| 1 | //===- ScheduleDAGRRList.cpp - Reg pressure reduction list scheduler ------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This implements bottom-up and top-down register pressure reduction list |
| 10 | // schedulers, using standard algorithms. The basic approach uses a priority |
| 11 | // queue of available nodes to schedule. One at a time, nodes are taken from |
| 12 | // the priority queue (thus in priority order), checked for legality to |
| 13 | // schedule, and emitted if legal. |
| 14 | // |
| 15 | //===----------------------------------------------------------------------===// |
| 16 | |
| 17 | #include "ScheduleDAGSDNodes.h" |
| 18 | #include "llvm/ADT/ArrayRef.h" |
| 19 | #include "llvm/ADT/DenseMap.h" |
| 20 | #include "llvm/ADT/STLExtras.h" |
| 21 | #include "llvm/ADT/SmallSet.h" |
| 22 | #include "llvm/ADT/SmallVector.h" |
| 23 | #include "llvm/ADT/Statistic.h" |
| 24 | #include "llvm/CodeGen/ISDOpcodes.h" |
| 25 | #include "llvm/CodeGen/MachineFunction.h" |
| 26 | #include "llvm/CodeGen/MachineOperand.h" |
| 27 | #include "llvm/CodeGen/Register.h" |
| 28 | #include "llvm/CodeGen/ScheduleDAG.h" |
| 29 | #include "llvm/CodeGen/ScheduleHazardRecognizer.h" |
| 30 | #include "llvm/CodeGen/SchedulerRegistry.h" |
| 31 | #include "llvm/CodeGen/SelectionDAGISel.h" |
| 32 | #include "llvm/CodeGen/SelectionDAGNodes.h" |
| 33 | #include "llvm/CodeGen/TargetInstrInfo.h" |
| 34 | #include "llvm/CodeGen/TargetLowering.h" |
| 35 | #include "llvm/CodeGen/TargetOpcodes.h" |
| 36 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
| 37 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 38 | #include "llvm/CodeGenTypes/MachineValueType.h" |
| 39 | #include "llvm/Config/llvm-config.h" |
| 40 | #include "llvm/IR/InlineAsm.h" |
| 41 | #include "llvm/MC/MCInstrDesc.h" |
| 42 | #include "llvm/MC/MCRegisterInfo.h" |
| 43 | #include "llvm/Support/Casting.h" |
| 44 | #include "llvm/Support/CodeGen.h" |
| 45 | #include "llvm/Support/CommandLine.h" |
| 46 | #include "llvm/Support/Compiler.h" |
| 47 | #include "llvm/Support/Debug.h" |
| 48 | #include "llvm/Support/ErrorHandling.h" |
| 49 | #include "llvm/Support/raw_ostream.h" |
| 50 | #include <algorithm> |
| 51 | #include <cassert> |
| 52 | #include <cstdint> |
| 53 | #include <cstdlib> |
| 54 | #include <iterator> |
| 55 | #include <limits> |
| 56 | #include <memory> |
| 57 | #include <utility> |
| 58 | #include <vector> |
| 59 | |
| 60 | using namespace llvm; |
| 61 | |
| 62 | #define DEBUG_TYPE "pre-RA-sched" |
| 63 | |
| 64 | STATISTIC(NumBacktracks, "Number of times scheduler backtracked" ); |
| 65 | STATISTIC(NumUnfolds, "Number of nodes unfolded" ); |
| 66 | STATISTIC(NumDups, "Number of duplicated nodes" ); |
| 67 | STATISTIC(NumPRCopies, "Number of physical register copies" ); |
| 68 | |
| 69 | static RegisterScheduler |
| 70 | burrListDAGScheduler("list-burr" , |
| 71 | "Bottom-up register reduction list scheduling" , |
| 72 | createBURRListDAGScheduler); |
| 73 | |
| 74 | static RegisterScheduler |
| 75 | sourceListDAGScheduler("source" , |
| 76 | "Similar to list-burr but schedules in source " |
| 77 | "order when possible" , |
| 78 | createSourceListDAGScheduler); |
| 79 | |
| 80 | static RegisterScheduler |
| 81 | hybridListDAGScheduler("list-hybrid" , |
| 82 | "Bottom-up register pressure aware list scheduling " |
| 83 | "which tries to balance latency and register pressure" , |
| 84 | createHybridListDAGScheduler); |
| 85 | |
| 86 | static RegisterScheduler |
| 87 | ILPListDAGScheduler("list-ilp" , |
| 88 | "Bottom-up register pressure aware list scheduling " |
| 89 | "which tries to balance ILP and register pressure" , |
| 90 | createILPListDAGScheduler); |
| 91 | |
| 92 | static cl::opt<bool> DisableSchedCycles( |
| 93 | "disable-sched-cycles" , cl::Hidden, cl::init(Val: false), |
| 94 | cl::desc("Disable cycle-level precision during preRA scheduling" )); |
| 95 | |
| 96 | // Temporary sched=list-ilp flags until the heuristics are robust. |
| 97 | // Some options are also available under sched=list-hybrid. |
| 98 | static cl::opt<bool> DisableSchedRegPressure( |
| 99 | "disable-sched-reg-pressure" , cl::Hidden, cl::init(Val: false), |
| 100 | cl::desc("Disable regpressure priority in sched=list-ilp" )); |
| 101 | static cl::opt<bool> DisableSchedLiveUses( |
| 102 | "disable-sched-live-uses" , cl::Hidden, cl::init(Val: true), |
| 103 | cl::desc("Disable live use priority in sched=list-ilp" )); |
| 104 | static cl::opt<bool> DisableSchedVRegCycle( |
| 105 | "disable-sched-vrcycle" , cl::Hidden, cl::init(Val: false), |
| 106 | cl::desc("Disable virtual register cycle interference checks" )); |
| 107 | static cl::opt<bool> DisableSchedPhysRegJoin( |
| 108 | "disable-sched-physreg-join" , cl::Hidden, cl::init(Val: false), |
| 109 | cl::desc("Disable physreg def-use affinity" )); |
| 110 | static cl::opt<bool> DisableSchedStalls( |
| 111 | "disable-sched-stalls" , cl::Hidden, cl::init(Val: true), |
| 112 | cl::desc("Disable no-stall priority in sched=list-ilp" )); |
| 113 | static cl::opt<bool> DisableSchedCriticalPath( |
| 114 | "disable-sched-critical-path" , cl::Hidden, cl::init(Val: false), |
| 115 | cl::desc("Disable critical path priority in sched=list-ilp" )); |
| 116 | static cl::opt<bool> DisableSchedHeight( |
| 117 | "disable-sched-height" , cl::Hidden, cl::init(Val: false), |
| 118 | cl::desc("Disable scheduled-height priority in sched=list-ilp" )); |
| 119 | static cl::opt<bool> Disable2AddrHack( |
| 120 | "disable-2addr-hack" , cl::Hidden, cl::init(Val: true), |
| 121 | cl::desc("Disable scheduler's two-address hack" )); |
| 122 | |
| 123 | static cl::opt<int> MaxReorderWindow( |
| 124 | "max-sched-reorder" , cl::Hidden, cl::init(Val: 6), |
| 125 | cl::desc("Number of instructions to allow ahead of the critical path " |
| 126 | "in sched=list-ilp" )); |
| 127 | |
| 128 | static cl::opt<unsigned> |
| 129 | AvgIPC("sched-avg-ipc" , cl::Hidden, cl::init(Val: 1), |
| 130 | cl::desc("Average inst/cycle when no target itinerary exists." )); |
| 131 | |
| 132 | namespace { |
| 133 | |
| 134 | //===----------------------------------------------------------------------===// |
| 135 | /// ScheduleDAGRRList - The actual register reduction list scheduler |
| 136 | /// implementation. This supports both top-down and bottom-up scheduling. |
| 137 | /// |
| 138 | class ScheduleDAGRRList : public ScheduleDAGSDNodes { |
| 139 | private: |
| 140 | /// NeedLatency - True if the scheduler will make use of latency information. |
| 141 | bool NeedLatency; |
| 142 | |
| 143 | /// AvailableQueue - The priority queue to use for the available SUnits. |
| 144 | SchedulingPriorityQueue *AvailableQueue; |
| 145 | |
| 146 | /// PendingQueue - This contains all of the instructions whose operands have |
| 147 | /// been issued, but their results are not ready yet (due to the latency of |
| 148 | /// the operation). Once the operands becomes available, the instruction is |
| 149 | /// added to the AvailableQueue. |
| 150 | std::vector<SUnit *> PendingQueue; |
| 151 | |
| 152 | /// HazardRec - The hazard recognizer to use. |
| 153 | ScheduleHazardRecognizer *HazardRec; |
| 154 | |
| 155 | /// CurCycle - The current scheduler state corresponds to this cycle. |
| 156 | unsigned CurCycle = 0; |
| 157 | |
| 158 | /// MinAvailableCycle - Cycle of the soonest available instruction. |
| 159 | unsigned MinAvailableCycle = ~0u; |
| 160 | |
| 161 | /// IssueCount - Count instructions issued in this cycle |
| 162 | /// Currently valid only for bottom-up scheduling. |
| 163 | unsigned IssueCount = 0u; |
| 164 | |
| 165 | /// LiveRegDefs - A set of physical registers and their definition |
| 166 | /// that are "live". These nodes must be scheduled before any other nodes that |
| 167 | /// modifies the registers can be scheduled. |
| 168 | unsigned NumLiveRegs = 0u; |
| 169 | std::unique_ptr<SUnit*[]> LiveRegDefs; |
| 170 | std::unique_ptr<SUnit*[]> LiveRegGens; |
| 171 | |
| 172 | // Collect interferences between physical register use/defs. |
| 173 | // Each interference is an SUnit and set of physical registers. |
| 174 | SmallVector<SUnit*, 4> Interferences; |
| 175 | |
| 176 | using LRegsMapT = DenseMap<SUnit *, SmallVector<unsigned, 4>>; |
| 177 | |
| 178 | LRegsMapT LRegsMap; |
| 179 | |
| 180 | /// Topo - A topological ordering for SUnits which permits fast IsReachable |
| 181 | /// and similar queries. |
| 182 | ScheduleDAGTopologicalSort Topo; |
| 183 | |
| 184 | // Hack to keep track of the inverse of FindCallSeqStart without more crazy |
| 185 | // DAG crawling. |
| 186 | SmallDenseMap<SUnit *, SUnit *, 16> CallSeqEndForStart; |
| 187 | |
| 188 | public: |
| 189 | ScheduleDAGRRList(MachineFunction &mf, bool needlatency, |
| 190 | SchedulingPriorityQueue *availqueue, |
| 191 | CodeGenOptLevel OptLevel) |
| 192 | : ScheduleDAGSDNodes(mf), NeedLatency(needlatency), |
| 193 | AvailableQueue(availqueue), Topo(SUnits, nullptr) { |
| 194 | const TargetSubtargetInfo &STI = mf.getSubtarget(); |
| 195 | if (DisableSchedCycles || !NeedLatency) |
| 196 | HazardRec = new ScheduleHazardRecognizer(); |
| 197 | else |
| 198 | HazardRec = STI.getInstrInfo()->CreateTargetHazardRecognizer(STI: &STI, DAG: this); |
| 199 | } |
| 200 | |
| 201 | ~ScheduleDAGRRList() override { |
| 202 | delete HazardRec; |
| 203 | delete AvailableQueue; |
| 204 | } |
| 205 | |
| 206 | void Schedule() override; |
| 207 | |
| 208 | ScheduleHazardRecognizer *getHazardRec() { return HazardRec; } |
| 209 | |
| 210 | /// IsReachable - Checks if SU is reachable from TargetSU. |
| 211 | bool IsReachable(const SUnit *SU, const SUnit *TargetSU) { |
| 212 | return Topo.IsReachable(SU, TargetSU); |
| 213 | } |
| 214 | |
| 215 | /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will |
| 216 | /// create a cycle. |
| 217 | bool WillCreateCycle(SUnit *SU, SUnit *TargetSU) { |
| 218 | return Topo.WillCreateCycle(TargetSU: SU, SU: TargetSU); |
| 219 | } |
| 220 | |
| 221 | /// AddPredQueued - Queues and update to add a predecessor edge to SUnit SU. |
| 222 | /// This returns true if this is a new predecessor. |
| 223 | /// Does *NOT* update the topological ordering! It just queues an update. |
| 224 | void AddPredQueued(SUnit *SU, const SDep &D) { |
| 225 | Topo.AddPredQueued(Y: SU, X: D.getSUnit()); |
| 226 | SU->addPred(D); |
| 227 | } |
| 228 | |
| 229 | /// AddPred - adds a predecessor edge to SUnit SU. |
| 230 | /// This returns true if this is a new predecessor. |
| 231 | /// Updates the topological ordering if required. |
| 232 | void AddPred(SUnit *SU, const SDep &D) { |
| 233 | Topo.AddPred(Y: SU, X: D.getSUnit()); |
| 234 | SU->addPred(D); |
| 235 | } |
| 236 | |
| 237 | /// RemovePred - removes a predecessor edge from SUnit SU. |
| 238 | /// This returns true if an edge was removed. |
| 239 | /// Updates the topological ordering if required. |
| 240 | void RemovePred(SUnit *SU, const SDep &D) { |
| 241 | Topo.RemovePred(M: SU, N: D.getSUnit()); |
| 242 | SU->removePred(D); |
| 243 | } |
| 244 | |
| 245 | private: |
| 246 | bool isReady(SUnit *SU) { |
| 247 | return DisableSchedCycles || !AvailableQueue->hasReadyFilter() || |
| 248 | AvailableQueue->isReady(SU); |
| 249 | } |
| 250 | |
| 251 | void ReleasePred(SUnit *SU, const SDep *PredEdge); |
| 252 | void ReleasePredecessors(SUnit *SU); |
| 253 | void ReleasePending(); |
| 254 | void AdvanceToCycle(unsigned NextCycle); |
| 255 | void AdvancePastStalls(SUnit *SU); |
| 256 | void EmitNode(SUnit *SU); |
| 257 | void ScheduleNodeBottomUp(SUnit*); |
| 258 | void CapturePred(SDep *PredEdge); |
| 259 | void UnscheduleNodeBottomUp(SUnit*); |
| 260 | void RestoreHazardCheckerBottomUp(); |
| 261 | void BacktrackBottomUp(SUnit*, SUnit*); |
| 262 | SUnit *TryUnfoldSU(SUnit *); |
| 263 | SUnit *CopyAndMoveSuccessors(SUnit*); |
| 264 | void InsertCopiesAndMoveSuccs(SUnit*, unsigned, |
| 265 | const TargetRegisterClass*, |
| 266 | const TargetRegisterClass*, |
| 267 | SmallVectorImpl<SUnit*>&); |
| 268 | bool DelayForLiveRegsBottomUp(SUnit*, SmallVectorImpl<unsigned>&); |
| 269 | |
| 270 | void releaseInterferences(unsigned Reg = 0); |
| 271 | |
| 272 | SUnit *PickNodeToScheduleBottomUp(); |
| 273 | void ListScheduleBottomUp(); |
| 274 | |
| 275 | /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it. |
| 276 | SUnit *CreateNewSUnit(SDNode *N) { |
| 277 | unsigned NumSUnits = SUnits.size(); |
| 278 | SUnit *NewNode = newSUnit(N); |
| 279 | // Update the topological ordering. |
| 280 | if (NewNode->NodeNum >= NumSUnits) |
| 281 | Topo.AddSUnitWithoutPredecessors(SU: NewNode); |
| 282 | return NewNode; |
| 283 | } |
| 284 | |
| 285 | /// CreateClone - Creates a new SUnit from an existing one. |
| 286 | SUnit *CreateClone(SUnit *N) { |
| 287 | unsigned NumSUnits = SUnits.size(); |
| 288 | SUnit *NewNode = Clone(Old: N); |
| 289 | // Update the topological ordering. |
| 290 | if (NewNode->NodeNum >= NumSUnits) |
| 291 | Topo.AddSUnitWithoutPredecessors(SU: NewNode); |
| 292 | return NewNode; |
| 293 | } |
| 294 | |
| 295 | /// forceUnitLatencies - Register-pressure-reducing scheduling doesn't |
| 296 | /// need actual latency information but the hybrid scheduler does. |
| 297 | bool forceUnitLatencies() const override { |
| 298 | return !NeedLatency; |
| 299 | } |
| 300 | }; |
| 301 | |
| 302 | } // end anonymous namespace |
| 303 | |
| 304 | static constexpr unsigned RegSequenceCost = 1; |
| 305 | |
| 306 | /// GetCostForDef - Looks up the register class and cost for a given definition. |
| 307 | /// Typically this just means looking up the representative register class, |
| 308 | /// but for untyped values (MVT::Untyped) it means inspecting the node's |
| 309 | /// opcode to determine what register class is being generated. |
| 310 | static void GetCostForDef(const ScheduleDAGSDNodes::RegDefIter &RegDefPos, |
| 311 | const TargetLowering *TLI, |
| 312 | const TargetInstrInfo *TII, |
| 313 | const TargetRegisterInfo *TRI, |
| 314 | unsigned &RegClass, unsigned &Cost, |
| 315 | const MachineFunction &MF) { |
| 316 | MVT VT = RegDefPos.GetValue(); |
| 317 | |
| 318 | // Special handling for untyped values. These values can only come from |
| 319 | // the expansion of custom DAG-to-DAG patterns. |
| 320 | if (VT == MVT::Untyped) { |
| 321 | const SDNode *Node = RegDefPos.GetNode(); |
| 322 | |
| 323 | // Special handling for CopyFromReg of untyped values. |
| 324 | if (!Node->isMachineOpcode() && Node->getOpcode() == ISD::CopyFromReg) { |
| 325 | Register Reg = cast<RegisterSDNode>(Val: Node->getOperand(Num: 1))->getReg(); |
| 326 | const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(Reg); |
| 327 | RegClass = RC->getID(); |
| 328 | Cost = 1; |
| 329 | return; |
| 330 | } |
| 331 | |
| 332 | unsigned Opcode = Node->getMachineOpcode(); |
| 333 | if (Opcode == TargetOpcode::REG_SEQUENCE) { |
| 334 | unsigned DstRCIdx = Node->getConstantOperandVal(Num: 0); |
| 335 | const TargetRegisterClass *RC = TRI->getRegClass(i: DstRCIdx); |
| 336 | RegClass = RC->getID(); |
| 337 | Cost = RegSequenceCost; |
| 338 | return; |
| 339 | } |
| 340 | |
| 341 | unsigned Idx = RegDefPos.GetIdx(); |
| 342 | const MCInstrDesc &Desc = TII->get(Opcode); |
| 343 | const TargetRegisterClass *RC = TII->getRegClass(MCID: Desc, OpNum: Idx, TRI, MF); |
| 344 | assert(RC && "Not a valid register class" ); |
| 345 | RegClass = RC->getID(); |
| 346 | // FIXME: Cost arbitrarily set to 1 because there doesn't seem to be a |
| 347 | // better way to determine it. |
| 348 | Cost = 1; |
| 349 | } else { |
| 350 | RegClass = TLI->getRepRegClassFor(VT)->getID(); |
| 351 | Cost = TLI->getRepRegClassCostFor(VT); |
| 352 | } |
| 353 | } |
| 354 | |
| 355 | /// Schedule - Schedule the DAG using list scheduling. |
| 356 | void ScheduleDAGRRList::Schedule() { |
| 357 | LLVM_DEBUG(dbgs() << "********** List Scheduling " << printMBBReference(*BB) |
| 358 | << " '" << BB->getName() << "' **********\n" ); |
| 359 | |
| 360 | CurCycle = 0; |
| 361 | IssueCount = 0; |
| 362 | MinAvailableCycle = |
| 363 | DisableSchedCycles ? 0 : std::numeric_limits<unsigned>::max(); |
| 364 | NumLiveRegs = 0; |
| 365 | // Allocate slots for each physical register, plus one for a special register |
| 366 | // to track the virtual resource of a calling sequence. |
| 367 | LiveRegDefs.reset(p: new SUnit*[TRI->getNumRegs() + 1]()); |
| 368 | LiveRegGens.reset(p: new SUnit*[TRI->getNumRegs() + 1]()); |
| 369 | CallSeqEndForStart.clear(); |
| 370 | assert(Interferences.empty() && LRegsMap.empty() && "stale Interferences" ); |
| 371 | |
| 372 | // Build the scheduling graph. |
| 373 | BuildSchedGraph(); |
| 374 | |
| 375 | LLVM_DEBUG(dump()); |
| 376 | Topo.MarkDirty(); |
| 377 | |
| 378 | AvailableQueue->initNodes(SUnits); |
| 379 | |
| 380 | HazardRec->Reset(); |
| 381 | |
| 382 | // Execute the actual scheduling loop. |
| 383 | ListScheduleBottomUp(); |
| 384 | |
| 385 | AvailableQueue->releaseState(); |
| 386 | |
| 387 | LLVM_DEBUG({ |
| 388 | dbgs() << "*** Final schedule ***\n" ; |
| 389 | dumpSchedule(); |
| 390 | dbgs() << '\n'; |
| 391 | }); |
| 392 | } |
| 393 | |
| 394 | //===----------------------------------------------------------------------===// |
