| 1 | //===----- ScheduleDAGFast.cpp - Fast poor list scheduler -----------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This implements a fast scheduler. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "InstrEmitter.h" |
| 14 | #include "SDNodeDbgValue.h" |
| 15 | #include "ScheduleDAGSDNodes.h" |
| 16 | #include "llvm/ADT/SmallSet.h" |
| 17 | #include "llvm/ADT/Statistic.h" |
| 18 | #include "llvm/CodeGen/SchedulerRegistry.h" |
| 19 | #include "llvm/CodeGen/SelectionDAGISel.h" |
| 20 | #include "llvm/CodeGen/TargetInstrInfo.h" |
| 21 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
| 22 | #include "llvm/IR/InlineAsm.h" |
| 23 | #include "llvm/Support/Debug.h" |
| 24 | #include "llvm/Support/ErrorHandling.h" |
| 25 | #include "llvm/Support/raw_ostream.h" |
| 26 | using namespace llvm; |
| 27 | |
| 28 | #define DEBUG_TYPE "pre-RA-sched" |
| 29 | |
| 30 | STATISTIC(NumUnfolds, "Number of nodes unfolded" ); |
| 31 | STATISTIC(NumDups, "Number of duplicated nodes" ); |
| 32 | STATISTIC(NumPRCopies, "Number of physical copies" ); |
| 33 | |
| 34 | static RegisterScheduler |
| 35 | fastDAGScheduler("fast" , "Fast suboptimal list scheduling" , |
| 36 | createFastDAGScheduler); |
| 37 | static RegisterScheduler |
| 38 | linearizeDAGScheduler("linearize" , "Linearize DAG, no scheduling" , |
| 39 | createDAGLinearizer); |
| 40 | |
| 41 | |
| 42 | namespace { |
| 43 | /// FastPriorityQueue - A degenerate priority queue that considers |
| 44 | /// all nodes to have the same priority. |
| 45 | /// |
| 46 | struct FastPriorityQueue { |
| 47 | SmallVector<SUnit *, 16> Queue; |
| 48 | |
| 49 | bool empty() const { return Queue.empty(); } |
| 50 | |
| 51 | void push(SUnit *U) { |
| 52 | Queue.push_back(Elt: U); |
| 53 | } |
| 54 | |
| 55 | SUnit *pop() { |
| 56 | if (empty()) return nullptr; |
| 57 | return Queue.pop_back_val(); |
| 58 | } |
| 59 | }; |
| 60 | |
| 61 | //===----------------------------------------------------------------------===// |
| 62 | /// ScheduleDAGFast - The actual "fast" list scheduler implementation. |
| 63 | /// |
| 64 | class ScheduleDAGFast : public ScheduleDAGSDNodes { |
| 65 | private: |
| 66 | /// AvailableQueue - The priority queue to use for the available SUnits. |
| 67 | FastPriorityQueue AvailableQueue; |
| 68 | |
| 69 | /// LiveRegDefs - A set of physical registers and their definition |
| 70 | /// that are "live". These nodes must be scheduled before any other nodes that |
| 71 | /// modifies the registers can be scheduled. |
| 72 | unsigned NumLiveRegs = 0u; |
| 73 | std::vector<SUnit*> LiveRegDefs; |
| 74 | std::vector<unsigned> LiveRegCycles; |
| 75 | |
| 76 | public: |
| 77 | ScheduleDAGFast(MachineFunction &mf) |
| 78 | : ScheduleDAGSDNodes(mf) {} |
| 79 | |
| 80 | void Schedule() override; |
| 81 | |
| 82 | /// AddPred - adds a predecessor edge to SUnit SU. |
| 83 | void AddPred(SUnit *SU, const SDep &D) { SU->addPred(D); } |
| 84 | |
| 85 | /// RemovePred - removes a predecessor edge from SUnit SU. |
| 86 | void RemovePred(SUnit *SU, const SDep &D) { SU->removePred(D); } |
| 87 | |
| 88 | private: |
| 89 | void ReleasePred(SUnit *SU, SDep *PredEdge); |
| 90 | void ReleasePredecessors(SUnit *SU, unsigned CurCycle); |
| 91 | void ScheduleNodeBottomUp(SUnit*, unsigned); |
| 92 | SUnit *CopyAndMoveSuccessors(SUnit*); |
| 93 | void InsertCopiesAndMoveSuccs(SUnit*, unsigned, |
| 94 | const TargetRegisterClass*, |
| 95 | const TargetRegisterClass*, |
| 96 | SmallVectorImpl<SUnit*>&); |
| 97 | bool DelayForLiveRegsBottomUp(SUnit*, SmallVectorImpl<unsigned>&); |
| 98 | void ListScheduleBottomUp(); |
| 99 | |
| 100 | /// forceUnitLatencies - The fast scheduler doesn't care about real latencies. |
| 101 | bool forceUnitLatencies() const override { return true; } |
| 102 | }; |
| 103 | } // end anonymous namespace |
| 104 | |
| 105 | |
| 106 | /// Schedule - Schedule the DAG using list scheduling. |
