizeInBits()), DL, VT: IntVT); |
| 1785 | SDValue SignBit = |
| 1786 | DAG.getNode(Opcode: ISD::VP_AND, DL, VT: IntVT, N1: Sign, N2: SignMask, N3: Mask, N4: EVL); |
| 1787 | |
| 1788 | SDValue ClearSignMask = DAG.getConstant( |
| 1789 | Val: APInt::getSignedMaxValue(numBits: IntVT.getScalarSizeInBits()), DL, VT: IntVT); |
| 1790 | SDValue ClearedSign = |
| 1791 | DAG.getNode(Opcode: ISD::VP_AND, DL, VT: IntVT, N1: Mag, N2: ClearSignMask, N3: Mask, N4: EVL); |
| 1792 | |
| 1793 | SDValue CopiedSign = DAG.getNode(Opcode: ISD::VP_OR, DL, VT: IntVT, N1: ClearedSign, N2: SignBit, |
| 1794 | N3: Mask, N4: EVL, Flags: SDNodeFlags::Disjoint); |
| 1795 | |
| 1796 | return DAG.getNode(Opcode: ISD::BITCAST, DL, VT, Operand: CopiedSign); |
| 1797 | } |
| 1798 | |
| 1799 | void VectorLegalizer::ExpandFP_TO_UINT(SDNode *Node, |
| 1800 | SmallVectorImpl<SDValue> &Results) { |
| 1801 | // Attempt to expand using TargetLowering. |
| 1802 | SDValue Result, Chain; |
| 1803 | if (TLI.expandFP_TO_UINT(N: Node, Result, Chain, DAG)) { |
| 1804 | Results.push_back(Elt: Result); |
| 1805 | if (Node->isStrictFPOpcode()) |
| 1806 | Results.push_back(Elt: Chain); |
| 1807 | return; |
| 1808 | } |
| 1809 | |
| 1810 | // Otherwise go ahead and unroll. |
| 1811 | if (Node->isStrictFPOpcode()) { |
| 1812 | UnrollStrictFPOp(Node, Results); |
| 1813 | return; |
| 1814 | } |
| 1815 | |
| 1816 | Results.push_back(Elt: DAG.UnrollVectorOp(N: Node)); |
| 1817 | } |
| 1818 | |
| 1819 | void VectorLegalizer::ExpandUINT_TO_FLOAT(SDNode *Node, |
| 1820 | SmallVectorImpl<SDValue> &Results) { |
| 1821 | bool IsStrict = Node->isStrictFPOpcode(); |
| 1822 | unsigned OpNo = IsStrict ? 1 : 0; |
| 1823 | SDValue Src = Node->getOperand(Num: OpNo); |
| 1824 | EVT SrcVT = Src.getValueType(); |
| 1825 | EVT DstVT = Node->getValueType(ResNo: 0); |
| 1826 | SDLoc DL(Node); |
| 1827 | |
| 1828 | // Attempt to expand using TargetLowering. |
| 1829 | SDValue Result; |
| 1830 | SDValue Chain; |
| 1831 | if (TLI.expandUINT_TO_FP(N: Node, Result, Chain, DAG)) { |
| 1832 | Results.push_back(Elt: Result); |
| 1833 | if (IsStrict) |
| 1834 | Results.push_back(Elt: Chain); |
| 1835 | return; |
| 1836 | } |
| 1837 | |
| 1838 | // Make sure that the SINT_TO_FP and SRL instructions are available. |
| 1839 | if (((!IsStrict && TLI.getOperationAction(Op: ISD::SINT_TO_FP, VT: SrcVT) == |
| 1840 | TargetLowering::Expand) || |
| 1841 | (IsStrict && TLI.getOperationAction(Op: ISD::STRICT_SINT_TO_FP, VT: SrcVT) == |
| 1842 | TargetLowering::Expand)) || |
| 1843 | TLI.getOperationAction(Op: ISD::SRL, VT: SrcVT) == TargetLowering::Expand) { |
| 1844 | if (IsStrict) { |
| 1845 | UnrollStrictFPOp(Node, Results); |
| 1846 | return; |
| 1847 | } |
| 1848 | |
| 1849 | Results.push_back(Elt: DAG.UnrollVectorOp(N: Node)); |
| 1850 | return; |
| 1851 | } |
| 1852 | |
| 1853 | unsigned BW = SrcVT.getScalarSizeInBits(); |
| 1854 | assert((BW == 64 || BW == 32) && |
| 1855 | "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide" ); |
| 1856 | |
| 1857 | // If STRICT_/FMUL is not supported by the target (in case of f16) replace the |
| 1858 | // UINT_TO_FP with a larger float and round to the smaller type |
| 1859 | if ((!IsStrict && !TLI.isOperationLegalOrCustom(Op: ISD::FMUL, VT: DstVT)) || |
| 1860 | (IsStrict && !TLI.isOperationLegalOrCustom(Op: ISD::STRICT_FMUL, VT: DstVT))) { |
| 1861 | EVT FPVT = BW == 32 ? MVT::f32 : MVT::f64; |
