| 1 | //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This implements the TargetLowering class. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "llvm/CodeGen/TargetLowering.h" |
| 14 | #include "llvm/ADT/STLExtras.h" |
| 15 | #include "llvm/Analysis/ValueTracking.h" |
| 16 | #include "llvm/Analysis/VectorUtils.h" |
| 17 | #include "llvm/CodeGen/Analysis.h" |
| 18 | #include "llvm/CodeGen/CallingConvLower.h" |
| 19 | #include "llvm/CodeGen/CodeGenCommonISel.h" |
| 20 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 21 | #include "llvm/CodeGen/MachineFunction.h" |
| 22 | #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| 23 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 24 | #include "llvm/CodeGen/SDPatternMatch.h" |
| 25 | #include "llvm/CodeGen/SelectionDAG.h" |
| 26 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
| 27 | #include "llvm/IR/DataLayout.h" |
| 28 | #include "llvm/IR/DerivedTypes.h" |
| 29 | #include "llvm/IR/GlobalVariable.h" |
| 30 | #include "llvm/IR/LLVMContext.h" |
| 31 | #include "llvm/MC/MCAsmInfo.h" |
| 32 | #include "llvm/MC/MCExpr.h" |
| 33 | #include "llvm/Support/DivisionByConstantInfo.h" |
| 34 | #include "llvm/Support/ErrorHandling.h" |
| 35 | #include "llvm/Support/KnownBits.h" |
| 36 | #include "llvm/Support/MathExtras.h" |
| 37 | #include "llvm/Target/TargetMachine.h" |
| 38 | #include <cctype> |
| 39 | #include <deque> |
| 40 | using namespace llvm; |
| 41 | using namespace llvm::SDPatternMatch; |
| 42 | |
| 43 | /// NOTE: The TargetMachine owns TLOF. |
| 44 | TargetLowering::TargetLowering(const TargetMachine &tm) |
| 45 | : TargetLoweringBase(tm) {} |
| 46 | |
| 47 | // Define the virtual destructor out-of-line for build efficiency. |
| 48 | TargetLowering::~TargetLowering() = default; |
| 49 | |
| 50 | const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { |
| 51 | return nullptr; |
| 52 | } |
| 53 | |
| 54 | bool TargetLowering::isPositionIndependent() const { |
| 55 | return getTargetMachine().isPositionIndependent(); |
| 56 | } |
| 57 | |
| 58 | /// Check whether a given call node is in tail position within its function. If |
| 59 | /// so, it sets Chain to the input chain of the tail call. |
| 60 | bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, |
| 61 | SDValue &Chain) const { |
| 62 | const Function &F = DAG.getMachineFunction().getFunction(); |
| 63 | |
| 64 | // First, check if tail calls have been disabled in this function. |
| 65 | if (F.getFnAttribute(Kind: "disable-tail-calls" ).getValueAsBool()) |
| 66 | return false; |
| 67 | |
| 68 | // Conservatively require the attributes of the call to match those of |
| 69 | // the return. Ignore following attributes because they don't affect the |
| 70 | // call sequence. |
| 71 | AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs()); |
| 72 | for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable, |
| 73 | Attribute::DereferenceableOrNull, Attribute::NoAlias, |
| 74 | Attribute::NonNull, Attribute::NoUndef, |
| 75 | Attribute::Range, Attribute::NoFPClass}) |
| 76 | CallerAttrs.removeAttribute(Val: Attr); |
| 77 | |
| 78 | if (CallerAttrs.hasAttributes()) |
| 79 | return false; |
| 80 | |
| 81 | // It's not safe to eliminate the sign / zero extension of the return value. |
| 82 | if (CallerAttrs.contains(A: Attribute::ZExt) || |
| 83 | CallerAttrs.contains(A: Attribute::SExt)) |
| 84 | return false; |
| 85 | |
| 86 | // Check if the only use is a function return node. |
| 87 | return isUsedByReturnOnly(Node, Chain); |
| 88 | } |
| 89 | |
| 90 | bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, |
| 91 | const uint32_t *CallerPreservedMask, |
| 92 | const SmallVectorImpl<CCValAssign> &ArgLocs, |
| 93 | const SmallVectorImpl<SDValue> &OutVals) const { |
| 94 | for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { |
| 95 | const CCValAssign &ArgLoc = ArgLocs[I]; |
| 96 | if (!ArgLoc.isRegLoc()) |
| 97 | continue; |
| 98 | MCRegister Reg = ArgLoc.getLocReg(); |
| 99 | // Only look at callee saved registers. |
| 100 | if (MachineOperand::clobbersPhysReg(RegMask: CallerPreservedMask, PhysReg: Reg)) |
| 101 | continue; |
| 102 | // Check that we pass the value used for the caller. |
| 103 | // (We look for a CopyFromReg reading a virtual register that is used |
| 104 | // for the function live-in value of register Reg) |
| 105 | SDValue Value = OutVals[I]; |
| 106 | if (Value->getOpcode() == ISD::AssertZext) |
| 107 | Value = Value.getOperand(i: 0); |
| 108 | if (Value->getOpcode() != ISD::CopyFromReg) |
| 109 | return false; |
| 110 | Register ArgReg = cast<RegisterSDNode>(Val: Value->getOperand(Num: 1))->getReg(); |
| 111 | if (MRI.getLiveInPhysReg(VReg: ArgReg) != Reg) |
| 112 | return false; |
| 113 | } |
| 114 | return true; |
| 115 | } |
| 116 | |
| 117 | /// Set CallLoweringInfo attribute flags based on a call instruction |
| 118 | /// and called function attributes. |
| 119 | void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, |
| 120 | unsigned ArgIdx) { |
| 121 | IsSExt = Call->paramHasAttr(ArgNo: ArgIdx, Kind: Attribute::SExt); |
| 122 | IsZExt = Call->paramHasAttr(ArgNo: ArgIdx, Kind: Attribute::ZExt); |
| 123 | IsNoExt = Call->paramHasAttr(ArgNo: ArgIdx, Kind: Attribute::NoExt); |
| 124 | IsInReg = Call->paramHasAttr(ArgNo: ArgIdx, Kind: Attribute::InReg); |
| 125 | IsSRet = Call->paramHasAttr(ArgNo: ArgIdx, Kind: Attribute::StructRet); |
| 126 | IsNest = Call->paramHasAttr(ArgNo: ArgIdx, Kind: Attribute::Nest); |
| 127 | IsByVal = Call->paramHasAttr(ArgNo: ArgIdx, Kind: Attribute::ByVal); |
| 128 | IsPreallocated = Call->paramHasAttr(ArgNo: ArgIdx, Kind: Attribute::Preallocated); |
| 129 | IsInAlloca = Call->paramHasAttr(ArgNo: ArgIdx, Kind: Attribute::InAlloca); |
| 130 | IsReturned = Call->paramHasAttr(ArgNo: ArgIdx, Kind: Attribute::Returned); |
| 131 | IsSwiftSelf = Call->paramHasAttr(ArgNo: ArgIdx, Kind: Attribute::SwiftSelf); |
| 132 | IsSwiftAsync = Call->paramHasAttr(ArgNo: ArgIdx, Kind: Attribute::SwiftAsync); |
| 133 | IsSwiftError = Call->paramHasAttr(ArgNo: ArgIdx, Kind: Attribute::SwiftError); |
| 134 | Alignment = Call->getParamStackAlign(ArgNo: ArgIdx); |
| 135 | IndirectType = nullptr; |
| 136 | assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 && |
| 137 | "multiple ABI attributes?" ); |
| 138 | if (IsByVal) { |
| 139 | IndirectType = Call->getParamByValType(ArgNo: ArgIdx); |
| 140 | if (!Alignment) |
| 141 | Alignment = Call->getParamAlign(ArgNo: ArgIdx); |
| 142 | } |
| 143 | if (IsPreallocated) |
| 144 | IndirectType = Call->getParamPreallocatedType(ArgNo: ArgIdx); |
| 145 | if (IsInAlloca) |
| 146 | IndirectType = Call->getParamInAllocaType(ArgNo: ArgIdx); |
| 147 | if (IsSRet) |
| 148 | IndirectType = Call->getParamStructRetType(ArgNo: ArgIdx); |
| 149 | } |
| 150 | |
| 151 | /// Generate a libcall taking the given operands as arguments and returning a |
| 152 | /// result of type RetVT. |
| 153 | std::pair<SDValue, SDValue> |
| 154 | TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, |
| 155 | ArrayRef<SDValue> Ops, |
| 156 | MakeLibCallOptions CallOptions, |
| 157 | const SDLoc &dl, |
| 158 | SDValue InChain) const { |
| 159 | if (!InChain) |
| 160 | InChain = DAG.getEntryNode(); |
| 161 | |
| 162 | TargetLowering::ArgListTy Args; |
| 163 | Args.reserve(n: Ops.size()); |
| 164 | |
| 165 | TargetLowering::ArgListEntry Entry; |
| 166 | ArrayRef<Type *> OpsTypeOverrides = CallOptions.OpsTypeOverrides; |
| 167 | for (unsigned i = 0; i < Ops.size(); ++i) { |
| 168 | SDValue NewOp = Ops[i]; |
| 169 | Entry.Node = NewOp; |
| 170 | Entry.Ty = i < OpsTypeOverrides.size() && OpsTypeOverrides[i] |
| 171 | ? OpsTypeOverrides[i] |
| 172 | : Entry.Node.getValueType().getTypeForEVT(Context&: *DAG.getContext()); |
| 173 | Entry.IsSExt = |
| 174 | shouldSignExtendTypeInLibCall(Ty: Entry.Ty, IsSigned: CallOptions.IsSigned); |
| 175 | Entry.IsZExt = !Entry.IsSExt; |
| 176 | |
| 177 | if (CallOptions.IsSoften && |
| 178 | !shouldExtendTypeInLibCall(Type: CallOptions.OpsVTBeforeSoften[i])) { |
| 179 | Entry.IsSExt = Entry.IsZExt = false; |
| 180 | } |
| 181 | Args.push_back(x: Entry); |
| 182 | } |
| 183 | |
| 184 | const char *LibcallName = getLibcallName(Call: LC); |
| 185 | if (LC == RTLIB::UNKNOWN_LIBCALL || !LibcallName) |
| 186 | reportFatalInternalError(reason: "unsupported library call operation" ); |
| 187 | |
| 188 | SDValue Callee = |
| 189 | DAG.getExternalSymbol(Sym: LibcallName, VT: getPointerTy(DL: DAG.getDataLayout())); |
| 190 | |
| 191 | Type *RetTy = RetVT.getTypeForEVT(Context&: *DAG.getContext()); |
| 192 | TargetLowering::CallLoweringInfo CLI(DAG); |
| 193 | bool signExtend = shouldSignExtendTypeInLibCall(Ty: RetTy, IsSigned: CallOptions.IsSigned); |
| 194 | bool zeroExtend = !signExtend; |
| 195 | |
| 196 | if (CallOptions.IsSoften && |
| 197 | !shouldExtendTypeInLibCall(Type: CallOptions.RetVTBeforeSoften)) { |
| 198 | signExtend = zeroExtend = false; |
| 199 | } |
| 200 | |
| 201 | CLI.setDebugLoc(dl) |
| 202 | .setChain(InChain) |
| 203 | .setLibCallee(CC: getLibcallCallingConv(Call: LC), ResultType: RetTy, Target: Callee, ArgsList: std::move(Args)) |
| 204 | .setNoReturn(CallOptions.DoesNotReturn) |
| 205 | .setDiscardResult(!CallOptions.IsReturnValueUsed) |
| 206 | .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) |
| 207 | .setSExtResult(signExtend) |
| 208 | .setZExtResult(zeroExtend); |
| 209 | return LowerCallTo(CLI); |
| 210 | } |
| 211 | |
| 212 | bool TargetLowering::findOptimalMemOpLowering( |
| 213 | std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, |
| 214 | unsigned SrcAS, const AttributeList &FuncAttributes) const { |
| 215 | if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() && |
| 216 | Op.getSrcAlign() < Op.getDstAlign()) |
| 217 | return false; |
| 218 | |
| 219 | EVT VT = getOptimalMemOpType(Op, FuncAttributes); |
| 220 | |
| 221 | if (VT == MVT::Other) { |
| 222 | // Use the largest integer type whose alignment constraints are satisfied. |
| 223 | // We only need to check DstAlign here as SrcAlign is always greater or |
| 224 | // equal to DstAlign (or zero). |
| 225 | VT = MVT::LAST_INTEGER_VALUETYPE; |
| 226 | if (Op.isFixedDstAlign()) |
| 227 | while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && |
| 228 | !allowsMisalignedMemoryAccesses(VT, AddrSpace: DstAS, Alignment: Op.getDstAlign())) |
| 229 | VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); |
| 230 | assert(VT.isInteger()); |
| 231 | |
| 232 | // Find the largest legal integer type. |
| 233 | MVT LVT = MVT::LAST_INTEGER_VALUETYPE; |
| 234 | while (!isTypeLegal(VT: LVT)) |
| 235 | LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); |
| 236 | assert(LVT.isInteger()); |
| 237 | |
| 238 | // If the type we've chosen is larger than the largest legal integer type |
| 239 | // then use that instead. |
| 240 | if (VT.bitsGT(VT: LVT)) |
| 241 | VT = LVT; |
| 242 | } |
| 243 | |
| 244 | unsigned NumMemOps = 0; |
| 245 | uint64_t Size = Op.size(); |
| 246 | while (Size) { |
| 247 | unsigned VTSize = VT.getSizeInBits() / 8; |
| 248 | while (VTSize > Size) { |
| 249 | // For now, only use non-vector load / store's for the left-over pieces. |
| 250 | EVT NewVT = VT; |
| 251 | unsigned NewVTSize; |
| 252 | |
| 253 | bool Found = false; |
| 254 | if (VT.isVector() || VT.isFloatingPoint()) { |
| 255 | NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; |
| 256 | if (isOperationLegalOrCustom(Op: ISD::STORE, VT: NewVT) && |
| 257 | isSafeMemOpType(NewVT.getSimpleVT())) |
| 258 | Found = true; |
| 259 | else if (NewVT == MVT::i64 && |
| 260 | isOperationLegalOrCustom(Op: ISD::STORE, VT: MVT::f64) && |
| 261 | isSafeMemOpType(MVT::f64)) { |
| 262 | // i64 is usually not legal on 32-bit targets, but f64 may be. |
| 263 | NewVT = MVT::f64; |
| 264 | Found = true; |
| 265 | } |
| 266 | } |
| 267 | |
| 268 | if (!Found) { |
| 269 | do { |
| 270 | NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); |
| 271 | if (NewVT == MVT::i8) |
| 272 | break; |
| 273 | } while (!isSafeMemOpType(NewVT.getSimpleVT())); |
| 274 | } |
| 275 | NewVTSize = NewVT.getSizeInBits() / 8; |
| 276 | |
| 277 | // If the new VT cannot cover all of the remaining bits, then consider |
| 278 | // issuing a (or a pair of) unaligned and overlapping load / store. |
| 279 | unsigned Fast; |
| 280 | if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && |
| 281 | allowsMisalignedMemoryAccesses( |
| 282 | VT, AddrSpace: DstAS, Alignment: Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), |
| 283 | Flags: MachineMemOperand::MONone, &Fast) && |
| 284 | Fast) |
| 285 | VTSize = Size; |
| 286 | else { |
| 287 | VT = NewVT; |
| 288 | VTSize = NewVTSize; |
| 289 | } |
| 290 | } |
| 291 | |
| 292 | if (++NumMemOps > Limit) |
| 293 | return false; |
| 294 | |
| 295 | MemOps.push_back(x: VT); |
| 296 | Size -= VTSize; |
| 297 | } |
| 298 | |
| 299 | return true; |
| 300 | } |
| 301 | |
| 302 | /// Soften the operands of a comparison. This code is shared among BR_CC, |
| 303 | /// SELECT_CC, and SETCC handlers. |
| 304 | void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, |
| 305 | SDValue &NewLHS, SDValue &NewRHS, |
| 306 | ISD::CondCode &CCCode, |
| 307 | const SDLoc &dl, const SDValue OldLHS, |
| 308 | const SDValue OldRHS) const { |
| 309 | SDValue Chain; |
| 310 | return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, DL: dl, OldLHS, |
| 311 | OldRHS, Chain); |
| 312 | } |
| 313 | |
| 314 | void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, |
| 315 | SDValue &NewLHS, SDValue &NewRHS, |
| 316 | ISD::CondCode &CCCode, |
| 317 | const SDLoc &dl, const SDValue OldLHS, |
| 318 | const SDValue OldRHS, |
| 319 | SDValue &Chain, |
| 320 | bool IsSignaling) const { |
| 321 | // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc |
| 322 | // not supporting it. We can update this code when libgcc provides such |
| 323 | // functions. |
| 324 | |
| 325 | assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) |
| 326 | && "Unsupported setcc type!" ); |
| 327 | |
| 328 | // Expand into one or more soft-fp libcall(s). |
| 329 | RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; |
| 330 | bool ShouldInvertCC = false; |
| 331 | switch (CCCode) { |
| 332 | case ISD::SETEQ: |
| 333 | case ISD::SETOEQ: |
| 334 | LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : |
| 335 | (VT == MVT::f64) ? RTLIB::OEQ_F64 : |
| 336 | (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; |
| 337 | break; |
| 338 | case ISD::SETNE: |
| 339 | case ISD::SETUNE: |
| 340 | LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : |
| 341 | (VT == MVT::f64) ? RTLIB::UNE_F64 : |
| 342 | (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; |
| 343 | break; |
| 344 | case ISD::SETGE: |
| 345 | case ISD::SETOGE: |
| 346 | LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : |
| 347 | (VT == MVT::f64) ? RTLIB::OGE_F64 : |
| 348 | (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; |
| 349 | break; |
| 350 | case ISD::SETLT: |
| 351 | case ISD::SETOLT: |
| 352 | LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : |
| 353 | (VT == MVT::f64) ? RTLIB::OLT_F64 : |
| 354 | (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; |
| 355 | break; |
| 356 | case ISD::SETLE: |
| 357 | case ISD::SETOLE: |
| 358 | LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : |
| 359 | (VT == MVT::f64) ? RTLIB::OLE_F64 : |
| 360 | (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; |
| 361 | break; |
| 362 | case ISD::SETGT: |
| 363 | case ISD::SETOGT: |
| 364 | LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : |
| 365 | (VT == MVT::f64) ? RTLIB::OGT_F64 : |
| 366 | (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; |
| 367 | break; |
| 368 | case ISD::SETO: |
| 369 | ShouldInvertCC = true; |
| 370 | [[fallthrough]]; |
| 371 | case ISD::SETUO: |
| 372 | LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : |
| 373 | (VT == MVT::f64) ? RTLIB::UO_F64 : |
| 374 | (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; |
| 375 | break; |
| 376 | case ISD::SETONE: |
| 377 | // SETONE = O && UNE |
| 378 | ShouldInvertCC = true; |
| 379 | [[fallthrough]]; |
| 380 | case ISD::SETUEQ: |
| 381 | LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : |
| 382 | (VT == MVT::f64) ? RTLIB::UO_F64 : |
| 383 | (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; |
| 384 | LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : |
| 385 | (VT == MVT::f64) ? RTLIB::OEQ_F64 : |
| 386 | (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; |
| 387 | break; |
| 388 | default: |
| 389 | // Invert CC for unordered comparisons |
| 390 | ShouldInvertCC = true; |
| 391 | switch (CCCode) { |
| 392 | case ISD::SETULT: |
| 393 | LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : |
| 394 | (VT == MVT::f64) ? RTLIB::OGE_F64 : |
| 395 | (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; |
| 396 | break; |
| 397 | case ISD::SETULE: |
| 398 | LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : |
| 399 | (VT == MVT::f64) ? RTLIB::OGT_F64 : |
| 400 | (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; |
| 401 | break; |
| 402 | case ISD::SETUGT: |
| 403 | LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : |
| 404 | (VT == MVT::f64) ? RTLIB::OLE_F64 : |
| 405 | (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; |
| 406 | break; |
| 407 | case ISD::SETUGE: |
| 408 | LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : |
| 409 | (VT == MVT::f64) ? RTLIB::OLT_F64 : |
| 410 | (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; |
| 411 | break; |
| 412 | default: llvm_unreachable("Do not know how to soften this setcc!" ); |
| 413 | } |
| 414 | } |
| 415 | |
| 416 | // Use the target specific return value for comparison lib calls. |
| 417 | EVT RetVT = getCmpLibcallReturnType(); |
| 418 | SDValue Ops[2] = {NewLHS, NewRHS}; |
| 419 | TargetLowering::MakeLibCallOptions CallOptions; |
| 420 | EVT OpsVT[2] = { OldLHS.getValueType(), |
| 421 | OldRHS.getValueType() }; |
| 422 | CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, Value: true); |
| 423 | auto Call = makeLibCall(DAG, LC: LC1, RetVT, Ops, CallOptions, dl, InChain: Chain); |
| 424 | NewLHS = Call.first; |
| 425 | NewRHS = DAG.getConstant(Val: 0, DL: dl, VT: RetVT); |
| 426 | |
| 427 | CCCode = getICmpCondCode(Pred: getSoftFloatCmpLibcallPredicate(Call: LC1)); |
| 428 | if (ShouldInvertCC) { |
| 429 | assert(RetVT.isInteger()); |
| 430 | CCCode = getSetCCInverse(Operation: CCCode, Type: RetVT); |
| 431 | } |
| 432 | |
| 433 | if (LC2 == RTLIB::UNKNOWN_LIBCALL) { |
| 434 | // Update Chain. |
| 435 | Chain = Call.second; |
| 436 | } else { |
| 437 | assert(CCCode == (ShouldInvertCC ? ISD::SETEQ : ISD::SETNE) && |
| 438 | "unordered call should be simple boolean" ); |
| 439 | |
| 440 | EVT SetCCVT = |
| 441 | getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT: RetVT); |
| 442 | if (getBooleanContents(Type: RetVT) == ZeroOrOneBooleanContent) { |
| 443 | NewLHS = DAG.getNode(Opcode: ISD::AssertZext, DL: dl, VT: RetVT, N1: Call.first, |
| 444 | N2: DAG.getValueType(MVT::i1)); |
| 445 | } |
| 446 | |
| 447 | SDValue Tmp = DAG.getSetCC(DL: dl, VT: SetCCVT, LHS: NewLHS, RHS: NewRHS, Cond: CCCode); |
| 448 | auto Call2 = makeLibCall(DAG, LC: LC2, RetVT, Ops, CallOptions, dl, InChain: Chain); |
| 449 | CCCode = getICmpCondCode(Pred: getSoftFloatCmpLibcallPredicate(Call: LC2)); |
| 450 | if (ShouldInvertCC) |
| 451 | CCCode = getSetCCInverse(Operation: CCCode, Type: RetVT); |
| 452 | NewLHS = DAG.getSetCC(DL: dl, VT: SetCCVT, LHS: Call2.first, RHS: NewRHS, Cond: CCCode); |
| 453 | if (Chain) |
| 454 | Chain = DAG.getNode(Opcode: ISD::TokenFactor, DL: dl, VT: MVT::Other, N1: Call.second, |
| 455 | N2: Call2.second); |
| 456 | NewLHS = DAG.getNode(Opcode: ShouldInvertCC ? ISD::AND : ISD::OR, DL: dl, |
| 457 | VT: Tmp.getValueType(), N1: Tmp, N2: NewLHS); |
| 458 | NewRHS = SDValue(); |
| 459 | } |
| 460 | } |
| 461 | |
| 462 | /// Return the entry encoding for a jump table in the current function. The |
| 463 | /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. |
| 464 | unsigned TargetLowering::getJumpTableEncoding() const { |
| 465 | // In non-pic modes, just use the address of a block. |
| 466 | if (!isPositionIndependent()) |
| 467 | return MachineJumpTableInfo::EK_BlockAddress; |
| 468 | |
| 469 | // Otherwise, use a label difference. |
| 470 | return MachineJumpTableInfo::EK_LabelDifference32; |
| 471 | } |
| 472 | |
| 473 | SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, |
| 474 | SelectionDAG &DAG) const { |
| 475 | return Table; |
| 476 | } |
| 477 | |
| 478 | /// This returns the relocation base for the given PIC jumptable, the same as |
| 479 | /// getPICJumpTableRelocBase, but as an MCExpr. |
| 480 | const MCExpr * |
| 481 | TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, |
| 482 | unsigned JTI,MCContext &Ctx) const{ |
| 483 | // The normal PIC reloc base is the label at the start of the jump table. |
| 484 | return MCSymbolRefExpr::create(Symbol: MF->getJTISymbol(JTI, Ctx), Ctx); |
| 485 | } |
| 486 | |
| 487 | SDValue TargetLowering::expandIndirectJTBranch(const SDLoc &dl, SDValue Value, |
| 488 | SDValue Addr, int JTI, |
| 489 | SelectionDAG &DAG) const { |
| 490 | SDValue Chain = Value; |
| 491 | // Jump table debug info is only needed if CodeView is enabled. |
| 492 | if (DAG.getTarget().getTargetTriple().isOSBinFormatCOFF()) { |
| 493 | Chain = DAG.getJumpTableDebugInfo(JTI, Chain, DL: dl); |
| 494 | } |
| 495 | return DAG.getNode(Opcode: ISD::BRIND, DL: dl, VT: MVT::Other, N1: Chain, N2: Addr); |
| 496 | } |
| 497 | |
| 498 | bool |
| 499 | TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { |
| 500 | const TargetMachine &TM = getTargetMachine(); |
| 501 | const GlobalValue *GV = GA->getGlobal(); |
| 502 | |
| 503 | // If the address is not even local to this DSO we will have to load it from |
| 504 | // a got and then add the offset. |
| 505 | if (!TM.shouldAssumeDSOLocal(GV)) |
| 506 | return false; |
| 507 | |
| 508 | // If the code is position independent we will have to add a base register. |
| 509 | if (isPositionIndependent()) |
| 510 | return false; |
| 511 | |
| 512 | // Otherwise we can do it. |
| 513 | return true; |
| 514 | } |
| 515 | |
| 516 | //===----------------------------------------------------------------------===// |
| 517 | // Optimization Methods |
| 518 | //===----------------------------------------------------------------------===// |
| 519 | |
| 520 | /// If the specified instruction has a constant integer operand and there are |
| 521 | /// bits set in that constant that are not demanded, then clear those bits and |
| 522 | /// return true. |
| 523 | bool TargetLowering::ShrinkDemandedConstant(SDValue Op, |
| 524 | const APInt &DemandedBits, |
| 525 | const APInt &DemandedElts, |
| 526 | TargetLoweringOpt &TLO) const { |
| 527 | SDLoc DL(Op); |
| 528 | unsigned Opcode = Op.getOpcode(); |
| 529 | |
| 530 | // Early-out if we've ended up calling an undemanded node, leave this to |
| 531 | // constant folding. |
| 532 | if (DemandedBits.isZero() || DemandedElts.isZero()) |
| 533 | return false; |
| 534 | |
| 535 | // Do target-specific constant optimization. |
| 536 | if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) |
| 537 | return TLO.New.getNode(); |
| 538 | |
| 539 | // FIXME: ISD::SELECT, ISD::SELECT_CC |
| 540 | switch (Opcode) { |
| 541 | default: |
| 542 | break; |
| 543 | case ISD::XOR: |
| 544 | case ISD::AND: |
| 545 | case ISD::OR: { |
| 546 | auto *Op1C = dyn_cast<ConstantSDNode>(Val: Op.getOperand(i: 1)); |
| 547 | if (!Op1C || Op1C->isOpaque()) |
| 548 | return false; |
| 549 | |
| 550 | // If this is a 'not' op, don't touch it because that's a canonical form. |
| 551 | const APInt &C = Op1C->getAPIntValue(); |
| 552 | if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(RHS: C)) |
| 553 | return false; |
| 554 | |
| 555 | if (!C.isSubsetOf(RHS: DemandedBits)) { |
| 556 | EVT VT = Op.getValueType(); |
| 557 | SDValue NewC = TLO.DAG.getConstant(Val: DemandedBits & C, DL, VT); |
| 558 | SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, N1: Op.getOperand(i: 0), N2: NewC, |
| 559 | Flags: Op->getFlags()); |
| 560 | return TLO.CombineTo(O: Op, N: NewOp); |
| 561 | } |
| 562 | |
| 563 | break; |
| 564 | } |
| 565 | } |
| 566 | |
| 567 | return false; |
| 568 | } |
| 569 | |
| 570 | bool TargetLowering::ShrinkDemandedConstant(SDValue Op, |
| 571 | const APInt &DemandedBits, |
| 572 | TargetLoweringOpt &TLO) const { |
| 573 | EVT VT = Op.getValueType(); |
| 574 | APInt DemandedElts = VT.isVector() |
| 575 | ? APInt::getAllOnes(numBits: VT.getVectorNumElements()) |
| 576 | : APInt(1, 1); |
| 577 | return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); |
| 578 | } |
| 579 | |
| 580 | /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. |
| 581 | /// This uses isTruncateFree/isZExtFree and ANY_EXTEND for the widening cast, |
| 582 | /// but it could be generalized for targets with other types of implicit |
| 583 | /// widening casts. |
| 584 | bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, |
| 585 | const APInt &DemandedBits, |
| 586 | TargetLoweringOpt &TLO) const { |
| 587 | assert(Op.getNumOperands() == 2 && |
| 588 | "ShrinkDemandedOp only supports binary operators!" ); |
| 589 | assert(Op.getNode()->getNumValues() == 1 && |
| 590 | "ShrinkDemandedOp only supports nodes with one result!" ); |
| 591 | |
| 592 | EVT VT = Op.getValueType(); |
| 593 | SelectionDAG &DAG = TLO.DAG; |
| 594 | SDLoc dl(Op); |
| 595 | |
| 596 | // Early return, as this function cannot handle vector types. |
| 597 | if (VT.isVector()) |
| 598 | return false; |
| 599 | |
| 600 | assert(Op.getOperand(0).getValueType().getScalarSizeInBits() == BitWidth && |
| 601 | Op.getOperand(1).getValueType().getScalarSizeInBits() == BitWidth && |
| 602 | "ShrinkDemandedOp only supports operands that have the same size!" ); |
| 603 | |
| 604 | // Don't do this if the node has another user, which may require the |
| 605 | // full value. |
| 606 | if (!Op.getNode()->hasOneUse()) |
| 607 | return false; |
| 608 | |
| 609 | // Search for the smallest integer type with free casts to and from |
| 610 | // Op's type. For expedience, just check power-of-2 integer types. |
| 611 | unsigned DemandedSize = DemandedBits.getActiveBits(); |
| 612 | for (unsigned SmallVTBits = llvm::bit_ceil(Value: DemandedSize); |
| 613 | SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(A: SmallVTBits)) { |
| 614 | EVT SmallVT = EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: SmallVTBits); |
| 615 | if (isTruncateFree(FromVT: VT, ToVT: SmallVT) && isZExtFree(FromTy: SmallVT, ToTy: VT)) { |
| 616 | // We found a type with free casts. |
| 617 | |
| 618 | // If the operation has the 'disjoint' flag, then the |
| 619 | // operands on the new node are also disjoint. |
| 620 | SDNodeFlags Flags(Op->getFlags().hasDisjoint() ? SDNodeFlags::Disjoint |
| 621 | : SDNodeFlags::None); |
| 622 | SDValue X = DAG.getNode( |
| 623 | Opcode: Op.getOpcode(), DL: dl, VT: SmallVT, |
| 624 | N1: DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: SmallVT, Operand: Op.getOperand(i: 0)), |
| 625 | N2: DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: SmallVT, Operand: Op.getOperand(i: 1)), Flags); |
| 626 | assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?" ); |
| 627 | SDValue Z = DAG.getNode(Opcode: ISD::ANY_EXTEND, DL: dl, VT, Operand: X); |
| 628 | return TLO.CombineTo(O: Op, N: Z); |
| 629 | } |
| 630 | } |
| 631 | return false; |
| 632 | } |
| 633 | |
| 634 | bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, |
| 635 | DAGCombinerInfo &DCI) const { |
| 636 | SelectionDAG &DAG = DCI.DAG; |
| 637 | TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), |
| 638 | !DCI.isBeforeLegalizeOps()); |
| 639 | KnownBits Known; |
| 640 | |
| 641 | bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); |
| 642 | if (Simplified) { |
| 643 | DCI.AddToWorklist(N: Op.getNode()); |
| 644 | DCI.CommitTargetLoweringOpt(TLO); |
| 645 | } |
| 646 | return Simplified; |
| 647 | } |
| 648 | |
| 649 | bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, |
| 650 | const APInt &DemandedElts, |
| 651 | DAGCombinerInfo &DCI) const { |
| 652 | SelectionDAG &DAG = DCI.DAG; |
| 653 | TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), |
| 654 | !DCI.isBeforeLegalizeOps()); |
| 655 | KnownBits Known; |
| 656 | |
| 657 | bool Simplified = |
| 658 | SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO); |
| 659 | if (Simplified) { |
| 660 | DCI.AddToWorklist(N: Op.getNode()); |
| 661 | DCI.CommitTargetLoweringOpt(TLO); |
| 662 | } |
| 663 | return Simplified; |
| 664 | } |
| 665 | |
| 666 | bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, |
| 667 | KnownBits &Known, |
| 668 | TargetLoweringOpt &TLO, |
| 669 | unsigned Depth, |
| 670 | bool AssumeSingleUse) const { |
| 671 | EVT VT = Op.getValueType(); |
| 672 | |
| 673 | // Since the number of lanes in a scalable vector is unknown at compile time, |
| 674 | // we track one bit which is implicitly broadcast to all lanes. This means |
| 675 | // that all lanes in a scalable vector are considered demanded. |
| 676 | APInt DemandedElts = VT.isFixedLengthVector() |
| 677 | ? APInt::getAllOnes(numBits: VT.getVectorNumElements()) |
| 678 | : APInt(1, 1); |
| 679 | return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, |
| 680 | AssumeSingleUse); |
| 681 | } |
| 682 | |
| 683 | // TODO: Under what circumstances can we create nodes? Constant folding? |
| 684 | SDValue TargetLowering::SimplifyMultipleUseDemandedBits( |
| 685 | SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, |
| 686 | SelectionDAG &DAG, unsigned Depth) const { |
| 687 | EVT VT = Op.getValueType(); |
| 688 | |
| 689 | // Limit search depth. |
| 690 | if (Depth >= SelectionDAG::MaxRecursionDepth) |
| 691 | return SDValue(); |
| 692 | |
| 693 | // Ignore UNDEFs. |
| 694 | if (Op.isUndef()) |
| 695 | return SDValue(); |
| 696 | |
| 697 | // Not demanding any bits/elts from Op. |
| 698 | if (DemandedBits == 0 || DemandedElts == 0) |
| 699 | return DAG.getUNDEF(VT); |
| 700 | |
| 701 | bool IsLE = DAG.getDataLayout().isLittleEndian(); |
| 702 | unsigned NumElts = DemandedElts.getBitWidth(); |
| 703 | unsigned BitWidth = DemandedBits.getBitWidth(); |
| 704 | KnownBits LHSKnown, RHSKnown; |
| 705 | switch (Op.getOpcode()) { |
| 706 | case ISD::BITCAST: { |
| 707 | if (VT.isScalableVector()) |
| 708 | return SDValue(); |
| 709 | |
| 710 | SDValue Src = peekThroughBitcasts(V: Op.getOperand(i: 0)); |
| 711 | EVT SrcVT = Src.getValueType(); |
| 712 | EVT DstVT = Op.getValueType(); |
| 713 | if (SrcVT == DstVT) |
| 714 | return Src; |
| 715 | |
| 716 | unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); |
| 717 | unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); |
| 718 | if (NumSrcEltBits == NumDstEltBits) |
| 719 | if (SDValue V = SimplifyMultipleUseDemandedBits( |
| 720 | Op: Src, DemandedBits, DemandedElts, DAG, Depth: Depth + 1)) |
| 721 | return DAG.getBitcast(VT: DstVT, V); |
| 722 | |
| 723 | if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) { |
| 724 | unsigned Scale = NumDstEltBits / NumSrcEltBits; |
| 725 | unsigned NumSrcElts = SrcVT.getVectorNumElements(); |
| 726 | APInt DemandedSrcBits = APInt::getZero(numBits: NumSrcEltBits); |
| 727 | APInt DemandedSrcElts = APInt::getZero(numBits: NumSrcElts); |
| 728 | for (unsigned i = 0; i != Scale; ++i) { |
| 729 | unsigned EltOffset = IsLE ? i : (Scale - 1 - i); |
| 730 | unsigned BitOffset = EltOffset * NumSrcEltBits; |
| 731 | APInt Sub = DemandedBits.extractBits(numBits: NumSrcEltBits, bitPosition: BitOffset); |
| 732 | if (!Sub.isZero()) { |
| 733 | DemandedSrcBits |= Sub; |
| 734 | for (unsigned j = 0; j != NumElts; ++j) |
| 735 | if (DemandedElts[j]) |
| 736 | DemandedSrcElts.setBit((j * Scale) + i); |
| 737 | } |
| 738 | } |
| 739 | |
| 740 | if (SDValue V = SimplifyMultipleUseDemandedBits( |
| 741 | Op: Src, DemandedBits: DemandedSrcBits, DemandedElts: DemandedSrcElts, DAG, Depth: Depth + 1)) |
| 742 | return DAG.getBitcast(VT: DstVT, V); |
| 743 | } |
| 744 | |
| 745 | // TODO - bigendian once we have test coverage. |
| 746 | if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) { |
| 747 | unsigned Scale = NumSrcEltBits / NumDstEltBits; |
| 748 | unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; |
| 749 | APInt DemandedSrcBits = APInt::getZero(numBits: NumSrcEltBits); |
| 750 | APInt DemandedSrcElts = APInt::getZero(numBits: NumSrcElts); |
| 751 | for (unsigned i = 0; i != NumElts; ++i) |
| 752 | if (DemandedElts[i]) { |
| 753 | unsigned Offset = (i % Scale) * NumDstEltBits; |
| 754 | DemandedSrcBits.insertBits(SubBits: DemandedBits, bitPosition: Offset); |
| 755 | DemandedSrcElts.setBit(i / Scale); |
| 756 | } |
| 757 | |
| 758 | if (SDValue V = SimplifyMultipleUseDemandedBits( |
| 759 | Op: Src, DemandedBits: DemandedSrcBits, DemandedElts: DemandedSrcElts, DAG, Depth: Depth + 1)) |
| 760 | return DAG.getBitcast(VT: DstVT, V); |
| 761 | } |
| 762 | |
| 763 | break; |
| 764 | } |
| 765 | case ISD::FREEZE: { |
| 766 | SDValue N0 = Op.getOperand(i: 0); |
| 767 | if (DAG.isGuaranteedNotToBeUndefOrPoison(Op: N0, DemandedElts, |
| 768 | /*PoisonOnly=*/false)) |
| 769 | return N0; |
| 770 | break; |
| 771 | } |
| 772 | case ISD::AND: { |
| 773 | LHSKnown = DAG.computeKnownBits(Op: Op.getOperand(i: 0), DemandedElts, Depth: Depth + 1); |
| 774 | RHSKnown = DAG.computeKnownBits(Op: Op.getOperand(i: 1), DemandedElts, Depth: Depth + 1); |
| 775 | |
| 776 | // If all of the demanded bits are known 1 on one side, return the other. |
| 777 | // These bits cannot contribute to the result of the 'and' in this |
| 778 | // context. |
| 779 | if (DemandedBits.isSubsetOf(RHS: LHSKnown.Zero | RHSKnown.One)) |
| 780 | return Op.getOperand(i: 0); |
| 781 | if (DemandedBits.isSubsetOf(RHS: RHSKnown.Zero | LHSKnown.One)) |
| 782 | return Op.getOperand(i: 1); |
| 783 | break; |
| 784 | } |
| 785 | case ISD::OR: { |
| 786 | LHSKnown = DAG.computeKnownBits(Op: Op.getOperand(i: 0), DemandedElts, Depth: Depth + 1); |
| 787 | RHSKnown = DAG.computeKnownBits(Op: Op.getOperand(i: 1), DemandedElts, Depth: Depth + 1); |
| 788 | |
| 789 | // If all of the demanded bits are known zero on one side, return the |
| 790 | // other. These bits cannot contribute to the result of the 'or' in this |
| 791 | // context. |
| 792 | if (DemandedBits.isSubsetOf(RHS: LHSKnown.One | RHSKnown.Zero)) |
| 793 | return Op.getOperand(i: 0); |
| 794 | if (DemandedBits.isSubsetOf(RHS: RHSKnown.One | LHSKnown.Zero)) |
| 795 | return Op.getOperand(i: 1); |
| 796 | break; |
| 797 | } |
| 798 | case ISD::XOR: { |
| 799 | LHSKnown = DAG.computeKnownBits(Op: Op.getOperand(i: 0), DemandedElts, Depth: Depth + 1); |
| 800 | RHSKnown = DAG.computeKnownBits(Op: Op.getOperand(i: 1), DemandedElts, Depth: Depth + 1); |
| 801 | |
| 802 | // If all of the demanded bits are known zero on one side, return the |
| 803 | // other. |
| 804 | if (DemandedBits.isSubsetOf(RHS: RHSKnown.Zero)) |
| 805 | return Op.getOperand(i: 0); |
| 806 | if (DemandedBits.isSubsetOf(RHS: LHSKnown.Zero)) |
| 807 | return Op.getOperand(i: 1); |
| 808 | break; |
| 809 | } |
| 810 | case ISD::ADD: { |
| 811 | RHSKnown = DAG.computeKnownBits(Op: Op.getOperand(i: 1), DemandedElts, Depth: Depth + 1); |
| 812 | if (RHSKnown.isZero()) |
| 813 | return Op.getOperand(i: 0); |
| 814 | |
| 815 | LHSKnown = DAG.computeKnownBits(Op: Op.getOperand(i: 0), DemandedElts, Depth: Depth + 1); |
| 816 | if (LHSKnown.isZero()) |
| 817 | return Op.getOperand(i: 1); |
| 818 | break; |
| 819 | } |
| 820 | case ISD::SHL: { |
| 821 | // If we are only demanding sign bits then we can use the shift source |
| 822 | // directly. |
| 823 | if (std::optional<uint64_t> MaxSA = |
| 824 | DAG.getValidMaximumShiftAmount(V: Op, DemandedElts, Depth: Depth + 1)) { |
| 825 | SDValue Op0 = Op.getOperand(i: 0); |
| 826 | unsigned ShAmt = *MaxSA; |
| 827 | unsigned NumSignBits = |
| 828 | DAG.ComputeNumSignBits(Op: Op0, DemandedElts, Depth: Depth + 1); |
| 829 | unsigned UpperDemandedBits = BitWidth - DemandedBits.countr_zero(); |
| 830 | if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) |
| 831 | return Op0; |
| 832 | } |
| 833 | break; |
| 834 | } |
| 835 | case ISD::SRL: { |
| 836 | // If we are only demanding sign bits then we can use the shift source |
| 837 | // directly. |
| 838 | if (std::optional<uint64_t> MaxSA = |
| 839 | DAG.getValidMaximumShiftAmount(V: Op, DemandedElts, Depth: Depth + 1)) { |
| 840 | SDValue Op0 = Op.getOperand(i: 0); |
| 841 | unsigned ShAmt = *MaxSA; |
| 842 | // Must already be signbits in DemandedBits bounds, and can't demand any |
| 843 | // shifted in zeroes. |
| 844 | if (DemandedBits.countl_zero() >= ShAmt) { |
| 845 | unsigned NumSignBits = |
| 846 | DAG.ComputeNumSignBits(Op: Op0, DemandedElts, Depth: Depth + 1); |
| 847 | if (DemandedBits.countr_zero() >= (BitWidth - NumSignBits)) |
| 848 | return Op0; |
| 849 | } |
| 850 | } |
| 851 | break; |
| 852 | } |
| 853 | case ISD::SETCC: { |
| 854 | SDValue Op0 = Op.getOperand(i: 0); |
| 855 | SDValue Op1 = Op.getOperand(i: 1); |
| 856 | ISD::CondCode CC = cast<CondCodeSDNode>(Val: Op.getOperand(i: 2))->get(); |
| 857 | // If (1) we only need the sign-bit, (2) the setcc operands are the same |
| 858 | // width as the setcc result, and (3) the result of a setcc conforms to 0 or |
| 859 | // -1, we may be able to bypass the setcc. |
| 860 | if (DemandedBits.isSignMask() && |
| 861 | Op0.getScalarValueSizeInBits() == BitWidth && |
| 862 | getBooleanContents(Type: Op0.getValueType()) == |
| 863 | BooleanContent::ZeroOrNegativeOneBooleanContent) { |
| 864 | // If we're testing X < 0, then this compare isn't needed - just use X! |
| 865 | // FIXME: We're limiting to integer types here, but this should also work |
| 866 | // if we don't care about FP signed-zero. The use of SETLT with FP means |
| 867 | // that we don't care about NaNs. |
| 868 | if (CC == ISD::SETLT && Op1.getValueType().isInteger() && |
| 869 | (isNullConstant(V: Op1) || ISD::isBuildVectorAllZeros(N: Op1.getNode()))) |
| 870 | return Op0; |
| 871 | } |
| 872 | break; |
| 873 | } |
| 874 | case ISD::SIGN_EXTEND_INREG: { |
| 875 | // If none of the extended bits are demanded, eliminate the sextinreg. |
| 876 | SDValue Op0 = Op.getOperand(i: 0); |
| 877 | EVT ExVT = cast<VTSDNode>(Val: Op.getOperand(i: 1))->getVT(); |
| 878 | unsigned ExBits = ExVT.getScalarSizeInBits(); |
| 879 | if (DemandedBits.getActiveBits() <= ExBits && |
| 880 | shouldRemoveRedundantExtend(Op)) |
| 881 | return Op0; |
| 882 | // If the input is already sign extended, just drop the extension. |
| 883 | unsigned NumSignBits = DAG.ComputeNumSignBits(Op: Op0, DemandedElts, Depth: Depth + 1); |
| 884 | if (NumSignBits >= (BitWidth - ExBits + 1)) |
| 885 | return Op0; |
| 886 | break; |
| 887 | } |
| 888 | case ISD::ANY_EXTEND_VECTOR_INREG: |
| 889 | case ISD::SIGN_EXTEND_VECTOR_INREG: |
| 890 | case ISD::ZERO_EXTEND_VECTOR_INREG: { |
| 891 | if (VT.isScalableVector()) |
| 892 | return SDValue(); |
| 893 | |
| 894 | // If we only want the lowest element and none of extended bits, then we can |
| 895 | // return the bitcasted source vector. |
| 896 | SDValue Src = Op.getOperand(i: 0); |
| 897 | EVT SrcVT = Src.getValueType(); |
| 898 | EVT DstVT = Op.getValueType(); |
| 899 | if (IsLE && DemandedElts == 1 && |
| 900 | DstVT.getSizeInBits() == SrcVT.getSizeInBits() && |
| 901 | DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { |
| 902 | return DAG.getBitcast(VT: DstVT, V: Src); |
| 903 | } |
| 904 | break; |
| 905 | } |
| 906 | case ISD::INSERT_VECTOR_ELT: { |
| 907 | if (VT.isScalableVector()) |
| 908 | return SDValue(); |
| 909 | |
| 910 | // If we don't demand the inserted element, return the base vector. |
| 911 | SDValue Vec = Op.getOperand(i: 0); |
| 912 | auto *CIdx = dyn_cast<ConstantSDNode>(Val: Op.getOperand(i: 2)); |
| 913 | EVT VecVT = Vec.getValueType(); |
| 914 | if (CIdx && CIdx->getAPIntValue().ult(RHS: VecVT.getVectorNumElements()) && |
| 915 | !DemandedElts[CIdx->getZExtValue()]) |
| 916 | return Vec; |
| 917 | break; |
| 918 | } |
| 919 | case ISD::INSERT_SUBVECTOR: { |
| 920 | if (VT.isScalableVector()) |
| 921 | return SDValue(); |
| 922 | |
| 923 | SDValue Vec = Op.getOperand(i: 0); |
| 924 | SDValue Sub = Op.getOperand(i: 1); |
| 925 | uint64_t Idx = Op.getConstantOperandVal(i: 2); |
| 926 | unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); |
| 927 | APInt DemandedSubElts = DemandedElts.extractBits(numBits: NumSubElts, bitPosition: Idx); |
| 928 | // If we don't demand the inserted subvector, return the base vector. |
| 929 | if (DemandedSubElts == 0) |
| 930 | return Vec; |
| 931 | break; |
| 932 | } |
| 933 | case ISD::VECTOR_SHUFFLE: { |
| 934 | assert(!VT.isScalableVector()); |
| 935 | ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Val&: Op)->getMask(); |
| 936 | |
| 937 | // If all the demanded elts are from one operand and are inline, |
| 938 | // then we can use the operand directly. |
| 939 | bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; |
| 940 | for (unsigned i = 0; i != NumElts; ++i) { |
| 941 | int M = ShuffleMask[i]; |
| 942 | if (M < 0 || !DemandedElts[i]) |
| 943 | continue; |
| 944 | AllUndef = false; |
| 945 | IdentityLHS &= (M == (int)i); |
| 946 | IdentityRHS &= ((M - NumElts) == i); |
| 947 | } |
| 948 | |
| 949 | if (AllUndef) |
| 950 | return DAG.getUNDEF(VT: Op.getValueType()); |
| 951 | if (IdentityLHS) |
| 952 | return Op.getOperand(i: 0); |
| 953 | if (IdentityRHS) |
| 954 | return Op.getOperand(i: 1); |
| 955 | break; |
| 956 | } |
| 957 | default: |
| 958 | // TODO: Probably okay to remove after audit; here to reduce change size |
| 959 | // in initial enablement patch for scalable vectors |
| 960 | if (VT.isScalableVector()) |
| 961 | return SDValue(); |
| 962 | |
| 963 | if (Op.getOpcode() >= ISD::BUILTIN_OP_END) |
| 964 | if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( |
| 965 | Op, DemandedBits, DemandedElts, DAG, Depth)) |
| 966 | return V; |
| 967 | break; |
| 968 | } |
| 969 | return SDValue(); |
| 970 | } |
| 971 | |
| 972 | SDValue TargetLowering::SimplifyMultipleUseDemandedBits( |
| 973 | SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, |
| 974 | unsigned Depth) const { |
| 975 | EVT VT = Op.getValueType(); |
| 976 | // Since the number of lanes in a scalable vector is unknown at compile time, |
| 977 | // we track one bit which is implicitly broadcast to all lanes. This means |
| 978 | // that all lanes in a scalable vector are considered demanded. |
| 979 | APInt DemandedElts = VT.isFixedLengthVector() |
| 980 | ? APInt::getAllOnes(numBits: VT.getVectorNumElements()) |
| 981 | : APInt(1, 1); |
| 982 | return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, |
| 983 | Depth); |
| 984 | } |
| 985 | |
| 986 | SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( |
| 987 | SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, |
| 988 | unsigned Depth) const { |
| 989 | APInt DemandedBits = APInt::getAllOnes(numBits: Op.getScalarValueSizeInBits()); |
| 990 | return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, |
| 991 | Depth); |
| 992 | } |
| 993 | |
| 994 | // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1). |
| 995 | // or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1). |
| 996 | static SDValue combineShiftToAVG(SDValue Op, |
| 997 | TargetLowering::TargetLoweringOpt &TLO, |
| 998 | const TargetLowering &TLI, |
| 999 | const APInt &DemandedBits, |
| 1000 | const APInt &DemandedElts, unsigned Depth) { |
| 1001 | assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) && |
| 1002 | "SRL or SRA node is required here!" ); |
| 1003 | // Is the right shift using an immediate value of 1? |
| 1004 | ConstantSDNode *N1C = isConstOrConstSplat(N: Op.getOperand(i: 1), DemandedElts); |
| 1005 | if (!N1C || !N1C->isOne()) |
| 1006 | return SDValue(); |
| 1007 | |
| 1008 | // We are looking for an avgfloor |
| 1009 | // add(ext, ext) |
| 1010 | // or one of these as a avgceil |
| 1011 | // add(add(ext, ext), 1) |
| 1012 | // add(add(ext, 1), ext) |
| 1013 | // add(ext, add(ext, 1)) |
| 1014 | SDValue Add = Op.getOperand(i: 0); |
| 1015 | if (Add.getOpcode() != ISD::ADD) |
| 1016 | return SDValue(); |
| 1017 | |
| 1018 | SDValue ExtOpA = Add.getOperand(i: 0); |
| 1019 | SDValue ExtOpB = Add.getOperand(i: 1); |
| 1020 | SDValue Add2; |
| 1021 | auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3, SDValue A) { |
| 1022 | ConstantSDNode *ConstOp; |
| 1023 | if ((ConstOp = isConstOrConstSplat(N: Op2, DemandedElts)) && |
| 1024 | ConstOp->isOne()) { |
| 1025 | ExtOpA = Op1; |
| 1026 | ExtOpB = Op3; |
| 1027 | Add2 = A; |
| 1028 | return true; |
| 1029 | } |
| 1030 | if ((ConstOp = isConstOrConstSplat(N: Op3, DemandedElts)) && |
| 1031 | ConstOp->isOne()) { |
| 1032 | ExtOpA = Op1; |
| 1033 | ExtOpB = Op2; |
| 1034 | Add2 = A; |
| 1035 | return true; |
| 1036 | } |
| 1037 | return false; |
| 1038 | }; |
| 1039 | bool IsCeil = |
| 1040 | (ExtOpA.getOpcode() == ISD::ADD && |
| 1041 | MatchOperands(ExtOpA.getOperand(i: 0), ExtOpA.getOperand(i: 1), ExtOpB, ExtOpA)) || |
| 1042 | (ExtOpB.getOpcode() == ISD::ADD && |
| 1043 | MatchOperands(ExtOpB.getOperand(i: 0), ExtOpB.getOperand(i: 1), ExtOpA, ExtOpB)); |
| 1044 | |
| 1045 | // If the shift is signed (sra): |
| 1046 | // - Needs >= 2 sign bit for both operands. |
| 1047 | // - Needs >= 2 zero bits. |
| 1048 | // If the shift is unsigned (srl): |
| 1049 | // - Needs >= 1 zero bit for both operands. |
| 1050 | // - Needs 1 demanded bit zero and >= 2 sign bits. |
| 1051 | SelectionDAG &DAG = TLO.DAG; |
| 1052 | unsigned ShiftOpc = Op.getOpcode(); |
| 1053 | bool IsSigned = false; |
| 1054 | unsigned KnownBits; |