| 107 | void ScheduleDAGFast::Schedule() { |
| 108 | LLVM_DEBUG(dbgs() << "********** List Scheduling **********\n" ); |
| 109 | |
| 110 | NumLiveRegs = 0; |
| 111 | LiveRegDefs.resize(new_size: TRI->getNumRegs(), x: nullptr); |
| 112 | LiveRegCycles.resize(new_size: TRI->getNumRegs(), x: 0); |
| 113 | |
| 114 | // Build the scheduling graph. |
| 115 | BuildSchedGraph(); |
| 116 | |
| 117 | LLVM_DEBUG(dump()); |
| 118 | |
| 119 | // Execute the actual scheduling loop. |
| 120 | ListScheduleBottomUp(); |
| 121 | } |
| 122 | |
| 123 | //===----------------------------------------------------------------------===// |
| 124 | // Bottom-Up Scheduling |
| 125 | //===----------------------------------------------------------------------===// |
| 126 | |
| 127 | /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to |
| 128 | /// the AvailableQueue if the count reaches zero. Also update its cycle bound. |
| 129 | void ScheduleDAGFast::ReleasePred(SUnit *SU, SDep *PredEdge) { |
| 130 | SUnit *PredSU = PredEdge->getSUnit(); |
| 131 | |
| 132 | #ifndef NDEBUG |
| 133 | if (PredSU->NumSuccsLeft == 0) { |
| 134 | dbgs() << "*** Scheduling failed! ***\n" ; |
| 135 | dumpNode(*PredSU); |
| 136 | dbgs() << " has been released too many times!\n" ; |
| 137 | llvm_unreachable(nullptr); |
| 138 | } |
| 139 | #endif |
| 140 | --PredSU->NumSuccsLeft; |
| 141 | |
| 142 | // If all the node's successors are scheduled, this node is ready |
| 143 | // to be scheduled. Ignore the special EntrySU node. |
| 144 | if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) { |
| 145 | PredSU->isAvailable = true; |
| 146 | AvailableQueue.push(U: PredSU); |
| 147 | } |
| 148 | } |
| 149 | |
| 150 | void ScheduleDAGFast::ReleasePredecessors(SUnit *SU, unsigned CurCycle) { |
| 151 | // Bottom up: release predecessors |
| 152 | for (SDep &Pred : SU->Preds) { |
| 153 | ReleasePred(SU, PredEdge: &Pred); |
| 154 | if (Pred.isAssignedRegDep()) { |
| 155 | // This is a physical register dependency and it's impossible or |
| 156 | // expensive to copy the register. Make sure nothing that can |
| 157 | // clobber the register is scheduled between the predecessor and |
| 158 | // this node. |
| 159 | if (!LiveRegDefs[Pred.getReg()]) { |
| 160 | ++NumLiveRegs; |
| 161 | LiveRegDefs[Pred.getReg()] = Pred.getSUnit(); |
| 162 | LiveRegCycles[Pred.getReg()] = CurCycle; |
| 163 | } |
| 164 | } |
| 165 | } |
| 166 | } |
| 167 | |
| 168 | /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending |
| 169 | /// count of its predecessors. If a predecessor pending count is zero, add it to |
| 170 | /// the Available queue. |
| 171 | void ScheduleDAGFast::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) { |
| 172 | LLVM_DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: " ); |
| 173 | LLVM_DEBUG(dumpNode(*SU)); |
| 174 | |
| 175 | assert(CurCycle >= SU->getHeight() && "Node scheduled below its height!" ); |
| 176 | SU->setHeightToAtLeast(CurCycle); |
| 177 | Sequence.push_back(x: SU); |
| 178 | |
| 179 | ReleasePredecessors(SU, CurCycle); |
| 180 | |
| 181 | // Release all the implicit physical register defs that are live. |
| 182 | for (SDep &Succ : SU->Succs) { |
| 183 | if (Succ.isAssignedRegDep()) { |
| 184 | if (LiveRegCycles[Succ.getReg()] == Succ.getSUnit()->getHeight()) { |
| 185 | assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!" ); |
| 186 | assert(LiveRegDefs[Succ.getReg()] == SU && |
| 187 | "Physical register dependency violated?" ); |
| 188 | --NumLiveRegs; |
| 189 | LiveRegDefs[Succ.getReg()] = nullptr; |
| 190 | LiveRegCycles[Succ.getReg()] = 0; |
| 191 | } |
| 192 | } |
| 193 | } |
| 194 | |
| 195 | SU->isScheduled = true; |
| 196 | } |
| 197 | |
| 198 | /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled |
| 199 | /// successors to the newly created node. |
| 200 | SUnit *ScheduleDAGFast::CopyAndMoveSuccessors(SUnit *SU) { |