| 1862 | SDValue UIToFP; |
| 1863 | SDValue Result; |
| 1864 | SDValue TargetZero = DAG.getIntPtrConstant(Val: 0, DL, /*isTarget=*/true); |
| 1865 | EVT FloatVecVT = SrcVT.changeVectorElementType(EltVT: FPVT); |
| 1866 | if (IsStrict) { |
| 1867 | UIToFP = DAG.getNode(Opcode: ISD::STRICT_UINT_TO_FP, DL, ResultTys: {FloatVecVT, MVT::Other}, |
| 1868 | Ops: {Node->getOperand(Num: 0), Src}); |
| 1869 | Result = DAG.getNode(Opcode: ISD::STRICT_FP_ROUND, DL, ResultTys: {DstVT, MVT::Other}, |
| 1870 | Ops: {Node->getOperand(Num: 0), UIToFP, TargetZero}); |
| 1871 | Results.push_back(Elt: Result); |
| 1872 | Results.push_back(Elt: Result.getValue(R: 1)); |
| 1873 | } else { |
| 1874 | UIToFP = DAG.getNode(Opcode: ISD::UINT_TO_FP, DL, VT: FloatVecVT, Operand: Src); |
| 1875 | Result = DAG.getNode(Opcode: ISD::FP_ROUND, DL, VT: DstVT, N1: UIToFP, N2: TargetZero); |
| 1876 | Results.push_back(Elt: Result); |
| 1877 | } |
| 1878 | |
| 1879 | return; |
| 1880 | } |
| 1881 | |
| 1882 | SDValue HalfWord = DAG.getConstant(Val: BW / 2, DL, VT: SrcVT); |
| 1883 | |
| 1884 | // Constants to clear the upper part of the word. |
| 1885 | // Notice that we can also use SHL+SHR, but using a constant is slightly |
| 1886 | // faster on x86. |
| 1887 | uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF; |
| 1888 | SDValue HalfWordMask = DAG.getConstant(Val: HWMask, DL, VT: SrcVT); |
| 1889 | |
| 1890 | // Two to the power of half-word-size. |
| 1891 | SDValue TWOHW = DAG.getConstantFP(Val: 1ULL << (BW / 2), DL, VT: DstVT); |
| 1892 | |
| 1893 | // Clear upper part of LO, lower HI |
| 1894 | SDValue HI = DAG.getNode(Opcode: ISD::SRL, DL, VT: SrcVT, N1: Src, N2: HalfWord); |
| 1895 | SDValue LO = DAG.getNode(Opcode: ISD::AND, DL, VT: SrcVT, N1: Src, N2: HalfWordMask); |
| 1896 | |
| 1897 | if (IsStrict) { |
| 1898 | // Convert hi and lo to floats |
| 1899 | // Convert the hi part back to the upper values |
| 1900 | // TODO: Can any fast-math-flags be set on these nodes? |
| 1901 | SDValue fHI = DAG.getNode(Opcode: ISD::STRICT_SINT_TO_FP, DL, ResultTys: {DstVT, MVT::Other}, |
| 1902 | Ops: {Node->getOperand(Num: 0), HI}); |
| 1903 | fHI = DAG.getNode(Opcode: ISD::STRICT_FMUL, DL, ResultTys: {DstVT, MVT::Other}, |
| 1904 | Ops: {fHI.getValue(R: 1), fHI, TWOHW}); |
| 1905 | SDValue fLO = DAG.getNode(Opcode: ISD::STRICT_SINT_TO_FP, DL, ResultTys: {DstVT, MVT::Other}, |
| 1906 | Ops: {Node->getOperand(Num: 0), LO}); |
| 1907 | |
| 1908 | SDValue TF = DAG.getNode(Opcode: ISD::TokenFactor, DL, VT: MVT::Other, N1: fHI.getValue(R: 1), |
| 1909 | N2: fLO.getValue(R: 1)); |
| 1910 | |
| 1911 | // Add the two halves |
| 1912 | SDValue Result = |
| 1913 | DAG.getNode(Opcode: ISD::STRICT_FADD, DL, ResultTys: {DstVT, MVT::Other}, Ops: {TF, fHI, fLO}); |
| 1914 | |
| 1915 | Results.push_back(Elt: Result); |
| 1916 | Results.push_back(Elt: Result.getValue(R: 1)); |
| 1917 | return; |
| 1918 | } |
| 1919 | |
| 1920 | // Convert hi and lo to floats |
| 1921 | // Convert the hi part back to the upper values |
| 1922 | // TODO: Can any fast-math-flags be set on these nodes? |
| 1923 | SDValue fHI = DAG.getNode(Opcode: ISD::SINT_TO_FP, DL, VT: DstVT, Operand: HI); |
| 1924 | fHI = DAG.getNode(Opcode: ISD::FMUL, DL, VT: DstVT, N1: fHI, N2: TWOHW); |
| 1925 | SDValue fLO = DAG.getNode(Opcode: ISD::SINT_TO_FP, DL, VT: DstVT, Operand: LO); |
| 1926 | |
| 1927 | // Add the two halves |