| 1055 | unsigned NumSignedA = DAG.ComputeNumSignBits(Op: ExtOpA, DemandedElts, Depth); |
| 1056 | unsigned NumSignedB = DAG.ComputeNumSignBits(Op: ExtOpB, DemandedElts, Depth); |
| 1057 | unsigned NumSigned = std::min(a: NumSignedA, b: NumSignedB) - 1; |
| 1058 | unsigned NumZeroA = |
| 1059 | DAG.computeKnownBits(Op: ExtOpA, DemandedElts, Depth).countMinLeadingZeros(); |
| 1060 | unsigned NumZeroB = |
| 1061 | DAG.computeKnownBits(Op: ExtOpB, DemandedElts, Depth).countMinLeadingZeros(); |
| 1062 | unsigned NumZero = std::min(a: NumZeroA, b: NumZeroB); |
| 1063 | |
| 1064 | switch (ShiftOpc) { |
| 1065 | default: |
| 1066 | llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG" ); |
| 1067 | case ISD::SRA: { |
| 1068 | if (NumZero >= 2 && NumSigned < NumZero) { |
| 1069 | IsSigned = false; |
| 1070 | KnownBits = NumZero; |
| 1071 | break; |
| 1072 | } |
| 1073 | if (NumSigned >= 1) { |
| 1074 | IsSigned = true; |
| 1075 | KnownBits = NumSigned; |
| 1076 | break; |
| 1077 | } |
| 1078 | return SDValue(); |
| 1079 | } |
| 1080 | case ISD::SRL: { |
| 1081 | if (NumZero >= 1 && NumSigned < NumZero) { |
| 1082 | IsSigned = false; |
| 1083 | KnownBits = NumZero; |
| 1084 | break; |
| 1085 | } |
| 1086 | if (NumSigned >= 1 && DemandedBits.isSignBitClear()) { |
| 1087 | IsSigned = true; |
| 1088 | KnownBits = NumSigned; |
| 1089 | break; |
| 1090 | } |
| 1091 | return SDValue(); |
| 1092 | } |
| 1093 | } |
| 1094 | |
| 1095 | unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU) |
| 1096 | : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU); |
| 1097 | |
| 1098 | // Find the smallest power-2 type that is legal for this vector size and |
| 1099 | // operation, given the original type size and the number of known sign/zero |
| 1100 | // bits. |
| 1101 | EVT VT = Op.getValueType(); |
| 1102 | unsigned MinWidth = |
| 1103 | std::max<unsigned>(a: VT.getScalarSizeInBits() - KnownBits, b: 8); |
| 1104 | EVT NVT = EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: llvm::bit_ceil(Value: MinWidth)); |
| 1105 | if (NVT.getScalarSizeInBits() > VT.getScalarSizeInBits()) |
| 1106 | return SDValue(); |
| 1107 | if (VT.isVector()) |
| 1108 | NVT = EVT::getVectorVT(Context&: *DAG.getContext(), VT: NVT, EC: VT.getVectorElementCount()); |
| 1109 | if (TLO.LegalTypes() && !TLI.isOperationLegal(Op: AVGOpc, VT: NVT)) { |
| 1110 | // If we could not transform, and (both) adds are nuw/nsw, we can use the |
| 1111 | // larger type size to do the transform. |
| 1112 | if (TLO.LegalOperations() && !TLI.isOperationLegal(Op: AVGOpc, VT)) |
| 1113 | return SDValue(); |
| 1114 | if (DAG.willNotOverflowAdd(IsSigned, N0: Add.getOperand(i: 0), |
| 1115 | N1: Add.getOperand(i: 1)) && |
| 1116 | (!Add2 || DAG.willNotOverflowAdd(IsSigned, N0: Add2.getOperand(i: 0), |
| 1117 | N1: Add2.getOperand(i: 1)))) |
| 1118 | NVT = VT; |
| 1119 | else |
| 1120 | return SDValue(); |
| 1121 | } |
| 1122 | |
| 1123 | // Don't create a AVGFLOOR node with a scalar constant unless its legal as |
| 1124 | // this is likely to stop other folds (reassociation, value tracking etc.) |
| 1125 | if (!IsCeil && !TLI.isOperationLegal(Op: AVGOpc, VT: NVT) && |
| 1126 | (isa<ConstantSDNode>(Val: ExtOpA) || isa<ConstantSDNode>(Val: ExtOpB))) |
| 1127 | return SDValue(); |
| 1128 | |
| 1129 | SDLoc DL(Op); |
| 1130 | SDValue ResultAVG = |
| 1131 | DAG.getNode(Opcode: AVGOpc, DL, VT: NVT, N1: DAG.getExtOrTrunc(IsSigned, Op: ExtOpA, DL, VT: NVT), |
| 1132 | N2: DAG.getExtOrTrunc(IsSigned, Op: ExtOpB, DL, VT: NVT)); |
| 1133 | return DAG.getExtOrTrunc(IsSigned, Op: ResultAVG, DL, VT); |
| 1134 | } |
| 1135 | |
| 1136 | /// Look at Op. At this point, we know that only the OriginalDemandedBits of the |
| 1137 | /// result of Op are ever used downstream. If we can use this information to |
| 1138 | /// simplify Op, create a new simplified DAG node and return true, returning the |
| 1139 | /// original and new nodes in Old and New. Otherwise, analyze the expression and |
| 1140 | /// return a mask of Known bits for the expression (used to simplify the |
| 1141 | /// caller). The Known bits may only be accurate for those bits in the |
| 1142 | /// OriginalDemandedBits and OriginalDemandedElts. |
| 1143 | bool TargetLowering::SimplifyDemandedBits( |
| 1144 | SDValue Op, const APInt &OriginalDemandedBits, |
| 1145 | const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, |
| 1146 | unsigned Depth, bool AssumeSingleUse) const { |
| 1147 | unsigned BitWidth = OriginalDemandedBits.getBitWidth(); |
| 1148 | assert(Op.getScalarValueSizeInBits() == BitWidth && |
| 1149 | "Mask size mismatches value type size!" ); |
| 1150 | |
| 1151 | // Don't know anything. |
| 1152 | Known = KnownBits(BitWidth); |
| 1153 | |
| 1154 | EVT VT = Op.getValueType(); |
| 1155 | bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); |
| 1156 | unsigned NumElts = OriginalDemandedElts.getBitWidth(); |
| 1157 | assert((!VT.isFixedLengthVector() || NumElts == VT.getVectorNumElements()) && |
| 1158 | "Unexpected vector size" ); |
| 1159 | |
| 1160 | APInt DemandedBits = OriginalDemandedBits; |
| 1161 | APInt DemandedElts = OriginalDemandedElts; |
| 1162 | SDLoc dl(Op); |
| 1163 | |
| 1164 | // Undef operand. |
| 1165 | if (Op.isUndef()) |
| 1166 | return false; |
| 1167 | |
| 1168 | // We can't simplify target constants. |
| 1169 | if (Op.getOpcode() == ISD::TargetConstant) |
| 1170 | return false; |
| 1171 | |
| 1172 | if (Op.getOpcode() == ISD::Constant) { |
| 1173 | // We know all of the bits for a constant! |
| 1174 | Known = KnownBits::makeConstant(C: Op->getAsAPIntVal()); |
| 1175 | return false; |
| 1176 | } |
| 1177 | |
| 1178 | if (Op.getOpcode() == ISD::ConstantFP) { |
| 1179 | // We know all of the bits for a floating point constant! |
| 1180 | Known = KnownBits::makeConstant( |
| 1181 | C: cast<ConstantFPSDNode>(Val&: Op)->getValueAPF().bitcastToAPInt()); |
| 1182 | return false; |
| 1183 | } |
| 1184 | |
| 1185 | // Other users may use these bits. |
| 1186 | bool HasMultiUse = false; |
| 1187 | if (!AssumeSingleUse && !Op.getNode()->hasOneUse()) { |
| 1188 | if (Depth >= SelectionDAG::MaxRecursionDepth) { |
| 1189 | // Limit search depth. |
| 1190 | return false; |
| 1191 | } |
| 1192 | // Allow multiple uses, just set the DemandedBits/Elts to all bits. |
| 1193 | DemandedBits = APInt::getAllOnes(numBits: BitWidth); |
| 1194 | DemandedElts = APInt::getAllOnes(numBits: NumElts); |
| 1195 | HasMultiUse = true; |
| 1196 | } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { |
| 1197 | // Not demanding any bits/elts from Op. |
| 1198 | return TLO.CombineTo(O: Op, N: TLO.DAG.getUNDEF(VT)); |
| 1199 | } else if (Depth >= SelectionDAG::MaxRecursionDepth) { |
| 1200 | // Limit search depth. |
| 1201 | return false; |
| 1202 | } |
| 1203 | |
| 1204 | KnownBits Known2; |
| 1205 | switch (Op.getOpcode()) { |
| 1206 | case ISD::SCALAR_TO_VECTOR: { |
| 1207 | if (VT.isScalableVector()) |
| 1208 | return false; |
| 1209 | if (!DemandedElts[0]) |
| 1210 | return TLO.CombineTo(O: Op, N: TLO.DAG.getUNDEF(VT)); |
| 1211 | |
| 1212 | KnownBits SrcKnown; |
| 1213 | SDValue Src = Op.getOperand(i: 0); |
| 1214 | unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); |
| 1215 | APInt SrcDemandedBits = DemandedBits.zext(width: SrcBitWidth); |
| 1216 | if (SimplifyDemandedBits(Op: Src, DemandedBits: SrcDemandedBits, Known&: SrcKnown, TLO, Depth: Depth + 1)) |
| 1217 | return true; |
| 1218 | |
| 1219 | // Upper elements are undef, so only get the knownbits if we just demand |
| 1220 | // the bottom element. |
| 1221 | if (DemandedElts == 1) |
| 1222 | Known = SrcKnown.anyextOrTrunc(BitWidth); |
| 1223 | break; |
| 1224 | } |
| 1225 | case ISD::BUILD_VECTOR: |
| 1226 | // Collect the known bits that are shared by every demanded element. |
| 1227 | // TODO: Call SimplifyDemandedBits for non-constant demanded elements. |
| 1228 | Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); |
| 1229 | return false; // Don't fall through, will infinitely loop. |
| 1230 | case ISD::SPLAT_VECTOR: { |
| 1231 | SDValue Scl = Op.getOperand(i: 0); |
| 1232 | APInt DemandedSclBits = DemandedBits.zextOrTrunc(width: Scl.getValueSizeInBits()); |
| 1233 | KnownBits KnownScl; |
| 1234 | if (SimplifyDemandedBits(Op: Scl, DemandedBits: DemandedSclBits, Known&: KnownScl, TLO, Depth: Depth + 1)) |
| 1235 | return true; |
| 1236 | |
| 1237 | // Implicitly truncate the bits to match the official semantics of |
| 1238 | // SPLAT_VECTOR. |
| 1239 | Known = KnownScl.trunc(BitWidth); |
| 1240 | break; |
| 1241 | } |
| 1242 | case ISD::LOAD: { |
| 1243 | auto *LD = cast<LoadSDNode>(Val&: Op); |
| 1244 | if (getTargetConstantFromLoad(LD)) { |
| 1245 | Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); |
| 1246 | return false; // Don't fall through, will infinitely loop. |
| 1247 | } |
| 1248 | if (ISD::isZEXTLoad(N: Op.getNode()) && Op.getResNo() == 0) { |
| 1249 | // If this is a ZEXTLoad and we are looking at the loaded value. |
| 1250 | EVT MemVT = LD->getMemoryVT(); |
| 1251 | unsigned MemBits = MemVT.getScalarSizeInBits(); |
| 1252 | Known.Zero.setBitsFrom(MemBits); |
| 1253 | return false; // Don't fall through, will infinitely loop. |
| 1254 | } |
| 1255 | break; |
| 1256 | } |
| 1257 | case ISD::INSERT_VECTOR_ELT: { |
| 1258 | if (VT.isScalableVector()) |
| 1259 | return false; |
| 1260 | SDValue Vec = Op.getOperand(i: 0); |
| 1261 | SDValue Scl = Op.getOperand(i: 1); |
| 1262 | auto *CIdx = dyn_cast<ConstantSDNode>(Val: Op.getOperand(i: 2)); |
| 1263 | EVT VecVT = Vec.getValueType(); |
| 1264 | |
| 1265 | // If index isn't constant, assume we need all vector elements AND the |
| 1266 | // inserted element. |
| 1267 | APInt DemandedVecElts(DemandedElts); |
| 1268 | if (CIdx && CIdx->getAPIntValue().ult(RHS: VecVT.getVectorNumElements())) { |
| 1269 | unsigned Idx = CIdx->getZExtValue(); |
| 1270 | DemandedVecElts.clearBit(BitPosition: Idx); |
| 1271 | |
| 1272 | // Inserted element is not required. |
| 1273 | if (!DemandedElts[Idx]) |
| 1274 | return TLO.CombineTo(O: Op, N: Vec); |
| 1275 | } |
| 1276 | |
| 1277 | KnownBits KnownScl; |
| 1278 | unsigned NumSclBits = Scl.getScalarValueSizeInBits(); |
| 1279 | APInt DemandedSclBits = DemandedBits.zextOrTrunc(width: NumSclBits); |
| 1280 | if (SimplifyDemandedBits(Op: Scl, DemandedBits: DemandedSclBits, Known&: KnownScl, TLO, Depth: Depth + 1)) |
| 1281 | return true; |
| 1282 | |
| 1283 | Known = KnownScl.anyextOrTrunc(BitWidth); |
| 1284 | |
| 1285 | KnownBits KnownVec; |
| 1286 | if (SimplifyDemandedBits(Op: Vec, OriginalDemandedBits: DemandedBits, OriginalDemandedElts: DemandedVecElts, Known&: KnownVec, TLO, |
| 1287 | Depth: Depth + 1)) |
| 1288 | return true; |
| 1289 | |
| 1290 | if (!!DemandedVecElts) |
| 1291 | Known = Known.intersectWith(RHS: KnownVec); |
| 1292 | |
| 1293 | return false; |
| 1294 | } |
| 1295 | case ISD::INSERT_SUBVECTOR: { |
| 1296 | if (VT.isScalableVector()) |
| 1297 | return false; |
| 1298 | // Demand any elements from the subvector and the remainder from the src its |
| 1299 | // inserted into. |
| 1300 | SDValue Src = Op.getOperand(i: 0); |
| 1301 | SDValue Sub = Op.getOperand(i: 1); |
| 1302 | uint64_t Idx = Op.getConstantOperandVal(i: 2); |
| 1303 | unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); |
| 1304 | APInt DemandedSubElts = DemandedElts.extractBits(numBits: NumSubElts, bitPosition: Idx); |
| 1305 | APInt DemandedSrcElts = DemandedElts; |
| 1306 | DemandedSrcElts.clearBits(LoBit: Idx, HiBit: Idx + NumSubElts); |
| 1307 | |
| 1308 | KnownBits KnownSub, KnownSrc; |
| 1309 | if (SimplifyDemandedBits(Op: Sub, OriginalDemandedBits: DemandedBits, OriginalDemandedElts: DemandedSubElts, Known&: KnownSub, TLO, |
| 1310 | Depth: Depth + 1)) |
| 1311 | return true; |
| 1312 | if (SimplifyDemandedBits(Op: Src, OriginalDemandedBits: DemandedBits, OriginalDemandedElts: DemandedSrcElts, Known&: KnownSrc, TLO, |
| 1313 | Depth: Depth + 1)) |
| 1314 | return true; |
| 1315 | |
| 1316 | Known.Zero.setAllBits(); |
| 1317 | Known.One.setAllBits(); |
| 1318 | if (!!DemandedSubElts) |
| 1319 | Known = Known.intersectWith(RHS: KnownSub); |
| 1320 | if (!!DemandedSrcElts) |
| 1321 | Known = Known.intersectWith(RHS: KnownSrc); |
| 1322 | |
| 1323 | // Attempt to avoid multi-use src if we don't need anything from it. |
| 1324 | if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() || |
| 1325 | !DemandedSrcElts.isAllOnes()) { |
| 1326 | SDValue NewSub = SimplifyMultipleUseDemandedBits( |
| 1327 | Op: Sub, DemandedBits, DemandedElts: DemandedSubElts, DAG&: TLO.DAG, Depth: Depth + 1); |
| 1328 | SDValue NewSrc = SimplifyMultipleUseDemandedBits( |
| 1329 | Op: Src, DemandedBits, DemandedElts: DemandedSrcElts, DAG&: TLO.DAG, Depth: Depth + 1); |
| 1330 | if (NewSub || NewSrc) { |
| 1331 | NewSub = NewSub ? NewSub : Sub; |
| 1332 | NewSrc = NewSrc ? NewSrc : Src; |
| 1333 | SDValue NewOp = TLO.DAG.getNode(Opcode: Op.getOpcode(), DL: dl, VT, N1: NewSrc, N2: NewSub, |
| 1334 | N3: Op.getOperand(i: 2)); |
| 1335 | return TLO.CombineTo(O: Op, N: NewOp); |
| 1336 | } |
| 1337 | } |
| 1338 | break; |
| 1339 | } |
| 1340 | case ISD::EXTRACT_SUBVECTOR: { |
| 1341 | if (VT.isScalableVector()) |
| 1342 | return false; |
| 1343 | // Offset the demanded elts by the subvector index. |
| 1344 | SDValue Src = Op.getOperand(i: 0); |
| 1345 | if (Src.getValueType().isScalableVector()) |
| 1346 | break; |
| 1347 | uint64_t Idx = Op.getConstantOperandVal(i: 1); |
| 1348 | unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); |
| 1349 | APInt DemandedSrcElts = DemandedElts.zext(width: NumSrcElts).shl(shiftAmt: Idx); |
| 1350 | |
| 1351 | if (SimplifyDemandedBits(Op: Src, OriginalDemandedBits: DemandedBits, OriginalDemandedElts: DemandedSrcElts, Known, TLO, |
| 1352 | Depth: Depth + 1)) |
| 1353 | return true; |
| 1354 | |
| 1355 | // Attempt to avoid multi-use src if we don't need anything from it. |
| 1356 | if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { |
| 1357 | SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( |
| 1358 | Op: Src, DemandedBits, DemandedElts: DemandedSrcElts, DAG&: TLO.DAG, Depth: Depth + 1); |
| 1359 | if (DemandedSrc) { |
| 1360 | SDValue NewOp = TLO.DAG.getNode(Opcode: Op.getOpcode(), DL: dl, VT, N1: DemandedSrc, |
| 1361 | N2: Op.getOperand(i: 1)); |
| 1362 | return TLO.CombineTo(O: Op, N: NewOp); |
| 1363 | } |
| 1364 | } |
| 1365 | break; |
| 1366 | } |
| 1367 | case ISD::CONCAT_VECTORS: { |
| 1368 | if (VT.isScalableVector()) |
| 1369 | return false; |
| 1370 | Known.Zero.setAllBits(); |
| 1371 | Known.One.setAllBits(); |
| 1372 | EVT SubVT = Op.getOperand(i: 0).getValueType(); |
| 1373 | unsigned NumSubVecs = Op.getNumOperands(); |
| 1374 | unsigned NumSubElts = SubVT.getVectorNumElements(); |
| 1375 | for (unsigned i = 0; i != NumSubVecs; ++i) { |
| 1376 | APInt DemandedSubElts = |
| 1377 | DemandedElts.extractBits(numBits: NumSubElts, bitPosition: i * NumSubElts); |
| 1378 | if (SimplifyDemandedBits(Op: Op.getOperand(i), OriginalDemandedBits: DemandedBits, OriginalDemandedElts: DemandedSubElts, |
| 1379 | Known&: Known2, TLO, Depth: Depth + 1)) |
| 1380 | return true; |
| 1381 | // Known bits are shared by every demanded subvector element. |
| 1382 | if (!!DemandedSubElts) |
| 1383 | Known = Known.intersectWith(RHS: Known2); |
| 1384 | } |
| 1385 | break; |
| 1386 | } |
| 1387 | case ISD::VECTOR_SHUFFLE: { |
| 1388 | assert(!VT.isScalableVector()); |
| 1389 | ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Val&: Op)->getMask(); |
| 1390 | |
| 1391 | // Collect demanded elements from shuffle operands.. |
| 1392 | APInt DemandedLHS, DemandedRHS; |
| 1393 | if (!getShuffleDemandedElts(SrcWidth: NumElts, Mask: ShuffleMask, DemandedElts, DemandedLHS, |
| 1394 | DemandedRHS)) |
| 1395 | break; |
| 1396 | |
| 1397 | if (!!DemandedLHS || !!DemandedRHS) { |
| 1398 | SDValue Op0 = Op.getOperand(i: 0); |
| 1399 | SDValue Op1 = Op.getOperand(i: 1); |
| 1400 | |
| 1401 | Known.Zero.setAllBits(); |
| 1402 | Known.One.setAllBits(); |
| 1403 | if (!!DemandedLHS) { |
| 1404 | if (SimplifyDemandedBits(Op: Op0, OriginalDemandedBits: DemandedBits, OriginalDemandedElts: DemandedLHS, Known&: Known2, TLO, |
| 1405 | Depth: Depth + 1)) |
| 1406 | return true; |
| 1407 | Known = Known.intersectWith(RHS: Known2); |
| 1408 | } |
| 1409 | if (!!DemandedRHS) { |
| 1410 | if (SimplifyDemandedBits(Op: Op1, OriginalDemandedBits: DemandedBits, OriginalDemandedElts: DemandedRHS, Known&: Known2, TLO, |
| 1411 | Depth: Depth + 1)) |
| 1412 | return true; |
| 1413 | Known = Known.intersectWith(RHS: Known2); |
| 1414 | } |
| 1415 | |
| 1416 | // Attempt to avoid multi-use ops if we don't need anything from them. |
| 1417 | SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( |
| 1418 | Op: Op0, DemandedBits, DemandedElts: DemandedLHS, DAG&: TLO.DAG, Depth: Depth + 1); |
| 1419 | SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( |
| 1420 | Op: Op1, DemandedBits, DemandedElts: DemandedRHS, DAG&: TLO.DAG, Depth: Depth + 1); |
| 1421 | if (DemandedOp0 || DemandedOp1) { |
| 1422 | Op0 = DemandedOp0 ? DemandedOp0 : Op0; |
| 1423 | Op1 = DemandedOp1 ? DemandedOp1 : Op1; |
| 1424 | SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, N1: Op0, N2: Op1, Mask: ShuffleMask); |
| 1425 | return TLO.CombineTo(O: Op, N: NewOp); |
| 1426 | } |
| 1427 | } |
| 1428 | break; |
| 1429 | } |
| 1430 | case ISD::AND: { |
| 1431 | SDValue Op0 = Op.getOperand(i: 0); |
| 1432 | SDValue Op1 = Op.getOperand(i: 1); |
| 1433 | |
| 1434 | // If the RHS is a constant, check to see if the LHS would be zero without |
| 1435 | // using the bits from the RHS. Below, we use knowledge about the RHS to |
| 1436 | // simplify the LHS, here we're using information from the LHS to simplify |
| 1437 | // the RHS. |
| 1438 | if (ConstantSDNode *RHSC = isConstOrConstSplat(N: Op1, DemandedElts)) { |
| 1439 | // Do not increment Depth here; that can cause an infinite loop. |
| 1440 | KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op: Op0, DemandedElts, Depth); |
| 1441 | // If the LHS already has zeros where RHSC does, this 'and' is dead. |
| 1442 | if ((LHSKnown.Zero & DemandedBits) == |
| 1443 | (~RHSC->getAPIntValue() & DemandedBits)) |
| 1444 | return TLO.CombineTo(O: Op, N: Op0); |
| 1445 | |
| 1446 | // If any of the set bits in the RHS are known zero on the LHS, shrink |
| 1447 | // the constant. |
| 1448 | if (ShrinkDemandedConstant(Op, DemandedBits: ~LHSKnown.Zero & DemandedBits, |
| 1449 | DemandedElts, TLO)) |
| 1450 | return true; |
| 1451 | |
| 1452 | // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its |
| 1453 | // constant, but if this 'and' is only clearing bits that were just set by |
| 1454 | // the xor, then this 'and' can be eliminated by shrinking the mask of |
| 1455 | // the xor. For example, for a 32-bit X: |
| 1456 | // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 |
| 1457 | if (isBitwiseNot(V: Op0) && Op0.hasOneUse() && |
| 1458 | LHSKnown.One == ~RHSC->getAPIntValue()) { |
| 1459 | SDValue Xor = TLO.DAG.getNode(Opcode: ISD::XOR, DL: dl, VT, N1: Op0.getOperand(i: 0), N2: Op1); |
| 1460 | return TLO.CombineTo(O: Op, N: Xor); |
| 1461 | } |
| 1462 | } |
| 1463 | |
| 1464 | // AND(INSERT_SUBVECTOR(C,X,I),M) -> INSERT_SUBVECTOR(AND(C,M),X,I) |
| 1465 | // iff 'C' is Undef/Constant and AND(X,M) == X (for DemandedBits). |
| 1466 | if (Op0.getOpcode() == ISD::INSERT_SUBVECTOR && !VT.isScalableVector() && |
| 1467 | (Op0.getOperand(i: 0).isUndef() || |
| 1468 | ISD::isBuildVectorOfConstantSDNodes(N: Op0.getOperand(i: 0).getNode())) && |
| 1469 | Op0->hasOneUse()) { |
| 1470 | unsigned NumSubElts = |
| 1471 | Op0.getOperand(i: 1).getValueType().getVectorNumElements(); |
| 1472 | unsigned SubIdx = Op0.getConstantOperandVal(i: 2); |
| 1473 | APInt DemandedSub = |
| 1474 | APInt::getBitsSet(numBits: NumElts, loBit: SubIdx, hiBit: SubIdx + NumSubElts); |
| 1475 | KnownBits KnownSubMask = |
| 1476 | TLO.DAG.computeKnownBits(Op: Op1, DemandedElts: DemandedSub & DemandedElts, Depth: Depth + 1); |
| 1477 | if (DemandedBits.isSubsetOf(RHS: KnownSubMask.One)) { |
| 1478 | SDValue NewAnd = |
| 1479 | TLO.DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: Op0.getOperand(i: 0), N2: Op1); |
| 1480 | SDValue NewInsert = |
| 1481 | TLO.DAG.getNode(Opcode: ISD::INSERT_SUBVECTOR, DL: dl, VT, N1: NewAnd, |
| 1482 | N2: Op0.getOperand(i: 1), N3: Op0.getOperand(i: 2)); |
| 1483 | return TLO.CombineTo(O: Op, N: NewInsert); |
| 1484 | } |
| 1485 | } |
| 1486 | |
| 1487 | if (SimplifyDemandedBits(Op: Op1, OriginalDemandedBits: DemandedBits, OriginalDemandedElts: DemandedElts, Known, TLO, |
| 1488 | Depth: Depth + 1)) |
| 1489 | return true; |
| 1490 | if (SimplifyDemandedBits(Op: Op0, OriginalDemandedBits: ~Known.Zero & DemandedBits, OriginalDemandedElts: DemandedElts, |
| 1491 | Known&: Known2, TLO, Depth: Depth + 1)) |
| 1492 | return true; |
| 1493 | |
| 1494 | // If all of the demanded bits are known one on one side, return the other. |
| 1495 | // These bits cannot contribute to the result of the 'and'. |
| 1496 | if (DemandedBits.isSubsetOf(RHS: Known2.Zero | Known.One)) |
| 1497 | return TLO.CombineTo(O: Op, N: Op0); |
| 1498 | if (DemandedBits.isSubsetOf(RHS: Known.Zero | Known2.One)) |
| 1499 | return TLO.CombineTo(O: Op, N: Op1); |
| 1500 | // If all of the demanded bits in the inputs are known zeros, return zero. |
| 1501 | if (DemandedBits.isSubsetOf(RHS: Known.Zero | Known2.Zero)) |
| 1502 | return TLO.CombineTo(O: Op, N: TLO.DAG.getConstant(Val: 0, DL: dl, VT)); |
| 1503 | // If the RHS is a constant, see if we can simplify it. |
| 1504 | if (ShrinkDemandedConstant(Op, DemandedBits: ~Known2.Zero & DemandedBits, DemandedElts, |
| 1505 | TLO)) |
| 1506 | return true; |
| 1507 | // If the operation can be done in a smaller type, do so. |
| 1508 | if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) |
| 1509 | return true; |
| 1510 | |
| 1511 | // Attempt to avoid multi-use ops if we don't need anything from them. |
| 1512 | if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { |
| 1513 | SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( |
| 1514 | Op: Op0, DemandedBits, DemandedElts, DAG&: TLO.DAG, Depth: Depth + 1); |
| 1515 | SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( |
| 1516 | Op: Op1, DemandedBits, DemandedElts, DAG&: TLO.DAG, Depth: Depth + 1); |
| 1517 | if (DemandedOp0 || DemandedOp1) { |
| 1518 | Op0 = DemandedOp0 ? DemandedOp0 : Op0; |
| 1519 | Op1 = DemandedOp1 ? DemandedOp1 : Op1; |
| 1520 | SDValue NewOp = TLO.DAG.getNode(Opcode: Op.getOpcode(), DL: dl, VT, N1: Op0, N2: Op1); |
| 1521 | return TLO.CombineTo(O: Op, N: NewOp); |
| 1522 | } |
| 1523 | } |
| 1524 | |
| 1525 | Known &= Known2; |
| 1526 | break; |
| 1527 | } |
| 1528 | case ISD::OR: { |
| 1529 | SDValue Op0 = Op.getOperand(i: 0); |
| 1530 | SDValue Op1 = Op.getOperand(i: 1); |
| 1531 | if (SimplifyDemandedBits(Op: Op1, OriginalDemandedBits: DemandedBits, OriginalDemandedElts: DemandedElts, Known, TLO, |
| 1532 | Depth: Depth + 1)) { |
| 1533 | Op->dropFlags(Mask: SDNodeFlags::Disjoint); |
| 1534 | return true; |
| 1535 | } |
| 1536 | |
| 1537 | if (SimplifyDemandedBits(Op: Op0, OriginalDemandedBits: ~Known.One & DemandedBits, OriginalDemandedElts: DemandedElts, |
| 1538 | Known&: Known2, TLO, Depth: Depth + 1)) { |
| 1539 | Op->dropFlags(Mask: SDNodeFlags::Disjoint); |
| 1540 | return true; |
| 1541 | } |
| 1542 | |
| 1543 | // If all of the demanded bits are known zero on one side, return the other. |
| 1544 | // These bits cannot contribute to the result of the 'or'. |
| 1545 | if (DemandedBits.isSubsetOf(RHS: Known2.One | Known.Zero)) |
| 1546 | return TLO.CombineTo(O: Op, N: Op0); |
| 1547 | if (DemandedBits.isSubsetOf(RHS: Known.One | Known2.Zero)) |
| 1548 | return TLO.CombineTo(O: Op, N: Op1); |
| 1549 | // If the RHS is a constant, see if we can simplify it. |
| 1550 | if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) |
| 1551 | return true; |
| 1552 | // If the operation can be done in a smaller type, do so. |
| 1553 | if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) |
| 1554 | return true; |
| 1555 | |
| 1556 | // Attempt to avoid multi-use ops if we don't need anything from them. |
| 1557 | if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { |
| 1558 | SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( |
| 1559 | Op: Op0, DemandedBits, DemandedElts, DAG&: TLO.DAG, Depth: Depth + 1); |
| 1560 | SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( |
| 1561 | Op: Op1, DemandedBits, DemandedElts, DAG&: TLO.DAG, Depth: Depth + 1); |
| 1562 | if (DemandedOp0 || DemandedOp1) { |
| 1563 | Op0 = DemandedOp0 ? DemandedOp0 : Op0; |
| 1564 | Op1 = DemandedOp1 ? DemandedOp1 : Op1; |
| 1565 | SDValue NewOp = TLO.DAG.getNode(Opcode: Op.getOpcode(), DL: dl, VT, N1: Op0, N2: Op1); |
| 1566 | return TLO.CombineTo(O: Op, N: NewOp); |
| 1567 | } |
| 1568 | } |
| 1569 | |
| 1570 | // (or (and X, C1), (and (or X, Y), C2)) -> (or (and X, C1|C2), (and Y, C2)) |
| 1571 | // TODO: Use SimplifyMultipleUseDemandedBits to peek through masks. |
| 1572 | if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::AND && |
| 1573 | Op0->hasOneUse() && Op1->hasOneUse()) { |
| 1574 | // Attempt to match all commutations - m_c_Or would've been useful! |
| 1575 | for (int I = 0; I != 2; ++I) { |
| 1576 | SDValue X = Op.getOperand(i: I).getOperand(i: 0); |
| 1577 | SDValue C1 = Op.getOperand(i: I).getOperand(i: 1); |
| 1578 | SDValue Alt = Op.getOperand(i: 1 - I).getOperand(i: 0); |
| 1579 | SDValue C2 = Op.getOperand(i: 1 - I).getOperand(i: 1); |
| 1580 | if (Alt.getOpcode() == ISD::OR) { |
| 1581 | for (int J = 0; J != 2; ++J) { |
| 1582 | if (X == Alt.getOperand(i: J)) { |
| 1583 | SDValue Y = Alt.getOperand(i: 1 - J); |
| 1584 | if (SDValue C12 = TLO.DAG.FoldConstantArithmetic(Opcode: ISD::OR, DL: dl, VT, |
| 1585 | Ops: {C1, C2})) { |
| 1586 | SDValue MaskX = TLO.DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: X, N2: C12); |
| 1587 | SDValue MaskY = TLO.DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: Y, N2: C2); |
| 1588 | return TLO.CombineTo( |
| 1589 | O: Op, N: TLO.DAG.getNode(Opcode: ISD::OR, DL: dl, VT, N1: MaskX, N2: MaskY)); |
| 1590 | } |
| 1591 | } |
| 1592 | } |
| 1593 | } |
| 1594 | } |
| 1595 | } |
| 1596 | |
| 1597 | Known |= Known2; |
| 1598 | break; |
| 1599 | } |
| 1600 | case ISD::XOR: { |
| 1601 | SDValue Op0 = Op.getOperand(i: 0); |
| 1602 | SDValue Op1 = Op.getOperand(i: 1); |
| 1603 | |
| 1604 | if (SimplifyDemandedBits(Op: Op1, OriginalDemandedBits: DemandedBits, OriginalDemandedElts: DemandedElts, Known, TLO, |
| 1605 | Depth: Depth + 1)) |
| 1606 | return true; |
| 1607 | if (SimplifyDemandedBits(Op: Op0, OriginalDemandedBits: DemandedBits, OriginalDemandedElts: DemandedElts, Known&: Known2, TLO, |
| 1608 | Depth: Depth + 1)) |
| 1609 | return true; |
| 1610 | |
| 1611 | // If all of the demanded bits are known zero on one side, return the other. |
| 1612 | // These bits cannot contribute to the result of the 'xor'. |
| 1613 | if (DemandedBits.isSubsetOf(RHS: Known.Zero)) |
| 1614 | return TLO.CombineTo(O: Op, N: Op0); |
| 1615 | if (DemandedBits.isSubsetOf(RHS: Known2.Zero)) |
| 1616 | return TLO.CombineTo(O: Op, N: Op1); |
| 1617 | // If the operation can be done in a smaller type, do so. |
| 1618 | if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) |
| 1619 | return true; |
| 1620 | |
| 1621 | // If all of the unknown bits are known to be zero on one side or the other |
| 1622 | // turn this into an *inclusive* or. |
| 1623 | // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 |
| 1624 | if (DemandedBits.isSubsetOf(RHS: Known.Zero | Known2.Zero)) |
| 1625 | return TLO.CombineTo(O: Op, N: TLO.DAG.getNode(Opcode: ISD::OR, DL: dl, VT, N1: Op0, N2: Op1)); |
| 1626 | |
| 1627 | ConstantSDNode *C = isConstOrConstSplat(N: Op1, DemandedElts); |
| 1628 | if (C) { |
| 1629 | // If one side is a constant, and all of the set bits in the constant are |
| 1630 | // also known set on the other side, turn this into an AND, as we know |
| 1631 | // the bits will be cleared. |
| 1632 | // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 |
| 1633 | // NB: it is okay if more bits are known than are requested |
| 1634 | if (C->getAPIntValue() == Known2.One) { |
| 1635 | SDValue ANDC = |
| 1636 | TLO.DAG.getConstant(Val: ~C->getAPIntValue() & DemandedBits, DL: dl, VT); |
| 1637 | return TLO.CombineTo(O: Op, N: TLO.DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: Op0, N2: ANDC)); |
| 1638 | } |
| 1639 | |
| 1640 | // If the RHS is a constant, see if we can change it. Don't alter a -1 |
| 1641 | // constant because that's a 'not' op, and that is better for combining |
| 1642 | // and codegen. |
| 1643 | if (!C->isAllOnes() && DemandedBits.isSubsetOf(RHS: C->getAPIntValue())) { |
| 1644 | // We're flipping all demanded bits. Flip the undemanded bits too. |
| 1645 | SDValue New = TLO.DAG.getNOT(DL: dl, Val: Op0, VT); |
| 1646 | return TLO.CombineTo(O: Op, N: New); |
| 1647 | } |
| 1648 | |
| 1649 | unsigned Op0Opcode = Op0.getOpcode(); |
| 1650 | if ((Op0Opcode == ISD::SRL || Op0Opcode == ISD::SHL) && Op0.hasOneUse()) { |
| 1651 | if (ConstantSDNode *ShiftC = |
| 1652 | isConstOrConstSplat(N: Op0.getOperand(i: 1), DemandedElts)) { |
| 1653 | // Don't crash on an oversized shift. We can not guarantee that a |
| 1654 | // bogus shift has been simplified to undef. |
| 1655 | if (ShiftC->getAPIntValue().ult(RHS: BitWidth)) { |
| 1656 | uint64_t ShiftAmt = ShiftC->getZExtValue(); |
| 1657 | APInt Ones = APInt::getAllOnes(numBits: BitWidth); |
| 1658 | Ones = Op0Opcode == ISD::SHL ? Ones.shl(shiftAmt: ShiftAmt) |
| 1659 | : Ones.lshr(shiftAmt: ShiftAmt); |
| 1660 | if ((DemandedBits & C->getAPIntValue()) == (DemandedBits & Ones) && |
| 1661 | isDesirableToCommuteXorWithShift(N: Op.getNode())) { |
| 1662 | // If the xor constant is a demanded mask, do a 'not' before the |
| 1663 | // shift: |
| 1664 | // xor (X << ShiftC), XorC --> (not X) << ShiftC |
| 1665 | // xor (X >> ShiftC), XorC --> (not X) >> ShiftC |
| 1666 | SDValue Not = TLO.DAG.getNOT(DL: dl, Val: Op0.getOperand(i: 0), VT); |
| 1667 | return TLO.CombineTo(O: Op, N: TLO.DAG.getNode(Opcode: Op0Opcode, DL: dl, VT, N1: Not, |
| 1668 | N2: Op0.getOperand(i: 1))); |
| 1669 | } |
| 1670 | } |
| 1671 | } |
| 1672 | } |
| 1673 | } |
| 1674 | |
| 1675 | // If we can't turn this into a 'not', try to shrink the constant. |
| 1676 | if (!C || !C->isAllOnes()) |
| 1677 | if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) |
| 1678 | return true; |
| 1679 | |
| 1680 | // Attempt to avoid multi-use ops if we don't need anything from them. |
| 1681 | if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { |
| 1682 | SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( |
| 1683 | Op: Op0, DemandedBits, DemandedElts, DAG&: TLO.DAG, Depth: Depth + 1); |
| 1684 | SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( |
| 1685 | Op: Op1, DemandedBits, DemandedElts, DAG&: TLO.DAG, Depth: Depth + 1); |
| 1686 | if (DemandedOp0 || DemandedOp1) { |
| 1687 | Op0 = DemandedOp0 ? DemandedOp0 : Op0; |
| 1688 | Op1 = DemandedOp1 ? DemandedOp1 : Op1; |
| 1689 | SDValue NewOp = TLO.DAG.getNode(Opcode: Op.getOpcode(), DL: dl, VT, N1: Op0, N2: Op1); |
| 1690 | return TLO.CombineTo(O: Op, N: NewOp); |
| 1691 | } |
| 1692 | } |
| 1693 | |
| 1694 | Known ^= Known2; |
| 1695 | break; |
| 1696 | } |
| 1697 | case ISD::SELECT: |
| 1698 | if (SimplifyDemandedBits(Op: Op.getOperand(i: 2), OriginalDemandedBits: DemandedBits, OriginalDemandedElts: DemandedElts, |
| 1699 | Known, TLO, Depth: Depth + 1)) |
| 1700 | return true; |
| 1701 | if (SimplifyDemandedBits(Op: Op.getOperand(i: 1), OriginalDemandedBits: DemandedBits, OriginalDemandedElts: DemandedElts, |
| 1702 | Known&: Known2, TLO, Depth: Depth + 1)) |
| 1703 | return true; |
| 1704 | |
| 1705 | // If the operands are constants, see if we can simplify them. |
| 1706 | if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) |
| 1707 | return true; |
| 1708 | |
| 1709 | // Only known if known in both the LHS and RHS. |
| 1710 | Known = Known.intersectWith(RHS: Known2); |
| 1711 | break; |
| 1712 | case ISD::VSELECT: |
| 1713 | if (SimplifyDemandedBits(Op: Op.getOperand(i: 2), OriginalDemandedBits: DemandedBits, OriginalDemandedElts: DemandedElts, |
| 1714 | Known, TLO, Depth: Depth + 1)) |
| 1715 | return true; |
| 1716 | if (SimplifyDemandedBits(Op: Op.getOperand(i: 1), OriginalDemandedBits: DemandedBits, OriginalDemandedElts: DemandedElts, |
| 1717 | Known&: Known2, TLO, Depth: Depth + 1)) |
| 1718 | return true; |
| 1719 | |
| 1720 | // Only known if known in both the LHS and RHS. |
| 1721 | Known = Known.intersectWith(RHS: Known2); |
| 1722 | break; |
| 1723 | case ISD::SELECT_CC: |
| 1724 | if (SimplifyDemandedBits(Op: Op.getOperand(i: 3), OriginalDemandedBits: DemandedBits, OriginalDemandedElts: DemandedElts, |
| 1725 | Known, TLO, Depth: Depth + 1)) |
| 1726 | return true; |
| 1727 | if (SimplifyDemandedBits(Op: Op.getOperand(i: 2), OriginalDemandedBits: DemandedBits, OriginalDemandedElts: DemandedElts, |
| 1728 | Known&: Known2, TLO, Depth: Depth + 1)) |
| 1729 | return true; |
| 1730 | |
| 1731 | // If the operands are constants, see if we can simplify them. |
| 1732 | if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) |
| 1733 | return true; |
| 1734 | |
| 1735 | // Only known if known in both the LHS and RHS. |
| 1736 | Known = Known.intersectWith(RHS: Known2); |
| 1737 | break; |
| 1738 | case ISD::SETCC: { |
| 1739 | SDValue Op0 = Op.getOperand(i: 0); |
| 1740 | SDValue Op1 = Op.getOperand(i: 1); |
| 1741 | ISD::CondCode CC = cast<CondCodeSDNode>(Val: Op.getOperand(i: 2))->get(); |
| 1742 | // If (1) we only need the sign-bit, (2) the setcc operands are the same |
| 1743 | // width as the setcc result, and (3) the result of a setcc conforms to 0 or |
| 1744 | // -1, we may be able to bypass the setcc. |
| 1745 | if (DemandedBits.isSignMask() && |
| 1746 | Op0.getScalarValueSizeInBits() == BitWidth && |
| 1747 | getBooleanContents(Type: Op0.getValueType()) == |
| 1748 | BooleanContent::ZeroOrNegativeOneBooleanContent) { |
| 1749 | // If we're testing X < 0, then this compare isn't needed - just use X! |
| 1750 | // FIXME: We're limiting to integer types here, but this should also work |
| 1751 | // if we don't care about FP signed-zero. The use of SETLT with FP means |
| 1752 | // that we don't care about NaNs. |
| 1753 | if (CC == ISD::SETLT && Op1.getValueType().isInteger() && |
| 1754 | (isNullConstant(V: Op1) || ISD::isBuildVectorAllZeros(N: Op1.getNode()))) |
| 1755 | return TLO.CombineTo(O: Op, N: Op0); |
| 1756 | |
| 1757 | // TODO: Should we check for other forms of sign-bit comparisons? |
| 1758 | // Examples: X <= -1, X >= 0 |
| 1759 | } |
| 1760 | if (getBooleanContents(Type: Op0.getValueType()) == |
| 1761 | TargetLowering::ZeroOrOneBooleanContent && |
| 1762 | BitWidth > 1) |
| 1763 | Known.Zero.setBitsFrom(1); |
| 1764 | break; |
| 1765 | } |
| 1766 | case ISD::SHL: { |
| 1767 | SDValue Op0 = Op.getOperand(i: 0); |
| 1768 | SDValue Op1 = Op.getOperand(i: 1); |
| 1769 | EVT ShiftVT = Op1.getValueType(); |
| 1770 | |
| 1771 | if (std::optional<uint64_t> KnownSA = |
| 1772 | TLO.DAG.getValidShiftAmount(V: Op, DemandedElts, Depth: Depth + 1)) { |
| 1773 | unsigned ShAmt = *KnownSA; |
| 1774 | if (ShAmt == 0) |
| 1775 | return TLO.CombineTo(O: Op, N: Op0); |
| 1776 | |
| 1777 | // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a |
| 1778 | // single shift. We can do this if the bottom bits (which are shifted |
| 1779 | // out) are never demanded. |
| 1780 | // TODO - support non-uniform vector amounts. |
| 1781 | if (Op0.getOpcode() == ISD::SRL) { |
| 1782 | if (!DemandedBits.intersects(RHS: APInt::getLowBitsSet(numBits: BitWidth, loBitsSet: ShAmt))) { |
| 1783 | if (std::optional<uint64_t> InnerSA = |
| 1784 | TLO.DAG.getValidShiftAmount(V: Op0, DemandedElts, Depth: Depth + 2)) { |
| 1785 | unsigned C1 = *InnerSA; |
| 1786 | unsigned Opc = ISD::SHL; |
| 1787 | int Diff = ShAmt - C1; |
| 1788 | if (Diff < 0) { |
| 1789 | Diff = -Diff; |
| 1790 | Opc = ISD::SRL; |
| 1791 | } |
| 1792 | SDValue NewSA = TLO.DAG.getConstant(Val: Diff, DL: dl, VT: ShiftVT); |
| 1793 | return TLO.CombineTo( |
| 1794 | O: Op, N: TLO.DAG.getNode(Opcode: Opc, DL: dl, VT, N1: Op0.getOperand(i: 0), N2: NewSA)); |
| 1795 | } |
| 1796 | } |
| 1797 | } |
| 1798 | |
| 1799 | // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits |
| 1800 | // are not demanded. This will likely allow the anyext to be folded away. |
| 1801 | // TODO - support non-uniform vector amounts. |
| 1802 | if (Op0.getOpcode() == ISD::ANY_EXTEND) { |
| 1803 | SDValue InnerOp = Op0.getOperand(i: 0); |
| 1804 | EVT InnerVT = InnerOp.getValueType(); |
| 1805 | unsigned InnerBits = InnerVT.getScalarSizeInBits(); |
| 1806 | if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && |
| 1807 | isTypeDesirableForOp(ISD::SHL, VT: InnerVT)) { |
| 1808 | SDValue NarrowShl = TLO.DAG.getNode( |
| 1809 | Opcode: ISD::SHL, DL: dl, VT: InnerVT, N1: InnerOp, |
| 1810 | N2: TLO.DAG.getShiftAmountConstant(Val: ShAmt, VT: InnerVT, DL: dl)); |
| 1811 | return TLO.CombineTo( |
| 1812 | O: Op, N: TLO.DAG.getNode(Opcode: ISD::ANY_EXTEND, DL: dl, VT, Operand: NarrowShl)); |
| 1813 | } |
| 1814 | |
| 1815 | // Repeat the SHL optimization above in cases where an extension |
| 1816 | // intervenes: (shl (anyext (shr x, c1)), c2) to |
| 1817 | // (shl (anyext x), c2-c1). This requires that the bottom c1 bits |
| 1818 | // aren't demanded (as above) and that the shifted upper c1 bits of |
| 1819 | // x aren't demanded. |
| 1820 | // TODO - support non-uniform vector amounts. |
| 1821 | if (InnerOp.getOpcode() == ISD::SRL && Op0.hasOneUse() && |
| 1822 | InnerOp.hasOneUse()) { |
| 1823 | if (std::optional<uint64_t> SA2 = TLO.DAG.getValidShiftAmount( |
| 1824 | V: InnerOp, DemandedElts, Depth: Depth + 2)) { |
| 1825 | unsigned InnerShAmt = *SA2; |
| 1826 | if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && |
| 1827 | DemandedBits.getActiveBits() <= |
| 1828 | (InnerBits - InnerShAmt + ShAmt) && |
| 1829 | DemandedBits.countr_zero() >= ShAmt) { |
| 1830 | SDValue NewSA = |
| 1831 | TLO.DAG.getConstant(Val: ShAmt - InnerShAmt, DL: dl, VT: ShiftVT); |
| 1832 | SDValue NewExt = TLO.DAG.getNode(Opcode: ISD::ANY_EXTEND, DL: dl, VT, |
| 1833 | Operand: InnerOp.getOperand(i: 0)); |
| 1834 | return TLO.CombineTo( |
| 1835 | O: Op, N: TLO.DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: NewExt, N2: NewSA)); |
| 1836 | } |
| 1837 | } |
| 1838 | } |
| 1839 | } |
| 1840 | |
| 1841 | APInt InDemandedMask = DemandedBits.lshr(shiftAmt: ShAmt); |
| 1842 | if (SimplifyDemandedBits(Op: Op0, OriginalDemandedBits: InDemandedMask, OriginalDemandedElts: DemandedElts, Known, TLO, |
| 1843 | Depth: Depth + 1)) { |
| 1844 | // Disable the nsw and nuw flags. We can no longer guarantee that we |
| 1845 | // won't wrap after simplification. |
| 1846 | Op->dropFlags(Mask: SDNodeFlags::NoWrap); |
| 1847 | return true; |
| 1848 | } |
| 1849 | Known.Zero <<= ShAmt; |
| 1850 | Known.One <<= ShAmt; |
| 1851 | // low bits known zero. |
| 1852 | Known.Zero.setLowBits(ShAmt); |
| 1853 | |
| 1854 | // Attempt to avoid multi-use ops if we don't need anything from them. |
| 1855 | if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { |
| 1856 | SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( |
| 1857 | Op: Op0, DemandedBits: InDemandedMask, DemandedElts, DAG&: TLO.DAG, Depth: Depth + 1); |
| 1858 | if (DemandedOp0) { |
| 1859 | SDValue NewOp = TLO.DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: DemandedOp0, N2: Op1); |
| 1860 | return TLO.CombineTo(O: Op, N: NewOp); |
| 1861 | } |
| 1862 | } |
| 1863 | |
| 1864 | // TODO: Can we merge this fold with the one below? |
| 1865 | // Try shrinking the operation as long as the shift amount will still be |
| 1866 | // in range. |
| 1867 | if (ShAmt < DemandedBits.getActiveBits() && !VT.isVector() && |
| 1868 | Op.getNode()->hasOneUse()) { |
| 1869 | // Search for the smallest integer type with free casts to and from |
| 1870 | // Op's type. For expedience, just check power-of-2 integer types. |
| 1871 | unsigned DemandedSize = DemandedBits.getActiveBits(); |
| 1872 | for (unsigned SmallVTBits = llvm::bit_ceil(Value: DemandedSize); |
| 1873 | SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(A: SmallVTBits)) { |
| 1874 | EVT SmallVT = EVT::getIntegerVT(Context&: *TLO.DAG.getContext(), BitWidth: SmallVTBits); |
| 1875 | if (isNarrowingProfitable(N: Op.getNode(), SrcVT: VT, DestVT: SmallVT) && |
| 1876 | isTypeDesirableForOp(ISD::SHL, VT: SmallVT) && |
| 1877 | isTruncateFree(FromVT: VT, ToVT: SmallVT) && isZExtFree(FromTy: SmallVT, ToTy: VT) && |
| 1878 | (!TLO.LegalOperations() || isOperationLegal(Op: ISD::SHL, VT: SmallVT))) { |
| 1879 | assert(DemandedSize <= SmallVTBits && |
| 1880 | "Narrowed below demanded bits?" ); |
| 1881 | // We found a type with free casts. |
| 1882 | SDValue NarrowShl = TLO.DAG.getNode( |
| 1883 | Opcode: ISD::SHL, DL: dl, VT: SmallVT, |
| 1884 | N1: TLO.DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: SmallVT, Operand: Op.getOperand(i: 0)), |
| 1885 | N2: TLO.DAG.getShiftAmountConstant(Val: ShAmt, VT: SmallVT, DL: dl)); |
| 1886 | return TLO.CombineTo( |
| 1887 | O: Op, N: TLO.DAG.getNode(Opcode: ISD::ANY_EXTEND, DL: dl, VT, Operand: NarrowShl)); |
| 1888 | } |
| 1889 | } |
| 1890 | } |
| 1891 | |
| 1892 | // Narrow shift to lower half - similar to ShrinkDemandedOp. |
| 1893 | // (shl i64:x, K) -> (i64 zero_extend (shl (i32 (trunc i64:x)), K)) |
| 1894 | // Only do this if we demand the upper half so the knownbits are correct. |
| 1895 | unsigned HalfWidth = BitWidth / 2; |
| 1896 | if ((BitWidth % 2) == 0 && !VT.isVector() && ShAmt < HalfWidth && |
| 1897 | DemandedBits.countLeadingOnes() >= HalfWidth) { |
| 1898 | EVT HalfVT = EVT::getIntegerVT(Context&: *TLO.DAG.getContext(), BitWidth: HalfWidth); |
| 1899 | if (isNarrowingProfitable(N: Op.getNode(), SrcVT: VT, DestVT: HalfVT) && |
| 1900 | isTypeDesirableForOp(ISD::SHL, VT: HalfVT) && |
| 1901 | isTruncateFree(FromVT: VT, ToVT: HalfVT) && isZExtFree(FromTy: HalfVT, ToTy: VT) && |
| 1902 | (!TLO.LegalOperations() || isOperationLegal(Op: ISD::SHL, VT: HalfVT))) { |
| 1903 | // If we're demanding the upper bits at all, we must ensure |
| 1904 | // that the upper bits of the shift result are known to be zero, |
| 1905 | // which is equivalent to the narrow shift being NUW. |
| 1906 | if (bool IsNUW = (Known.countMinLeadingZeros() >= HalfWidth)) { |
| 1907 | bool IsNSW = Known.countMinSignBits() > HalfWidth; |
| 1908 | SDNodeFlags Flags; |
| 1909 | Flags.setNoSignedWrap(IsNSW); |
| 1910 | Flags.setNoUnsignedWrap(IsNUW); |
| 1911 | SDValue NewOp = TLO.DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: HalfVT, Operand: Op0); |
| 1912 | SDValue NewShiftAmt = |
| 1913 | TLO.DAG.getShiftAmountConstant(Val: ShAmt, VT: HalfVT, DL: dl); |
| 1914 | SDValue NewShift = TLO.DAG.getNode(Opcode: ISD::SHL, DL: dl, VT: HalfVT, N1: NewOp, |
| 1915 | N2: NewShiftAmt, Flags); |
| 1916 | SDValue NewExt = |
| 1917 | TLO.DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: dl, VT, Operand: NewShift); |
| 1918 | return TLO.CombineTo(O: Op, N: NewExt); |
| 1919 | } |
| 1920 | } |
| 1921 | } |
| 1922 | } else { |
| 1923 | // This is a variable shift, so we can't shift the demand mask by a known |
| 1924 | // amount. But if we are not demanding high bits, then we are not |
| 1925 | // demanding those bits from the pre-shifted operand either. |
| 1926 | if (unsigned CTLZ = DemandedBits.countl_zero()) { |
| 1927 | APInt DemandedFromOp(APInt::getLowBitsSet(numBits: BitWidth, loBitsSet: BitWidth - CTLZ)); |
| 1928 | if (SimplifyDemandedBits(Op: Op0, OriginalDemandedBits: DemandedFromOp, OriginalDemandedElts: DemandedElts, Known, TLO, |
| 1929 | Depth: Depth + 1)) { |
| 1930 | // Disable the nsw and nuw flags. We can no longer guarantee that we |
| 1931 | // won't wrap after simplification. |
| 1932 | Op->dropFlags(Mask: SDNodeFlags::NoWrap); |
| 1933 | return true; |
| 1934 | } |
| 1935 | Known.resetAll(); |
| 1936 | } |
| 1937 | } |
| 1938 | |
| 1939 | // If we are only demanding sign bits then we can use the shift source |
| 1940 | // directly. |
| 1941 | if (std::optional<uint64_t> MaxSA = |
| 1942 | TLO.DAG.getValidMaximumShiftAmount(V: Op, DemandedElts, Depth: Depth + 1)) { |
| 1943 | unsigned ShAmt = *MaxSA; |
| 1944 | unsigned NumSignBits = |
| 1945 | TLO.DAG.ComputeNumSignBits(Op: Op0, DemandedElts, Depth: Depth + 1); |
| 1946 | unsigned UpperDemandedBits = BitWidth - DemandedBits.countr_zero(); |
| 1947 | if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) |
| 1948 | return TLO.CombineTo(O: Op, N: Op0); |
| 1949 | } |
| 1950 | break; |
| 1951 | } |
| 1952 | case ISD::SRL: { |
| 1953 | SDValue Op0 = Op.getOperand(i: 0); |
| 1954 | SDValue Op1 = Op.getOperand(i: 1); |
| 1955 | EVT ShiftVT = Op1.getValueType(); |
| 1956 | |
| 1957 | if (std::optional<uint64_t> KnownSA = |
| 1958 | TLO.DAG.getValidShiftAmount(V: Op, DemandedElts, Depth: Depth + 1)) { |
| 1959 | unsigned ShAmt = *KnownSA; |
| 1960 | if (ShAmt == 0) |
| 1961 | return TLO.CombineTo(O: Op, N: Op0); |
| 1962 | |
| 1963 | // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a |
| 1964 | // single shift. We can do this if the top bits (which are shifted out) |
| 1965 | // are never demanded. |
| 1966 | // TODO - support non-uniform vector amounts. |
| 1967 | if (Op0.getOpcode() == ISD::SHL) { |
| 1968 | if (!DemandedBits.intersects(RHS: APInt::getHighBitsSet(numBits: BitWidth, hiBitsSet: ShAmt))) { |
| 1969 | if (std::optional<uint64_t> InnerSA = |
| 1970 | TLO.DAG.getValidShiftAmount(V: Op0, DemandedElts, Depth: Depth + 2)) { |
| 1971 | unsigned C1 = *InnerSA; |
| 1972 | unsigned Opc = ISD::SRL; |