| 201 | if (SU->getNode()->getGluedNode()) |
| 202 | return nullptr; |
| 203 | |
| 204 | SDNode *N = SU->getNode(); |
| 205 | if (!N) |
| 206 | return nullptr; |
| 207 | |
| 208 | SUnit *NewSU; |
| 209 | bool TryUnfold = false; |
| 210 | for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) { |
| 211 | MVT VT = N->getSimpleValueType(ResNo: i); |
| 212 | if (VT == MVT::Glue) |
| 213 | return nullptr; |
| 214 | else if (VT == MVT::Other) |
| 215 | TryUnfold = true; |
| 216 | } |
| 217 | for (const SDValue &Op : N->op_values()) { |
| 218 | MVT VT = Op.getNode()->getSimpleValueType(ResNo: Op.getResNo()); |
| 219 | if (VT == MVT::Glue) |
| 220 | return nullptr; |
| 221 | } |
| 222 | |
| 223 | if (TryUnfold) { |
| 224 | SmallVector<SDNode*, 2> NewNodes; |
| 225 | if (!TII->unfoldMemoryOperand(DAG&: *DAG, N, NewNodes)) |
| 226 | return nullptr; |
| 227 | |
| 228 | LLVM_DEBUG(dbgs() << "Unfolding SU # " << SU->NodeNum << "\n" ); |
| 229 | assert(NewNodes.size() == 2 && "Expected a load folding node!" ); |
| 230 | |
| 231 | N = NewNodes[1]; |
| 232 | SDNode *LoadNode = NewNodes[0]; |
| 233 | unsigned NumVals = N->getNumValues(); |
| 234 | unsigned OldNumVals = SU->getNode()->getNumValues(); |
| 235 | for (unsigned i = 0; i != NumVals; ++i) |
| 236 | DAG->ReplaceAllUsesOfValueWith(From: SDValue(SU->getNode(), i), To: SDValue(N, i)); |
| 237 | DAG->ReplaceAllUsesOfValueWith(From: SDValue(SU->getNode(), OldNumVals-1), |
| 238 | To: SDValue(LoadNode, 1)); |
| 239 | |
| 240 | SUnit *NewSU = newSUnit(N); |
| 241 | assert(N->getNodeId() == -1 && "Node already inserted!" ); |
| 242 | N->setNodeId(NewSU->NodeNum); |
| 243 | |
| 244 | const MCInstrDesc &MCID = TII->get(Opcode: N->getMachineOpcode()); |
| 245 | for (unsigned i = 0; i != MCID.getNumOperands(); ++i) { |
| 246 | if (MCID.getOperandConstraint(OpNum: i, Constraint: MCOI::TIED_TO) != -1) { |
| 247 | NewSU->isTwoAddress = true; |
| 248 | break; |
| 249 | } |
| 250 | } |
| 251 | if (MCID.isCommutable()) |
| 252 | NewSU->isCommutable = true; |
| 253 | |
| 254 | // LoadNode may already exist. This can happen when there is another |
| 255 | // load from the same location and producing the same type of value |
| 256 | // but it has different alignment or volatileness. |
| 257 | bool isNewLoad = true; |
| 258 | SUnit *LoadSU; |
| 259 | if (LoadNode->getNodeId() != -1) { |
| 260 | LoadSU = &SUnits[LoadNode->getNodeId()]; |
| 261 | isNewLoad = false; |
| 262 | } else { |
| 263 | LoadSU = newSUnit(N: LoadNode); |
| 264 | LoadNode->setNodeId(LoadSU->NodeNum); |
| 265 | } |
| 266 | |
| 267 | SDep ChainPred; |
| 268 | SmallVector<SDep, 4> ChainSuccs; |
| 269 | SmallVector<SDep, 4> LoadPreds; |
| 270 | SmallVector<SDep, 4> NodePreds; |
| 271 | SmallVector<SDep, 4> NodeSuccs; |
| 272 | for (SDep &Pred : SU->Preds) { |
| 273 | if (Pred.isCtrl()) |
| 274 | ChainPred = Pred; |
| 275 | else if (Pred.getSUnit()->getNode() && |
| 276 | Pred.getSUnit()->getNode()->isOperandOf(N: LoadNode)) |
| 277 | LoadPreds.push_back(Elt: Pred); |
| 278 | else |
| 279 | NodePreds.push_back(Elt: Pred); |
| 280 | } |
| 281 | for (SDep &Succ : SU->Succs) { |
| 282 | if (Succ.isCtrl()) |
| 283 | ChainSuccs.push_back(Elt: Succ); |
| 284 | else |
| 285 | NodeSuccs.push_back(Elt: Succ); |
| 286 | } |
| 287 | |
| 288 | if (ChainPred.getSUnit()) { |
| 289 | RemovePred(SU, D: ChainPred); |
| 290 | if (isNewLoad) |
| 291 | AddPred(SU: LoadSU, D: ChainPred); |
| 292 | } |
| 293 | for (const SDep &Pred : LoadPreds) { |
| 294 | RemovePred(SU, D: Pred); |
| 295 | if (isNewLoad) { |
| 296 | AddPred(SU: LoadSU, D: Pred); |
| 297 | } |
| 298 | } |
| 299 | for (const SDep &Pred : NodePreds) { |
| 300 | RemovePred(SU, D: Pred); |
| 301 | AddPred(SU: NewSU, D: Pred); |
| 302 | } |
| 303 | for (SDep D : NodeSuccs) { |
| 304 | SUnit *SuccDep = D.getSUnit(); |
| 305 | D.setSUnit(SU); |
| 306 | RemovePred(SU: SuccDep, D); |
| 307 | D.setSUnit(NewSU); |