| 1928 | Results.push_back(Elt: DAG.getNode(Opcode: ISD::FADD, DL, VT: DstVT, N1: fHI, N2: fLO)); |
| 1929 | } |
| 1930 | |
| 1931 | SDValue VectorLegalizer::ExpandFNEG(SDNode *Node) { |
| 1932 | EVT VT = Node->getValueType(ResNo: 0); |
| 1933 | EVT IntVT = VT.changeVectorElementTypeToInteger(); |
| 1934 | |
| 1935 | if (!TLI.isOperationLegalOrCustom(Op: ISD::XOR, VT: IntVT)) |
| 1936 | return SDValue(); |
| 1937 | |
| 1938 | // FIXME: The FSUB check is here to force unrolling v1f64 vectors on AArch64. |
| 1939 | if (!TLI.isOperationLegalOrCustomOrPromote(Op: ISD::FSUB, VT) && |
| 1940 | !VT.isScalableVector()) |
| 1941 | return SDValue(); |
| 1942 | |
| 1943 | SDLoc DL(Node); |
| 1944 | SDValue Cast = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: IntVT, Operand: Node->getOperand(Num: 0)); |
| 1945 | SDValue SignMask = DAG.getConstant( |
| 1946 | Val: APInt::getSignMask(BitWidth: IntVT.getScalarSizeInBits()), DL, VT: IntVT); |
| 1947 | SDValue Xor = DAG.getNode(Opcode: ISD::XOR, DL, VT: IntVT, N1: Cast, N2: SignMask); |
| 1948 | return DAG.getNode(Opcode: ISD::BITCAST, DL, VT, Operand: Xor); |
| 1949 | } |
| 1950 | |
| 1951 | SDValue VectorLegalizer::ExpandFABS(SDNode *Node) { |
| 1952 | EVT VT = Node->getValueType(ResNo: 0); |
| 1953 | EVT IntVT = VT.changeVectorElementTypeToInteger(); |
| 1954 | |
| 1955 | if (!TLI.isOperationLegalOrCustom(Op: ISD::AND, VT: IntVT)) |
| 1956 | return SDValue(); |
| 1957 | |
| 1958 | // FIXME: The FSUB check is here to force unrolling v1f64 vectors on AArch64. |
| 1959 | if (!TLI.isOperationLegalOrCustomOrPromote(Op: ISD::FSUB, VT) && |
| 1960 | !VT.isScalableVector()) |
| 1961 | return SDValue(); |
| 1962 | |
| 1963 | SDLoc DL(Node); |
| 1964 | SDValue Cast = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: IntVT, Operand: Node->getOperand(Num: 0)); |
| 1965 | SDValue ClearSignMask = DAG.getConstant( |
| 1966 | Val: APInt::getSignedMaxValue(numBits: IntVT.getScalarSizeInBits()), DL, VT: IntVT); |
| 1967 | SDValue ClearedSign = DAG.getNode(Opcode: ISD::AND, DL, VT: IntVT, N1: Cast, N2: ClearSignMask); |
| 1968 | return DAG.getNode(Opcode: ISD::BITCAST, DL, VT, Operand: ClearedSign); |
| 1969 | } |
| 1970 | |
| 1971 | SDValue VectorLegalizer::ExpandFCOPYSIGN(SDNode *Node) { |
| 1972 | EVT VT = Node->getValueType(ResNo: 0); |
| 1973 | EVT IntVT = VT.changeVectorElementTypeToInteger(); |
| 1974 | |
| 1975 | if (VT != Node->getOperand(Num: 1).getValueType() || |
| 1976 | !TLI.isOperationLegalOrCustom(Op: ISD::AND, VT: IntVT) || |
| 1977 | !TLI.isOperationLegalOrCustom(Op: ISD::OR, VT: IntVT)) |
| 1978 | return SDValue(); |
| 1979 | |
| 1980 | // FIXME: The FSUB check is here to force unrolling v1f64 vectors on AArch64. |
| 1981 | if (!TLI.isOperationLegalOrCustomOrPromote(Op: ISD::FSUB, VT) && |
| 1982 | !VT.isScalableVector()) |
| 1983 | return SDValue(); |
| 1984 | |
| 1985 | SDLoc DL(Node); |
| 1986 | SDValue Mag = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: IntVT, Operand: Node->getOperand(Num: 0)); |
| 1987 | SDValue Sign = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: IntVT, Operand: Node->getOperand(Num: 1)); |
| 1988 | |
| 1989 | SDValue SignMask = DAG.getConstant( |
| 1990 | Val: APInt::getSignMask(BitWidth: IntVT.getScalarSizeInBits()), DL, VT: IntVT); |
| 1991 | SDValue SignBit = DAG.getNode(Opcode: ISD::AND, DL, VT: IntVT, N1: Sign, N2: SignMask); |