| 1973 | int Diff = ShAmt - C1; |
| 1974 | if (Diff < 0) { |
| 1975 | Diff = -Diff; |
| 1976 | Opc = ISD::SHL; |
| 1977 | } |
| 1978 | SDValue NewSA = TLO.DAG.getConstant(Val: Diff, DL: dl, VT: ShiftVT); |
| 1979 | return TLO.CombineTo( |
| 1980 | O: Op, N: TLO.DAG.getNode(Opcode: Opc, DL: dl, VT, N1: Op0.getOperand(i: 0), N2: NewSA)); |
| 1981 | } |
| 1982 | } |
| 1983 | } |
| 1984 | |
| 1985 | // If this is (srl (sra X, C1), ShAmt), see if we can combine this into a |
| 1986 | // single sra. We can do this if the top bits are never demanded. |
| 1987 | if (Op0.getOpcode() == ISD::SRA && Op0.hasOneUse()) { |
| 1988 | if (!DemandedBits.intersects(RHS: APInt::getHighBitsSet(numBits: BitWidth, hiBitsSet: ShAmt))) { |
| 1989 | if (std::optional<uint64_t> InnerSA = |
| 1990 | TLO.DAG.getValidShiftAmount(V: Op0, DemandedElts, Depth: Depth + 2)) { |
| 1991 | unsigned C1 = *InnerSA; |
| 1992 | // Clamp the combined shift amount if it exceeds the bit width. |
| 1993 | unsigned Combined = std::min(a: C1 + ShAmt, b: BitWidth - 1); |
| 1994 | SDValue NewSA = TLO.DAG.getConstant(Val: Combined, DL: dl, VT: ShiftVT); |
| 1995 | return TLO.CombineTo(O: Op, N: TLO.DAG.getNode(Opcode: ISD::SRA, DL: dl, VT, |
| 1996 | N1: Op0.getOperand(i: 0), N2: NewSA)); |
| 1997 | } |
| 1998 | } |
| 1999 | } |
| 2000 | |
| 2001 | APInt InDemandedMask = (DemandedBits << ShAmt); |
| 2002 | |
| 2003 | // If the shift is exact, then it does demand the low bits (and knows that |
| 2004 | // they are zero). |
| 2005 | if (Op->getFlags().hasExact()) |
| 2006 | InDemandedMask.setLowBits(ShAmt); |
| 2007 | |
| 2008 | // Narrow shift to lower half - similar to ShrinkDemandedOp. |
| 2009 | // (srl i64:x, K) -> (i64 zero_extend (srl (i32 (trunc i64:x)), K)) |
| 2010 | if ((BitWidth % 2) == 0 && !VT.isVector()) { |
| 2011 | APInt HiBits = APInt::getHighBitsSet(numBits: BitWidth, hiBitsSet: BitWidth / 2); |
| 2012 | EVT HalfVT = EVT::getIntegerVT(Context&: *TLO.DAG.getContext(), BitWidth: BitWidth / 2); |
| 2013 | if (isNarrowingProfitable(N: Op.getNode(), SrcVT: VT, DestVT: HalfVT) && |
| 2014 | isTypeDesirableForOp(ISD::SRL, VT: HalfVT) && |
| 2015 | isTruncateFree(FromVT: VT, ToVT: HalfVT) && isZExtFree(FromTy: HalfVT, ToTy: VT) && |
| 2016 | (!TLO.LegalOperations() || isOperationLegal(Op: ISD::SRL, VT: HalfVT)) && |
| 2017 | ((InDemandedMask.countLeadingZeros() >= (BitWidth / 2)) || |
| 2018 | TLO.DAG.MaskedValueIsZero(Op: Op0, Mask: HiBits))) { |
| 2019 | SDValue NewOp = TLO.DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: HalfVT, Operand: Op0); |
| 2020 | SDValue NewShiftAmt = |
| 2021 | TLO.DAG.getShiftAmountConstant(Val: ShAmt, VT: HalfVT, DL: dl); |
| 2022 | SDValue NewShift = |
| 2023 | TLO.DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: HalfVT, N1: NewOp, N2: NewShiftAmt); |
| 2024 | return TLO.CombineTo( |
| 2025 | O: Op, N: TLO.DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: dl, VT, Operand: NewShift)); |
| 2026 | } |
| 2027 | } |
| 2028 | |
| 2029 | // Compute the new bits that are at the top now. |
| 2030 | if (SimplifyDemandedBits(Op: Op0, OriginalDemandedBits: InDemandedMask, OriginalDemandedElts: DemandedElts, Known, TLO, |
| 2031 | Depth: Depth + 1)) |
| 2032 | return true; |
| 2033 | Known.Zero.lshrInPlace(ShiftAmt: ShAmt); |
| 2034 | Known.One.lshrInPlace(ShiftAmt: ShAmt); |
| 2035 | // High bits known zero. |
| 2036 | Known.Zero.setHighBits(ShAmt); |
| 2037 | |
| 2038 | // Attempt to avoid multi-use ops if we don't need anything from them. |
| 2039 | if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { |
| 2040 | SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( |
| 2041 | Op: Op0, DemandedBits: InDemandedMask, DemandedElts, DAG&: TLO.DAG, Depth: Depth + 1); |
| 2042 | if (DemandedOp0) { |
| 2043 | SDValue NewOp = TLO.DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: DemandedOp0, N2: Op1); |
| 2044 | return TLO.CombineTo(O: Op, N: NewOp); |
| 2045 | } |
| 2046 | } |
| 2047 | } else { |
| 2048 | // Use generic knownbits computation as it has support for non-uniform |
| 2049 | // shift amounts. |
| 2050 | Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); |
| 2051 | } |
| 2052 | |
| 2053 | // If we are only demanding sign bits then we can use the shift source |
| 2054 | // directly. |
| 2055 | if (std::optional<uint64_t> MaxSA = |
| 2056 | TLO.DAG.getValidMaximumShiftAmount(V: Op, DemandedElts, Depth: Depth + 1)) { |
| 2057 | unsigned ShAmt = *MaxSA; |
| 2058 | // Must already be signbits in DemandedBits bounds, and can't demand any |
| 2059 | // shifted in zeroes. |
| 2060 | if (DemandedBits.countl_zero() >= ShAmt) { |
| 2061 | unsigned NumSignBits = |
| 2062 | TLO.DAG.ComputeNumSignBits(Op: Op0, DemandedElts, Depth: Depth + 1); |
| 2063 | if (DemandedBits.countr_zero() >= (BitWidth - NumSignBits)) |
| 2064 | return TLO.CombineTo(O: Op, N: Op0); |
| 2065 | } |
| 2066 | } |
| 2067 | |
| 2068 | // Try to match AVG patterns (after shift simplification). |
| 2069 | if (SDValue AVG = combineShiftToAVG(Op, TLO, TLI: *this, DemandedBits, |
| 2070 | DemandedElts, Depth: Depth + 1)) |
| 2071 | return TLO.CombineTo(O: Op, N: AVG); |
| 2072 | |
| 2073 | break; |
| 2074 | } |
| 2075 | case ISD::SRA: { |
| 2076 | SDValue Op0 = Op.getOperand(i: 0); |
| 2077 | SDValue Op1 = Op.getOperand(i: 1); |
| 2078 | EVT ShiftVT = Op1.getValueType(); |
| 2079 | |
| 2080 | // If we only want bits that already match the signbit then we don't need |
| 2081 | // to shift. |
| 2082 | unsigned NumHiDemandedBits = BitWidth - DemandedBits.countr_zero(); |
| 2083 | if (TLO.DAG.ComputeNumSignBits(Op: Op0, DemandedElts, Depth: Depth + 1) >= |
| 2084 | NumHiDemandedBits) |
| 2085 | return TLO.CombineTo(O: Op, N: Op0); |
| 2086 | |
| 2087 | // If this is an arithmetic shift right and only the low-bit is set, we can |
| 2088 | // always convert this into a logical shr, even if the shift amount is |
| 2089 | // variable. The low bit of the shift cannot be an input sign bit unless |
| 2090 | // the shift amount is >= the size of the datatype, which is undefined. |
| 2091 | if (DemandedBits.isOne()) |
| 2092 | return TLO.CombineTo(O: Op, N: TLO.DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Op0, N2: Op1)); |
| 2093 | |
| 2094 | if (std::optional<uint64_t> KnownSA = |
| 2095 | TLO.DAG.getValidShiftAmount(V: Op, DemandedElts, Depth: Depth + 1)) { |
| 2096 | unsigned ShAmt = *KnownSA; |
| 2097 | if (ShAmt == 0) |
| 2098 | return TLO.CombineTo(O: Op, N: Op0); |
| 2099 | |
| 2100 | // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target |
| 2101 | // supports sext_inreg. |
| 2102 | if (Op0.getOpcode() == ISD::SHL) { |
| 2103 | if (std::optional<uint64_t> InnerSA = |
| 2104 | TLO.DAG.getValidShiftAmount(V: Op0, DemandedElts, Depth: Depth + 2)) { |
| 2105 | unsigned LowBits = BitWidth - ShAmt; |
| 2106 | EVT ExtVT = EVT::getIntegerVT(Context&: *TLO.DAG.getContext(), BitWidth: LowBits); |
| 2107 | if (VT.isVector()) |
| 2108 | ExtVT = EVT::getVectorVT(Context&: *TLO.DAG.getContext(), VT: ExtVT, |
| 2109 | EC: VT.getVectorElementCount()); |
| 2110 | |
| 2111 | if (*InnerSA == ShAmt) { |
| 2112 | if (!TLO.LegalOperations() || |
| 2113 | getOperationAction(Op: ISD::SIGN_EXTEND_INREG, VT: ExtVT) == Legal) |
| 2114 | return TLO.CombineTo( |
| 2115 | O: Op, N: TLO.DAG.getNode(Opcode: ISD::SIGN_EXTEND_INREG, DL: dl, VT, |
| 2116 | N1: Op0.getOperand(i: 0), |
| 2117 | N2: TLO.DAG.getValueType(ExtVT))); |
| 2118 | |
| 2119 | // Even if we can't convert to sext_inreg, we might be able to |
| 2120 | // remove this shift pair if the input is already sign extended. |
| 2121 | unsigned NumSignBits = |
| 2122 | TLO.DAG.ComputeNumSignBits(Op: Op0.getOperand(i: 0), DemandedElts); |
| 2123 | if (NumSignBits > ShAmt) |
| 2124 | return TLO.CombineTo(O: Op, N: Op0.getOperand(i: 0)); |
| 2125 | } |
| 2126 | } |
| 2127 | } |
| 2128 | |
| 2129 | APInt InDemandedMask = (DemandedBits << ShAmt); |
| 2130 | |
| 2131 | // If the shift is exact, then it does demand the low bits (and knows that |
| 2132 | // they are zero). |
| 2133 | if (Op->getFlags().hasExact()) |
| 2134 | InDemandedMask.setLowBits(ShAmt); |
| 2135 | |
| 2136 | // If any of the demanded bits are produced by the sign extension, we also |
| 2137 | // demand the input sign bit. |
| 2138 | if (DemandedBits.countl_zero() < ShAmt) |
| 2139 | InDemandedMask.setSignBit(); |
| 2140 | |
| 2141 | if (SimplifyDemandedBits(Op: Op0, OriginalDemandedBits: InDemandedMask, OriginalDemandedElts: DemandedElts, Known, TLO, |
| 2142 | Depth: Depth + 1)) |
| 2143 | return true; |
| 2144 | Known.Zero.lshrInPlace(ShiftAmt: ShAmt); |
| 2145 | Known.One.lshrInPlace(ShiftAmt: ShAmt); |
| 2146 | |
| 2147 | // If the input sign bit is known to be zero, or if none of the top bits |
| 2148 | // are demanded, turn this into an unsigned shift right. |
| 2149 | if (Known.Zero[BitWidth - ShAmt - 1] || |
| 2150 | DemandedBits.countl_zero() >= ShAmt) { |
| 2151 | SDNodeFlags Flags; |
| 2152 | Flags.setExact(Op->getFlags().hasExact()); |
| 2153 | return TLO.CombineTo( |
| 2154 | O: Op, N: TLO.DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Op0, N2: Op1, Flags)); |
| 2155 | } |
| 2156 | |
| 2157 | int Log2 = DemandedBits.exactLogBase2(); |
| 2158 | if (Log2 >= 0) { |
| 2159 | // The bit must come from the sign. |
| 2160 | SDValue NewSA = TLO.DAG.getConstant(Val: BitWidth - 1 - Log2, DL: dl, VT: ShiftVT); |
| 2161 | return TLO.CombineTo(O: Op, N: TLO.DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Op0, N2: NewSA)); |
| 2162 | } |
| 2163 | |
| 2164 | if (Known.One[BitWidth - ShAmt - 1]) |
| 2165 | // New bits are known one. |
| 2166 | Known.One.setHighBits(ShAmt); |
| 2167 | |
| 2168 | // Attempt to avoid multi-use ops if we don't need anything from them. |
| 2169 | if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { |
| 2170 | SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( |
| 2171 | Op: Op0, DemandedBits: InDemandedMask, DemandedElts, DAG&: TLO.DAG, Depth: Depth + 1); |
| 2172 | if (DemandedOp0) { |
| 2173 | SDValue NewOp = TLO.DAG.getNode(Opcode: ISD::SRA, DL: dl, VT, N1: DemandedOp0, N2: Op1); |
| 2174 | return TLO.CombineTo(O: Op, N: NewOp); |
| 2175 | } |
| 2176 | } |
| 2177 | } |
| 2178 | |
| 2179 | // Try to match AVG patterns (after shift simplification). |
| 2180 | if (SDValue AVG = combineShiftToAVG(Op, TLO, TLI: *this, DemandedBits, |
| 2181 | DemandedElts, Depth: Depth + 1)) |
| 2182 | return TLO.CombineTo(O: Op, N: AVG); |
| 2183 | |
| 2184 | break; |
| 2185 | } |
| 2186 | case ISD::FSHL: |
| 2187 | case ISD::FSHR: { |
| 2188 | SDValue Op0 = Op.getOperand(i: 0); |
| 2189 | SDValue Op1 = Op.getOperand(i: 1); |
| 2190 | SDValue Op2 = Op.getOperand(i: 2); |
| 2191 | bool IsFSHL = (Op.getOpcode() == ISD::FSHL); |
| 2192 | |
| 2193 | if (ConstantSDNode *SA = isConstOrConstSplat(N: Op2, DemandedElts)) { |
| 2194 | unsigned Amt = SA->getAPIntValue().urem(RHS: BitWidth); |
| 2195 | |
| 2196 | // For fshl, 0-shift returns the 1st arg. |
| 2197 | // For fshr, 0-shift returns the 2nd arg. |
| 2198 | if (Amt == 0) { |
| 2199 | if (SimplifyDemandedBits(Op: IsFSHL ? Op0 : Op1, OriginalDemandedBits: DemandedBits, OriginalDemandedElts: DemandedElts, |
| 2200 | Known, TLO, Depth: Depth + 1)) |
| 2201 | return true; |
| 2202 | break; |
| 2203 | } |
| 2204 | |
| 2205 | // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) |
| 2206 | // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) |
| 2207 | APInt Demanded0 = DemandedBits.lshr(shiftAmt: IsFSHL ? Amt : (BitWidth - Amt)); |
| 2208 | APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); |
| 2209 | if (SimplifyDemandedBits(Op: Op0, OriginalDemandedBits: Demanded0, OriginalDemandedElts: DemandedElts, Known&: Known2, TLO, |
| 2210 | Depth: Depth + 1)) |
| 2211 | return true; |
| 2212 | if (SimplifyDemandedBits(Op: Op1, OriginalDemandedBits: Demanded1, OriginalDemandedElts: DemandedElts, Known, TLO, |
| 2213 | Depth: Depth + 1)) |
| 2214 | return true; |
| 2215 | |
| 2216 | Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); |
| 2217 | Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); |
| 2218 | Known.One.lshrInPlace(ShiftAmt: IsFSHL ? (BitWidth - Amt) : Amt); |
| 2219 | Known.Zero.lshrInPlace(ShiftAmt: IsFSHL ? (BitWidth - Amt) : Amt); |
| 2220 | Known = Known.unionWith(RHS: Known2); |
| 2221 | |
| 2222 | // Attempt to avoid multi-use ops if we don't need anything from them. |
| 2223 | if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() || |
| 2224 | !DemandedElts.isAllOnes()) { |
| 2225 | SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( |
| 2226 | Op: Op0, DemandedBits: Demanded0, DemandedElts, DAG&: TLO.DAG, Depth: Depth + 1); |
| 2227 | SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( |
| 2228 | Op: Op1, DemandedBits: Demanded1, DemandedElts, DAG&: TLO.DAG, Depth: Depth + 1); |
| 2229 | if (DemandedOp0 || DemandedOp1) { |
| 2230 | DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0; |
| 2231 | DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1; |
| 2232 | SDValue NewOp = TLO.DAG.getNode(Opcode: Op.getOpcode(), DL: dl, VT, N1: DemandedOp0, |
| 2233 | N2: DemandedOp1, N3: Op2); |
| 2234 | return TLO.CombineTo(O: Op, N: NewOp); |
| 2235 | } |
| 2236 | } |
| 2237 | } |
| 2238 | |
| 2239 | // For pow-2 bitwidths we only demand the bottom modulo amt bits. |
| 2240 | if (isPowerOf2_32(Value: BitWidth)) { |
| 2241 | APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); |
| 2242 | if (SimplifyDemandedBits(Op: Op2, OriginalDemandedBits: DemandedAmtBits, OriginalDemandedElts: DemandedElts, |
| 2243 | Known&: Known2, TLO, Depth: Depth + 1)) |
| 2244 | return true; |
| 2245 | } |
| 2246 | break; |
| 2247 | } |
| 2248 | case ISD::ROTL: |
| 2249 | case ISD::ROTR: { |
| 2250 | SDValue Op0 = Op.getOperand(i: 0); |
| 2251 | SDValue Op1 = Op.getOperand(i: 1); |
| 2252 | bool IsROTL = (Op.getOpcode() == ISD::ROTL); |
| 2253 | |
| 2254 | // If we're rotating an 0/-1 value, then it stays an 0/-1 value. |
| 2255 | if (BitWidth == TLO.DAG.ComputeNumSignBits(Op: Op0, DemandedElts, Depth: Depth + 1)) |
| 2256 | return TLO.CombineTo(O: Op, N: Op0); |
| 2257 | |
| 2258 | if (ConstantSDNode *SA = isConstOrConstSplat(N: Op1, DemandedElts)) { |
| 2259 | unsigned Amt = SA->getAPIntValue().urem(RHS: BitWidth); |
| 2260 | unsigned RevAmt = BitWidth - Amt; |
| 2261 | |
| 2262 | // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt)) |
| 2263 | // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt) |
| 2264 | APInt Demanded0 = DemandedBits.rotr(rotateAmt: IsROTL ? Amt : RevAmt); |
| 2265 | if (SimplifyDemandedBits(Op: Op0, OriginalDemandedBits: Demanded0, OriginalDemandedElts: DemandedElts, Known&: Known2, TLO, |
| 2266 | Depth: Depth + 1)) |
| 2267 | return true; |
| 2268 | |
| 2269 | // rot*(x, 0) --> x |
| 2270 | if (Amt == 0) |
| 2271 | return TLO.CombineTo(O: Op, N: Op0); |
| 2272 | |
| 2273 | // See if we don't demand either half of the rotated bits. |
| 2274 | if ((!TLO.LegalOperations() || isOperationLegal(Op: ISD::SHL, VT)) && |
| 2275 | DemandedBits.countr_zero() >= (IsROTL ? Amt : RevAmt)) { |
| 2276 | Op1 = TLO.DAG.getConstant(Val: IsROTL ? Amt : RevAmt, DL: dl, VT: Op1.getValueType()); |
| 2277 | return TLO.CombineTo(O: Op, N: TLO.DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: Op0, N2: Op1)); |
| 2278 | } |
| 2279 | if ((!TLO.LegalOperations() || isOperationLegal(Op: ISD::SRL, VT)) && |
| 2280 | DemandedBits.countl_zero() >= (IsROTL ? RevAmt : Amt)) { |
| 2281 | Op1 = TLO.DAG.getConstant(Val: IsROTL ? RevAmt : Amt, DL: dl, VT: Op1.getValueType()); |
| 2282 | return TLO.CombineTo(O: Op, N: TLO.DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Op0, N2: Op1)); |
| 2283 | } |
| 2284 | } |
| 2285 | |
| 2286 | // For pow-2 bitwidths we only demand the bottom modulo amt bits. |
| 2287 | if (isPowerOf2_32(Value: BitWidth)) { |
| 2288 | APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); |
| 2289 | if (SimplifyDemandedBits(Op: Op1, OriginalDemandedBits: DemandedAmtBits, OriginalDemandedElts: DemandedElts, Known&: Known2, TLO, |
| 2290 | Depth: Depth + 1)) |
| 2291 | return true; |
| 2292 | } |
| 2293 | break; |
| 2294 | } |
| 2295 | case ISD::SMIN: |
| 2296 | case ISD::SMAX: |
| 2297 | case ISD::UMIN: |
| 2298 | case ISD::UMAX: { |
| 2299 | unsigned Opc = Op.getOpcode(); |
| 2300 | SDValue Op0 = Op.getOperand(i: 0); |
| 2301 | SDValue Op1 = Op.getOperand(i: 1); |
| 2302 | |
| 2303 | // If we're only demanding signbits, then we can simplify to OR/AND node. |
| 2304 | unsigned BitOp = |
| 2305 | (Opc == ISD::SMIN || Opc == ISD::UMAX) ? ISD::OR : ISD::AND; |
| 2306 | unsigned NumSignBits = |
| 2307 | std::min(a: TLO.DAG.ComputeNumSignBits(Op: Op0, DemandedElts, Depth: Depth + 1), |
| 2308 | b: TLO.DAG.ComputeNumSignBits(Op: Op1, DemandedElts, Depth: Depth + 1)); |
| 2309 | unsigned NumDemandedUpperBits = BitWidth - DemandedBits.countr_zero(); |
| 2310 | if (NumSignBits >= NumDemandedUpperBits) |
| 2311 | return TLO.CombineTo(O: Op, N: TLO.DAG.getNode(Opcode: BitOp, DL: SDLoc(Op), VT, N1: Op0, N2: Op1)); |
| 2312 | |
| 2313 | // Check if one arg is always less/greater than (or equal) to the other arg. |
| 2314 | KnownBits Known0 = TLO.DAG.computeKnownBits(Op: Op0, DemandedElts, Depth: Depth + 1); |
| 2315 | KnownBits Known1 = TLO.DAG.computeKnownBits(Op: Op1, DemandedElts, Depth: Depth + 1); |
| 2316 | switch (Opc) { |
| 2317 | case ISD::SMIN: |
| 2318 | if (std::optional<bool> IsSLE = KnownBits::sle(LHS: Known0, RHS: Known1)) |
| 2319 | return TLO.CombineTo(O: Op, N: *IsSLE ? Op0 : Op1); |
| 2320 | if (std::optional<bool> IsSLT = KnownBits::slt(LHS: Known0, RHS: Known1)) |
| 2321 | return TLO.CombineTo(O: Op, N: *IsSLT ? Op0 : Op1); |
| 2322 | Known = KnownBits::smin(LHS: Known0, RHS: Known1); |
| 2323 | break; |
| 2324 | case ISD::SMAX: |
| 2325 | if (std::optional<bool> IsSGE = KnownBits::sge(LHS: Known0, RHS: Known1)) |
| 2326 | return TLO.CombineTo(O: Op, N: *IsSGE ? Op0 : Op1); |
| 2327 | if (std::optional<bool> IsSGT = KnownBits::sgt(LHS: Known0, RHS: Known1)) |
| 2328 | return TLO.CombineTo(O: Op, N: *IsSGT ? Op0 : Op1); |
| 2329 | Known = KnownBits::smax(LHS: Known0, RHS: Known1); |
| 2330 | break; |
| 2331 | case ISD::UMIN: |
| 2332 | if (std::optional<bool> IsULE = KnownBits::ule(LHS: Known0, RHS: Known1)) |
| 2333 | return TLO.CombineTo(O: Op, N: *IsULE ? Op0 : Op1); |
| 2334 | if (std::optional<bool> IsULT = KnownBits::ult(LHS: Known0, RHS: Known1)) |
| 2335 | return TLO.CombineTo(O: Op, N: *IsULT ? Op0 : Op1); |
| 2336 | Known = KnownBits::umin(LHS: Known0, RHS: Known1); |
| 2337 | break; |
| 2338 | case ISD::UMAX: |
| 2339 | if (std::optional<bool> IsUGE = KnownBits::uge(LHS: Known0, RHS: Known1)) |
| 2340 | return TLO.CombineTo(O: Op, N: *IsUGE ? Op0 : Op1); |
| 2341 | if (std::optional<bool> IsUGT = KnownBits::ugt(LHS: Known0, RHS: Known1)) |
| 2342 | return TLO.CombineTo(O: Op, N: *IsUGT ? Op0 : Op1); |
| 2343 | Known = KnownBits::umax(LHS: Known0, RHS: Known1); |
| 2344 | break; |
| 2345 | } |
| 2346 | break; |
| 2347 | } |
| 2348 | case ISD::BITREVERSE: { |
| 2349 | SDValue Src = Op.getOperand(i: 0); |
| 2350 | APInt DemandedSrcBits = DemandedBits.reverseBits(); |
| 2351 | if (SimplifyDemandedBits(Op: Src, OriginalDemandedBits: DemandedSrcBits, OriginalDemandedElts: DemandedElts, Known&: Known2, TLO, |
| 2352 | Depth: Depth + 1)) |
| 2353 | return true; |
| 2354 | Known.One = Known2.One.reverseBits(); |
| 2355 | Known.Zero = Known2.Zero.reverseBits(); |
| 2356 | break; |
| 2357 | } |
| 2358 | case ISD::BSWAP: { |
| 2359 | SDValue Src = Op.getOperand(i: 0); |
| 2360 | |
| 2361 | // If the only bits demanded come from one byte of the bswap result, |
| 2362 | // just shift the input byte into position to eliminate the bswap. |
| 2363 | unsigned NLZ = DemandedBits.countl_zero(); |
| 2364 | unsigned NTZ = DemandedBits.countr_zero(); |
| 2365 | |
| 2366 | // Round NTZ down to the next byte. If we have 11 trailing zeros, then |
| 2367 | // we need all the bits down to bit 8. Likewise, round NLZ. If we |
| 2368 | // have 14 leading zeros, round to 8. |
| 2369 | NLZ = alignDown(Value: NLZ, Align: 8); |
| 2370 | NTZ = alignDown(Value: NTZ, Align: 8); |
| 2371 | // If we need exactly one byte, we can do this transformation. |
| 2372 | if (BitWidth - NLZ - NTZ == 8) { |
| 2373 | // Replace this with either a left or right shift to get the byte into |
| 2374 | // the right place. |
| 2375 | unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL; |
| 2376 | if (!TLO.LegalOperations() || isOperationLegal(Op: ShiftOpcode, VT)) { |
| 2377 | unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ; |
| 2378 | SDValue ShAmt = TLO.DAG.getShiftAmountConstant(Val: ShiftAmount, VT, DL: dl); |
| 2379 | SDValue NewOp = TLO.DAG.getNode(Opcode: ShiftOpcode, DL: dl, VT, N1: Src, N2: ShAmt); |
| 2380 | return TLO.CombineTo(O: Op, N: NewOp); |
| 2381 | } |
| 2382 | } |
| 2383 | |
| 2384 | APInt DemandedSrcBits = DemandedBits.byteSwap(); |
| 2385 | if (SimplifyDemandedBits(Op: Src, OriginalDemandedBits: DemandedSrcBits, OriginalDemandedElts: DemandedElts, Known&: Known2, TLO, |
| 2386 | Depth: Depth + 1)) |
| 2387 | return true; |
| 2388 | Known.One = Known2.One.byteSwap(); |
| 2389 | Known.Zero = Known2.Zero.byteSwap(); |
| 2390 | break; |
| 2391 | } |
| 2392 | case ISD::CTPOP: { |
| 2393 | // If only 1 bit is demanded, replace with PARITY as long as we're before |
| 2394 | // op legalization. |
| 2395 | // FIXME: Limit to scalars for now. |
| 2396 | if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector()) |
| 2397 | return TLO.CombineTo(O: Op, N: TLO.DAG.getNode(Opcode: ISD::PARITY, DL: dl, VT, |
| 2398 | Operand: Op.getOperand(i: 0))); |
| 2399 | |
| 2400 | Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); |
| 2401 | break; |
| 2402 | } |
| 2403 | case ISD::SIGN_EXTEND_INREG: { |
| 2404 | SDValue Op0 = Op.getOperand(i: 0); |
| 2405 | EVT ExVT = cast<VTSDNode>(Val: Op.getOperand(i: 1))->getVT(); |
| 2406 | unsigned ExVTBits = ExVT.getScalarSizeInBits(); |
| 2407 | |
| 2408 | // If we only care about the highest bit, don't bother shifting right. |
| 2409 | if (DemandedBits.isSignMask()) { |
| 2410 | unsigned MinSignedBits = |
| 2411 | TLO.DAG.ComputeMaxSignificantBits(Op: Op0, DemandedElts, Depth: Depth + 1); |
| 2412 | bool AlreadySignExtended = ExVTBits >= MinSignedBits; |
| 2413 | // However if the input is already sign extended we expect the sign |
| 2414 | // extension to be dropped altogether later and do not simplify. |
| 2415 | if (!AlreadySignExtended) { |
| 2416 | // Compute the correct shift amount type, which must be getShiftAmountTy |
| 2417 | // for scalar types after legalization. |
| 2418 | SDValue ShiftAmt = |
| 2419 | TLO.DAG.getShiftAmountConstant(Val: BitWidth - ExVTBits, VT, DL: dl); |
| 2420 | return TLO.CombineTo(O: Op, |
| 2421 | N: TLO.DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: Op0, N2: ShiftAmt)); |
| 2422 | } |
| 2423 | } |
| 2424 | |
| 2425 | // If none of the extended bits are demanded, eliminate the sextinreg. |
| 2426 | if (DemandedBits.getActiveBits() <= ExVTBits) |
| 2427 | return TLO.CombineTo(O: Op, N: Op0); |
| 2428 | |
| 2429 | APInt InputDemandedBits = DemandedBits.getLoBits(numBits: ExVTBits); |
| 2430 | |
| 2431 | // Since the sign extended bits are demanded, we know that the sign |
| 2432 | // bit is demanded. |
| 2433 | InputDemandedBits.setBit(ExVTBits - 1); |
| 2434 | |
| 2435 | if (SimplifyDemandedBits(Op: Op0, OriginalDemandedBits: InputDemandedBits, OriginalDemandedElts: DemandedElts, Known, TLO, |
| 2436 | Depth: Depth + 1)) |
| 2437 | return true; |
| 2438 | |
| 2439 | // If the sign bit of the input is known set or clear, then we know the |
| 2440 | // top bits of the result. |
| 2441 | |
| 2442 | // If the input sign bit is known zero, convert this into a zero extension. |
| 2443 | if (Known.Zero[ExVTBits - 1]) |
| 2444 | return TLO.CombineTo(O: Op, N: TLO.DAG.getZeroExtendInReg(Op: Op0, DL: dl, VT: ExVT)); |
| 2445 | |
| 2446 | APInt Mask = APInt::getLowBitsSet(numBits: BitWidth, loBitsSet: ExVTBits); |
| 2447 | if (Known.One[ExVTBits - 1]) { // Input sign bit known set |
| 2448 | Known.One.setBitsFrom(ExVTBits); |
| 2449 | Known.Zero &= Mask; |
| 2450 | } else { // Input sign bit unknown |
| 2451 | Known.Zero &= Mask; |
| 2452 | Known.One &= Mask; |
| 2453 | } |
| 2454 | break; |
| 2455 | } |
| 2456 | case ISD::BUILD_PAIR: { |
| 2457 | EVT HalfVT = Op.getOperand(i: 0).getValueType(); |
| 2458 | unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); |
| 2459 | |
| 2460 | APInt MaskLo = DemandedBits.getLoBits(numBits: HalfBitWidth).trunc(width: HalfBitWidth); |
| 2461 | APInt MaskHi = DemandedBits.getHiBits(numBits: HalfBitWidth).trunc(width: HalfBitWidth); |
| 2462 | |
| 2463 | KnownBits KnownLo, KnownHi; |
| 2464 | |
| 2465 | if (SimplifyDemandedBits(Op: Op.getOperand(i: 0), DemandedBits: MaskLo, Known&: KnownLo, TLO, Depth: Depth + 1)) |
| 2466 | return true; |
| 2467 | |
| 2468 | if (SimplifyDemandedBits(Op: Op.getOperand(i: 1), DemandedBits: MaskHi, Known&: KnownHi, TLO, Depth: Depth + 1)) |
| 2469 | return true; |
| 2470 | |
| 2471 | Known = KnownHi.concat(Lo: KnownLo); |
| 2472 | break; |
| 2473 | } |
| 2474 | case ISD::ZERO_EXTEND_VECTOR_INREG: |
| 2475 | if (VT.isScalableVector()) |
| 2476 | return false; |
| 2477 | [[fallthrough]]; |
| 2478 | case ISD::ZERO_EXTEND: { |
| 2479 | SDValue Src = Op.getOperand(i: 0); |
| 2480 | EVT SrcVT = Src.getValueType(); |
| 2481 | unsigned InBits = SrcVT.getScalarSizeInBits(); |
| 2482 | unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1; |
| 2483 | bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; |
| 2484 | |
| 2485 | // If none of the top bits are demanded, convert this into an any_extend. |
| 2486 | if (DemandedBits.getActiveBits() <= InBits) { |
| 2487 | // If we only need the non-extended bits of the bottom element |
| 2488 | // then we can just bitcast to the result. |
| 2489 | if (IsLE && IsVecInReg && DemandedElts == 1 && |
| 2490 | VT.getSizeInBits() == SrcVT.getSizeInBits()) |
| 2491 | return TLO.CombineTo(O: Op, N: TLO.DAG.getBitcast(VT, V: Src)); |
| 2492 | |
| 2493 | unsigned Opc = |
| 2494 | IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; |
| 2495 | if (!TLO.LegalOperations() || isOperationLegal(Op: Opc, VT)) |
| 2496 | return TLO.CombineTo(O: Op, N: TLO.DAG.getNode(Opcode: Opc, DL: dl, VT, Operand: Src)); |
| 2497 | } |
| 2498 | |
| 2499 | APInt InDemandedBits = DemandedBits.trunc(width: InBits); |
| 2500 | APInt InDemandedElts = DemandedElts.zext(width: InElts); |
| 2501 | if (SimplifyDemandedBits(Op: Src, OriginalDemandedBits: InDemandedBits, OriginalDemandedElts: InDemandedElts, Known, TLO, |
| 2502 | Depth: Depth + 1)) { |
| 2503 | Op->dropFlags(Mask: SDNodeFlags::NonNeg); |
| 2504 | return true; |
| 2505 | } |
| 2506 | assert(Known.getBitWidth() == InBits && "Src width has changed?" ); |
| 2507 | Known = Known.zext(BitWidth); |
| 2508 | |
| 2509 | // Attempt to avoid multi-use ops if we don't need anything from them. |
| 2510 | if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( |
| 2511 | Op: Src, DemandedBits: InDemandedBits, DemandedElts: InDemandedElts, DAG&: TLO.DAG, Depth: Depth + 1)) |
| 2512 | return TLO.CombineTo(O: Op, N: TLO.DAG.getNode(Opcode: Op.getOpcode(), DL: dl, VT, Operand: NewSrc)); |
| 2513 | break; |
| 2514 | } |
| 2515 | case ISD::SIGN_EXTEND_VECTOR_INREG: |
| 2516 | if (VT.isScalableVector()) |
| 2517 | return false; |
| 2518 | [[fallthrough]]; |
| 2519 | case ISD::SIGN_EXTEND: { |
| 2520 | SDValue Src = Op.getOperand(i: 0); |
| 2521 | EVT SrcVT = Src.getValueType(); |
| 2522 | unsigned InBits = SrcVT.getScalarSizeInBits(); |
| 2523 | unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1; |
| 2524 | bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; |
| 2525 | |
| 2526 | APInt InDemandedElts = DemandedElts.zext(width: InElts); |
| 2527 | APInt InDemandedBits = DemandedBits.trunc(width: InBits); |
| 2528 | |
| 2529 | // Since some of the sign extended bits are demanded, we know that the sign |
| 2530 | // bit is demanded. |
| 2531 | InDemandedBits.setBit(InBits - 1); |
| 2532 | |
| 2533 | // If none of the top bits are demanded, convert this into an any_extend. |
| 2534 | if (DemandedBits.getActiveBits() <= InBits) { |
| 2535 | // If we only need the non-extended bits of the bottom element |
| 2536 | // then we can just bitcast to the result. |
| 2537 | if (IsLE && IsVecInReg && DemandedElts == 1 && |
| 2538 | VT.getSizeInBits() == SrcVT.getSizeInBits()) |
| 2539 | return TLO.CombineTo(O: Op, N: TLO.DAG.getBitcast(VT, V: Src)); |
| 2540 | |
| 2541 | // Don't lose an all signbits 0/-1 splat on targets with 0/-1 booleans. |
| 2542 | if (getBooleanContents(Type: VT) != ZeroOrNegativeOneBooleanContent || |
| 2543 | TLO.DAG.ComputeNumSignBits(Op: Src, DemandedElts: InDemandedElts, Depth: Depth + 1) != |
| 2544 | InBits) { |
| 2545 | unsigned Opc = |
| 2546 | IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; |
| 2547 | if (!TLO.LegalOperations() || isOperationLegal(Op: Opc, VT)) |
| 2548 | return TLO.CombineTo(O: Op, N: TLO.DAG.getNode(Opcode: Opc, DL: dl, VT, Operand: Src)); |
| 2549 | } |
| 2550 | } |
| 2551 | |
| 2552 | if (SimplifyDemandedBits(Op: Src, OriginalDemandedBits: InDemandedBits, OriginalDemandedElts: InDemandedElts, Known, TLO, |
| 2553 | Depth: Depth + 1)) |
| 2554 | return true; |
| 2555 | assert(Known.getBitWidth() == InBits && "Src width has changed?" ); |
| 2556 | |
| 2557 | // If the sign bit is known one, the top bits match. |
| 2558 | Known = Known.sext(BitWidth); |
| 2559 | |
| 2560 | // If the sign bit is known zero, convert this to a zero extend. |
| 2561 | if (Known.isNonNegative()) { |
| 2562 | unsigned Opc = |
| 2563 | IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; |
| 2564 | if (!TLO.LegalOperations() || isOperationLegal(Op: Opc, VT)) { |
| 2565 | SDNodeFlags Flags; |
| 2566 | if (!IsVecInReg) |
| 2567 | Flags |= SDNodeFlags::NonNeg; |
| 2568 | return TLO.CombineTo(O: Op, N: TLO.DAG.getNode(Opcode: Opc, DL: dl, VT, Operand: Src, Flags)); |
| 2569 | } |
| 2570 | } |
| 2571 | |
| 2572 | // Attempt to avoid multi-use ops if we don't need anything from them. |
| 2573 | if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( |
| 2574 | Op: Src, DemandedBits: InDemandedBits, DemandedElts: InDemandedElts, DAG&: TLO.DAG, Depth: Depth + 1)) |
| 2575 | return TLO.CombineTo(O: Op, N: TLO.DAG.getNode(Opcode: Op.getOpcode(), DL: dl, VT, Operand: NewSrc)); |
| 2576 | break; |
| 2577 | } |
| 2578 | case ISD::ANY_EXTEND_VECTOR_INREG: |
| 2579 | if (VT.isScalableVector()) |
| 2580 | return false; |
| 2581 | [[fallthrough]]; |
| 2582 | case ISD::ANY_EXTEND: { |
| 2583 | SDValue Src = Op.getOperand(i: 0); |
| 2584 | EVT SrcVT = Src.getValueType(); |
| 2585 | unsigned InBits = SrcVT.getScalarSizeInBits(); |
| 2586 | unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1; |
| 2587 | bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; |
| 2588 | |
| 2589 | // If we only need the bottom element then we can just bitcast. |
| 2590 | // TODO: Handle ANY_EXTEND? |
| 2591 | if (IsLE && IsVecInReg && DemandedElts == 1 && |
| 2592 | VT.getSizeInBits() == SrcVT.getSizeInBits()) |
| 2593 | return TLO.CombineTo(O: Op, N: TLO.DAG.getBitcast(VT, V: Src)); |
| 2594 | |
| 2595 | APInt InDemandedBits = DemandedBits.trunc(width: InBits); |
| 2596 | APInt InDemandedElts = DemandedElts.zext(width: InElts); |
| 2597 | if (SimplifyDemandedBits(Op: Src, OriginalDemandedBits: InDemandedBits, OriginalDemandedElts: InDemandedElts, Known, TLO, |
| 2598 | Depth: Depth + 1)) |
| 2599 | return true; |
| 2600 | assert(Known.getBitWidth() == InBits && "Src width has changed?" ); |
| 2601 | Known = Known.anyext(BitWidth); |
| 2602 | |
| 2603 | // Attempt to avoid multi-use ops if we don't need anything from them. |
| 2604 | if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( |
| 2605 | Op: Src, DemandedBits: InDemandedBits, DemandedElts: InDemandedElts, DAG&: TLO.DAG, Depth: Depth + 1)) |
| 2606 | return TLO.CombineTo(O: Op, N: TLO.DAG.getNode(Opcode: Op.getOpcode(), DL: dl, VT, Operand: NewSrc)); |
| 2607 | break; |
| 2608 | } |
| 2609 | case ISD::TRUNCATE: { |
| 2610 | SDValue Src = Op.getOperand(i: 0); |
| 2611 | |
| 2612 | // Simplify the input, using demanded bit information, and compute the known |
| 2613 | // zero/one bits live out. |
| 2614 | unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); |
| 2615 | APInt TruncMask = DemandedBits.zext(width: OperandBitWidth); |
| 2616 | if (SimplifyDemandedBits(Op: Src, OriginalDemandedBits: TruncMask, OriginalDemandedElts: DemandedElts, Known, TLO, |
| 2617 | Depth: Depth + 1)) { |
| 2618 | // Disable the nsw and nuw flags. We can no longer guarantee that we |
| 2619 | // won't wrap after simplification. |
| 2620 | Op->dropFlags(Mask: SDNodeFlags::NoWrap); |
| 2621 | return true; |
| 2622 | } |
| 2623 | Known = Known.trunc(BitWidth); |
| 2624 | |
| 2625 | // Attempt to avoid multi-use ops if we don't need anything from them. |
| 2626 | if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( |
| 2627 | Op: Src, DemandedBits: TruncMask, DemandedElts, DAG&: TLO.DAG, Depth: Depth + 1)) |
| 2628 | return TLO.CombineTo(O: Op, N: TLO.DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT, Operand: NewSrc)); |
| 2629 | |
| 2630 | // If the input is only used by this truncate, see if we can shrink it based |
| 2631 | // on the known demanded bits. |
| 2632 | switch (Src.getOpcode()) { |
| 2633 | default: |
| 2634 | break; |
| 2635 | case ISD::SRL: |
| 2636 | // Shrink SRL by a constant if none of the high bits shifted in are |
| 2637 | // demanded. |
| 2638 | if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) |
| 2639 | // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is |
| 2640 | // undesirable. |
| 2641 | break; |
| 2642 | |
| 2643 | if (Src.getNode()->hasOneUse()) { |
| 2644 | if (isTruncateFree(Val: Src, VT2: VT) && |
| 2645 | !isTruncateFree(FromVT: Src.getValueType(), ToVT: VT)) { |
| 2646 | // If truncate is only free at trunc(srl), do not turn it into |
| 2647 | // srl(trunc). The check is done by first check the truncate is free |
| 2648 | // at Src's opcode(srl), then check the truncate is not done by |
| 2649 | // referencing sub-register. In test, if both trunc(srl) and |
| 2650 | // srl(trunc)'s trunc are free, srl(trunc) performs better. If only |
| 2651 | // trunc(srl)'s trunc is free, trunc(srl) is better. |
| 2652 | break; |
| 2653 | } |
| 2654 | |
| 2655 | std::optional<uint64_t> ShAmtC = |
| 2656 | TLO.DAG.getValidShiftAmount(V: Src, DemandedElts, Depth: Depth + 2); |
| 2657 | if (!ShAmtC || *ShAmtC >= BitWidth) |
| 2658 | break; |
| 2659 | uint64_t ShVal = *ShAmtC; |
| 2660 | |
| 2661 | APInt HighBits = |
| 2662 | APInt::getHighBitsSet(numBits: OperandBitWidth, hiBitsSet: OperandBitWidth - BitWidth); |
| 2663 | HighBits.lshrInPlace(ShiftAmt: ShVal); |
| 2664 | HighBits = HighBits.trunc(width: BitWidth); |
| 2665 | if (!(HighBits & DemandedBits)) { |
| 2666 | // None of the shifted in bits are needed. Add a truncate of the |
| 2667 | // shift input, then shift it. |
| 2668 | SDValue NewShAmt = TLO.DAG.getShiftAmountConstant(Val: ShVal, VT, DL: dl); |
| 2669 | SDValue NewTrunc = |
| 2670 | TLO.DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT, Operand: Src.getOperand(i: 0)); |
| 2671 | return TLO.CombineTo( |
| 2672 | O: Op, N: TLO.DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: NewTrunc, N2: NewShAmt)); |
| 2673 | } |
| 2674 | } |
| 2675 | break; |
| 2676 | } |
| 2677 | |
| 2678 | break; |
| 2679 | } |
| 2680 | case ISD::AssertZext: { |
| 2681 | // AssertZext demands all of the high bits, plus any of the low bits |
| 2682 | // demanded by its users. |
| 2683 | EVT ZVT = cast<VTSDNode>(Val: Op.getOperand(i: 1))->getVT(); |
| 2684 | APInt InMask = APInt::getLowBitsSet(numBits: BitWidth, loBitsSet: ZVT.getSizeInBits()); |
| 2685 | if (SimplifyDemandedBits(Op: Op.getOperand(i: 0), DemandedBits: ~InMask | DemandedBits, Known, |
| 2686 | TLO, Depth: Depth + 1)) |
| 2687 | return true; |
| 2688 | |
| 2689 | Known.Zero |= ~InMask; |
| 2690 | Known.One &= (~Known.Zero); |
| 2691 | break; |
| 2692 | } |
| 2693 | case ISD::EXTRACT_VECTOR_ELT: { |
| 2694 | SDValue Src = Op.getOperand(i: 0); |
| 2695 | SDValue Idx = Op.getOperand(i: 1); |
| 2696 | ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); |
| 2697 | unsigned EltBitWidth = Src.getScalarValueSizeInBits(); |
| 2698 | |
| 2699 | if (SrcEltCnt.isScalable()) |
| 2700 | return false; |
| 2701 | |
| 2702 | // Demand the bits from every vector element without a constant index. |
| 2703 | unsigned NumSrcElts = SrcEltCnt.getFixedValue(); |
| 2704 | APInt DemandedSrcElts = APInt::getAllOnes(numBits: NumSrcElts); |
| 2705 | if (auto *CIdx = dyn_cast<ConstantSDNode>(Val&: Idx)) |
| 2706 | if (CIdx->getAPIntValue().ult(RHS: NumSrcElts)) |
| 2707 | DemandedSrcElts = APInt::getOneBitSet(numBits: NumSrcElts, BitNo: CIdx->getZExtValue()); |
| 2708 | |
| 2709 | // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know |
| 2710 | // anything about the extended bits. |
| 2711 | APInt DemandedSrcBits = DemandedBits; |
| 2712 | if (BitWidth > EltBitWidth) |
| 2713 | DemandedSrcBits = DemandedSrcBits.trunc(width: EltBitWidth); |
| 2714 | |
| 2715 | if (SimplifyDemandedBits(Op: Src, OriginalDemandedBits: DemandedSrcBits, OriginalDemandedElts: DemandedSrcElts, Known&: Known2, TLO, |
| 2716 | Depth: Depth + 1)) |
| 2717 | return true; |
| 2718 | |
| 2719 | // Attempt to avoid multi-use ops if we don't need anything from them. |
| 2720 | if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { |
| 2721 | if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( |
| 2722 | Op: Src, DemandedBits: DemandedSrcBits, DemandedElts: DemandedSrcElts, DAG&: TLO.DAG, Depth: Depth + 1)) { |
| 2723 | SDValue NewOp = |
| 2724 | TLO.DAG.getNode(Opcode: Op.getOpcode(), DL: dl, VT, N1: DemandedSrc, N2: Idx); |
| 2725 | return TLO.CombineTo(O: Op, N: NewOp); |
| 2726 | } |
| 2727 | } |
| 2728 | |
| 2729 | Known = Known2; |
| 2730 | if (BitWidth > EltBitWidth) |
| 2731 | Known = Known.anyext(BitWidth); |
| 2732 | break; |
| 2733 | } |
| 2734 | case ISD::BITCAST: { |
| 2735 | if (VT.isScalableVector()) |
| 2736 | return false; |
| 2737 | SDValue Src = Op.getOperand(i: 0); |
| 2738 | EVT SrcVT = Src.getValueType(); |
| 2739 | unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); |
| 2740 | |
| 2741 | // If this is an FP->Int bitcast and if the sign bit is the only |
| 2742 | // thing demanded, turn this into a FGETSIGN. |
| 2743 | if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && |
| 2744 | DemandedBits == APInt::getSignMask(BitWidth: Op.getValueSizeInBits()) && |
| 2745 | SrcVT.isFloatingPoint()) { |
| 2746 | bool OpVTLegal = isOperationLegalOrCustom(Op: ISD::FGETSIGN, VT); |
| 2747 | bool i32Legal = isOperationLegalOrCustom(Op: ISD::FGETSIGN, VT: MVT::i32); |
| 2748 | if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && |
| 2749 | SrcVT != MVT::f128) { |
| 2750 | // Cannot eliminate/lower SHL for f128 yet. |
| 2751 | EVT Ty = OpVTLegal ? VT : MVT::i32; |
| 2752 | // Make a FGETSIGN + SHL to move the sign bit into the appropriate |
| 2753 | // place. We expect the SHL to be eliminated by other optimizations. |
| 2754 | SDValue Sign = TLO.DAG.getNode(Opcode: ISD::FGETSIGN, DL: dl, VT: Ty, Operand: Src); |
| 2755 | unsigned OpVTSizeInBits = Op.getValueSizeInBits(); |
| 2756 | if (!OpVTLegal && OpVTSizeInBits > 32) |
| 2757 | Sign = TLO.DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: dl, VT, Operand: Sign); |
| 2758 | unsigned ShVal = Op.getValueSizeInBits() - 1; |
| 2759 | SDValue ShAmt = TLO.DAG.getConstant(Val: ShVal, DL: dl, VT); |
| 2760 | return TLO.CombineTo(O: Op, |
| 2761 | N: TLO.DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: Sign, N2: ShAmt)); |
| 2762 | } |
| 2763 | } |
| 2764 | |
| 2765 | // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. |
| 2766 | // Demand the elt/bit if any of the original elts/bits are demanded. |
| 2767 | if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) { |
| 2768 | unsigned Scale = BitWidth / NumSrcEltBits; |
| 2769 | unsigned NumSrcElts = SrcVT.getVectorNumElements(); |
| 2770 | APInt DemandedSrcBits = APInt::getZero(numBits: NumSrcEltBits); |
| 2771 | APInt DemandedSrcElts = APInt::getZero(numBits: NumSrcElts); |
| 2772 | for (unsigned i = 0; i != Scale; ++i) { |
| 2773 | unsigned EltOffset = IsLE ? i : (Scale - 1 - i); |
| 2774 | unsigned BitOffset = EltOffset * NumSrcEltBits; |
| 2775 | APInt Sub = DemandedBits.extractBits(numBits: NumSrcEltBits, bitPosition: BitOffset); |
| 2776 | if (!Sub.isZero()) { |
| 2777 | DemandedSrcBits |= Sub; |
| 2778 | for (unsigned j = 0; j != NumElts; ++j) |
| 2779 | if (DemandedElts[j]) |
| 2780 | DemandedSrcElts.setBit((j * Scale) + i); |
| 2781 | } |
| 2782 | } |
| 2783 | |
| 2784 | APInt KnownSrcUndef, KnownSrcZero; |
| 2785 | if (SimplifyDemandedVectorElts(Op: Src, DemandedEltMask: DemandedSrcElts, KnownUndef&: KnownSrcUndef, |
| 2786 | KnownZero&: KnownSrcZero, TLO, Depth: Depth + 1)) |
| 2787 | return true; |
| 2788 | |
| 2789 | KnownBits KnownSrcBits; |
| 2790 | if (SimplifyDemandedBits(Op: Src, OriginalDemandedBits: DemandedSrcBits, OriginalDemandedElts: DemandedSrcElts, |
| 2791 | Known&: KnownSrcBits, TLO, Depth: Depth + 1)) |
| 2792 | return true; |
| 2793 | } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) { |
| 2794 | // TODO - bigendian once we have test coverage. |
| 2795 | unsigned Scale = NumSrcEltBits / BitWidth; |
| 2796 | unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; |
| 2797 | APInt DemandedSrcBits = APInt::getZero(numBits: NumSrcEltBits); |
| 2798 | APInt DemandedSrcElts = APInt::getZero(numBits: NumSrcElts); |
| 2799 | for (unsigned i = 0; i != NumElts; ++i) |
| 2800 | if (DemandedElts[i]) { |
| 2801 | unsigned Offset = (i % Scale) * BitWidth; |
| 2802 | DemandedSrcBits.insertBits(SubBits: DemandedBits, bitPosition: Offset); |
| 2803 | DemandedSrcElts.setBit(i / Scale); |
| 2804 | } |
| 2805 | |
| 2806 | if (SrcVT.isVector()) { |
| 2807 | APInt KnownSrcUndef, KnownSrcZero; |
| 2808 | if (SimplifyDemandedVectorElts(Op: Src, DemandedEltMask: DemandedSrcElts, KnownUndef&: KnownSrcUndef, |
| 2809 | KnownZero&: KnownSrcZero, TLO, Depth: Depth + 1)) |
| 2810 | return true; |
| 2811 | } |
| 2812 | |
| 2813 | KnownBits KnownSrcBits; |
| 2814 | if (SimplifyDemandedBits(Op: Src, OriginalDemandedBits: DemandedSrcBits, OriginalDemandedElts: DemandedSrcElts, |
| 2815 | Known&: KnownSrcBits, TLO, Depth: Depth + 1)) |
| 2816 | return true; |
| 2817 | |
| 2818 | // Attempt to avoid multi-use ops if we don't need anything from them. |
| 2819 | if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { |
| 2820 | if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( |
| 2821 | Op: Src, DemandedBits: DemandedSrcBits, DemandedElts: DemandedSrcElts, DAG&: TLO.DAG, Depth: Depth + 1)) { |
| 2822 | SDValue NewOp = TLO.DAG.getBitcast(VT, V: DemandedSrc); |
| 2823 | return TLO.CombineTo(O: Op, N: NewOp); |
| 2824 | } |
| 2825 | } |
| 2826 | } |
| 2827 | |
| 2828 | // If this is a bitcast, let computeKnownBits handle it. Only do this on a |
| 2829 | // recursive call where Known may be useful to the caller. |
| 2830 | if (Depth > 0) { |
| 2831 | Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); |
| 2832 | return false; |
| 2833 | } |
| 2834 | break; |
| 2835 | } |
| 2836 | case ISD::MUL: |
| 2837 | if (DemandedBits.isPowerOf2()) { |
| 2838 | // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1. |
| 2839 | // If we demand exactly one bit N and we have "X * (C' << N)" where C' is |
| 2840 | // odd (has LSB set), then the left-shifted low bit of X is the answer. |
| 2841 | unsigned CTZ = DemandedBits.countr_zero(); |
| 2842 | ConstantSDNode *C = isConstOrConstSplat(N: Op.getOperand(i: 1), DemandedElts); |
| 2843 | if (C && C->getAPIntValue().countr_zero() == CTZ) { |
| 2844 | SDValue AmtC = TLO.DAG.getShiftAmountConstant(Val: CTZ, VT, DL: dl); |
| 2845 | SDValue Shl = TLO.DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: Op.getOperand(i: 0), N2: AmtC); |
| 2846 | return TLO.CombineTo(O: Op, N: Shl); |
| 2847 | } |
| 2848 | } |
| 2849 | // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because: |
| 2850 | // X * X is odd iff X is odd. |
| 2851 | // 'Quadratic Reciprocity': X * X -> 0 for bit[1] |
| 2852 | if (Op.getOperand(i: 0) == Op.getOperand(i: 1) && DemandedBits.ult(RHS: 4)) { |
| 2853 | SDValue One = TLO.DAG.getConstant(Val: 1, DL: dl, VT); |
| 2854 | SDValue And1 = TLO.DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: Op.getOperand(i: 0), N2: One); |
| 2855 | return TLO.CombineTo(O: Op, N: And1); |
| 2856 | } |
| 2857 | [[fallthrough]]; |
| 2858 | case ISD::ADD: |
| 2859 | case ISD::SUB: { |
| 2860 | // Add, Sub, and Mul don't demand any bits in positions beyond that |
| 2861 | // of the highest bit demanded of them. |
| 2862 | SDValue Op0 = Op.getOperand(i: 0), Op1 = Op.getOperand(i: 1); |
| 2863 | SDNodeFlags Flags = Op.getNode()->getFlags(); |
| 2864 | unsigned DemandedBitsLZ = DemandedBits.countl_zero(); |
| 2865 | APInt LoMask = APInt::getLowBitsSet(numBits: BitWidth, loBitsSet: BitWidth - DemandedBitsLZ); |
| 2866 | KnownBits KnownOp0, KnownOp1; |
| 2867 | auto GetDemandedBitsLHSMask = [&](APInt Demanded, |
| 2868 | const KnownBits &KnownRHS) { |
| 2869 | if (Op.getOpcode() == ISD::MUL) |
| 2870 | Demanded.clearHighBits(hiBits: KnownRHS.countMinTrailingZeros()); |
| 2871 | return Demanded; |
| 2872 | }; |
| 2873 | if (SimplifyDemandedBits(Op: Op1, OriginalDemandedBits: LoMask, OriginalDemandedElts: DemandedElts, Known&: KnownOp1, TLO, |
| 2874 | Depth: Depth + 1) || |
| 2875 | SimplifyDemandedBits(Op: Op0, OriginalDemandedBits: GetDemandedBitsLHSMask(LoMask, KnownOp1), |
| 2876 | OriginalDemandedElts: DemandedElts, Known&: KnownOp0, TLO, Depth: Depth + 1) || |