| 308 | AddPred(SU: SuccDep, D); |
| 309 | } |
| 310 | for (SDep D : ChainSuccs) { |
| 311 | SUnit *SuccDep = D.getSUnit(); |
| 312 | D.setSUnit(SU); |
| 313 | RemovePred(SU: SuccDep, D); |
| 314 | if (isNewLoad) { |
| 315 | D.setSUnit(LoadSU); |
| 316 | AddPred(SU: SuccDep, D); |
| 317 | } |
| 318 | } |
| 319 | if (isNewLoad) { |
| 320 | SDep D(LoadSU, SDep::Barrier); |
| 321 | D.setLatency(LoadSU->Latency); |
| 322 | AddPred(SU: NewSU, D); |
| 323 | } |
| 324 | |
| 325 | ++NumUnfolds; |
| 326 | |
| 327 | if (NewSU->NumSuccsLeft == 0) { |
| 328 | NewSU->isAvailable = true; |
| 329 | return NewSU; |
| 330 | } |
| 331 | SU = NewSU; |
| 332 | } |
| 333 | |
| 334 | LLVM_DEBUG(dbgs() << "Duplicating SU # " << SU->NodeNum << "\n" ); |
| 335 | NewSU = Clone(Old: SU); |
| 336 | |
| 337 | // New SUnit has the exact same predecessors. |
| 338 | for (SDep &Pred : SU->Preds) |
| 339 | if (!Pred.isArtificial()) |
| 340 | AddPred(SU: NewSU, D: Pred); |
| 341 | |
| 342 | // Only copy scheduled successors. Cut them from old node's successor |
| 343 | // list and move them over. |
| 344 | SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps; |
| 345 | for (SDep &Succ : SU->Succs) { |
| 346 | if (Succ.isArtificial()) |
| 347 | continue; |
| 348 | SUnit *SuccSU = Succ.getSUnit(); |
| 349 | if (SuccSU->isScheduled) { |
| 350 | SDep D = Succ; |
| 351 | D.setSUnit(NewSU); |
| 352 | AddPred(SU: SuccSU, D); |
| 353 | D.setSUnit(SU); |
| 354 | DelDeps.push_back(Elt: std::make_pair(x&: SuccSU, y&: D)); |
| 355 | } |
| 356 | } |
| 357 | for (const auto &[Del, Dep] : DelDeps) |
| 358 | RemovePred(SU: Del, D: Dep); |
| 359 | |
| 360 | ++NumDups; |
| 361 | return NewSU; |
| 362 | } |
| 363 | |
| 364 | /// InsertCopiesAndMoveSuccs - Insert register copies and move all |
| 365 | /// scheduled successors of the given SUnit to the last copy. |
| 366 | void ScheduleDAGFast::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg, |
| 367 | const TargetRegisterClass *DestRC, |
| 368 | const TargetRegisterClass *SrcRC, |
| 369 | SmallVectorImpl<SUnit*> &Copies) { |
| 370 | SUnit *CopyFromSU = newSUnit(N: static_cast<SDNode *>(nullptr)); |
| 371 | CopyFromSU->CopySrcRC = SrcRC; |
| 372 | CopyFromSU->CopyDstRC = DestRC; |
| 373 | |
| 374 | SUnit *CopyToSU = newSUnit(N: static_cast<SDNode *>(nullptr)); |
| 375 | CopyToSU->CopySrcRC = DestRC; |
| 376 | CopyToSU->CopyDstRC = SrcRC; |
| 377 | |
| 378 | // Only copy scheduled successors. Cut them from old node's successor |
| 379 | // list and move them over. |
| 380 | SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps; |
| 381 | for (SDep &Succ : SU->Succs) { |
| 382 | if (Succ.isArtificial()) |
| 383 | continue; |
| 384 | SUnit *SuccSU = Succ.getSUnit(); |
| 385 | if (SuccSU->isScheduled) { |
| 386 | SDep D = Succ; |
| 387 | D.setSUnit(CopyToSU); |
| 388 | AddPred(SU: SuccSU, D); |
| 389 | DelDeps.push_back(Elt: std::make_pair(x&: SuccSU, y&: Succ)); |
| 390 | } |
| 391 | } |
| 392 | for (const auto &[Del, Dep] : DelDeps) |
| 393 | RemovePred(SU: Del, D: Dep); |
| 394 | SDep FromDep(SU, SDep::Data, Reg); |
| 395 | FromDep.setLatency(SU->Latency); |
| 396 | AddPred(SU: CopyFromSU, D: FromDep); |
| 397 | SDep ToDep(CopyFromSU, SDep::Data, 0); |
| 398 | ToDep.setLatency(CopyFromSU->Latency); |
| 399 | AddPred(SU: CopyToSU, D: ToDep); |
| 400 | |
| 401 | Copies.push_back(Elt: CopyFromSU); |
| 402 | Copies.push_back(Elt: CopyToSU); |
| 403 | |
| 404 | ++NumPRCopies; |
| 405 | } |
| 406 | |
| 407 | /// getPhysicalRegisterVT - Returns the ValueType of the physical register |
| 408 | /// definition of the specified node. |
| 409 | /// FIXME: Move to SelectionDAG? |
| 410 | static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg, |
| 411 | const TargetInstrInfo *TII) { |
| 412 | unsigned NumRes; |
| 413 | if (N->getOpcode() == ISD::CopyFromReg) { |
| 414 | // CopyFromReg has: "chain, Val, glue" so operand 1 gives the type. |