| 395 | // Bottom-Up Scheduling |
| 396 | //===----------------------------------------------------------------------===// |
| 397 | |
| 398 | /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to |
| 399 | /// the AvailableQueue if the count reaches zero. Also update its cycle bound. |
| 400 | void ScheduleDAGRRList::ReleasePred(SUnit *SU, const SDep *PredEdge) { |
| 401 | SUnit *PredSU = PredEdge->getSUnit(); |
| 402 | |
| 403 | #ifndef NDEBUG |
| 404 | if (PredSU->NumSuccsLeft == 0) { |
| 405 | dbgs() << "*** Scheduling failed! ***\n" ; |
| 406 | dumpNode(*PredSU); |
| 407 | dbgs() << " has been released too many times!\n" ; |
| 408 | llvm_unreachable(nullptr); |
| 409 | } |
| 410 | #endif |
| 411 | --PredSU->NumSuccsLeft; |
| 412 | |
| 413 | if (!forceUnitLatencies()) { |
| 414 | // Updating predecessor's height. This is now the cycle when the |
| 415 | // predecessor can be scheduled without causing a pipeline stall. |
| 416 | PredSU->setHeightToAtLeast(SU->getHeight() + PredEdge->getLatency()); |
| 417 | } |
| 418 | |
| 419 | // If all the node's successors are scheduled, this node is ready |
| 420 | // to be scheduled. Ignore the special EntrySU node. |
| 421 | if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) { |
| 422 | PredSU->isAvailable = true; |
| 423 | |
| 424 | unsigned Height = PredSU->getHeight(); |
| 425 | if (Height < MinAvailableCycle) |
| 426 | MinAvailableCycle = Height; |
| 427 | |
| 428 | if (isReady(SU: PredSU)) { |
| 429 | AvailableQueue->push(U: PredSU); |
| 430 | } |
| 431 | // CapturePred and others may have left the node in the pending queue, avoid |
| 432 | // adding it twice. |
| 433 | else if (!PredSU->isPending) { |
| 434 | PredSU->isPending = true; |
| 435 | PendingQueue.push_back(x: PredSU); |
| 436 | } |
| 437 | } |
| 438 | } |
| 439 | |
| 440 | /// IsChainDependent - Test if Outer is reachable from Inner through |
| 441 | /// chain dependencies. |
| 442 | static bool IsChainDependent(SDNode *Outer, SDNode *Inner, |
| 443 | unsigned NestLevel, |
| 444 | const TargetInstrInfo *TII) { |
| 445 | SDNode *N = Outer; |
| 446 | while (true) { |
| 447 | if (N == Inner) |
| 448 | return true; |
| 449 | // For a TokenFactor, examine each operand. There may be multiple ways |
| 450 | // to get to the CALLSEQ_BEGIN, but we need to find the path with the |
| 451 | // most nesting in order to ensure that we find the corresponding match. |
| 452 | if (N->getOpcode() == ISD::TokenFactor) { |
| 453 | for (const SDValue &Op : N->op_values()) |
| 454 | if (IsChainDependent(Outer: Op.getNode(), Inner, NestLevel, TII)) |
| 455 | return true; |
| 456 | return false; |
| 457 | } |
| 458 | // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END. |
| 459 | if (N->isMachineOpcode()) { |
| 460 | if (N->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) { |
| 461 | ++NestLevel; |
| 462 | } else if (N->getMachineOpcode() == TII->getCallFrameSetupOpcode()) { |
| 463 | if (NestLevel == 0) |
| 464 | return false; |
| 465 | --NestLevel; |
| 466 | } |
| 467 | } |
| 468 | // Otherwise, find the chain and continue climbing. |
| 469 | for (const SDValue &Op : N->op_values()) |
| 470 | if (Op.getValueType() == MVT::Other) { |
| 471 | N = Op.getNode(); |
| 472 | goto found_chain_operand; |
| 473 | } |
| 474 | return false; |
| 475 | found_chain_operand:; |
| 476 | if (N->getOpcode() == ISD::EntryToken) |
| 477 | return false; |
| 478 | } |
| 479 | } |
| 480 | |
| 481 | /// FindCallSeqStart - Starting from the (lowered) CALLSEQ_END node, locate |
| 482 | /// the corresponding (lowered) CALLSEQ_BEGIN node. |
| 483 | /// |
| 484 | /// NestLevel and MaxNested are used in recursion to indcate the current level |
| 485 | /// of nesting of CALLSEQ_BEGIN and CALLSEQ_END pairs, as well as the maximum |
| 486 | /// level seen so far. |
| 487 | /// |
| 488 | /// TODO: It would be better to give CALLSEQ_END an explicit operand to point |
| 489 | /// to the corresponding CALLSEQ_BEGIN to avoid needing to search for it. |
| 490 | static SDNode * |
| 491 | FindCallSeqStart(SDNode *N, unsigned &NestLevel, unsigned &MaxNest, |
| 492 | const TargetInstrInfo *TII) { |
| 493 | while (true) { |
| 494 | // For a TokenFactor, examine each operand. There may be multiple ways |
| 495 | // to get to the CALLSEQ_BEGIN, but we need to find the path with the |
| 496 | // most nesting in order to ensure that we find the corresponding match. |
| 497 | if (N->getOpcode() == ISD::TokenFactor) { |
| 498 | SDNode *Best = nullptr; |
| 499 | unsigned BestMaxNest = MaxNest; |
| 500 | for (const SDValue &Op : N->op_values()) { |
| 501 | unsigned MyNestLevel = NestLevel; |
| 502 | unsigned MyMaxNest = MaxNest; |
| 503 | if (SDNode *New = FindCallSeqStart(N: Op.getNode(), |
| 504 | NestLevel&: MyNestLevel, MaxNest&: MyMaxNest, TII)) |
| 505 | if (!Best || (MyMaxNest > BestMaxNest)) { |
| 506 | Best = New; |
| 507 | BestMaxNest = MyMaxNest; |
| 508 | } |
| 509 | } |
| 510 | assert(Best); |
| 511 | MaxNest = BestMaxNest; |
| 512 | return Best; |
| 513 | } |
| 514 | // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END. |
| 515 | if (N->isMachineOpcode()) { |
| 516 | if (N->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) { |
| 517 | ++NestLevel; |
| 518 | MaxNest = std::max(a: MaxNest, b: NestLevel); |
| 519 | } else if (N->getMachineOpcode() == TII->getCallFrameSetupOpcode()) { |
| 520 | assert(NestLevel != 0); |
| 521 | --NestLevel; |
| 522 | if (NestLevel == 0) |
| 523 | return N; |
| 524 | } |
| 525 | } |
| 526 | // Otherwise, find the chain and continue climbing. |
| 527 | for (const SDValue &Op : N->op_values()) |
| 528 | if (Op.getValueType() == MVT::Other) { |
| 529 | N = Op.getNode(); |
| 530 | goto found_chain_operand; |
| 531 | } |
| 532 | return nullptr; |
| 533 | found_chain_operand:; |
| 534 | if (N->getOpcode() == ISD::EntryToken) |
| 535 | return nullptr; |
| 536 | } |
| 537 | } |
| 538 | |
| 539 | /// Call ReleasePred for each predecessor, then update register live def/gen. |
| 540 | /// Always update LiveRegDefs for a register dependence even if the current SU |
| 541 | /// also defines the register. This effectively create one large live range |
| 542 | /// across a sequence of two-address node. This is important because the |
| 543 | /// entire chain must be scheduled together. Example: |
| 544 | /// |
| 545 | /// flags = (3) add |
| 546 | /// flags = (2) addc flags |
| 547 | /// flags = (1) addc flags |
| 548 | /// |
| 549 | /// results in |
| 550 | /// |
| 551 | /// LiveRegDefs[flags] = 3 |
| 552 | /// LiveRegGens[flags] = 1 |
| 553 | /// |
| 554 | /// If (2) addc is unscheduled, then (1) addc must also be unscheduled to avoid |
| 555 | /// interference on flags. |
| 556 | void ScheduleDAGRRList::ReleasePredecessors(SUnit *SU) { |
| 557 | // Bottom up: release predecessors |
| 558 | for (SDep &Pred : SU->Preds) { |
| 559 | ReleasePred(SU, PredEdge: &Pred); |
| 560 | if (Pred.isAssignedRegDep()) { |
| 561 | // This is a physical register dependency and it's impossible or |
| 562 | // expensive to copy the register. Make sure nothing that can |
| 563 | // clobber the register is scheduled between the predecessor and |
| 564 | // this node. |
| 565 | SUnit *RegDef = LiveRegDefs[Pred.getReg()]; (void)RegDef; |
| 566 | assert((!RegDef || RegDef == SU || RegDef == Pred.getSUnit()) && |
| 567 | "interference on register dependence" ); |
| 568 | LiveRegDefs[Pred.getReg()] = Pred.getSUnit(); |
| 569 | if (!LiveRegGens[Pred.getReg()]) { |
| 570 | ++NumLiveRegs; |
| 571 | LiveRegGens[Pred.getReg()] = SU; |
| 572 | } |
| 573 | } |
| 574 | } |
| 575 | |
| 576 | // If we're scheduling a lowered CALLSEQ_END, find the corresponding |
| 577 | // CALLSEQ_BEGIN. Inject an artificial physical register dependence between |
| 578 | // these nodes, to prevent other calls from being interscheduled with them. |
| 579 | unsigned CallResource = TRI->getNumRegs(); |
| 580 | if (!LiveRegDefs[CallResource]) |
| 581 | for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) |
| 582 | if (Node->isMachineOpcode() && |
| 583 | Node->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) { |
| 584 | unsigned NestLevel = 0; |
| 585 | unsigned MaxNest = 0; |
| 586 | SDNode *N = FindCallSeqStart(N: Node, NestLevel, MaxNest, TII); |
| 587 | assert(N && "Must find call sequence start" ); |
| 588 | |
| 589 | SUnit *Def = &SUnits[N->getNodeId()]; |
| 590 | CallSeqEndForStart[Def] = SU; |
| 591 | |
| 592 | ++NumLiveRegs; |
| 593 | LiveRegDefs[CallResource] = Def; |
| 594 | LiveRegGens[CallResource] = SU; |
| 595 | break; |
| 596 | } |
| 597 | } |
| 598 | |
| 599 | /// Check to see if any of the pending instructions are ready to issue. If |
| 600 | /// so, add them to the available queue. |
| 601 | void ScheduleDAGRRList::ReleasePending() { |
| 602 | if (DisableSchedCycles) { |
| 603 | assert(PendingQueue.empty() && "pending instrs not allowed in this mode" ); |
| 604 | return; |
| 605 | } |
| 606 | |
| 607 | // If the available queue is empty, it is safe to reset MinAvailableCycle. |
| 608 | if (AvailableQueue->empty()) |
| 609 | MinAvailableCycle = std::numeric_limits<unsigned>::max(); |
| 610 | |
| 611 | // Check to see if any of the pending instructions are ready to issue. If |
| 612 | // so, add them to the available queue. |
| 613 | for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) { |
| 614 | unsigned ReadyCycle = PendingQueue[i]->getHeight(); |
| 615 | if (ReadyCycle < MinAvailableCycle) |
| 616 | MinAvailableCycle = ReadyCycle; |
| 617 | |
| 618 | if (PendingQueue[i]->isAvailable) { |
| 619 | if (!isReady(SU: PendingQueue[i])) |
| 620 | continue; |
| 621 | AvailableQueue->push(U: PendingQueue[i]); |
| 622 | } |
| 623 | PendingQueue[i]->isPending = false; |
| 624 | PendingQueue[i] = PendingQueue.back(); |
| 625 | PendingQueue.pop_back(); |
| 626 | --i; --e; |
| 627 | } |
| 628 | } |
| 629 | |
| 630 | /// Move the scheduler state forward by the specified number of Cycles. |
| 631 | void ScheduleDAGRRList::AdvanceToCycle(unsigned NextCycle) { |
| 632 | if (NextCycle <= CurCycle) |
| 633 | return; |
| 634 | |
| 635 | IssueCount = 0; |
| 636 | AvailableQueue->setCurCycle(NextCycle); |
| 637 | if (!HazardRec->isEnabled()) { |
| 638 | // Bypass lots of virtual calls in case of long latency. |
| 639 | CurCycle = NextCycle; |
| 640 | } |
| 641 | else { |
| 642 | for (; CurCycle != NextCycle; ++CurCycle) { |
| 643 | HazardRec->RecedeCycle(); |
| 644 | } |
| 645 | } |
| 646 | // FIXME: Instead of visiting the pending Q each time, set a dirty flag on the |
| 647 | // available Q to release pending nodes at least once before popping. |
| 648 | ReleasePending(); |
| 649 | } |
| 650 | |
| 651 | /// Move the scheduler state forward until the specified node's dependents are |
| 652 | /// ready and can be scheduled with no resource conflicts. |
| 653 | void ScheduleDAGRRList::AdvancePastStalls(SUnit *SU) { |
| 654 | if (DisableSchedCycles) |
| 655 | return; |
| 656 | |
| 657 | // FIXME: Nodes such as CopyFromReg probably should not advance the current |
| 658 | // cycle. Otherwise, we can wrongly mask real stalls. If the non-machine node |
| 659 | // has predecessors the cycle will be advanced when they are scheduled. |
| 660 | // But given the crude nature of modeling latency though such nodes, we |
| 661 | // currently need to treat these nodes like real instructions. |
| 662 | // if (!SU->getNode() || !SU->getNode()->isMachineOpcode()) return; |
| 663 | |
| 664 | unsigned ReadyCycle = SU->getHeight(); |
| 665 | |
| 666 | // Bump CurCycle to account for latency. We assume the latency of other |
| 667 | // available instructions may be hidden by the stall (not a full pipe stall). |
| 668 | // This updates the hazard recognizer's cycle before reserving resources for |
| 669 | // this instruction. |
| 670 | AdvanceToCycle(NextCycle: ReadyCycle); |
| 671 | |
| 672 | // Calls are scheduled in their preceding cycle, so don't conflict with |
| 673 | // hazards from instructions after the call. EmitNode will reset the |
| 674 | // scoreboard state before emitting the call. |
| 675 | if (SU->isCall) |
| 676 | return; |
| 677 | |
| 678 | // FIXME: For resource conflicts in very long non-pipelined stages, we |
| 679 | // should probably skip ahead here to avoid useless scoreboard checks. |
| 680 | int Stalls = 0; |
| 681 | while (true) { |
| 682 | ScheduleHazardRecognizer::HazardType HT = |
| 683 | HazardRec->getHazardType(SU, Stalls: -Stalls); |
| 684 | |
| 685 | if (HT == ScheduleHazardRecognizer::NoHazard) |
| 686 | break; |
| 687 | |
| 688 | ++Stalls; |
| 689 | } |
| 690 | AdvanceToCycle(NextCycle: CurCycle + Stalls); |
| 691 | } |
| 692 | |
| 693 | /// Record this SUnit in the HazardRecognizer. |
| 694 | /// Does not update CurCycle. |
| 695 | void ScheduleDAGRRList::EmitNode(SUnit *SU) { |
| 696 | if (!HazardRec->isEnabled()) |
| 697 | return; |
| 698 | |
| 699 | // Check for phys reg copy. |
| 700 | if (!SU->getNode()) |
| 701 | return; |
| 702 | |
| 703 | switch (SU->getNode()->getOpcode()) { |
| 704 | default: |
| 705 | assert(SU->getNode()->isMachineOpcode() && |
| 706 | "This target-independent node should not be scheduled." ); |
| 707 | break; |
| 708 | case ISD::MERGE_VALUES: |
| 709 | case ISD::TokenFactor: |
| 710 | case ISD::LIFETIME_START: |
| 711 | case ISD::LIFETIME_END: |
| 712 | case ISD::CopyToReg: |
| 713 | case ISD::CopyFromReg: |
| 714 | case ISD::EH_LABEL: |
| 715 | // Noops don't affect the scoreboard state. Copies are likely to be |
| 716 | // removed. |
| 717 | return; |
| 718 | case ISD::INLINEASM: |
| 719 | case ISD::INLINEASM_BR: |
| 720 | // For inline asm, clear the pipeline state. |
| 721 | HazardRec->Reset(); |
| 722 | return; |
| 723 | } |
| 724 | if (SU->isCall) { |
| 725 | // Calls are scheduled with their preceding instructions. For bottom-up |
| 726 | // scheduling, clear the pipeline state before emitting. |
| 727 | HazardRec->Reset(); |
| 728 | } |
| 729 | |
| 730 | HazardRec->EmitInstruction(SU); |
| 731 | } |
| 732 | |
| 733 | static void resetVRegCycle(SUnit *SU); |
| 734 | |
| 735 | /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending |
| 736 | /// count of its predecessors. If a predecessor pending count is zero, add it to |
| 737 | /// the Available queue. |
| 738 | void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU) { |
| 739 | LLVM_DEBUG(dbgs() << "\n*** Scheduling [" << CurCycle << "]: " ); |
| 740 | LLVM_DEBUG(dumpNode(*SU)); |
| 741 | |
| 742 | #ifndef NDEBUG |
| 743 | if (CurCycle < SU->getHeight()) |
| 744 | LLVM_DEBUG(dbgs() << " Height [" << SU->getHeight() |
| 745 | << "] pipeline stall!\n" ); |
| 746 | #endif |
| 747 | |
| 748 | // FIXME: Do not modify node height. It may interfere with |
| 749 | // backtracking. Instead add a "ready cycle" to SUnit. Before scheduling the |
| 750 | // node its ready cycle can aid heuristics, and after scheduling it can |
| 751 | // indicate the scheduled cycle. |
| 752 | SU->setHeightToAtLeast(CurCycle); |
| 753 | |
| 754 | // Reserve resources for the scheduled instruction. |
| 755 | EmitNode(SU); |
| 756 | |
| 757 | Sequence.push_back(x: SU); |
| 758 | |
| 759 | AvailableQueue->scheduledNode(SU); |
| 760 | |
| 761 | // If HazardRec is disabled, and each inst counts as one cycle, then |
| 762 | // advance CurCycle before ReleasePredecessors to avoid useless pushes to |
| 763 | // PendingQueue for schedulers that implement HasReadyFilter. |
| 764 | if (!HazardRec->isEnabled() && AvgIPC < 2) |
| 765 | AdvanceToCycle(NextCycle: CurCycle + 1); |
| 766 | |
| 767 | // Update liveness of predecessors before successors to avoid treating a |
| 768 | // two-address node as a live range def. |
| 769 | ReleasePredecessors(SU); |
| 770 | |
| 771 | // Release all the implicit physical register defs that are live. |
| 772 | for (SDep &Succ : SU->Succs) { |
| 773 | // LiveRegDegs[Succ.getReg()] != SU when SU is a two-address node. |
| 774 | if (Succ.isAssignedRegDep() && LiveRegDefs[Succ.getReg()] == SU) { |
| 775 | assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!" ); |
| 776 | --NumLiveRegs; |
| 777 | LiveRegDefs[Succ.getReg()] = nullptr; |
| 778 | LiveRegGens[Succ.getReg()] = nullptr; |
| 779 | releaseInterferences(Reg: Succ.getReg()); |
| 780 | } |
| 781 | } |
| 782 | // Release the special call resource dependence, if this is the beginning |
| 783 | // of a call. |
| 784 | unsigned CallResource = TRI->getNumRegs(); |
| 785 | if (LiveRegDefs[CallResource] == SU) |
| 786 | for (const SDNode *SUNode = SU->getNode(); SUNode; |
| 787 | SUNode = SUNode->getGluedNode()) { |
| 788 | if (SUNode->isMachineOpcode() && |
| 789 | SUNode->getMachineOpcode() == TII->getCallFrameSetupOpcode()) { |
| 790 | assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!" ); |
| 791 | --NumLiveRegs; |
| 792 | LiveRegDefs[CallResource] = nullptr; |
| 793 | LiveRegGens[CallResource] = nullptr; |
| 794 | releaseInterferences(Reg: CallResource); |
| 795 | } |
| 796 | } |
| 797 | |
| 798 | resetVRegCycle(SU); |
| 799 | |
| 800 | SU->isScheduled = true; |
| 801 | |
| 802 | // Conditions under which the scheduler should eagerly advance the cycle: |
| 803 | // (1) No available instructions |
| 804 | // (2) All pipelines full, so available instructions must have hazards. |