| 1992 | |
| 1993 | SDValue ClearSignMask = DAG.getConstant( |
| 1994 | Val: APInt::getSignedMaxValue(numBits: IntVT.getScalarSizeInBits()), DL, VT: IntVT); |
| 1995 | SDValue ClearedSign = DAG.getNode(Opcode: ISD::AND, DL, VT: IntVT, N1: Mag, N2: ClearSignMask); |
| 1996 | |
| 1997 | SDValue CopiedSign = DAG.getNode(Opcode: ISD::OR, DL, VT: IntVT, N1: ClearedSign, N2: SignBit, |
| 1998 | Flags: SDNodeFlags::Disjoint); |
| 1999 | |
| 2000 | return DAG.getNode(Opcode: ISD::BITCAST, DL, VT, Operand: CopiedSign); |
| 2001 | } |
| 2002 | |
| 2003 | void VectorLegalizer::ExpandFSUB(SDNode *Node, |
| 2004 | SmallVectorImpl<SDValue> &Results) { |
| 2005 | // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal, |
| 2006 | // we can defer this to operation legalization where it will be lowered as |
| 2007 | // a+(-b). |
| 2008 | EVT VT = Node->getValueType(ResNo: 0); |
| 2009 | if (TLI.isOperationLegalOrCustom(Op: ISD::FNEG, VT) && |
| 2010 | TLI.isOperationLegalOrCustom(Op: ISD::FADD, VT)) |
| 2011 | return; // Defer to LegalizeDAG |
| 2012 | |
| 2013 | if (SDValue Expanded = TLI.expandVectorNaryOpBySplitting(Node, DAG)) { |
| 2014 | Results.push_back(Elt: Expanded); |
| 2015 | return; |
| 2016 | } |
| 2017 | |
| 2018 | SDValue Tmp = DAG.UnrollVectorOp(N: Node); |
| 2019 | Results.push_back(Elt: Tmp); |
| 2020 | } |
| 2021 | |
| 2022 | void VectorLegalizer::ExpandSETCC(SDNode *Node, |
| 2023 | SmallVectorImpl<SDValue> &Results) { |
| 2024 | bool NeedInvert = false; |
| 2025 | bool IsVP = Node->getOpcode() == ISD::VP_SETCC; |
| 2026 | bool IsStrict = Node->getOpcode() == ISD::STRICT_FSETCC || |
| 2027 | Node->getOpcode() == ISD::STRICT_FSETCCS; |
| 2028 | bool IsSignaling = Node->getOpcode() == ISD::STRICT_FSETCCS; |
| 2029 | unsigned Offset = IsStrict ? 1 : 0; |
| 2030 | |
| 2031 | SDValue Chain = IsStrict ? Node->getOperand(Num: 0) : SDValue(); |
| 2032 | SDValue LHS = Node->getOperand(Num: 0 + Offset); |
| 2033 | SDValue RHS = Node->getOperand(Num: 1 + Offset); |
| 2034 | SDValue CC = Node->getOperand(Num: 2 + Offset); |
| 2035 | |
| 2036 | MVT OpVT = LHS.getSimpleValueType(); |
| 2037 | ISD::CondCode CCCode = cast<CondCodeSDNode>(Val&: CC)->get(); |
| 2038 | |
| 2039 | if (TLI.getCondCodeAction(CC: CCCode, VT: OpVT) != TargetLowering::Expand) { |
| 2040 | if (IsStrict) { |
| 2041 | UnrollStrictFPOp(Node, Results); |
| 2042 | return; |
| 2043 | } |
| 2044 | Results.push_back(Elt: UnrollVSETCC(Node)); |
| 2045 | return; |
| 2046 | } |
| 2047 | |
| 2048 | SDValue Mask, EVL; |
| 2049 | if (IsVP) { |
| 2050 | Mask = Node->getOperand(Num: 3 + Offset); |
| 2051 | EVL = Node->getOperand(Num: 4 + Offset); |
| 2052 | } |
| 2053 | |
| 2054 | SDLoc dl(Node); |
| 2055 | bool Legalized = |
| 2056 | TLI.LegalizeSetCCCondCode(DAG, VT: Node->getValueType(ResNo: 0), LHS, RHS, CC, Mask, |
| 2057 | EVL, NeedInvert, dl, Chain, IsSignaling); |
| 2058 | |
| 2059 | if (Legalized) { |
| 2060 | // If we expanded the SETCC by swapping LHS and RHS, or by inverting the |
| 2061 | // condition code, create a new SETCC node. |
| 2062 | if (CC.getNode()) { |
| 2063 | if (IsStrict) { |
| 2064 | LHS = DAG.getNode(Opcode: Node->getOpcode(), DL: dl, VTList: Node->getVTList(), |
| 2065 | Ops: {Chain, LHS, RHS, CC}, Flags: Node->getFlags()); |
| 2066 | Chain = LHS.getValue(R: 1); |
| 2067 | } else if (IsVP) { |
| 2068 | LHS = DAG.getNode(Opcode: ISD::VP_SETCC, DL: dl, VT: Node->getValueType(ResNo: 0), |