| 415 | NumRes = 1; |
| 416 | } else { |
| 417 | const MCInstrDesc &MCID = TII->get(Opcode: N->getMachineOpcode()); |
| 418 | assert(!MCID.implicit_defs().empty() && |
| 419 | "Physical reg def must be in implicit def list!" ); |
| 420 | NumRes = MCID.getNumDefs(); |
| 421 | for (MCPhysReg ImpDef : MCID.implicit_defs()) { |
| 422 | if (Reg == ImpDef) |
| 423 | break; |
| 424 | ++NumRes; |
| 425 | } |
| 426 | } |
| 427 | return N->getSimpleValueType(ResNo: NumRes); |
| 428 | } |
| 429 | |
| 430 | /// CheckForLiveRegDef - Return true and update live register vector if the |
| 431 | /// specified register def of the specified SUnit clobbers any "live" registers. |
| 432 | static bool CheckForLiveRegDef(SUnit *SU, MCRegister Reg, |
| 433 | std::vector<SUnit *> &LiveRegDefs, |
| 434 | SmallSet<unsigned, 4> &RegAdded, |
| 435 | SmallVectorImpl<unsigned> &LRegs, |
| 436 | const TargetRegisterInfo *TRI, |
| 437 | const SDNode *Node = nullptr) { |
| 438 | bool Added = false; |
| 439 | for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { |
| 440 | // Check if Ref is live. |
| 441 | if (!LiveRegDefs[*AI]) |
| 442 | continue; |
| 443 | |
| 444 | // Allow multiple uses of the same def. |
| 445 | if (LiveRegDefs[*AI] == SU) |
| 446 | continue; |
| 447 | |
| 448 | // Allow multiple uses of same def |
| 449 | if (Node && LiveRegDefs[*AI]->getNode() == Node) |
| 450 | continue; |
| 451 | |
| 452 | // Add Reg to the set of interfering live regs. |
| 453 | if (RegAdded.insert(V: *AI).second) { |
| 454 | LRegs.push_back(Elt: *AI); |
| 455 | Added = true; |
| 456 | } |
| 457 | } |
| 458 | return Added; |
| 459 | } |
| 460 | |
| 461 | /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay |
| 462 | /// scheduling of the given node to satisfy live physical register dependencies. |
| 463 | /// If the specific node is the last one that's available to schedule, do |
| 464 | /// whatever is necessary (i.e. backtracking or cloning) to make it possible. |
| 465 | bool ScheduleDAGFast::DelayForLiveRegsBottomUp(SUnit *SU, |
| 466 | SmallVectorImpl<unsigned> &LRegs){ |
| 467 | if (NumLiveRegs == 0) |
| 468 | return false; |
| 469 | |
| 470 | SmallSet<unsigned, 4> RegAdded; |
| 471 | // If this node would clobber any "live" register, then it's not ready. |
| 472 | for (SDep &Pred : SU->Preds) { |
| 473 | if (Pred.isAssignedRegDep()) { |
| 474 | CheckForLiveRegDef(SU: Pred.getSUnit(), Reg: Pred.getReg(), LiveRegDefs, |
| 475 | RegAdded, LRegs, TRI); |
| 476 | } |
| 477 | } |
| 478 | |
| 479 | for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) { |
| 480 | if (Node->getOpcode() == ISD::INLINEASM || |
| 481 | Node->getOpcode() == ISD::INLINEASM_BR) { |
| 482 | // Inline asm can clobber physical defs. |
| 483 | unsigned NumOps = Node->getNumOperands(); |
| 484 | if (Node->getOperand(Num: NumOps-1).getValueType() == MVT::Glue) |
| 485 | --NumOps; // Ignore the glue operand. |
| 486 | |
| 487 | for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { |
| 488 | unsigned Flags = Node->getConstantOperandVal(Num: i); |
| 489 | const InlineAsm::Flag F(Flags); |
| 490 | unsigned NumVals = F.getNumOperandRegisters(); |
| 491 | |
| 492 | ++i; // Skip the ID value. |
| 493 | if (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || |
| 494 | F.isClobberKind()) { |
| 495 | // Check for def of register or earlyclobber register. |
| 496 | for (; NumVals; --NumVals, ++i) { |
| 497 | Register Reg = cast<RegisterSDNode>(Val: Node->getOperand(Num: i))->getReg(); |
| 498 | if (Reg.isPhysical()) |
| 499 | CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI); |
| 500 | } |
| 501 | } else |
| 502 | i += NumVals; |
| 503 | } |
| 504 | continue; |
| 505 | } |
| 506 | |
| 507 | if (Node->getOpcode() == ISD::CopyToReg) { |
| 508 | Register Reg = cast<RegisterSDNode>(Val: Node->getOperand(Num: 1))->getReg(); |
| 509 | if (Reg.isPhysical()) { |