| 805 | // |
| 806 | // If HazardRec is disabled, the cycle was pre-advanced before calling |
| 807 | // ReleasePredecessors. In that case, IssueCount should remain 0. |
| 808 | // |
| 809 | // Check AvailableQueue after ReleasePredecessors in case of zero latency. |
| 810 | if (HazardRec->isEnabled() || AvgIPC > 1) { |
| 811 | if (SU->getNode() && SU->getNode()->isMachineOpcode()) |
| 812 | ++IssueCount; |
| 813 | if ((HazardRec->isEnabled() && HazardRec->atIssueLimit()) |
| 814 | || (!HazardRec->isEnabled() && IssueCount == AvgIPC)) |
| 815 | AdvanceToCycle(NextCycle: CurCycle + 1); |
| 816 | } |
| 817 | } |
| 818 | |
| 819 | /// CapturePred - This does the opposite of ReleasePred. Since SU is being |
| 820 | /// unscheduled, increase the succ left count of its predecessors. Remove |
| 821 | /// them from AvailableQueue if necessary. |
| 822 | void ScheduleDAGRRList::CapturePred(SDep *PredEdge) { |
| 823 | SUnit *PredSU = PredEdge->getSUnit(); |
| 824 | if (PredSU->isAvailable) { |
| 825 | PredSU->isAvailable = false; |
| 826 | if (!PredSU->isPending) |
| 827 | AvailableQueue->remove(SU: PredSU); |
| 828 | } |
| 829 | |
| 830 | assert(PredSU->NumSuccsLeft < std::numeric_limits<unsigned>::max() && |
| 831 | "NumSuccsLeft will overflow!" ); |
| 832 | ++PredSU->NumSuccsLeft; |
| 833 | } |
| 834 | |
| 835 | /// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and |
| 836 | /// its predecessor states to reflect the change. |
| 837 | void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) { |
| 838 | LLVM_DEBUG(dbgs() << "*** Unscheduling [" << SU->getHeight() << "]: " ); |
| 839 | LLVM_DEBUG(dumpNode(*SU)); |
| 840 | |
| 841 | for (SDep &Pred : SU->Preds) { |
| 842 | CapturePred(PredEdge: &Pred); |
| 843 | if (Pred.isAssignedRegDep() && SU == LiveRegGens[Pred.getReg()]){ |
| 844 | assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!" ); |
| 845 | assert(LiveRegDefs[Pred.getReg()] == Pred.getSUnit() && |
| 846 | "Physical register dependency violated?" ); |
| 847 | --NumLiveRegs; |
| 848 | LiveRegDefs[Pred.getReg()] = nullptr; |
| 849 | LiveRegGens[Pred.getReg()] = nullptr; |
| 850 | releaseInterferences(Reg: Pred.getReg()); |
| 851 | } |
| 852 | } |
| 853 | |
| 854 | // Reclaim the special call resource dependence, if this is the beginning |
| 855 | // of a call. |
| 856 | unsigned CallResource = TRI->getNumRegs(); |
| 857 | for (const SDNode *SUNode = SU->getNode(); SUNode; |
| 858 | SUNode = SUNode->getGluedNode()) { |
| 859 | if (SUNode->isMachineOpcode() && |
| 860 | SUNode->getMachineOpcode() == TII->getCallFrameSetupOpcode()) { |
| 861 | SUnit *SeqEnd = CallSeqEndForStart[SU]; |
| 862 | assert(SeqEnd && "Call sequence start/end must be known" ); |
| 863 | assert(!LiveRegDefs[CallResource]); |
| 864 | assert(!LiveRegGens[CallResource]); |
| 865 | ++NumLiveRegs; |
| 866 | LiveRegDefs[CallResource] = SU; |
| 867 | LiveRegGens[CallResource] = SeqEnd; |
| 868 | } |
| 869 | } |
| 870 | |
| 871 | // Release the special call resource dependence, if this is the end |
| 872 | // of a call. |
| 873 | if (LiveRegGens[CallResource] == SU) |
| 874 | for (const SDNode *SUNode = SU->getNode(); SUNode; |
| 875 | SUNode = SUNode->getGluedNode()) { |
| 876 | if (SUNode->isMachineOpcode() && |
| 877 | SUNode->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) { |
| 878 | assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!" ); |
| 879 | assert(LiveRegDefs[CallResource]); |
| 880 | assert(LiveRegGens[CallResource]); |
| 881 | --NumLiveRegs; |
| 882 | LiveRegDefs[CallResource] = nullptr; |
| 883 | LiveRegGens[CallResource] = nullptr; |
| 884 | releaseInterferences(Reg: CallResource); |
| 885 | } |
| 886 | } |
| 887 | |
| 888 | for (auto &Succ : SU->Succs) { |
| 889 | if (Succ.isAssignedRegDep()) { |
| 890 | auto Reg = Succ.getReg(); |
| 891 | if (!LiveRegDefs[Reg]) |
| 892 | ++NumLiveRegs; |
| 893 | // This becomes the nearest def. Note that an earlier def may still be |
| 894 | // pending if this is a two-address node. |
| 895 | LiveRegDefs[Reg] = SU; |
| 896 | |
| 897 | // Update LiveRegGen only if was empty before this unscheduling. |
| 898 | // This is to avoid incorrect updating LiveRegGen set in previous run. |
| 899 | if (!LiveRegGens[Reg]) { |
| 900 | // Find the successor with the lowest height. |
| 901 | LiveRegGens[Reg] = Succ.getSUnit(); |
| 902 | for (auto &Succ2 : SU->Succs) { |
| 903 | if (Succ2.isAssignedRegDep() && Succ2.getReg() == Reg && |
| 904 | Succ2.getSUnit()->getHeight() < LiveRegGens[Reg]->getHeight()) |
| 905 | LiveRegGens[Reg] = Succ2.getSUnit(); |
| 906 | } |
| 907 | } |
| 908 | } |
| 909 | } |
| 910 | if (SU->getHeight() < MinAvailableCycle) |
| 911 | MinAvailableCycle = SU->getHeight(); |
| 912 | |
| 913 | SU->setHeightDirty(); |
| 914 | SU->isScheduled = false; |
| 915 | SU->isAvailable = true; |
| 916 | if (!DisableSchedCycles && AvailableQueue->hasReadyFilter()) { |
| 917 | // Don't make available until backtracking is complete. |
| 918 | SU->isPending = true; |
| 919 | PendingQueue.push_back(x: SU); |
| 920 | } |
| 921 | else { |
| 922 | AvailableQueue->push(U: SU); |
| 923 | } |
| 924 | AvailableQueue->unscheduledNode(SU); |
| 925 | } |
| 926 | |
| 927 | /// After backtracking, the hazard checker needs to be restored to a state |
| 928 | /// corresponding the current cycle. |
| 929 | void ScheduleDAGRRList::RestoreHazardCheckerBottomUp() { |
| 930 | HazardRec->Reset(); |
| 931 | |
| 932 | unsigned LookAhead = std::min(a: (unsigned)Sequence.size(), |
| 933 | b: HazardRec->getMaxLookAhead()); |
| 934 | if (LookAhead == 0) |
| 935 | return; |
| 936 | |
| 937 | std::vector<SUnit *>::const_iterator I = (Sequence.end() - LookAhead); |
| 938 | unsigned HazardCycle = (*I)->getHeight(); |
| 939 | for (auto E = Sequence.end(); I != E; ++I) { |
| 940 | SUnit *SU = *I; |
| 941 | for (; SU->getHeight() > HazardCycle; ++HazardCycle) { |
| 942 | HazardRec->RecedeCycle(); |
| 943 | } |
| 944 | EmitNode(SU); |
| 945 | } |
| 946 | } |
| 947 | |
| 948 | /// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in |
| 949 | /// BTCycle in order to schedule a specific node. |
| 950 | void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, SUnit *BtSU) { |
| 951 | SUnit *OldSU = Sequence.back(); |
| 952 | while (true) { |
| 953 | Sequence.pop_back(); |
| 954 | // FIXME: use ready cycle instead of height |
| 955 | CurCycle = OldSU->getHeight(); |
| 956 | UnscheduleNodeBottomUp(SU: OldSU); |
| 957 | AvailableQueue->setCurCycle(CurCycle); |
| 958 | if (OldSU == BtSU) |
| 959 | break; |
| 960 | OldSU = Sequence.back(); |
| 961 | } |
| 962 | |
| 963 | assert(!SU->isSucc(OldSU) && "Something is wrong!" ); |
| 964 | |
| 965 | RestoreHazardCheckerBottomUp(); |
| 966 | |
| 967 | ReleasePending(); |
| 968 | |
| 969 | ++NumBacktracks; |
| 970 | } |
| 971 | |
| 972 | static bool isOperandOf(const SUnit *SU, SDNode *N) { |
| 973 | for (const SDNode *SUNode = SU->getNode(); SUNode; |
| 974 | SUNode = SUNode->getGluedNode()) { |
| 975 | if (SUNode->isOperandOf(N)) |
| 976 | return true; |
| 977 | } |
| 978 | return false; |
| 979 | } |
| 980 | |
| 981 | /// TryUnfold - Attempt to unfold |
| 982 | SUnit *ScheduleDAGRRList::TryUnfoldSU(SUnit *SU) { |
| 983 | SDNode *N = SU->getNode(); |
| 984 | // Use while over if to ease fall through. |
| 985 | SmallVector<SDNode *, 2> NewNodes; |
| 986 | if (!TII->unfoldMemoryOperand(DAG&: *DAG, N, NewNodes)) |
| 987 | return nullptr; |
| 988 | |
| 989 | assert(NewNodes.size() == 2 && "Expected a load folding node!" ); |
| 990 | |
| 991 | N = NewNodes[1]; |
| 992 | SDNode *LoadNode = NewNodes[0]; |
| 993 | unsigned NumVals = N->getNumValues(); |
| 994 | unsigned OldNumVals = SU->getNode()->getNumValues(); |
| 995 | |
| 996 | // LoadNode may already exist. This can happen when there is another |
| 997 | // load from the same location and producing the same type of value |
| 998 | // but it has different alignment or volatileness. |
| 999 | bool isNewLoad = true; |
| 1000 | SUnit *LoadSU; |
| 1001 | if (LoadNode->getNodeId() != -1) { |
| 1002 | LoadSU = &SUnits[LoadNode->getNodeId()]; |
| 1003 | // If LoadSU has already been scheduled, we should clone it but |
| 1004 | // this would negate the benefit to unfolding so just return SU. |
| 1005 | if (LoadSU->isScheduled) |
| 1006 | return SU; |
| 1007 | isNewLoad = false; |
| 1008 | } else { |
| 1009 | LoadSU = CreateNewSUnit(N: LoadNode); |
| 1010 | LoadNode->setNodeId(LoadSU->NodeNum); |
| 1011 | |
| 1012 | InitNumRegDefsLeft(SU: LoadSU); |
| 1013 | computeLatency(SU: LoadSU); |
| 1014 | } |
| 1015 | |
| 1016 | bool isNewN = true; |
| 1017 | SUnit *NewSU; |
| 1018 | // This can only happen when isNewLoad is false. |
| 1019 | if (N->getNodeId() != -1) { |
| 1020 | NewSU = &SUnits[N->getNodeId()]; |
| 1021 | // If NewSU has already been scheduled, we need to clone it, but this |
| 1022 | // negates the benefit to unfolding so just return SU. |
| 1023 | if (NewSU->isScheduled) { |
| 1024 | return SU; |
| 1025 | } |
| 1026 | isNewN = false; |
| 1027 | } else { |
| 1028 | NewSU = CreateNewSUnit(N); |
| 1029 | N->setNodeId(NewSU->NodeNum); |
| 1030 | |
| 1031 | const MCInstrDesc &MCID = TII->get(Opcode: N->getMachineOpcode()); |
| 1032 | for (unsigned i = 0; i != MCID.getNumOperands(); ++i) { |
| 1033 | if (MCID.getOperandConstraint(OpNum: i, Constraint: MCOI::TIED_TO) != -1) { |
| 1034 | NewSU->isTwoAddress = true; |
| 1035 | break; |
| 1036 | } |
| 1037 | } |
| 1038 | if (MCID.isCommutable()) |
| 1039 | NewSU->isCommutable = true; |
| 1040 | |
| 1041 | InitNumRegDefsLeft(SU: NewSU); |
| 1042 | computeLatency(SU: NewSU); |
| 1043 | } |
| 1044 | |
| 1045 | LLVM_DEBUG(dbgs() << "Unfolding SU #" << SU->NodeNum << "\n" ); |
| 1046 | |
| 1047 | // Now that we are committed to unfolding replace DAG Uses. |
| 1048 | for (unsigned i = 0; i != NumVals; ++i) |
| 1049 | DAG->ReplaceAllUsesOfValueWith(From: SDValue(SU->getNode(), i), To: SDValue(N, i)); |
| 1050 | DAG->ReplaceAllUsesOfValueWith(From: SDValue(SU->getNode(), OldNumVals - 1), |
| 1051 | To: SDValue(LoadNode, 1)); |
| 1052 | |
| 1053 | // Record all the edges to and from the old SU, by category. |
| 1054 | SmallVector<SDep, 4> ChainPreds; |
| 1055 | SmallVector<SDep, 4> ChainSuccs; |
| 1056 | SmallVector<SDep, 4> LoadPreds; |
| 1057 | SmallVector<SDep, 4> NodePreds; |
| 1058 | SmallVector<SDep, 4> NodeSuccs; |
| 1059 | for (SDep &Pred : SU->Preds) { |
| 1060 | if (Pred.isCtrl()) |
| 1061 | ChainPreds.push_back(Elt: Pred); |
| 1062 | else if (isOperandOf(SU: Pred.getSUnit(), N: LoadNode)) |
| 1063 | LoadPreds.push_back(Elt: Pred); |
| 1064 | else |
| 1065 | NodePreds.push_back(Elt: Pred); |
| 1066 | } |
| 1067 | for (SDep &Succ : SU->Succs) { |
| 1068 | if (Succ.isCtrl()) |
| 1069 | ChainSuccs.push_back(Elt: Succ); |
| 1070 | else |
| 1071 | NodeSuccs.push_back(Elt: Succ); |
| 1072 | } |
| 1073 | |
| 1074 | // Now assign edges to the newly-created nodes. |
| 1075 | for (const SDep &Pred : ChainPreds) { |
| 1076 | RemovePred(SU, D: Pred); |
| 1077 | if (isNewLoad) |
| 1078 | AddPredQueued(SU: LoadSU, D: Pred); |
| 1079 | } |
| 1080 | for (const SDep &Pred : LoadPreds) { |
| 1081 | RemovePred(SU, D: Pred); |
| 1082 | if (isNewLoad) |
| 1083 | AddPredQueued(SU: LoadSU, D: Pred); |
| 1084 | } |
| 1085 | for (const SDep &Pred : NodePreds) { |
| 1086 | RemovePred(SU, D: Pred); |
| 1087 | AddPredQueued(SU: NewSU, D: Pred); |
| 1088 | } |
| 1089 | for (SDep &D : NodeSuccs) { |
| 1090 | SUnit *SuccDep = D.getSUnit(); |
| 1091 | D.setSUnit(SU); |
| 1092 | RemovePred(SU: SuccDep, D); |
| 1093 | D.setSUnit(NewSU); |
| 1094 | AddPredQueued(SU: SuccDep, D); |
| 1095 | // Balance register pressure. |
| 1096 | if (AvailableQueue->tracksRegPressure() && SuccDep->isScheduled && |
| 1097 | !D.isCtrl() && NewSU->NumRegDefsLeft > 0) |
| 1098 | --NewSU->NumRegDefsLeft; |
| 1099 | } |
| 1100 | for (SDep &D : ChainSuccs) { |
| 1101 | SUnit *SuccDep = D.getSUnit(); |
| 1102 | D.setSUnit(SU); |
| 1103 | RemovePred(SU: SuccDep, D); |
| 1104 | if (isNewLoad) { |
| 1105 | D.setSUnit(LoadSU); |
| 1106 | AddPredQueued(SU: SuccDep, D); |
| 1107 | } |
| 1108 | } |
| 1109 | |
| 1110 | // Add a data dependency to reflect that NewSU reads the value defined |
| 1111 | // by LoadSU. |
| 1112 | SDep D(LoadSU, SDep::Data, 0); |
| 1113 | D.setLatency(LoadSU->Latency); |
| 1114 | AddPredQueued(SU: NewSU, D); |
| 1115 | |
| 1116 | if (isNewLoad) |
| 1117 | AvailableQueue->addNode(SU: LoadSU); |
| 1118 | if (isNewN) |
| 1119 | AvailableQueue->addNode(SU: NewSU); |
| 1120 | |
| 1121 | ++NumUnfolds; |
| 1122 | |
| 1123 | if (NewSU->NumSuccsLeft == 0) |
| 1124 | NewSU->isAvailable = true; |
| 1125 | |
| 1126 | return NewSU; |
| 1127 | } |
| 1128 | |
| 1129 | /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled |
| 1130 | /// successors to the newly created node. |
| 1131 | SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) { |
| 1132 | SDNode *N = SU->getNode(); |
| 1133 | if (!N) |
| 1134 | return nullptr; |
| 1135 | |
| 1136 | LLVM_DEBUG(dbgs() << "Considering duplicating the SU\n" ); |
| 1137 | LLVM_DEBUG(dumpNode(*SU)); |
| 1138 | |
| 1139 | if (N->getGluedNode() && |
| 1140 | !TII->canCopyGluedNodeDuringSchedule(N)) { |
| 1141 | LLVM_DEBUG( |
| 1142 | dbgs() |
| 1143 | << "Giving up because it has incoming glue and the target does not " |
| 1144 | "want to copy it\n" ); |
| 1145 | return nullptr; |
| 1146 | } |
| 1147 | |
| 1148 | SUnit *NewSU; |
| 1149 | bool TryUnfold = false; |
| 1150 | for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) { |
| 1151 | MVT VT = N->getSimpleValueType(ResNo: i); |
| 1152 | if (VT == MVT::Glue) { |
| 1153 | LLVM_DEBUG(dbgs() << "Giving up because it has outgoing glue\n" ); |
| 1154 | return nullptr; |
| 1155 | } else if (VT == MVT::Other) |
| 1156 | TryUnfold = true; |
| 1157 | } |
| 1158 | for (const SDValue &Op : N->op_values()) { |
| 1159 | MVT VT = Op.getNode()->getSimpleValueType(ResNo: Op.getResNo()); |
| 1160 | if (VT == MVT::Glue && !TII->canCopyGluedNodeDuringSchedule(N)) { |
| 1161 | LLVM_DEBUG( |
| 1162 | dbgs() << "Giving up because it one of the operands is glue and " |
| 1163 | "the target does not want to copy it\n" ); |
| 1164 | return nullptr; |
| 1165 | } |
| 1166 | } |
| 1167 | |
| 1168 | // If possible unfold instruction. |
| 1169 | if (TryUnfold) { |
| 1170 | SUnit *UnfoldSU = TryUnfoldSU(SU); |
| 1171 | if (!UnfoldSU) |
| 1172 | return nullptr; |
| 1173 | SU = UnfoldSU; |
| 1174 | N = SU->getNode(); |
| 1175 | // If this can be scheduled don't bother duplicating and just return |
| 1176 | if (SU->NumSuccsLeft == 0) |
| 1177 | return SU; |
| 1178 | } |
| 1179 | |
| 1180 | LLVM_DEBUG(dbgs() << " Duplicating SU #" << SU->NodeNum << "\n" ); |
| 1181 | NewSU = CreateClone(N: SU); |
| 1182 | |
| 1183 | // New SUnit has the exact same predecessors. |
| 1184 | for (SDep &Pred : SU->Preds) |
| 1185 | if (!Pred.isArtificial()) |
| 1186 | AddPredQueued(SU: NewSU, D: Pred); |
| 1187 | |
| 1188 | // Make sure the clone comes after the original. (InstrEmitter assumes |
| 1189 | // this ordering.) |
| 1190 | AddPredQueued(SU: NewSU, D: SDep(SU, SDep::Artificial)); |
| 1191 | |
| 1192 | // Only copy scheduled successors. Cut them from old node's successor |
| 1193 | // list and move them over. |
| 1194 | SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps; |
| 1195 | for (SDep &Succ : SU->Succs) { |
| 1196 | if (Succ.isArtificial()) |
| 1197 | continue; |
| 1198 | SUnit *SuccSU = Succ.getSUnit(); |
| 1199 | if (SuccSU->isScheduled) { |
| 1200 | SDep D = Succ; |
| 1201 | D.setSUnit(NewSU); |
| 1202 | AddPredQueued(SU: SuccSU, D); |
| 1203 | D.setSUnit(SU); |
| 1204 | DelDeps.emplace_back(Args&: SuccSU, Args&: D); |
| 1205 | } |
| 1206 | } |
| 1207 | for (const auto &[DelSU, DelD] : DelDeps) |
| 1208 | RemovePred(SU: DelSU, D: DelD); |
| 1209 | |
| 1210 | AvailableQueue->updateNode(SU); |
| 1211 | AvailableQueue->addNode(SU: NewSU); |
| 1212 | |
| 1213 | ++NumDups; |
| 1214 | return NewSU; |
| 1215 | } |
| 1216 | |
| 1217 | /// InsertCopiesAndMoveSuccs - Insert register copies and move all |
| 1218 | /// scheduled successors of the given SUnit to the last copy. |
| 1219 | void ScheduleDAGRRList::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg, |
| 1220 | const TargetRegisterClass *DestRC, |
| 1221 | const TargetRegisterClass *SrcRC, |
| 1222 | SmallVectorImpl<SUnit*> &Copies) { |
| 1223 | SUnit *CopyFromSU = CreateNewSUnit(N: nullptr); |
| 1224 | CopyFromSU->CopySrcRC = SrcRC; |
| 1225 | CopyFromSU->CopyDstRC = DestRC; |
| 1226 | |
| 1227 | SUnit *CopyToSU = CreateNewSUnit(N: nullptr); |
| 1228 | CopyToSU->CopySrcRC = DestRC; |
| 1229 | CopyToSU->CopyDstRC = SrcRC; |
| 1230 | |
| 1231 | // Only copy scheduled successors. Cut them from old node's successor |
| 1232 | // list and move them over. |
| 1233 | SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps; |
| 1234 | for (SDep &Succ : SU->Succs) { |
| 1235 | if (Succ.isArtificial()) |
| 1236 | continue; |
| 1237 | SUnit *SuccSU = Succ.getSUnit(); |
| 1238 | if (SuccSU->isScheduled) { |
| 1239 | SDep D = Succ; |
| 1240 | D.setSUnit(CopyToSU); |
| 1241 | AddPredQueued(SU: SuccSU, D); |