| 2877 | // See if the operation should be performed at a smaller bit width. |
| 2878 | ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { |
| 2879 | // Disable the nsw and nuw flags. We can no longer guarantee that we |
| 2880 | // won't wrap after simplification. |
| 2881 | Op->dropFlags(Mask: SDNodeFlags::NoWrap); |
| 2882 | return true; |
| 2883 | } |
| 2884 | |
| 2885 | // neg x with only low bit demanded is simply x. |
| 2886 | if (Op.getOpcode() == ISD::SUB && DemandedBits.isOne() && |
| 2887 | isNullConstant(V: Op0)) |
| 2888 | return TLO.CombineTo(O: Op, N: Op1); |
| 2889 | |
| 2890 | // Attempt to avoid multi-use ops if we don't need anything from them. |
| 2891 | if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) { |
| 2892 | SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( |
| 2893 | Op: Op0, DemandedBits: LoMask, DemandedElts, DAG&: TLO.DAG, Depth: Depth + 1); |
| 2894 | SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( |
| 2895 | Op: Op1, DemandedBits: LoMask, DemandedElts, DAG&: TLO.DAG, Depth: Depth + 1); |
| 2896 | if (DemandedOp0 || DemandedOp1) { |
| 2897 | Op0 = DemandedOp0 ? DemandedOp0 : Op0; |
| 2898 | Op1 = DemandedOp1 ? DemandedOp1 : Op1; |
| 2899 | SDValue NewOp = TLO.DAG.getNode(Opcode: Op.getOpcode(), DL: dl, VT, N1: Op0, N2: Op1, |
| 2900 | Flags: Flags & ~SDNodeFlags::NoWrap); |
| 2901 | return TLO.CombineTo(O: Op, N: NewOp); |
| 2902 | } |
| 2903 | } |
| 2904 | |
| 2905 | // If we have a constant operand, we may be able to turn it into -1 if we |
| 2906 | // do not demand the high bits. This can make the constant smaller to |
| 2907 | // encode, allow more general folding, or match specialized instruction |
| 2908 | // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that |
| 2909 | // is probably not useful (and could be detrimental). |
| 2910 | ConstantSDNode *C = isConstOrConstSplat(N: Op1); |
| 2911 | APInt HighMask = APInt::getHighBitsSet(numBits: BitWidth, hiBitsSet: DemandedBitsLZ); |
| 2912 | if (C && !C->isAllOnes() && !C->isOne() && |
| 2913 | (C->getAPIntValue() | HighMask).isAllOnes()) { |
| 2914 | SDValue Neg1 = TLO.DAG.getAllOnesConstant(DL: dl, VT); |
| 2915 | // Disable the nsw and nuw flags. We can no longer guarantee that we |
| 2916 | // won't wrap after simplification. |
| 2917 | SDValue NewOp = TLO.DAG.getNode(Opcode: Op.getOpcode(), DL: dl, VT, N1: Op0, N2: Neg1, |
| 2918 | Flags: Flags & ~SDNodeFlags::NoWrap); |
| 2919 | return TLO.CombineTo(O: Op, N: NewOp); |
| 2920 | } |
| 2921 | |
| 2922 | // Match a multiply with a disguised negated-power-of-2 and convert to a |
| 2923 | // an equivalent shift-left amount. |
| 2924 | // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) |
| 2925 | auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned { |
| 2926 | if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse()) |
| 2927 | return 0; |
| 2928 | |
| 2929 | // Don't touch opaque constants. Also, ignore zero and power-of-2 |
| 2930 | // multiplies. Those will get folded later. |
| 2931 | ConstantSDNode *MulC = isConstOrConstSplat(N: Mul.getOperand(i: 1)); |
| 2932 | if (MulC && !MulC->isOpaque() && !MulC->isZero() && |
| 2933 | !MulC->getAPIntValue().isPowerOf2()) { |
| 2934 | APInt UnmaskedC = MulC->getAPIntValue() | HighMask; |
| 2935 | if (UnmaskedC.isNegatedPowerOf2()) |
| 2936 | return (-UnmaskedC).logBase2(); |
| 2937 | } |
| 2938 | return 0; |
| 2939 | }; |
| 2940 | |
| 2941 | auto foldMul = [&](ISD::NodeType NT, SDValue X, SDValue Y, |
| 2942 | unsigned ShlAmt) { |
| 2943 | SDValue ShlAmtC = TLO.DAG.getShiftAmountConstant(Val: ShlAmt, VT, DL: dl); |
| 2944 | SDValue Shl = TLO.DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: X, N2: ShlAmtC); |
| 2945 | SDValue Res = TLO.DAG.getNode(Opcode: NT, DL: dl, VT, N1: Y, N2: Shl); |
| 2946 | return TLO.CombineTo(O: Op, N: Res); |
| 2947 | }; |
| 2948 | |
| 2949 | if (isOperationLegalOrCustom(Op: ISD::SHL, VT)) { |
| 2950 | if (Op.getOpcode() == ISD::ADD) { |
| 2951 | // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) |
| 2952 | if (unsigned ShAmt = getShiftLeftAmt(Op0)) |
| 2953 | return foldMul(ISD::SUB, Op0.getOperand(i: 0), Op1, ShAmt); |
| 2954 | // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC)) |
| 2955 | if (unsigned ShAmt = getShiftLeftAmt(Op1)) |
| 2956 | return foldMul(ISD::SUB, Op1.getOperand(i: 0), Op0, ShAmt); |
| 2957 | } |
| 2958 | if (Op.getOpcode() == ISD::SUB) { |
| 2959 | // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC)) |
| 2960 | if (unsigned ShAmt = getShiftLeftAmt(Op1)) |
| 2961 | return foldMul(ISD::ADD, Op1.getOperand(i: 0), Op0, ShAmt); |
| 2962 | } |
| 2963 | } |
| 2964 | |
| 2965 | if (Op.getOpcode() == ISD::MUL) { |
| 2966 | Known = KnownBits::mul(LHS: KnownOp0, RHS: KnownOp1); |
| 2967 | } else { // Op.getOpcode() is either ISD::ADD or ISD::SUB. |
| 2968 | Known = KnownBits::computeForAddSub( |
| 2969 | Add: Op.getOpcode() == ISD::ADD, NSW: Flags.hasNoSignedWrap(), |
| 2970 | NUW: Flags.hasNoUnsignedWrap(), LHS: KnownOp0, RHS: KnownOp1); |
| 2971 | } |
| 2972 | break; |
| 2973 | } |
| 2974 | case ISD::FABS: { |
| 2975 | SDValue Op0 = Op.getOperand(i: 0); |
| 2976 | APInt SignMask = APInt::getSignMask(BitWidth); |
| 2977 | |
| 2978 | if (!DemandedBits.intersects(RHS: SignMask)) |
| 2979 | return TLO.CombineTo(O: Op, N: Op0); |
| 2980 | |
| 2981 | if (SimplifyDemandedBits(Op: Op0, OriginalDemandedBits: DemandedBits, OriginalDemandedElts: DemandedElts, Known, TLO, |
| 2982 | Depth: Depth + 1)) |
| 2983 | return true; |
| 2984 | |
| 2985 | if (Known.isNonNegative()) |
| 2986 | return TLO.CombineTo(O: Op, N: Op0); |
| 2987 | if (Known.isNegative()) |
| 2988 | return TLO.CombineTo( |
| 2989 | O: Op, N: TLO.DAG.getNode(Opcode: ISD::FNEG, DL: dl, VT, Operand: Op0, Flags: Op->getFlags())); |
| 2990 | |
| 2991 | Known.Zero |= SignMask; |
| 2992 | Known.One &= ~SignMask; |
| 2993 | |
| 2994 | break; |
| 2995 | } |
| 2996 | case ISD::FCOPYSIGN: { |
| 2997 | SDValue Op0 = Op.getOperand(i: 0); |
| 2998 | SDValue Op1 = Op.getOperand(i: 1); |
| 2999 | |
| 3000 | unsigned BitWidth0 = Op0.getScalarValueSizeInBits(); |
| 3001 | unsigned BitWidth1 = Op1.getScalarValueSizeInBits(); |
| 3002 | APInt SignMask0 = APInt::getSignMask(BitWidth: BitWidth0); |
| 3003 | APInt SignMask1 = APInt::getSignMask(BitWidth: BitWidth1); |
| 3004 | |
| 3005 | if (!DemandedBits.intersects(RHS: SignMask0)) |
| 3006 | return TLO.CombineTo(O: Op, N: Op0); |
| 3007 | |
| 3008 | if (SimplifyDemandedBits(Op: Op0, OriginalDemandedBits: ~SignMask0 & DemandedBits, OriginalDemandedElts: DemandedElts, |
| 3009 | Known, TLO, Depth: Depth + 1) || |
| 3010 | SimplifyDemandedBits(Op: Op1, OriginalDemandedBits: SignMask1, OriginalDemandedElts: DemandedElts, Known&: Known2, TLO, |
| 3011 | Depth: Depth + 1)) |
| 3012 | return true; |
| 3013 | |
| 3014 | if (Known2.isNonNegative()) |
| 3015 | return TLO.CombineTo( |
| 3016 | O: Op, N: TLO.DAG.getNode(Opcode: ISD::FABS, DL: dl, VT, Operand: Op0, Flags: Op->getFlags())); |
| 3017 | |
| 3018 | if (Known2.isNegative()) |
| 3019 | return TLO.CombineTo( |
| 3020 | O: Op, N: TLO.DAG.getNode(Opcode: ISD::FNEG, DL: dl, VT, |
| 3021 | Operand: TLO.DAG.getNode(Opcode: ISD::FABS, DL: SDLoc(Op0), VT, Operand: Op0))); |
| 3022 | |
| 3023 | Known.Zero &= ~SignMask0; |
| 3024 | Known.One &= ~SignMask0; |
| 3025 | break; |
| 3026 | } |
| 3027 | case ISD::FNEG: { |
| 3028 | SDValue Op0 = Op.getOperand(i: 0); |
| 3029 | APInt SignMask = APInt::getSignMask(BitWidth); |
| 3030 | |
| 3031 | if (!DemandedBits.intersects(RHS: SignMask)) |
| 3032 | return TLO.CombineTo(O: Op, N: Op0); |
| 3033 | |
| 3034 | if (SimplifyDemandedBits(Op: Op0, OriginalDemandedBits: DemandedBits, OriginalDemandedElts: DemandedElts, Known, TLO, |
| 3035 | Depth: Depth + 1)) |
| 3036 | return true; |
| 3037 | |
| 3038 | if (!Known.isSignUnknown()) { |
| 3039 | Known.Zero ^= SignMask; |
| 3040 | Known.One ^= SignMask; |
| 3041 | } |
| 3042 | |
| 3043 | break; |
| 3044 | } |
| 3045 | default: |
| 3046 | // We also ask the target about intrinsics (which could be specific to it). |
| 3047 | if (Op.getOpcode() >= ISD::BUILTIN_OP_END || |
| 3048 | Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN) { |
| 3049 | // TODO: Probably okay to remove after audit; here to reduce change size |
| 3050 | // in initial enablement patch for scalable vectors |
| 3051 | if (Op.getValueType().isScalableVector()) |
| 3052 | break; |
| 3053 | if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, |
| 3054 | Known, TLO, Depth)) |
| 3055 | return true; |
| 3056 | break; |
| 3057 | } |
| 3058 | |
| 3059 | // Just use computeKnownBits to compute output bits. |
| 3060 | Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); |
| 3061 | break; |
| 3062 | } |
| 3063 | |
| 3064 | // If we know the value of all of the demanded bits, return this as a |
| 3065 | // constant. |
| 3066 | if (!isTargetCanonicalConstantNode(Op) && |
| 3067 | DemandedBits.isSubsetOf(RHS: Known.Zero | Known.One)) { |
| 3068 | // Avoid folding to a constant if any OpaqueConstant is involved. |
| 3069 | if (llvm::any_of(Range: Op->ops(), P: [](SDValue V) { |
| 3070 | auto *C = dyn_cast<ConstantSDNode>(Val&: V); |
| 3071 | return C && C->isOpaque(); |
| 3072 | })) |
| 3073 | return false; |
| 3074 | if (VT.isInteger()) |
| 3075 | return TLO.CombineTo(O: Op, N: TLO.DAG.getConstant(Val: Known.One, DL: dl, VT)); |
| 3076 | if (VT.isFloatingPoint()) |
| 3077 | return TLO.CombineTo( |
| 3078 | O: Op, N: TLO.DAG.getConstantFP(Val: APFloat(VT.getFltSemantics(), Known.One), |
| 3079 | DL: dl, VT)); |
| 3080 | } |
| 3081 | |
| 3082 | // A multi use 'all demanded elts' simplify failed to find any knownbits. |
| 3083 | // Try again just for the original demanded elts. |
| 3084 | // Ensure we do this AFTER constant folding above. |
| 3085 | if (HasMultiUse && Known.isUnknown() && !OriginalDemandedElts.isAllOnes()) |
| 3086 | Known = TLO.DAG.computeKnownBits(Op, DemandedElts: OriginalDemandedElts, Depth); |
| 3087 | |
| 3088 | return false; |
| 3089 | } |
| 3090 | |
| 3091 | bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, |
| 3092 | const APInt &DemandedElts, |
| 3093 | DAGCombinerInfo &DCI) const { |
| 3094 | SelectionDAG &DAG = DCI.DAG; |
| 3095 | TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), |
| 3096 | !DCI.isBeforeLegalizeOps()); |
| 3097 | |
| 3098 | APInt KnownUndef, KnownZero; |
| 3099 | bool Simplified = |
| 3100 | SimplifyDemandedVectorElts(Op, DemandedEltMask: DemandedElts, KnownUndef, KnownZero, TLO); |
| 3101 | if (Simplified) { |
| 3102 | DCI.AddToWorklist(N: Op.getNode()); |
| 3103 | DCI.CommitTargetLoweringOpt(TLO); |
| 3104 | } |
| 3105 | |
| 3106 | return Simplified; |
| 3107 | } |
| 3108 | |
| 3109 | /// Given a vector binary operation and known undefined elements for each input |
| 3110 | /// operand, compute whether each element of the output is undefined. |
| 3111 | static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, |
| 3112 | const APInt &UndefOp0, |
| 3113 | const APInt &UndefOp1) { |
| 3114 | EVT VT = BO.getValueType(); |
| 3115 | assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && |
| 3116 | "Vector binop only" ); |
| 3117 | |
| 3118 | EVT EltVT = VT.getVectorElementType(); |
| 3119 | unsigned NumElts = VT.isFixedLengthVector() ? VT.getVectorNumElements() : 1; |
| 3120 | assert(UndefOp0.getBitWidth() == NumElts && |
| 3121 | UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis" ); |
| 3122 | |
| 3123 | auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, |
| 3124 | const APInt &UndefVals) { |
| 3125 | if (UndefVals[Index]) |
| 3126 | return DAG.getUNDEF(VT: EltVT); |
| 3127 | |
| 3128 | if (auto *BV = dyn_cast<BuildVectorSDNode>(Val&: V)) { |
| 3129 | // Try hard to make sure that the getNode() call is not creating temporary |
| 3130 | // nodes. Ignore opaque integers because they do not constant fold. |
| 3131 | SDValue Elt = BV->getOperand(Num: Index); |
| 3132 | auto *C = dyn_cast<ConstantSDNode>(Val&: Elt); |
| 3133 | if (isa<ConstantFPSDNode>(Val: Elt) || Elt.isUndef() || (C && !C->isOpaque())) |
| 3134 | return Elt; |
| 3135 | } |
| 3136 | |
| 3137 | return SDValue(); |
| 3138 | }; |
| 3139 | |
| 3140 | APInt KnownUndef = APInt::getZero(numBits: NumElts); |
| 3141 | for (unsigned i = 0; i != NumElts; ++i) { |
| 3142 | // If both inputs for this element are either constant or undef and match |
| 3143 | // the element type, compute the constant/undef result for this element of |
| 3144 | // the vector. |
| 3145 | // TODO: Ideally we would use FoldConstantArithmetic() here, but that does |
| 3146 | // not handle FP constants. The code within getNode() should be refactored |
| 3147 | // to avoid the danger of creating a bogus temporary node here. |
| 3148 | SDValue C0 = getUndefOrConstantElt(BO.getOperand(i: 0), i, UndefOp0); |
| 3149 | SDValue C1 = getUndefOrConstantElt(BO.getOperand(i: 1), i, UndefOp1); |
| 3150 | if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) |
| 3151 | if (DAG.getNode(Opcode: BO.getOpcode(), DL: SDLoc(BO), VT: EltVT, N1: C0, N2: C1).isUndef()) |
| 3152 | KnownUndef.setBit(i); |
| 3153 | } |
| 3154 | return KnownUndef; |
| 3155 | } |
| 3156 | |
| 3157 | bool TargetLowering::SimplifyDemandedVectorElts( |
| 3158 | SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, |
| 3159 | APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, |
| 3160 | bool AssumeSingleUse) const { |
| 3161 | EVT VT = Op.getValueType(); |
| 3162 | unsigned Opcode = Op.getOpcode(); |
| 3163 | APInt DemandedElts = OriginalDemandedElts; |
| 3164 | unsigned NumElts = DemandedElts.getBitWidth(); |
| 3165 | assert(VT.isVector() && "Expected vector op" ); |
| 3166 | |
| 3167 | KnownUndef = KnownZero = APInt::getZero(numBits: NumElts); |
| 3168 | |
| 3169 | if (!shouldSimplifyDemandedVectorElts(Op, TLO)) |
| 3170 | return false; |
| 3171 | |
| 3172 | // TODO: For now we assume we know nothing about scalable vectors. |
| 3173 | if (VT.isScalableVector()) |
| 3174 | return false; |
| 3175 | |
| 3176 | assert(VT.getVectorNumElements() == NumElts && |
| 3177 | "Mask size mismatches value type element count!" ); |
| 3178 | |
| 3179 | // Undef operand. |
| 3180 | if (Op.isUndef()) { |
| 3181 | KnownUndef.setAllBits(); |
| 3182 | return false; |
| 3183 | } |
| 3184 | |
| 3185 | // If Op has other users, assume that all elements are needed. |
| 3186 | if (!AssumeSingleUse && !Op.getNode()->hasOneUse()) |
| 3187 | DemandedElts.setAllBits(); |
| 3188 | |
| 3189 | // Not demanding any elements from Op. |
| 3190 | if (DemandedElts == 0) { |
| 3191 | KnownUndef.setAllBits(); |
| 3192 | return TLO.CombineTo(O: Op, N: TLO.DAG.getUNDEF(VT)); |
| 3193 | } |
| 3194 | |
| 3195 | // Limit search depth. |
| 3196 | if (Depth >= SelectionDAG::MaxRecursionDepth) |
| 3197 | return false; |
| 3198 | |
| 3199 | SDLoc DL(Op); |
| 3200 | unsigned EltSizeInBits = VT.getScalarSizeInBits(); |
| 3201 | bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); |
| 3202 | |
| 3203 | // Helper for demanding the specified elements and all the bits of both binary |
| 3204 | // operands. |
| 3205 | auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { |
| 3206 | SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op: Op0, DemandedElts, |
| 3207 | DAG&: TLO.DAG, Depth: Depth + 1); |
| 3208 | SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op: Op1, DemandedElts, |
| 3209 | DAG&: TLO.DAG, Depth: Depth + 1); |
| 3210 | if (NewOp0 || NewOp1) { |
| 3211 | SDValue NewOp = |
| 3212 | TLO.DAG.getNode(Opcode, DL: SDLoc(Op), VT, N1: NewOp0 ? NewOp0 : Op0, |
| 3213 | N2: NewOp1 ? NewOp1 : Op1, Flags: Op->getFlags()); |
| 3214 | return TLO.CombineTo(O: Op, N: NewOp); |
| 3215 | } |
| 3216 | return false; |
| 3217 | }; |
| 3218 | |
| 3219 | switch (Opcode) { |
| 3220 | case ISD::SCALAR_TO_VECTOR: { |
| 3221 | if (!DemandedElts[0]) { |
| 3222 | KnownUndef.setAllBits(); |
| 3223 | return TLO.CombineTo(O: Op, N: TLO.DAG.getUNDEF(VT)); |
| 3224 | } |
| 3225 | SDValue ScalarSrc = Op.getOperand(i: 0); |
| 3226 | if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { |
| 3227 | SDValue Src = ScalarSrc.getOperand(i: 0); |
| 3228 | SDValue Idx = ScalarSrc.getOperand(i: 1); |
| 3229 | EVT SrcVT = Src.getValueType(); |
| 3230 | |
| 3231 | ElementCount SrcEltCnt = SrcVT.getVectorElementCount(); |
| 3232 | |
| 3233 | if (SrcEltCnt.isScalable()) |
| 3234 | return false; |
| 3235 | |
| 3236 | unsigned NumSrcElts = SrcEltCnt.getFixedValue(); |
| 3237 | if (isNullConstant(V: Idx)) { |
| 3238 | APInt SrcDemandedElts = APInt::getOneBitSet(numBits: NumSrcElts, BitNo: 0); |
| 3239 | APInt SrcUndef = KnownUndef.zextOrTrunc(width: NumSrcElts); |
| 3240 | APInt SrcZero = KnownZero.zextOrTrunc(width: NumSrcElts); |
| 3241 | if (SimplifyDemandedVectorElts(Op: Src, OriginalDemandedElts: SrcDemandedElts, KnownUndef&: SrcUndef, KnownZero&: SrcZero, |
| 3242 | TLO, Depth: Depth + 1)) |
| 3243 | return true; |
| 3244 | } |
| 3245 | } |
| 3246 | KnownUndef.setHighBits(NumElts - 1); |
| 3247 | break; |
| 3248 | } |
| 3249 | case ISD::BITCAST: { |
| 3250 | SDValue Src = Op.getOperand(i: 0); |
| 3251 | EVT SrcVT = Src.getValueType(); |
| 3252 | |
| 3253 | if (!SrcVT.isVector()) { |
| 3254 | // TODO - bigendian once we have test coverage. |
| 3255 | if (IsLE) { |
| 3256 | APInt DemandedSrcBits = APInt::getZero(numBits: SrcVT.getSizeInBits()); |
| 3257 | unsigned EltSize = VT.getScalarSizeInBits(); |
| 3258 | for (unsigned I = 0; I != NumElts; ++I) { |
| 3259 | if (DemandedElts[I]) { |
| 3260 | unsigned Offset = I * EltSize; |
| 3261 | DemandedSrcBits.setBits(loBit: Offset, hiBit: Offset + EltSize); |
| 3262 | } |
| 3263 | } |
| 3264 | KnownBits Known; |
| 3265 | if (SimplifyDemandedBits(Op: Src, DemandedBits: DemandedSrcBits, Known, TLO, Depth: Depth + 1)) |
| 3266 | return true; |
| 3267 | } |
| 3268 | break; |
| 3269 | } |
| 3270 | |
| 3271 | // Fast handling of 'identity' bitcasts. |
| 3272 | unsigned NumSrcElts = SrcVT.getVectorNumElements(); |
| 3273 | if (NumSrcElts == NumElts) |
| 3274 | return SimplifyDemandedVectorElts(Op: Src, OriginalDemandedElts: DemandedElts, KnownUndef, |
| 3275 | KnownZero, TLO, Depth: Depth + 1); |
| 3276 | |
| 3277 | APInt SrcDemandedElts, SrcZero, SrcUndef; |
| 3278 | |
| 3279 | // Bitcast from 'large element' src vector to 'small element' vector, we |
| 3280 | // must demand a source element if any DemandedElt maps to it. |
| 3281 | if ((NumElts % NumSrcElts) == 0) { |
| 3282 | unsigned Scale = NumElts / NumSrcElts; |
| 3283 | SrcDemandedElts = APIntOps::ScaleBitMask(A: DemandedElts, NewBitWidth: NumSrcElts); |
| 3284 | if (SimplifyDemandedVectorElts(Op: Src, OriginalDemandedElts: SrcDemandedElts, KnownUndef&: SrcUndef, KnownZero&: SrcZero, |
| 3285 | TLO, Depth: Depth + 1)) |
| 3286 | return true; |
| 3287 | |
| 3288 | // Try calling SimplifyDemandedBits, converting demanded elts to the bits |
| 3289 | // of the large element. |
| 3290 | // TODO - bigendian once we have test coverage. |
| 3291 | if (IsLE) { |
| 3292 | unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); |
| 3293 | APInt SrcDemandedBits = APInt::getZero(numBits: SrcEltSizeInBits); |
| 3294 | for (unsigned i = 0; i != NumElts; ++i) |
| 3295 | if (DemandedElts[i]) { |
| 3296 | unsigned Ofs = (i % Scale) * EltSizeInBits; |
| 3297 | SrcDemandedBits.setBits(loBit: Ofs, hiBit: Ofs + EltSizeInBits); |
| 3298 | } |
| 3299 | |
| 3300 | KnownBits Known; |
| 3301 | if (SimplifyDemandedBits(Op: Src, OriginalDemandedBits: SrcDemandedBits, OriginalDemandedElts: SrcDemandedElts, Known, |
| 3302 | TLO, Depth: Depth + 1)) |
| 3303 | return true; |
| 3304 | |
| 3305 | // The bitcast has split each wide element into a number of |
| 3306 | // narrow subelements. We have just computed the Known bits |
| 3307 | // for wide elements. See if element splitting results in |
| 3308 | // some subelements being zero. Only for demanded elements! |
| 3309 | for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) { |
| 3310 | if (!Known.Zero.extractBits(numBits: EltSizeInBits, bitPosition: SubElt * EltSizeInBits) |
| 3311 | .isAllOnes()) |
| 3312 | continue; |
| 3313 | for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) { |
| 3314 | unsigned Elt = Scale * SrcElt + SubElt; |
| 3315 | if (DemandedElts[Elt]) |
| 3316 | KnownZero.setBit(Elt); |
| 3317 | } |
| 3318 | } |
| 3319 | } |
| 3320 | |
| 3321 | // If the src element is zero/undef then all the output elements will be - |
| 3322 | // only demanded elements are guaranteed to be correct. |
| 3323 | for (unsigned i = 0; i != NumSrcElts; ++i) { |
| 3324 | if (SrcDemandedElts[i]) { |
| 3325 | if (SrcZero[i]) |
| 3326 | KnownZero.setBits(loBit: i * Scale, hiBit: (i + 1) * Scale); |
| 3327 | if (SrcUndef[i]) |
| 3328 | KnownUndef.setBits(loBit: i * Scale, hiBit: (i + 1) * Scale); |
| 3329 | } |
| 3330 | } |
| 3331 | } |
| 3332 | |
| 3333 | // Bitcast from 'small element' src vector to 'large element' vector, we |
| 3334 | // demand all smaller source elements covered by the larger demanded element |
| 3335 | // of this vector. |
| 3336 | if ((NumSrcElts % NumElts) == 0) { |
| 3337 | unsigned Scale = NumSrcElts / NumElts; |
| 3338 | SrcDemandedElts = APIntOps::ScaleBitMask(A: DemandedElts, NewBitWidth: NumSrcElts); |
| 3339 | if (SimplifyDemandedVectorElts(Op: Src, OriginalDemandedElts: SrcDemandedElts, KnownUndef&: SrcUndef, KnownZero&: SrcZero, |
| 3340 | TLO, Depth: Depth + 1)) |
| 3341 | return true; |
| 3342 | |
| 3343 | // If all the src elements covering an output element are zero/undef, then |
| 3344 | // the output element will be as well, assuming it was demanded. |
| 3345 | for (unsigned i = 0; i != NumElts; ++i) { |
| 3346 | if (DemandedElts[i]) { |
| 3347 | if (SrcZero.extractBits(numBits: Scale, bitPosition: i * Scale).isAllOnes()) |
| 3348 | KnownZero.setBit(i); |
| 3349 | if (SrcUndef.extractBits(numBits: Scale, bitPosition: i * Scale).isAllOnes()) |
| 3350 | KnownUndef.setBit(i); |
| 3351 | } |
| 3352 | } |
| 3353 | } |
| 3354 | break; |
| 3355 | } |
| 3356 | case ISD::FREEZE: { |
| 3357 | SDValue N0 = Op.getOperand(i: 0); |
| 3358 | if (TLO.DAG.isGuaranteedNotToBeUndefOrPoison(Op: N0, DemandedElts, |
| 3359 | /*PoisonOnly=*/false)) |
| 3360 | return TLO.CombineTo(O: Op, N: N0); |
| 3361 | |
| 3362 | // TODO: Replace this with the general fold from DAGCombiner::visitFREEZE |
| 3363 | // freeze(op(x, ...)) -> op(freeze(x), ...). |
| 3364 | if (N0.getOpcode() == ISD::SCALAR_TO_VECTOR && DemandedElts == 1) |
| 3365 | return TLO.CombineTo( |
| 3366 | O: Op, N: TLO.DAG.getNode(Opcode: ISD::SCALAR_TO_VECTOR, DL, VT, |
| 3367 | Operand: TLO.DAG.getFreeze(V: N0.getOperand(i: 0)))); |
| 3368 | break; |
| 3369 | } |
| 3370 | case ISD::BUILD_VECTOR: { |
| 3371 | // Check all elements and simplify any unused elements with UNDEF. |
| 3372 | if (!DemandedElts.isAllOnes()) { |
| 3373 | // Don't simplify BROADCASTS. |
| 3374 | if (llvm::any_of(Range: Op->op_values(), |
| 3375 | P: [&](SDValue Elt) { return Op.getOperand(i: 0) != Elt; })) { |
| 3376 | SmallVector<SDValue, 32> Ops(Op->ops()); |
| 3377 | bool Updated = false; |
| 3378 | for (unsigned i = 0; i != NumElts; ++i) { |
| 3379 | if (!DemandedElts[i] && !Ops[i].isUndef()) { |
| 3380 | Ops[i] = TLO.DAG.getUNDEF(VT: Ops[0].getValueType()); |
| 3381 | KnownUndef.setBit(i); |
| 3382 | Updated = true; |
| 3383 | } |
| 3384 | } |
| 3385 | if (Updated) |
| 3386 | return TLO.CombineTo(O: Op, N: TLO.DAG.getBuildVector(VT, DL, Ops)); |
| 3387 | } |
| 3388 | } |
| 3389 | for (unsigned i = 0; i != NumElts; ++i) { |
| 3390 | SDValue SrcOp = Op.getOperand(i); |
| 3391 | if (SrcOp.isUndef()) { |
| 3392 | KnownUndef.setBit(i); |
| 3393 | } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && |
| 3394 | (isNullConstant(V: SrcOp) || isNullFPConstant(V: SrcOp))) { |
| 3395 | KnownZero.setBit(i); |
| 3396 | } |
| 3397 | } |
| 3398 | break; |
| 3399 | } |
| 3400 | case ISD::CONCAT_VECTORS: { |
| 3401 | EVT SubVT = Op.getOperand(i: 0).getValueType(); |
| 3402 | unsigned NumSubVecs = Op.getNumOperands(); |
| 3403 | unsigned NumSubElts = SubVT.getVectorNumElements(); |
| 3404 | for (unsigned i = 0; i != NumSubVecs; ++i) { |
| 3405 | SDValue SubOp = Op.getOperand(i); |
| 3406 | APInt SubElts = DemandedElts.extractBits(numBits: NumSubElts, bitPosition: i * NumSubElts); |
| 3407 | APInt SubUndef, SubZero; |
| 3408 | if (SimplifyDemandedVectorElts(Op: SubOp, OriginalDemandedElts: SubElts, KnownUndef&: SubUndef, KnownZero&: SubZero, TLO, |
| 3409 | Depth: Depth + 1)) |
| 3410 | return true; |
| 3411 | KnownUndef.insertBits(SubBits: SubUndef, bitPosition: i * NumSubElts); |
| 3412 | KnownZero.insertBits(SubBits: SubZero, bitPosition: i * NumSubElts); |
| 3413 | } |
| 3414 | |
| 3415 | // Attempt to avoid multi-use ops if we don't need anything from them. |
| 3416 | if (!DemandedElts.isAllOnes()) { |
| 3417 | bool FoundNewSub = false; |
| 3418 | SmallVector<SDValue, 2> DemandedSubOps; |
| 3419 | for (unsigned i = 0; i != NumSubVecs; ++i) { |
| 3420 | SDValue SubOp = Op.getOperand(i); |
| 3421 | APInt SubElts = DemandedElts.extractBits(numBits: NumSubElts, bitPosition: i * NumSubElts); |
| 3422 | SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts( |
| 3423 | Op: SubOp, DemandedElts: SubElts, DAG&: TLO.DAG, Depth: Depth + 1); |
| 3424 | DemandedSubOps.push_back(Elt: NewSubOp ? NewSubOp : SubOp); |
| 3425 | FoundNewSub = NewSubOp ? true : FoundNewSub; |
| 3426 | } |
| 3427 | if (FoundNewSub) { |
| 3428 | SDValue NewOp = |
| 3429 | TLO.DAG.getNode(Opcode: Op.getOpcode(), DL: SDLoc(Op), VT, Ops: DemandedSubOps); |
| 3430 | return TLO.CombineTo(O: Op, N: NewOp); |
| 3431 | } |
| 3432 | } |
| 3433 | break; |
| 3434 | } |
| 3435 | case ISD::INSERT_SUBVECTOR: { |
| 3436 | // Demand any elements from the subvector and the remainder from the src its |
| 3437 | // inserted into. |
| 3438 | SDValue Src = Op.getOperand(i: 0); |
| 3439 | SDValue Sub = Op.getOperand(i: 1); |
| 3440 | uint64_t Idx = Op.getConstantOperandVal(i: 2); |
| 3441 | unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); |
| 3442 | APInt DemandedSubElts = DemandedElts.extractBits(numBits: NumSubElts, bitPosition: Idx); |
| 3443 | APInt DemandedSrcElts = DemandedElts; |
| 3444 | DemandedSrcElts.clearBits(LoBit: Idx, HiBit: Idx + NumSubElts); |
| 3445 | |
| 3446 | APInt SubUndef, SubZero; |
| 3447 | if (SimplifyDemandedVectorElts(Op: Sub, OriginalDemandedElts: DemandedSubElts, KnownUndef&: SubUndef, KnownZero&: SubZero, TLO, |
| 3448 | Depth: Depth + 1)) |
| 3449 | return true; |
| 3450 | |
| 3451 | // If none of the src operand elements are demanded, replace it with undef. |
| 3452 | if (!DemandedSrcElts && !Src.isUndef()) |
| 3453 | return TLO.CombineTo(O: Op, N: TLO.DAG.getNode(Opcode: ISD::INSERT_SUBVECTOR, DL, VT, |
| 3454 | N1: TLO.DAG.getUNDEF(VT), N2: Sub, |
| 3455 | N3: Op.getOperand(i: 2))); |
| 3456 | |
| 3457 | if (SimplifyDemandedVectorElts(Op: Src, OriginalDemandedElts: DemandedSrcElts, KnownUndef, KnownZero, |
| 3458 | TLO, Depth: Depth + 1)) |
| 3459 | return true; |
| 3460 | KnownUndef.insertBits(SubBits: SubUndef, bitPosition: Idx); |
| 3461 | KnownZero.insertBits(SubBits: SubZero, bitPosition: Idx); |
| 3462 | |
| 3463 | // Attempt to avoid multi-use ops if we don't need anything from them. |
| 3464 | if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) { |
| 3465 | SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( |
| 3466 | Op: Src, DemandedElts: DemandedSrcElts, DAG&: TLO.DAG, Depth: Depth + 1); |
| 3467 | SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( |
| 3468 | Op: Sub, DemandedElts: DemandedSubElts, DAG&: TLO.DAG, Depth: Depth + 1); |
| 3469 | if (NewSrc || NewSub) { |
| 3470 | NewSrc = NewSrc ? NewSrc : Src; |
| 3471 | NewSub = NewSub ? NewSub : Sub; |
| 3472 | SDValue NewOp = TLO.DAG.getNode(Opcode: Op.getOpcode(), DL: SDLoc(Op), VT, N1: NewSrc, |
| 3473 | N2: NewSub, N3: Op.getOperand(i: 2)); |
| 3474 | return TLO.CombineTo(O: Op, N: NewOp); |
| 3475 | } |
| 3476 | } |
| 3477 | break; |
| 3478 | } |
| 3479 | case ISD::EXTRACT_SUBVECTOR: { |
| 3480 | // Offset the demanded elts by the subvector index. |
| 3481 | SDValue Src = Op.getOperand(i: 0); |
| 3482 | if (Src.getValueType().isScalableVector()) |
| 3483 | break; |
| 3484 | uint64_t Idx = Op.getConstantOperandVal(i: 1); |
| 3485 | unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); |
| 3486 | APInt DemandedSrcElts = DemandedElts.zext(width: NumSrcElts).shl(shiftAmt: Idx); |
| 3487 | |
| 3488 | APInt SrcUndef, SrcZero; |
| 3489 | if (SimplifyDemandedVectorElts(Op: Src, OriginalDemandedElts: DemandedSrcElts, KnownUndef&: SrcUndef, KnownZero&: SrcZero, TLO, |
| 3490 | Depth: Depth + 1)) |
| 3491 | return true; |
| 3492 | KnownUndef = SrcUndef.extractBits(numBits: NumElts, bitPosition: Idx); |
| 3493 | KnownZero = SrcZero.extractBits(numBits: NumElts, bitPosition: Idx); |
| 3494 | |
| 3495 | // Attempt to avoid multi-use ops if we don't need anything from them. |
| 3496 | if (!DemandedElts.isAllOnes()) { |
| 3497 | SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( |
| 3498 | Op: Src, DemandedElts: DemandedSrcElts, DAG&: TLO.DAG, Depth: Depth + 1); |
| 3499 | if (NewSrc) { |
| 3500 | SDValue NewOp = TLO.DAG.getNode(Opcode: Op.getOpcode(), DL: SDLoc(Op), VT, N1: NewSrc, |
| 3501 | N2: Op.getOperand(i: 1)); |
| 3502 | return TLO.CombineTo(O: Op, N: NewOp); |
| 3503 | } |
| 3504 | } |
| 3505 | break; |
| 3506 | } |
| 3507 | case ISD::INSERT_VECTOR_ELT: { |
| 3508 | SDValue Vec = Op.getOperand(i: 0); |
| 3509 | SDValue Scl = Op.getOperand(i: 1); |
| 3510 | auto *CIdx = dyn_cast<ConstantSDNode>(Val: Op.getOperand(i: 2)); |
| 3511 | |
| 3512 | // For a legal, constant insertion index, if we don't need this insertion |
| 3513 | // then strip it, else remove it from the demanded elts. |
| 3514 | if (CIdx && CIdx->getAPIntValue().ult(RHS: NumElts)) { |
| 3515 | unsigned Idx = CIdx->getZExtValue(); |
| 3516 | if (!DemandedElts[Idx]) |
| 3517 | return TLO.CombineTo(O: Op, N: Vec); |
| 3518 | |
| 3519 | APInt DemandedVecElts(DemandedElts); |
| 3520 | DemandedVecElts.clearBit(BitPosition: Idx); |
| 3521 | if (SimplifyDemandedVectorElts(Op: Vec, OriginalDemandedElts: DemandedVecElts, KnownUndef, |
| 3522 | KnownZero, TLO, Depth: Depth + 1)) |
| 3523 | return true; |
| 3524 | |
| 3525 | KnownUndef.setBitVal(BitPosition: Idx, BitValue: Scl.isUndef()); |
| 3526 | |
| 3527 | KnownZero.setBitVal(BitPosition: Idx, BitValue: isNullConstant(V: Scl) || isNullFPConstant(V: Scl)); |
| 3528 | break; |
| 3529 | } |
| 3530 | |
| 3531 | APInt VecUndef, VecZero; |
| 3532 | if (SimplifyDemandedVectorElts(Op: Vec, OriginalDemandedElts: DemandedElts, KnownUndef&: VecUndef, KnownZero&: VecZero, TLO, |
| 3533 | Depth: Depth + 1)) |
| 3534 | return true; |
| 3535 | // Without knowing the insertion index we can't set KnownUndef/KnownZero. |
| 3536 | break; |
| 3537 | } |
| 3538 | case ISD::VSELECT: { |
| 3539 | SDValue Sel = Op.getOperand(i: 0); |
| 3540 | SDValue LHS = Op.getOperand(i: 1); |
| 3541 | SDValue RHS = Op.getOperand(i: 2); |
| 3542 | |
| 3543 | // Try to transform the select condition based on the current demanded |
| 3544 | // elements. |
| 3545 | APInt UndefSel, ZeroSel; |
| 3546 | if (SimplifyDemandedVectorElts(Op: Sel, OriginalDemandedElts: DemandedElts, KnownUndef&: UndefSel, KnownZero&: ZeroSel, TLO, |
| 3547 | Depth: Depth + 1)) |
| 3548 | return true; |
| 3549 | |
| 3550 | // See if we can simplify either vselect operand. |
| 3551 | APInt DemandedLHS(DemandedElts); |
| 3552 | APInt DemandedRHS(DemandedElts); |
| 3553 | APInt UndefLHS, ZeroLHS; |
| 3554 | APInt UndefRHS, ZeroRHS; |
| 3555 | if (SimplifyDemandedVectorElts(Op: LHS, OriginalDemandedElts: DemandedLHS, KnownUndef&: UndefLHS, KnownZero&: ZeroLHS, TLO, |
| 3556 | Depth: Depth + 1)) |
| 3557 | return true; |
| 3558 | if (SimplifyDemandedVectorElts(Op: RHS, OriginalDemandedElts: DemandedRHS, KnownUndef&: UndefRHS, KnownZero&: ZeroRHS, TLO, |
| 3559 | Depth: Depth + 1)) |
| 3560 | return true; |
| 3561 | |
| 3562 | KnownUndef = UndefLHS & UndefRHS; |
| 3563 | KnownZero = ZeroLHS & ZeroRHS; |
| 3564 | |
| 3565 | // If we know that the selected element is always zero, we don't need the |
| 3566 | // select value element. |
| 3567 | APInt DemandedSel = DemandedElts & ~KnownZero; |
| 3568 | if (DemandedSel != DemandedElts) |
| 3569 | if (SimplifyDemandedVectorElts(Op: Sel, OriginalDemandedElts: DemandedSel, KnownUndef&: UndefSel, KnownZero&: ZeroSel, TLO, |
| 3570 | Depth: Depth + 1)) |
| 3571 | return true; |
| 3572 | |
| 3573 | break; |
| 3574 | } |
| 3575 | case ISD::VECTOR_SHUFFLE: { |
| 3576 | SDValue LHS = Op.getOperand(i: 0); |
| 3577 | SDValue RHS = Op.getOperand(i: 1); |
| 3578 | ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Val&: Op)->getMask(); |
| 3579 | |
| 3580 | // Collect demanded elements from shuffle operands.. |
| 3581 | APInt DemandedLHS(NumElts, 0); |
| 3582 | APInt DemandedRHS(NumElts, 0); |
| 3583 | for (unsigned i = 0; i != NumElts; ++i) { |
| 3584 | int M = ShuffleMask[i]; |
| 3585 | if (M < 0 || !DemandedElts[i]) |
| 3586 | continue; |
| 3587 | assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range" ); |
| 3588 | if (M < (int)NumElts) |
| 3589 | DemandedLHS.setBit(M); |
| 3590 | else |
| 3591 | DemandedRHS.setBit(M - NumElts); |
| 3592 | } |
| 3593 | |
| 3594 | // If either side isn't demanded, replace it by UNDEF. We handle this |
| 3595 | // explicitly here to also simplify in case of multiple uses (on the |
| 3596 | // contrary to the SimplifyDemandedVectorElts calls below). |
| 3597 | bool FoldLHS = !DemandedLHS && !LHS.isUndef(); |
| 3598 | bool FoldRHS = !DemandedRHS && !RHS.isUndef(); |
| 3599 | if (FoldLHS || FoldRHS) { |
| 3600 | LHS = FoldLHS ? TLO.DAG.getUNDEF(VT: LHS.getValueType()) : LHS; |
| 3601 | RHS = FoldRHS ? TLO.DAG.getUNDEF(VT: RHS.getValueType()) : RHS; |
| 3602 | SDValue NewOp = |
| 3603 | TLO.DAG.getVectorShuffle(VT, dl: SDLoc(Op), N1: LHS, N2: RHS, Mask: ShuffleMask); |
| 3604 | return TLO.CombineTo(O: Op, N: NewOp); |
| 3605 | } |
| 3606 | |
| 3607 | // See if we can simplify either shuffle operand. |
| 3608 | APInt UndefLHS, ZeroLHS; |
| 3609 | APInt UndefRHS, ZeroRHS; |
| 3610 | if (SimplifyDemandedVectorElts(Op: LHS, OriginalDemandedElts: DemandedLHS, KnownUndef&: UndefLHS, KnownZero&: ZeroLHS, TLO, |
| 3611 | Depth: Depth + 1)) |
| 3612 | return true; |
| 3613 | if (SimplifyDemandedVectorElts(Op: RHS, OriginalDemandedElts: DemandedRHS, KnownUndef&: UndefRHS, KnownZero&: ZeroRHS, TLO, |
| 3614 | Depth: Depth + 1)) |
| 3615 | return true; |
| 3616 | |
| 3617 | // Simplify mask using undef elements from LHS/RHS. |
| 3618 | bool Updated = false; |
| 3619 | bool IdentityLHS = true, IdentityRHS = true; |
| 3620 | SmallVector<int, 32> NewMask(ShuffleMask); |
| 3621 | for (unsigned i = 0; i != NumElts; ++i) { |
| 3622 | int &M = NewMask[i]; |
| 3623 | if (M < 0) |
| 3624 | continue; |
| 3625 | if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || |
| 3626 | (M >= (int)NumElts && UndefRHS[M - NumElts])) { |
| 3627 | Updated = true; |
| 3628 | M = -1; |
| 3629 | } |
| 3630 | IdentityLHS &= (M < 0) || (M == (int)i); |
| 3631 | IdentityRHS &= (M < 0) || ((M - NumElts) == i); |
| 3632 | } |
| 3633 | |
| 3634 | // Update legal shuffle masks based on demanded elements if it won't reduce |
| 3635 | // to Identity which can cause premature removal of the shuffle mask. |
| 3636 | if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { |
| 3637 | SDValue LegalShuffle = |
| 3638 | buildLegalVectorShuffle(VT, DL, N0: LHS, N1: RHS, Mask: NewMask, DAG&: TLO.DAG); |
| 3639 | if (LegalShuffle) |
| 3640 | return TLO.CombineTo(O: Op, N: LegalShuffle); |
| 3641 | } |
| 3642 | |
| 3643 | // Propagate undef/zero elements from LHS/RHS. |
| 3644 | for (unsigned i = 0; i != NumElts; ++i) { |
| 3645 | int M = ShuffleMask[i]; |
| 3646 | if (M < 0) { |
| 3647 | KnownUndef.setBit(i); |
| 3648 | } else if (M < (int)NumElts) { |
| 3649 | if (UndefLHS[M]) |
| 3650 | KnownUndef.setBit(i); |
| 3651 | if (ZeroLHS[M]) |
| 3652 | KnownZero.setBit(i); |
| 3653 | } else { |
| 3654 | if (UndefRHS[M - NumElts]) |
| 3655 | KnownUndef.setBit(i); |
| 3656 | if (ZeroRHS[M - NumElts]) |
| 3657 | KnownZero.setBit(i); |
| 3658 | } |
| 3659 | } |
| 3660 | break; |
| 3661 | } |
| 3662 | case ISD::ANY_EXTEND_VECTOR_INREG: |
| 3663 | case ISD::SIGN_EXTEND_VECTOR_INREG: |
| 3664 | case ISD::ZERO_EXTEND_VECTOR_INREG: { |
| 3665 | APInt SrcUndef, SrcZero; |
| 3666 | SDValue Src = Op.getOperand(i: 0); |
| 3667 | unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); |
| 3668 | APInt DemandedSrcElts = DemandedElts.zext(width: NumSrcElts); |
| 3669 | if (SimplifyDemandedVectorElts(Op: Src, OriginalDemandedElts: DemandedSrcElts, KnownUndef&: SrcUndef, KnownZero&: SrcZero, TLO, |
| 3670 | Depth: Depth + 1)) |
| 3671 | return true; |
| 3672 | KnownZero = SrcZero.zextOrTrunc(width: NumElts); |
| 3673 | KnownUndef = SrcUndef.zextOrTrunc(width: NumElts); |
| 3674 | |
| 3675 | if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && |
| 3676 | Op.getValueSizeInBits() == Src.getValueSizeInBits() && |
| 3677 | DemandedSrcElts == 1) { |
| 3678 | // aext - if we just need the bottom element then we can bitcast. |
| 3679 | return TLO.CombineTo(O: Op, N: TLO.DAG.getBitcast(VT, V: Src)); |
| 3680 | } |
| 3681 | |
| 3682 | if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { |
| 3683 | // zext(undef) upper bits are guaranteed to be zero. |
| 3684 | if (DemandedElts.isSubsetOf(RHS: KnownUndef)) |
| 3685 | return TLO.CombineTo(O: Op, N: TLO.DAG.getConstant(Val: 0, DL: SDLoc(Op), VT)); |
| 3686 | KnownUndef.clearAllBits(); |
| 3687 | |
| 3688 | // zext - if we just need the bottom element then we can mask: |
| 3689 | // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and. |
| 3690 | if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND && |
| 3691 | Op->isOnlyUserOf(N: Src.getNode()) && |
| 3692 | Op.getValueSizeInBits() == Src.getValueSizeInBits()) { |
| 3693 | SDLoc DL(Op); |
| 3694 | EVT SrcVT = Src.getValueType(); |
| 3695 | EVT SrcSVT = SrcVT.getScalarType(); |
| 3696 | SmallVector<SDValue> MaskElts; |
| 3697 | MaskElts.push_back(Elt: TLO.DAG.getAllOnesConstant(DL, VT: SrcSVT)); |
| 3698 | MaskElts.append(NumInputs: NumSrcElts - 1, Elt: TLO.DAG.getConstant(Val: 0, DL, VT: SrcSVT)); |
| 3699 | SDValue Mask = TLO.DAG.getBuildVector(VT: SrcVT, DL, Ops: MaskElts); |
| 3700 | if (SDValue Fold = TLO.DAG.FoldConstantArithmetic( |
| 3701 | Opcode: ISD::AND, DL, VT: SrcVT, Ops: {Src.getOperand(i: 1), Mask})) { |
| 3702 | Fold = TLO.DAG.getNode(Opcode: ISD::AND, DL, VT: SrcVT, N1: Src.getOperand(i: 0), N2: Fold); |
| 3703 | return TLO.CombineTo(O: Op, N: TLO.DAG.getBitcast(VT, V: Fold)); |
| 3704 | } |
| 3705 | } |
| 3706 | } |
| 3707 | break; |
| 3708 | } |
| 3709 | |
| 3710 | // TODO: There are more binop opcodes that could be handled here - MIN, |
| 3711 | // MAX, saturated math, etc. |
| 3712 | case ISD::ADD: { |
| 3713 | SDValue Op0 = Op.getOperand(i: 0); |
| 3714 | SDValue Op1 = Op.getOperand(i: 1); |
| 3715 | if (Op0 == Op1 && Op->isOnlyUserOf(N: Op0.getNode())) { |
| 3716 | APInt UndefLHS, ZeroLHS; |
| 3717 | if (SimplifyDemandedVectorElts(Op: Op0, OriginalDemandedElts: DemandedElts, KnownUndef&: UndefLHS, KnownZero&: ZeroLHS, TLO, |
| 3718 | Depth: Depth + 1, /*AssumeSingleUse*/ true)) |
| 3719 | return true; |
| 3720 | } |
| 3721 | [[fallthrough]]; |
| 3722 | } |
| 3723 | case ISD::AVGCEILS: |
| 3724 | case ISD::AVGCEILU: |
| 3725 | case ISD::AVGFLOORS: |
| 3726 | case ISD::AVGFLOORU: |
| 3727 | case ISD::OR: |
| 3728 | case ISD::XOR: |
| 3729 | case ISD::SUB: |
| 3730 | case ISD::FADD: |
| 3731 | case ISD::FSUB: |
| 3732 | case ISD::FMUL: |
| 3733 | case ISD::FDIV: |
| 3734 | case ISD::FREM: { |
| 3735 | SDValue Op0 = Op.getOperand(i: 0); |
| 3736 | SDValue Op1 = Op.getOperand(i: 1); |
| 3737 | |
| 3738 | APInt UndefRHS, ZeroRHS; |
| 3739 | if (SimplifyDemandedVectorElts(Op: Op1, OriginalDemandedElts: DemandedElts, KnownUndef&: UndefRHS, KnownZero&: ZeroRHS, TLO, |
| 3740 | Depth: Depth + 1)) |
| 3741 | return true; |
| 3742 | APInt UndefLHS, ZeroLHS; |
| 3743 | if (SimplifyDemandedVectorElts(Op: Op0, OriginalDemandedElts: DemandedElts, KnownUndef&: UndefLHS, KnownZero&: ZeroLHS, TLO, |
| 3744 | Depth: Depth + 1)) |
| 3745 | return true; |
| 3746 | |
| 3747 | KnownZero = ZeroLHS & ZeroRHS; |
| 3748 | KnownUndef = getKnownUndefForVectorBinop(BO: Op, DAG&: TLO.DAG, UndefOp0: UndefLHS, UndefOp1: UndefRHS); |
| 3749 | |
| 3750 | // Attempt to avoid multi-use ops if we don't need anything from them. |
| 3751 | // TODO - use KnownUndef to relax the demandedelts? |
| 3752 | if (!DemandedElts.isAllOnes()) |
| 3753 | if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) |
| 3754 | return true; |
| 3755 | break; |
| 3756 | } |
| 3757 | case ISD::SHL: |
| 3758 | case ISD::SRL: |
| 3759 | case ISD::SRA: |
| 3760 | case ISD::ROTL: |
| 3761 | case ISD::ROTR: { |
| 3762 | SDValue Op0 = Op.getOperand(i: 0); |
| 3763 | SDValue Op1 = Op.getOperand(i: 1); |
| 3764 | |
| 3765 | APInt UndefRHS, ZeroRHS; |
| 3766 | if (SimplifyDemandedVectorElts(Op: Op1, OriginalDemandedElts: DemandedElts, KnownUndef&: UndefRHS, KnownZero&: ZeroRHS, TLO, |
| 3767 | Depth: Depth + 1)) |
| 3768 | return true; |
| 3769 | APInt UndefLHS, ZeroLHS; |
| 3770 | if (SimplifyDemandedVectorElts(Op: Op0, OriginalDemandedElts: DemandedElts, KnownUndef&: UndefLHS, KnownZero&: ZeroLHS, TLO, |
| 3771 | Depth: Depth + 1)) |
| 3772 | return true; |
| 3773 | |
| 3774 | KnownZero = ZeroLHS; |
| 3775 | KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? |
| 3776 | |
| 3777 | // Attempt to avoid multi-use ops if we don't need anything from them. |
| 3778 | // TODO - use KnownUndef to relax the demandedelts? |
| 3779 | if (!DemandedElts.isAllOnes()) |
| 3780 | if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) |
| 3781 | return true; |
| 3782 | break; |
| 3783 | } |
| 3784 | case ISD::MUL: |
| 3785 | case ISD::MULHU: |
| 3786 | case ISD::MULHS: |
| 3787 | case ISD::AND: { |
| 3788 | SDValue Op0 = Op.getOperand(i: 0); |
| 3789 | SDValue Op1 = Op.getOperand(i: 1); |
| 3790 | |
| 3791 | APInt SrcUndef, SrcZero; |
| 3792 | if (SimplifyDemandedVectorElts(Op: Op1, OriginalDemandedElts: DemandedElts, KnownUndef&: SrcUndef, KnownZero&: SrcZero, TLO, |
| 3793 | Depth: Depth + 1)) |
| 3794 | return true; |
| 3795 | // If we know that a demanded element was zero in Op1 we don't need to |
| 3796 | // demand it in Op0 - its guaranteed to be zero. |
| 3797 | APInt DemandedElts0 = DemandedElts & ~SrcZero; |
| 3798 | if (SimplifyDemandedVectorElts(Op: Op0, OriginalDemandedElts: DemandedElts0, KnownUndef, KnownZero, |
| 3799 | TLO, Depth: Depth + 1)) |
| 3800 | return true; |
| 3801 | |
| 3802 | KnownUndef &= DemandedElts0; |
| 3803 | KnownZero &= DemandedElts0; |
| 3804 | |
| 3805 | // If every element pair has a zero/undef then just fold to zero. |
| 3806 | // fold (and x, undef) -> 0 / (and x, 0) -> 0 |
| 3807 | // fold (mul x, undef) -> 0 / (mul x, 0) -> 0 |
| 3808 | if (DemandedElts.isSubsetOf(RHS: SrcZero | KnownZero | SrcUndef | KnownUndef)) |
| 3809 | return TLO.CombineTo(O: Op, N: TLO.DAG.getConstant(Val: 0, DL: SDLoc(Op), VT)); |
| 3810 | |
| 3811 | // If either side has a zero element, then the result element is zero, even |
| 3812 | // if the other is an UNDEF. |
| 3813 | // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros |
| 3814 | // and then handle 'and' nodes with the rest of the binop opcodes. |
| 3815 | KnownZero |= SrcZero; |
| 3816 | KnownUndef &= SrcUndef; |
| 3817 | KnownUndef &= ~KnownZero; |
| 3818 | |
| 3819 | // Attempt to avoid multi-use ops if we don't need anything from them. |
| 3820 | if (!DemandedElts.isAllOnes()) |
| 3821 | if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) |
| 3822 | return true; |
| 3823 | break; |
| 3824 | } |
| 3825 | case ISD::TRUNCATE: |
| 3826 | case ISD::SIGN_EXTEND: |
| 3827 | case ISD::ZERO_EXTEND: |
| 3828 | if (SimplifyDemandedVectorElts(Op: Op.getOperand(i: 0), OriginalDemandedElts: DemandedElts, KnownUndef, |
| 3829 | KnownZero, TLO, Depth: Depth + 1)) |
| 3830 | return true; |
| 3831 | |
| 3832 | if (!DemandedElts.isAllOnes()) |
| 3833 | if (SDValue NewOp = SimplifyMultipleUseDemandedVectorElts( |
| 3834 | Op: Op.getOperand(i: 0), DemandedElts, DAG&: TLO.DAG, Depth: Depth + 1)) |
| 3835 | return TLO.CombineTo(O: Op, N: TLO.DAG.getNode(Opcode, DL: SDLoc(Op), VT, Operand: NewOp)); |
| 3836 | |
| 3837 | if (Op.getOpcode() == ISD::ZERO_EXTEND) { |
| 3838 | // zext(undef) upper bits are guaranteed to be zero. |
| 3839 | if (DemandedElts.isSubsetOf(RHS: KnownUndef)) |
| 3840 | return TLO.CombineTo(O: Op, N: TLO.DAG.getConstant(Val: 0, DL: SDLoc(Op), VT)); |
| 3841 | KnownUndef.clearAllBits(); |
| 3842 | } |
| 3843 | break; |
| 3844 | case ISD::SINT_TO_FP: |
| 3845 | case ISD::UINT_TO_FP: |
| 3846 | case ISD::FP_TO_SINT: |
| 3847 | case ISD::FP_TO_UINT: |
| 3848 | if (SimplifyDemandedVectorElts(Op: Op.getOperand(i: 0), OriginalDemandedElts: DemandedElts, KnownUndef, |
| 3849 | KnownZero, TLO, Depth: Depth + 1)) |
| 3850 | return true; |
| 3851 | // Don't fall through to generic undef -> undef handling. |
| 3852 | return false; |
| 3853 | default: { |
| 3854 | if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { |
| 3855 | if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, |
| 3856 | KnownZero, TLO, Depth)) |
| 3857 | return true; |
| 3858 | } else { |
| 3859 | KnownBits Known; |
| 3860 | APInt DemandedBits = APInt::getAllOnes(numBits: EltSizeInBits); |
| 3861 | if (SimplifyDemandedBits(Op, OriginalDemandedBits: DemandedBits, OriginalDemandedElts, Known, |
| 3862 | TLO, Depth, AssumeSingleUse)) |
| 3863 | return true; |
| 3864 | } |
| 3865 | break; |
| 3866 | } |
| 3867 | } |
| 3868 | assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero" ); |
| 3869 | |
| 3870 | // Constant fold all undef cases. |