| 510 | SDNode *SrcNode = Node->getOperand(Num: 2).getNode(); |
| 511 | CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI, Node: SrcNode); |
| 512 | } |
| 513 | } |
| 514 | |
| 515 | if (!Node->isMachineOpcode()) |
| 516 | continue; |
| 517 | const MCInstrDesc &MCID = TII->get(Opcode: Node->getMachineOpcode()); |
| 518 | for (MCPhysReg Reg : MCID.implicit_defs()) |
| 519 | CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI); |
| 520 | } |
| 521 | return !LRegs.empty(); |
| 522 | } |
| 523 | |
| 524 | |
| 525 | /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up |
| 526 | /// schedulers. |
| 527 | void ScheduleDAGFast::ListScheduleBottomUp() { |
| 528 | unsigned CurCycle = 0; |
| 529 | |
| 530 | // Release any predecessors of the special Exit node. |
| 531 | ReleasePredecessors(SU: &ExitSU, CurCycle); |
| 532 | |
| 533 | // Add root to Available queue. |
| 534 | if (!SUnits.empty()) { |
| 535 | SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()]; |
| 536 | assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!" ); |
| 537 | RootSU->isAvailable = true; |
| 538 | AvailableQueue.push(U: RootSU); |
| 539 | } |
| 540 | |
| 541 | // While Available queue is not empty, grab the node with the highest |
| 542 | // priority. If it is not ready put it back. Schedule the node. |
| 543 | SmallVector<SUnit*, 4> NotReady; |
| 544 | DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap; |
| 545 | Sequence.reserve(n: SUnits.size()); |
| 546 | while (!AvailableQueue.empty()) { |
| 547 | bool Delayed = false; |
| 548 | LRegsMap.clear(); |
| 549 | SUnit *CurSU = AvailableQueue.pop(); |
| 550 | while (CurSU) { |
| 551 | SmallVector<unsigned, 4> LRegs; |
| 552 | if (!DelayForLiveRegsBottomUp(SU: CurSU, LRegs)) |
| 553 | break; |
| 554 | Delayed = true; |
| 555 | LRegsMap.insert(KV: std::make_pair(x&: CurSU, y&: LRegs)); |
| 556 | |
| 557 | CurSU->isPending = true; // This SU is not in AvailableQueue right now. |
| 558 | NotReady.push_back(Elt: CurSU); |
| 559 | CurSU = AvailableQueue.pop(); |
| 560 | } |
| 561 | |
| 562 | // All candidates are delayed due to live physical reg dependencies. |
| 563 | // Try code duplication or inserting cross class copies |
| 564 | // to resolve it. |
| 565 | if (Delayed && !CurSU) { |
| 566 | if (!CurSU) { |
| 567 | // Try duplicating the nodes that produces these |
| 568 | // "expensive to copy" values to break the dependency. In case even |
| 569 | // that doesn't work, insert cross class copies. |
| 570 | SUnit *TrySU = NotReady[0]; |
| 571 | SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU]; |
| 572 | assert(LRegs.size() == 1 && "Can't handle this yet!" ); |
| 573 | unsigned Reg = LRegs[0]; |
| 574 | SUnit *LRDef = LiveRegDefs[Reg]; |
| 575 | MVT VT = getPhysicalRegisterVT(N: LRDef->getNode(), Reg, TII); |
| 576 | const TargetRegisterClass *RC = |
| 577 | TRI->getMinimalPhysRegClass(Reg, VT); |
| 578 | const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC); |
| 579 | |
| 580 | // If cross copy register class is the same as RC, then it must be |
| 581 | // possible copy the value directly. Do not try duplicate the def. |
| 582 | // If cross copy register class is not the same as RC, then it's |
| 583 | // possible to copy the value but it require cross register class copies |
| 584 | // and it is expensive. |
| 585 | // If cross copy register class is null, then it's not possible to copy |
| 586 | // the value at all. |
| 587 | SUnit *NewDef = nullptr; |
| 588 | if (DestRC != RC) { |
| 589 | NewDef = CopyAndMoveSuccessors(SU: LRDef); |
| 590 | if (!DestRC && !NewDef) |
| 591 | report_fatal_error(reason: "Can't handle live physical " |
| 592 | "register dependency!" ); |
| 593 | } |
| 594 | if (!NewDef) { |
| 595 | // Issue copies, these can be expensive cross register class copies. |
| 596 | SmallVector<SUnit*, 2> Copies; |
| 597 | InsertCopiesAndMoveSuccs(SU: LRDef, Reg, DestRC, SrcRC: RC, Copies); |