| 1242 | DelDeps.emplace_back(Args&: SuccSU, Args&: Succ); |
| 1243 | } |
| 1244 | else { |
| 1245 | // Avoid scheduling the def-side copy before other successors. Otherwise, |
| 1246 | // we could introduce another physreg interference on the copy and |
| 1247 | // continue inserting copies indefinitely. |
| 1248 | AddPredQueued(SU: SuccSU, D: SDep(CopyFromSU, SDep::Artificial)); |
| 1249 | } |
| 1250 | } |
| 1251 | for (const auto &[DelSU, DelD] : DelDeps) |
| 1252 | RemovePred(SU: DelSU, D: DelD); |
| 1253 | |
| 1254 | SDep FromDep(SU, SDep::Data, Reg); |
| 1255 | FromDep.setLatency(SU->Latency); |
| 1256 | AddPredQueued(SU: CopyFromSU, D: FromDep); |
| 1257 | SDep ToDep(CopyFromSU, SDep::Data, 0); |
| 1258 | ToDep.setLatency(CopyFromSU->Latency); |
| 1259 | AddPredQueued(SU: CopyToSU, D: ToDep); |
| 1260 | |
| 1261 | AvailableQueue->updateNode(SU); |
| 1262 | AvailableQueue->addNode(SU: CopyFromSU); |
| 1263 | AvailableQueue->addNode(SU: CopyToSU); |
| 1264 | Copies.push_back(Elt: CopyFromSU); |
| 1265 | Copies.push_back(Elt: CopyToSU); |
| 1266 | |
| 1267 | ++NumPRCopies; |
| 1268 | } |
| 1269 | |
| 1270 | /// getPhysicalRegisterVT - Returns the ValueType of the physical register |
| 1271 | /// definition of the specified node. |
| 1272 | /// FIXME: Move to SelectionDAG? |
| 1273 | static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg, |
| 1274 | const TargetInstrInfo *TII) { |
| 1275 | unsigned NumRes; |
| 1276 | if (N->getOpcode() == ISD::CopyFromReg) { |
| 1277 | // CopyFromReg has: "chain, Val, glue" so operand 1 gives the type. |
| 1278 | NumRes = 1; |
| 1279 | } else { |
| 1280 | const MCInstrDesc &MCID = TII->get(Opcode: N->getMachineOpcode()); |
| 1281 | assert(!MCID.implicit_defs().empty() && |
| 1282 | "Physical reg def must be in implicit def list!" ); |
| 1283 | NumRes = MCID.getNumDefs(); |
| 1284 | for (MCPhysReg ImpDef : MCID.implicit_defs()) { |
| 1285 | if (Reg == ImpDef) |
| 1286 | break; |
| 1287 | ++NumRes; |
| 1288 | } |
| 1289 | } |
| 1290 | return N->getSimpleValueType(ResNo: NumRes); |
| 1291 | } |
| 1292 | |
| 1293 | /// CheckForLiveRegDef - Return true and update live register vector if the |
| 1294 | /// specified register def of the specified SUnit clobbers any "live" registers. |
| 1295 | static void CheckForLiveRegDef(SUnit *SU, MCRegister Reg, SUnit **LiveRegDefs, |
| 1296 | SmallSet<unsigned, 4> &RegAdded, |
| 1297 | SmallVectorImpl<unsigned> &LRegs, |
| 1298 | const TargetRegisterInfo *TRI, |
| 1299 | const SDNode *Node = nullptr) { |
| 1300 | for (MCRegAliasIterator AliasI(Reg, TRI, true); AliasI.isValid(); ++AliasI) { |
| 1301 | |
| 1302 | // Check if Ref is live. |
| 1303 | if (!LiveRegDefs[*AliasI]) continue; |
| 1304 | |
| 1305 | // Allow multiple uses of the same def. |
| 1306 | if (LiveRegDefs[*AliasI] == SU) continue; |
| 1307 | |
| 1308 | // Allow multiple uses of same def |
| 1309 | if (Node && LiveRegDefs[*AliasI]->getNode() == Node) |
| 1310 | continue; |
| 1311 | |
| 1312 | // Add Reg to the set of interfering live regs. |
| 1313 | if (RegAdded.insert(V: *AliasI).second) { |
| 1314 | LRegs.push_back(Elt: *AliasI); |
| 1315 | } |
| 1316 | } |
| 1317 | } |
| 1318 | |
| 1319 | /// CheckForLiveRegDefMasked - Check for any live physregs that are clobbered |
| 1320 | /// by RegMask, and add them to LRegs. |
| 1321 | static void CheckForLiveRegDefMasked(SUnit *SU, const uint32_t *RegMask, |
| 1322 | ArrayRef<SUnit*> LiveRegDefs, |
| 1323 | SmallSet<unsigned, 4> &RegAdded, |
| 1324 | SmallVectorImpl<unsigned> &LRegs) { |
| 1325 | // Look at all live registers. Skip Reg0 and the special CallResource. |
| 1326 | for (unsigned i = 1, e = LiveRegDefs.size()-1; i != e; ++i) { |
| 1327 | if (!LiveRegDefs[i]) continue; |
| 1328 | if (LiveRegDefs[i] == SU) continue; |
| 1329 | if (!MachineOperand::clobbersPhysReg(RegMask, PhysReg: i)) continue; |
| 1330 | if (RegAdded.insert(V: i).second) |
| 1331 | LRegs.push_back(Elt: i); |
| 1332 | } |
| 1333 | } |
| 1334 | |
| 1335 | /// getNodeRegMask - Returns the register mask attached to an SDNode, if any. |
| 1336 | static const uint32_t *getNodeRegMask(const SDNode *N) { |
| 1337 | for (const SDValue &Op : N->op_values()) |
| 1338 | if (const auto *RegOp = dyn_cast<RegisterMaskSDNode>(Val: Op.getNode())) |
| 1339 | return RegOp->getRegMask(); |
| 1340 | return nullptr; |
| 1341 | } |
| 1342 | |
| 1343 | /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay |
| 1344 | /// scheduling of the given node to satisfy live physical register dependencies. |
| 1345 | /// If the specific node is the last one that's available to schedule, do |
| 1346 | /// whatever is necessary (i.e. backtracking or cloning) to make it possible. |
| 1347 | bool ScheduleDAGRRList:: |
| 1348 | DelayForLiveRegsBottomUp(SUnit *SU, SmallVectorImpl<unsigned> &LRegs) { |
| 1349 | if (NumLiveRegs == 0) |
| 1350 | return false; |
| 1351 | |
| 1352 | SmallSet<unsigned, 4> RegAdded; |
| 1353 | // If this node would clobber any "live" register, then it's not ready. |
| 1354 | // |
| 1355 | // If SU is the currently live definition of the same register that it uses, |
| 1356 | // then we are free to schedule it. |
| 1357 | for (SDep &Pred : SU->Preds) { |
| 1358 | if (Pred.isAssignedRegDep() && LiveRegDefs[Pred.getReg()] != SU) |
| 1359 | CheckForLiveRegDef(SU: Pred.getSUnit(), Reg: Pred.getReg(), LiveRegDefs: LiveRegDefs.get(), |
| 1360 | RegAdded, LRegs, TRI); |
| 1361 | } |
| 1362 | |
| 1363 | for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) { |
| 1364 | if (Node->getOpcode() == ISD::INLINEASM || |
| 1365 | Node->getOpcode() == ISD::INLINEASM_BR) { |
| 1366 | // Inline asm can clobber physical defs. |
| 1367 | unsigned NumOps = Node->getNumOperands(); |
| 1368 | if (Node->getOperand(Num: NumOps-1).getValueType() == MVT::Glue) |
| 1369 | --NumOps; // Ignore the glue operand. |
| 1370 | |
| 1371 | for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { |
| 1372 | unsigned Flags = Node->getConstantOperandVal(Num: i); |
| 1373 | const InlineAsm::Flag F(Flags); |
| 1374 | unsigned NumVals = F.getNumOperandRegisters(); |
| 1375 | |
| 1376 | ++i; // Skip the ID value. |
| 1377 | if (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || |
| 1378 | F.isClobberKind()) { |
| 1379 | // Check for def of register or earlyclobber register. |
| 1380 | for (; NumVals; --NumVals, ++i) { |
| 1381 | Register Reg = cast<RegisterSDNode>(Val: Node->getOperand(Num: i))->getReg(); |
| 1382 | if (Reg.isPhysical()) |
| 1383 | CheckForLiveRegDef(SU, Reg, LiveRegDefs: LiveRegDefs.get(), RegAdded, LRegs, TRI); |
| 1384 | } |
| 1385 | } else |
| 1386 | i += NumVals; |
| 1387 | } |
| 1388 | continue; |
| 1389 | } |
| 1390 | |
| 1391 | if (Node->getOpcode() == ISD::CopyToReg) { |
| 1392 | Register Reg = cast<RegisterSDNode>(Val: Node->getOperand(Num: 1))->getReg(); |
| 1393 | if (Reg.isPhysical()) { |
| 1394 | SDNode *SrcNode = Node->getOperand(Num: 2).getNode(); |
| 1395 | CheckForLiveRegDef(SU, Reg, LiveRegDefs: LiveRegDefs.get(), RegAdded, LRegs, TRI, |
| 1396 | Node: SrcNode); |
| 1397 | } |
| 1398 | } |
| 1399 | |
| 1400 | if (!Node->isMachineOpcode()) |
| 1401 | continue; |
| 1402 | // If we're in the middle of scheduling a call, don't begin scheduling |
| 1403 | // another call. Also, don't allow any physical registers to be live across |
| 1404 | // the call. |
| 1405 | if (Node->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) { |
| 1406 | // Check the special calling-sequence resource. |
| 1407 | unsigned CallResource = TRI->getNumRegs(); |
| 1408 | if (LiveRegDefs[CallResource]) { |
| 1409 | SDNode *Gen = LiveRegGens[CallResource]->getNode(); |
| 1410 | while (SDNode *Glued = Gen->getGluedNode()) |
| 1411 | Gen = Glued; |
| 1412 | if (!IsChainDependent(Outer: Gen, Inner: Node, NestLevel: 0, TII) && |
| 1413 | RegAdded.insert(V: CallResource).second) |
| 1414 | LRegs.push_back(Elt: CallResource); |
| 1415 | } |
| 1416 | } |
| 1417 | if (const uint32_t *RegMask = getNodeRegMask(N: Node)) |
| 1418 | CheckForLiveRegDefMasked(SU, RegMask, |
| 1419 | LiveRegDefs: ArrayRef(LiveRegDefs.get(), TRI->getNumRegs()), |
| 1420 | RegAdded, LRegs); |
| 1421 | |
| 1422 | const MCInstrDesc &MCID = TII->get(Opcode: Node->getMachineOpcode()); |
| 1423 | if (MCID.hasOptionalDef()) { |
| 1424 | // Most ARM instructions have an OptionalDef for CPSR, to model the S-bit. |
| 1425 | // This operand can be either a def of CPSR, if the S bit is set; or a use |
| 1426 | // of %noreg. When the OptionalDef is set to a valid register, we need to |
| 1427 | // handle it in the same way as an ImplicitDef. |
| 1428 | for (unsigned i = 0; i < MCID.getNumDefs(); ++i) |
| 1429 | if (MCID.operands()[i].isOptionalDef()) { |
| 1430 | const SDValue &OptionalDef = Node->getOperand(Num: i - Node->getNumValues()); |
| 1431 | Register Reg = cast<RegisterSDNode>(Val: OptionalDef)->getReg(); |
| 1432 | CheckForLiveRegDef(SU, Reg, LiveRegDefs: LiveRegDefs.get(), RegAdded, LRegs, TRI); |
| 1433 | } |
| 1434 | } |
| 1435 | for (MCPhysReg Reg : MCID.implicit_defs()) |
| 1436 | CheckForLiveRegDef(SU, Reg, LiveRegDefs: LiveRegDefs.get(), RegAdded, LRegs, TRI); |
| 1437 | } |
| 1438 | |
| 1439 | return !LRegs.empty(); |
| 1440 | } |
| 1441 | |
| 1442 | void ScheduleDAGRRList::releaseInterferences(unsigned Reg) { |
| 1443 | // Add the nodes that aren't ready back onto the available list. |
| 1444 | for (unsigned i = Interferences.size(); i > 0; --i) { |
| 1445 | SUnit *SU = Interferences[i-1]; |
| 1446 | LRegsMapT::iterator LRegsPos = LRegsMap.find(Val: SU); |
| 1447 | if (Reg) { |
| 1448 | SmallVectorImpl<unsigned> &LRegs = LRegsPos->second; |
| 1449 | if (!is_contained(Range&: LRegs, Element: Reg)) |
| 1450 | continue; |
| 1451 | } |
| 1452 | SU->isPending = false; |
| 1453 | // The interfering node may no longer be available due to backtracking. |
| 1454 | // Furthermore, it may have been made available again, in which case it is |
| 1455 | // now already in the AvailableQueue. |
| 1456 | if (SU->isAvailable && !SU->NodeQueueId) { |
| 1457 | LLVM_DEBUG(dbgs() << " Repushing SU #" << SU->NodeNum << '\n'); |
| 1458 | AvailableQueue->push(U: SU); |
| 1459 | } |
| 1460 | if (i < Interferences.size()) |
| 1461 | Interferences[i-1] = Interferences.back(); |
| 1462 | Interferences.pop_back(); |
| 1463 | LRegsMap.erase(I: LRegsPos); |
| 1464 | } |
| 1465 | } |
| 1466 | |
| 1467 | /// Return a node that can be scheduled in this cycle. Requirements: |
| 1468 | /// (1) Ready: latency has been satisfied |
| 1469 | /// (2) No Hazards: resources are available |
| 1470 | /// (3) No Interferences: may unschedule to break register interferences. |
| 1471 | SUnit *ScheduleDAGRRList::PickNodeToScheduleBottomUp() { |
| 1472 | SUnit *CurSU = AvailableQueue->empty() ? nullptr : AvailableQueue->pop(); |
| 1473 | auto FindAvailableNode = [&]() { |
| 1474 | while (CurSU) { |
| 1475 | SmallVector<unsigned, 4> LRegs; |
| 1476 | if (!DelayForLiveRegsBottomUp(SU: CurSU, LRegs)) |
| 1477 | break; |
| 1478 | LLVM_DEBUG(dbgs() << " Interfering reg " ; |
| 1479 | if (LRegs[0] == TRI->getNumRegs()) dbgs() << "CallResource" ; |
| 1480 | else dbgs() << printReg(LRegs[0], TRI); |
| 1481 | dbgs() << " SU #" << CurSU->NodeNum << '\n'); |
| 1482 | auto [LRegsIter, LRegsInserted] = LRegsMap.try_emplace(Key: CurSU, Args&: LRegs); |
| 1483 | if (LRegsInserted) { |
| 1484 | CurSU->isPending = true; // This SU is not in AvailableQueue right now. |
| 1485 | Interferences.push_back(Elt: CurSU); |
| 1486 | } |
| 1487 | else { |
| 1488 | assert(CurSU->isPending && "Interferences are pending" ); |
| 1489 | // Update the interference with current live regs. |
| 1490 | LRegsIter->second = LRegs; |
| 1491 | } |
| 1492 | CurSU = AvailableQueue->pop(); |
| 1493 | } |
| 1494 | }; |
| 1495 | FindAvailableNode(); |
| 1496 | if (CurSU) |
| 1497 | return CurSU; |
| 1498 | |
| 1499 | // We query the topological order in the loop body, so make sure outstanding |
| 1500 | // updates are applied before entering it (we only enter the loop if there |
| 1501 | // are some interferences). If we make changes to the ordering, we exit |
| 1502 | // the loop. |
| 1503 | |
| 1504 | // All candidates are delayed due to live physical reg dependencies. |
| 1505 | // Try backtracking, code duplication, or inserting cross class copies |
| 1506 | // to resolve it. |
| 1507 | for (SUnit *TrySU : Interferences) { |
| 1508 | SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU]; |
| 1509 | |
| 1510 | // Try unscheduling up to the point where it's safe to schedule |
| 1511 | // this node. |
| 1512 | SUnit *BtSU = nullptr; |
| 1513 | unsigned LiveCycle = std::numeric_limits<unsigned>::max(); |
| 1514 | for (unsigned Reg : LRegs) { |
| 1515 | if (LiveRegGens[Reg]->getHeight() < LiveCycle) { |
| 1516 | BtSU = LiveRegGens[Reg]; |
| 1517 | LiveCycle = BtSU->getHeight(); |
| 1518 | } |
| 1519 | } |
| 1520 | if (!WillCreateCycle(SU: TrySU, TargetSU: BtSU)) { |
| 1521 | // BacktrackBottomUp mutates Interferences! |
| 1522 | BacktrackBottomUp(SU: TrySU, BtSU); |
| 1523 | |
| 1524 | // Force the current node to be scheduled before the node that |
| 1525 | // requires the physical reg dep. |
| 1526 | if (BtSU->isAvailable) { |
| 1527 | BtSU->isAvailable = false; |
| 1528 | if (!BtSU->isPending) |
| 1529 | AvailableQueue->remove(SU: BtSU); |
| 1530 | } |
| 1531 | LLVM_DEBUG(dbgs() << "ARTIFICIAL edge from SU(" << BtSU->NodeNum |
| 1532 | << ") to SU(" << TrySU->NodeNum << ")\n" ); |
| 1533 | AddPredQueued(SU: TrySU, D: SDep(BtSU, SDep::Artificial)); |
| 1534 | |
| 1535 | // If one or more successors has been unscheduled, then the current |
| 1536 | // node is no longer available. |
| 1537 | if (!TrySU->isAvailable || !TrySU->NodeQueueId) { |
| 1538 | LLVM_DEBUG(dbgs() << "TrySU not available; choosing node from queue\n" ); |
| 1539 | CurSU = AvailableQueue->pop(); |
| 1540 | } else { |
| 1541 | LLVM_DEBUG(dbgs() << "TrySU available\n" ); |
| 1542 | // Available and in AvailableQueue |
| 1543 | AvailableQueue->remove(SU: TrySU); |
| 1544 | CurSU = TrySU; |
| 1545 | } |
| 1546 | FindAvailableNode(); |
| 1547 | // Interferences has been mutated. We must break. |
| 1548 | break; |
| 1549 | } |
| 1550 | } |
| 1551 | |
| 1552 | if (!CurSU) { |
| 1553 | // Can't backtrack. If it's too expensive to copy the value, then try |
| 1554 | // duplicate the nodes that produces these "too expensive to copy" |
| 1555 | // values to break the dependency. In case even that doesn't work, |
| 1556 | // insert cross class copies. |
| 1557 | // If it's not too expensive, i.e. cost != -1, issue copies. |
| 1558 | SUnit *TrySU = Interferences[0]; |
| 1559 | SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU]; |
| 1560 | assert(LRegs.size() == 1 && "Can't handle this yet!" ); |
| 1561 | unsigned Reg = LRegs[0]; |
| 1562 | SUnit *LRDef = LiveRegDefs[Reg]; |
| 1563 | MVT VT = getPhysicalRegisterVT(N: LRDef->getNode(), Reg, TII); |
| 1564 | const TargetRegisterClass *RC = |
| 1565 | TRI->getMinimalPhysRegClass(Reg, VT); |
| 1566 | const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC); |
| 1567 | |
| 1568 | // If cross copy register class is the same as RC, then it must be possible |
| 1569 | // copy the value directly. Do not try duplicate the def. |
| 1570 | // If cross copy register class is not the same as RC, then it's possible to |
| 1571 | // copy the value but it require cross register class copies and it is |
| 1572 | // expensive. |
| 1573 | // If cross copy register class is null, then it's not possible to copy |
| 1574 | // the value at all. |
| 1575 | SUnit *NewDef = nullptr; |
| 1576 | if (DestRC != RC) { |
| 1577 | NewDef = CopyAndMoveSuccessors(SU: LRDef); |
| 1578 | if (!DestRC && !NewDef) |
| 1579 | report_fatal_error(reason: "Can't handle live physical register dependency!" ); |
| 1580 | } |
| 1581 | if (!NewDef) { |
| 1582 | // Issue copies, these can be expensive cross register class copies. |
| 1583 | SmallVector<SUnit*, 2> Copies; |
| 1584 | InsertCopiesAndMoveSuccs(SU: LRDef, Reg, DestRC, SrcRC: RC, Copies); |
| 1585 | LLVM_DEBUG(dbgs() << " Adding an edge from SU #" << TrySU->NodeNum |
| 1586 | << " to SU #" << Copies.front()->NodeNum << "\n" ); |
| 1587 | AddPredQueued(SU: TrySU, D: SDep(Copies.front(), SDep::Artificial)); |
| 1588 | NewDef = Copies.back(); |
| 1589 | } |
| 1590 | |
| 1591 | LLVM_DEBUG(dbgs() << " Adding an edge from SU #" << NewDef->NodeNum |
| 1592 | << " to SU #" << TrySU->NodeNum << "\n" ); |
| 1593 | LiveRegDefs[Reg] = NewDef; |
| 1594 | AddPredQueued(SU: NewDef, D: SDep(TrySU, SDep::Artificial)); |
| 1595 | TrySU->isAvailable = false; |
| 1596 | CurSU = NewDef; |
| 1597 | } |
| 1598 | assert(CurSU && "Unable to resolve live physical register dependencies!" ); |
| 1599 | return CurSU; |
| 1600 | } |
| 1601 | |
| 1602 | /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up |
| 1603 | /// schedulers. |
| 1604 | void ScheduleDAGRRList::ListScheduleBottomUp() { |
| 1605 | // Release any predecessors of the special Exit node. |
| 1606 | ReleasePredecessors(SU: &ExitSU); |
| 1607 | |
| 1608 | // Add root to Available queue. |
| 1609 | if (!SUnits.empty()) { |
| 1610 | SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()]; |