| 3871 | // TODO: Handle zero cases as well. |
| 3872 | if (DemandedElts.isSubsetOf(RHS: KnownUndef)) |
| 3873 | return TLO.CombineTo(O: Op, N: TLO.DAG.getUNDEF(VT)); |
| 3874 | |
| 3875 | return false; |
| 3876 | } |
| 3877 | |
| 3878 | /// Determine which of the bits specified in Mask are known to be either zero or |
| 3879 | /// one and return them in the Known. |
| 3880 | void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, |
| 3881 | KnownBits &Known, |
| 3882 | const APInt &DemandedElts, |
| 3883 | const SelectionDAG &DAG, |
| 3884 | unsigned Depth) const { |
| 3885 | assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || |
| 3886 | Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || |
| 3887 | Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || |
| 3888 | Op.getOpcode() == ISD::INTRINSIC_VOID) && |
| 3889 | "Should use MaskedValueIsZero if you don't know whether Op" |
| 3890 | " is a target node!" ); |
| 3891 | Known.resetAll(); |
| 3892 | } |
| 3893 | |
| 3894 | void TargetLowering::computeKnownBitsForTargetInstr( |
| 3895 | GISelValueTracking &Analysis, Register R, KnownBits &Known, |
| 3896 | const APInt &DemandedElts, const MachineRegisterInfo &MRI, |
| 3897 | unsigned Depth) const { |
| 3898 | Known.resetAll(); |
| 3899 | } |
| 3900 | |
| 3901 | void TargetLowering::computeKnownFPClassForTargetInstr( |
| 3902 | GISelValueTracking &Analysis, Register R, KnownFPClass &Known, |
| 3903 | const APInt &DemandedElts, const MachineRegisterInfo &MRI, |
| 3904 | unsigned Depth) const { |
| 3905 | Known.resetAll(); |
| 3906 | } |
| 3907 | |
| 3908 | void TargetLowering::computeKnownBitsForFrameIndex( |
| 3909 | const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { |
| 3910 | // The low bits are known zero if the pointer is aligned. |
| 3911 | Known.Zero.setLowBits(Log2(A: MF.getFrameInfo().getObjectAlign(ObjectIdx: FrameIdx))); |
| 3912 | } |
| 3913 | |
| 3914 | Align TargetLowering::computeKnownAlignForTargetInstr( |
| 3915 | GISelValueTracking &Analysis, Register R, const MachineRegisterInfo &MRI, |
| 3916 | unsigned Depth) const { |
| 3917 | return Align(1); |
| 3918 | } |
| 3919 | |
| 3920 | /// This method can be implemented by targets that want to expose additional |
| 3921 | /// information about sign bits to the DAG Combiner. |
| 3922 | unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, |
| 3923 | const APInt &, |
| 3924 | const SelectionDAG &, |
| 3925 | unsigned Depth) const { |
| 3926 | assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || |
| 3927 | Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || |
| 3928 | Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || |
| 3929 | Op.getOpcode() == ISD::INTRINSIC_VOID) && |
| 3930 | "Should use ComputeNumSignBits if you don't know whether Op" |
| 3931 | " is a target node!" ); |
| 3932 | return 1; |
| 3933 | } |
| 3934 | |
| 3935 | unsigned TargetLowering::computeNumSignBitsForTargetInstr( |
| 3936 | GISelValueTracking &Analysis, Register R, const APInt &DemandedElts, |
| 3937 | const MachineRegisterInfo &MRI, unsigned Depth) const { |
| 3938 | return 1; |
| 3939 | } |
| 3940 | |
| 3941 | bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( |
| 3942 | SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, |
| 3943 | TargetLoweringOpt &TLO, unsigned Depth) const { |
| 3944 | assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || |
| 3945 | Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || |
| 3946 | Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || |
| 3947 | Op.getOpcode() == ISD::INTRINSIC_VOID) && |
| 3948 | "Should use SimplifyDemandedVectorElts if you don't know whether Op" |
| 3949 | " is a target node!" ); |
| 3950 | return false; |
| 3951 | } |
| 3952 | |
| 3953 | bool TargetLowering::SimplifyDemandedBitsForTargetNode( |
| 3954 | SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, |
| 3955 | KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { |
| 3956 | assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || |
| 3957 | Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || |
| 3958 | Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || |
| 3959 | Op.getOpcode() == ISD::INTRINSIC_VOID) && |
| 3960 | "Should use SimplifyDemandedBits if you don't know whether Op" |
| 3961 | " is a target node!" ); |
| 3962 | computeKnownBitsForTargetNode(Op, Known, DemandedElts, DAG: TLO.DAG, Depth); |
| 3963 | return false; |
| 3964 | } |
| 3965 | |
| 3966 | SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( |
| 3967 | SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, |
| 3968 | SelectionDAG &DAG, unsigned Depth) const { |
| 3969 | assert( |
| 3970 | (Op.getOpcode() >= ISD::BUILTIN_OP_END || |
| 3971 | Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || |
| 3972 | Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || |
| 3973 | Op.getOpcode() == ISD::INTRINSIC_VOID) && |
| 3974 | "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" |
| 3975 | " is a target node!" ); |
| 3976 | return SDValue(); |
| 3977 | } |
| 3978 | |
| 3979 | SDValue |
| 3980 | TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, |
| 3981 | SDValue N1, MutableArrayRef<int> Mask, |
| 3982 | SelectionDAG &DAG) const { |
| 3983 | bool LegalMask = isShuffleMaskLegal(Mask, VT); |
| 3984 | if (!LegalMask) { |
| 3985 | std::swap(a&: N0, b&: N1); |
| 3986 | ShuffleVectorSDNode::commuteMask(Mask); |
| 3987 | LegalMask = isShuffleMaskLegal(Mask, VT); |
| 3988 | } |
| 3989 | |
| 3990 | if (!LegalMask) |
| 3991 | return SDValue(); |
| 3992 | |
| 3993 | return DAG.getVectorShuffle(VT, dl: DL, N1: N0, N2: N1, Mask); |
| 3994 | } |
| 3995 | |
| 3996 | const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { |
| 3997 | return nullptr; |
| 3998 | } |
| 3999 | |
| 4000 | bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode( |
| 4001 | SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, |
| 4002 | bool PoisonOnly, unsigned Depth) const { |
| 4003 | assert( |
| 4004 | (Op.getOpcode() >= ISD::BUILTIN_OP_END || |
| 4005 | Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || |
| 4006 | Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || |
| 4007 | Op.getOpcode() == ISD::INTRINSIC_VOID) && |
| 4008 | "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op" |
| 4009 | " is a target node!" ); |
| 4010 | |
| 4011 | // If Op can't create undef/poison and none of its operands are undef/poison |
| 4012 | // then Op is never undef/poison. |
| 4013 | return !canCreateUndefOrPoisonForTargetNode(Op, DemandedElts, DAG, PoisonOnly, |
| 4014 | /*ConsiderFlags*/ true, Depth) && |
| 4015 | all_of(Range: Op->ops(), P: [&](SDValue V) { |
| 4016 | return DAG.isGuaranteedNotToBeUndefOrPoison(Op: V, PoisonOnly, |
| 4017 | Depth: Depth + 1); |
| 4018 | }); |
| 4019 | } |
| 4020 | |
| 4021 | bool TargetLowering::canCreateUndefOrPoisonForTargetNode( |
| 4022 | SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, |
| 4023 | bool PoisonOnly, bool ConsiderFlags, unsigned Depth) const { |
| 4024 | assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || |
| 4025 | Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || |
| 4026 | Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || |
| 4027 | Op.getOpcode() == ISD::INTRINSIC_VOID) && |
| 4028 | "Should use canCreateUndefOrPoison if you don't know whether Op" |
| 4029 | " is a target node!" ); |
| 4030 | // Be conservative and return true. |
| 4031 | return true; |
| 4032 | } |
| 4033 | |
| 4034 | bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, |
| 4035 | const APInt &DemandedElts, |
| 4036 | const SelectionDAG &DAG, |
| 4037 | bool SNaN, |
| 4038 | unsigned Depth) const { |
| 4039 | assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || |
| 4040 | Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || |
| 4041 | Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || |
| 4042 | Op.getOpcode() == ISD::INTRINSIC_VOID) && |
| 4043 | "Should use isKnownNeverNaN if you don't know whether Op" |
| 4044 | " is a target node!" ); |
| 4045 | return false; |
| 4046 | } |
| 4047 | |
| 4048 | bool TargetLowering::isSplatValueForTargetNode(SDValue Op, |
| 4049 | const APInt &DemandedElts, |
| 4050 | APInt &UndefElts, |
| 4051 | const SelectionDAG &DAG, |
| 4052 | unsigned Depth) const { |
| 4053 | assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || |
| 4054 | Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || |
| 4055 | Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || |
| 4056 | Op.getOpcode() == ISD::INTRINSIC_VOID) && |
| 4057 | "Should use isSplatValue if you don't know whether Op" |
| 4058 | " is a target node!" ); |
| 4059 | return false; |
| 4060 | } |
| 4061 | |
| 4062 | // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must |
| 4063 | // work with truncating build vectors and vectors with elements of less than |
| 4064 | // 8 bits. |
| 4065 | bool TargetLowering::isConstTrueVal(SDValue N) const { |
| 4066 | if (!N) |
| 4067 | return false; |
| 4068 | |
| 4069 | unsigned EltWidth; |
| 4070 | APInt CVal; |
| 4071 | if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false, |
| 4072 | /*AllowTruncation=*/true)) { |
| 4073 | CVal = CN->getAPIntValue(); |
| 4074 | EltWidth = N.getValueType().getScalarSizeInBits(); |
| 4075 | } else |
| 4076 | return false; |
| 4077 | |
| 4078 | // If this is a truncating splat, truncate the splat value. |
| 4079 | // Otherwise, we may fail to match the expected values below. |
| 4080 | if (EltWidth < CVal.getBitWidth()) |
| 4081 | CVal = CVal.trunc(width: EltWidth); |
| 4082 | |
| 4083 | switch (getBooleanContents(Type: N.getValueType())) { |
| 4084 | case UndefinedBooleanContent: |
| 4085 | return CVal[0]; |
| 4086 | case ZeroOrOneBooleanContent: |
| 4087 | return CVal.isOne(); |
| 4088 | case ZeroOrNegativeOneBooleanContent: |
| 4089 | return CVal.isAllOnes(); |
| 4090 | } |
| 4091 | |
| 4092 | llvm_unreachable("Invalid boolean contents" ); |
| 4093 | } |
| 4094 | |
| 4095 | bool TargetLowering::isConstFalseVal(SDValue N) const { |
| 4096 | if (!N) |
| 4097 | return false; |
| 4098 | |
| 4099 | const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val&: N); |
| 4100 | if (!CN) { |
| 4101 | const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Val&: N); |
| 4102 | if (!BV) |
| 4103 | return false; |
| 4104 | |
| 4105 | // Only interested in constant splats, we don't care about undef |
| 4106 | // elements in identifying boolean constants and getConstantSplatNode |
| 4107 | // returns NULL if all ops are undef; |
| 4108 | CN = BV->getConstantSplatNode(); |
| 4109 | if (!CN) |
| 4110 | return false; |
| 4111 | } |
| 4112 | |
| 4113 | if (getBooleanContents(Type: N->getValueType(ResNo: 0)) == UndefinedBooleanContent) |
| 4114 | return !CN->getAPIntValue()[0]; |
| 4115 | |
| 4116 | return CN->isZero(); |
| 4117 | } |
| 4118 | |
| 4119 | bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, |
| 4120 | bool SExt) const { |
| 4121 | if (VT == MVT::i1) |
| 4122 | return N->isOne(); |
| 4123 | |
| 4124 | TargetLowering::BooleanContent Cnt = getBooleanContents(Type: VT); |
| 4125 | switch (Cnt) { |
| 4126 | case TargetLowering::ZeroOrOneBooleanContent: |
| 4127 | // An extended value of 1 is always true, unless its original type is i1, |
| 4128 | // in which case it will be sign extended to -1. |
| 4129 | return (N->isOne() && !SExt) || (SExt && (N->getValueType(ResNo: 0) != MVT::i1)); |
| 4130 | case TargetLowering::UndefinedBooleanContent: |
| 4131 | case TargetLowering::ZeroOrNegativeOneBooleanContent: |
| 4132 | return N->isAllOnes() && SExt; |
| 4133 | } |
| 4134 | llvm_unreachable("Unexpected enumeration." ); |
| 4135 | } |
| 4136 | |
| 4137 | /// This helper function of SimplifySetCC tries to optimize the comparison when |
| 4138 | /// either operand of the SetCC node is a bitwise-and instruction. |
| 4139 | SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, |
| 4140 | ISD::CondCode Cond, const SDLoc &DL, |
| 4141 | DAGCombinerInfo &DCI) const { |
| 4142 | if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) |
| 4143 | std::swap(a&: N0, b&: N1); |
| 4144 | |
| 4145 | SelectionDAG &DAG = DCI.DAG; |
| 4146 | EVT OpVT = N0.getValueType(); |
| 4147 | if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || |
| 4148 | (Cond != ISD::SETEQ && Cond != ISD::SETNE)) |
| 4149 | return SDValue(); |
| 4150 | |
| 4151 | // (X & Y) != 0 --> zextOrTrunc(X & Y) |
| 4152 | // iff everything but LSB is known zero: |
| 4153 | if (Cond == ISD::SETNE && isNullConstant(V: N1) && |
| 4154 | (getBooleanContents(Type: OpVT) == TargetLowering::UndefinedBooleanContent || |
| 4155 | getBooleanContents(Type: OpVT) == TargetLowering::ZeroOrOneBooleanContent)) { |
| 4156 | unsigned NumEltBits = OpVT.getScalarSizeInBits(); |
| 4157 | APInt UpperBits = APInt::getHighBitsSet(numBits: NumEltBits, hiBitsSet: NumEltBits - 1); |
| 4158 | if (DAG.MaskedValueIsZero(Op: N0, Mask: UpperBits)) |
| 4159 | return DAG.getBoolExtOrTrunc(Op: N0, SL: DL, VT, OpVT); |
| 4160 | } |
| 4161 | |
| 4162 | // Try to eliminate a power-of-2 mask constant by converting to a signbit |
| 4163 | // test in a narrow type that we can truncate to with no cost. Examples: |
| 4164 | // (i32 X & 32768) == 0 --> (trunc X to i16) >= 0 |
| 4165 | // (i32 X & 32768) != 0 --> (trunc X to i16) < 0 |
| 4166 | // TODO: This conservatively checks for type legality on the source and |
| 4167 | // destination types. That may inhibit optimizations, but it also |
| 4168 | // allows setcc->shift transforms that may be more beneficial. |
| 4169 | auto *AndC = dyn_cast<ConstantSDNode>(Val: N0.getOperand(i: 1)); |
| 4170 | if (AndC && isNullConstant(V: N1) && AndC->getAPIntValue().isPowerOf2() && |
| 4171 | isTypeLegal(VT: OpVT) && N0.hasOneUse()) { |
| 4172 | EVT NarrowVT = EVT::getIntegerVT(Context&: *DAG.getContext(), |
| 4173 | BitWidth: AndC->getAPIntValue().getActiveBits()); |
| 4174 | if (isTruncateFree(FromVT: OpVT, ToVT: NarrowVT) && isTypeLegal(VT: NarrowVT)) { |
| 4175 | SDValue Trunc = DAG.getZExtOrTrunc(Op: N0.getOperand(i: 0), DL, VT: NarrowVT); |
| 4176 | SDValue Zero = DAG.getConstant(Val: 0, DL, VT: NarrowVT); |
| 4177 | return DAG.getSetCC(DL, VT, LHS: Trunc, RHS: Zero, |
| 4178 | Cond: Cond == ISD::SETEQ ? ISD::SETGE : ISD::SETLT); |
| 4179 | } |
| 4180 | } |
| 4181 | |
| 4182 | // Match these patterns in any of their permutations: |
| 4183 | // (X & Y) == Y |
| 4184 | // (X & Y) != Y |
| 4185 | SDValue X, Y; |
| 4186 | if (N0.getOperand(i: 0) == N1) { |
| 4187 | X = N0.getOperand(i: 1); |
| 4188 | Y = N0.getOperand(i: 0); |
| 4189 | } else if (N0.getOperand(i: 1) == N1) { |
| 4190 | X = N0.getOperand(i: 0); |
| 4191 | Y = N0.getOperand(i: 1); |
| 4192 | } else { |
| 4193 | return SDValue(); |
| 4194 | } |
| 4195 | |
| 4196 | // TODO: We should invert (X & Y) eq/ne 0 -> (X & Y) ne/eq Y if |
| 4197 | // `isXAndYEqZeroPreferableToXAndYEqY` is false. This is a bit difficult as |
| 4198 | // its liable to create and infinite loop. |
| 4199 | SDValue Zero = DAG.getConstant(Val: 0, DL, VT: OpVT); |
| 4200 | if (isXAndYEqZeroPreferableToXAndYEqY(Cond, OpVT) && |
| 4201 | DAG.isKnownToBeAPowerOfTwo(Val: Y)) { |
| 4202 | // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. |
| 4203 | // Note that where Y is variable and is known to have at most one bit set |
| 4204 | // (for example, if it is Z & 1) we cannot do this; the expressions are not |
| 4205 | // equivalent when Y == 0. |
| 4206 | assert(OpVT.isInteger()); |
| 4207 | Cond = ISD::getSetCCInverse(Operation: Cond, Type: OpVT); |
| 4208 | if (DCI.isBeforeLegalizeOps() || |
| 4209 | isCondCodeLegal(CC: Cond, VT: N0.getSimpleValueType())) |
| 4210 | return DAG.getSetCC(DL, VT, LHS: N0, RHS: Zero, Cond); |
| 4211 | } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { |
| 4212 | // If the target supports an 'and-not' or 'and-complement' logic operation, |
| 4213 | // try to use that to make a comparison operation more efficient. |
| 4214 | // But don't do this transform if the mask is a single bit because there are |
| 4215 | // more efficient ways to deal with that case (for example, 'bt' on x86 or |
| 4216 | // 'rlwinm' on PPC). |
| 4217 | |
| 4218 | // Bail out if the compare operand that we want to turn into a zero is |
| 4219 | // already a zero (otherwise, infinite loop). |
| 4220 | if (isNullConstant(V: Y)) |
| 4221 | return SDValue(); |
| 4222 | |
| 4223 | // Transform this into: ~X & Y == 0. |
| 4224 | SDValue NotX = DAG.getNOT(DL: SDLoc(X), Val: X, VT: OpVT); |
| 4225 | SDValue NewAnd = DAG.getNode(Opcode: ISD::AND, DL: SDLoc(N0), VT: OpVT, N1: NotX, N2: Y); |
| 4226 | return DAG.getSetCC(DL, VT, LHS: NewAnd, RHS: Zero, Cond); |
| 4227 | } |
| 4228 | |
| 4229 | return SDValue(); |
| 4230 | } |
| 4231 | |
| 4232 | /// This helper function of SimplifySetCC tries to optimize the comparison when |
| 4233 | /// either operand of the SetCC node is a bitwise-or instruction. |
| 4234 | /// For now, this just transforms (X | Y) ==/!= Y into X & ~Y ==/!= 0. |
| 4235 | SDValue TargetLowering::foldSetCCWithOr(EVT VT, SDValue N0, SDValue N1, |
| 4236 | ISD::CondCode Cond, const SDLoc &DL, |
| 4237 | DAGCombinerInfo &DCI) const { |
| 4238 | if (N1.getOpcode() == ISD::OR && N0.getOpcode() != ISD::OR) |
| 4239 | std::swap(a&: N0, b&: N1); |
| 4240 | |
| 4241 | SelectionDAG &DAG = DCI.DAG; |
| 4242 | EVT OpVT = N0.getValueType(); |
| 4243 | if (!N0.hasOneUse() || !OpVT.isInteger() || |
| 4244 | (Cond != ISD::SETEQ && Cond != ISD::SETNE)) |
| 4245 | return SDValue(); |
| 4246 | |
| 4247 | // (X | Y) == Y |
| 4248 | // (X | Y) != Y |
| 4249 | SDValue X; |
| 4250 | if (sd_match(N: N0, P: m_Or(L: m_Value(N&: X), R: m_Specific(N: N1))) && hasAndNotCompare(Y: N1)) { |
| 4251 | // If the target supports an 'and-not' or 'and-complement' logic operation, |
| 4252 | // try to use that to make a comparison operation more efficient. |
| 4253 | |
| 4254 | // Bail out if the compare operand that we want to turn into a zero is |
| 4255 | // already a zero (otherwise, infinite loop). |
| 4256 | if (isNullConstant(V: N1)) |
| 4257 | return SDValue(); |
| 4258 | |
| 4259 | // Transform this into: X & ~Y ==/!= 0. |
| 4260 | SDValue NotY = DAG.getNOT(DL: SDLoc(N1), Val: N1, VT: OpVT); |
| 4261 | SDValue NewAnd = DAG.getNode(Opcode: ISD::AND, DL: SDLoc(N0), VT: OpVT, N1: X, N2: NotY); |
| 4262 | return DAG.getSetCC(DL, VT, LHS: NewAnd, RHS: DAG.getConstant(Val: 0, DL, VT: OpVT), Cond); |
| 4263 | } |
| 4264 | |
| 4265 | return SDValue(); |
| 4266 | } |
| 4267 | |
| 4268 | /// There are multiple IR patterns that could be checking whether certain |
| 4269 | /// truncation of a signed number would be lossy or not. The pattern which is |
| 4270 | /// best at IR level, may not lower optimally. Thus, we want to unfold it. |
| 4271 | /// We are looking for the following pattern: (KeptBits is a constant) |
| 4272 | /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) |
| 4273 | /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. |
| 4274 | /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 |
| 4275 | /// We will unfold it into the natural trunc+sext pattern: |
| 4276 | /// ((%x << C) a>> C) dstcond %x |
| 4277 | /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) |
| 4278 | SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( |
| 4279 | EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, |
| 4280 | const SDLoc &DL) const { |
| 4281 | // We must be comparing with a constant. |
| 4282 | ConstantSDNode *C1; |
| 4283 | if (!(C1 = dyn_cast<ConstantSDNode>(Val&: N1))) |
| 4284 | return SDValue(); |
| 4285 | |
| 4286 | // N0 should be: add %x, (1 << (KeptBits-1)) |
| 4287 | if (N0->getOpcode() != ISD::ADD) |
| 4288 | return SDValue(); |
| 4289 | |
| 4290 | // And we must be 'add'ing a constant. |
| 4291 | ConstantSDNode *C01; |
| 4292 | if (!(C01 = dyn_cast<ConstantSDNode>(Val: N0->getOperand(Num: 1)))) |
| 4293 | return SDValue(); |
| 4294 | |
| 4295 | SDValue X = N0->getOperand(Num: 0); |
| 4296 | EVT XVT = X.getValueType(); |
| 4297 | |
| 4298 | // Validate constants ... |
| 4299 | |
| 4300 | APInt I1 = C1->getAPIntValue(); |
| 4301 | |
| 4302 | ISD::CondCode NewCond; |
| 4303 | if (Cond == ISD::CondCode::SETULT) { |
| 4304 | NewCond = ISD::CondCode::SETEQ; |
| 4305 | } else if (Cond == ISD::CondCode::SETULE) { |
| 4306 | NewCond = ISD::CondCode::SETEQ; |
| 4307 | // But need to 'canonicalize' the constant. |
| 4308 | I1 += 1; |
| 4309 | } else if (Cond == ISD::CondCode::SETUGT) { |
| 4310 | NewCond = ISD::CondCode::SETNE; |
| 4311 | // But need to 'canonicalize' the constant. |
| 4312 | I1 += 1; |
| 4313 | } else if (Cond == ISD::CondCode::SETUGE) { |
| 4314 | NewCond = ISD::CondCode::SETNE; |
| 4315 | } else |
| 4316 | return SDValue(); |
| 4317 | |
| 4318 | APInt I01 = C01->getAPIntValue(); |
| 4319 | |
| 4320 | auto checkConstants = [&I1, &I01]() -> bool { |
| 4321 | // Both of them must be power-of-two, and the constant from setcc is bigger. |
| 4322 | return I1.ugt(RHS: I01) && I1.isPowerOf2() && I01.isPowerOf2(); |
| 4323 | }; |
| 4324 | |
| 4325 | if (checkConstants()) { |
| 4326 | // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 |
| 4327 | } else { |
| 4328 | // What if we invert constants? (and the target predicate) |
| 4329 | I1.negate(); |
| 4330 | I01.negate(); |
| 4331 | assert(XVT.isInteger()); |
| 4332 | NewCond = getSetCCInverse(Operation: NewCond, Type: XVT); |
| 4333 | if (!checkConstants()) |
| 4334 | return SDValue(); |
| 4335 | // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 |
| 4336 | } |
| 4337 | |
| 4338 | // They are power-of-two, so which bit is set? |
| 4339 | const unsigned KeptBits = I1.logBase2(); |
| 4340 | const unsigned KeptBitsMinusOne = I01.logBase2(); |
| 4341 | |
| 4342 | // Magic! |
| 4343 | if (KeptBits != (KeptBitsMinusOne + 1)) |
| 4344 | return SDValue(); |
| 4345 | assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable" ); |
| 4346 | |
| 4347 | // We don't want to do this in every single case. |
| 4348 | SelectionDAG &DAG = DCI.DAG; |
| 4349 | if (!shouldTransformSignedTruncationCheck(XVT, KeptBits)) |
| 4350 | return SDValue(); |
| 4351 | |
| 4352 | // Unfold into: sext_inreg(%x) cond %x |
| 4353 | // Where 'cond' will be either 'eq' or 'ne'. |
| 4354 | SDValue SExtInReg = DAG.getNode( |
| 4355 | Opcode: ISD::SIGN_EXTEND_INREG, DL, VT: XVT, N1: X, |
| 4356 | N2: DAG.getValueType(EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: KeptBits))); |
| 4357 | return DAG.getSetCC(DL, VT: SCCVT, LHS: SExtInReg, RHS: X, Cond: NewCond); |
| 4358 | } |
| 4359 | |
| 4360 | // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 |
| 4361 | SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( |
| 4362 | EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, |
| 4363 | DAGCombinerInfo &DCI, const SDLoc &DL) const { |
| 4364 | assert(isConstOrConstSplat(N1C) && isConstOrConstSplat(N1C)->isZero() && |
| 4365 | "Should be a comparison with 0." ); |
| 4366 | assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && |
| 4367 | "Valid only for [in]equality comparisons." ); |
| 4368 | |
| 4369 | unsigned NewShiftOpcode; |
| 4370 | SDValue X, C, Y; |
| 4371 | |
| 4372 | SelectionDAG &DAG = DCI.DAG; |
| 4373 | |
| 4374 | // Look for '(C l>>/<< Y)'. |
| 4375 | auto Match = [&NewShiftOpcode, &X, &C, &Y, &DAG, this](SDValue V) { |
| 4376 | // The shift should be one-use. |
| 4377 | if (!V.hasOneUse()) |
| 4378 | return false; |
| 4379 | unsigned OldShiftOpcode = V.getOpcode(); |
| 4380 | switch (OldShiftOpcode) { |
| 4381 | case ISD::SHL: |
| 4382 | NewShiftOpcode = ISD::SRL; |
| 4383 | break; |
| 4384 | case ISD::SRL: |
| 4385 | NewShiftOpcode = ISD::SHL; |
| 4386 | break; |
| 4387 | default: |
| 4388 | return false; // must be a logical shift. |
| 4389 | } |
| 4390 | // We should be shifting a constant. |
| 4391 | // FIXME: best to use isConstantOrConstantVector(). |
| 4392 | C = V.getOperand(i: 0); |
| 4393 | ConstantSDNode *CC = |
| 4394 | isConstOrConstSplat(N: C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); |
| 4395 | if (!CC) |
| 4396 | return false; |
| 4397 | Y = V.getOperand(i: 1); |
| 4398 | |
| 4399 | ConstantSDNode *XC = |
| 4400 | isConstOrConstSplat(N: X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); |
| 4401 | return shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( |
| 4402 | X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); |
| 4403 | }; |
| 4404 | |
| 4405 | // LHS of comparison should be an one-use 'and'. |
| 4406 | if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) |
| 4407 | return SDValue(); |
| 4408 | |
| 4409 | X = N0.getOperand(i: 0); |
| 4410 | SDValue Mask = N0.getOperand(i: 1); |
| 4411 | |
| 4412 | // 'and' is commutative! |
| 4413 | if (!Match(Mask)) { |
| 4414 | std::swap(a&: X, b&: Mask); |
| 4415 | if (!Match(Mask)) |
| 4416 | return SDValue(); |
| 4417 | } |
| 4418 | |
| 4419 | EVT VT = X.getValueType(); |
| 4420 | |
| 4421 | // Produce: |
| 4422 | // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 |
| 4423 | SDValue T0 = DAG.getNode(Opcode: NewShiftOpcode, DL, VT, N1: X, N2: Y); |
| 4424 | SDValue T1 = DAG.getNode(Opcode: ISD::AND, DL, VT, N1: T0, N2: C); |
| 4425 | SDValue T2 = DAG.getSetCC(DL, VT: SCCVT, LHS: T1, RHS: N1C, Cond); |
| 4426 | return T2; |
| 4427 | } |
| 4428 | |
| 4429 | /// Try to fold an equality comparison with a {add/sub/xor} binary operation as |
| 4430 | /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to |
| 4431 | /// handle the commuted versions of these patterns. |
| 4432 | SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, |
| 4433 | ISD::CondCode Cond, const SDLoc &DL, |
| 4434 | DAGCombinerInfo &DCI) const { |
| 4435 | unsigned BOpcode = N0.getOpcode(); |
| 4436 | assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && |
| 4437 | "Unexpected binop" ); |
| 4438 | assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode" ); |
| 4439 | |
| 4440 | // (X + Y) == X --> Y == 0 |
| 4441 | // (X - Y) == X --> Y == 0 |
| 4442 | // (X ^ Y) == X --> Y == 0 |
| 4443 | SelectionDAG &DAG = DCI.DAG; |
| 4444 | EVT OpVT = N0.getValueType(); |
| 4445 | SDValue X = N0.getOperand(i: 0); |
| 4446 | SDValue Y = N0.getOperand(i: 1); |
| 4447 | if (X == N1) |
| 4448 | return DAG.getSetCC(DL, VT, LHS: Y, RHS: DAG.getConstant(Val: 0, DL, VT: OpVT), Cond); |
| 4449 | |
| 4450 | if (Y != N1) |
| 4451 | return SDValue(); |
| 4452 | |
| 4453 | // (X + Y) == Y --> X == 0 |
| 4454 | // (X ^ Y) == Y --> X == 0 |
| 4455 | if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) |
| 4456 | return DAG.getSetCC(DL, VT, LHS: X, RHS: DAG.getConstant(Val: 0, DL, VT: OpVT), Cond); |
| 4457 | |
| 4458 | // The shift would not be valid if the operands are boolean (i1). |
| 4459 | if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) |
| 4460 | return SDValue(); |
| 4461 | |
| 4462 | // (X - Y) == Y --> X == Y << 1 |
| 4463 | SDValue One = DAG.getShiftAmountConstant(Val: 1, VT: OpVT, DL); |
| 4464 | SDValue YShl1 = DAG.getNode(Opcode: ISD::SHL, DL, VT: N1.getValueType(), N1: Y, N2: One); |
| 4465 | if (!DCI.isCalledByLegalizer()) |
| 4466 | DCI.AddToWorklist(N: YShl1.getNode()); |
| 4467 | return DAG.getSetCC(DL, VT, LHS: X, RHS: YShl1, Cond); |
| 4468 | } |
| 4469 | |
| 4470 | static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, |
| 4471 | SDValue N0, const APInt &C1, |
| 4472 | ISD::CondCode Cond, const SDLoc &dl, |
| 4473 | SelectionDAG &DAG) { |
| 4474 | // Look through truncs that don't change the value of a ctpop. |
| 4475 | // FIXME: Add vector support? Need to be careful with setcc result type below. |
| 4476 | SDValue CTPOP = N0; |
| 4477 | if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && |
| 4478 | N0.getScalarValueSizeInBits() > Log2_32(Value: N0.getOperand(i: 0).getScalarValueSizeInBits())) |
| 4479 | CTPOP = N0.getOperand(i: 0); |
| 4480 | |
| 4481 | if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) |
| 4482 | return SDValue(); |
| 4483 | |
| 4484 | EVT CTVT = CTPOP.getValueType(); |
| 4485 | SDValue CTOp = CTPOP.getOperand(i: 0); |
| 4486 | |
| 4487 | // Expand a power-of-2-or-zero comparison based on ctpop: |
| 4488 | // (ctpop x) u< 2 -> (x & x-1) == 0 |
| 4489 | // (ctpop x) u> 1 -> (x & x-1) != 0 |
| 4490 | if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { |
| 4491 | // Keep the CTPOP if it is a cheap vector op. |
| 4492 | if (CTVT.isVector() && TLI.isCtpopFast(VT: CTVT)) |
| 4493 | return SDValue(); |
| 4494 | |
| 4495 | unsigned CostLimit = TLI.getCustomCtpopCost(VT: CTVT, Cond); |
| 4496 | if (C1.ugt(RHS: CostLimit + (Cond == ISD::SETULT))) |
| 4497 | return SDValue(); |
| 4498 | if (C1 == 0 && (Cond == ISD::SETULT)) |
| 4499 | return SDValue(); // This is handled elsewhere. |
| 4500 | |
| 4501 | unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); |
| 4502 | |
| 4503 | SDValue NegOne = DAG.getAllOnesConstant(DL: dl, VT: CTVT); |
| 4504 | SDValue Result = CTOp; |
| 4505 | for (unsigned i = 0; i < Passes; i++) { |
| 4506 | SDValue Add = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: CTVT, N1: Result, N2: NegOne); |
| 4507 | Result = DAG.getNode(Opcode: ISD::AND, DL: dl, VT: CTVT, N1: Result, N2: Add); |
| 4508 | } |
| 4509 | ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; |
| 4510 | return DAG.getSetCC(DL: dl, VT, LHS: Result, RHS: DAG.getConstant(Val: 0, DL: dl, VT: CTVT), Cond: CC); |
| 4511 | } |
| 4512 | |
| 4513 | // Expand a power-of-2 comparison based on ctpop |
| 4514 | if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { |
| 4515 | // Keep the CTPOP if it is cheap. |
| 4516 | if (TLI.isCtpopFast(VT: CTVT)) |
| 4517 | return SDValue(); |
| 4518 | |
| 4519 | SDValue Zero = DAG.getConstant(Val: 0, DL: dl, VT: CTVT); |
| 4520 | SDValue NegOne = DAG.getAllOnesConstant(DL: dl, VT: CTVT); |
| 4521 | assert(CTVT.isInteger()); |
| 4522 | SDValue Add = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: CTVT, N1: CTOp, N2: NegOne); |
| 4523 | |
| 4524 | // Its not uncommon for known-never-zero X to exist in (ctpop X) eq/ne 1, so |
| 4525 | // check before emitting a potentially unnecessary op. |
| 4526 | if (DAG.isKnownNeverZero(Op: CTOp)) { |
| 4527 | // (ctpop x) == 1 --> (x & x-1) == 0 |
| 4528 | // (ctpop x) != 1 --> (x & x-1) != 0 |
| 4529 | SDValue And = DAG.getNode(Opcode: ISD::AND, DL: dl, VT: CTVT, N1: CTOp, N2: Add); |
| 4530 | SDValue RHS = DAG.getSetCC(DL: dl, VT, LHS: And, RHS: Zero, Cond); |
| 4531 | return RHS; |
| 4532 | } |
| 4533 | |
| 4534 | // (ctpop x) == 1 --> (x ^ x-1) > x-1 |
| 4535 | // (ctpop x) != 1 --> (x ^ x-1) <= x-1 |
| 4536 | SDValue Xor = DAG.getNode(Opcode: ISD::XOR, DL: dl, VT: CTVT, N1: CTOp, N2: Add); |
| 4537 | ISD::CondCode CmpCond = Cond == ISD::SETEQ ? ISD::SETUGT : ISD::SETULE; |
| 4538 | return DAG.getSetCC(DL: dl, VT, LHS: Xor, RHS: Add, Cond: CmpCond); |
| 4539 | } |
| 4540 | |
| 4541 | return SDValue(); |
| 4542 | } |
| 4543 | |
| 4544 | static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1, |
| 4545 | ISD::CondCode Cond, const SDLoc &dl, |
| 4546 | SelectionDAG &DAG) { |
| 4547 | if (Cond != ISD::SETEQ && Cond != ISD::SETNE) |
| 4548 | return SDValue(); |
| 4549 | |
| 4550 | auto *C1 = isConstOrConstSplat(N: N1, /* AllowUndefs */ true); |
| 4551 | if (!C1 || !(C1->isZero() || C1->isAllOnes())) |
| 4552 | return SDValue(); |
| 4553 | |
| 4554 | auto getRotateSource = [](SDValue X) { |
| 4555 | if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR) |
| 4556 | return X.getOperand(i: 0); |
| 4557 | return SDValue(); |
| 4558 | }; |
| 4559 | |
| 4560 | // Peek through a rotated value compared against 0 or -1: |
| 4561 | // (rot X, Y) == 0/-1 --> X == 0/-1 |
| 4562 | // (rot X, Y) != 0/-1 --> X != 0/-1 |
| 4563 | if (SDValue R = getRotateSource(N0)) |
| 4564 | return DAG.getSetCC(DL: dl, VT, LHS: R, RHS: N1, Cond); |
| 4565 | |
| 4566 | // Peek through an 'or' of a rotated value compared against 0: |
| 4567 | // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0 |
| 4568 | // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0 |
| 4569 | // |
| 4570 | // TODO: Add the 'and' with -1 sibling. |
| 4571 | // TODO: Recurse through a series of 'or' ops to find the rotate. |
| 4572 | EVT OpVT = N0.getValueType(); |
| 4573 | if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) { |
| 4574 | if (SDValue R = getRotateSource(N0.getOperand(i: 0))) { |
| 4575 | SDValue NewOr = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: OpVT, N1: R, N2: N0.getOperand(i: 1)); |
| 4576 | return DAG.getSetCC(DL: dl, VT, LHS: NewOr, RHS: N1, Cond); |
| 4577 | } |
| 4578 | if (SDValue R = getRotateSource(N0.getOperand(i: 1))) { |
| 4579 | SDValue NewOr = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: OpVT, N1: R, N2: N0.getOperand(i: 0)); |
| 4580 | return DAG.getSetCC(DL: dl, VT, LHS: NewOr, RHS: N1, Cond); |
| 4581 | } |
| 4582 | } |
| 4583 | |
| 4584 | return SDValue(); |
| 4585 | } |
| 4586 | |
| 4587 | static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1, |
| 4588 | ISD::CondCode Cond, const SDLoc &dl, |
| 4589 | SelectionDAG &DAG) { |
| 4590 | // If we are testing for all-bits-clear, we might be able to do that with |
| 4591 | // less shifting since bit-order does not matter. |
| 4592 | if (Cond != ISD::SETEQ && Cond != ISD::SETNE) |
| 4593 | return SDValue(); |
| 4594 | |
| 4595 | auto *C1 = isConstOrConstSplat(N: N1, /* AllowUndefs */ true); |
| 4596 | if (!C1 || !C1->isZero()) |
| 4597 | return SDValue(); |
| 4598 | |
| 4599 | if (!N0.hasOneUse() || |
| 4600 | (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR)) |
| 4601 | return SDValue(); |
| 4602 | |
| 4603 | unsigned BitWidth = N0.getScalarValueSizeInBits(); |
| 4604 | auto *ShAmtC = isConstOrConstSplat(N: N0.getOperand(i: 2)); |
| 4605 | if (!ShAmtC) |
| 4606 | return SDValue(); |
| 4607 | |
| 4608 | uint64_t ShAmt = ShAmtC->getAPIntValue().urem(RHS: BitWidth); |
| 4609 | if (ShAmt == 0) |
| 4610 | return SDValue(); |
| 4611 | |
| 4612 | // Canonicalize fshr as fshl to reduce pattern-matching. |
| 4613 | if (N0.getOpcode() == ISD::FSHR) |
| 4614 | ShAmt = BitWidth - ShAmt; |
| 4615 | |
| 4616 | // Match an 'or' with a specific operand 'Other' in either commuted variant. |
| 4617 | SDValue X, Y; |
| 4618 | auto matchOr = [&X, &Y](SDValue Or, SDValue Other) { |
| 4619 | if (Or.getOpcode() != ISD::OR || !Or.hasOneUse()) |
| 4620 | return false; |
| 4621 | if (Or.getOperand(i: 0) == Other) { |
| 4622 | X = Or.getOperand(i: 0); |
| 4623 | Y = Or.getOperand(i: 1); |
| 4624 | return true; |
| 4625 | } |
| 4626 | if (Or.getOperand(i: 1) == Other) { |
| 4627 | X = Or.getOperand(i: 1); |
| 4628 | Y = Or.getOperand(i: 0); |
| 4629 | return true; |
| 4630 | } |
| 4631 | return false; |
| 4632 | }; |
| 4633 | |
| 4634 | EVT OpVT = N0.getValueType(); |
| 4635 | EVT ShAmtVT = N0.getOperand(i: 2).getValueType(); |
| 4636 | SDValue F0 = N0.getOperand(i: 0); |
| 4637 | SDValue F1 = N0.getOperand(i: 1); |
| 4638 | if (matchOr(F0, F1)) { |
| 4639 | // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0 |
| 4640 | SDValue NewShAmt = DAG.getConstant(Val: ShAmt, DL: dl, VT: ShAmtVT); |
| 4641 | SDValue Shift = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT: OpVT, N1: Y, N2: NewShAmt); |
| 4642 | SDValue NewOr = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: OpVT, N1: Shift, N2: X); |
| 4643 | return DAG.getSetCC(DL: dl, VT, LHS: NewOr, RHS: N1, Cond); |
| 4644 | } |
| 4645 | if (matchOr(F1, F0)) { |
| 4646 | // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0 |
| 4647 | SDValue NewShAmt = DAG.getConstant(Val: BitWidth - ShAmt, DL: dl, VT: ShAmtVT); |
| 4648 | SDValue Shift = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: OpVT, N1: Y, N2: NewShAmt); |
| 4649 | SDValue NewOr = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: OpVT, N1: Shift, N2: X); |
| 4650 | return DAG.getSetCC(DL: dl, VT, LHS: NewOr, RHS: N1, Cond); |
| 4651 | } |
| 4652 | |
| 4653 | return SDValue(); |
| 4654 | } |
| 4655 | |
| 4656 | /// Try to simplify a setcc built with the specified operands and cc. If it is |
| 4657 | /// unable to simplify it, return a null SDValue. |
| 4658 | SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, |
| 4659 | ISD::CondCode Cond, bool foldBooleans, |
| 4660 | DAGCombinerInfo &DCI, |
| 4661 | const SDLoc &dl) const { |
| 4662 | SelectionDAG &DAG = DCI.DAG; |
| 4663 | const DataLayout &Layout = DAG.getDataLayout(); |
| 4664 | EVT OpVT = N0.getValueType(); |
| 4665 | AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); |
| 4666 | |
| 4667 | // Constant fold or commute setcc. |
| 4668 | if (SDValue Fold = DAG.FoldSetCC(VT, N1: N0, N2: N1, Cond, dl)) |
| 4669 | return Fold; |
| 4670 | |
| 4671 | bool N0ConstOrSplat = |
| 4672 | isConstOrConstSplat(N: N0, /*AllowUndefs*/ false, /*AllowTruncate*/ AllowTruncation: true); |
| 4673 | bool N1ConstOrSplat = |
| 4674 | isConstOrConstSplat(N: N1, /*AllowUndefs*/ false, /*AllowTruncate*/ AllowTruncation: true); |
| 4675 | |
| 4676 | // Canonicalize toward having the constant on the RHS. |
| 4677 | // TODO: Handle non-splat vector constants. All undef causes trouble. |
| 4678 | // FIXME: We can't yet fold constant scalable vector splats, so avoid an |
| 4679 | // infinite loop here when we encounter one. |
| 4680 | ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Operation: Cond); |
| 4681 | if (N0ConstOrSplat && !N1ConstOrSplat && |
| 4682 | (DCI.isBeforeLegalizeOps() || |
| 4683 | isCondCodeLegal(CC: SwappedCC, VT: N0.getSimpleValueType()))) |
| 4684 | return DAG.getSetCC(DL: dl, VT, LHS: N1, RHS: N0, Cond: SwappedCC); |
| 4685 | |
| 4686 | // If we have a subtract with the same 2 non-constant operands as this setcc |
| 4687 | // -- but in reverse order -- then try to commute the operands of this setcc |
| 4688 | // to match. A matching pair of setcc (cmp) and sub may be combined into 1 |
| 4689 | // instruction on some targets. |
| 4690 | if (!N0ConstOrSplat && !N1ConstOrSplat && |
| 4691 | (DCI.isBeforeLegalizeOps() || |
| 4692 | isCondCodeLegal(CC: SwappedCC, VT: N0.getSimpleValueType())) && |
| 4693 | DAG.doesNodeExist(Opcode: ISD::SUB, VTList: DAG.getVTList(VT: OpVT), Ops: {N1, N0}) && |
| 4694 | !DAG.doesNodeExist(Opcode: ISD::SUB, VTList: DAG.getVTList(VT: OpVT), Ops: {N0, N1})) |
| 4695 | return DAG.getSetCC(DL: dl, VT, LHS: N1, RHS: N0, Cond: SwappedCC); |
| 4696 | |
| 4697 | if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG)) |
| 4698 | return V; |
| 4699 | |
| 4700 | if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG)) |
| 4701 | return V; |
| 4702 | |
| 4703 | if (auto *N1C = isConstOrConstSplat(N: N1)) { |
| 4704 | const APInt &C1 = N1C->getAPIntValue(); |
| 4705 | |
| 4706 | // Optimize some CTPOP cases. |
| 4707 | if (SDValue V = simplifySetCCWithCTPOP(TLI: *this, VT, N0, C1, Cond, dl, DAG)) |
| 4708 | return V; |
| 4709 | |
| 4710 | // For equality to 0 of a no-wrap multiply, decompose and test each op: |
| 4711 | // X * Y == 0 --> (X == 0) || (Y == 0) |
| 4712 | // X * Y != 0 --> (X != 0) && (Y != 0) |
| 4713 | // TODO: This bails out if minsize is set, but if the target doesn't have a |
| 4714 | // single instruction multiply for this type, it would likely be |
| 4715 | // smaller to decompose. |
| 4716 | if (C1.isZero() && (Cond == ISD::SETEQ || Cond == ISD::SETNE) && |
| 4717 | N0.getOpcode() == ISD::MUL && N0.hasOneUse() && |
| 4718 | (N0->getFlags().hasNoUnsignedWrap() || |
| 4719 | N0->getFlags().hasNoSignedWrap()) && |
| 4720 | !Attr.hasFnAttr(Kind: Attribute::MinSize)) { |
| 4721 | SDValue IsXZero = DAG.getSetCC(DL: dl, VT, LHS: N0.getOperand(i: 0), RHS: N1, Cond); |
| 4722 | SDValue IsYZero = DAG.getSetCC(DL: dl, VT, LHS: N0.getOperand(i: 1), RHS: N1, Cond); |
| 4723 | unsigned LogicOp = Cond == ISD::SETEQ ? ISD::OR : ISD::AND; |
| 4724 | return DAG.getNode(Opcode: LogicOp, DL: dl, VT, N1: IsXZero, N2: IsYZero); |
| 4725 | } |
| 4726 | |
| 4727 | // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an |
| 4728 | // equality comparison, then we're just comparing whether X itself is |
| 4729 | // zero. |
| 4730 | if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) && |
| 4731 | N0.getOperand(i: 0).getOpcode() == ISD::CTLZ && |
| 4732 | llvm::has_single_bit<uint32_t>(Value: N0.getScalarValueSizeInBits())) { |
| 4733 | if (ConstantSDNode *ShAmt = isConstOrConstSplat(N: N0.getOperand(i: 1))) { |
| 4734 | if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && |
| 4735 | ShAmt->getAPIntValue() == Log2_32(Value: N0.getScalarValueSizeInBits())) { |
| 4736 | if ((C1 == 0) == (Cond == ISD::SETEQ)) { |
| 4737 | // (srl (ctlz x), 5) == 0 -> X != 0 |
| 4738 | // (srl (ctlz x), 5) != 1 -> X != 0 |
| 4739 | Cond = ISD::SETNE; |
| 4740 | } else { |
| 4741 | // (srl (ctlz x), 5) != 0 -> X == 0 |
| 4742 | // (srl (ctlz x), 5) == 1 -> X == 0 |
| 4743 | Cond = ISD::SETEQ; |
| 4744 | } |
| 4745 | SDValue Zero = DAG.getConstant(Val: 0, DL: dl, VT: N0.getValueType()); |
| 4746 | return DAG.getSetCC(DL: dl, VT, LHS: N0.getOperand(i: 0).getOperand(i: 0), RHS: Zero, |
| 4747 | Cond); |
| 4748 | } |
| 4749 | } |
| 4750 | } |
| 4751 | } |
| 4752 | |
| 4753 | // FIXME: Support vectors. |
| 4754 | if (auto *N1C = dyn_cast<ConstantSDNode>(Val: N1.getNode())) { |
| 4755 | const APInt &C1 = N1C->getAPIntValue(); |
| 4756 | |
| 4757 | // (zext x) == C --> x == (trunc C) |
| 4758 | // (sext x) == C --> x == (trunc C) |
| 4759 | if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && |
| 4760 | DCI.isBeforeLegalize() && N0->hasOneUse()) { |
| 4761 | unsigned MinBits = N0.getValueSizeInBits(); |
| 4762 | SDValue PreExt; |
| 4763 | bool Signed = false; |
| 4764 | if (N0->getOpcode() == ISD::ZERO_EXTEND) { |
| 4765 | // ZExt |
| 4766 | MinBits = N0->getOperand(Num: 0).getValueSizeInBits(); |
| 4767 | PreExt = N0->getOperand(Num: 0); |
| 4768 | } else if (N0->getOpcode() == ISD::AND) { |
| 4769 | // DAGCombine turns costly ZExts into ANDs |
| 4770 | if (auto *C = dyn_cast<ConstantSDNode>(Val: N0->getOperand(Num: 1))) |
| 4771 | if ((C->getAPIntValue()+1).isPowerOf2()) { |
| 4772 | MinBits = C->getAPIntValue().countr_one(); |
| 4773 | PreExt = N0->getOperand(Num: 0); |
| 4774 | } |
| 4775 | } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { |
| 4776 | // SExt |
| 4777 | MinBits = N0->getOperand(Num: 0).getValueSizeInBits(); |
| 4778 | PreExt = N0->getOperand(Num: 0); |
| 4779 | Signed = true; |
| 4780 | } else if (auto *LN0 = dyn_cast<LoadSDNode>(Val&: N0)) { |
| 4781 | // ZEXTLOAD / SEXTLOAD |
| 4782 | if (LN0->getExtensionType() == ISD::ZEXTLOAD) { |
| 4783 | MinBits = LN0->getMemoryVT().getSizeInBits(); |
| 4784 | PreExt = N0; |
| 4785 | } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { |
| 4786 | Signed = true; |
| 4787 | MinBits = LN0->getMemoryVT().getSizeInBits(); |
| 4788 | PreExt = N0; |
| 4789 | } |
| 4790 | } |
| 4791 | |
| 4792 | // Figure out how many bits we need to preserve this constant. |
| 4793 | unsigned ReqdBits = Signed ? C1.getSignificantBits() : C1.getActiveBits(); |
| 4794 | |
| 4795 | // Make sure we're not losing bits from the constant. |
| 4796 | if (MinBits > 0 && |
| 4797 | MinBits < C1.getBitWidth() && |
| 4798 | MinBits >= ReqdBits) { |
| 4799 | EVT MinVT = EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: MinBits); |
| 4800 | if (isTypeDesirableForOp(ISD::SETCC, VT: MinVT)) { |
| 4801 | // Will get folded away. |
| 4802 | SDValue Trunc = DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: MinVT, Operand: PreExt); |
| 4803 | if (MinBits == 1 && C1 == 1) |
| 4804 | // Invert the condition. |
| 4805 | return DAG.getSetCC(DL: dl, VT, LHS: Trunc, RHS: DAG.getConstant(Val: 0, DL: dl, VT: MVT::i1), |
| 4806 | Cond: Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); |
| 4807 | SDValue C = DAG.getConstant(Val: C1.trunc(width: MinBits), DL: dl, VT: MinVT); |
| 4808 | return DAG.getSetCC(DL: dl, VT, LHS: Trunc, RHS: C, Cond); |
| 4809 | } |
| 4810 | |
| 4811 | // If truncating the setcc operands is not desirable, we can still |
| 4812 | // simplify the expression in some cases: |
| 4813 | // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) |
| 4814 | // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) |
| 4815 | // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) |
| 4816 | // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) |
| 4817 | // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) |
| 4818 | // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) |
| 4819 | SDValue TopSetCC = N0->getOperand(Num: 0); |
| 4820 | unsigned N0Opc = N0->getOpcode(); |
| 4821 | bool SExt = (N0Opc == ISD::SIGN_EXTEND); |
| 4822 | if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && |
| 4823 | TopSetCC.getOpcode() == ISD::SETCC && |
| 4824 | (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && |
| 4825 | (isConstFalseVal(N: N1) || |
| 4826 | isExtendedTrueVal(N: N1C, VT: N0->getValueType(ResNo: 0), SExt))) { |
| 4827 | |
| 4828 | bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) || |
| 4829 | (!N1C->isZero() && Cond == ISD::SETNE); |
| 4830 | |
| 4831 | if (!Inverse) |
| 4832 | return TopSetCC; |
| 4833 | |
| 4834 | ISD::CondCode InvCond = ISD::getSetCCInverse( |
| 4835 | Operation: cast<CondCodeSDNode>(Val: TopSetCC.getOperand(i: 2))->get(), |
| 4836 | Type: TopSetCC.getOperand(i: 0).getValueType()); |
| 4837 | return DAG.getSetCC(DL: dl, VT, LHS: TopSetCC.getOperand(i: 0), |
| 4838 | RHS: TopSetCC.getOperand(i: 1), |
| 4839 | Cond: InvCond); |
| 4840 | } |
| 4841 | } |
| 4842 | } |
| 4843 | |
| 4844 | // If the LHS is '(and load, const)', the RHS is 0, the test is for |
| 4845 | // equality or unsigned, and all 1 bits of the const are in the same |
| 4846 | // partial word, see if we can shorten the load. |
| 4847 | if (DCI.isBeforeLegalize() && |
| 4848 | !ISD::isSignedIntSetCC(Code: Cond) && |
| 4849 | N0.getOpcode() == ISD::AND && C1 == 0 && |
| 4850 | N0.getNode()->hasOneUse() && |
| 4851 | isa<LoadSDNode>(Val: N0.getOperand(i: 0)) && |