| 2069 | Ops: {LHS, RHS, CC, Mask, EVL}, Flags: Node->getFlags()); |
| 2070 | } else { |
| 2071 | LHS = DAG.getNode(Opcode: ISD::SETCC, DL: dl, VT: Node->getValueType(ResNo: 0), N1: LHS, N2: RHS, N3: CC, |
| 2072 | Flags: Node->getFlags()); |
| 2073 | } |
| 2074 | } |
| 2075 | |
| 2076 | // If we expanded the SETCC by inverting the condition code, then wrap |
| 2077 | // the existing SETCC in a NOT to restore the intended condition. |
| 2078 | if (NeedInvert) { |
| 2079 | if (!IsVP) |
| 2080 | LHS = DAG.getLogicalNOT(DL: dl, Val: LHS, VT: LHS->getValueType(ResNo: 0)); |
| 2081 | else |
| 2082 | LHS = DAG.getVPLogicalNOT(DL: dl, Val: LHS, Mask, EVL, VT: LHS->getValueType(ResNo: 0)); |
| 2083 | } |
| 2084 | } else { |
| 2085 | assert(!IsStrict && "Don't know how to expand for strict nodes." ); |
| 2086 | |
| 2087 | // Otherwise, SETCC for the given comparison type must be completely |
| 2088 | // illegal; expand it into a SELECT_CC. |
| 2089 | EVT VT = Node->getValueType(ResNo: 0); |
| 2090 | LHS = |
| 2091 | DAG.getNode(Opcode: ISD::SELECT_CC, DL: dl, VT, N1: LHS, N2: RHS, |
| 2092 | N3: DAG.getBoolConstant(V: true, DL: dl, VT, OpVT: LHS.getValueType()), |
| 2093 | N4: DAG.getBoolConstant(V: false, DL: dl, VT, OpVT: LHS.getValueType()), N5: CC); |
| 2094 | LHS->setFlags(Node->getFlags()); |
| 2095 | } |
| 2096 | |
| 2097 | Results.push_back(Elt: LHS); |
| 2098 | if (IsStrict) |
| 2099 | Results.push_back(Elt: Chain); |
| 2100 | } |
| 2101 | |
| 2102 | void VectorLegalizer::ExpandUADDSUBO(SDNode *Node, |
| 2103 | SmallVectorImpl<SDValue> &Results) { |
| 2104 | SDValue Result, Overflow; |
| 2105 | TLI.expandUADDSUBO(Node, Result, Overflow, DAG); |
| 2106 | Results.push_back(Elt: Result); |
| 2107 | Results.push_back(Elt: Overflow); |
| 2108 | } |
| 2109 | |
| 2110 | void VectorLegalizer::ExpandSADDSUBO(SDNode *Node, |
| 2111 | SmallVectorImpl<SDValue> &Results) { |
| 2112 | SDValue Result, Overflow; |
| 2113 | TLI.expandSADDSUBO(Node, Result, Overflow, DAG); |
| 2114 | Results.push_back(Elt: Result); |
| 2115 | Results.push_back(Elt: Overflow); |
| 2116 | } |
| 2117 | |
| 2118 | void VectorLegalizer::ExpandMULO(SDNode *Node, |
| 2119 | SmallVectorImpl<SDValue> &Results) { |
| 2120 | SDValue Result, Overflow; |
| 2121 | if (!TLI.expandMULO(Node, Result, Overflow, DAG)) |
| 2122 | std::tie(args&: Result, args&: Overflow) = DAG.UnrollVectorOverflowOp(N: Node); |
| 2123 | |
| 2124 | Results.push_back(Elt: Result); |
| 2125 | Results.push_back(Elt: Overflow); |
| 2126 | } |
| 2127 | |
| 2128 | void VectorLegalizer::ExpandFixedPointDiv(SDNode *Node, |
| 2129 | SmallVectorImpl<SDValue> &Results) { |
| 2130 | SDNode *N = Node; |
| 2131 | if (SDValue Expanded = TLI.expandFixedPointDiv(Opcode: N->getOpcode(), dl: SDLoc(N), |
| 2132 | LHS: N->getOperand(Num: 0), RHS: N->getOperand(Num: 1), Scale: N->getConstantOperandVal(Num: 2), DAG)) |
| 2133 | Results.push_back(Elt: Expanded); |
| 2134 | } |
| 2135 | |
| 2136 | void VectorLegalizer::ExpandStrictFPOp(SDNode *Node, |
| 2137 | SmallVectorImpl<SDValue> &Results) { |
| 2138 | if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP) { |
| 2139 | ExpandUINT_TO_FLOAT(Node, Results); |
| 2140 | return; |
| 2141 | } |
| 2142 | if (Node->getOpcode() == ISD::STRICT_FP_TO_UINT) { |
| 2143 | ExpandFP_TO_UINT(Node, Results); |
| 2144 | return; |
| 2145 | } |
| 2146 | |