| 1611 | assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!" ); |
| 1612 | RootSU->isAvailable = true; |
| 1613 | AvailableQueue->push(U: RootSU); |
| 1614 | } |
| 1615 | |
| 1616 | // While Available queue is not empty, grab the node with the highest |
| 1617 | // priority. If it is not ready put it back. Schedule the node. |
| 1618 | Sequence.reserve(n: SUnits.size()); |
| 1619 | while (!AvailableQueue->empty() || !Interferences.empty()) { |
| 1620 | LLVM_DEBUG(dbgs() << "\nExamining Available:\n" ; |
| 1621 | AvailableQueue->dump(this)); |
| 1622 | |
| 1623 | // Pick the best node to schedule taking all constraints into |
| 1624 | // consideration. |
| 1625 | SUnit *SU = PickNodeToScheduleBottomUp(); |
| 1626 | |
| 1627 | AdvancePastStalls(SU); |
| 1628 | |
| 1629 | ScheduleNodeBottomUp(SU); |
| 1630 | |
| 1631 | while (AvailableQueue->empty() && !PendingQueue.empty()) { |
| 1632 | // Advance the cycle to free resources. Skip ahead to the next ready SU. |
| 1633 | assert(MinAvailableCycle < std::numeric_limits<unsigned>::max() && |
| 1634 | "MinAvailableCycle uninitialized" ); |
| 1635 | AdvanceToCycle(NextCycle: std::max(a: CurCycle + 1, b: MinAvailableCycle)); |
| 1636 | } |
| 1637 | } |
| 1638 | |
| 1639 | // Reverse the order if it is bottom up. |
| 1640 | std::reverse(first: Sequence.begin(), last: Sequence.end()); |
| 1641 | |
| 1642 | #ifndef NDEBUG |
| 1643 | VerifyScheduledSequence(/*isBottomUp=*/true); |
| 1644 | #endif |
| 1645 | } |
| 1646 | |
| 1647 | namespace { |
| 1648 | |
| 1649 | class RegReductionPQBase; |
| 1650 | |
| 1651 | struct queue_sort { |
| 1652 | bool isReady(SUnit* SU, unsigned CurCycle) const { return true; } |
| 1653 | }; |
| 1654 | |
| 1655 | #ifndef NDEBUG |
| 1656 | template<class SF> |
| 1657 | struct reverse_sort : public queue_sort { |
| 1658 | SF &SortFunc; |
| 1659 | |
| 1660 | reverse_sort(SF &sf) : SortFunc(sf) {} |
| 1661 | |
| 1662 | bool operator()(SUnit* left, SUnit* right) const { |
| 1663 | // reverse left/right rather than simply !SortFunc(left, right) |
| 1664 | // to expose different paths in the comparison logic. |
| 1665 | return SortFunc(right, left); |
| 1666 | } |
| 1667 | }; |
| 1668 | #endif // NDEBUG |
| 1669 | |
| 1670 | /// bu_ls_rr_sort - Priority function for bottom up register pressure |
| 1671 | // reduction scheduler. |
| 1672 | struct bu_ls_rr_sort : public queue_sort { |
| 1673 | enum { |
| 1674 | IsBottomUp = true, |
| 1675 | HasReadyFilter = false |
| 1676 | }; |
| 1677 | |
| 1678 | RegReductionPQBase *SPQ; |
| 1679 | |
| 1680 | bu_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {} |
| 1681 | |
| 1682 | bool operator()(SUnit* left, SUnit* right) const; |
| 1683 | }; |
| 1684 | |
| 1685 | // src_ls_rr_sort - Priority function for source order scheduler. |
| 1686 | struct src_ls_rr_sort : public queue_sort { |
| 1687 | enum { |
| 1688 | IsBottomUp = true, |
| 1689 | HasReadyFilter = false |
| 1690 | }; |
| 1691 | |
| 1692 | RegReductionPQBase *SPQ; |
| 1693 | |
| 1694 | src_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {} |
| 1695 | |
| 1696 | bool operator()(SUnit* left, SUnit* right) const; |
| 1697 | }; |
| 1698 | |
| 1699 | // hybrid_ls_rr_sort - Priority function for hybrid scheduler. |
| 1700 | struct hybrid_ls_rr_sort : public queue_sort { |
| 1701 | enum { |
| 1702 | IsBottomUp = true, |
| 1703 | HasReadyFilter = false |
| 1704 | }; |
| 1705 | |
| 1706 | RegReductionPQBase *SPQ; |
| 1707 | |
| 1708 | hybrid_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {} |
| 1709 | |
| 1710 | bool isReady(SUnit *SU, unsigned CurCycle) const; |
| 1711 | |
| 1712 | bool operator()(SUnit* left, SUnit* right) const; |
| 1713 | }; |
| 1714 | |
| 1715 | // ilp_ls_rr_sort - Priority function for ILP (instruction level parallelism) |
| 1716 | // scheduler. |
| 1717 | struct ilp_ls_rr_sort : public queue_sort { |
| 1718 | enum { |
| 1719 | IsBottomUp = true, |
| 1720 | HasReadyFilter = false |
| 1721 | }; |
| 1722 | |
| 1723 | RegReductionPQBase *SPQ; |
| 1724 | |
| 1725 | ilp_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {} |
| 1726 | |
| 1727 | bool isReady(SUnit *SU, unsigned CurCycle) const; |
| 1728 | |
| 1729 | bool operator()(SUnit* left, SUnit* right) const; |
| 1730 | }; |
| 1731 | |
| 1732 | class RegReductionPQBase : public SchedulingPriorityQueue { |
| 1733 | protected: |
| 1734 | std::vector<SUnit *> Queue; |
| 1735 | unsigned CurQueueId = 0; |
| 1736 | bool TracksRegPressure; |
| 1737 | bool SrcOrder; |
| 1738 | |
| 1739 | // SUnits - The SUnits for the current graph. |
| 1740 | std::vector<SUnit> *SUnits = nullptr; |
| 1741 | |
| 1742 | MachineFunction &MF; |
| 1743 | const TargetInstrInfo *TII = nullptr; |
| 1744 | const TargetRegisterInfo *TRI = nullptr; |
| 1745 | const TargetLowering *TLI = nullptr; |
| 1746 | ScheduleDAGRRList *scheduleDAG = nullptr; |
| 1747 | |
| 1748 | // SethiUllmanNumbers - The SethiUllman number for each node. |
| 1749 | std::vector<unsigned> SethiUllmanNumbers; |
| 1750 | |
| 1751 | /// RegPressure - Tracking current reg pressure per register class. |
| 1752 | std::vector<unsigned> RegPressure; |
| 1753 | |
| 1754 | /// RegLimit - Tracking the number of allocatable registers per register |
| 1755 | /// class. |
| 1756 | std::vector<unsigned> RegLimit; |
| 1757 | |
| 1758 | public: |
| 1759 | RegReductionPQBase(MachineFunction &mf, |
| 1760 | bool hasReadyFilter, |
| 1761 | bool tracksrp, |
| 1762 | bool srcorder, |
| 1763 | const TargetInstrInfo *tii, |
| 1764 | const TargetRegisterInfo *tri, |
| 1765 | const TargetLowering *tli) |
| 1766 | : SchedulingPriorityQueue(hasReadyFilter), TracksRegPressure(tracksrp), |
| 1767 | SrcOrder(srcorder), MF(mf), TII(tii), TRI(tri), TLI(tli) { |
| 1768 | if (TracksRegPressure) { |
| 1769 | unsigned NumRC = TRI->getNumRegClasses(); |
| 1770 | RegLimit.resize(new_size: NumRC); |
| 1771 | RegPressure.resize(new_size: NumRC); |
| 1772 | llvm::fill(Range&: RegLimit, Value: 0); |
| 1773 | llvm::fill(Range&: RegPressure, Value: 0); |
| 1774 | for (const TargetRegisterClass *RC : TRI->regclasses()) |
| 1775 | RegLimit[RC->getID()] = tri->getRegPressureLimit(RC, MF); |
| 1776 | } |
| 1777 | } |
| 1778 | |
| 1779 | void setScheduleDAG(ScheduleDAGRRList *scheduleDag) { |
| 1780 | scheduleDAG = scheduleDag; |
| 1781 | } |
| 1782 | |
| 1783 | ScheduleHazardRecognizer* getHazardRec() { |
| 1784 | return scheduleDAG->getHazardRec(); |
| 1785 | } |
| 1786 | |
| 1787 | void initNodes(std::vector<SUnit> &sunits) override; |
| 1788 | |
| 1789 | void addNode(const SUnit *SU) override; |
| 1790 | |
| 1791 | void updateNode(const SUnit *SU) override; |
| 1792 | |
| 1793 | void releaseState() override { |
| 1794 | SUnits = nullptr; |
| 1795 | SethiUllmanNumbers.clear(); |
| 1796 | llvm::fill(Range&: RegPressure, Value: 0); |
| 1797 | } |
| 1798 | |
| 1799 | unsigned getNodePriority(const SUnit *SU) const; |
| 1800 | |
| 1801 | unsigned getNodeOrdering(const SUnit *SU) const { |
| 1802 | if (!SU->getNode()) return 0; |
| 1803 | |
| 1804 | return SU->getNode()->getIROrder(); |
| 1805 | } |
| 1806 | |
| 1807 | bool empty() const override { return Queue.empty(); } |
| 1808 | |
| 1809 | void push(SUnit *U) override { |
| 1810 | assert(!U->NodeQueueId && "Node in the queue already" ); |
| 1811 | U->NodeQueueId = ++CurQueueId; |
| 1812 | Queue.push_back(x: U); |
| 1813 | } |
| 1814 | |
| 1815 | void remove(SUnit *SU) override { |
| 1816 | assert(!Queue.empty() && "Queue is empty!" ); |
| 1817 | assert(SU->NodeQueueId != 0 && "Not in queue!" ); |
| 1818 | std::vector<SUnit *>::iterator I = llvm::find(Range&: Queue, Val: SU); |
| 1819 | if (I != std::prev(x: Queue.end())) |
| 1820 | std::swap(a&: *I, b&: Queue.back()); |
| 1821 | Queue.pop_back(); |
| 1822 | SU->NodeQueueId = 0; |
| 1823 | } |
| 1824 | |
| 1825 | bool tracksRegPressure() const override { return TracksRegPressure; } |
| 1826 | |
| 1827 | void dumpRegPressure() const; |
| 1828 | |
| 1829 | bool HighRegPressure(const SUnit *SU) const; |
| 1830 | |
| 1831 | bool MayReduceRegPressure(SUnit *SU) const; |
| 1832 | |
| 1833 | int RegPressureDiff(SUnit *SU, unsigned &LiveUses) const; |
| 1834 | |
| 1835 | void scheduledNode(SUnit *SU) override; |
| 1836 | |
| 1837 | void unscheduledNode(SUnit *SU) override; |
| 1838 | |
| 1839 | protected: |
| 1840 | bool canClobber(const SUnit *SU, const SUnit *Op); |
| 1841 | void AddPseudoTwoAddrDeps(); |
| 1842 | void PrescheduleNodesWithMultipleUses(); |
| 1843 | void CalculateSethiUllmanNumbers(); |
| 1844 | }; |
| 1845 | |
| 1846 | template<class SF> |
| 1847 | static SUnit *popFromQueueImpl(std::vector<SUnit *> &Q, SF &Picker) { |
| 1848 | unsigned BestIdx = 0; |
| 1849 | // Only compute the cost for the first 1000 items in the queue, to avoid |
| 1850 | // excessive compile-times for very large queues. |
| 1851 | for (unsigned I = 1, E = std::min(a: Q.size(), b: (decltype(Q.size()))1000); I != E; |
| 1852 | I++) |
| 1853 | if (Picker(Q[BestIdx], Q[I])) |
| 1854 | BestIdx = I; |
| 1855 | SUnit *V = Q[BestIdx]; |
| 1856 | if (BestIdx + 1 != Q.size()) |
| 1857 | std::swap(a&: Q[BestIdx], b&: Q.back()); |
| 1858 | Q.pop_back(); |
| 1859 | return V; |
| 1860 | } |
| 1861 | |
| 1862 | template<class SF> |
| 1863 | SUnit *popFromQueue(std::vector<SUnit *> &Q, SF &Picker, ScheduleDAG *DAG) { |
| 1864 | #ifndef NDEBUG |
| 1865 | if (DAG->StressSched) { |
| 1866 | reverse_sort<SF> RPicker(Picker); |
| 1867 | return popFromQueueImpl(Q, RPicker); |
| 1868 | } |
| 1869 | #endif |
| 1870 | (void)DAG; |
| 1871 | return popFromQueueImpl(Q, Picker); |
| 1872 | } |
| 1873 | |
| 1874 | //===----------------------------------------------------------------------===// |
| 1875 | // RegReductionPriorityQueue Definition |
| 1876 | //===----------------------------------------------------------------------===// |
| 1877 | // |
| 1878 | // This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers |
| 1879 | // to reduce register pressure. |
| 1880 | // |
| 1881 | template<class SF> |
| 1882 | class RegReductionPriorityQueue : public RegReductionPQBase { |
| 1883 | SF Picker; |
| 1884 | |
| 1885 | public: |
| 1886 | RegReductionPriorityQueue(MachineFunction &mf, |
| 1887 | bool tracksrp, |
| 1888 | bool srcorder, |
| 1889 | const TargetInstrInfo *tii, |
| 1890 | const TargetRegisterInfo *tri, |
| 1891 | const TargetLowering *tli) |
| 1892 | : RegReductionPQBase(mf, SF::HasReadyFilter, tracksrp, srcorder, |
| 1893 | tii, tri, tli), |
| 1894 | Picker(this) {} |
| 1895 | |
| 1896 | bool isBottomUp() const override { return SF::IsBottomUp; } |
| 1897 | |
| 1898 | bool isReady(SUnit *U) const override { |
| 1899 | return Picker.HasReadyFilter && Picker.isReady(U, getCurCycle()); |
| 1900 | } |
| 1901 | |
| 1902 | SUnit *pop() override { |
| 1903 | if (Queue.empty()) return nullptr; |
| 1904 | |
| 1905 | SUnit *V = popFromQueue(Queue, Picker, scheduleDAG); |
| 1906 | V->NodeQueueId = 0; |
| 1907 | return V; |
| 1908 | } |
| 1909 | |
| 1910 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1911 | LLVM_DUMP_METHOD void dump(ScheduleDAG *DAG) const override { |
| 1912 | // Emulate pop() without clobbering NodeQueueIds. |
| 1913 | std::vector<SUnit *> DumpQueue = Queue; |
| 1914 | SF DumpPicker = Picker; |
| 1915 | while (!DumpQueue.empty()) { |
| 1916 | SUnit *SU = popFromQueue(DumpQueue, DumpPicker, scheduleDAG); |
| 1917 | dbgs() << "Height " << SU->getHeight() << ": " ; |
| 1918 | DAG->dumpNode(*SU); |
| 1919 | } |
| 1920 | } |
| 1921 | #endif |
| 1922 | }; |
| 1923 | |
| 1924 | using BURegReductionPriorityQueue = RegReductionPriorityQueue<bu_ls_rr_sort>; |
| 1925 | using SrcRegReductionPriorityQueue = RegReductionPriorityQueue<src_ls_rr_sort>; |
| 1926 | using HybridBURRPriorityQueue = RegReductionPriorityQueue<hybrid_ls_rr_sort>; |
| 1927 | using ILPBURRPriorityQueue = RegReductionPriorityQueue<ilp_ls_rr_sort>; |
| 1928 | |
| 1929 | } // end anonymous namespace |
| 1930 | |
| 1931 | //===----------------------------------------------------------------------===// |
| 1932 | // Static Node Priority for Register Pressure Reduction |
| 1933 | //===----------------------------------------------------------------------===// |
| 1934 | |
| 1935 | // Check for special nodes that bypass scheduling heuristics. |
| 1936 | // Currently this pushes TokenFactor nodes down, but may be used for other |
| 1937 | // pseudo-ops as well. |
| 1938 | // |
| 1939 | // Return -1 to schedule right above left, 1 for left above right. |
| 1940 | // Return 0 if no bias exists. |
| 1941 | static int checkSpecialNodes(const SUnit *left, const SUnit *right) { |
| 1942 | bool LSchedLow = left->isScheduleLow; |
| 1943 | bool RSchedLow = right->isScheduleLow; |
| 1944 | if (LSchedLow != RSchedLow) |
| 1945 | return LSchedLow < RSchedLow ? 1 : -1; |
| 1946 | return 0; |
| 1947 | } |
| 1948 | |
| 1949 | /// CalcNodeSethiUllmanNumber - Compute Sethi Ullman number. |
| 1950 | /// Smaller number is the higher priority. |
| 1951 | static unsigned |
| 1952 | CalcNodeSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) { |
| 1953 | if (SUNumbers[SU->NodeNum] != 0) |
| 1954 | return SUNumbers[SU->NodeNum]; |
| 1955 | |
| 1956 | // Use WorkList to avoid stack overflow on excessively large IRs. |
| 1957 | struct WorkState { |
| 1958 | WorkState(const SUnit *SU) : SU(SU) {} |
| 1959 | const SUnit *SU; |
| 1960 | unsigned PredsProcessed = 0; |
| 1961 | }; |
| 1962 | |
| 1963 | SmallVector<WorkState, 16> WorkList; |
| 1964 | WorkList.push_back(Elt: SU); |
| 1965 | while (!WorkList.empty()) { |
| 1966 | auto &Temp = WorkList.back(); |
| 1967 | auto *TempSU = Temp.SU; |
| 1968 | bool AllPredsKnown = true; |
| 1969 | // Try to find a non-evaluated pred and push it into the processing stack. |
| 1970 | for (unsigned P = Temp.PredsProcessed; P < TempSU->Preds.size(); ++P) { |
| 1971 | auto &Pred = TempSU->Preds[P]; |
| 1972 | if (Pred.isCtrl()) continue; // ignore chain preds |
| 1973 | SUnit *PredSU = Pred.getSUnit(); |
| 1974 | if (SUNumbers[PredSU->NodeNum] == 0) { |
| 1975 | #ifndef NDEBUG |
| 1976 | // In debug mode, check that we don't have such element in the stack. |
| 1977 | for (auto It : WorkList) |
| 1978 | assert(It.SU != PredSU && "Trying to push an element twice?" ); |
| 1979 | #endif |
| 1980 | // Next time start processing this one starting from the next pred. |
| 1981 | Temp.PredsProcessed = P + 1; |
| 1982 | WorkList.push_back(Elt: PredSU); |
| 1983 | AllPredsKnown = false; |
| 1984 | break; |
| 1985 | } |
| 1986 | } |
| 1987 | |
| 1988 | if (!AllPredsKnown) |
| 1989 | continue; |
| 1990 | |
| 1991 | // Once all preds are known, we can calculate the answer for this one. |
| 1992 | unsigned SethiUllmanNumber = 0; |
| 1993 | unsigned = 0; |
| 1994 | for (const SDep &Pred : TempSU->Preds) { |
| 1995 | if (Pred.isCtrl()) continue; // ignore chain preds |
| 1996 | SUnit *PredSU = Pred.getSUnit(); |
| 1997 | unsigned PredSethiUllman = SUNumbers[PredSU->NodeNum]; |
| 1998 | assert(PredSethiUllman > 0 && "We should have evaluated this pred!" ); |
| 1999 | if (PredSethiUllman > SethiUllmanNumber) { |
| 2000 | SethiUllmanNumber = PredSethiUllman; |
| 2001 | Extra = 0; |
| 2002 | } else if (PredSethiUllman == SethiUllmanNumber) |
| 2003 | ++Extra; |
| 2004 | } |
| 2005 | |
| 2006 | SethiUllmanNumber += Extra; |
| 2007 | if (SethiUllmanNumber == 0) |
| 2008 | SethiUllmanNumber = 1; |
| 2009 | SUNumbers[TempSU->NodeNum] = SethiUllmanNumber; |
| 2010 | WorkList.pop_back(); |
| 2011 | } |
| 2012 | |
| 2013 | assert(SUNumbers[SU->NodeNum] > 0 && "SethiUllman should never be zero!" ); |
| 2014 | return SUNumbers[SU->NodeNum]; |
| 2015 | } |
| 2016 | |
| 2017 | /// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all |
| 2018 | /// scheduling units. |
| 2019 | void RegReductionPQBase::CalculateSethiUllmanNumbers() { |
| 2020 | SethiUllmanNumbers.assign(n: SUnits->size(), val: 0); |
| 2021 | |
| 2022 | for (const SUnit &SU : *SUnits) |
| 2023 | CalcNodeSethiUllmanNumber(SU: &SU, SUNumbers&: SethiUllmanNumbers); |
| 2024 | } |
| 2025 | |
| 2026 | void RegReductionPQBase::addNode(const SUnit *SU) { |
| 2027 | unsigned SUSize = SethiUllmanNumbers.size(); |
| 2028 | if (SUnits->size() > SUSize) |
| 2029 | SethiUllmanNumbers.resize(new_size: SUSize*2, x: 0); |
| 2030 | CalcNodeSethiUllmanNumber(SU, SUNumbers&: SethiUllmanNumbers); |
| 2031 | } |
| 2032 | |
| 2033 | void RegReductionPQBase::updateNode(const SUnit *SU) { |
| 2034 | SethiUllmanNumbers[SU->NodeNum] = 0; |
| 2035 | CalcNodeSethiUllmanNumber(SU, SUNumbers&: SethiUllmanNumbers); |
| 2036 | } |
| 2037 | |
| 2038 | // Lower priority means schedule further down. For bottom-up scheduling, lower |
| 2039 | // priority SUs are scheduled before higher priority SUs. |
| 2040 | unsigned RegReductionPQBase::getNodePriority(const SUnit *SU) const { |
| 2041 | assert(SU->NodeNum < SethiUllmanNumbers.size()); |
| 2042 | unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0; |
| 2043 | if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg) |
| 2044 | // CopyToReg should be close to its uses to facilitate coalescing and |
| 2045 | // avoid spilling. |
| 2046 | return 0; |
| 2047 | if (Opc == TargetOpcode::EXTRACT_SUBREG || |