| 4852 | N0.getOperand(i: 0).getNode()->hasOneUse() && |
| 4853 | isa<ConstantSDNode>(Val: N0.getOperand(i: 1))) { |
| 4854 | auto *Lod = cast<LoadSDNode>(Val: N0.getOperand(i: 0)); |
| 4855 | APInt bestMask; |
| 4856 | unsigned bestWidth = 0, bestOffset = 0; |
| 4857 | if (Lod->isSimple() && Lod->isUnindexed() && |
| 4858 | (Lod->getMemoryVT().isByteSized() || |
| 4859 | isPaddedAtMostSignificantBitsWhenStored(VT: Lod->getMemoryVT()))) { |
| 4860 | unsigned memWidth = Lod->getMemoryVT().getStoreSizeInBits(); |
| 4861 | unsigned origWidth = N0.getValueSizeInBits(); |
| 4862 | unsigned maskWidth = origWidth; |
| 4863 | // We can narrow (e.g.) 16-bit extending loads on 32-bit target to |
| 4864 | // 8 bits, but have to be careful... |
| 4865 | if (Lod->getExtensionType() != ISD::NON_EXTLOAD) |
| 4866 | origWidth = Lod->getMemoryVT().getSizeInBits(); |
| 4867 | const APInt &Mask = N0.getConstantOperandAPInt(i: 1); |
| 4868 | // Only consider power-of-2 widths (and at least one byte) as candiates |
| 4869 | // for the narrowed load. |
| 4870 | for (unsigned width = 8; width < origWidth; width *= 2) { |
| 4871 | EVT newVT = EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: width); |
| 4872 | APInt newMask = APInt::getLowBitsSet(numBits: maskWidth, loBitsSet: width); |
| 4873 | // Avoid accessing any padding here for now (we could use memWidth |
| 4874 | // instead of origWidth here otherwise). |
| 4875 | unsigned maxOffset = origWidth - width; |
| 4876 | for (unsigned offset = 0; offset <= maxOffset; offset += 8) { |
| 4877 | if (Mask.isSubsetOf(RHS: newMask)) { |
| 4878 | unsigned ptrOffset = |
| 4879 | Layout.isLittleEndian() ? offset : memWidth - width - offset; |
| 4880 | unsigned IsFast = 0; |
| 4881 | assert((ptrOffset % 8) == 0 && "Non-Bytealigned pointer offset" ); |
| 4882 | Align NewAlign = commonAlignment(A: Lod->getAlign(), Offset: ptrOffset / 8); |
| 4883 | if (shouldReduceLoadWidth(Load: Lod, ExtTy: ISD::NON_EXTLOAD, NewVT: newVT, |
| 4884 | ByteOffset: ptrOffset / 8) && |
| 4885 | allowsMemoryAccess( |
| 4886 | Context&: *DAG.getContext(), DL: Layout, VT: newVT, AddrSpace: Lod->getAddressSpace(), |
| 4887 | Alignment: NewAlign, Flags: Lod->getMemOperand()->getFlags(), Fast: &IsFast) && |
| 4888 | IsFast) { |
| 4889 | bestOffset = ptrOffset / 8; |
| 4890 | bestMask = Mask.lshr(shiftAmt: offset); |
| 4891 | bestWidth = width; |
| 4892 | break; |
| 4893 | } |
| 4894 | } |
| 4895 | newMask <<= 8; |
| 4896 | } |
| 4897 | if (bestWidth) |
| 4898 | break; |
| 4899 | } |
| 4900 | } |
| 4901 | if (bestWidth) { |
| 4902 | EVT newVT = EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: bestWidth); |
| 4903 | SDValue Ptr = Lod->getBasePtr(); |
| 4904 | if (bestOffset != 0) |
| 4905 | Ptr = DAG.getObjectPtrOffset(SL: dl, Ptr, Offset: TypeSize::getFixed(ExactSize: bestOffset)); |
| 4906 | SDValue NewLoad = |
| 4907 | DAG.getLoad(VT: newVT, dl, Chain: Lod->getChain(), Ptr, |
| 4908 | PtrInfo: Lod->getPointerInfo().getWithOffset(O: bestOffset), |
| 4909 | Alignment: Lod->getBaseAlign()); |
| 4910 | SDValue And = |
| 4911 | DAG.getNode(Opcode: ISD::AND, DL: dl, VT: newVT, N1: NewLoad, |
| 4912 | N2: DAG.getConstant(Val: bestMask.trunc(width: bestWidth), DL: dl, VT: newVT)); |
| 4913 | return DAG.getSetCC(DL: dl, VT, LHS: And, RHS: DAG.getConstant(Val: 0LL, DL: dl, VT: newVT), Cond); |
| 4914 | } |
| 4915 | } |
| 4916 | |
| 4917 | // If the LHS is a ZERO_EXTEND, perform the comparison on the input. |
| 4918 | if (N0.getOpcode() == ISD::ZERO_EXTEND) { |
| 4919 | unsigned InSize = N0.getOperand(i: 0).getValueSizeInBits(); |
| 4920 | |
| 4921 | // If the comparison constant has bits in the upper part, the |
| 4922 | // zero-extended value could never match. |
| 4923 | if (C1.intersects(RHS: APInt::getHighBitsSet(numBits: C1.getBitWidth(), |
| 4924 | hiBitsSet: C1.getBitWidth() - InSize))) { |
| 4925 | switch (Cond) { |
| 4926 | case ISD::SETUGT: |
| 4927 | case ISD::SETUGE: |
| 4928 | case ISD::SETEQ: |
| 4929 | return DAG.getConstant(Val: 0, DL: dl, VT); |
| 4930 | case ISD::SETULT: |
| 4931 | case ISD::SETULE: |
| 4932 | case ISD::SETNE: |
| 4933 | return DAG.getConstant(Val: 1, DL: dl, VT); |
| 4934 | case ISD::SETGT: |
| 4935 | case ISD::SETGE: |
| 4936 | // True if the sign bit of C1 is set. |
| 4937 | return DAG.getConstant(Val: C1.isNegative(), DL: dl, VT); |
| 4938 | case ISD::SETLT: |
| 4939 | case ISD::SETLE: |
| 4940 | // True if the sign bit of C1 isn't set. |
| 4941 | return DAG.getConstant(Val: C1.isNonNegative(), DL: dl, VT); |
| 4942 | default: |
| 4943 | break; |
| 4944 | } |
| 4945 | } |
| 4946 | |
| 4947 | // Otherwise, we can perform the comparison with the low bits. |
| 4948 | switch (Cond) { |
| 4949 | case ISD::SETEQ: |
| 4950 | case ISD::SETNE: |
| 4951 | case ISD::SETUGT: |
| 4952 | case ISD::SETUGE: |
| 4953 | case ISD::SETULT: |
| 4954 | case ISD::SETULE: { |
| 4955 | EVT newVT = N0.getOperand(i: 0).getValueType(); |
| 4956 | // FIXME: Should use isNarrowingProfitable. |
| 4957 | if (DCI.isBeforeLegalizeOps() || |
| 4958 | (isOperationLegal(Op: ISD::SETCC, VT: newVT) && |
| 4959 | isCondCodeLegal(CC: Cond, VT: newVT.getSimpleVT()) && |
| 4960 | isTypeDesirableForOp(ISD::SETCC, VT: newVT))) { |
| 4961 | EVT NewSetCCVT = getSetCCResultType(DL: Layout, Context&: *DAG.getContext(), VT: newVT); |
| 4962 | SDValue NewConst = DAG.getConstant(Val: C1.trunc(width: InSize), DL: dl, VT: newVT); |
| 4963 | |
| 4964 | SDValue NewSetCC = DAG.getSetCC(DL: dl, VT: NewSetCCVT, LHS: N0.getOperand(i: 0), |
| 4965 | RHS: NewConst, Cond); |
| 4966 | return DAG.getBoolExtOrTrunc(Op: NewSetCC, SL: dl, VT, OpVT: N0.getValueType()); |
| 4967 | } |
| 4968 | break; |
| 4969 | } |
| 4970 | default: |
| 4971 | break; // todo, be more careful with signed comparisons |
| 4972 | } |
| 4973 | } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && |
| 4974 | (Cond == ISD::SETEQ || Cond == ISD::SETNE) && |
| 4975 | !isSExtCheaperThanZExt(FromTy: cast<VTSDNode>(Val: N0.getOperand(i: 1))->getVT(), |
| 4976 | ToTy: OpVT)) { |
| 4977 | EVT ExtSrcTy = cast<VTSDNode>(Val: N0.getOperand(i: 1))->getVT(); |
| 4978 | unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); |
| 4979 | EVT ExtDstTy = N0.getValueType(); |
| 4980 | unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); |
| 4981 | |
| 4982 | // If the constant doesn't fit into the number of bits for the source of |
| 4983 | // the sign extension, it is impossible for both sides to be equal. |
| 4984 | if (C1.getSignificantBits() > ExtSrcTyBits) |
| 4985 | return DAG.getBoolConstant(V: Cond == ISD::SETNE, DL: dl, VT, OpVT); |
| 4986 | |
| 4987 | assert(ExtDstTy == N0.getOperand(0).getValueType() && |
| 4988 | ExtDstTy != ExtSrcTy && "Unexpected types!" ); |
| 4989 | APInt Imm = APInt::getLowBitsSet(numBits: ExtDstTyBits, loBitsSet: ExtSrcTyBits); |
| 4990 | SDValue ZextOp = DAG.getNode(Opcode: ISD::AND, DL: dl, VT: ExtDstTy, N1: N0.getOperand(i: 0), |
| 4991 | N2: DAG.getConstant(Val: Imm, DL: dl, VT: ExtDstTy)); |
| 4992 | if (!DCI.isCalledByLegalizer()) |
| 4993 | DCI.AddToWorklist(N: ZextOp.getNode()); |
| 4994 | // Otherwise, make this a use of a zext. |
| 4995 | return DAG.getSetCC(DL: dl, VT, LHS: ZextOp, |
| 4996 | RHS: DAG.getConstant(Val: C1 & Imm, DL: dl, VT: ExtDstTy), Cond); |
| 4997 | } else if ((N1C->isZero() || N1C->isOne()) && |
| 4998 | (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { |
| 4999 | // SETCC (X), [0|1], [EQ|NE] -> X if X is known 0/1. i1 types are |
| 5000 | // excluded as they are handled below whilst checking for foldBooleans. |
| 5001 | if ((N0.getOpcode() == ISD::SETCC || VT.getScalarType() != MVT::i1) && |
| 5002 | isTypeLegal(VT) && VT.bitsLE(VT: N0.getValueType()) && |
| 5003 | (N0.getValueType() == MVT::i1 || |
| 5004 | getBooleanContents(Type: N0.getValueType()) == ZeroOrOneBooleanContent) && |
| 5005 | DAG.MaskedValueIsZero( |
| 5006 | Op: N0, Mask: APInt::getBitsSetFrom(numBits: N0.getValueSizeInBits(), loBit: 1))) { |
| 5007 | bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); |
| 5008 | if (TrueWhenTrue) |
| 5009 | return DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT, Operand: N0); |
| 5010 | // Invert the condition. |
| 5011 | if (N0.getOpcode() == ISD::SETCC) { |
| 5012 | ISD::CondCode CC = cast<CondCodeSDNode>(Val: N0.getOperand(i: 2))->get(); |
| 5013 | CC = ISD::getSetCCInverse(Operation: CC, Type: N0.getOperand(i: 0).getValueType()); |
| 5014 | if (DCI.isBeforeLegalizeOps() || |
| 5015 | isCondCodeLegal(CC, VT: N0.getOperand(i: 0).getSimpleValueType())) |
| 5016 | return DAG.getSetCC(DL: dl, VT, LHS: N0.getOperand(i: 0), RHS: N0.getOperand(i: 1), Cond: CC); |
| 5017 | } |
| 5018 | } |
| 5019 | |
| 5020 | if ((N0.getOpcode() == ISD::XOR || |
| 5021 | (N0.getOpcode() == ISD::AND && |
| 5022 | N0.getOperand(i: 0).getOpcode() == ISD::XOR && |
| 5023 | N0.getOperand(i: 1) == N0.getOperand(i: 0).getOperand(i: 1))) && |
| 5024 | isOneConstant(V: N0.getOperand(i: 1))) { |
| 5025 | // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We |
| 5026 | // can only do this if the top bits are known zero. |
| 5027 | unsigned BitWidth = N0.getValueSizeInBits(); |
| 5028 | if (DAG.MaskedValueIsZero(Op: N0, |
| 5029 | Mask: APInt::getHighBitsSet(numBits: BitWidth, |
| 5030 | hiBitsSet: BitWidth-1))) { |
| 5031 | // Okay, get the un-inverted input value. |
| 5032 | SDValue Val; |
| 5033 | if (N0.getOpcode() == ISD::XOR) { |
| 5034 | Val = N0.getOperand(i: 0); |
| 5035 | } else { |
| 5036 | assert(N0.getOpcode() == ISD::AND && |
| 5037 | N0.getOperand(0).getOpcode() == ISD::XOR); |
| 5038 | // ((X^1)&1)^1 -> X & 1 |
| 5039 | Val = DAG.getNode(Opcode: ISD::AND, DL: dl, VT: N0.getValueType(), |
| 5040 | N1: N0.getOperand(i: 0).getOperand(i: 0), |
| 5041 | N2: N0.getOperand(i: 1)); |
| 5042 | } |
| 5043 | |
| 5044 | return DAG.getSetCC(DL: dl, VT, LHS: Val, RHS: N1, |
| 5045 | Cond: Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); |
| 5046 | } |
| 5047 | } else if (N1C->isOne()) { |
| 5048 | SDValue Op0 = N0; |
| 5049 | if (Op0.getOpcode() == ISD::TRUNCATE) |
| 5050 | Op0 = Op0.getOperand(i: 0); |
| 5051 | |
| 5052 | if ((Op0.getOpcode() == ISD::XOR) && |
| 5053 | Op0.getOperand(i: 0).getOpcode() == ISD::SETCC && |
| 5054 | Op0.getOperand(i: 1).getOpcode() == ISD::SETCC) { |
| 5055 | SDValue XorLHS = Op0.getOperand(i: 0); |
| 5056 | SDValue XorRHS = Op0.getOperand(i: 1); |
| 5057 | // Ensure that the input setccs return an i1 type or 0/1 value. |
| 5058 | if (Op0.getValueType() == MVT::i1 || |
| 5059 | (getBooleanContents(Type: XorLHS.getOperand(i: 0).getValueType()) == |
| 5060 | ZeroOrOneBooleanContent && |
| 5061 | getBooleanContents(Type: XorRHS.getOperand(i: 0).getValueType()) == |
| 5062 | ZeroOrOneBooleanContent)) { |
| 5063 | // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) |
| 5064 | Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; |
| 5065 | return DAG.getSetCC(DL: dl, VT, LHS: XorLHS, RHS: XorRHS, Cond); |
| 5066 | } |
| 5067 | } |
| 5068 | if (Op0.getOpcode() == ISD::AND && isOneConstant(V: Op0.getOperand(i: 1))) { |
| 5069 | // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. |
| 5070 | if (Op0.getValueType().bitsGT(VT)) |
| 5071 | Op0 = DAG.getNode(Opcode: ISD::AND, DL: dl, VT, |
| 5072 | N1: DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT, Operand: Op0.getOperand(i: 0)), |
| 5073 | N2: DAG.getConstant(Val: 1, DL: dl, VT)); |
| 5074 | else if (Op0.getValueType().bitsLT(VT)) |
| 5075 | Op0 = DAG.getNode(Opcode: ISD::AND, DL: dl, VT, |
| 5076 | N1: DAG.getNode(Opcode: ISD::ANY_EXTEND, DL: dl, VT, Operand: Op0.getOperand(i: 0)), |
| 5077 | N2: DAG.getConstant(Val: 1, DL: dl, VT)); |
| 5078 | |
| 5079 | return DAG.getSetCC(DL: dl, VT, LHS: Op0, |
| 5080 | RHS: DAG.getConstant(Val: 0, DL: dl, VT: Op0.getValueType()), |
| 5081 | Cond: Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); |
| 5082 | } |
| 5083 | if (Op0.getOpcode() == ISD::AssertZext && |
| 5084 | cast<VTSDNode>(Val: Op0.getOperand(i: 1))->getVT() == MVT::i1) |
| 5085 | return DAG.getSetCC(DL: dl, VT, LHS: Op0, |
| 5086 | RHS: DAG.getConstant(Val: 0, DL: dl, VT: Op0.getValueType()), |
| 5087 | Cond: Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); |
| 5088 | } |
| 5089 | } |
| 5090 | |
| 5091 | // Given: |
| 5092 | // icmp eq/ne (urem %x, %y), 0 |
| 5093 | // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': |
| 5094 | // icmp eq/ne %x, 0 |
| 5095 | if (N0.getOpcode() == ISD::UREM && N1C->isZero() && |
| 5096 | (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { |
| 5097 | KnownBits XKnown = DAG.computeKnownBits(Op: N0.getOperand(i: 0)); |
| 5098 | KnownBits YKnown = DAG.computeKnownBits(Op: N0.getOperand(i: 1)); |
| 5099 | if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) |
| 5100 | return DAG.getSetCC(DL: dl, VT, LHS: N0.getOperand(i: 0), RHS: N1, Cond); |
| 5101 | } |
| 5102 | |
| 5103 | // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0 |
| 5104 | // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0 |
| 5105 | if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && |
| 5106 | N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(Val: N0.getOperand(i: 1)) && |
| 5107 | N0.getConstantOperandAPInt(i: 1) == OpVT.getScalarSizeInBits() - 1 && |
| 5108 | N1C->isAllOnes()) { |
| 5109 | return DAG.getSetCC(DL: dl, VT, LHS: N0.getOperand(i: 0), |
| 5110 | RHS: DAG.getConstant(Val: 0, DL: dl, VT: OpVT), |
| 5111 | Cond: Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE); |
| 5112 | } |
| 5113 | |
| 5114 | if (SDValue V = |
| 5115 | optimizeSetCCOfSignedTruncationCheck(SCCVT: VT, N0, N1, Cond, DCI, DL: dl)) |
| 5116 | return V; |
| 5117 | } |
| 5118 | |
| 5119 | // These simplifications apply to splat vectors as well. |
| 5120 | // TODO: Handle more splat vector cases. |
| 5121 | if (auto *N1C = isConstOrConstSplat(N: N1)) { |
| 5122 | const APInt &C1 = N1C->getAPIntValue(); |
| 5123 | |
| 5124 | APInt MinVal, MaxVal; |
| 5125 | unsigned OperandBitSize = N1C->getValueType(ResNo: 0).getScalarSizeInBits(); |
| 5126 | if (ISD::isSignedIntSetCC(Code: Cond)) { |
| 5127 | MinVal = APInt::getSignedMinValue(numBits: OperandBitSize); |
| 5128 | MaxVal = APInt::getSignedMaxValue(numBits: OperandBitSize); |
| 5129 | } else { |
| 5130 | MinVal = APInt::getMinValue(numBits: OperandBitSize); |
| 5131 | MaxVal = APInt::getMaxValue(numBits: OperandBitSize); |
| 5132 | } |
| 5133 | |
| 5134 | // Canonicalize GE/LE comparisons to use GT/LT comparisons. |
| 5135 | if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { |
| 5136 | // X >= MIN --> true |
| 5137 | if (C1 == MinVal) |
| 5138 | return DAG.getBoolConstant(V: true, DL: dl, VT, OpVT); |
| 5139 | |
| 5140 | if (!VT.isVector()) { // TODO: Support this for vectors. |
| 5141 | // X >= C0 --> X > (C0 - 1) |
| 5142 | APInt C = C1 - 1; |
| 5143 | ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; |
| 5144 | if ((DCI.isBeforeLegalizeOps() || |
| 5145 | isCondCodeLegal(CC: NewCC, VT: OpVT.getSimpleVT())) && |
| 5146 | (!N1C->isOpaque() || (C.getBitWidth() <= 64 && |
| 5147 | isLegalICmpImmediate(C.getSExtValue())))) { |
| 5148 | return DAG.getSetCC(DL: dl, VT, LHS: N0, |
| 5149 | RHS: DAG.getConstant(Val: C, DL: dl, VT: N1.getValueType()), |
| 5150 | Cond: NewCC); |
| 5151 | } |
| 5152 | } |
| 5153 | } |
| 5154 | |
| 5155 | if (Cond == ISD::SETLE || Cond == ISD::SETULE) { |
| 5156 | // X <= MAX --> true |
| 5157 | if (C1 == MaxVal) |
| 5158 | return DAG.getBoolConstant(V: true, DL: dl, VT, OpVT); |
| 5159 | |
| 5160 | // X <= C0 --> X < (C0 + 1) |
| 5161 | if (!VT.isVector()) { // TODO: Support this for vectors. |
| 5162 | APInt C = C1 + 1; |
| 5163 | ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; |
| 5164 | if ((DCI.isBeforeLegalizeOps() || |
| 5165 | isCondCodeLegal(CC: NewCC, VT: OpVT.getSimpleVT())) && |
| 5166 | (!N1C->isOpaque() || (C.getBitWidth() <= 64 && |
| 5167 | isLegalICmpImmediate(C.getSExtValue())))) { |
| 5168 | return DAG.getSetCC(DL: dl, VT, LHS: N0, |
| 5169 | RHS: DAG.getConstant(Val: C, DL: dl, VT: N1.getValueType()), |
| 5170 | Cond: NewCC); |
| 5171 | } |
| 5172 | } |
| 5173 | } |
| 5174 | |
| 5175 | if (Cond == ISD::SETLT || Cond == ISD::SETULT) { |
| 5176 | if (C1 == MinVal) |
| 5177 | return DAG.getBoolConstant(V: false, DL: dl, VT, OpVT); // X < MIN --> false |
| 5178 | |
| 5179 | // TODO: Support this for vectors after legalize ops. |
| 5180 | if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { |
| 5181 | // Canonicalize setlt X, Max --> setne X, Max |
| 5182 | if (C1 == MaxVal) |
| 5183 | return DAG.getSetCC(DL: dl, VT, LHS: N0, RHS: N1, Cond: ISD::SETNE); |
| 5184 | |
| 5185 | // If we have setult X, 1, turn it into seteq X, 0 |
| 5186 | if (C1 == MinVal+1) |
| 5187 | return DAG.getSetCC(DL: dl, VT, LHS: N0, |
| 5188 | RHS: DAG.getConstant(Val: MinVal, DL: dl, VT: N0.getValueType()), |
| 5189 | Cond: ISD::SETEQ); |
| 5190 | } |
| 5191 | } |
| 5192 | |
| 5193 | if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { |
| 5194 | if (C1 == MaxVal) |
| 5195 | return DAG.getBoolConstant(V: false, DL: dl, VT, OpVT); // X > MAX --> false |
| 5196 | |
| 5197 | // TODO: Support this for vectors after legalize ops. |
| 5198 | if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { |
| 5199 | // Canonicalize setgt X, Min --> setne X, Min |
| 5200 | if (C1 == MinVal) |
| 5201 | return DAG.getSetCC(DL: dl, VT, LHS: N0, RHS: N1, Cond: ISD::SETNE); |
| 5202 | |
| 5203 | // If we have setugt X, Max-1, turn it into seteq X, Max |
| 5204 | if (C1 == MaxVal-1) |
| 5205 | return DAG.getSetCC(DL: dl, VT, LHS: N0, |
| 5206 | RHS: DAG.getConstant(Val: MaxVal, DL: dl, VT: N0.getValueType()), |
| 5207 | Cond: ISD::SETEQ); |
| 5208 | } |
| 5209 | } |
| 5210 | |
| 5211 | if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { |
| 5212 | // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 |
| 5213 | if (C1.isZero()) |
| 5214 | if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( |
| 5215 | SCCVT: VT, N0, N1C: N1, Cond, DCI, DL: dl)) |
| 5216 | return CC; |
| 5217 | |
| 5218 | // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). |
| 5219 | // For example, when high 32-bits of i64 X are known clear: |
| 5220 | // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 |
| 5221 | // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 |
| 5222 | bool CmpZero = N1C->isZero(); |
| 5223 | bool CmpNegOne = N1C->isAllOnes(); |
| 5224 | if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { |
| 5225 | // Match or(lo,shl(hi,bw/2)) pattern. |
| 5226 | auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { |
| 5227 | unsigned EltBits = V.getScalarValueSizeInBits(); |
| 5228 | if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) |
| 5229 | return false; |
| 5230 | SDValue LHS = V.getOperand(i: 0); |
| 5231 | SDValue RHS = V.getOperand(i: 1); |
| 5232 | APInt HiBits = APInt::getHighBitsSet(numBits: EltBits, hiBitsSet: EltBits / 2); |
| 5233 | // Unshifted element must have zero upperbits. |
| 5234 | if (RHS.getOpcode() == ISD::SHL && |
| 5235 | isa<ConstantSDNode>(Val: RHS.getOperand(i: 1)) && |
| 5236 | RHS.getConstantOperandAPInt(i: 1) == (EltBits / 2) && |
| 5237 | DAG.MaskedValueIsZero(Op: LHS, Mask: HiBits)) { |
| 5238 | Lo = LHS; |
| 5239 | Hi = RHS.getOperand(i: 0); |
| 5240 | return true; |
| 5241 | } |
| 5242 | if (LHS.getOpcode() == ISD::SHL && |
| 5243 | isa<ConstantSDNode>(Val: LHS.getOperand(i: 1)) && |
| 5244 | LHS.getConstantOperandAPInt(i: 1) == (EltBits / 2) && |
| 5245 | DAG.MaskedValueIsZero(Op: RHS, Mask: HiBits)) { |
| 5246 | Lo = RHS; |
| 5247 | Hi = LHS.getOperand(i: 0); |
| 5248 | return true; |
| 5249 | } |
| 5250 | return false; |
| 5251 | }; |
| 5252 | |
| 5253 | auto MergeConcat = [&](SDValue Lo, SDValue Hi) { |
| 5254 | unsigned EltBits = N0.getScalarValueSizeInBits(); |
| 5255 | unsigned HalfBits = EltBits / 2; |
| 5256 | APInt HiBits = APInt::getHighBitsSet(numBits: EltBits, hiBitsSet: HalfBits); |
| 5257 | SDValue LoBits = DAG.getConstant(Val: ~HiBits, DL: dl, VT: OpVT); |
| 5258 | SDValue HiMask = DAG.getNode(Opcode: ISD::AND, DL: dl, VT: OpVT, N1: Hi, N2: LoBits); |
| 5259 | SDValue NewN0 = |
| 5260 | DAG.getNode(Opcode: CmpZero ? ISD::OR : ISD::AND, DL: dl, VT: OpVT, N1: Lo, N2: HiMask); |
| 5261 | SDValue NewN1 = CmpZero ? DAG.getConstant(Val: 0, DL: dl, VT: OpVT) : LoBits; |
| 5262 | return DAG.getSetCC(DL: dl, VT, LHS: NewN0, RHS: NewN1, Cond); |
| 5263 | }; |
| 5264 | |
| 5265 | SDValue Lo, Hi; |
| 5266 | if (IsConcat(N0, Lo, Hi)) |
| 5267 | return MergeConcat(Lo, Hi); |
| 5268 | |
| 5269 | if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { |
| 5270 | SDValue Lo0, Lo1, Hi0, Hi1; |
| 5271 | if (IsConcat(N0.getOperand(i: 0), Lo0, Hi0) && |
| 5272 | IsConcat(N0.getOperand(i: 1), Lo1, Hi1)) { |
| 5273 | return MergeConcat(DAG.getNode(Opcode: N0.getOpcode(), DL: dl, VT: OpVT, N1: Lo0, N2: Lo1), |
| 5274 | DAG.getNode(Opcode: N0.getOpcode(), DL: dl, VT: OpVT, N1: Hi0, N2: Hi1)); |
| 5275 | } |
| 5276 | } |
| 5277 | } |
| 5278 | } |
| 5279 | |
| 5280 | // If we have "setcc X, C0", check to see if we can shrink the immediate |
| 5281 | // by changing cc. |
| 5282 | // TODO: Support this for vectors after legalize ops. |
| 5283 | if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { |
| 5284 | // SETUGT X, SINTMAX -> SETLT X, 0 |
| 5285 | // SETUGE X, SINTMIN -> SETLT X, 0 |
| 5286 | if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || |
| 5287 | (Cond == ISD::SETUGE && C1.isMinSignedValue())) |
| 5288 | return DAG.getSetCC(DL: dl, VT, LHS: N0, |
| 5289 | RHS: DAG.getConstant(Val: 0, DL: dl, VT: N1.getValueType()), |
| 5290 | Cond: ISD::SETLT); |
| 5291 | |
| 5292 | // SETULT X, SINTMIN -> SETGT X, -1 |
| 5293 | // SETULE X, SINTMAX -> SETGT X, -1 |
| 5294 | if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || |
| 5295 | (Cond == ISD::SETULE && C1.isMaxSignedValue())) |
| 5296 | return DAG.getSetCC(DL: dl, VT, LHS: N0, |
| 5297 | RHS: DAG.getAllOnesConstant(DL: dl, VT: N1.getValueType()), |
| 5298 | Cond: ISD::SETGT); |
| 5299 | } |
| 5300 | } |
| 5301 | |
| 5302 | // Back to non-vector simplifications. |
| 5303 | // TODO: Can we do these for vector splats? |
| 5304 | if (auto *N1C = dyn_cast<ConstantSDNode>(Val: N1.getNode())) { |
| 5305 | const APInt &C1 = N1C->getAPIntValue(); |
| 5306 | EVT ShValTy = N0.getValueType(); |
| 5307 | |
| 5308 | // Fold bit comparisons when we can. This will result in an |
| 5309 | // incorrect value when boolean false is negative one, unless |
| 5310 | // the bitsize is 1 in which case the false value is the same |
| 5311 | // in practice regardless of the representation. |
| 5312 | if ((VT.getSizeInBits() == 1 || |
| 5313 | getBooleanContents(Type: N0.getValueType()) == ZeroOrOneBooleanContent) && |
| 5314 | (Cond == ISD::SETEQ || Cond == ISD::SETNE) && |
| 5315 | (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(VT: ShValTy))) && |
| 5316 | N0.getOpcode() == ISD::AND) { |
| 5317 | if (auto *AndRHS = dyn_cast<ConstantSDNode>(Val: N0.getOperand(i: 1))) { |
| 5318 | if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 |
| 5319 | // Perform the xform if the AND RHS is a single bit. |
| 5320 | unsigned ShCt = AndRHS->getAPIntValue().logBase2(); |
| 5321 | if (AndRHS->getAPIntValue().isPowerOf2() && |
| 5322 | !shouldAvoidTransformToShift(VT: ShValTy, Amount: ShCt)) { |
| 5323 | return DAG.getNode( |
| 5324 | Opcode: ISD::TRUNCATE, DL: dl, VT, |
| 5325 | Operand: DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: ShValTy, N1: N0, |
| 5326 | N2: DAG.getShiftAmountConstant(Val: ShCt, VT: ShValTy, DL: dl))); |
| 5327 | } |
| 5328 | } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { |
| 5329 | // (X & 8) == 8 --> (X & 8) >> 3 |
| 5330 | // Perform the xform if C1 is a single bit. |
| 5331 | unsigned ShCt = C1.logBase2(); |
| 5332 | if (C1.isPowerOf2() && !shouldAvoidTransformToShift(VT: ShValTy, Amount: ShCt)) { |
| 5333 | return DAG.getNode( |
| 5334 | Opcode: ISD::TRUNCATE, DL: dl, VT, |
| 5335 | Operand: DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: ShValTy, N1: N0, |
| 5336 | N2: DAG.getShiftAmountConstant(Val: ShCt, VT: ShValTy, DL: dl))); |
| 5337 | } |
| 5338 | } |
| 5339 | } |
| 5340 | } |
| 5341 | |
| 5342 | if (C1.getSignificantBits() <= 64 && |
| 5343 | !isLegalICmpImmediate(C1.getSExtValue())) { |
| 5344 | // (X & -256) == 256 -> (X >> 8) == 1 |
| 5345 | if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && |
| 5346 | N0.getOpcode() == ISD::AND && N0.hasOneUse()) { |
| 5347 | if (auto *AndRHS = dyn_cast<ConstantSDNode>(Val: N0.getOperand(i: 1))) { |
| 5348 | const APInt &AndRHSC = AndRHS->getAPIntValue(); |
| 5349 | if (AndRHSC.isNegatedPowerOf2() && C1.isSubsetOf(RHS: AndRHSC)) { |
| 5350 | unsigned ShiftBits = AndRHSC.countr_zero(); |
| 5351 | if (!shouldAvoidTransformToShift(VT: ShValTy, Amount: ShiftBits)) { |
| 5352 | SDValue Shift = DAG.getNode( |
| 5353 | Opcode: ISD::SRL, DL: dl, VT: ShValTy, N1: N0.getOperand(i: 0), |
| 5354 | N2: DAG.getShiftAmountConstant(Val: ShiftBits, VT: ShValTy, DL: dl)); |
| 5355 | SDValue CmpRHS = DAG.getConstant(Val: C1.lshr(shiftAmt: ShiftBits), DL: dl, VT: ShValTy); |
| 5356 | return DAG.getSetCC(DL: dl, VT, LHS: Shift, RHS: CmpRHS, Cond); |
| 5357 | } |
| 5358 | } |
| 5359 | } |
| 5360 | } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || |
| 5361 | Cond == ISD::SETULE || Cond == ISD::SETUGT) { |
| 5362 | bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); |
| 5363 | // X < 0x100000000 -> (X >> 32) < 1 |
| 5364 | // X >= 0x100000000 -> (X >> 32) >= 1 |
| 5365 | // X <= 0x0ffffffff -> (X >> 32) < 1 |
| 5366 | // X > 0x0ffffffff -> (X >> 32) >= 1 |
| 5367 | unsigned ShiftBits; |
| 5368 | APInt NewC = C1; |
| 5369 | ISD::CondCode NewCond = Cond; |
| 5370 | if (AdjOne) { |
| 5371 | ShiftBits = C1.countr_one(); |
| 5372 | NewC = NewC + 1; |
| 5373 | NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; |
| 5374 | } else { |
| 5375 | ShiftBits = C1.countr_zero(); |
| 5376 | } |
| 5377 | NewC.lshrInPlace(ShiftAmt: ShiftBits); |
| 5378 | if (ShiftBits && NewC.getSignificantBits() <= 64 && |
| 5379 | isLegalICmpImmediate(NewC.getSExtValue()) && |
| 5380 | !shouldAvoidTransformToShift(VT: ShValTy, Amount: ShiftBits)) { |
| 5381 | SDValue Shift = |
| 5382 | DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: ShValTy, N1: N0, |
| 5383 | N2: DAG.getShiftAmountConstant(Val: ShiftBits, VT: ShValTy, DL: dl)); |
| 5384 | SDValue CmpRHS = DAG.getConstant(Val: NewC, DL: dl, VT: ShValTy); |
| 5385 | return DAG.getSetCC(DL: dl, VT, LHS: Shift, RHS: CmpRHS, Cond: NewCond); |
| 5386 | } |
| 5387 | } |
| 5388 | } |
| 5389 | } |
| 5390 | |
| 5391 | if (!isa<ConstantFPSDNode>(Val: N0) && isa<ConstantFPSDNode>(Val: N1)) { |
| 5392 | auto *CFP = cast<ConstantFPSDNode>(Val&: N1); |
| 5393 | assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value" ); |
| 5394 | |
| 5395 | // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the |
| 5396 | // constant if knowing that the operand is non-nan is enough. We prefer to |
| 5397 | // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to |
| 5398 | // materialize 0.0. |
| 5399 | if (Cond == ISD::SETO || Cond == ISD::SETUO) |
| 5400 | return DAG.getSetCC(DL: dl, VT, LHS: N0, RHS: N0, Cond); |
| 5401 | |
| 5402 | // setcc (fneg x), C -> setcc swap(pred) x, -C |
| 5403 | if (N0.getOpcode() == ISD::FNEG) { |
| 5404 | ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Operation: Cond); |
| 5405 | if (DCI.isBeforeLegalizeOps() || |
| 5406 | isCondCodeLegal(CC: SwapCond, VT: N0.getSimpleValueType())) { |
| 5407 | SDValue NegN1 = DAG.getNode(Opcode: ISD::FNEG, DL: dl, VT: N0.getValueType(), Operand: N1); |
| 5408 | return DAG.getSetCC(DL: dl, VT, LHS: N0.getOperand(i: 0), RHS: NegN1, Cond: SwapCond); |
| 5409 | } |
| 5410 | } |
| 5411 | |
| 5412 | // setueq/setoeq X, (fabs Inf) -> is_fpclass X, fcInf |
| 5413 | if (isOperationLegalOrCustom(Op: ISD::IS_FPCLASS, VT: N0.getValueType()) && |
| 5414 | !isFPImmLegal(CFP->getValueAPF(), CFP->getValueType(ResNo: 0))) { |
| 5415 | bool IsFabs = N0.getOpcode() == ISD::FABS; |
| 5416 | SDValue Op = IsFabs ? N0.getOperand(i: 0) : N0; |
| 5417 | if ((Cond == ISD::SETOEQ || Cond == ISD::SETUEQ) && CFP->isInfinity()) { |
| 5418 | FPClassTest Flag = CFP->isNegative() ? (IsFabs ? fcNone : fcNegInf) |
| 5419 | : (IsFabs ? fcInf : fcPosInf); |
| 5420 | if (Cond == ISD::SETUEQ) |
| 5421 | Flag |= fcNan; |
| 5422 | return DAG.getNode(Opcode: ISD::IS_FPCLASS, DL: dl, VT, N1: Op, |
| 5423 | N2: DAG.getTargetConstant(Val: Flag, DL: dl, VT: MVT::i32)); |
| 5424 | } |
| 5425 | } |
| 5426 | |
| 5427 | // If the condition is not legal, see if we can find an equivalent one |
| 5428 | // which is legal. |
| 5429 | if (!isCondCodeLegal(CC: Cond, VT: N0.getSimpleValueType())) { |
| 5430 | // If the comparison was an awkward floating-point == or != and one of |
| 5431 | // the comparison operands is infinity or negative infinity, convert the |
| 5432 | // condition to a less-awkward <= or >=. |
| 5433 | if (CFP->getValueAPF().isInfinity()) { |
| 5434 | bool IsNegInf = CFP->getValueAPF().isNegative(); |
| 5435 | ISD::CondCode NewCond = ISD::SETCC_INVALID; |
| 5436 | switch (Cond) { |
| 5437 | case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; |
| 5438 | case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; |
| 5439 | case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; |
| 5440 | case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; |
| 5441 | default: break; |
| 5442 | } |
| 5443 | if (NewCond != ISD::SETCC_INVALID && |
| 5444 | isCondCodeLegal(CC: NewCond, VT: N0.getSimpleValueType())) |
| 5445 | return DAG.getSetCC(DL: dl, VT, LHS: N0, RHS: N1, Cond: NewCond); |
| 5446 | } |
| 5447 | } |
| 5448 | } |
| 5449 | |
| 5450 | if (N0 == N1) { |
| 5451 | // The sext(setcc()) => setcc() optimization relies on the appropriate |
| 5452 | // constant being emitted. |
| 5453 | assert(!N0.getValueType().isInteger() && |
| 5454 | "Integer types should be handled by FoldSetCC" ); |
| 5455 | |
| 5456 | bool EqTrue = ISD::isTrueWhenEqual(Cond); |
| 5457 | unsigned UOF = ISD::getUnorderedFlavor(Cond); |
| 5458 | if (UOF == 2) // FP operators that are undefined on NaNs. |
| 5459 | return DAG.getBoolConstant(V: EqTrue, DL: dl, VT, OpVT); |
| 5460 | if (UOF == unsigned(EqTrue)) |
| 5461 | return DAG.getBoolConstant(V: EqTrue, DL: dl, VT, OpVT); |
| 5462 | // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO |
| 5463 | // if it is not already. |
| 5464 | ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; |
| 5465 | if (NewCond != Cond && |
| 5466 | (DCI.isBeforeLegalizeOps() || |
| 5467 | isCondCodeLegal(CC: NewCond, VT: N0.getSimpleValueType()))) |
| 5468 | return DAG.getSetCC(DL: dl, VT, LHS: N0, RHS: N1, Cond: NewCond); |
| 5469 | } |
| 5470 | |
| 5471 | // ~X > ~Y --> Y > X |
| 5472 | // ~X < ~Y --> Y < X |
| 5473 | // ~X < C --> X > ~C |
| 5474 | // ~X > C --> X < ~C |
| 5475 | if ((isSignedIntSetCC(Code: Cond) || isUnsignedIntSetCC(Code: Cond)) && |
| 5476 | N0.getValueType().isInteger()) { |
| 5477 | if (isBitwiseNot(V: N0)) { |
| 5478 | if (isBitwiseNot(V: N1)) |
| 5479 | return DAG.getSetCC(DL: dl, VT, LHS: N1.getOperand(i: 0), RHS: N0.getOperand(i: 0), Cond); |
| 5480 | |
| 5481 | if (DAG.isConstantIntBuildVectorOrConstantInt(N: N1) && |
| 5482 | !DAG.isConstantIntBuildVectorOrConstantInt(N: N0.getOperand(i: 0))) { |
| 5483 | SDValue Not = DAG.getNOT(DL: dl, Val: N1, VT: OpVT); |
| 5484 | return DAG.getSetCC(DL: dl, VT, LHS: Not, RHS: N0.getOperand(i: 0), Cond); |
| 5485 | } |
| 5486 | } |
| 5487 | } |
| 5488 | |
| 5489 | if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && |
| 5490 | N0.getValueType().isInteger()) { |
| 5491 | if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || |
| 5492 | N0.getOpcode() == ISD::XOR) { |
| 5493 | // Simplify (X+Y) == (X+Z) --> Y == Z |
| 5494 | if (N0.getOpcode() == N1.getOpcode()) { |
| 5495 | if (N0.getOperand(i: 0) == N1.getOperand(i: 0)) |
| 5496 | return DAG.getSetCC(DL: dl, VT, LHS: N0.getOperand(i: 1), RHS: N1.getOperand(i: 1), Cond); |
| 5497 | if (N0.getOperand(i: 1) == N1.getOperand(i: 1)) |
| 5498 | return DAG.getSetCC(DL: dl, VT, LHS: N0.getOperand(i: 0), RHS: N1.getOperand(i: 0), Cond); |
| 5499 | if (isCommutativeBinOp(Opcode: N0.getOpcode())) { |
| 5500 | // If X op Y == Y op X, try other combinations. |
| 5501 | if (N0.getOperand(i: 0) == N1.getOperand(i: 1)) |
| 5502 | return DAG.getSetCC(DL: dl, VT, LHS: N0.getOperand(i: 1), RHS: N1.getOperand(i: 0), |
| 5503 | Cond); |
| 5504 | if (N0.getOperand(i: 1) == N1.getOperand(i: 0)) |
| 5505 | return DAG.getSetCC(DL: dl, VT, LHS: N0.getOperand(i: 0), RHS: N1.getOperand(i: 1), |
| 5506 | Cond); |
| 5507 | } |
| 5508 | } |
| 5509 | |
| 5510 | // If RHS is a legal immediate value for a compare instruction, we need |
| 5511 | // to be careful about increasing register pressure needlessly. |
| 5512 | bool LegalRHSImm = false; |
| 5513 | |
| 5514 | if (auto *RHSC = dyn_cast<ConstantSDNode>(Val&: N1)) { |
| 5515 | if (auto *LHSR = dyn_cast<ConstantSDNode>(Val: N0.getOperand(i: 1))) { |
| 5516 | // Turn (X+C1) == C2 --> X == C2-C1 |
| 5517 | if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) |
| 5518 | return DAG.getSetCC( |
| 5519 | DL: dl, VT, LHS: N0.getOperand(i: 0), |
| 5520 | RHS: DAG.getConstant(Val: RHSC->getAPIntValue() - LHSR->getAPIntValue(), |
| 5521 | DL: dl, VT: N0.getValueType()), |
| 5522 | Cond); |
| 5523 | |
| 5524 | // Turn (X^C1) == C2 --> X == C1^C2 |
| 5525 | if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse()) |
| 5526 | return DAG.getSetCC( |
| 5527 | DL: dl, VT, LHS: N0.getOperand(i: 0), |
| 5528 | RHS: DAG.getConstant(Val: LHSR->getAPIntValue() ^ RHSC->getAPIntValue(), |
| 5529 | DL: dl, VT: N0.getValueType()), |
| 5530 | Cond); |
| 5531 | } |
| 5532 | |
| 5533 | // Turn (C1-X) == C2 --> X == C1-C2 |
| 5534 | if (auto *SUBC = dyn_cast<ConstantSDNode>(Val: N0.getOperand(i: 0))) |
| 5535 | if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) |
| 5536 | return DAG.getSetCC( |
| 5537 | DL: dl, VT, LHS: N0.getOperand(i: 1), |
| 5538 | RHS: DAG.getConstant(Val: SUBC->getAPIntValue() - RHSC->getAPIntValue(), |
| 5539 | DL: dl, VT: N0.getValueType()), |
| 5540 | Cond); |
| 5541 | |
| 5542 | // Could RHSC fold directly into a compare? |
| 5543 | if (RHSC->getValueType(ResNo: 0).getSizeInBits() <= 64) |
| 5544 | LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); |
| 5545 | } |
| 5546 | |
| 5547 | // (X+Y) == X --> Y == 0 and similar folds. |
| 5548 | // Don't do this if X is an immediate that can fold into a cmp |
| 5549 | // instruction and X+Y has other uses. It could be an induction variable |
| 5550 | // chain, and the transform would increase register pressure. |
| 5551 | if (!LegalRHSImm || N0.hasOneUse()) |
| 5552 | if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, DL: dl, DCI)) |
| 5553 | return V; |
| 5554 | } |
| 5555 | |
| 5556 | if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || |
| 5557 | N1.getOpcode() == ISD::XOR) |
| 5558 | if (SDValue V = foldSetCCWithBinOp(VT, N0: N1, N1: N0, Cond, DL: dl, DCI)) |
| 5559 | return V; |
| 5560 | |
| 5561 | if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, DL: dl, DCI)) |
| 5562 | return V; |
| 5563 | |
| 5564 | if (SDValue V = foldSetCCWithOr(VT, N0, N1, Cond, DL: dl, DCI)) |
| 5565 | return V; |
| 5566 | } |
| 5567 | |
| 5568 | // Fold remainder of division by a constant. |
| 5569 | if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && |
| 5570 | N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { |
| 5571 | // When division is cheap or optimizing for minimum size, |
| 5572 | // fall through to DIVREM creation by skipping this fold. |
| 5573 | if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Kind: Attribute::MinSize)) { |
| 5574 | if (N0.getOpcode() == ISD::UREM) { |
| 5575 | if (SDValue Folded = buildUREMEqFold(SETCCVT: VT, REMNode: N0, CompTargetNode: N1, Cond, DCI, DL: dl)) |
| 5576 | return Folded; |
| 5577 | } else if (N0.getOpcode() == ISD::SREM) { |
| 5578 | if (SDValue Folded = buildSREMEqFold(SETCCVT: VT, REMNode: N0, CompTargetNode: N1, Cond, DCI, DL: dl)) |
| 5579 | return Folded; |
| 5580 | } |
| 5581 | } |
| 5582 | } |
| 5583 | |
| 5584 | // Fold away ALL boolean setcc's. |
| 5585 | if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { |
| 5586 | SDValue Temp; |
| 5587 | switch (Cond) { |
| 5588 | default: llvm_unreachable("Unknown integer setcc!" ); |
| 5589 | case ISD::SETEQ: // X == Y -> ~(X^Y) |
| 5590 | Temp = DAG.getNode(Opcode: ISD::XOR, DL: dl, VT: OpVT, N1: N0, N2: N1); |
| 5591 | N0 = DAG.getNOT(DL: dl, Val: Temp, VT: OpVT); |
| 5592 | if (!DCI.isCalledByLegalizer()) |
| 5593 | DCI.AddToWorklist(N: Temp.getNode()); |
| 5594 | break; |
| 5595 | case ISD::SETNE: // X != Y --> (X^Y) |
| 5596 | N0 = DAG.getNode(Opcode: ISD::XOR, DL: dl, VT: OpVT, N1: N0, N2: N1); |
| 5597 | break; |
| 5598 | case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y |
| 5599 | case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y |
| 5600 | Temp = DAG.getNOT(DL: dl, Val: N0, VT: OpVT); |
| 5601 | N0 = DAG.getNode(Opcode: ISD::AND, DL: dl, VT: OpVT, N1, N2: Temp); |
| 5602 | if (!DCI.isCalledByLegalizer()) |
| 5603 | DCI.AddToWorklist(N: Temp.getNode()); |
| 5604 | break; |
| 5605 | case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X |
| 5606 | case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X |
| 5607 | Temp = DAG.getNOT(DL: dl, Val: N1, VT: OpVT); |
| 5608 | N0 = DAG.getNode(Opcode: ISD::AND, DL: dl, VT: OpVT, N1: N0, N2: Temp); |
| 5609 | if (!DCI.isCalledByLegalizer()) |
| 5610 | DCI.AddToWorklist(N: Temp.getNode()); |
| 5611 | break; |
| 5612 | case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y |
| 5613 | case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y |
| 5614 | Temp = DAG.getNOT(DL: dl, Val: N0, VT: OpVT); |
| 5615 | N0 = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: OpVT, N1, N2: Temp); |
| 5616 | if (!DCI.isCalledByLegalizer()) |
| 5617 | DCI.AddToWorklist(N: Temp.getNode()); |
| 5618 | break; |
| 5619 | case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X |
| 5620 | case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X |
| 5621 | Temp = DAG.getNOT(DL: dl, Val: N1, VT: OpVT); |
| 5622 | N0 = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: OpVT, N1: N0, N2: Temp); |
| 5623 | break; |
| 5624 | } |
| 5625 | if (VT.getScalarType() != MVT::i1) { |
| 5626 | if (!DCI.isCalledByLegalizer()) |
| 5627 | DCI.AddToWorklist(N: N0.getNode()); |
| 5628 | // FIXME: If running after legalize, we probably can't do this. |
| 5629 | ISD::NodeType ExtendCode = getExtendForContent(Content: getBooleanContents(Type: OpVT)); |
| 5630 | N0 = DAG.getNode(Opcode: ExtendCode, DL: dl, VT, Operand: N0); |
| 5631 | } |
| 5632 | return N0; |
| 5633 | } |
| 5634 | |
| 5635 | // Could not fold it. |
| 5636 | return SDValue(); |
| 5637 | } |
| 5638 | |
| 5639 | /// Returns true (and the GlobalValue and the offset) if the node is a |
| 5640 | /// GlobalAddress + offset. |
| 5641 | bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, |
| 5642 | int64_t &Offset) const { |
| 5643 | |
| 5644 | SDNode *N = unwrapAddress(N: SDValue(WN, 0)).getNode(); |
| 5645 | |
| 5646 | if (auto *GASD = dyn_cast<GlobalAddressSDNode>(Val: N)) { |
| 5647 | GA = GASD->getGlobal(); |
| 5648 | Offset += GASD->getOffset(); |
| 5649 | return true; |
| 5650 | } |
| 5651 | |
| 5652 | if (N->getOpcode() == ISD::ADD) { |
| 5653 | SDValue N1 = N->getOperand(Num: 0); |
| 5654 | SDValue N2 = N->getOperand(Num: 1); |
| 5655 | if (isGAPlusOffset(WN: N1.getNode(), GA, Offset)) { |
| 5656 | if (auto *V = dyn_cast<ConstantSDNode>(Val&: N2)) { |
| 5657 | Offset += V->getSExtValue(); |
| 5658 | return true; |
| 5659 | } |
| 5660 | } else if (isGAPlusOffset(WN: N2.getNode(), GA, Offset)) { |
| 5661 | if (auto *V = dyn_cast<ConstantSDNode>(Val&: N1)) { |
| 5662 | Offset += V->getSExtValue(); |
| 5663 | return true; |
| 5664 | } |
| 5665 | } |
| 5666 | } |
| 5667 | |
| 5668 | return false; |
| 5669 | } |
| 5670 | |
| 5671 | SDValue TargetLowering::PerformDAGCombine(SDNode *N, |
| 5672 | DAGCombinerInfo &DCI) const { |
| 5673 | // Default implementation: no optimization. |
| 5674 | return SDValue(); |
| 5675 | } |
| 5676 | |
| 5677 | //===----------------------------------------------------------------------===// |
| 5678 | // Inline Assembler Implementation Methods |
| 5679 | //===----------------------------------------------------------------------===// |
| 5680 | |
| 5681 | TargetLowering::ConstraintType |
| 5682 | TargetLowering::getConstraintType(StringRef Constraint) const { |
| 5683 | unsigned S = Constraint.size(); |
| 5684 | |
| 5685 | if (S == 1) { |
| 5686 | switch (Constraint[0]) { |
| 5687 | default: break; |
| 5688 | case 'r': |
| 5689 | return C_RegisterClass; |
| 5690 | case 'm': // memory |
| 5691 | case 'o': // offsetable |
| 5692 | case 'V': // not offsetable |
| 5693 | return C_Memory; |
| 5694 | case 'p': // Address. |
| 5695 | return C_Address; |
| 5696 | case 'n': // Simple Integer |
| 5697 | case 'E': // Floating Point Constant |
| 5698 | case 'F': // Floating Point Constant |
| 5699 | return C_Immediate; |
| 5700 | case 'i': // Simple Integer or Relocatable Constant |
| 5701 | case 's': // Relocatable Constant |
| 5702 | case 'X': // Allow ANY value. |
| 5703 | case 'I': // Target registers. |
| 5704 | case 'J': |
| 5705 | case 'K': |
| 5706 | case 'L': |
| 5707 | case 'M': |
| 5708 | case 'N': |
| 5709 | case 'O': |
| 5710 | case 'P': |
| 5711 | case '<': |
| 5712 | case '>': |
| 5713 | return C_Other; |
| 5714 | } |
| 5715 | } |
| 5716 | |
| 5717 | if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { |
| 5718 | if (S == 8 && Constraint.substr(Start: 1, N: 6) == "memory" ) // "{memory}" |
| 5719 | return C_Memory; |
| 5720 | return C_Register; |
| 5721 | } |
| 5722 | return C_Unknown; |
| 5723 | } |
| 5724 | |
| 5725 | /// Try to replace an X constraint, which matches anything, with another that |
| 5726 | /// has more specific requirements based on the type of the corresponding |
| 5727 | /// operand. |
| 5728 | const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { |
| 5729 | if (ConstraintVT.isInteger()) |
| 5730 | return "r" ; |
| 5731 | if (ConstraintVT.isFloatingPoint()) |
| 5732 | return "f" ; // works for many targets |
| 5733 | return nullptr; |
| 5734 | } |
| 5735 | |
| 5736 | SDValue TargetLowering::LowerAsmOutputForConstraint( |
| 5737 | SDValue &Chain, SDValue &Glue, const SDLoc &DL, |
| 5738 | const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { |
| 5739 | return SDValue(); |
| 5740 | } |
| 5741 | |
| 5742 | /// Lower the specified operand into the Ops vector. |
| 5743 | /// If it is invalid, don't add anything to Ops. |
| 5744 | void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, |
| 5745 | StringRef Constraint, |
| 5746 | std::vector<SDValue> &Ops, |
| 5747 | SelectionDAG &DAG) const { |
| 5748 | |
| 5749 | if (Constraint.size() > 1) |
| 5750 | return; |
| 5751 | |
| 5752 | char ConstraintLetter = Constraint[0]; |
| 5753 | switch (ConstraintLetter) { |
| 5754 | default: break; |
| 5755 | case 'X': // Allows any operand |
| 5756 | case 'i': // Simple Integer or Relocatable Constant |
| 5757 | case 'n': // Simple Integer |
| 5758 | case 's': { // Relocatable Constant |
| 5759 | |
| 5760 | ConstantSDNode *C; |
| 5761 | uint64_t Offset = 0; |
| 5762 | |
| 5763 | // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), |
| 5764 | // etc., since getelementpointer is variadic. We can't use |
| 5765 | // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible |
| 5766 | // while in this case the GA may be furthest from the root node which is |
| 5767 | // likely an ISD::ADD. |
| 5768 | while (true) { |
| 5769 | if ((C = dyn_cast<ConstantSDNode>(Val&: Op)) && ConstraintLetter != 's') { |
| 5770 | // gcc prints these as sign extended. Sign extend value to 64 bits |
| 5771 | // now; without this it would get ZExt'd later in |
| 5772 | // ScheduleDAGSDNodes::EmitNode, which is very generic. |
| 5773 | bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; |
| 5774 | BooleanContent BCont = getBooleanContents(Type: MVT::i64); |
| 5775 | ISD::NodeType ExtOpc = |
| 5776 | IsBool ? getExtendForContent(Content: BCont) : ISD::SIGN_EXTEND; |
| 5777 | int64_t ExtVal = |
| 5778 | ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue(); |
| 5779 | Ops.push_back( |
| 5780 | x: DAG.getTargetConstant(Val: Offset + ExtVal, DL: SDLoc(C), VT: MVT::i64)); |
| 5781 | return; |
| 5782 | } |
| 5783 | if (ConstraintLetter != 'n') { |
| 5784 | if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Val&: Op)) { |
| 5785 | Ops.push_back(x: DAG.getTargetGlobalAddress(GV: GA->getGlobal(), DL: SDLoc(Op), |
| 5786 | VT: GA->getValueType(ResNo: 0), |
| 5787 | offset: Offset + GA->getOffset())); |
| 5788 | return; |
| 5789 | } |
| 5790 | if (const auto *BA = dyn_cast<BlockAddressSDNode>(Val&: Op)) { |
| 5791 | Ops.push_back(x: DAG.getTargetBlockAddress( |
| 5792 | BA: BA->getBlockAddress(), VT: BA->getValueType(ResNo: 0), |
| 5793 | Offset: Offset + BA->getOffset(), TargetFlags: BA->getTargetFlags())); |
| 5794 | return; |
| 5795 | } |
| 5796 | if (isa<BasicBlockSDNode>(Val: Op)) { |
| 5797 | Ops.push_back(x: Op); |
| 5798 | return; |
| 5799 | } |
| 5800 | } |
| 5801 | const unsigned OpCode = Op.getOpcode(); |
| 5802 | if (OpCode == ISD::ADD || OpCode == ISD::SUB) { |
| 5803 | if ((C = dyn_cast<ConstantSDNode>(Val: Op.getOperand(i: 0)))) |
| 5804 | Op = Op.getOperand(i: 1); |
| 5805 | // Subtraction is not commutative. |
| 5806 | else if (OpCode == ISD::ADD && |
| 5807 | (C = dyn_cast<ConstantSDNode>(Val: Op.getOperand(i: 1)))) |
| 5808 | Op = Op.getOperand(i: 0); |
| 5809 | else |
| 5810 | return; |
| 5811 | Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); |
| 5812 | continue; |