| 2147 | if (Node->getOpcode() == ISD::STRICT_FSETCC || |
| 2148 | Node->getOpcode() == ISD::STRICT_FSETCCS) { |
| 2149 | ExpandSETCC(Node, Results); |
| 2150 | return; |
| 2151 | } |
| 2152 | |
| 2153 | UnrollStrictFPOp(Node, Results); |
| 2154 | } |
| 2155 | |
| 2156 | void VectorLegalizer::ExpandREM(SDNode *Node, |
| 2157 | SmallVectorImpl<SDValue> &Results) { |
| 2158 | assert((Node->getOpcode() == ISD::SREM || Node->getOpcode() == ISD::UREM) && |
| 2159 | "Expected REM node" ); |
| 2160 | |
| 2161 | SDValue Result; |
| 2162 | if (!TLI.expandREM(Node, Result, DAG)) |
| 2163 | Result = DAG.UnrollVectorOp(N: Node); |
| 2164 | Results.push_back(Elt: Result); |
| 2165 | } |
| 2166 | |
| 2167 | // Try to expand libm nodes into vector math routine calls. Callers provide the |
| 2168 | // LibFunc equivalent of the passed in Node, which is used to lookup mappings |
| 2169 | // within TargetLibraryInfo. The only mappings considered are those where the |
| 2170 | // result and all operands are the same vector type. While predicated nodes are |
| 2171 | // not supported, we will emit calls to masked routines by passing in an all |
| 2172 | // true mask. |
| 2173 | bool VectorLegalizer::tryExpandVecMathCall(SDNode *Node, RTLIB::Libcall LC, |
| 2174 | SmallVectorImpl<SDValue> &Results) { |
| 2175 | // Chain must be propagated but currently strict fp operations are down |
| 2176 | // converted to their none strict counterpart. |
| 2177 | assert(!Node->isStrictFPOpcode() && "Unexpected strict fp operation!" ); |
| 2178 | |
| 2179 | const char *LCName = TLI.getLibcallName(Call: LC); |
| 2180 | if (!LCName) |
| 2181 | return false; |
| 2182 | LLVM_DEBUG(dbgs() << "Looking for vector variant of " << LCName << "\n" ); |
| 2183 | |
| 2184 | EVT VT = Node->getValueType(ResNo: 0); |
| 2185 | ElementCount VL = VT.getVectorElementCount(); |
| 2186 | |
| 2187 | // Lookup a vector function equivalent to the specified libcall. Prefer |
| 2188 | // unmasked variants but we will generate a mask if need be. |
| 2189 | const TargetLibraryInfo &TLibInfo = DAG.getLibInfo(); |
| 2190 | const VecDesc *VD = TLibInfo.getVectorMappingInfo(F: LCName, VF: VL, Masked: false); |
| 2191 | if (!VD) |
| 2192 | VD = TLibInfo.getVectorMappingInfo(F: LCName, VF: VL, /*Masked=*/true); |
| 2193 | if (!VD) |
| 2194 | return false; |
| 2195 | |
| 2196 | LLVMContext *Ctx = DAG.getContext(); |
| 2197 | Type *Ty = VT.getTypeForEVT(Context&: *Ctx); |
| 2198 | Type *ScalarTy = Ty->getScalarType(); |
| 2199 | |
| 2200 | // Construct a scalar function type based on Node's operands. |
| 2201 | SmallVector<Type *, 8> ArgTys; |
| 2202 | for (unsigned i = 0; i < Node->getNumOperands(); ++i) { |
| 2203 | assert(Node->getOperand(i).getValueType() == VT && |
| 2204 | "Expected matching vector types!" ); |
| 2205 | ArgTys.push_back(Elt: ScalarTy); |
| 2206 | } |
| 2207 | FunctionType *ScalarFTy = FunctionType::get(Result: ScalarTy, Params: ArgTys, isVarArg: false); |
| 2208 | |
| 2209 | // Generate call information for the vector function. |
| 2210 | const std::string MangledName = VD->getVectorFunctionABIVariantString(); |
| 2211 | auto OptVFInfo = VFABI::tryDemangleForVFABI(MangledName, FTy: ScalarFTy); |
| 2212 | if (!OptVFInfo) |
| 2213 | return false; |
| 2214 | |
| 2215 | LLVM_DEBUG(dbgs() << "Found vector variant " << VD->getVectorFnName() |
| 2216 | << "\n" ); |
| 2217 | |
| 2218 | // Sanity check just in case OptVFInfo has unexpected parameters. |