| 2048 | Opc == TargetOpcode::SUBREG_TO_REG || |
| 2049 | Opc == TargetOpcode::INSERT_SUBREG) |
| 2050 | // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be |
| 2051 | // close to their uses to facilitate coalescing. |
| 2052 | return 0; |
| 2053 | if (SU->NumSuccs == 0 && SU->NumPreds != 0) |
| 2054 | // If SU does not have a register use, i.e. it doesn't produce a value |
| 2055 | // that would be consumed (e.g. store), then it terminates a chain of |
| 2056 | // computation. Give it a large SethiUllman number so it will be |
| 2057 | // scheduled right before its predecessors that it doesn't lengthen |
| 2058 | // their live ranges. |
| 2059 | return 0xffff; |
| 2060 | if (SU->NumPreds == 0 && SU->NumSuccs != 0) |
| 2061 | // If SU does not have a register def, schedule it close to its uses |
| 2062 | // because it does not lengthen any live ranges. |
| 2063 | return 0; |
| 2064 | #if 1 |
| 2065 | return SethiUllmanNumbers[SU->NodeNum]; |
| 2066 | #else |
| 2067 | unsigned Priority = SethiUllmanNumbers[SU->NodeNum]; |
| 2068 | if (SU->isCallOp) { |
| 2069 | // FIXME: This assumes all of the defs are used as call operands. |
| 2070 | int NP = (int)Priority - SU->getNode()->getNumValues(); |
| 2071 | return (NP > 0) ? NP : 0; |
| 2072 | } |
| 2073 | return Priority; |
| 2074 | #endif |
| 2075 | } |
| 2076 | |
| 2077 | //===----------------------------------------------------------------------===// |
| 2078 | // Register Pressure Tracking |
| 2079 | //===----------------------------------------------------------------------===// |
| 2080 | |
| 2081 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 2082 | LLVM_DUMP_METHOD void RegReductionPQBase::dumpRegPressure() const { |
| 2083 | for (const TargetRegisterClass *RC : TRI->regclasses()) { |
| 2084 | unsigned Id = RC->getID(); |
| 2085 | unsigned RP = RegPressure[Id]; |
| 2086 | if (!RP) continue; |
| 2087 | LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << ": " << RP << " / " |
| 2088 | << RegLimit[Id] << '\n'); |
| 2089 | } |
| 2090 | } |
| 2091 | #endif |
| 2092 | |
| 2093 | bool RegReductionPQBase::HighRegPressure(const SUnit *SU) const { |
| 2094 | if (!TLI) |
| 2095 | return false; |
| 2096 | |
| 2097 | for (const SDep &Pred : SU->Preds) { |
| 2098 | if (Pred.isCtrl()) |
| 2099 | continue; |
| 2100 | SUnit *PredSU = Pred.getSUnit(); |
| 2101 | // NumRegDefsLeft is zero when enough uses of this node have been scheduled |
| 2102 | // to cover the number of registers defined (they are all live). |
| 2103 | if (PredSU->NumRegDefsLeft == 0) { |
| 2104 | continue; |
| 2105 | } |
| 2106 | for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG); |
| 2107 | RegDefPos.IsValid(); RegDefPos.Advance()) { |
| 2108 | unsigned RCId, Cost; |
| 2109 | GetCostForDef(RegDefPos, TLI, TII, TRI, RegClass&: RCId, Cost, MF); |
| 2110 | |
| 2111 | if ((RegPressure[RCId] + Cost) >= RegLimit[RCId]) |
| 2112 | return true; |
| 2113 | } |
| 2114 | } |
| 2115 | return false; |
| 2116 | } |
| 2117 | |
| 2118 | bool RegReductionPQBase::MayReduceRegPressure(SUnit *SU) const { |
| 2119 | const SDNode *N = SU->getNode(); |
| 2120 | |
| 2121 | if (!N->isMachineOpcode() || !SU->NumSuccs) |
| 2122 | return false; |
| 2123 | |
| 2124 | unsigned NumDefs = TII->get(Opcode: N->getMachineOpcode()).getNumDefs(); |
| 2125 | for (unsigned i = 0; i != NumDefs; ++i) { |
| 2126 | MVT VT = N->getSimpleValueType(ResNo: i); |
| 2127 | if (!N->hasAnyUseOfValue(Value: i)) |
| 2128 | continue; |
| 2129 | unsigned RCId = TLI->getRepRegClassFor(VT)->getID(); |
| 2130 | if (RegPressure[RCId] >= RegLimit[RCId]) |
| 2131 | return true; |
| 2132 | } |
| 2133 | return false; |
| 2134 | } |
| 2135 | |
| 2136 | // Compute the register pressure contribution by this instruction by count up |
| 2137 | // for uses that are not live and down for defs. Only count register classes |
| 2138 | // that are already under high pressure. As a side effect, compute the number of |
| 2139 | // uses of registers that are already live. |
| 2140 | // |
| 2141 | // FIXME: This encompasses the logic in HighRegPressure and MayReduceRegPressure |
| 2142 | // so could probably be factored. |
| 2143 | int RegReductionPQBase::RegPressureDiff(SUnit *SU, unsigned &LiveUses) const { |
| 2144 | LiveUses = 0; |
| 2145 | int PDiff = 0; |
| 2146 | for (const SDep &Pred : SU->Preds) { |
| 2147 | if (Pred.isCtrl()) |
| 2148 | continue; |
| 2149 | SUnit *PredSU = Pred.getSUnit(); |
| 2150 | // NumRegDefsLeft is zero when enough uses of this node have been scheduled |
| 2151 | // to cover the number of registers defined (they are all live). |
| 2152 | if (PredSU->NumRegDefsLeft == 0) { |
| 2153 | if (PredSU->getNode()->isMachineOpcode()) |
| 2154 | ++LiveUses; |
| 2155 | continue; |
| 2156 | } |
| 2157 | for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG); |
| 2158 | RegDefPos.IsValid(); RegDefPos.Advance()) { |
| 2159 | MVT VT = RegDefPos.GetValue(); |
| 2160 | unsigned RCId = TLI->getRepRegClassFor(VT)->getID(); |
| 2161 | if (RegPressure[RCId] >= RegLimit[RCId]) |
| 2162 | ++PDiff; |
| 2163 | } |
| 2164 | } |
| 2165 | const SDNode *N = SU->getNode(); |
| 2166 | |
| 2167 | if (!N || !N->isMachineOpcode() || !SU->NumSuccs) |
| 2168 | return PDiff; |
| 2169 | |
| 2170 | unsigned NumDefs = TII->get(Opcode: N->getMachineOpcode()).getNumDefs(); |
| 2171 | for (unsigned i = 0; i != NumDefs; ++i) { |
| 2172 | MVT VT = N->getSimpleValueType(ResNo: i); |
| 2173 | if (!N->hasAnyUseOfValue(Value: i)) |
| 2174 | continue; |
| 2175 | unsigned RCId = TLI->getRepRegClassFor(VT)->getID(); |
| 2176 | if (RegPressure[RCId] >= RegLimit[RCId]) |
| 2177 | --PDiff; |
| 2178 | } |
| 2179 | return PDiff; |
| 2180 | } |
| 2181 | |
| 2182 | void RegReductionPQBase::scheduledNode(SUnit *SU) { |
| 2183 | if (!TracksRegPressure) |
| 2184 | return; |
| 2185 | |
| 2186 | if (!SU->getNode()) |
| 2187 | return; |
| 2188 | |
| 2189 | for (const SDep &Pred : SU->Preds) { |
| 2190 | if (Pred.isCtrl()) |
| 2191 | continue; |
| 2192 | SUnit *PredSU = Pred.getSUnit(); |
| 2193 | // NumRegDefsLeft is zero when enough uses of this node have been scheduled |
| 2194 | // to cover the number of registers defined (they are all live). |
| 2195 | if (PredSU->NumRegDefsLeft == 0) { |
| 2196 | continue; |
| 2197 | } |
| 2198 | // FIXME: The ScheduleDAG currently loses information about which of a |
| 2199 | // node's values is consumed by each dependence. Consequently, if the node |
| 2200 | // defines multiple register classes, we don't know which to pressurize |
| 2201 | // here. Instead the following loop consumes the register defs in an |
| 2202 | // arbitrary order. At least it handles the common case of clustered loads |
| 2203 | // to the same class. For precise liveness, each SDep needs to indicate the |
| 2204 | // result number. But that tightly couples the ScheduleDAG with the |
| 2205 | // SelectionDAG making updates tricky. A simpler hack would be to attach a |
| 2206 | // value type or register class to SDep. |
| 2207 | // |
| 2208 | // The most important aspect of register tracking is balancing the increase |
| 2209 | // here with the reduction further below. Note that this SU may use multiple |
| 2210 | // defs in PredSU. The can't be determined here, but we've already |
| 2211 | // compensated by reducing NumRegDefsLeft in PredSU during |
| 2212 | // ScheduleDAGSDNodes::AddSchedEdges. |
| 2213 | --PredSU->NumRegDefsLeft; |
| 2214 | unsigned SkipRegDefs = PredSU->NumRegDefsLeft; |
| 2215 | for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG); |
| 2216 | RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) { |
| 2217 | if (SkipRegDefs) |
| 2218 | continue; |
| 2219 | |
| 2220 | unsigned RCId, Cost; |
| 2221 | GetCostForDef(RegDefPos, TLI, TII, TRI, RegClass&: RCId, Cost, MF); |
| 2222 | RegPressure[RCId] += Cost; |
| 2223 | break; |
| 2224 | } |
| 2225 | } |
| 2226 | |
| 2227 | // We should have this assert, but there may be dead SDNodes that never |
| 2228 | // materialize as SUnits, so they don't appear to generate liveness. |
| 2229 | //assert(SU->NumRegDefsLeft == 0 && "not all regdefs have scheduled uses"); |
| 2230 | int SkipRegDefs = (int)SU->NumRegDefsLeft; |
| 2231 | for (ScheduleDAGSDNodes::RegDefIter RegDefPos(SU, scheduleDAG); |
| 2232 | RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) { |
| 2233 | if (SkipRegDefs > 0) |
| 2234 | continue; |
| 2235 | unsigned RCId, Cost; |
| 2236 | GetCostForDef(RegDefPos, TLI, TII, TRI, RegClass&: RCId, Cost, MF); |
| 2237 | if (RegPressure[RCId] < Cost) { |
| 2238 | // Register pressure tracking is imprecise. This can happen. But we try |
| 2239 | // hard not to let it happen because it likely results in poor scheduling. |
| 2240 | LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum |
| 2241 | << ") has too many regdefs\n" ); |
| 2242 | RegPressure[RCId] = 0; |
| 2243 | } |
| 2244 | else { |
| 2245 | RegPressure[RCId] -= Cost; |
| 2246 | } |
| 2247 | } |
| 2248 | LLVM_DEBUG(dumpRegPressure()); |
| 2249 | } |
| 2250 | |
| 2251 | void RegReductionPQBase::unscheduledNode(SUnit *SU) { |
| 2252 | if (!TracksRegPressure) |
| 2253 | return; |
| 2254 | |
| 2255 | const SDNode *N = SU->getNode(); |
| 2256 | if (!N) return; |
| 2257 | |
| 2258 | if (!N->isMachineOpcode()) { |
| 2259 | if (N->getOpcode() != ISD::CopyToReg) |
| 2260 | return; |
| 2261 | } else { |
| 2262 | unsigned Opc = N->getMachineOpcode(); |
| 2263 | if (Opc == TargetOpcode::EXTRACT_SUBREG || |
| 2264 | Opc == TargetOpcode::INSERT_SUBREG || |
| 2265 | Opc == TargetOpcode::SUBREG_TO_REG || |
| 2266 | Opc == TargetOpcode::REG_SEQUENCE || |
| 2267 | Opc == TargetOpcode::IMPLICIT_DEF) |
| 2268 | return; |
| 2269 | } |
| 2270 | |
| 2271 | for (const SDep &Pred : SU->Preds) { |
| 2272 | if (Pred.isCtrl()) |
| 2273 | continue; |
| 2274 | SUnit *PredSU = Pred.getSUnit(); |
| 2275 | // NumSuccsLeft counts all deps. Don't compare it with NumSuccs which only |
| 2276 | // counts data deps. |
| 2277 | if (PredSU->NumSuccsLeft != PredSU->Succs.size()) |
| 2278 | continue; |
| 2279 | const SDNode *PN = PredSU->getNode(); |
| 2280 | if (!PN->isMachineOpcode()) { |
| 2281 | if (PN->getOpcode() == ISD::CopyFromReg) { |
| 2282 | MVT VT = PN->getSimpleValueType(ResNo: 0); |
| 2283 | unsigned RCId = TLI->getRepRegClassFor(VT)->getID(); |
| 2284 | RegPressure[RCId] += TLI->getRepRegClassCostFor(VT); |
| 2285 | } |
| 2286 | continue; |
| 2287 | } |
| 2288 | unsigned POpc = PN->getMachineOpcode(); |
| 2289 | if (POpc == TargetOpcode::IMPLICIT_DEF) |
| 2290 | continue; |
| 2291 | if (POpc == TargetOpcode::EXTRACT_SUBREG || |
| 2292 | POpc == TargetOpcode::INSERT_SUBREG || |
| 2293 | POpc == TargetOpcode::SUBREG_TO_REG) { |
| 2294 | MVT VT = PN->getSimpleValueType(ResNo: 0); |
| 2295 | unsigned RCId = TLI->getRepRegClassFor(VT)->getID(); |
| 2296 | RegPressure[RCId] += TLI->getRepRegClassCostFor(VT); |
| 2297 | continue; |
| 2298 | } |
| 2299 | if (POpc == TargetOpcode::REG_SEQUENCE) { |
| 2300 | unsigned DstRCIdx = PN->getConstantOperandVal(Num: 0); |
| 2301 | const TargetRegisterClass *RC = TRI->getRegClass(i: DstRCIdx); |
| 2302 | unsigned RCId = RC->getID(); |
| 2303 | // REG_SEQUENCE is untyped, so getRepRegClassCostFor could not be used |
| 2304 | // here. Instead use the same constant as in GetCostForDef. |
| 2305 | RegPressure[RCId] += RegSequenceCost; |
| 2306 | continue; |
| 2307 | } |
| 2308 | unsigned NumDefs = TII->get(Opcode: PN->getMachineOpcode()).getNumDefs(); |
| 2309 | for (unsigned i = 0; i != NumDefs; ++i) { |
| 2310 | MVT VT = PN->getSimpleValueType(ResNo: i); |
| 2311 | if (!PN->hasAnyUseOfValue(Value: i)) |
| 2312 | continue; |
| 2313 | unsigned RCId = TLI->getRepRegClassFor(VT)->getID(); |
| 2314 | if (RegPressure[RCId] < TLI->getRepRegClassCostFor(VT)) |
| 2315 | // Register pressure tracking is imprecise. This can happen. |
| 2316 | RegPressure[RCId] = 0; |
| 2317 | else |
| 2318 | RegPressure[RCId] -= TLI->getRepRegClassCostFor(VT); |
| 2319 | } |
| 2320 | } |
| 2321 | |
| 2322 | // Check for isMachineOpcode() as PrescheduleNodesWithMultipleUses() |
| 2323 | // may transfer data dependencies to CopyToReg. |
| 2324 | if (SU->NumSuccs && N->isMachineOpcode()) { |
| 2325 | unsigned NumDefs = TII->get(Opcode: N->getMachineOpcode()).getNumDefs(); |
| 2326 | for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) { |
| 2327 | MVT VT = N->getSimpleValueType(ResNo: i); |
| 2328 | if (VT == MVT::Glue || VT == MVT::Other) |
| 2329 | continue; |
| 2330 | if (!N->hasAnyUseOfValue(Value: i)) |
| 2331 | continue; |
| 2332 | unsigned RCId = TLI->getRepRegClassFor(VT)->getID(); |
| 2333 | RegPressure[RCId] += TLI->getRepRegClassCostFor(VT); |
| 2334 | } |
| 2335 | } |
| 2336 | |
| 2337 | LLVM_DEBUG(dumpRegPressure()); |
| 2338 | } |
| 2339 | |
| 2340 | //===----------------------------------------------------------------------===// |
| 2341 | // Dynamic Node Priority for Register Pressure Reduction |
| 2342 | //===----------------------------------------------------------------------===// |
| 2343 | |
| 2344 | /// closestSucc - Returns the scheduled cycle of the successor which is |
| 2345 | /// closest to the current cycle. |
| 2346 | static unsigned closestSucc(const SUnit *SU) { |
| 2347 | unsigned MaxHeight = 0; |
| 2348 | for (const SDep &Succ : SU->Succs) { |
| 2349 | if (Succ.isCtrl()) continue; // ignore chain succs |
| 2350 | unsigned Height = Succ.getSUnit()->getHeight(); |
| 2351 | // If there are bunch of CopyToRegs stacked up, they should be considered |
| 2352 | // to be at the same position. |
| 2353 | if (Succ.getSUnit()->getNode() && |
| 2354 | Succ.getSUnit()->getNode()->getOpcode() == ISD::CopyToReg) |
| 2355 | Height = closestSucc(SU: Succ.getSUnit())+1; |
| 2356 | if (Height > MaxHeight) |
| 2357 | MaxHeight = Height; |
| 2358 | } |
| 2359 | return MaxHeight; |
| 2360 | } |
| 2361 | |
| 2362 | /// calcMaxScratches - Returns an cost estimate of the worse case requirement |
| 2363 | /// for scratch registers, i.e. number of data dependencies. |
| 2364 | static unsigned calcMaxScratches(const SUnit *SU) { |
| 2365 | unsigned Scratches = 0; |
| 2366 | for (const SDep &Pred : SU->Preds) { |
| 2367 | if (Pred.isCtrl()) continue; // ignore chain preds |
| 2368 | Scratches++; |
| 2369 | } |
| 2370 | return Scratches; |
| 2371 | } |
| 2372 | |
| 2373 | /// hasOnlyLiveInOpers - Return true if SU has only value predecessors that are |
| 2374 | /// CopyFromReg from a virtual register. |
| 2375 | static bool hasOnlyLiveInOpers(const SUnit *SU) { |
| 2376 | bool RetVal = false; |
| 2377 | for (const SDep &Pred : SU->Preds) { |
| 2378 | if (Pred.isCtrl()) continue; |
| 2379 | const SUnit *PredSU = Pred.getSUnit(); |
| 2380 | if (PredSU->getNode() && |
| 2381 | PredSU->getNode()->getOpcode() == ISD::CopyFromReg) { |
| 2382 | Register Reg = |
| 2383 | cast<RegisterSDNode>(Val: PredSU->getNode()->getOperand(Num: 1))->getReg(); |
| 2384 | if (Reg.isVirtual()) { |
| 2385 | RetVal = true; |
| 2386 | continue; |
| 2387 | } |
| 2388 | } |
| 2389 | return false; |
| 2390 | } |
| 2391 | return RetVal; |
| 2392 | } |
| 2393 | |
| 2394 | /// hasOnlyLiveOutUses - Return true if SU has only value successors that are |
| 2395 | /// CopyToReg to a virtual register. This SU def is probably a liveout and |
| 2396 | /// it has no other use. It should be scheduled closer to the terminator. |
| 2397 | static bool hasOnlyLiveOutUses(const SUnit *SU) { |
| 2398 | bool RetVal = false; |
| 2399 | for (const SDep &Succ : SU->Succs) { |
| 2400 | if (Succ.isCtrl()) continue; |
| 2401 | const SUnit *SuccSU = Succ.getSUnit(); |
| 2402 | if (SuccSU->getNode() && SuccSU->getNode()->getOpcode() == ISD::CopyToReg) { |
| 2403 | Register Reg = |
| 2404 | cast<RegisterSDNode>(Val: SuccSU->getNode()->getOperand(Num: 1))->getReg(); |
| 2405 | if (Reg.isVirtual()) { |
| 2406 | RetVal = true; |
| 2407 | continue; |
| 2408 | } |
| 2409 | } |
| 2410 | return false; |
| 2411 | } |
| 2412 | return RetVal; |
| 2413 | } |
| 2414 | |
| 2415 | // Set isVRegCycle for a node with only live in opers and live out uses. Also |
| 2416 | // set isVRegCycle for its CopyFromReg operands. |
| 2417 | // |
| 2418 | // This is only relevant for single-block loops, in which case the VRegCycle |
| 2419 | // node is likely an induction variable in which the operand and target virtual |
| 2420 | // registers should be coalesced (e.g. pre/post increment values). Setting the |
| 2421 | // isVRegCycle flag helps the scheduler prioritize other uses of the same |
| 2422 | // CopyFromReg so that this node becomes the virtual register "kill". This |
| 2423 | // avoids interference between the values live in and out of the block and |
| 2424 | // eliminates a copy inside the loop. |
| 2425 | static void initVRegCycle(SUnit *SU) { |
| 2426 | if (DisableSchedVRegCycle) |
| 2427 | return; |
| 2428 | |
| 2429 | if (!hasOnlyLiveInOpers(SU) || !hasOnlyLiveOutUses(SU)) |
| 2430 | return; |
| 2431 | |
| 2432 | LLVM_DEBUG(dbgs() << "VRegCycle: SU(" << SU->NodeNum << ")\n" ); |
| 2433 | |
| 2434 | SU->isVRegCycle = true; |
| 2435 | |
| 2436 | for (const SDep &Pred : SU->Preds) { |
| 2437 | if (Pred.isCtrl()) continue; |
| 2438 | Pred.getSUnit()->isVRegCycle = true; |