| 598 | LLVM_DEBUG(dbgs() << "Adding an edge from SU # " << TrySU->NodeNum |
| 599 | << " to SU #" << Copies.front()->NodeNum << "\n" ); |
| 600 | AddPred(SU: TrySU, D: SDep(Copies.front(), SDep::Artificial)); |
| 601 | NewDef = Copies.back(); |
| 602 | } |
| 603 | |
| 604 | LLVM_DEBUG(dbgs() << "Adding an edge from SU # " << NewDef->NodeNum |
| 605 | << " to SU #" << TrySU->NodeNum << "\n" ); |
| 606 | LiveRegDefs[Reg] = NewDef; |
| 607 | AddPred(SU: NewDef, D: SDep(TrySU, SDep::Artificial)); |
| 608 | TrySU->isAvailable = false; |
| 609 | CurSU = NewDef; |
| 610 | } |
| 611 | |
| 612 | if (!CurSU) { |
| 613 | llvm_unreachable("Unable to resolve live physical register dependencies!" ); |
| 614 | } |
| 615 | } |
| 616 | |
| 617 | // Add the nodes that aren't ready back onto the available list. |
| 618 | for (SUnit *SU : NotReady) { |
| 619 | SU->isPending = false; |
| 620 | // May no longer be available due to backtracking. |
| 621 | if (SU->isAvailable) |
| 622 | AvailableQueue.push(U: SU); |
| 623 | } |
| 624 | NotReady.clear(); |
| 625 | |
| 626 | if (CurSU) |
| 627 | ScheduleNodeBottomUp(SU: CurSU, CurCycle); |
| 628 | ++CurCycle; |
| 629 | } |
| 630 | |
| 631 | // Reverse the order since it is bottom up. |
| 632 | std::reverse(first: Sequence.begin(), last: Sequence.end()); |
| 633 | |
| 634 | #ifndef NDEBUG |
| 635 | VerifyScheduledSequence(/*isBottomUp=*/true); |
| 636 | #endif |
| 637 | } |
| 638 | |
| 639 | |
| 640 | namespace { |
| 641 | //===----------------------------------------------------------------------===// |
| 642 | // ScheduleDAGLinearize - No scheduling scheduler, it simply linearize the |
| 643 | // DAG in topological order. |
| 644 | // IMPORTANT: this may not work for targets with phyreg dependency. |
| 645 | // |
| 646 | class ScheduleDAGLinearize : public ScheduleDAGSDNodes { |
| 647 | public: |
| 648 | ScheduleDAGLinearize(MachineFunction &mf) : ScheduleDAGSDNodes(mf) {} |
| 649 | |
| 650 | void Schedule() override; |
| 651 | |
| 652 | MachineBasicBlock * |
| 653 | EmitSchedule(MachineBasicBlock::iterator &InsertPos) override; |
| 654 | |
| 655 | private: |
| 656 | std::vector<SDNode*> Sequence; |
| 657 | DenseMap<SDNode*, SDNode*> GluedMap; // Cache glue to its user |
| 658 | |
| 659 | void ScheduleNode(SDNode *N); |
| 660 | }; |
| 661 | } // end anonymous namespace |
| 662 | |
| 663 | void ScheduleDAGLinearize::ScheduleNode(SDNode *N) { |
| 664 | if (N->getNodeId() != 0) |
| 665 | llvm_unreachable(nullptr); |
| 666 | |
| 667 | if (!N->isMachineOpcode() && |
| 668 | (N->getOpcode() == ISD::EntryToken || isPassiveNode(Node: N))) |
| 669 | // These nodes do not need to be translated into MIs. |
| 670 | return; |
| 671 | |
| 672 | LLVM_DEBUG(dbgs() << "\n*** Scheduling: " ); |
| 673 | LLVM_DEBUG(N->dump(DAG)); |
| 674 | Sequence.push_back(x: N); |
| 675 | |
| 676 | unsigned NumOps = N->getNumOperands(); |
| 677 | if (unsigned NumLeft = NumOps) { |
| 678 | SDNode *GluedOpN = nullptr; |
| 679 | do { |
| 680 | const SDValue &Op = N->getOperand(Num: NumLeft-1); |
| 681 | SDNode *OpN = Op.getNode(); |
| 682 | |
| 683 | if (NumLeft == NumOps && Op.getValueType() == MVT::Glue) { |
| 684 | // Schedule glue operand right above N. |
| 685 | GluedOpN = OpN; |
| 686 | assert(OpN->getNodeId() != 0 && "Glue operand not ready?" ); |
| 687 | OpN->setNodeId(0); |
| 688 | ScheduleNode(N: OpN); |
| 689 | continue; |
| 690 | } |
| 691 | |
| 692 | if (OpN == GluedOpN) |
| 693 | // Glue operand is already scheduled. |
| 694 | continue; |
| 695 | |
| 696 | DenseMap<SDNode*, SDNode*>::iterator DI = GluedMap.find(Val: OpN); |
| 697 | if (DI != GluedMap.end() && DI->second != N) |
| 698 | // Users of glues are counted against the glued users. |
| 699 | OpN = DI->second; |
| 700 | |
| 701 | unsigned Degree = OpN->getNodeId(); |
| 702 | assert(Degree > 0 && "Predecessor over-released!" ); |