| 5813 | } |
| 5814 | return; |
| 5815 | } |
| 5816 | break; |
| 5817 | } |
| 5818 | } |
| 5819 | } |
| 5820 | |
| 5821 | void TargetLowering::CollectTargetIntrinsicOperands( |
| 5822 | const CallInst &I, SmallVectorImpl<SDValue> &Ops, SelectionDAG &DAG) const { |
| 5823 | } |
| 5824 | |
| 5825 | std::pair<unsigned, const TargetRegisterClass *> |
| 5826 | TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, |
| 5827 | StringRef Constraint, |
| 5828 | MVT VT) const { |
| 5829 | if (!Constraint.starts_with(Prefix: "{" )) |
| 5830 | return std::make_pair(x: 0u, y: static_cast<TargetRegisterClass *>(nullptr)); |
| 5831 | assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?" ); |
| 5832 | |
| 5833 | // Remove the braces from around the name. |
| 5834 | StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); |
| 5835 | |
| 5836 | std::pair<unsigned, const TargetRegisterClass *> R = |
| 5837 | std::make_pair(x: 0u, y: static_cast<const TargetRegisterClass *>(nullptr)); |
| 5838 | |
| 5839 | // Figure out which register class contains this reg. |
| 5840 | for (const TargetRegisterClass *RC : RI->regclasses()) { |
| 5841 | // If none of the value types for this register class are valid, we |
| 5842 | // can't use it. For example, 64-bit reg classes on 32-bit targets. |
| 5843 | if (!isLegalRC(TRI: *RI, RC: *RC)) |
| 5844 | continue; |
| 5845 | |
| 5846 | for (const MCPhysReg &PR : *RC) { |
| 5847 | if (RegName.equals_insensitive(RHS: RI->getRegAsmName(Reg: PR))) { |
| 5848 | std::pair<unsigned, const TargetRegisterClass *> S = |
| 5849 | std::make_pair(x: PR, y&: RC); |
| 5850 | |
| 5851 | // If this register class has the requested value type, return it, |
| 5852 | // otherwise keep searching and return the first class found |
| 5853 | // if no other is found which explicitly has the requested type. |
| 5854 | if (RI->isTypeLegalForClass(RC: *RC, T: VT)) |
| 5855 | return S; |
| 5856 | if (!R.second) |
| 5857 | R = S; |
| 5858 | } |
| 5859 | } |
| 5860 | } |
| 5861 | |
| 5862 | return R; |
| 5863 | } |
| 5864 | |
| 5865 | //===----------------------------------------------------------------------===// |
| 5866 | // Constraint Selection. |
| 5867 | |
| 5868 | /// Return true of this is an input operand that is a matching constraint like |
| 5869 | /// "4". |
| 5870 | bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { |
| 5871 | assert(!ConstraintCode.empty() && "No known constraint!" ); |
| 5872 | return isdigit(static_cast<unsigned char>(ConstraintCode[0])); |
| 5873 | } |
| 5874 | |
| 5875 | /// If this is an input matching constraint, this method returns the output |
| 5876 | /// operand it matches. |
| 5877 | unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { |
| 5878 | assert(!ConstraintCode.empty() && "No known constraint!" ); |
| 5879 | return atoi(nptr: ConstraintCode.c_str()); |
| 5880 | } |
| 5881 | |
| 5882 | /// Split up the constraint string from the inline assembly value into the |
| 5883 | /// specific constraints and their prefixes, and also tie in the associated |
| 5884 | /// operand values. |
| 5885 | /// If this returns an empty vector, and if the constraint string itself |
| 5886 | /// isn't empty, there was an error parsing. |
| 5887 | TargetLowering::AsmOperandInfoVector |
| 5888 | TargetLowering::ParseConstraints(const DataLayout &DL, |
| 5889 | const TargetRegisterInfo *TRI, |
| 5890 | const CallBase &Call) const { |
| 5891 | /// Information about all of the constraints. |
| 5892 | AsmOperandInfoVector ConstraintOperands; |
| 5893 | const InlineAsm *IA = cast<InlineAsm>(Val: Call.getCalledOperand()); |
| 5894 | unsigned maCount = 0; // Largest number of multiple alternative constraints. |
| 5895 | |
| 5896 | // Do a prepass over the constraints, canonicalizing them, and building up the |
| 5897 | // ConstraintOperands list. |
| 5898 | unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. |
| 5899 | unsigned ResNo = 0; // ResNo - The result number of the next output. |
| 5900 | unsigned LabelNo = 0; // LabelNo - CallBr indirect dest number. |
| 5901 | |
| 5902 | for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { |
| 5903 | ConstraintOperands.emplace_back(args: std::move(CI)); |
| 5904 | AsmOperandInfo &OpInfo = ConstraintOperands.back(); |
| 5905 | |
| 5906 | // Update multiple alternative constraint count. |
| 5907 | if (OpInfo.multipleAlternatives.size() > maCount) |
| 5908 | maCount = OpInfo.multipleAlternatives.size(); |
| 5909 | |
| 5910 | OpInfo.ConstraintVT = MVT::Other; |
| 5911 | |
| 5912 | // Compute the value type for each operand. |
| 5913 | switch (OpInfo.Type) { |
| 5914 | case InlineAsm::isOutput: |
| 5915 | // Indirect outputs just consume an argument. |
| 5916 | if (OpInfo.isIndirect) { |
| 5917 | OpInfo.CallOperandVal = Call.getArgOperand(i: ArgNo); |
| 5918 | break; |
| 5919 | } |
| 5920 | |
| 5921 | // The return value of the call is this value. As such, there is no |
| 5922 | // corresponding argument. |
| 5923 | assert(!Call.getType()->isVoidTy() && "Bad inline asm!" ); |
| 5924 | if (auto *STy = dyn_cast<StructType>(Val: Call.getType())) { |
| 5925 | OpInfo.ConstraintVT = |
| 5926 | getAsmOperandValueType(DL, Ty: STy->getElementType(N: ResNo)) |
| 5927 | .getSimpleVT(); |
| 5928 | } else { |
| 5929 | assert(ResNo == 0 && "Asm only has one result!" ); |
| 5930 | OpInfo.ConstraintVT = |
| 5931 | getAsmOperandValueType(DL, Ty: Call.getType()).getSimpleVT(); |
| 5932 | } |
| 5933 | ++ResNo; |
| 5934 | break; |
| 5935 | case InlineAsm::isInput: |
| 5936 | OpInfo.CallOperandVal = Call.getArgOperand(i: ArgNo); |
| 5937 | break; |
| 5938 | case InlineAsm::isLabel: |
| 5939 | OpInfo.CallOperandVal = cast<CallBrInst>(Val: &Call)->getIndirectDest(i: LabelNo); |
| 5940 | ++LabelNo; |
| 5941 | continue; |
| 5942 | case InlineAsm::isClobber: |
| 5943 | // Nothing to do. |
| 5944 | break; |
| 5945 | } |
| 5946 | |
| 5947 | if (OpInfo.CallOperandVal) { |
| 5948 | llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); |
| 5949 | if (OpInfo.isIndirect) { |
| 5950 | OpTy = Call.getParamElementType(ArgNo); |
| 5951 | assert(OpTy && "Indirect operand must have elementtype attribute" ); |
| 5952 | } |
| 5953 | |
| 5954 | // Look for vector wrapped in a struct. e.g. { <16 x i8> }. |
| 5955 | if (StructType *STy = dyn_cast<StructType>(Val: OpTy)) |
| 5956 | if (STy->getNumElements() == 1) |
| 5957 | OpTy = STy->getElementType(N: 0); |
| 5958 | |
| 5959 | // If OpTy is not a single value, it may be a struct/union that we |
| 5960 | // can tile with integers. |
| 5961 | if (!OpTy->isSingleValueType() && OpTy->isSized()) { |
| 5962 | unsigned BitSize = DL.getTypeSizeInBits(Ty: OpTy); |
| 5963 | switch (BitSize) { |
| 5964 | default: break; |
| 5965 | case 1: |
| 5966 | case 8: |
| 5967 | case 16: |
| 5968 | case 32: |
| 5969 | case 64: |
| 5970 | case 128: |
| 5971 | OpTy = IntegerType::get(C&: OpTy->getContext(), NumBits: BitSize); |
| 5972 | break; |
| 5973 | } |
| 5974 | } |
| 5975 | |
| 5976 | EVT VT = getAsmOperandValueType(DL, Ty: OpTy, AllowUnknown: true); |
| 5977 | OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other; |
| 5978 | ArgNo++; |
| 5979 | } |
| 5980 | } |
| 5981 | |
| 5982 | // If we have multiple alternative constraints, select the best alternative. |
| 5983 | if (!ConstraintOperands.empty()) { |
| 5984 | if (maCount) { |
| 5985 | unsigned bestMAIndex = 0; |
| 5986 | int bestWeight = -1; |
| 5987 | // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. |
| 5988 | int weight = -1; |
| 5989 | unsigned maIndex; |
| 5990 | // Compute the sums of the weights for each alternative, keeping track |
| 5991 | // of the best (highest weight) one so far. |
| 5992 | for (maIndex = 0; maIndex < maCount; ++maIndex) { |
| 5993 | int weightSum = 0; |
| 5994 | for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); |
| 5995 | cIndex != eIndex; ++cIndex) { |
| 5996 | AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; |
| 5997 | if (OpInfo.Type == InlineAsm::isClobber) |
| 5998 | continue; |
| 5999 | |
| 6000 | // If this is an output operand with a matching input operand, |
| 6001 | // look up the matching input. If their types mismatch, e.g. one |
| 6002 | // is an integer, the other is floating point, or their sizes are |
| 6003 | // different, flag it as an maCantMatch. |
| 6004 | if (OpInfo.hasMatchingInput()) { |
| 6005 | AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; |
| 6006 | if (OpInfo.ConstraintVT != Input.ConstraintVT) { |
| 6007 | if ((OpInfo.ConstraintVT.isInteger() != |
| 6008 | Input.ConstraintVT.isInteger()) || |
| 6009 | (OpInfo.ConstraintVT.getSizeInBits() != |
| 6010 | Input.ConstraintVT.getSizeInBits())) { |
| 6011 | weightSum = -1; // Can't match. |
| 6012 | break; |
| 6013 | } |
| 6014 | } |
| 6015 | } |
| 6016 | weight = getMultipleConstraintMatchWeight(info&: OpInfo, maIndex); |
| 6017 | if (weight == -1) { |
| 6018 | weightSum = -1; |
| 6019 | break; |
| 6020 | } |
| 6021 | weightSum += weight; |
| 6022 | } |
| 6023 | // Update best. |
| 6024 | if (weightSum > bestWeight) { |
| 6025 | bestWeight = weightSum; |
| 6026 | bestMAIndex = maIndex; |
| 6027 | } |
| 6028 | } |
| 6029 | |
| 6030 | // Now select chosen alternative in each constraint. |
| 6031 | for (AsmOperandInfo &cInfo : ConstraintOperands) |
| 6032 | if (cInfo.Type != InlineAsm::isClobber) |
| 6033 | cInfo.selectAlternative(index: bestMAIndex); |
| 6034 | } |
| 6035 | } |
| 6036 | |
| 6037 | // Check and hook up tied operands, choose constraint code to use. |
| 6038 | for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); |
| 6039 | cIndex != eIndex; ++cIndex) { |
| 6040 | AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; |
| 6041 | |
| 6042 | // If this is an output operand with a matching input operand, look up the |
| 6043 | // matching input. If their types mismatch, e.g. one is an integer, the |
| 6044 | // other is floating point, or their sizes are different, flag it as an |
| 6045 | // error. |
| 6046 | if (OpInfo.hasMatchingInput()) { |
| 6047 | AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; |
| 6048 | |
| 6049 | if (OpInfo.ConstraintVT != Input.ConstraintVT) { |
| 6050 | std::pair<unsigned, const TargetRegisterClass *> MatchRC = |
| 6051 | getRegForInlineAsmConstraint(RI: TRI, Constraint: OpInfo.ConstraintCode, |
| 6052 | VT: OpInfo.ConstraintVT); |
| 6053 | std::pair<unsigned, const TargetRegisterClass *> InputRC = |
| 6054 | getRegForInlineAsmConstraint(RI: TRI, Constraint: Input.ConstraintCode, |
| 6055 | VT: Input.ConstraintVT); |
| 6056 | const bool OutOpIsIntOrFP = OpInfo.ConstraintVT.isInteger() || |
| 6057 | OpInfo.ConstraintVT.isFloatingPoint(); |
| 6058 | const bool InOpIsIntOrFP = Input.ConstraintVT.isInteger() || |
| 6059 | Input.ConstraintVT.isFloatingPoint(); |
| 6060 | if ((OutOpIsIntOrFP != InOpIsIntOrFP) || |
| 6061 | (MatchRC.second != InputRC.second)) { |
| 6062 | report_fatal_error(reason: "Unsupported asm: input constraint" |
| 6063 | " with a matching output constraint of" |
| 6064 | " incompatible type!" ); |
| 6065 | } |
| 6066 | } |
| 6067 | } |
| 6068 | } |
| 6069 | |
| 6070 | return ConstraintOperands; |
| 6071 | } |
| 6072 | |
| 6073 | /// Return a number indicating our preference for chosing a type of constraint |
| 6074 | /// over another, for the purpose of sorting them. Immediates are almost always |
| 6075 | /// preferrable (when they can be emitted). A higher return value means a |
| 6076 | /// stronger preference for one constraint type relative to another. |
| 6077 | /// FIXME: We should prefer registers over memory but doing so may lead to |
| 6078 | /// unrecoverable register exhaustion later. |
| 6079 | /// https://github.com/llvm/llvm-project/issues/20571 |
| 6080 | static unsigned getConstraintPiority(TargetLowering::ConstraintType CT) { |
| 6081 | switch (CT) { |
| 6082 | case TargetLowering::C_Immediate: |
| 6083 | case TargetLowering::C_Other: |
| 6084 | return 4; |
| 6085 | case TargetLowering::C_Memory: |
| 6086 | case TargetLowering::C_Address: |
| 6087 | return 3; |
| 6088 | case TargetLowering::C_RegisterClass: |
| 6089 | return 2; |
| 6090 | case TargetLowering::C_Register: |
| 6091 | return 1; |
| 6092 | case TargetLowering::C_Unknown: |
| 6093 | return 0; |
| 6094 | } |
| 6095 | llvm_unreachable("Invalid constraint type" ); |
| 6096 | } |
| 6097 | |
| 6098 | /// Examine constraint type and operand type and determine a weight value. |
| 6099 | /// This object must already have been set up with the operand type |
| 6100 | /// and the current alternative constraint selected. |
| 6101 | TargetLowering::ConstraintWeight |
| 6102 | TargetLowering::getMultipleConstraintMatchWeight( |
| 6103 | AsmOperandInfo &info, int maIndex) const { |
| 6104 | InlineAsm::ConstraintCodeVector *rCodes; |
| 6105 | if (maIndex >= (int)info.multipleAlternatives.size()) |
| 6106 | rCodes = &info.Codes; |
| 6107 | else |
| 6108 | rCodes = &info.multipleAlternatives[maIndex].Codes; |
| 6109 | ConstraintWeight BestWeight = CW_Invalid; |
| 6110 | |
| 6111 | // Loop over the options, keeping track of the most general one. |
| 6112 | for (const std::string &rCode : *rCodes) { |
| 6113 | ConstraintWeight weight = |
| 6114 | getSingleConstraintMatchWeight(info, constraint: rCode.c_str()); |
| 6115 | if (weight > BestWeight) |
| 6116 | BestWeight = weight; |
| 6117 | } |
| 6118 | |
| 6119 | return BestWeight; |
| 6120 | } |
| 6121 | |
| 6122 | /// Examine constraint type and operand type and determine a weight value. |
| 6123 | /// This object must already have been set up with the operand type |
| 6124 | /// and the current alternative constraint selected. |
| 6125 | TargetLowering::ConstraintWeight |
| 6126 | TargetLowering::getSingleConstraintMatchWeight( |
| 6127 | AsmOperandInfo &info, const char *constraint) const { |
| 6128 | ConstraintWeight weight = CW_Invalid; |
| 6129 | Value *CallOperandVal = info.CallOperandVal; |
| 6130 | // If we don't have a value, we can't do a match, |
| 6131 | // but allow it at the lowest weight. |
| 6132 | if (!CallOperandVal) |
| 6133 | return CW_Default; |
| 6134 | // Look at the constraint type. |
| 6135 | switch (*constraint) { |
| 6136 | case 'i': // immediate integer. |
| 6137 | case 'n': // immediate integer with a known value. |
| 6138 | if (isa<ConstantInt>(Val: CallOperandVal)) |
| 6139 | weight = CW_Constant; |
| 6140 | break; |
| 6141 | case 's': // non-explicit intregal immediate. |
| 6142 | if (isa<GlobalValue>(Val: CallOperandVal)) |
| 6143 | weight = CW_Constant; |
| 6144 | break; |
| 6145 | case 'E': // immediate float if host format. |
| 6146 | case 'F': // immediate float. |
| 6147 | if (isa<ConstantFP>(Val: CallOperandVal)) |
| 6148 | weight = CW_Constant; |
| 6149 | break; |
| 6150 | case '<': // memory operand with autodecrement. |
| 6151 | case '>': // memory operand with autoincrement. |
| 6152 | case 'm': // memory operand. |
| 6153 | case 'o': // offsettable memory operand |
| 6154 | case 'V': // non-offsettable memory operand |
| 6155 | weight = CW_Memory; |
| 6156 | break; |
| 6157 | case 'r': // general register. |
| 6158 | case 'g': // general register, memory operand or immediate integer. |
| 6159 | // note: Clang converts "g" to "imr". |
| 6160 | if (CallOperandVal->getType()->isIntegerTy()) |
| 6161 | weight = CW_Register; |
| 6162 | break; |
| 6163 | case 'X': // any operand. |
| 6164 | default: |
| 6165 | weight = CW_Default; |
| 6166 | break; |
| 6167 | } |
| 6168 | return weight; |
| 6169 | } |
| 6170 | |
| 6171 | /// If there are multiple different constraints that we could pick for this |
| 6172 | /// operand (e.g. "imr") try to pick the 'best' one. |
| 6173 | /// This is somewhat tricky: constraints (TargetLowering::ConstraintType) fall |
| 6174 | /// into seven classes: |
| 6175 | /// Register -> one specific register |
| 6176 | /// RegisterClass -> a group of regs |
| 6177 | /// Memory -> memory |
| 6178 | /// Address -> a symbolic memory reference |
| 6179 | /// Immediate -> immediate values |
| 6180 | /// Other -> magic values (such as "Flag Output Operands") |
| 6181 | /// Unknown -> something we don't recognize yet and can't handle |
| 6182 | /// Ideally, we would pick the most specific constraint possible: if we have |
| 6183 | /// something that fits into a register, we would pick it. The problem here |
| 6184 | /// is that if we have something that could either be in a register or in |
| 6185 | /// memory that use of the register could cause selection of *other* |
| 6186 | /// operands to fail: they might only succeed if we pick memory. Because of |
| 6187 | /// this the heuristic we use is: |
| 6188 | /// |
| 6189 | /// 1) If there is an 'other' constraint, and if the operand is valid for |
| 6190 | /// that constraint, use it. This makes us take advantage of 'i' |
| 6191 | /// constraints when available. |
| 6192 | /// 2) Otherwise, pick the most general constraint present. This prefers |
| 6193 | /// 'm' over 'r', for example. |
| 6194 | /// |
| 6195 | TargetLowering::ConstraintGroup TargetLowering::getConstraintPreferences( |
| 6196 | TargetLowering::AsmOperandInfo &OpInfo) const { |
| 6197 | ConstraintGroup Ret; |
| 6198 | |
| 6199 | Ret.reserve(N: OpInfo.Codes.size()); |
| 6200 | for (StringRef Code : OpInfo.Codes) { |
| 6201 | TargetLowering::ConstraintType CType = getConstraintType(Constraint: Code); |
| 6202 | |
| 6203 | // Indirect 'other' or 'immediate' constraints are not allowed. |
| 6204 | if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || |
| 6205 | CType == TargetLowering::C_Register || |
| 6206 | CType == TargetLowering::C_RegisterClass)) |
| 6207 | continue; |
| 6208 | |
| 6209 | // Things with matching constraints can only be registers, per gcc |
| 6210 | // documentation. This mainly affects "g" constraints. |
| 6211 | if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) |
| 6212 | continue; |
| 6213 | |
| 6214 | Ret.emplace_back(Args&: Code, Args&: CType); |
| 6215 | } |
| 6216 | |
| 6217 | llvm::stable_sort(Range&: Ret, C: [](ConstraintPair a, ConstraintPair b) { |
| 6218 | return getConstraintPiority(CT: a.second) > getConstraintPiority(CT: b.second); |
| 6219 | }); |
| 6220 | |
| 6221 | return Ret; |
| 6222 | } |
| 6223 | |
| 6224 | /// If we have an immediate, see if we can lower it. Return true if we can, |
| 6225 | /// false otherwise. |
| 6226 | static bool lowerImmediateIfPossible(TargetLowering::ConstraintPair &P, |
| 6227 | SDValue Op, SelectionDAG *DAG, |
| 6228 | const TargetLowering &TLI) { |
| 6229 | |
| 6230 | assert((P.second == TargetLowering::C_Other || |
| 6231 | P.second == TargetLowering::C_Immediate) && |
| 6232 | "need immediate or other" ); |
| 6233 | |
| 6234 | if (!Op.getNode()) |
| 6235 | return false; |
| 6236 | |
| 6237 | std::vector<SDValue> ResultOps; |
| 6238 | TLI.LowerAsmOperandForConstraint(Op, Constraint: P.first, Ops&: ResultOps, DAG&: *DAG); |
| 6239 | return !ResultOps.empty(); |
| 6240 | } |
| 6241 | |
| 6242 | /// Determines the constraint code and constraint type to use for the specific |
| 6243 | /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. |
| 6244 | void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, |
| 6245 | SDValue Op, |
| 6246 | SelectionDAG *DAG) const { |
| 6247 | assert(!OpInfo.Codes.empty() && "Must have at least one constraint" ); |
| 6248 | |
| 6249 | // Single-letter constraints ('r') are very common. |
| 6250 | if (OpInfo.Codes.size() == 1) { |
| 6251 | OpInfo.ConstraintCode = OpInfo.Codes[0]; |
| 6252 | OpInfo.ConstraintType = getConstraintType(Constraint: OpInfo.ConstraintCode); |
| 6253 | } else { |
| 6254 | ConstraintGroup G = getConstraintPreferences(OpInfo); |
| 6255 | if (G.empty()) |
| 6256 | return; |
| 6257 | |
| 6258 | unsigned BestIdx = 0; |
| 6259 | for (const unsigned E = G.size(); |
| 6260 | BestIdx < E && (G[BestIdx].second == TargetLowering::C_Other || |
| 6261 | G[BestIdx].second == TargetLowering::C_Immediate); |
| 6262 | ++BestIdx) { |
| 6263 | if (lowerImmediateIfPossible(P&: G[BestIdx], Op, DAG, TLI: *this)) |
| 6264 | break; |
| 6265 | // If we're out of constraints, just pick the first one. |
| 6266 | if (BestIdx + 1 == E) { |
| 6267 | BestIdx = 0; |
| 6268 | break; |
| 6269 | } |
| 6270 | } |
| 6271 | |
| 6272 | OpInfo.ConstraintCode = G[BestIdx].first; |
| 6273 | OpInfo.ConstraintType = G[BestIdx].second; |
| 6274 | } |
| 6275 | |
| 6276 | // 'X' matches anything. |
| 6277 | if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { |
| 6278 | // Constants are handled elsewhere. For Functions, the type here is the |
| 6279 | // type of the result, which is not what we want to look at; leave them |
| 6280 | // alone. |
| 6281 | Value *v = OpInfo.CallOperandVal; |
| 6282 | if (isa<ConstantInt>(Val: v) || isa<Function>(Val: v)) { |
| 6283 | return; |
| 6284 | } |
| 6285 | |
| 6286 | if (isa<BasicBlock>(Val: v) || isa<BlockAddress>(Val: v)) { |
| 6287 | OpInfo.ConstraintCode = "i" ; |
| 6288 | return; |
| 6289 | } |
| 6290 | |
| 6291 | // Otherwise, try to resolve it to something we know about by looking at |
| 6292 | // the actual operand type. |
| 6293 | if (const char *Repl = LowerXConstraint(ConstraintVT: OpInfo.ConstraintVT)) { |
| 6294 | OpInfo.ConstraintCode = Repl; |
| 6295 | OpInfo.ConstraintType = getConstraintType(Constraint: OpInfo.ConstraintCode); |
| 6296 | } |
| 6297 | } |
| 6298 | } |
| 6299 | |
| 6300 | /// Given an exact SDIV by a constant, create a multiplication |
| 6301 | /// with the multiplicative inverse of the constant. |
| 6302 | /// Ref: "Hacker's Delight" by Henry Warren, 2nd Edition, p. 242 |
| 6303 | static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, |
| 6304 | const SDLoc &dl, SelectionDAG &DAG, |
| 6305 | SmallVectorImpl<SDNode *> &Created) { |
| 6306 | SDValue Op0 = N->getOperand(Num: 0); |
| 6307 | SDValue Op1 = N->getOperand(Num: 1); |
| 6308 | EVT VT = N->getValueType(ResNo: 0); |
| 6309 | EVT SVT = VT.getScalarType(); |
| 6310 | EVT ShVT = TLI.getShiftAmountTy(LHSTy: VT, DL: DAG.getDataLayout()); |
| 6311 | EVT ShSVT = ShVT.getScalarType(); |
| 6312 | |
| 6313 | bool UseSRA = false; |
| 6314 | SmallVector<SDValue, 16> Shifts, Factors; |
| 6315 | |
| 6316 | auto BuildSDIVPattern = [&](ConstantSDNode *C) { |
| 6317 | if (C->isZero()) |
| 6318 | return false; |
| 6319 | APInt Divisor = C->getAPIntValue(); |
| 6320 | unsigned Shift = Divisor.countr_zero(); |
| 6321 | if (Shift) { |
| 6322 | Divisor.ashrInPlace(ShiftAmt: Shift); |
| 6323 | UseSRA = true; |
| 6324 | } |
| 6325 | APInt Factor = Divisor.multiplicativeInverse(); |
| 6326 | Shifts.push_back(Elt: DAG.getConstant(Val: Shift, DL: dl, VT: ShSVT)); |
| 6327 | Factors.push_back(Elt: DAG.getConstant(Val: Factor, DL: dl, VT: SVT)); |
| 6328 | return true; |
| 6329 | }; |
| 6330 | |
| 6331 | // Collect all magic values from the build vector. |
| 6332 | if (!ISD::matchUnaryPredicate(Op: Op1, Match: BuildSDIVPattern)) |
| 6333 | return SDValue(); |
| 6334 | |
| 6335 | SDValue Shift, Factor; |
| 6336 | if (Op1.getOpcode() == ISD::BUILD_VECTOR) { |
| 6337 | Shift = DAG.getBuildVector(VT: ShVT, DL: dl, Ops: Shifts); |
| 6338 | Factor = DAG.getBuildVector(VT, DL: dl, Ops: Factors); |
| 6339 | } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { |
| 6340 | assert(Shifts.size() == 1 && Factors.size() == 1 && |
| 6341 | "Expected matchUnaryPredicate to return one element for scalable " |
| 6342 | "vectors" ); |
| 6343 | Shift = DAG.getSplatVector(VT: ShVT, DL: dl, Op: Shifts[0]); |
| 6344 | Factor = DAG.getSplatVector(VT, DL: dl, Op: Factors[0]); |
| 6345 | } else { |
| 6346 | assert(isa<ConstantSDNode>(Op1) && "Expected a constant" ); |
| 6347 | Shift = Shifts[0]; |
| 6348 | Factor = Factors[0]; |
| 6349 | } |
| 6350 | |
| 6351 | SDValue Res = Op0; |
| 6352 | if (UseSRA) { |
| 6353 | Res = DAG.getNode(Opcode: ISD::SRA, DL: dl, VT, N1: Res, N2: Shift, Flags: SDNodeFlags::Exact); |
| 6354 | Created.push_back(Elt: Res.getNode()); |
| 6355 | } |
| 6356 | |
| 6357 | return DAG.getNode(Opcode: ISD::MUL, DL: dl, VT, N1: Res, N2: Factor); |
| 6358 | } |
| 6359 | |
| 6360 | /// Given an exact UDIV by a constant, create a multiplication |
| 6361 | /// with the multiplicative inverse of the constant. |
| 6362 | /// Ref: "Hacker's Delight" by Henry Warren, 2nd Edition, p. 242 |
| 6363 | static SDValue BuildExactUDIV(const TargetLowering &TLI, SDNode *N, |
| 6364 | const SDLoc &dl, SelectionDAG &DAG, |
| 6365 | SmallVectorImpl<SDNode *> &Created) { |
| 6366 | EVT VT = N->getValueType(ResNo: 0); |
| 6367 | EVT SVT = VT.getScalarType(); |
| 6368 | EVT ShVT = TLI.getShiftAmountTy(LHSTy: VT, DL: DAG.getDataLayout()); |
| 6369 | EVT ShSVT = ShVT.getScalarType(); |
| 6370 | |
| 6371 | bool UseSRL = false; |
| 6372 | SmallVector<SDValue, 16> Shifts, Factors; |
| 6373 | |
| 6374 | auto BuildUDIVPattern = [&](ConstantSDNode *C) { |
| 6375 | if (C->isZero()) |
| 6376 | return false; |
| 6377 | APInt Divisor = C->getAPIntValue(); |
| 6378 | unsigned Shift = Divisor.countr_zero(); |
| 6379 | if (Shift) { |
| 6380 | Divisor.lshrInPlace(ShiftAmt: Shift); |
| 6381 | UseSRL = true; |
| 6382 | } |
| 6383 | // Calculate the multiplicative inverse modulo BW. |
| 6384 | APInt Factor = Divisor.multiplicativeInverse(); |
| 6385 | Shifts.push_back(Elt: DAG.getConstant(Val: Shift, DL: dl, VT: ShSVT)); |
| 6386 | Factors.push_back(Elt: DAG.getConstant(Val: Factor, DL: dl, VT: SVT)); |
| 6387 | return true; |
| 6388 | }; |
| 6389 | |
| 6390 | SDValue Op1 = N->getOperand(Num: 1); |
| 6391 | |
| 6392 | // Collect all magic values from the build vector. |
| 6393 | if (!ISD::matchUnaryPredicate(Op: Op1, Match: BuildUDIVPattern)) |
| 6394 | return SDValue(); |
| 6395 | |
| 6396 | SDValue Shift, Factor; |
| 6397 | if (Op1.getOpcode() == ISD::BUILD_VECTOR) { |
| 6398 | Shift = DAG.getBuildVector(VT: ShVT, DL: dl, Ops: Shifts); |
| 6399 | Factor = DAG.getBuildVector(VT, DL: dl, Ops: Factors); |
| 6400 | } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { |
| 6401 | assert(Shifts.size() == 1 && Factors.size() == 1 && |
| 6402 | "Expected matchUnaryPredicate to return one element for scalable " |
| 6403 | "vectors" ); |
| 6404 | Shift = DAG.getSplatVector(VT: ShVT, DL: dl, Op: Shifts[0]); |
| 6405 | Factor = DAG.getSplatVector(VT, DL: dl, Op: Factors[0]); |
| 6406 | } else { |
| 6407 | assert(isa<ConstantSDNode>(Op1) && "Expected a constant" ); |
| 6408 | Shift = Shifts[0]; |
| 6409 | Factor = Factors[0]; |
| 6410 | } |
| 6411 | |
| 6412 | SDValue Res = N->getOperand(Num: 0); |
| 6413 | if (UseSRL) { |
| 6414 | Res = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Res, N2: Shift, Flags: SDNodeFlags::Exact); |
| 6415 | Created.push_back(Elt: Res.getNode()); |
| 6416 | } |
| 6417 | |
| 6418 | return DAG.getNode(Opcode: ISD::MUL, DL: dl, VT, N1: Res, N2: Factor); |
| 6419 | } |
| 6420 | |
| 6421 | SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, |
| 6422 | SelectionDAG &DAG, |
| 6423 | SmallVectorImpl<SDNode *> &Created) const { |
| 6424 | AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); |
| 6425 | if (isIntDivCheap(VT: N->getValueType(ResNo: 0), Attr)) |
| 6426 | return SDValue(N, 0); // Lower SDIV as SDIV |
| 6427 | return SDValue(); |
| 6428 | } |
| 6429 | |
| 6430 | SDValue |
| 6431 | TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor, |
| 6432 | SelectionDAG &DAG, |
| 6433 | SmallVectorImpl<SDNode *> &Created) const { |
| 6434 | AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); |
| 6435 | if (isIntDivCheap(VT: N->getValueType(ResNo: 0), Attr)) |
| 6436 | return SDValue(N, 0); // Lower SREM as SREM |
| 6437 | return SDValue(); |
| 6438 | } |
| 6439 | |
| 6440 | /// Build sdiv by power-of-2 with conditional move instructions |
| 6441 | /// Ref: "Hacker's Delight" by Henry Warren 10-1 |
| 6442 | /// If conditional move/branch is preferred, we lower sdiv x, +/-2**k into: |
| 6443 | /// bgez x, label |
| 6444 | /// add x, x, 2**k-1 |
| 6445 | /// label: |
| 6446 | /// sra res, x, k |
| 6447 | /// neg res, res (when the divisor is negative) |
| 6448 | SDValue TargetLowering::buildSDIVPow2WithCMov( |
| 6449 | SDNode *N, const APInt &Divisor, SelectionDAG &DAG, |
| 6450 | SmallVectorImpl<SDNode *> &Created) const { |
| 6451 | unsigned Lg2 = Divisor.countr_zero(); |
| 6452 | EVT VT = N->getValueType(ResNo: 0); |
| 6453 | |
| 6454 | SDLoc DL(N); |
| 6455 | SDValue N0 = N->getOperand(Num: 0); |
| 6456 | SDValue Zero = DAG.getConstant(Val: 0, DL, VT); |
| 6457 | APInt Lg2Mask = APInt::getLowBitsSet(numBits: VT.getSizeInBits(), loBitsSet: Lg2); |
| 6458 | SDValue Pow2MinusOne = DAG.getConstant(Val: Lg2Mask, DL, VT); |
| 6459 | |
| 6460 | // If N0 is negative, we need to add (Pow2 - 1) to it before shifting right. |
| 6461 | EVT CCVT = getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT); |
| 6462 | SDValue Cmp = DAG.getSetCC(DL, VT: CCVT, LHS: N0, RHS: Zero, Cond: ISD::SETLT); |
| 6463 | SDValue Add = DAG.getNode(Opcode: ISD::ADD, DL, VT, N1: N0, N2: Pow2MinusOne); |
| 6464 | SDValue CMov = DAG.getNode(Opcode: ISD::SELECT, DL, VT, N1: Cmp, N2: Add, N3: N0); |
| 6465 | |
| 6466 | Created.push_back(Elt: Cmp.getNode()); |
| 6467 | Created.push_back(Elt: Add.getNode()); |
| 6468 | Created.push_back(Elt: CMov.getNode()); |
| 6469 | |
| 6470 | // Divide by pow2. |
| 6471 | SDValue SRA = |
| 6472 | DAG.getNode(Opcode: ISD::SRA, DL, VT, N1: CMov, N2: DAG.getConstant(Val: Lg2, DL, VT)); |
| 6473 | |
| 6474 | // If we're dividing by a positive value, we're done. Otherwise, we must |
| 6475 | // negate the result. |
| 6476 | if (Divisor.isNonNegative()) |
| 6477 | return SRA; |
| 6478 | |
| 6479 | Created.push_back(Elt: SRA.getNode()); |
| 6480 | return DAG.getNode(Opcode: ISD::SUB, DL, VT, N1: Zero, N2: SRA); |
| 6481 | } |
| 6482 | |
| 6483 | /// Given an ISD::SDIV node expressing a divide by constant, |
| 6484 | /// return a DAG expression to select that will generate the same value by |
| 6485 | /// multiplying by a magic number. |
| 6486 | /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". |
| 6487 | SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, |
| 6488 | bool IsAfterLegalization, |
| 6489 | bool IsAfterLegalTypes, |
| 6490 | SmallVectorImpl<SDNode *> &Created) const { |
| 6491 | SDLoc dl(N); |
| 6492 | EVT VT = N->getValueType(ResNo: 0); |
| 6493 | EVT SVT = VT.getScalarType(); |
| 6494 | EVT ShVT = getShiftAmountTy(LHSTy: VT, DL: DAG.getDataLayout()); |
| 6495 | EVT ShSVT = ShVT.getScalarType(); |
| 6496 | unsigned EltBits = VT.getScalarSizeInBits(); |
| 6497 | EVT MulVT; |
| 6498 | |
| 6499 | // Check to see if we can do this. |
| 6500 | // FIXME: We should be more aggressive here. |
| 6501 | if (!isTypeLegal(VT)) { |
| 6502 | // Limit this to simple scalars for now. |
| 6503 | if (VT.isVector() || !VT.isSimple()) |
| 6504 | return SDValue(); |
| 6505 | |
| 6506 | // If this type will be promoted to a large enough type with a legal |
| 6507 | // multiply operation, we can go ahead and do this transform. |
| 6508 | if (getTypeAction(VT: VT.getSimpleVT()) != TypePromoteInteger) |
| 6509 | return SDValue(); |
| 6510 | |
| 6511 | MulVT = getTypeToTransformTo(Context&: *DAG.getContext(), VT); |
| 6512 | if (MulVT.getSizeInBits() < (2 * EltBits) || |
| 6513 | !isOperationLegal(Op: ISD::MUL, VT: MulVT)) |
| 6514 | return SDValue(); |
| 6515 | } |
| 6516 | |
| 6517 | // If the sdiv has an 'exact' bit we can use a simpler lowering. |
| 6518 | if (N->getFlags().hasExact()) |
| 6519 | return BuildExactSDIV(TLI: *this, N, dl, DAG, Created); |
| 6520 | |
| 6521 | SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; |
| 6522 | |
| 6523 | auto BuildSDIVPattern = [&](ConstantSDNode *C) { |
| 6524 | if (C->isZero()) |
| 6525 | return false; |
| 6526 | |
| 6527 | const APInt &Divisor = C->getAPIntValue(); |
| 6528 | SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(D: Divisor); |
| 6529 | int NumeratorFactor = 0; |
| 6530 | int ShiftMask = -1; |
| 6531 | |
| 6532 | if (Divisor.isOne() || Divisor.isAllOnes()) { |
| 6533 | // If d is +1/-1, we just multiply the numerator by +1/-1. |
| 6534 | NumeratorFactor = Divisor.getSExtValue(); |
| 6535 | magics.Magic = 0; |
| 6536 | magics.ShiftAmount = 0; |
| 6537 | ShiftMask = 0; |
| 6538 | } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) { |
| 6539 | // If d > 0 and m < 0, add the numerator. |
| 6540 | NumeratorFactor = 1; |
| 6541 | } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) { |
| 6542 | // If d < 0 and m > 0, subtract the numerator. |
| 6543 | NumeratorFactor = -1; |
| 6544 | } |
| 6545 | |
| 6546 | MagicFactors.push_back(Elt: DAG.getConstant(Val: magics.Magic, DL: dl, VT: SVT)); |
| 6547 | Factors.push_back(Elt: DAG.getSignedConstant(Val: NumeratorFactor, DL: dl, VT: SVT)); |
| 6548 | Shifts.push_back(Elt: DAG.getConstant(Val: magics.ShiftAmount, DL: dl, VT: ShSVT)); |
| 6549 | ShiftMasks.push_back(Elt: DAG.getSignedConstant(Val: ShiftMask, DL: dl, VT: SVT)); |
| 6550 | return true; |
| 6551 | }; |
| 6552 | |
| 6553 | SDValue N0 = N->getOperand(Num: 0); |
| 6554 | SDValue N1 = N->getOperand(Num: 1); |
| 6555 | |
| 6556 | // Collect the shifts / magic values from each element. |
| 6557 | if (!ISD::matchUnaryPredicate(Op: N1, Match: BuildSDIVPattern)) |
| 6558 | return SDValue(); |
| 6559 | |
| 6560 | SDValue MagicFactor, Factor, Shift, ShiftMask; |
| 6561 | if (N1.getOpcode() == ISD::BUILD_VECTOR) { |
| 6562 | MagicFactor = DAG.getBuildVector(VT, DL: dl, Ops: MagicFactors); |
| 6563 | Factor = DAG.getBuildVector(VT, DL: dl, Ops: Factors); |
| 6564 | Shift = DAG.getBuildVector(VT: ShVT, DL: dl, Ops: Shifts); |
| 6565 | ShiftMask = DAG.getBuildVector(VT, DL: dl, Ops: ShiftMasks); |
| 6566 | } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { |
| 6567 | assert(MagicFactors.size() == 1 && Factors.size() == 1 && |
| 6568 | Shifts.size() == 1 && ShiftMasks.size() == 1 && |
| 6569 | "Expected matchUnaryPredicate to return one element for scalable " |
| 6570 | "vectors" ); |
| 6571 | MagicFactor = DAG.getSplatVector(VT, DL: dl, Op: MagicFactors[0]); |
| 6572 | Factor = DAG.getSplatVector(VT, DL: dl, Op: Factors[0]); |
| 6573 | Shift = DAG.getSplatVector(VT: ShVT, DL: dl, Op: Shifts[0]); |
| 6574 | ShiftMask = DAG.getSplatVector(VT, DL: dl, Op: ShiftMasks[0]); |
| 6575 | } else { |
| 6576 | assert(isa<ConstantSDNode>(N1) && "Expected a constant" ); |
| 6577 | MagicFactor = MagicFactors[0]; |
| 6578 | Factor = Factors[0]; |
| 6579 | Shift = Shifts[0]; |
| 6580 | ShiftMask = ShiftMasks[0]; |
| 6581 | } |
| 6582 | |
| 6583 | // Multiply the numerator (operand 0) by the magic value. |
| 6584 | // FIXME: We should support doing a MUL in a wider type. |
| 6585 | auto GetMULHS = [&](SDValue X, SDValue Y) { |
| 6586 | // If the type isn't legal, use a wider mul of the type calculated |
| 6587 | // earlier. |
| 6588 | if (!isTypeLegal(VT)) { |
| 6589 | X = DAG.getNode(Opcode: ISD::SIGN_EXTEND, DL: dl, VT: MulVT, Operand: X); |
| 6590 | Y = DAG.getNode(Opcode: ISD::SIGN_EXTEND, DL: dl, VT: MulVT, Operand: Y); |
| 6591 | Y = DAG.getNode(Opcode: ISD::MUL, DL: dl, VT: MulVT, N1: X, N2: Y); |
| 6592 | Y = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: MulVT, N1: Y, |
| 6593 | N2: DAG.getShiftAmountConstant(Val: EltBits, VT: MulVT, DL: dl)); |
| 6594 | return DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT, Operand: Y); |
| 6595 | } |
| 6596 | |
| 6597 | if (isOperationLegalOrCustom(Op: ISD::MULHS, VT, LegalOnly: IsAfterLegalization)) |
| 6598 | return DAG.getNode(Opcode: ISD::MULHS, DL: dl, VT, N1: X, N2: Y); |
| 6599 | if (isOperationLegalOrCustom(Op: ISD::SMUL_LOHI, VT, LegalOnly: IsAfterLegalization)) { |
| 6600 | SDValue LoHi = |
| 6601 | DAG.getNode(Opcode: ISD::SMUL_LOHI, DL: dl, VTList: DAG.getVTList(VT1: VT, VT2: VT), N1: X, N2: Y); |
| 6602 | return SDValue(LoHi.getNode(), 1); |
| 6603 | } |
| 6604 | // If type twice as wide legal, widen and use a mul plus a shift. |
| 6605 | unsigned Size = VT.getScalarSizeInBits(); |
| 6606 | EVT WideVT = EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: Size * 2); |
| 6607 | if (VT.isVector()) |
| 6608 | WideVT = EVT::getVectorVT(Context&: *DAG.getContext(), VT: WideVT, |
| 6609 | EC: VT.getVectorElementCount()); |
| 6610 | // Some targets like AMDGPU try to go from SDIV to SDIVREM which is then |
| 6611 | // custom lowered. This is very expensive so avoid it at all costs for |
| 6612 | // constant divisors. |
| 6613 | if ((!IsAfterLegalTypes && isOperationExpand(Op: ISD::SDIV, VT) && |
| 6614 | isOperationCustom(Op: ISD::SDIVREM, VT: VT.getScalarType())) || |
| 6615 | isOperationLegalOrCustom(Op: ISD::MUL, VT: WideVT)) { |
| 6616 | X = DAG.getNode(Opcode: ISD::SIGN_EXTEND, DL: dl, VT: WideVT, Operand: X); |
| 6617 | Y = DAG.getNode(Opcode: ISD::SIGN_EXTEND, DL: dl, VT: WideVT, Operand: Y); |
| 6618 | Y = DAG.getNode(Opcode: ISD::MUL, DL: dl, VT: WideVT, N1: X, N2: Y); |
| 6619 | Y = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: WideVT, N1: Y, |
| 6620 | N2: DAG.getShiftAmountConstant(Val: EltBits, VT: WideVT, DL: dl)); |
| 6621 | return DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT, Operand: Y); |
| 6622 | } |
| 6623 | return SDValue(); |
| 6624 | }; |
| 6625 | |
| 6626 | SDValue Q = GetMULHS(N0, MagicFactor); |
| 6627 | if (!Q) |
| 6628 | return SDValue(); |
| 6629 | |
| 6630 | Created.push_back(Elt: Q.getNode()); |
| 6631 | |
| 6632 | // (Optionally) Add/subtract the numerator using Factor. |
| 6633 | Factor = DAG.getNode(Opcode: ISD::MUL, DL: dl, VT, N1: N0, N2: Factor); |
| 6634 | Created.push_back(Elt: Factor.getNode()); |
| 6635 | Q = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT, N1: Q, N2: Factor); |
| 6636 | Created.push_back(Elt: Q.getNode()); |
| 6637 | |
| 6638 | // Shift right algebraic by shift value. |
| 6639 | Q = DAG.getNode(Opcode: ISD::SRA, DL: dl, VT, N1: Q, N2: Shift); |
| 6640 | Created.push_back(Elt: Q.getNode()); |
| 6641 | |
| 6642 | // Extract the sign bit, mask it and add it to the quotient. |
| 6643 | SDValue SignShift = DAG.getConstant(Val: EltBits - 1, DL: dl, VT: ShVT); |
| 6644 | SDValue T = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Q, N2: SignShift); |
| 6645 | Created.push_back(Elt: T.getNode()); |
| 6646 | T = DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: T, N2: ShiftMask); |
| 6647 | Created.push_back(Elt: T.getNode()); |
| 6648 | return DAG.getNode(Opcode: ISD::ADD, DL: dl, VT, N1: Q, N2: T); |
| 6649 | } |
| 6650 | |
| 6651 | /// Given an ISD::UDIV node expressing a divide by constant, |
| 6652 | /// return a DAG expression to select that will generate the same value by |
| 6653 | /// multiplying by a magic number. |
| 6654 | /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". |
| 6655 | SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, |
| 6656 | bool IsAfterLegalization, |
| 6657 | bool IsAfterLegalTypes, |
| 6658 | SmallVectorImpl<SDNode *> &Created) const { |
| 6659 | SDLoc dl(N); |
| 6660 | EVT VT = N->getValueType(ResNo: 0); |
| 6661 | EVT SVT = VT.getScalarType(); |
| 6662 | EVT ShVT = getShiftAmountTy(LHSTy: VT, DL: DAG.getDataLayout()); |
| 6663 | EVT ShSVT = ShVT.getScalarType(); |
| 6664 | unsigned EltBits = VT.getScalarSizeInBits(); |
| 6665 | EVT MulVT; |
| 6666 | |
| 6667 | // Check to see if we can do this. |
| 6668 | // FIXME: We should be more aggressive here. |
| 6669 | if (!isTypeLegal(VT)) { |
| 6670 | // Limit this to simple scalars for now. |
| 6671 | if (VT.isVector() || !VT.isSimple()) |
| 6672 | return SDValue(); |
| 6673 | |
| 6674 | // If this type will be promoted to a large enough type with a legal |
| 6675 | // multiply operation, we can go ahead and do this transform. |
| 6676 | if (getTypeAction(VT: VT.getSimpleVT()) != TypePromoteInteger) |
| 6677 | return SDValue(); |
| 6678 | |
| 6679 | MulVT = getTypeToTransformTo(Context&: *DAG.getContext(), VT); |
| 6680 | if (MulVT.getSizeInBits() < (2 * EltBits) || |
| 6681 | !isOperationLegal(Op: ISD::MUL, VT: MulVT)) |
| 6682 | return SDValue(); |
| 6683 | } |
| 6684 | |
| 6685 | // If the udiv has an 'exact' bit we can use a simpler lowering. |
| 6686 | if (N->getFlags().hasExact()) |
| 6687 | return BuildExactUDIV(TLI: *this, N, dl, DAG, Created); |
| 6688 | |
| 6689 | SDValue N0 = N->getOperand(Num: 0); |
| 6690 | SDValue N1 = N->getOperand(Num: 1); |
| 6691 | |
| 6692 | // Try to use leading zeros of the dividend to reduce the multiplier and |
| 6693 | // avoid expensive fixups. |
| 6694 | unsigned KnownLeadingZeros = DAG.computeKnownBits(Op: N0).countMinLeadingZeros(); |
| 6695 | |
| 6696 | bool UseNPQ = false, UsePreShift = false, UsePostShift = false; |
| 6697 | SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; |
| 6698 | |
| 6699 | auto BuildUDIVPattern = [&](ConstantSDNode *C) { |
| 6700 | if (C->isZero()) |
| 6701 | return false; |
| 6702 | const APInt& Divisor = C->getAPIntValue(); |
| 6703 | |
| 6704 | SDValue PreShift, MagicFactor, NPQFactor, PostShift; |
| 6705 | |
| 6706 | // Magic algorithm doesn't work for division by 1. We need to emit a select |
| 6707 | // at the end. |
| 6708 | if (Divisor.isOne()) { |
| 6709 | PreShift = PostShift = DAG.getUNDEF(VT: ShSVT); |
| 6710 | MagicFactor = NPQFactor = DAG.getUNDEF(VT: SVT); |
| 6711 | } else { |
| 6712 | UnsignedDivisionByConstantInfo magics = |
| 6713 | UnsignedDivisionByConstantInfo::get( |
| 6714 | D: Divisor, LeadingZeros: std::min(a: KnownLeadingZeros, b: Divisor.countl_zero())); |
| 6715 | |
| 6716 | MagicFactor = DAG.getConstant(Val: magics.Magic, DL: dl, VT: SVT); |
| 6717 | |
| 6718 | assert(magics.PreShift < Divisor.getBitWidth() && |
| 6719 | "We shouldn't generate an undefined shift!" ); |
| 6720 | assert(magics.PostShift < Divisor.getBitWidth() && |
| 6721 | "We shouldn't generate an undefined shift!" ); |
| 6722 | assert((!magics.IsAdd || magics.PreShift == 0) && |
| 6723 | "Unexpected pre-shift" ); |
| 6724 | PreShift = DAG.getConstant(Val: magics.PreShift, DL: dl, VT: ShSVT); |
| 6725 | PostShift = DAG.getConstant(Val: magics.PostShift, DL: dl, VT: ShSVT); |
| 6726 | NPQFactor = DAG.getConstant( |
| 6727 | Val: magics.IsAdd ? APInt::getOneBitSet(numBits: EltBits, BitNo: EltBits - 1) |
| 6728 | : APInt::getZero(numBits: EltBits), |
| 6729 | DL: dl, VT: SVT); |
| 6730 | UseNPQ |= magics.IsAdd; |
| 6731 | UsePreShift |= magics.PreShift != 0; |
| 6732 | UsePostShift |= magics.PostShift != 0; |
| 6733 | } |
| 6734 | |
| 6735 | PreShifts.push_back(Elt: PreShift); |
| 6736 | MagicFactors.push_back(Elt: MagicFactor); |
| 6737 | NPQFactors.push_back(Elt: NPQFactor); |
| 6738 | PostShifts.push_back(Elt: PostShift); |
| 6739 | return true; |
| 6740 | }; |
| 6741 | |
| 6742 | // Collect the shifts/magic values from each element. |
| 6743 | if (!ISD::matchUnaryPredicate(Op: N1, Match: BuildUDIVPattern)) |
| 6744 | return SDValue(); |
| 6745 | |
| 6746 | SDValue PreShift, PostShift, MagicFactor, NPQFactor; |
| 6747 | if (N1.getOpcode() == ISD::BUILD_VECTOR) { |
| 6748 | PreShift = DAG.getBuildVector(VT: ShVT, DL: dl, Ops: PreShifts); |
| 6749 | MagicFactor = DAG.getBuildVector(VT, DL: dl, Ops: MagicFactors); |
| 6750 | NPQFactor = DAG.getBuildVector(VT, DL: dl, Ops: NPQFactors); |
| 6751 | PostShift = DAG.getBuildVector(VT: ShVT, DL: dl, Ops: PostShifts); |
| 6752 | } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { |
| 6753 | assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && |
| 6754 | NPQFactors.size() == 1 && PostShifts.size() == 1 && |
| 6755 | "Expected matchUnaryPredicate to return one for scalable vectors" ); |
| 6756 | PreShift = DAG.getSplatVector(VT: ShVT, DL: dl, Op: PreShifts[0]); |
| 6757 | MagicFactor = DAG.getSplatVector(VT, DL: dl, Op: MagicFactors[0]); |
| 6758 | NPQFactor = DAG.getSplatVector(VT, DL: dl, Op: NPQFactors[0]); |
| 6759 | PostShift = DAG.getSplatVector(VT: ShVT, DL: dl, Op: PostShifts[0]); |
| 6760 | } else { |
| 6761 | assert(isa<ConstantSDNode>(N1) && "Expected a constant" ); |
| 6762 | PreShift = PreShifts[0]; |
| 6763 | MagicFactor = MagicFactors[0]; |
| 6764 | PostShift = PostShifts[0]; |
| 6765 | } |
| 6766 | |
| 6767 | SDValue Q = N0; |
| 6768 | if (UsePreShift) { |
| 6769 | Q = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Q, N2: PreShift); |
| 6770 | Created.push_back(Elt: Q.getNode()); |
| 6771 | } |
| 6772 | |
| 6773 | // FIXME: We should support doing a MUL in a wider type. |
| 6774 | auto GetMULHU = [&](SDValue X, SDValue Y) { |
| 6775 | // If the type isn't legal, use a wider mul of the type calculated |
| 6776 | // earlier. |
| 6777 | if (!isTypeLegal(VT)) { |
| 6778 | X = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: dl, VT: MulVT, Operand: X); |
| 6779 | Y = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: dl, VT: MulVT, Operand: Y); |
| 6780 | Y = DAG.getNode(Opcode: ISD::MUL, DL: dl, VT: MulVT, N1: X, N2: Y); |
| 6781 | Y = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: MulVT, N1: Y, |
| 6782 | N2: DAG.getShiftAmountConstant(Val: EltBits, VT: MulVT, DL: dl)); |
| 6783 | return DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT, Operand: Y); |
| 6784 | } |
| 6785 | |
| 6786 | if (isOperationLegalOrCustom(Op: ISD::MULHU, VT, LegalOnly: IsAfterLegalization)) |
| 6787 | return DAG.getNode(Opcode: ISD::MULHU, DL: dl, VT, N1: X, N2: Y); |
| 6788 | if (isOperationLegalOrCustom(Op: ISD::UMUL_LOHI, VT, LegalOnly: IsAfterLegalization)) { |
| 6789 | SDValue LoHi = |
| 6790 | DAG.getNode(Opcode: ISD::UMUL_LOHI, DL: dl, VTList: DAG.getVTList(VT1: VT, VT2: VT), N1: X, N2: Y); |
| 6791 | return SDValue(LoHi.getNode(), 1); |
| 6792 | } |
| 6793 | // If type twice as wide legal, widen and use a mul plus a shift. |
| 6794 | unsigned Size = VT.getScalarSizeInBits(); |
| 6795 | EVT WideVT = EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: Size * 2); |
| 6796 | if (VT.isVector()) |
| 6797 | WideVT = EVT::getVectorVT(Context&: *DAG.getContext(), VT: WideVT, |
| 6798 | EC: VT.getVectorElementCount()); |