| 2439 | } |
| 2440 | } |
| 2441 | |
| 2442 | // After scheduling the definition of a VRegCycle, clear the isVRegCycle flag of |
| 2443 | // CopyFromReg operands. We should no longer penalize other uses of this VReg. |
| 2444 | static void resetVRegCycle(SUnit *SU) { |
| 2445 | if (!SU->isVRegCycle) |
| 2446 | return; |
| 2447 | |
| 2448 | for (const SDep &Pred : SU->Preds) { |
| 2449 | if (Pred.isCtrl()) continue; // ignore chain preds |
| 2450 | SUnit *PredSU = Pred.getSUnit(); |
| 2451 | if (PredSU->isVRegCycle) { |
| 2452 | assert(PredSU->getNode()->getOpcode() == ISD::CopyFromReg && |
| 2453 | "VRegCycle def must be CopyFromReg" ); |
| 2454 | Pred.getSUnit()->isVRegCycle = false; |
| 2455 | } |
| 2456 | } |
| 2457 | } |
| 2458 | |
| 2459 | // Return true if this SUnit uses a CopyFromReg node marked as a VRegCycle. This |
| 2460 | // means a node that defines the VRegCycle has not been scheduled yet. |
| 2461 | static bool hasVRegCycleUse(const SUnit *SU) { |
| 2462 | // If this SU also defines the VReg, don't hoist it as a "use". |
| 2463 | if (SU->isVRegCycle) |
| 2464 | return false; |
| 2465 | |
| 2466 | for (const SDep &Pred : SU->Preds) { |
| 2467 | if (Pred.isCtrl()) continue; // ignore chain preds |
| 2468 | if (Pred.getSUnit()->isVRegCycle && |
| 2469 | Pred.getSUnit()->getNode()->getOpcode() == ISD::CopyFromReg) { |
| 2470 | LLVM_DEBUG(dbgs() << " VReg cycle use: SU (" << SU->NodeNum << ")\n" ); |
| 2471 | return true; |
| 2472 | } |
| 2473 | } |
| 2474 | return false; |
| 2475 | } |
| 2476 | |
| 2477 | // Check for either a dependence (latency) or resource (hazard) stall. |
| 2478 | // |
| 2479 | // Note: The ScheduleHazardRecognizer interface requires a non-const SU. |
| 2480 | static bool BUHasStall(SUnit *SU, int Height, RegReductionPQBase *SPQ) { |
| 2481 | if ((int)SPQ->getCurCycle() < Height) return true; |
| 2482 | if (SPQ->getHazardRec()->getHazardType(SU, Stalls: 0) |
| 2483 | != ScheduleHazardRecognizer::NoHazard) |
| 2484 | return true; |
| 2485 | return false; |
| 2486 | } |
| 2487 | |
| 2488 | // Return -1 if left has higher priority, 1 if right has higher priority. |
| 2489 | // Return 0 if latency-based priority is equivalent. |
| 2490 | static int BUCompareLatency(SUnit *left, SUnit *right, bool checkPref, |
| 2491 | RegReductionPQBase *SPQ) { |
| 2492 | // Scheduling an instruction that uses a VReg whose postincrement has not yet |
| 2493 | // been scheduled will induce a copy. Model this as an extra cycle of latency. |
| 2494 | int LPenalty = hasVRegCycleUse(SU: left) ? 1 : 0; |
| 2495 | int RPenalty = hasVRegCycleUse(SU: right) ? 1 : 0; |
| 2496 | int LHeight = (int)left->getHeight() + LPenalty; |
| 2497 | int RHeight = (int)right->getHeight() + RPenalty; |
| 2498 | |
| 2499 | bool LStall = (!checkPref || left->SchedulingPref == Sched::ILP) && |
| 2500 | BUHasStall(SU: left, Height: LHeight, SPQ); |
| 2501 | bool RStall = (!checkPref || right->SchedulingPref == Sched::ILP) && |
| 2502 | BUHasStall(SU: right, Height: RHeight, SPQ); |
| 2503 | |
| 2504 | // If scheduling one of the node will cause a pipeline stall, delay it. |
| 2505 | // If scheduling either one of the node will cause a pipeline stall, sort |
| 2506 | // them according to their height. |
| 2507 | if (LStall) { |
| 2508 | if (!RStall) |
| 2509 | return 1; |
| 2510 | if (LHeight != RHeight) |
| 2511 | return LHeight > RHeight ? 1 : -1; |
| 2512 | } else if (RStall) |
| 2513 | return -1; |
| 2514 | |
| 2515 | // If either node is scheduling for latency, sort them by height/depth |
| 2516 | // and latency. |
| 2517 | if (!checkPref || (left->SchedulingPref == Sched::ILP || |
| 2518 | right->SchedulingPref == Sched::ILP)) { |
| 2519 | // If neither instruction stalls (!LStall && !RStall) and HazardRecognizer |
| 2520 | // is enabled, grouping instructions by cycle, then its height is already |
| 2521 | // covered so only its depth matters. We also reach this point if both stall |
| 2522 | // but have the same height. |
| 2523 | if (!SPQ->getHazardRec()->isEnabled()) { |
| 2524 | if (LHeight != RHeight) |
| 2525 | return LHeight > RHeight ? 1 : -1; |
| 2526 | } |
| 2527 | int LDepth = left->getDepth() - LPenalty; |
| 2528 | int RDepth = right->getDepth() - RPenalty; |
| 2529 | if (LDepth != RDepth) { |
| 2530 | LLVM_DEBUG(dbgs() << " Comparing latency of SU (" << left->NodeNum |
| 2531 | << ") depth " << LDepth << " vs SU (" << right->NodeNum |
| 2532 | << ") depth " << RDepth << "\n" ); |
| 2533 | return LDepth < RDepth ? 1 : -1; |
| 2534 | } |
| 2535 | if (left->Latency != right->Latency) |
| 2536 | return left->Latency > right->Latency ? 1 : -1; |
| 2537 | } |
| 2538 | return 0; |
| 2539 | } |
| 2540 | |
| 2541 | static bool BURRSort(SUnit *left, SUnit *right, RegReductionPQBase *SPQ) { |
| 2542 | // Schedule physical register definitions close to their use. This is |
| 2543 | // motivated by microarchitectures that can fuse cmp+jump macro-ops. But as |
| 2544 | // long as shortening physreg live ranges is generally good, we can defer |
| 2545 | // creating a subtarget hook. |
| 2546 | if (!DisableSchedPhysRegJoin) { |
| 2547 | bool LHasPhysReg = left->hasPhysRegDefs; |
| 2548 | bool RHasPhysReg = right->hasPhysRegDefs; |
| 2549 | if (LHasPhysReg != RHasPhysReg) { |
| 2550 | #ifndef NDEBUG |
| 2551 | static const char *const PhysRegMsg[] = { " has no physreg" , |
| 2552 | " defines a physreg" }; |
| 2553 | #endif |
| 2554 | LLVM_DEBUG(dbgs() << " SU (" << left->NodeNum << ") " |
| 2555 | << PhysRegMsg[LHasPhysReg] << " SU(" << right->NodeNum |
| 2556 | << ") " << PhysRegMsg[RHasPhysReg] << "\n" ); |
| 2557 | return LHasPhysReg < RHasPhysReg; |
| 2558 | } |
| 2559 | } |
| 2560 | |
| 2561 | // Prioritize by Sethi-Ulmann number and push CopyToReg nodes down. |
| 2562 | unsigned LPriority = SPQ->getNodePriority(SU: left); |
| 2563 | unsigned RPriority = SPQ->getNodePriority(SU: right); |
| 2564 | |
| 2565 | // Be really careful about hoisting call operands above previous calls. |
| 2566 | // Only allows it if it would reduce register pressure. |
| 2567 | if (left->isCall && right->isCallOp) { |
| 2568 | unsigned RNumVals = right->getNode()->getNumValues(); |
| 2569 | RPriority = (RPriority > RNumVals) ? (RPriority - RNumVals) : 0; |
| 2570 | } |
| 2571 | if (right->isCall && left->isCallOp) { |
| 2572 | unsigned LNumVals = left->getNode()->getNumValues(); |
| 2573 | LPriority = (LPriority > LNumVals) ? (LPriority - LNumVals) : 0; |
| 2574 | } |
| 2575 | |
| 2576 | if (LPriority != RPriority) |
| 2577 | return LPriority > RPriority; |
| 2578 | |
| 2579 | // One or both of the nodes are calls and their sethi-ullman numbers are the |
| 2580 | // same, then keep source order. |
| 2581 | if (left->isCall || right->isCall) { |
| 2582 | unsigned LOrder = SPQ->getNodeOrdering(SU: left); |
| 2583 | unsigned ROrder = SPQ->getNodeOrdering(SU: right); |
| 2584 | |
| 2585 | // Prefer an ordering where the lower the non-zero order number, the higher |
| 2586 | // the preference. |
| 2587 | if ((LOrder || ROrder) && LOrder != ROrder) |
| 2588 | return LOrder != 0 && (LOrder < ROrder || ROrder == 0); |
| 2589 | } |
| 2590 | |
| 2591 | // Try schedule def + use closer when Sethi-Ullman numbers are the same. |
| 2592 | // e.g. |
| 2593 | // t1 = op t2, c1 |
| 2594 | // t3 = op t4, c2 |
| 2595 | // |
| 2596 | // and the following instructions are both ready. |
| 2597 | // t2 = op c3 |
| 2598 | // t4 = op c4 |
| 2599 | // |
| 2600 | // Then schedule t2 = op first. |
| 2601 | // i.e. |
| 2602 | // t4 = op c4 |
| 2603 | // t2 = op c3 |
| 2604 | // t1 = op t2, c1 |
| 2605 | // t3 = op t4, c2 |
| 2606 | // |
| 2607 | // This creates more short live intervals. |
| 2608 | unsigned LDist = closestSucc(SU: left); |
| 2609 | unsigned RDist = closestSucc(SU: right); |
| 2610 | if (LDist != RDist) |
| 2611 | return LDist < RDist; |
| 2612 | |
| 2613 | // How many registers becomes live when the node is scheduled. |
| 2614 | unsigned LScratch = calcMaxScratches(SU: left); |
| 2615 | unsigned RScratch = calcMaxScratches(SU: right); |
| 2616 | if (LScratch != RScratch) |
| 2617 | return LScratch > RScratch; |
| 2618 | |
| 2619 | // Comparing latency against a call makes little sense unless the node |
| 2620 | // is register pressure-neutral. |
| 2621 | if ((left->isCall && RPriority > 0) || (right->isCall && LPriority > 0)) |
| 2622 | return (left->NodeQueueId > right->NodeQueueId); |
| 2623 | |
| 2624 | // Do not compare latencies when one or both of the nodes are calls. |
| 2625 | if (!DisableSchedCycles && |
| 2626 | !(left->isCall || right->isCall)) { |
| 2627 | int result = BUCompareLatency(left, right, checkPref: false /*checkPref*/, SPQ); |
| 2628 | if (result != 0) |
| 2629 | return result > 0; |
| 2630 | } |
| 2631 | else { |
| 2632 | if (left->getHeight() != right->getHeight()) |
| 2633 | return left->getHeight() > right->getHeight(); |
| 2634 | |
| 2635 | if (left->getDepth() != right->getDepth()) |
| 2636 | return left->getDepth() < right->getDepth(); |
| 2637 | } |
| 2638 | |
| 2639 | assert(left->NodeQueueId && right->NodeQueueId && |
| 2640 | "NodeQueueId cannot be zero" ); |
| 2641 | return (left->NodeQueueId > right->NodeQueueId); |
| 2642 | } |
| 2643 | |
| 2644 | // Bottom up |
| 2645 | bool bu_ls_rr_sort::operator()(SUnit *left, SUnit *right) const { |
| 2646 | if (int res = checkSpecialNodes(left, right)) |
| 2647 | return res > 0; |
| 2648 | |
| 2649 | return BURRSort(left, right, SPQ); |
| 2650 | } |
| 2651 | |
| 2652 | // Source order, otherwise bottom up. |
| 2653 | bool src_ls_rr_sort::operator()(SUnit *left, SUnit *right) const { |
| 2654 | if (int res = checkSpecialNodes(left, right)) |
| 2655 | return res > 0; |
| 2656 | |
| 2657 | unsigned LOrder = SPQ->getNodeOrdering(SU: left); |
| 2658 | unsigned ROrder = SPQ->getNodeOrdering(SU: right); |
| 2659 | |
| 2660 | // Prefer an ordering where the lower the non-zero order number, the higher |
| 2661 | // the preference. |
| 2662 | if ((LOrder || ROrder) && LOrder != ROrder) |
| 2663 | return LOrder != 0 && (LOrder < ROrder || ROrder == 0); |
| 2664 | |
| 2665 | return BURRSort(left, right, SPQ); |
| 2666 | } |
| 2667 | |
| 2668 | // If the time between now and when the instruction will be ready can cover |
| 2669 | // the spill code, then avoid adding it to the ready queue. This gives long |
| 2670 | // stalls highest priority and allows hoisting across calls. It should also |
| 2671 | // speed up processing the available queue. |
| 2672 | bool hybrid_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const { |
| 2673 | static const unsigned ReadyDelay = 3; |
| 2674 | |
| 2675 | if (SPQ->MayReduceRegPressure(SU)) return true; |
| 2676 | |
| 2677 | if (SU->getHeight() > (CurCycle + ReadyDelay)) return false; |
| 2678 | |
| 2679 | if (SPQ->getHazardRec()->getHazardType(SU, Stalls: -ReadyDelay) |
| 2680 | != ScheduleHazardRecognizer::NoHazard) |
| 2681 | return false; |
| 2682 | |
| 2683 | return true; |
| 2684 | } |
| 2685 | |
| 2686 | // Return true if right should be scheduled with higher priority than left. |
| 2687 | bool hybrid_ls_rr_sort::operator()(SUnit *left, SUnit *right) const { |
| 2688 | if (int res = checkSpecialNodes(left, right)) |
| 2689 | return res > 0; |
| 2690 | |
| 2691 | if (left->isCall || right->isCall) |
| 2692 | // No way to compute latency of calls. |
| 2693 | return BURRSort(left, right, SPQ); |
| 2694 | |
| 2695 | bool LHigh = SPQ->HighRegPressure(SU: left); |
| 2696 | bool RHigh = SPQ->HighRegPressure(SU: right); |
| 2697 | // Avoid causing spills. If register pressure is high, schedule for |
| 2698 | // register pressure reduction. |
| 2699 | if (LHigh && !RHigh) { |
| 2700 | LLVM_DEBUG(dbgs() << " pressure SU(" << left->NodeNum << ") > SU(" |
| 2701 | << right->NodeNum << ")\n" ); |
| 2702 | return true; |
| 2703 | } |
| 2704 | else if (!LHigh && RHigh) { |
| 2705 | LLVM_DEBUG(dbgs() << " pressure SU(" << right->NodeNum << ") > SU(" |
| 2706 | << left->NodeNum << ")\n" ); |
| 2707 | return false; |
| 2708 | } |
| 2709 | if (!LHigh && !RHigh) { |
| 2710 | int result = BUCompareLatency(left, right, checkPref: true /*checkPref*/, SPQ); |
| 2711 | if (result != 0) |
| 2712 | return result > 0; |
| 2713 | } |
| 2714 | return BURRSort(left, right, SPQ); |
| 2715 | } |
| 2716 | |
| 2717 | // Schedule as many instructions in each cycle as possible. So don't make an |
| 2718 | // instruction available unless it is ready in the current cycle. |
| 2719 | bool ilp_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const { |
| 2720 | if (SU->getHeight() > CurCycle) return false; |
| 2721 | |
| 2722 | if (SPQ->getHazardRec()->getHazardType(SU, Stalls: 0) |
| 2723 | != ScheduleHazardRecognizer::NoHazard) |
| 2724 | return false; |
| 2725 | |
| 2726 | return true; |
| 2727 | } |
| 2728 | |
| 2729 | static bool canEnableCoalescing(SUnit *SU) { |
| 2730 | unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0; |
| 2731 | if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg) |
| 2732 | // CopyToReg should be close to its uses to facilitate coalescing and |
| 2733 | // avoid spilling. |
| 2734 | return true; |
| 2735 | |
| 2736 | if (Opc == TargetOpcode::EXTRACT_SUBREG || |
| 2737 | Opc == TargetOpcode::SUBREG_TO_REG || |
| 2738 | Opc == TargetOpcode::INSERT_SUBREG) |
| 2739 | // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be |
| 2740 | // close to their uses to facilitate coalescing. |
| 2741 | return true; |
| 2742 | |
| 2743 | if (SU->NumPreds == 0 && SU->NumSuccs != 0) |
| 2744 | // If SU does not have a register def, schedule it close to its uses |
| 2745 | // because it does not lengthen any live ranges. |
| 2746 | return true; |
| 2747 | |
| 2748 | return false; |
| 2749 | } |
| 2750 | |
| 2751 | // list-ilp is currently an experimental scheduler that allows various |
| 2752 | // heuristics to be enabled prior to the normal register reduction logic. |
| 2753 | bool ilp_ls_rr_sort::operator()(SUnit *left, SUnit *right) const { |
| 2754 | if (int res = checkSpecialNodes(left, right)) |
| 2755 | return res > 0; |
| 2756 | |
| 2757 | if (left->isCall || right->isCall) |
| 2758 | // No way to compute latency of calls. |
| 2759 | return BURRSort(left, right, SPQ); |
| 2760 | |
| 2761 | unsigned LLiveUses = 0, RLiveUses = 0; |
| 2762 | int LPDiff = 0, RPDiff = 0; |
| 2763 | if (!DisableSchedRegPressure || !DisableSchedLiveUses) { |
| 2764 | LPDiff = SPQ->RegPressureDiff(SU: left, LiveUses&: LLiveUses); |
| 2765 | RPDiff = SPQ->RegPressureDiff(SU: right, LiveUses&: RLiveUses); |
| 2766 | } |
| 2767 | if (!DisableSchedRegPressure && LPDiff != RPDiff) { |
| 2768 | LLVM_DEBUG(dbgs() << "RegPressureDiff SU(" << left->NodeNum |
| 2769 | << "): " << LPDiff << " != SU(" << right->NodeNum |
| 2770 | << "): " << RPDiff << "\n" ); |
| 2771 | return LPDiff > RPDiff; |
| 2772 | } |
| 2773 | |
| 2774 | if (!DisableSchedRegPressure && (LPDiff > 0 || RPDiff > 0)) { |
| 2775 | bool LReduce = canEnableCoalescing(SU: left); |
| 2776 | bool RReduce = canEnableCoalescing(SU: right); |
| 2777 | if (LReduce && !RReduce) return false; |
| 2778 | if (RReduce && !LReduce) return true; |
| 2779 | } |
| 2780 | |
| 2781 | if (!DisableSchedLiveUses && (LLiveUses != RLiveUses)) { |
| 2782 | LLVM_DEBUG(dbgs() << "Live uses SU(" << left->NodeNum << "): " << LLiveUses |
| 2783 | << " != SU(" << right->NodeNum << "): " << RLiveUses |
| 2784 | << "\n" ); |
| 2785 | return LLiveUses < RLiveUses; |
| 2786 | } |
| 2787 | |
| 2788 | if (!DisableSchedStalls) { |
| 2789 | bool LStall = BUHasStall(SU: left, Height: left->getHeight(), SPQ); |
| 2790 | bool RStall = BUHasStall(SU: right, Height: right->getHeight(), SPQ); |
| 2791 | if (LStall != RStall) |
| 2792 | return left->getHeight() > right->getHeight(); |
| 2793 | } |
| 2794 | |
| 2795 | if (!DisableSchedCriticalPath) { |
| 2796 | int spread = (int)left->getDepth() - (int)right->getDepth(); |
| 2797 | if (std::abs(x: spread) > MaxReorderWindow) { |
| 2798 | LLVM_DEBUG(dbgs() << "Depth of SU(" << left->NodeNum << "): " |
| 2799 | << left->getDepth() << " != SU(" << right->NodeNum |
| 2800 | << "): " << right->getDepth() << "\n" ); |
| 2801 | return left->getDepth() < right->getDepth(); |
| 2802 | } |
| 2803 | } |
| 2804 | |
| 2805 | if (!DisableSchedHeight && left->getHeight() != right->getHeight()) { |
| 2806 | int spread = (int)left->getHeight() - (int)right->getHeight(); |
| 2807 | if (std::abs(x: spread) > MaxReorderWindow) |
| 2808 | return left->getHeight() > right->getHeight(); |
| 2809 | } |
| 2810 | |
| 2811 | return BURRSort(left, right, SPQ); |
| 2812 | } |
| 2813 | |
| 2814 | void RegReductionPQBase::initNodes(std::vector<SUnit> &sunits) { |
| 2815 | SUnits = &sunits; |
| 2816 | // Add pseudo dependency edges for two-address nodes. |
| 2817 | if (!Disable2AddrHack) |
| 2818 | AddPseudoTwoAddrDeps(); |
| 2819 | // Reroute edges to nodes with multiple uses. |
| 2820 | if (!TracksRegPressure && !SrcOrder) |
| 2821 | PrescheduleNodesWithMultipleUses(); |
| 2822 | // Calculate node priorities. |
| 2823 | CalculateSethiUllmanNumbers(); |
| 2824 | |
| 2825 | // For single block loops, mark nodes that look like canonical IV increments. |