| 2219 | if (OptVFInfo->Shape.Parameters.size() != |
| 2220 | Node->getNumOperands() + VD->isMasked()) |
| 2221 | return false; |
| 2222 | |
| 2223 | // Collect vector call operands. |
| 2224 | |
| 2225 | SDLoc DL(Node); |
| 2226 | TargetLowering::ArgListTy Args; |
| 2227 | TargetLowering::ArgListEntry Entry; |
| 2228 | Entry.IsSExt = false; |
| 2229 | Entry.IsZExt = false; |
| 2230 | |
| 2231 | unsigned OpNum = 0; |
| 2232 | for (auto &VFParam : OptVFInfo->Shape.Parameters) { |
| 2233 | if (VFParam.ParamKind == VFParamKind::GlobalPredicate) { |
| 2234 | EVT MaskVT = TLI.getSetCCResultType(DL: DAG.getDataLayout(), Context&: *Ctx, VT); |
| 2235 | Entry.Node = DAG.getBoolConstant(V: true, DL, VT: MaskVT, OpVT: VT); |
| 2236 | Entry.Ty = MaskVT.getTypeForEVT(Context&: *Ctx); |
| 2237 | Args.push_back(x: Entry); |
| 2238 | continue; |
| 2239 | } |
| 2240 | |
| 2241 | // Only vector operands are supported. |
| 2242 | if (VFParam.ParamKind != VFParamKind::Vector) |
| 2243 | return false; |
| 2244 | |
| 2245 | Entry.Node = Node->getOperand(Num: OpNum++); |
| 2246 | Entry.Ty = Ty; |
| 2247 | Args.push_back(x: Entry); |
| 2248 | } |
| 2249 | |
| 2250 | // Emit a call to the vector function. |
| 2251 | SDValue Callee = DAG.getExternalSymbol(Sym: VD->getVectorFnName().data(), |
| 2252 | VT: TLI.getPointerTy(DL: DAG.getDataLayout())); |
| 2253 | TargetLowering::CallLoweringInfo CLI(DAG); |
| 2254 | CLI.setDebugLoc(DL) |
| 2255 | .setChain(DAG.getEntryNode()) |
| 2256 | .setLibCallee(CC: CallingConv::C, ResultType: Ty, Target: Callee, ArgsList: std::move(Args)); |
| 2257 | |
| 2258 | std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); |
| 2259 | Results.push_back(Elt: CallResult.first); |
| 2260 | return true; |
| 2261 | } |
| 2262 | |
| 2263 | /// Try to expand the node to a vector libcall based on the result type. |
| 2264 | bool VectorLegalizer::tryExpandVecMathCall( |
| 2265 | SDNode *Node, RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64, |
| 2266 | RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128, |
| 2267 | RTLIB::Libcall Call_PPCF128, SmallVectorImpl<SDValue> &Results) { |
| 2268 | RTLIB::Libcall LC = RTLIB::getFPLibCall( |
| 2269 | VT: Node->getValueType(ResNo: 0).getVectorElementType(), Call_F32, Call_F64, |
| 2270 | Call_F80, Call_F128, Call_PPCF128); |
| 2271 | |
| 2272 | if (LC == RTLIB::UNKNOWN_LIBCALL) |
| 2273 | return false; |
| 2274 | |
| 2275 | return tryExpandVecMathCall(Node, LC, Results); |
| 2276 | } |
| 2277 | |
| 2278 | void VectorLegalizer::UnrollStrictFPOp(SDNode *Node, |
| 2279 | SmallVectorImpl<SDValue> &Results) { |
| 2280 | EVT VT = Node->getValueType(ResNo: 0); |
| 2281 | EVT EltVT = VT.getVectorElementType(); |
| 2282 | unsigned NumElems = VT.getVectorNumElements(); |
| 2283 | unsigned NumOpers = Node->getNumOperands(); |
| 2284 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| 2285 | |
| 2286 | EVT TmpEltVT = EltVT; |
| 2287 | if (Node->getOpcode() == ISD::STRICT_FSETCC || |
| 2288 | Node->getOpcode() == ISD::STRICT_FSETCCS) |
| 2289 | TmpEltVT = TLI.getSetCCResultType(DL: DAG.getDataLayout(), |
| 2290 | Context&: *DAG.getContext(), VT: TmpEltVT); |
| 2291 | |
| 2292 | EVT ValueVTs[] = {TmpEltVT, MVT::Other}; |
| 2293 | SDValue Chain = Node->getOperand(Num: 0); |
| 2294 | SDLoc dl(Node); |
| 2295 | |
| 2296 | SmallVector<SDValue, 32> OpValues; |