| 703 | OpN->setNodeId(--Degree); |
| 704 | if (Degree == 0) |
| 705 | ScheduleNode(N: OpN); |
| 706 | } while (--NumLeft); |
| 707 | } |
| 708 | } |
| 709 | |
| 710 | /// findGluedUser - Find the representative use of a glue value by walking |
| 711 | /// the use chain. |
| 712 | static SDNode *findGluedUser(SDNode *N) { |
| 713 | while (SDNode *Glued = N->getGluedUser()) |
| 714 | N = Glued; |
| 715 | return N; |
| 716 | } |
| 717 | |
| 718 | void ScheduleDAGLinearize::Schedule() { |
| 719 | LLVM_DEBUG(dbgs() << "********** DAG Linearization **********\n" ); |
| 720 | |
| 721 | SmallVector<SDNode*, 8> Glues; |
| 722 | unsigned DAGSize = 0; |
| 723 | for (SDNode &Node : DAG->allnodes()) { |
| 724 | SDNode *N = &Node; |
| 725 | |
| 726 | // Use node id to record degree. |
| 727 | unsigned Degree = N->use_size(); |
| 728 | N->setNodeId(Degree); |
| 729 | unsigned NumVals = N->getNumValues(); |
| 730 | if (NumVals && N->getValueType(ResNo: NumVals-1) == MVT::Glue && |
| 731 | N->hasAnyUseOfValue(Value: NumVals-1)) { |
| 732 | SDNode *User = findGluedUser(N); |
| 733 | if (User) { |
| 734 | Glues.push_back(Elt: N); |
| 735 | GluedMap.insert(KV: std::make_pair(x&: N, y&: User)); |
| 736 | } |
| 737 | } |
| 738 | |
| 739 | if (N->isMachineOpcode() || |
| 740 | (N->getOpcode() != ISD::EntryToken && !isPassiveNode(Node: N))) |
| 741 | ++DAGSize; |
| 742 | } |
| 743 | |
| 744 | for (SDNode *Glue : Glues) { |
| 745 | SDNode *GUser = GluedMap[Glue]; |
| 746 | unsigned Degree = Glue->getNodeId(); |
| 747 | unsigned UDegree = GUser->getNodeId(); |
| 748 | |
| 749 | // Glue user must be scheduled together with the glue operand. So other |
| 750 | // users of the glue operand must be treated as its users. |
| 751 | SDNode *ImmGUser = Glue->getGluedUser(); |
| 752 | for (const SDNode *U : Glue->users()) |
| 753 | if (U == ImmGUser) |
| 754 | --Degree; |
| 755 | GUser->setNodeId(UDegree + Degree); |
| 756 | Glue->setNodeId(1); |
| 757 | } |
| 758 | |
| 759 | Sequence.reserve(n: DAGSize); |
| 760 | ScheduleNode(N: DAG->getRoot().getNode()); |
| 761 | } |
| 762 | |
| 763 | MachineBasicBlock* |
| 764 | ScheduleDAGLinearize::EmitSchedule(MachineBasicBlock::iterator &InsertPos) { |
| 765 | InstrEmitter Emitter(DAG->getTarget(), BB, InsertPos); |
| 766 | InstrEmitter::VRBaseMapType VRBaseMap; |
| 767 | |
| 768 | LLVM_DEBUG({ dbgs() << "\n*** Final schedule ***\n" ; }); |
| 769 | |
| 770 | unsigned NumNodes = Sequence.size(); |
| 771 | MachineBasicBlock *BB = Emitter.getBlock(); |
| 772 | for (unsigned i = 0; i != NumNodes; ++i) { |
| 773 | SDNode *N = Sequence[NumNodes-i-1]; |
| 774 | LLVM_DEBUG(N->dump(DAG)); |
| 775 | Emitter.EmitNode(Node: N, IsClone: false, IsCloned: false, VRBaseMap); |
| 776 | |
| 777 | // Emit any debug values associated with the node. |
| 778 | if (N->getHasDebugValue()) { |
| 779 | MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos(); |
| 780 | for (auto *DV : DAG->GetDbgValues(SD: N)) { |
| 781 | if (!DV->isEmitted()) |
| 782 | if (auto *DbgMI = Emitter.EmitDbgValue(SD: DV, VRBaseMap)) |
| 783 | BB->insert(I: InsertPos, MI: DbgMI); |
| 784 | } |
| 785 | } |
| 786 | } |
| 787 | |
| 788 | LLVM_DEBUG(dbgs() << '\n'); |
| 789 | |
| 790 | InsertPos = Emitter.getInsertPos(); |
| 791 | return Emitter.getBlock(); |
| 792 | } |
| 793 | |
| 794 | //===----------------------------------------------------------------------===// |
| 795 | // Public Constructor Functions |
| 796 | //===----------------------------------------------------------------------===// |
| 797 | |
| 798 | llvm::ScheduleDAGSDNodes *llvm::createFastDAGScheduler(SelectionDAGISel *IS, |
| 799 | CodeGenOptLevel) { |
| 800 | return new ScheduleDAGFast(*IS->MF); |
| 801 | } |
| 802 | |
| 803 | llvm::ScheduleDAGSDNodes *llvm::createDAGLinearizer(SelectionDAGISel *IS, |
| 804 | CodeGenOptLevel) { |
| 805 | return new ScheduleDAGLinearize(*IS->MF); |
| 806 | } |
| 807 | |