| 2826 | if (scheduleDAG->BB->isSuccessor(MBB: scheduleDAG->BB)) |
| 2827 | for (SUnit &SU : sunits) |
| 2828 | initVRegCycle(SU: &SU); |
| 2829 | } |
| 2830 | |
| 2831 | //===----------------------------------------------------------------------===// |
| 2832 | // Preschedule for Register Pressure |
| 2833 | //===----------------------------------------------------------------------===// |
| 2834 | |
| 2835 | bool RegReductionPQBase::canClobber(const SUnit *SU, const SUnit *Op) { |
| 2836 | if (SU->isTwoAddress) { |
| 2837 | unsigned Opc = SU->getNode()->getMachineOpcode(); |
| 2838 | const MCInstrDesc &MCID = TII->get(Opcode: Opc); |
| 2839 | unsigned NumRes = MCID.getNumDefs(); |
| 2840 | unsigned NumOps = MCID.getNumOperands() - NumRes; |
| 2841 | for (unsigned i = 0; i != NumOps; ++i) { |
| 2842 | if (MCID.getOperandConstraint(OpNum: i+NumRes, Constraint: MCOI::TIED_TO) != -1) { |
| 2843 | SDNode *DU = SU->getNode()->getOperand(Num: i).getNode(); |
| 2844 | if (DU->getNodeId() != -1 && |
| 2845 | Op->OrigNode == &(*SUnits)[DU->getNodeId()]) |
| 2846 | return true; |
| 2847 | } |
| 2848 | } |
| 2849 | } |
| 2850 | return false; |
| 2851 | } |
| 2852 | |
| 2853 | /// canClobberReachingPhysRegUse - True if SU would clobber one of it's |
| 2854 | /// successor's explicit physregs whose definition can reach DepSU. |
| 2855 | /// i.e. DepSU should not be scheduled above SU. |
| 2856 | static bool canClobberReachingPhysRegUse(const SUnit *DepSU, const SUnit *SU, |
| 2857 | ScheduleDAGRRList *scheduleDAG, |
| 2858 | const TargetInstrInfo *TII, |
| 2859 | const TargetRegisterInfo *TRI) { |
| 2860 | ArrayRef<MCPhysReg> ImpDefs = |
| 2861 | TII->get(Opcode: SU->getNode()->getMachineOpcode()).implicit_defs(); |
| 2862 | const uint32_t *RegMask = getNodeRegMask(N: SU->getNode()); |
| 2863 | if (ImpDefs.empty() && !RegMask) |
| 2864 | return false; |
| 2865 | |
| 2866 | for (const SDep &Succ : SU->Succs) { |
| 2867 | SUnit *SuccSU = Succ.getSUnit(); |
| 2868 | for (const SDep &SuccPred : SuccSU->Preds) { |
| 2869 | if (!SuccPred.isAssignedRegDep()) |
| 2870 | continue; |
| 2871 | |
| 2872 | if (RegMask && |
| 2873 | MachineOperand::clobbersPhysReg(RegMask, PhysReg: SuccPred.getReg()) && |
| 2874 | scheduleDAG->IsReachable(SU: DepSU, TargetSU: SuccPred.getSUnit())) |
| 2875 | return true; |
| 2876 | |
| 2877 | for (MCPhysReg ImpDef : ImpDefs) { |
| 2878 | // Return true if SU clobbers this physical register use and the |
| 2879 | // definition of the register reaches from DepSU. IsReachable queries |
| 2880 | // a topological forward sort of the DAG (following the successors). |
| 2881 | if (TRI->regsOverlap(RegA: ImpDef, RegB: SuccPred.getReg()) && |
| 2882 | scheduleDAG->IsReachable(SU: DepSU, TargetSU: SuccPred.getSUnit())) |
| 2883 | return true; |
| 2884 | } |
| 2885 | } |
| 2886 | } |
| 2887 | return false; |
| 2888 | } |
| 2889 | |
| 2890 | /// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's |
| 2891 | /// physical register defs. |
| 2892 | static bool canClobberPhysRegDefs(const SUnit *SuccSU, const SUnit *SU, |
| 2893 | const TargetInstrInfo *TII, |
| 2894 | const TargetRegisterInfo *TRI) { |
| 2895 | SDNode *N = SuccSU->getNode(); |
| 2896 | unsigned NumDefs = TII->get(Opcode: N->getMachineOpcode()).getNumDefs(); |
| 2897 | ArrayRef<MCPhysReg> ImpDefs = TII->get(Opcode: N->getMachineOpcode()).implicit_defs(); |
| 2898 | assert(!ImpDefs.empty() && "Caller should check hasPhysRegDefs" ); |
| 2899 | for (const SDNode *SUNode = SU->getNode(); SUNode; |
| 2900 | SUNode = SUNode->getGluedNode()) { |
| 2901 | if (!SUNode->isMachineOpcode()) |
| 2902 | continue; |
| 2903 | ArrayRef<MCPhysReg> SUImpDefs = |
| 2904 | TII->get(Opcode: SUNode->getMachineOpcode()).implicit_defs(); |
| 2905 | const uint32_t *SURegMask = getNodeRegMask(N: SUNode); |
| 2906 | if (SUImpDefs.empty() && !SURegMask) |
| 2907 | continue; |
| 2908 | for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) { |
| 2909 | MVT VT = N->getSimpleValueType(ResNo: i); |
| 2910 | if (VT == MVT::Glue || VT == MVT::Other) |
| 2911 | continue; |
| 2912 | if (!N->hasAnyUseOfValue(Value: i)) |
| 2913 | continue; |
| 2914 | MCPhysReg Reg = ImpDefs[i - NumDefs]; |
| 2915 | if (SURegMask && MachineOperand::clobbersPhysReg(RegMask: SURegMask, PhysReg: Reg)) |
| 2916 | return true; |
| 2917 | for (MCPhysReg SUReg : SUImpDefs) { |
| 2918 | if (TRI->regsOverlap(RegA: Reg, RegB: SUReg)) |
| 2919 | return true; |
| 2920 | } |
| 2921 | } |
| 2922 | } |
| 2923 | return false; |
| 2924 | } |
| 2925 | |
| 2926 | /// PrescheduleNodesWithMultipleUses - Nodes with multiple uses |
| 2927 | /// are not handled well by the general register pressure reduction |
| 2928 | /// heuristics. When presented with code like this: |
| 2929 | /// |
| 2930 | /// N |
| 2931 | /// / | |
| 2932 | /// / | |
| 2933 | /// U store |
| 2934 | /// | |
| 2935 | /// ... |
| 2936 | /// |
| 2937 | /// the heuristics tend to push the store up, but since the |
| 2938 | /// operand of the store has another use (U), this would increase |
| 2939 | /// the length of that other use (the U->N edge). |
| 2940 | /// |
| 2941 | /// This function transforms code like the above to route U's |
| 2942 | /// dependence through the store when possible, like this: |
| 2943 | /// |
| 2944 | /// N |
| 2945 | /// || |
| 2946 | /// || |
| 2947 | /// store |
| 2948 | /// | |
| 2949 | /// U |
| 2950 | /// | |
| 2951 | /// ... |
| 2952 | /// |
| 2953 | /// This results in the store being scheduled immediately |
| 2954 | /// after N, which shortens the U->N live range, reducing |
| 2955 | /// register pressure. |
| 2956 | void RegReductionPQBase::PrescheduleNodesWithMultipleUses() { |
| 2957 | // Visit all the nodes in topological order, working top-down. |
| 2958 | for (SUnit &SU : *SUnits) { |
| 2959 | // For now, only look at nodes with no data successors, such as stores. |
| 2960 | // These are especially important, due to the heuristics in |
| 2961 | // getNodePriority for nodes with no data successors. |
| 2962 | if (SU.NumSuccs != 0) |
| 2963 | continue; |
| 2964 | // For now, only look at nodes with exactly one data predecessor. |
| 2965 | if (SU.NumPreds != 1) |
| 2966 | continue; |
| 2967 | // Avoid prescheduling copies to virtual registers, which don't behave |
| 2968 | // like other nodes from the perspective of scheduling heuristics. |
| 2969 | if (SDNode *N = SU.getNode()) |
| 2970 | if (N->getOpcode() == ISD::CopyToReg && |
| 2971 | cast<RegisterSDNode>(Val: N->getOperand(Num: 1))->getReg().isVirtual()) |
| 2972 | continue; |
| 2973 | |
| 2974 | SDNode *PredFrameSetup = nullptr; |
| 2975 | for (const SDep &Pred : SU.Preds) |
| 2976 | if (Pred.isCtrl() && Pred.getSUnit()) { |
| 2977 | // Find the predecessor which is not data dependence. |
| 2978 | SDNode *PredND = Pred.getSUnit()->getNode(); |
| 2979 | |
| 2980 | // If PredND is FrameSetup, we should not pre-scheduled the node, |
| 2981 | // or else, when bottom up scheduling, ADJCALLSTACKDOWN and |
| 2982 | // ADJCALLSTACKUP may hold CallResource too long and make other |
| 2983 | // calls can't be scheduled. If there's no other available node |
| 2984 | // to schedule, the schedular will try to rename the register by |
| 2985 | // creating copy to avoid the conflict which will fail because |
| 2986 | // CallResource is not a real physical register. |
| 2987 | if (PredND && PredND->isMachineOpcode() && |
| 2988 | (PredND->getMachineOpcode() == TII->getCallFrameSetupOpcode())) { |
| 2989 | PredFrameSetup = PredND; |
| 2990 | break; |
| 2991 | } |
| 2992 | } |
| 2993 | // Skip the node has FrameSetup parent. |
| 2994 | if (PredFrameSetup != nullptr) |
| 2995 | continue; |
| 2996 | |
| 2997 | // Locate the single data predecessor. |
| 2998 | SUnit *PredSU = nullptr; |
| 2999 | for (const SDep &Pred : SU.Preds) |
| 3000 | if (!Pred.isCtrl()) { |
| 3001 | PredSU = Pred.getSUnit(); |
| 3002 | break; |
| 3003 | } |
| 3004 | assert(PredSU); |
| 3005 | |
| 3006 | // Don't rewrite edges that carry physregs, because that requires additional |
| 3007 | // support infrastructure. |
| 3008 | if (PredSU->hasPhysRegDefs) |
| 3009 | continue; |
| 3010 | // Short-circuit the case where SU is PredSU's only data successor. |
| 3011 | if (PredSU->NumSuccs == 1) |
| 3012 | continue; |
| 3013 | // Avoid prescheduling to copies from virtual registers, which don't behave |
| 3014 | // like other nodes from the perspective of scheduling heuristics. |
| 3015 | if (SDNode *N = SU.getNode()) |
| 3016 | if (N->getOpcode() == ISD::CopyFromReg && |
| 3017 | cast<RegisterSDNode>(Val: N->getOperand(Num: 1))->getReg().isVirtual()) |
| 3018 | continue; |
| 3019 | |
| 3020 | // Perform checks on the successors of PredSU. |
| 3021 | for (const SDep &PredSucc : PredSU->Succs) { |
| 3022 | SUnit *PredSuccSU = PredSucc.getSUnit(); |
| 3023 | if (PredSuccSU == &SU) continue; |
| 3024 | // If PredSU has another successor with no data successors, for |
| 3025 | // now don't attempt to choose either over the other. |
| 3026 | if (PredSuccSU->NumSuccs == 0) |
| 3027 | goto outer_loop_continue; |
| 3028 | // Don't break physical register dependencies. |
| 3029 | if (SU.hasPhysRegClobbers && PredSuccSU->hasPhysRegDefs) |
| 3030 | if (canClobberPhysRegDefs(SuccSU: PredSuccSU, SU: &SU, TII, TRI)) |
| 3031 | goto outer_loop_continue; |
| 3032 | // Don't introduce graph cycles. |
| 3033 | if (scheduleDAG->IsReachable(SU: &SU, TargetSU: PredSuccSU)) |
| 3034 | goto outer_loop_continue; |
| 3035 | } |
| 3036 | |
| 3037 | // Ok, the transformation is safe and the heuristics suggest it is |
| 3038 | // profitable. Update the graph. |
| 3039 | LLVM_DEBUG( |
| 3040 | dbgs() << " Prescheduling SU #" << SU.NodeNum << " next to PredSU #" |
| 3041 | << PredSU->NodeNum |
| 3042 | << " to guide scheduling in the presence of multiple uses\n" ); |
| 3043 | for (unsigned i = 0; i != PredSU->Succs.size(); ++i) { |
| 3044 | SDep Edge = PredSU->Succs[i]; |
| 3045 | assert(!Edge.isAssignedRegDep()); |
| 3046 | SUnit *SuccSU = Edge.getSUnit(); |
| 3047 | if (SuccSU != &SU) { |
| 3048 | Edge.setSUnit(PredSU); |
| 3049 | scheduleDAG->RemovePred(SU: SuccSU, D: Edge); |
| 3050 | scheduleDAG->AddPredQueued(SU: &SU, D: Edge); |
| 3051 | Edge.setSUnit(&SU); |
| 3052 | scheduleDAG->AddPredQueued(SU: SuccSU, D: Edge); |
| 3053 | --i; |
| 3054 | } |
| 3055 | } |
| 3056 | outer_loop_continue:; |
| 3057 | } |
| 3058 | } |
| 3059 | |
| 3060 | /// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses |
| 3061 | /// it as a def&use operand. Add a pseudo control edge from it to the other |
| 3062 | /// node (if it won't create a cycle) so the two-address one will be scheduled |
| 3063 | /// first (lower in the schedule). If both nodes are two-address, favor the |
| 3064 | /// one that has a CopyToReg use (more likely to be a loop induction update). |
| 3065 | /// If both are two-address, but one is commutable while the other is not |
| 3066 | /// commutable, favor the one that's not commutable. |
| 3067 | void RegReductionPQBase::AddPseudoTwoAddrDeps() { |
| 3068 | for (SUnit &SU : *SUnits) { |
| 3069 | if (!SU.isTwoAddress) |
| 3070 | continue; |
| 3071 | |
| 3072 | SDNode *Node = SU.getNode(); |
| 3073 | if (!Node || !Node->isMachineOpcode() || SU.getNode()->getGluedNode()) |
| 3074 | continue; |
| 3075 | |
| 3076 | bool isLiveOut = hasOnlyLiveOutUses(SU: &SU); |
| 3077 | unsigned Opc = Node->getMachineOpcode(); |
| 3078 | const MCInstrDesc &MCID = TII->get(Opcode: Opc); |
| 3079 | unsigned NumRes = MCID.getNumDefs(); |
| 3080 | unsigned NumOps = MCID.getNumOperands() - NumRes; |
| 3081 | for (unsigned j = 0; j != NumOps; ++j) { |
| 3082 | if (MCID.getOperandConstraint(OpNum: j+NumRes, Constraint: MCOI::TIED_TO) == -1) |
| 3083 | continue; |
| 3084 | SDNode *DU = SU.getNode()->getOperand(Num: j).getNode(); |
| 3085 | if (DU->getNodeId() == -1) |
| 3086 | continue; |
| 3087 | const SUnit *DUSU = &(*SUnits)[DU->getNodeId()]; |
| 3088 | if (!DUSU) |
| 3089 | continue; |
| 3090 | for (const SDep &Succ : DUSU->Succs) { |
| 3091 | if (Succ.isCtrl()) |
| 3092 | continue; |
| 3093 | SUnit *SuccSU = Succ.getSUnit(); |
| 3094 | if (SuccSU == &SU) |
| 3095 | continue; |
| 3096 | // Be conservative. Ignore if nodes aren't at roughly the same |
| 3097 | // depth and height. |
| 3098 | if (SuccSU->getHeight() < SU.getHeight() && |
| 3099 | (SU.getHeight() - SuccSU->getHeight()) > 1) |
| 3100 | continue; |
| 3101 | // Skip past COPY_TO_REGCLASS nodes, so that the pseudo edge |
| 3102 | // constrains whatever is using the copy, instead of the copy |
| 3103 | // itself. In the case that the copy is coalesced, this |
| 3104 | // preserves the intent of the pseudo two-address heurietics. |
| 3105 | while (SuccSU->Succs.size() == 1 && |
| 3106 | SuccSU->getNode()->isMachineOpcode() && |
| 3107 | SuccSU->getNode()->getMachineOpcode() == |
| 3108 | TargetOpcode::COPY_TO_REGCLASS) |
| 3109 | SuccSU = SuccSU->Succs.front().getSUnit(); |
| 3110 | // Don't constrain non-instruction nodes. |
| 3111 | if (!SuccSU->getNode() || !SuccSU->getNode()->isMachineOpcode()) |
| 3112 | continue; |
| 3113 | // Don't constrain nodes with physical register defs if the |
| 3114 | // predecessor can clobber them. |
| 3115 | if (SuccSU->hasPhysRegDefs && SU.hasPhysRegClobbers) { |
| 3116 | if (canClobberPhysRegDefs(SuccSU, SU: &SU, TII, TRI)) |
| 3117 | continue; |
| 3118 | } |
| 3119 | // Don't constrain EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG; |
| 3120 | // these may be coalesced away. We want them close to their uses. |
| 3121 | unsigned SuccOpc = SuccSU->getNode()->getMachineOpcode(); |
| 3122 | if (SuccOpc == TargetOpcode::EXTRACT_SUBREG || |
| 3123 | SuccOpc == TargetOpcode::INSERT_SUBREG || |
| 3124 | SuccOpc == TargetOpcode::SUBREG_TO_REG) |
| 3125 | continue; |
| 3126 | if (!canClobberReachingPhysRegUse(DepSU: SuccSU, SU: &SU, scheduleDAG, TII, TRI) && |
| 3127 | (!canClobber(SU: SuccSU, Op: DUSU) || |
| 3128 | (isLiveOut && !hasOnlyLiveOutUses(SU: SuccSU)) || |
| 3129 | (!SU.isCommutable && SuccSU->isCommutable)) && |
| 3130 | !scheduleDAG->IsReachable(SU: SuccSU, TargetSU: &SU)) { |
| 3131 | LLVM_DEBUG(dbgs() |
| 3132 | << " Adding a pseudo-two-addr edge from SU #" |
| 3133 | << SU.NodeNum << " to SU #" << SuccSU->NodeNum << "\n" ); |
| 3134 | scheduleDAG->AddPredQueued(SU: &SU, D: SDep(SuccSU, SDep::Artificial)); |
| 3135 | } |
| 3136 | } |
| 3137 | } |
| 3138 | } |
| 3139 | } |
| 3140 | |
| 3141 | //===----------------------------------------------------------------------===// |
| 3142 | // Public Constructor Functions |
| 3143 | //===----------------------------------------------------------------------===// |
| 3144 | |
| 3145 | ScheduleDAGSDNodes *llvm::createBURRListDAGScheduler(SelectionDAGISel *IS, |
| 3146 | CodeGenOptLevel OptLevel) { |
| 3147 | const TargetSubtargetInfo &STI = IS->MF->getSubtarget(); |
| 3148 | const TargetInstrInfo *TII = STI.getInstrInfo(); |
| 3149 | const TargetRegisterInfo *TRI = STI.getRegisterInfo(); |
| 3150 | |
| 3151 | BURegReductionPriorityQueue *PQ = |
| 3152 | new BURegReductionPriorityQueue(*IS->MF, false, false, TII, TRI, nullptr); |
| 3153 | ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel); |
| 3154 | PQ->setScheduleDAG(SD); |
| 3155 | return SD; |
| 3156 | } |
| 3157 | |
| 3158 | ScheduleDAGSDNodes * |
| 3159 | llvm::createSourceListDAGScheduler(SelectionDAGISel *IS, |
| 3160 | CodeGenOptLevel OptLevel) { |
| 3161 | const TargetSubtargetInfo &STI = IS->MF->getSubtarget(); |
| 3162 | const TargetInstrInfo *TII = STI.getInstrInfo(); |
| 3163 | const TargetRegisterInfo *TRI = STI.getRegisterInfo(); |
| 3164 | |
| 3165 | SrcRegReductionPriorityQueue *PQ = |
| 3166 | new SrcRegReductionPriorityQueue(*IS->MF, false, true, TII, TRI, nullptr); |
| 3167 | ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel); |
| 3168 | PQ->setScheduleDAG(SD); |
| 3169 | return SD; |
| 3170 | } |
| 3171 | |
| 3172 | ScheduleDAGSDNodes * |
| 3173 | llvm::createHybridListDAGScheduler(SelectionDAGISel *IS, |
| 3174 | CodeGenOptLevel OptLevel) { |
| 3175 | const TargetSubtargetInfo &STI = IS->MF->getSubtarget(); |
| 3176 | const TargetInstrInfo *TII = STI.getInstrInfo(); |
| 3177 | const TargetRegisterInfo *TRI = STI.getRegisterInfo(); |
| 3178 | const TargetLowering *TLI = IS->TLI; |
| 3179 | |
| 3180 | HybridBURRPriorityQueue *PQ = |
| 3181 | new HybridBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI); |
| 3182 | |
| 3183 | ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel); |
| 3184 | PQ->setScheduleDAG(SD); |
| 3185 | return SD; |
| 3186 | } |
| 3187 | |
| 3188 | ScheduleDAGSDNodes *llvm::createILPListDAGScheduler(SelectionDAGISel *IS, |
| 3189 | CodeGenOptLevel OptLevel) { |
| 3190 | const TargetSubtargetInfo &STI = IS->MF->getSubtarget(); |
| 3191 | const TargetInstrInfo *TII = STI.getInstrInfo(); |
| 3192 | const TargetRegisterInfo *TRI = STI.getRegisterInfo(); |
| 3193 | const TargetLowering *TLI = IS->TLI; |
| 3194 | |
| 3195 | ILPBURRPriorityQueue *PQ = |
| 3196 | new ILPBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI); |
| 3197 | ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel); |
| 3198 | PQ->setScheduleDAG(SD); |
| 3199 | return SD; |
| 3200 | } |
| 3201 | |