| 2297 | SmallVector<SDValue, 32> OpChains; |
| 2298 | for (unsigned i = 0; i < NumElems; ++i) { |
| 2299 | SmallVector<SDValue, 4> Opers; |
| 2300 | SDValue Idx = DAG.getVectorIdxConstant(Val: i, DL: dl); |
| 2301 | |
| 2302 | // The Chain is the first operand. |
| 2303 | Opers.push_back(Elt: Chain); |
| 2304 | |
| 2305 | // Now process the remaining operands. |
| 2306 | for (unsigned j = 1; j < NumOpers; ++j) { |
| 2307 | SDValue Oper = Node->getOperand(Num: j); |
| 2308 | EVT OperVT = Oper.getValueType(); |
| 2309 | |
| 2310 | if (OperVT.isVector()) |
| 2311 | Oper = DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL: dl, |
| 2312 | VT: OperVT.getVectorElementType(), N1: Oper, N2: Idx); |
| 2313 | |
| 2314 | Opers.push_back(Elt: Oper); |
| 2315 | } |
| 2316 | |
| 2317 | SDValue ScalarOp = DAG.getNode(Opcode: Node->getOpcode(), DL: dl, ResultTys: ValueVTs, Ops: Opers); |
| 2318 | SDValue ScalarResult = ScalarOp.getValue(R: 0); |
| 2319 | SDValue ScalarChain = ScalarOp.getValue(R: 1); |
| 2320 | |
| 2321 | if (Node->getOpcode() == ISD::STRICT_FSETCC || |
| 2322 | Node->getOpcode() == ISD::STRICT_FSETCCS) |
| 2323 | ScalarResult = DAG.getSelect(DL: dl, VT: EltVT, Cond: ScalarResult, |
| 2324 | LHS: DAG.getAllOnesConstant(DL: dl, VT: EltVT), |
| 2325 | RHS: DAG.getConstant(Val: 0, DL: dl, VT: EltVT)); |
| 2326 | |
| 2327 | OpValues.push_back(Elt: ScalarResult); |
| 2328 | OpChains.push_back(Elt: ScalarChain); |
| 2329 | } |
| 2330 | |
| 2331 | SDValue Result = DAG.getBuildVector(VT, DL: dl, Ops: OpValues); |
| 2332 | SDValue NewChain = DAG.getNode(Opcode: ISD::TokenFactor, DL: dl, VT: MVT::Other, Ops: OpChains); |
| 2333 | |
| 2334 | Results.push_back(Elt: Result); |
| 2335 | Results.push_back(Elt: NewChain); |
| 2336 | } |
| 2337 | |
| 2338 | SDValue VectorLegalizer::UnrollVSETCC(SDNode *Node) { |
| 2339 | EVT VT = Node->getValueType(ResNo: 0); |
| 2340 | unsigned NumElems = VT.getVectorNumElements(); |
| 2341 | EVT EltVT = VT.getVectorElementType(); |
| 2342 | SDValue LHS = Node->getOperand(Num: 0); |
| 2343 | SDValue RHS = Node->getOperand(Num: 1); |
| 2344 | SDValue CC = Node->getOperand(Num: 2); |
| 2345 | EVT TmpEltVT = LHS.getValueType().getVectorElementType(); |
| 2346 | SDLoc dl(Node); |
| 2347 | SmallVector<SDValue, 8> Ops(NumElems); |
| 2348 | for (unsigned i = 0; i < NumElems; ++i) { |
| 2349 | SDValue LHSElem = DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL: dl, VT: TmpEltVT, N1: LHS, |
| 2350 | N2: DAG.getVectorIdxConstant(Val: i, DL: dl)); |
| 2351 | SDValue RHSElem = DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL: dl, VT: TmpEltVT, N1: RHS, |
| 2352 | N2: DAG.getVectorIdxConstant(Val: i, DL: dl)); |
| 2353 | // FIXME: We should use i1 setcc + boolext here, but it causes regressions. |
| 2354 | Ops[i] = DAG.getNode(Opcode: ISD::SETCC, DL: dl, |
| 2355 | VT: TLI.getSetCCResultType(DL: DAG.getDataLayout(), |
| 2356 | Context&: *DAG.getContext(), VT: TmpEltVT), |
| 2357 | N1: LHSElem, N2: RHSElem, N3: CC); |
| 2358 | Ops[i] = DAG.getSelect(DL: dl, VT: EltVT, Cond: Ops[i], |
| 2359 | LHS: DAG.getBoolConstant(V: true, DL: dl, VT: EltVT, OpVT: VT), |
| 2360 | RHS: DAG.getConstant(Val: 0, DL: dl, VT: EltVT)); |
| 2361 | } |
| 2362 | return DAG.getBuildVector(VT, DL: dl, Ops); |
| 2363 | } |
| 2364 | |
| 2365 | bool SelectionDAG::LegalizeVectors() { |
| 2366 | return VectorLegalizer(*this).Run(); |
| 2367 | } |
| 2368 | |