| 6799 | // Some targets like AMDGPU try to go from UDIV to UDIVREM which is then |
| 6800 | // custom lowered. This is very expensive so avoid it at all costs for |
| 6801 | // constant divisors. |
| 6802 | if ((!IsAfterLegalTypes && isOperationExpand(Op: ISD::UDIV, VT) && |
| 6803 | isOperationCustom(Op: ISD::UDIVREM, VT: VT.getScalarType())) || |
| 6804 | isOperationLegalOrCustom(Op: ISD::MUL, VT: WideVT)) { |
| 6805 | X = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: dl, VT: WideVT, Operand: X); |
| 6806 | Y = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: dl, VT: WideVT, Operand: Y); |
| 6807 | Y = DAG.getNode(Opcode: ISD::MUL, DL: dl, VT: WideVT, N1: X, N2: Y); |
| 6808 | Y = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: WideVT, N1: Y, |
| 6809 | N2: DAG.getShiftAmountConstant(Val: EltBits, VT: WideVT, DL: dl)); |
| 6810 | return DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT, Operand: Y); |
| 6811 | } |
| 6812 | return SDValue(); // No mulhu or equivalent |
| 6813 | }; |
| 6814 | |
| 6815 | // Multiply the numerator (operand 0) by the magic value. |
| 6816 | Q = GetMULHU(Q, MagicFactor); |
| 6817 | if (!Q) |
| 6818 | return SDValue(); |
| 6819 | |
| 6820 | Created.push_back(Elt: Q.getNode()); |
| 6821 | |
| 6822 | if (UseNPQ) { |
| 6823 | SDValue NPQ = DAG.getNode(Opcode: ISD::SUB, DL: dl, VT, N1: N0, N2: Q); |
| 6824 | Created.push_back(Elt: NPQ.getNode()); |
| 6825 | |
| 6826 | // For vectors we might have a mix of non-NPQ/NPQ paths, so use |
| 6827 | // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. |
| 6828 | if (VT.isVector()) |
| 6829 | NPQ = GetMULHU(NPQ, NPQFactor); |
| 6830 | else |
| 6831 | NPQ = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: NPQ, N2: DAG.getConstant(Val: 1, DL: dl, VT: ShVT)); |
| 6832 | |
| 6833 | Created.push_back(Elt: NPQ.getNode()); |
| 6834 | |
| 6835 | Q = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT, N1: NPQ, N2: Q); |
| 6836 | Created.push_back(Elt: Q.getNode()); |
| 6837 | } |
| 6838 | |
| 6839 | if (UsePostShift) { |
| 6840 | Q = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Q, N2: PostShift); |
| 6841 | Created.push_back(Elt: Q.getNode()); |
| 6842 | } |
| 6843 | |
| 6844 | EVT SetCCVT = getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT); |
| 6845 | |
| 6846 | SDValue One = DAG.getConstant(Val: 1, DL: dl, VT); |
| 6847 | SDValue IsOne = DAG.getSetCC(DL: dl, VT: SetCCVT, LHS: N1, RHS: One, Cond: ISD::SETEQ); |
| 6848 | return DAG.getSelect(DL: dl, VT, Cond: IsOne, LHS: N0, RHS: Q); |
| 6849 | } |
| 6850 | |
| 6851 | /// If all values in Values that *don't* match the predicate are same 'splat' |
| 6852 | /// value, then replace all values with that splat value. |
| 6853 | /// Else, if AlternativeReplacement was provided, then replace all values that |
| 6854 | /// do match predicate with AlternativeReplacement value. |
| 6855 | static void |
| 6856 | turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, |
| 6857 | std::function<bool(SDValue)> Predicate, |
| 6858 | SDValue AlternativeReplacement = SDValue()) { |
| 6859 | SDValue Replacement; |
| 6860 | // Is there a value for which the Predicate does *NOT* match? What is it? |
| 6861 | auto SplatValue = llvm::find_if_not(Range&: Values, P: Predicate); |
| 6862 | if (SplatValue != Values.end()) { |
| 6863 | // Does Values consist only of SplatValue's and values matching Predicate? |
| 6864 | if (llvm::all_of(Range&: Values, P: [Predicate, SplatValue](SDValue Value) { |
| 6865 | return Value == *SplatValue || Predicate(Value); |
| 6866 | })) // Then we shall replace values matching predicate with SplatValue. |
| 6867 | Replacement = *SplatValue; |
| 6868 | } |
| 6869 | if (!Replacement) { |
| 6870 | // Oops, we did not find the "baseline" splat value. |
| 6871 | if (!AlternativeReplacement) |
| 6872 | return; // Nothing to do. |
| 6873 | // Let's replace with provided value then. |
| 6874 | Replacement = AlternativeReplacement; |
| 6875 | } |
| 6876 | std::replace_if(first: Values.begin(), last: Values.end(), pred: Predicate, new_value: Replacement); |
| 6877 | } |
| 6878 | |
| 6879 | /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE |
| 6880 | /// where the divisor is constant and the comparison target is zero, |
| 6881 | /// return a DAG expression that will generate the same comparison result |
| 6882 | /// using only multiplications, additions and shifts/rotations. |
| 6883 | /// Ref: "Hacker's Delight" 10-17. |
| 6884 | SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, |
| 6885 | SDValue CompTargetNode, |
| 6886 | ISD::CondCode Cond, |
| 6887 | DAGCombinerInfo &DCI, |
| 6888 | const SDLoc &DL) const { |
| 6889 | SmallVector<SDNode *, 5> Built; |
| 6890 | if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, |
| 6891 | DCI, DL, Created&: Built)) { |
| 6892 | for (SDNode *N : Built) |
| 6893 | DCI.AddToWorklist(N); |
| 6894 | return Folded; |
| 6895 | } |
| 6896 | |
| 6897 | return SDValue(); |
| 6898 | } |
| 6899 | |
| 6900 | SDValue |
| 6901 | TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, |
| 6902 | SDValue CompTargetNode, ISD::CondCode Cond, |
| 6903 | DAGCombinerInfo &DCI, const SDLoc &DL, |
| 6904 | SmallVectorImpl<SDNode *> &Created) const { |
| 6905 | // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) |
| 6906 | // - D must be constant, with D = D0 * 2^K where D0 is odd |
| 6907 | // - P is the multiplicative inverse of D0 modulo 2^W |
| 6908 | // - Q = floor(((2^W) - 1) / D) |
| 6909 | // where W is the width of the common type of N and D. |
| 6910 | assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && |
| 6911 | "Only applicable for (in)equality comparisons." ); |
| 6912 | |
| 6913 | SelectionDAG &DAG = DCI.DAG; |
| 6914 | |
| 6915 | EVT VT = REMNode.getValueType(); |
| 6916 | EVT SVT = VT.getScalarType(); |
| 6917 | EVT ShVT = getShiftAmountTy(LHSTy: VT, DL: DAG.getDataLayout()); |
| 6918 | EVT ShSVT = ShVT.getScalarType(); |
| 6919 | |
| 6920 | // If MUL is unavailable, we cannot proceed in any case. |
| 6921 | if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(Op: ISD::MUL, VT)) |
| 6922 | return SDValue(); |
| 6923 | |
| 6924 | bool ComparingWithAllZeros = true; |
| 6925 | bool AllComparisonsWithNonZerosAreTautological = true; |
| 6926 | bool HadTautologicalLanes = false; |
| 6927 | bool AllLanesAreTautological = true; |
| 6928 | bool HadEvenDivisor = false; |
| 6929 | bool AllDivisorsArePowerOfTwo = true; |
| 6930 | bool HadTautologicalInvertedLanes = false; |
| 6931 | SmallVector<SDValue, 16> PAmts, KAmts, QAmts; |
| 6932 | |
| 6933 | auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { |
| 6934 | // Division by 0 is UB. Leave it to be constant-folded elsewhere. |
| 6935 | if (CDiv->isZero()) |
| 6936 | return false; |
| 6937 | |
| 6938 | const APInt &D = CDiv->getAPIntValue(); |
| 6939 | const APInt &Cmp = CCmp->getAPIntValue(); |
| 6940 | |
| 6941 | ComparingWithAllZeros &= Cmp.isZero(); |
| 6942 | |
| 6943 | // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, |
| 6944 | // if C2 is not less than C1, the comparison is always false. |
| 6945 | // But we will only be able to produce the comparison that will give the |
| 6946 | // opposive tautological answer. So this lane would need to be fixed up. |
| 6947 | bool TautologicalInvertedLane = D.ule(RHS: Cmp); |
| 6948 | HadTautologicalInvertedLanes |= TautologicalInvertedLane; |
| 6949 | |
| 6950 | // If all lanes are tautological (either all divisors are ones, or divisor |
| 6951 | // is not greater than the constant we are comparing with), |
| 6952 | // we will prefer to avoid the fold. |
| 6953 | bool TautologicalLane = D.isOne() || TautologicalInvertedLane; |
| 6954 | HadTautologicalLanes |= TautologicalLane; |
| 6955 | AllLanesAreTautological &= TautologicalLane; |
| 6956 | |
| 6957 | // If we are comparing with non-zero, we need'll need to subtract said |
| 6958 | // comparison value from the LHS. But there is no point in doing that if |
| 6959 | // every lane where we are comparing with non-zero is tautological.. |
| 6960 | if (!Cmp.isZero()) |
| 6961 | AllComparisonsWithNonZerosAreTautological &= TautologicalLane; |
| 6962 | |
| 6963 | // Decompose D into D0 * 2^K |
| 6964 | unsigned K = D.countr_zero(); |
| 6965 | assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate." ); |
| 6966 | APInt D0 = D.lshr(shiftAmt: K); |
| 6967 | |
| 6968 | // D is even if it has trailing zeros. |
| 6969 | HadEvenDivisor |= (K != 0); |
| 6970 | // D is a power-of-two if D0 is one. |
| 6971 | // If all divisors are power-of-two, we will prefer to avoid the fold. |
| 6972 | AllDivisorsArePowerOfTwo &= D0.isOne(); |
| 6973 | |
| 6974 | // P = inv(D0, 2^W) |
| 6975 | // 2^W requires W + 1 bits, so we have to extend and then truncate. |
| 6976 | unsigned W = D.getBitWidth(); |
| 6977 | APInt P = D0.multiplicativeInverse(); |
| 6978 | assert((D0 * P).isOne() && "Multiplicative inverse basic check failed." ); |
| 6979 | |
| 6980 | // Q = floor((2^W - 1) u/ D) |
| 6981 | // R = ((2^W - 1) u% D) |
| 6982 | APInt Q, R; |
| 6983 | APInt::udivrem(LHS: APInt::getAllOnes(numBits: W), RHS: D, Quotient&: Q, Remainder&: R); |
| 6984 | |
| 6985 | // If we are comparing with zero, then that comparison constant is okay, |
| 6986 | // else it may need to be one less than that. |
| 6987 | if (Cmp.ugt(RHS: R)) |
| 6988 | Q -= 1; |
| 6989 | |
| 6990 | assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && |
| 6991 | "We are expecting that K is always less than all-ones for ShSVT" ); |
| 6992 | |
| 6993 | // If the lane is tautological the result can be constant-folded. |
| 6994 | if (TautologicalLane) { |
| 6995 | // Set P and K amount to a bogus values so we can try to splat them. |
| 6996 | P = 0; |
| 6997 | K = -1; |
| 6998 | // And ensure that comparison constant is tautological, |
| 6999 | // it will always compare true/false. |
| 7000 | Q = -1; |
| 7001 | } |
| 7002 | |
| 7003 | PAmts.push_back(Elt: DAG.getConstant(Val: P, DL, VT: SVT)); |
| 7004 | KAmts.push_back( |
| 7005 | Elt: DAG.getConstant(Val: APInt(ShSVT.getSizeInBits(), K, /*isSigned=*/false, |
| 7006 | /*implicitTrunc=*/true), |
| 7007 | DL, VT: ShSVT)); |
| 7008 | QAmts.push_back(Elt: DAG.getConstant(Val: Q, DL, VT: SVT)); |
| 7009 | return true; |
| 7010 | }; |
| 7011 | |
| 7012 | SDValue N = REMNode.getOperand(i: 0); |
| 7013 | SDValue D = REMNode.getOperand(i: 1); |
| 7014 | |
| 7015 | // Collect the values from each element. |
| 7016 | if (!ISD::matchBinaryPredicate(LHS: D, RHS: CompTargetNode, Match: BuildUREMPattern)) |
| 7017 | return SDValue(); |
| 7018 | |
| 7019 | // If all lanes are tautological, the result can be constant-folded. |
| 7020 | if (AllLanesAreTautological) |
| 7021 | return SDValue(); |
| 7022 | |
| 7023 | // If this is a urem by a powers-of-two, avoid the fold since it can be |
| 7024 | // best implemented as a bit test. |
| 7025 | if (AllDivisorsArePowerOfTwo) |
| 7026 | return SDValue(); |
| 7027 | |
| 7028 | SDValue PVal, KVal, QVal; |
| 7029 | if (D.getOpcode() == ISD::BUILD_VECTOR) { |
| 7030 | if (HadTautologicalLanes) { |
| 7031 | // Try to turn PAmts into a splat, since we don't care about the values |
| 7032 | // that are currently '0'. If we can't, just keep '0'`s. |
| 7033 | turnVectorIntoSplatVector(Values: PAmts, Predicate: isNullConstant); |
| 7034 | // Try to turn KAmts into a splat, since we don't care about the values |
| 7035 | // that are currently '-1'. If we can't, change them to '0'`s. |
| 7036 | turnVectorIntoSplatVector(Values: KAmts, Predicate: isAllOnesConstant, |
| 7037 | AlternativeReplacement: DAG.getConstant(Val: 0, DL, VT: ShSVT)); |
| 7038 | } |
| 7039 | |
| 7040 | PVal = DAG.getBuildVector(VT, DL, Ops: PAmts); |
| 7041 | KVal = DAG.getBuildVector(VT: ShVT, DL, Ops: KAmts); |
| 7042 | QVal = DAG.getBuildVector(VT, DL, Ops: QAmts); |
| 7043 | } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { |
| 7044 | assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && |
| 7045 | "Expected matchBinaryPredicate to return one element for " |
| 7046 | "SPLAT_VECTORs" ); |
| 7047 | PVal = DAG.getSplatVector(VT, DL, Op: PAmts[0]); |
| 7048 | KVal = DAG.getSplatVector(VT: ShVT, DL, Op: KAmts[0]); |
| 7049 | QVal = DAG.getSplatVector(VT, DL, Op: QAmts[0]); |
| 7050 | } else { |
| 7051 | PVal = PAmts[0]; |
| 7052 | KVal = KAmts[0]; |
| 7053 | QVal = QAmts[0]; |
| 7054 | } |
| 7055 | |
| 7056 | if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { |
| 7057 | if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(Op: ISD::SUB, VT)) |
| 7058 | return SDValue(); // FIXME: Could/should use `ISD::ADD`? |
| 7059 | assert(CompTargetNode.getValueType() == N.getValueType() && |
| 7060 | "Expecting that the types on LHS and RHS of comparisons match." ); |
| 7061 | N = DAG.getNode(Opcode: ISD::SUB, DL, VT, N1: N, N2: CompTargetNode); |
| 7062 | } |
| 7063 | |
| 7064 | // (mul N, P) |
| 7065 | SDValue Op0 = DAG.getNode(Opcode: ISD::MUL, DL, VT, N1: N, N2: PVal); |
| 7066 | Created.push_back(Elt: Op0.getNode()); |
| 7067 | |
| 7068 | // Rotate right only if any divisor was even. We avoid rotates for all-odd |
| 7069 | // divisors as a performance improvement, since rotating by 0 is a no-op. |
| 7070 | if (HadEvenDivisor) { |
| 7071 | // We need ROTR to do this. |
| 7072 | if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(Op: ISD::ROTR, VT)) |
| 7073 | return SDValue(); |
| 7074 | // UREM: (rotr (mul N, P), K) |
| 7075 | Op0 = DAG.getNode(Opcode: ISD::ROTR, DL, VT, N1: Op0, N2: KVal); |
| 7076 | Created.push_back(Elt: Op0.getNode()); |
| 7077 | } |
| 7078 | |
| 7079 | // UREM: (setule/setugt (rotr (mul N, P), K), Q) |
| 7080 | SDValue NewCC = |
| 7081 | DAG.getSetCC(DL, VT: SETCCVT, LHS: Op0, RHS: QVal, |
| 7082 | Cond: ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); |
| 7083 | if (!HadTautologicalInvertedLanes) |
| 7084 | return NewCC; |
| 7085 | |
| 7086 | // If any lanes previously compared always-false, the NewCC will give |
| 7087 | // always-true result for them, so we need to fixup those lanes. |
| 7088 | // Or the other way around for inequality predicate. |
| 7089 | assert(VT.isVector() && "Can/should only get here for vectors." ); |
| 7090 | Created.push_back(Elt: NewCC.getNode()); |
| 7091 | |
| 7092 | // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, |
| 7093 | // if C2 is not less than C1, the comparison is always false. |
| 7094 | // But we have produced the comparison that will give the |
| 7095 | // opposive tautological answer. So these lanes would need to be fixed up. |
| 7096 | SDValue TautologicalInvertedChannels = |
| 7097 | DAG.getSetCC(DL, VT: SETCCVT, LHS: D, RHS: CompTargetNode, Cond: ISD::SETULE); |
| 7098 | Created.push_back(Elt: TautologicalInvertedChannels.getNode()); |
| 7099 | |
| 7100 | // NOTE: we avoid letting illegal types through even if we're before legalize |
| 7101 | // ops – legalization has a hard time producing good code for this. |
| 7102 | if (isOperationLegalOrCustom(Op: ISD::VSELECT, VT: SETCCVT)) { |
| 7103 | // If we have a vector select, let's replace the comparison results in the |
| 7104 | // affected lanes with the correct tautological result. |
| 7105 | SDValue Replacement = DAG.getBoolConstant(V: Cond == ISD::SETEQ ? false : true, |
| 7106 | DL, VT: SETCCVT, OpVT: SETCCVT); |
| 7107 | return DAG.getNode(Opcode: ISD::VSELECT, DL, VT: SETCCVT, N1: TautologicalInvertedChannels, |
| 7108 | N2: Replacement, N3: NewCC); |
| 7109 | } |
| 7110 | |
| 7111 | // Else, we can just invert the comparison result in the appropriate lanes. |
| 7112 | // |
| 7113 | // NOTE: see the note above VSELECT above. |
| 7114 | if (isOperationLegalOrCustom(Op: ISD::XOR, VT: SETCCVT)) |
| 7115 | return DAG.getNode(Opcode: ISD::XOR, DL, VT: SETCCVT, N1: NewCC, |
| 7116 | N2: TautologicalInvertedChannels); |
| 7117 | |
| 7118 | return SDValue(); // Don't know how to lower. |
| 7119 | } |
| 7120 | |
| 7121 | /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE |
| 7122 | /// where the divisor is constant and the comparison target is zero, |
| 7123 | /// return a DAG expression that will generate the same comparison result |
| 7124 | /// using only multiplications, additions and shifts/rotations. |
| 7125 | /// Ref: "Hacker's Delight" 10-17. |
| 7126 | SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, |
| 7127 | SDValue CompTargetNode, |
| 7128 | ISD::CondCode Cond, |
| 7129 | DAGCombinerInfo &DCI, |
| 7130 | const SDLoc &DL) const { |
| 7131 | SmallVector<SDNode *, 7> Built; |
| 7132 | if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, |
| 7133 | DCI, DL, Created&: Built)) { |
| 7134 | assert(Built.size() <= 7 && "Max size prediction failed." ); |
| 7135 | for (SDNode *N : Built) |
| 7136 | DCI.AddToWorklist(N); |
| 7137 | return Folded; |
| 7138 | } |
| 7139 | |
| 7140 | return SDValue(); |
| 7141 | } |
| 7142 | |
| 7143 | SDValue |
| 7144 | TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, |
| 7145 | SDValue CompTargetNode, ISD::CondCode Cond, |
| 7146 | DAGCombinerInfo &DCI, const SDLoc &DL, |
| 7147 | SmallVectorImpl<SDNode *> &Created) const { |
| 7148 | // Derived from Hacker's Delight, 2nd Edition, by Hank Warren. Section 10-17. |
| 7149 | // Fold: |
| 7150 | // (seteq/ne (srem N, D), 0) |
| 7151 | // To: |
| 7152 | // (setule/ugt (rotr (add (mul N, P), A), K), Q) |
| 7153 | // |
| 7154 | // - D must be constant, with D = D0 * 2^K where D0 is odd |
| 7155 | // - P is the multiplicative inverse of D0 modulo 2^W |
| 7156 | // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) |
| 7157 | // - Q = floor((2 * A) / (2^K)) |
| 7158 | // where W is the width of the common type of N and D. |
| 7159 | // |
| 7160 | // When D is a power of two (and thus D0 is 1), the normal |
| 7161 | // formula for A and Q don't apply, because the derivation |
| 7162 | // depends on D not dividing 2^(W-1), and thus theorem ZRS |
| 7163 | // does not apply. This specifically fails when N = INT_MIN. |
| 7164 | // |
| 7165 | // Instead, for power-of-two D, we use: |
| 7166 | // - A = 2^(W-1) |
| 7167 | // |-> Order-preserving map from [-2^(W-1), 2^(W-1) - 1] to [0,2^W - 1]) |
| 7168 | // - Q = 2^(W-K) - 1 |
| 7169 | // |-> Test that the top K bits are zero after rotation |
| 7170 | assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && |
| 7171 | "Only applicable for (in)equality comparisons." ); |
| 7172 | |
| 7173 | SelectionDAG &DAG = DCI.DAG; |
| 7174 | |
| 7175 | EVT VT = REMNode.getValueType(); |
| 7176 | EVT SVT = VT.getScalarType(); |
| 7177 | EVT ShVT = getShiftAmountTy(LHSTy: VT, DL: DAG.getDataLayout()); |
| 7178 | EVT ShSVT = ShVT.getScalarType(); |
| 7179 | |
| 7180 | // If we are after ops legalization, and MUL is unavailable, we can not |
| 7181 | // proceed. |
| 7182 | if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(Op: ISD::MUL, VT)) |
| 7183 | return SDValue(); |
| 7184 | |
| 7185 | // TODO: Could support comparing with non-zero too. |
| 7186 | ConstantSDNode *CompTarget = isConstOrConstSplat(N: CompTargetNode); |
| 7187 | if (!CompTarget || !CompTarget->isZero()) |
| 7188 | return SDValue(); |
| 7189 | |
| 7190 | bool HadIntMinDivisor = false; |
| 7191 | bool HadOneDivisor = false; |
| 7192 | bool AllDivisorsAreOnes = true; |
| 7193 | bool HadEvenDivisor = false; |
| 7194 | bool NeedToApplyOffset = false; |
| 7195 | bool AllDivisorsArePowerOfTwo = true; |
| 7196 | SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; |
| 7197 | |
| 7198 | auto BuildSREMPattern = [&](ConstantSDNode *C) { |
| 7199 | // Division by 0 is UB. Leave it to be constant-folded elsewhere. |
| 7200 | if (C->isZero()) |
| 7201 | return false; |
| 7202 | |
| 7203 | // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. |
| 7204 | |
| 7205 | // WARNING: this fold is only valid for positive divisors! |
| 7206 | APInt D = C->getAPIntValue(); |
| 7207 | if (D.isNegative()) |
| 7208 | D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` |
| 7209 | |
| 7210 | HadIntMinDivisor |= D.isMinSignedValue(); |
| 7211 | |
| 7212 | // If all divisors are ones, we will prefer to avoid the fold. |
| 7213 | HadOneDivisor |= D.isOne(); |
| 7214 | AllDivisorsAreOnes &= D.isOne(); |
| 7215 | |
| 7216 | // Decompose D into D0 * 2^K |
| 7217 | unsigned K = D.countr_zero(); |
| 7218 | assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate." ); |
| 7219 | APInt D0 = D.lshr(shiftAmt: K); |
| 7220 | |
| 7221 | if (!D.isMinSignedValue()) { |
| 7222 | // D is even if it has trailing zeros; unless it's INT_MIN, in which case |
| 7223 | // we don't care about this lane in this fold, we'll special-handle it. |
| 7224 | HadEvenDivisor |= (K != 0); |
| 7225 | } |
| 7226 | |
| 7227 | // D is a power-of-two if D0 is one. This includes INT_MIN. |
| 7228 | // If all divisors are power-of-two, we will prefer to avoid the fold. |
| 7229 | AllDivisorsArePowerOfTwo &= D0.isOne(); |
| 7230 | |
| 7231 | // P = inv(D0, 2^W) |
| 7232 | // 2^W requires W + 1 bits, so we have to extend and then truncate. |
| 7233 | unsigned W = D.getBitWidth(); |
| 7234 | APInt P = D0.multiplicativeInverse(); |
| 7235 | assert((D0 * P).isOne() && "Multiplicative inverse basic check failed." ); |
| 7236 | |
| 7237 | // A = floor((2^(W - 1) - 1) / D0) & -2^K |
| 7238 | APInt A = APInt::getSignedMaxValue(numBits: W).udiv(RHS: D0); |
| 7239 | A.clearLowBits(loBits: K); |
| 7240 | |
| 7241 | if (!D.isMinSignedValue()) { |
| 7242 | // If divisor INT_MIN, then we don't care about this lane in this fold, |
| 7243 | // we'll special-handle it. |
| 7244 | NeedToApplyOffset |= A != 0; |
| 7245 | } |
| 7246 | |
| 7247 | // Q = floor((2 * A) / (2^K)) |
| 7248 | APInt Q = (2 * A).udiv(RHS: APInt::getOneBitSet(numBits: W, BitNo: K)); |
| 7249 | |
| 7250 | assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) && |
| 7251 | "We are expecting that A is always less than all-ones for SVT" ); |
| 7252 | assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && |
| 7253 | "We are expecting that K is always less than all-ones for ShSVT" ); |
| 7254 | |
| 7255 | // If D was a power of two, apply the alternate constant derivation. |
| 7256 | if (D0.isOne()) { |
| 7257 | // A = 2^(W-1) |
| 7258 | A = APInt::getSignedMinValue(numBits: W); |
| 7259 | // - Q = 2^(W-K) - 1 |
| 7260 | Q = APInt::getAllOnes(numBits: W - K).zext(width: W); |
| 7261 | } |
| 7262 | |
| 7263 | // If the divisor is 1 the result can be constant-folded. Likewise, we |
| 7264 | // don't care about INT_MIN lanes, those can be set to undef if appropriate. |
| 7265 | if (D.isOne()) { |
| 7266 | // Set P, A and K to a bogus values so we can try to splat them. |
| 7267 | P = 0; |
| 7268 | A = -1; |
| 7269 | K = -1; |
| 7270 | |
| 7271 | // x ?% 1 == 0 <--> true <--> x u<= -1 |
| 7272 | Q = -1; |
| 7273 | } |
| 7274 | |
| 7275 | PAmts.push_back(Elt: DAG.getConstant(Val: P, DL, VT: SVT)); |
| 7276 | AAmts.push_back(Elt: DAG.getConstant(Val: A, DL, VT: SVT)); |
| 7277 | KAmts.push_back( |
| 7278 | Elt: DAG.getConstant(Val: APInt(ShSVT.getSizeInBits(), K, /*isSigned=*/false, |
| 7279 | /*implicitTrunc=*/true), |
| 7280 | DL, VT: ShSVT)); |
| 7281 | QAmts.push_back(Elt: DAG.getConstant(Val: Q, DL, VT: SVT)); |
| 7282 | return true; |
| 7283 | }; |
| 7284 | |
| 7285 | SDValue N = REMNode.getOperand(i: 0); |
| 7286 | SDValue D = REMNode.getOperand(i: 1); |
| 7287 | |
| 7288 | // Collect the values from each element. |
| 7289 | if (!ISD::matchUnaryPredicate(Op: D, Match: BuildSREMPattern)) |
| 7290 | return SDValue(); |
| 7291 | |
| 7292 | // If this is a srem by a one, avoid the fold since it can be constant-folded. |
| 7293 | if (AllDivisorsAreOnes) |
| 7294 | return SDValue(); |
| 7295 | |
| 7296 | // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold |
| 7297 | // since it can be best implemented as a bit test. |
| 7298 | if (AllDivisorsArePowerOfTwo) |
| 7299 | return SDValue(); |
| 7300 | |
| 7301 | SDValue PVal, AVal, KVal, QVal; |
| 7302 | if (D.getOpcode() == ISD::BUILD_VECTOR) { |
| 7303 | if (HadOneDivisor) { |
| 7304 | // Try to turn PAmts into a splat, since we don't care about the values |
| 7305 | // that are currently '0'. If we can't, just keep '0'`s. |
| 7306 | turnVectorIntoSplatVector(Values: PAmts, Predicate: isNullConstant); |
| 7307 | // Try to turn AAmts into a splat, since we don't care about the |
| 7308 | // values that are currently '-1'. If we can't, change them to '0'`s. |
| 7309 | turnVectorIntoSplatVector(Values: AAmts, Predicate: isAllOnesConstant, |
| 7310 | AlternativeReplacement: DAG.getConstant(Val: 0, DL, VT: SVT)); |
| 7311 | // Try to turn KAmts into a splat, since we don't care about the values |
| 7312 | // that are currently '-1'. If we can't, change them to '0'`s. |
| 7313 | turnVectorIntoSplatVector(Values: KAmts, Predicate: isAllOnesConstant, |
| 7314 | AlternativeReplacement: DAG.getConstant(Val: 0, DL, VT: ShSVT)); |
| 7315 | } |
| 7316 | |
| 7317 | PVal = DAG.getBuildVector(VT, DL, Ops: PAmts); |
| 7318 | AVal = DAG.getBuildVector(VT, DL, Ops: AAmts); |
| 7319 | KVal = DAG.getBuildVector(VT: ShVT, DL, Ops: KAmts); |
| 7320 | QVal = DAG.getBuildVector(VT, DL, Ops: QAmts); |
| 7321 | } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { |
| 7322 | assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && |
| 7323 | QAmts.size() == 1 && |
| 7324 | "Expected matchUnaryPredicate to return one element for scalable " |
| 7325 | "vectors" ); |
| 7326 | PVal = DAG.getSplatVector(VT, DL, Op: PAmts[0]); |
| 7327 | AVal = DAG.getSplatVector(VT, DL, Op: AAmts[0]); |
| 7328 | KVal = DAG.getSplatVector(VT: ShVT, DL, Op: KAmts[0]); |
| 7329 | QVal = DAG.getSplatVector(VT, DL, Op: QAmts[0]); |
| 7330 | } else { |
| 7331 | assert(isa<ConstantSDNode>(D) && "Expected a constant" ); |
| 7332 | PVal = PAmts[0]; |
| 7333 | AVal = AAmts[0]; |
| 7334 | KVal = KAmts[0]; |
| 7335 | QVal = QAmts[0]; |
| 7336 | } |
| 7337 | |
| 7338 | // (mul N, P) |
| 7339 | SDValue Op0 = DAG.getNode(Opcode: ISD::MUL, DL, VT, N1: N, N2: PVal); |
| 7340 | Created.push_back(Elt: Op0.getNode()); |
| 7341 | |
| 7342 | if (NeedToApplyOffset) { |
| 7343 | // We need ADD to do this. |
| 7344 | if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(Op: ISD::ADD, VT)) |
| 7345 | return SDValue(); |
| 7346 | |
| 7347 | // (add (mul N, P), A) |
| 7348 | Op0 = DAG.getNode(Opcode: ISD::ADD, DL, VT, N1: Op0, N2: AVal); |
| 7349 | Created.push_back(Elt: Op0.getNode()); |
| 7350 | } |
| 7351 | |
| 7352 | // Rotate right only if any divisor was even. We avoid rotates for all-odd |
| 7353 | // divisors as a performance improvement, since rotating by 0 is a no-op. |
| 7354 | if (HadEvenDivisor) { |
| 7355 | // We need ROTR to do this. |
| 7356 | if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(Op: ISD::ROTR, VT)) |
| 7357 | return SDValue(); |
| 7358 | // SREM: (rotr (add (mul N, P), A), K) |
| 7359 | Op0 = DAG.getNode(Opcode: ISD::ROTR, DL, VT, N1: Op0, N2: KVal); |
| 7360 | Created.push_back(Elt: Op0.getNode()); |
| 7361 | } |
| 7362 | |
| 7363 | // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) |
| 7364 | SDValue Fold = |
| 7365 | DAG.getSetCC(DL, VT: SETCCVT, LHS: Op0, RHS: QVal, |
| 7366 | Cond: ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); |
| 7367 | |
| 7368 | // If we didn't have lanes with INT_MIN divisor, then we're done. |
| 7369 | if (!HadIntMinDivisor) |
| 7370 | return Fold; |
| 7371 | |
| 7372 | // That fold is only valid for positive divisors. Which effectively means, |
| 7373 | // it is invalid for INT_MIN divisors. So if we have such a lane, |
| 7374 | // we must fix-up results for said lanes. |
| 7375 | assert(VT.isVector() && "Can/should only get here for vectors." ); |
| 7376 | |
| 7377 | // NOTE: we avoid letting illegal types through even if we're before legalize |
| 7378 | // ops – legalization has a hard time producing good code for the code that |
| 7379 | // follows. |
| 7380 | if (!isOperationLegalOrCustom(Op: ISD::SETCC, VT: SETCCVT) || |
| 7381 | !isOperationLegalOrCustom(Op: ISD::AND, VT) || |
| 7382 | !isCondCodeLegalOrCustom(CC: Cond, VT: VT.getSimpleVT()) || |
| 7383 | !isOperationLegalOrCustom(Op: ISD::VSELECT, VT: SETCCVT)) |
| 7384 | return SDValue(); |
| 7385 | |
| 7386 | Created.push_back(Elt: Fold.getNode()); |
| 7387 | |
| 7388 | SDValue IntMin = DAG.getConstant( |
| 7389 | Val: APInt::getSignedMinValue(numBits: SVT.getScalarSizeInBits()), DL, VT); |
| 7390 | SDValue IntMax = DAG.getConstant( |
| 7391 | Val: APInt::getSignedMaxValue(numBits: SVT.getScalarSizeInBits()), DL, VT); |
| 7392 | SDValue Zero = |
| 7393 | DAG.getConstant(Val: APInt::getZero(numBits: SVT.getScalarSizeInBits()), DL, VT); |
| 7394 | |
| 7395 | // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. |
| 7396 | SDValue DivisorIsIntMin = DAG.getSetCC(DL, VT: SETCCVT, LHS: D, RHS: IntMin, Cond: ISD::SETEQ); |
| 7397 | Created.push_back(Elt: DivisorIsIntMin.getNode()); |
| 7398 | |
| 7399 | // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 |
| 7400 | SDValue Masked = DAG.getNode(Opcode: ISD::AND, DL, VT, N1: N, N2: IntMax); |
| 7401 | Created.push_back(Elt: Masked.getNode()); |
| 7402 | SDValue MaskedIsZero = DAG.getSetCC(DL, VT: SETCCVT, LHS: Masked, RHS: Zero, Cond); |
| 7403 | Created.push_back(Elt: MaskedIsZero.getNode()); |
| 7404 | |
| 7405 | // To produce final result we need to blend 2 vectors: 'SetCC' and |
| 7406 | // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick |
| 7407 | // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is |
| 7408 | // constant-folded, select can get lowered to a shuffle with constant mask. |
| 7409 | SDValue Blended = DAG.getNode(Opcode: ISD::VSELECT, DL, VT: SETCCVT, N1: DivisorIsIntMin, |
| 7410 | N2: MaskedIsZero, N3: Fold); |
| 7411 | |
| 7412 | return Blended; |
| 7413 | } |
| 7414 | |
| 7415 | bool TargetLowering:: |
| 7416 | verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { |
| 7417 | if (!isa<ConstantSDNode>(Val: Op.getOperand(i: 0))) { |
| 7418 | DAG.getContext()->emitError(ErrorStr: "argument to '__builtin_return_address' must " |
| 7419 | "be a constant integer" ); |
| 7420 | return true; |
| 7421 | } |
| 7422 | |
| 7423 | return false; |
| 7424 | } |
| 7425 | |
| 7426 | SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, |
| 7427 | const DenormalMode &Mode) const { |
| 7428 | SDLoc DL(Op); |
| 7429 | EVT VT = Op.getValueType(); |
| 7430 | EVT CCVT = getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT); |
| 7431 | SDValue FPZero = DAG.getConstantFP(Val: 0.0, DL, VT); |
| 7432 | |
| 7433 | // This is specifically a check for the handling of denormal inputs, not the |
| 7434 | // result. |
| 7435 | if (Mode.Input == DenormalMode::PreserveSign || |
| 7436 | Mode.Input == DenormalMode::PositiveZero) { |
| 7437 | // Test = X == 0.0 |
| 7438 | return DAG.getSetCC(DL, VT: CCVT, LHS: Op, RHS: FPZero, Cond: ISD::SETEQ); |
| 7439 | } |
| 7440 | |
| 7441 | // Testing it with denormal inputs to avoid wrong estimate. |
| 7442 | // |
| 7443 | // Test = fabs(X) < SmallestNormal |
| 7444 | const fltSemantics &FltSem = VT.getFltSemantics(); |
| 7445 | APFloat SmallestNorm = APFloat::getSmallestNormalized(Sem: FltSem); |
| 7446 | SDValue NormC = DAG.getConstantFP(Val: SmallestNorm, DL, VT); |
| 7447 | SDValue Fabs = DAG.getNode(Opcode: ISD::FABS, DL, VT, Operand: Op); |
| 7448 | return DAG.getSetCC(DL, VT: CCVT, LHS: Fabs, RHS: NormC, Cond: ISD::SETLT); |
| 7449 | } |
| 7450 | |
| 7451 | SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, |
| 7452 | bool LegalOps, bool OptForSize, |
| 7453 | NegatibleCost &Cost, |
| 7454 | unsigned Depth) const { |
| 7455 | // fneg is removable even if it has multiple uses. |
| 7456 | if (Op.getOpcode() == ISD::FNEG || Op.getOpcode() == ISD::VP_FNEG) { |
| 7457 | Cost = NegatibleCost::Cheaper; |
| 7458 | return Op.getOperand(i: 0); |
| 7459 | } |
| 7460 | |
| 7461 | // Don't recurse exponentially. |
| 7462 | if (Depth > SelectionDAG::MaxRecursionDepth) |
| 7463 | return SDValue(); |
| 7464 | |
| 7465 | // Pre-increment recursion depth for use in recursive calls. |
| 7466 | ++Depth; |
| 7467 | const SDNodeFlags Flags = Op->getFlags(); |
| 7468 | const TargetOptions &Options = DAG.getTarget().Options; |
| 7469 | EVT VT = Op.getValueType(); |
| 7470 | unsigned Opcode = Op.getOpcode(); |
| 7471 | |
| 7472 | // Don't allow anything with multiple uses unless we know it is free. |
| 7473 | if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { |
| 7474 | bool IsFreeExtend = Opcode == ISD::FP_EXTEND && |
| 7475 | isFPExtFree(DestVT: VT, SrcVT: Op.getOperand(i: 0).getValueType()); |
| 7476 | if (!IsFreeExtend) |
| 7477 | return SDValue(); |
| 7478 | } |
| 7479 | |
| 7480 | auto RemoveDeadNode = [&](SDValue N) { |
| 7481 | if (N && N.getNode()->use_empty()) |
| 7482 | DAG.RemoveDeadNode(N: N.getNode()); |
| 7483 | }; |
| 7484 | |
| 7485 | SDLoc DL(Op); |
| 7486 | |
| 7487 | // Because getNegatedExpression can delete nodes we need a handle to keep |
| 7488 | // temporary nodes alive in case the recursion manages to create an identical |
| 7489 | // node. |
| 7490 | std::list<HandleSDNode> Handles; |
| 7491 | |
| 7492 | switch (Opcode) { |
| 7493 | case ISD::ConstantFP: { |
| 7494 | // Don't invert constant FP values after legalization unless the target says |
| 7495 | // the negated constant is legal. |
| 7496 | bool IsOpLegal = |
| 7497 | isOperationLegal(Op: ISD::ConstantFP, VT) || |
| 7498 | isFPImmLegal(neg(X: cast<ConstantFPSDNode>(Val&: Op)->getValueAPF()), VT, |
| 7499 | ForCodeSize: OptForSize); |
| 7500 | |
| 7501 | if (LegalOps && !IsOpLegal) |
| 7502 | break; |
| 7503 | |
| 7504 | APFloat V = cast<ConstantFPSDNode>(Val&: Op)->getValueAPF(); |
| 7505 | V.changeSign(); |
| 7506 | SDValue CFP = DAG.getConstantFP(Val: V, DL, VT); |
| 7507 | |
| 7508 | // If we already have the use of the negated floating constant, it is free |
| 7509 | // to negate it even it has multiple uses. |
| 7510 | if (!Op.hasOneUse() && CFP.use_empty()) |
| 7511 | break; |
| 7512 | Cost = NegatibleCost::Neutral; |
| 7513 | return CFP; |
| 7514 | } |
| 7515 | case ISD::BUILD_VECTOR: { |
| 7516 | // Only permit BUILD_VECTOR of constants. |
| 7517 | if (llvm::any_of(Range: Op->op_values(), P: [&](SDValue N) { |
| 7518 | return !N.isUndef() && !isa<ConstantFPSDNode>(Val: N); |
| 7519 | })) |
| 7520 | break; |
| 7521 | |
| 7522 | bool IsOpLegal = |
| 7523 | (isOperationLegal(Op: ISD::ConstantFP, VT) && |
| 7524 | isOperationLegal(Op: ISD::BUILD_VECTOR, VT)) || |
| 7525 | llvm::all_of(Range: Op->op_values(), P: [&](SDValue N) { |
| 7526 | return N.isUndef() || |
| 7527 | isFPImmLegal(neg(X: cast<ConstantFPSDNode>(Val&: N)->getValueAPF()), VT, |
| 7528 | ForCodeSize: OptForSize); |
| 7529 | }); |
| 7530 | |
| 7531 | if (LegalOps && !IsOpLegal) |
| 7532 | break; |
| 7533 | |
| 7534 | SmallVector<SDValue, 4> Ops; |
| 7535 | for (SDValue C : Op->op_values()) { |
| 7536 | if (C.isUndef()) { |
| 7537 | Ops.push_back(Elt: C); |
| 7538 | continue; |
| 7539 | } |
| 7540 | APFloat V = cast<ConstantFPSDNode>(Val&: C)->getValueAPF(); |
| 7541 | V.changeSign(); |
| 7542 | Ops.push_back(Elt: DAG.getConstantFP(Val: V, DL, VT: C.getValueType())); |
| 7543 | } |
| 7544 | Cost = NegatibleCost::Neutral; |
| 7545 | return DAG.getBuildVector(VT, DL, Ops); |
| 7546 | } |
| 7547 | case ISD::FADD: { |
| 7548 | if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) |
| 7549 | break; |
| 7550 | |
| 7551 | // After operation legalization, it might not be legal to create new FSUBs. |
| 7552 | if (LegalOps && !isOperationLegalOrCustom(Op: ISD::FSUB, VT)) |
| 7553 | break; |
| 7554 | SDValue X = Op.getOperand(i: 0), Y = Op.getOperand(i: 1); |
| 7555 | |
| 7556 | // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) |
| 7557 | NegatibleCost CostX = NegatibleCost::Expensive; |
| 7558 | SDValue NegX = |
| 7559 | getNegatedExpression(Op: X, DAG, LegalOps, OptForSize, Cost&: CostX, Depth); |
| 7560 | // Prevent this node from being deleted by the next call. |
| 7561 | if (NegX) |
| 7562 | Handles.emplace_back(args&: NegX); |
| 7563 | |
| 7564 | // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) |
| 7565 | NegatibleCost CostY = NegatibleCost::Expensive; |
| 7566 | SDValue NegY = |
| 7567 | getNegatedExpression(Op: Y, DAG, LegalOps, OptForSize, Cost&: CostY, Depth); |
| 7568 | |
| 7569 | // We're done with the handles. |
| 7570 | Handles.clear(); |
| 7571 | |
| 7572 | // Negate the X if its cost is less or equal than Y. |
| 7573 | if (NegX && (CostX <= CostY)) { |
| 7574 | Cost = CostX; |
| 7575 | SDValue N = DAG.getNode(Opcode: ISD::FSUB, DL, VT, N1: NegX, N2: Y, Flags); |
| 7576 | if (NegY != N) |
| 7577 | RemoveDeadNode(NegY); |
| 7578 | return N; |
| 7579 | } |
| 7580 | |
| 7581 | // Negate the Y if it is not expensive. |
| 7582 | if (NegY) { |
| 7583 | Cost = CostY; |
| 7584 | SDValue N = DAG.getNode(Opcode: ISD::FSUB, DL, VT, N1: NegY, N2: X, Flags); |
| 7585 | if (NegX != N) |
| 7586 | RemoveDeadNode(NegX); |
| 7587 | return N; |
| 7588 | } |
| 7589 | break; |
| 7590 | } |
| 7591 | case ISD::FSUB: { |
| 7592 | // We can't turn -(A-B) into B-A when we honor signed zeros. |
| 7593 | if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) |
| 7594 | break; |
| 7595 | |
| 7596 | SDValue X = Op.getOperand(i: 0), Y = Op.getOperand(i: 1); |
| 7597 | // fold (fneg (fsub 0, Y)) -> Y |
| 7598 | if (ConstantFPSDNode *C = isConstOrConstSplatFP(N: X, /*AllowUndefs*/ true)) |
| 7599 | if (C->isZero()) { |
| 7600 | Cost = NegatibleCost::Cheaper; |
| 7601 | return Y; |
| 7602 | } |
| 7603 | |
| 7604 | // fold (fneg (fsub X, Y)) -> (fsub Y, X) |
| 7605 | Cost = NegatibleCost::Neutral; |
| 7606 | return DAG.getNode(Opcode: ISD::FSUB, DL, VT, N1: Y, N2: X, Flags); |
| 7607 | } |
| 7608 | case ISD::FMUL: |
| 7609 | case ISD::FDIV: { |
| 7610 | SDValue X = Op.getOperand(i: 0), Y = Op.getOperand(i: 1); |
| 7611 | |
| 7612 | // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) |
| 7613 | NegatibleCost CostX = NegatibleCost::Expensive; |
| 7614 | SDValue NegX = |
| 7615 | getNegatedExpression(Op: X, DAG, LegalOps, OptForSize, Cost&: CostX, Depth); |
| 7616 | // Prevent this node from being deleted by the next call. |
| 7617 | if (NegX) |
| 7618 | Handles.emplace_back(args&: NegX); |
| 7619 | |
| 7620 | // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) |
| 7621 | NegatibleCost CostY = NegatibleCost::Expensive; |
| 7622 | SDValue NegY = |
| 7623 | getNegatedExpression(Op: Y, DAG, LegalOps, OptForSize, Cost&: CostY, Depth); |
| 7624 | |
| 7625 | // We're done with the handles. |
| 7626 | Handles.clear(); |
| 7627 | |
| 7628 | // Negate the X if its cost is less or equal than Y. |
| 7629 | if (NegX && (CostX <= CostY)) { |
| 7630 | Cost = CostX; |
| 7631 | SDValue N = DAG.getNode(Opcode, DL, VT, N1: NegX, N2: Y, Flags); |
| 7632 | if (NegY != N) |
| 7633 | RemoveDeadNode(NegY); |
| 7634 | return N; |
| 7635 | } |
| 7636 | |
| 7637 | // Ignore X * 2.0 because that is expected to be canonicalized to X + X. |
| 7638 | if (auto *C = isConstOrConstSplatFP(N: Op.getOperand(i: 1))) |
| 7639 | if (C->isExactlyValue(V: 2.0) && Op.getOpcode() == ISD::FMUL) |
| 7640 | break; |
| 7641 | |
| 7642 | // Negate the Y if it is not expensive. |
| 7643 | if (NegY) { |
| 7644 | Cost = CostY; |
| 7645 | SDValue N = DAG.getNode(Opcode, DL, VT, N1: X, N2: NegY, Flags); |
| 7646 | if (NegX != N) |
| 7647 | RemoveDeadNode(NegX); |
| 7648 | return N; |
| 7649 | } |
| 7650 | break; |
| 7651 | } |
| 7652 | case ISD::FMA: |
| 7653 | case ISD::FMAD: { |
| 7654 | if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) |
| 7655 | break; |
| 7656 | |
| 7657 | SDValue X = Op.getOperand(i: 0), Y = Op.getOperand(i: 1), Z = Op.getOperand(i: 2); |
| 7658 | NegatibleCost CostZ = NegatibleCost::Expensive; |
| 7659 | SDValue NegZ = |
| 7660 | getNegatedExpression(Op: Z, DAG, LegalOps, OptForSize, Cost&: CostZ, Depth); |
| 7661 | // Give up if fail to negate the Z. |
| 7662 | if (!NegZ) |
| 7663 | break; |
| 7664 | |
| 7665 | // Prevent this node from being deleted by the next two calls. |
| 7666 | Handles.emplace_back(args&: NegZ); |
| 7667 | |
| 7668 | // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) |
| 7669 | NegatibleCost CostX = NegatibleCost::Expensive; |
| 7670 | SDValue NegX = |
| 7671 | getNegatedExpression(Op: X, DAG, LegalOps, OptForSize, Cost&: CostX, Depth); |
| 7672 | // Prevent this node from being deleted by the next call. |
| 7673 | if (NegX) |
| 7674 | Handles.emplace_back(args&: NegX); |
| 7675 | |
| 7676 | // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) |
| 7677 | NegatibleCost CostY = NegatibleCost::Expensive; |
| 7678 | SDValue NegY = |
| 7679 | getNegatedExpression(Op: Y, DAG, LegalOps, OptForSize, Cost&: CostY, Depth); |
| 7680 | |
| 7681 | // We're done with the handles. |
| 7682 | Handles.clear(); |
| 7683 | |
| 7684 | // Negate the X if its cost is less or equal than Y. |
| 7685 | if (NegX && (CostX <= CostY)) { |
| 7686 | Cost = std::min(a: CostX, b: CostZ); |
| 7687 | SDValue N = DAG.getNode(Opcode, DL, VT, N1: NegX, N2: Y, N3: NegZ, Flags); |
| 7688 | if (NegY != N) |
| 7689 | RemoveDeadNode(NegY); |
| 7690 | return N; |
| 7691 | } |
| 7692 | |
| 7693 | // Negate the Y if it is not expensive. |
| 7694 | if (NegY) { |
| 7695 | Cost = std::min(a: CostY, b: CostZ); |
| 7696 | SDValue N = DAG.getNode(Opcode, DL, VT, N1: X, N2: NegY, N3: NegZ, Flags); |
| 7697 | if (NegX != N) |
| 7698 | RemoveDeadNode(NegX); |
| 7699 | return N; |
| 7700 | } |
| 7701 | break; |
| 7702 | } |
| 7703 | |
| 7704 | case ISD::FP_EXTEND: |
| 7705 | case ISD::FSIN: |
| 7706 | if (SDValue NegV = getNegatedExpression(Op: Op.getOperand(i: 0), DAG, LegalOps, |
| 7707 | OptForSize, Cost, Depth)) |
| 7708 | return DAG.getNode(Opcode, DL, VT, Operand: NegV); |
| 7709 | break; |
| 7710 | case ISD::FP_ROUND: |
| 7711 | if (SDValue NegV = getNegatedExpression(Op: Op.getOperand(i: 0), DAG, LegalOps, |
| 7712 | OptForSize, Cost, Depth)) |
| 7713 | return DAG.getNode(Opcode: ISD::FP_ROUND, DL, VT, N1: NegV, N2: Op.getOperand(i: 1)); |
| 7714 | break; |
| 7715 | case ISD::SELECT: |
| 7716 | case ISD::VSELECT: { |
| 7717 | // fold (fneg (select C, LHS, RHS)) -> (select C, (fneg LHS), (fneg RHS)) |
| 7718 | // iff at least one cost is cheaper and the other is neutral/cheaper |
| 7719 | SDValue LHS = Op.getOperand(i: 1); |
| 7720 | NegatibleCost CostLHS = NegatibleCost::Expensive; |
| 7721 | SDValue NegLHS = |
| 7722 | getNegatedExpression(Op: LHS, DAG, LegalOps, OptForSize, Cost&: CostLHS, Depth); |
| 7723 | if (!NegLHS || CostLHS > NegatibleCost::Neutral) { |
| 7724 | RemoveDeadNode(NegLHS); |
| 7725 | break; |
| 7726 | } |
| 7727 | |
| 7728 | // Prevent this node from being deleted by the next call. |
| 7729 | Handles.emplace_back(args&: NegLHS); |
| 7730 | |
| 7731 | SDValue RHS = Op.getOperand(i: 2); |
| 7732 | NegatibleCost CostRHS = NegatibleCost::Expensive; |
| 7733 | SDValue NegRHS = |
| 7734 | getNegatedExpression(Op: RHS, DAG, LegalOps, OptForSize, Cost&: CostRHS, Depth); |
| 7735 | |
| 7736 | // We're done with the handles. |
| 7737 | Handles.clear(); |
| 7738 | |
| 7739 | if (!NegRHS || CostRHS > NegatibleCost::Neutral || |
| 7740 | (CostLHS != NegatibleCost::Cheaper && |
| 7741 | CostRHS != NegatibleCost::Cheaper)) { |
| 7742 | RemoveDeadNode(NegLHS); |
| 7743 | RemoveDeadNode(NegRHS); |
| 7744 | break; |
| 7745 | } |
| 7746 | |
| 7747 | Cost = std::min(a: CostLHS, b: CostRHS); |
| 7748 | return DAG.getSelect(DL, VT, Cond: Op.getOperand(i: 0), LHS: NegLHS, RHS: NegRHS); |
| 7749 | } |
| 7750 | } |
| 7751 | |
| 7752 | return SDValue(); |
| 7753 | } |
| 7754 | |
| 7755 | //===----------------------------------------------------------------------===// |
| 7756 | // Legalization Utilities |
| 7757 | //===----------------------------------------------------------------------===// |
| 7758 | |
| 7759 | bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, |
| 7760 | SDValue LHS, SDValue RHS, |
| 7761 | SmallVectorImpl<SDValue> &Result, |
| 7762 | EVT HiLoVT, SelectionDAG &DAG, |
| 7763 | MulExpansionKind Kind, SDValue LL, |
| 7764 | SDValue LH, SDValue RL, SDValue RH) const { |
| 7765 | assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || |
| 7766 | Opcode == ISD::SMUL_LOHI); |
| 7767 | |
| 7768 | bool HasMULHS = (Kind == MulExpansionKind::Always) || |
| 7769 | isOperationLegalOrCustom(Op: ISD::MULHS, VT: HiLoVT); |
| 7770 | bool HasMULHU = (Kind == MulExpansionKind::Always) || |
| 7771 | isOperationLegalOrCustom(Op: ISD::MULHU, VT: HiLoVT); |
| 7772 | bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || |
| 7773 | isOperationLegalOrCustom(Op: ISD::SMUL_LOHI, VT: HiLoVT); |
| 7774 | bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || |
| 7775 | isOperationLegalOrCustom(Op: ISD::UMUL_LOHI, VT: HiLoVT); |
| 7776 | |
| 7777 | if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) |
| 7778 | return false; |
| 7779 | |
| 7780 | unsigned OuterBitSize = VT.getScalarSizeInBits(); |
| 7781 | unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); |
| 7782 | |
| 7783 | // LL, LH, RL, and RH must be either all NULL or all set to a value. |
| 7784 | assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || |
| 7785 | (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); |
| 7786 | |
| 7787 | SDVTList VTs = DAG.getVTList(VT1: HiLoVT, VT2: HiLoVT); |
| 7788 | auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, |
| 7789 | bool Signed) -> bool { |
| 7790 | if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { |
| 7791 | Lo = DAG.getNode(Opcode: Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, DL: dl, VTList: VTs, N1: L, N2: R); |
| 7792 | Hi = SDValue(Lo.getNode(), 1); |
| 7793 | return true; |
| 7794 | } |
| 7795 | if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { |
| 7796 | Lo = DAG.getNode(Opcode: ISD::MUL, DL: dl, VT: HiLoVT, N1: L, N2: R); |
| 7797 | Hi = DAG.getNode(Opcode: Signed ? ISD::MULHS : ISD::MULHU, DL: dl, VT: HiLoVT, N1: L, N2: R); |
| 7798 | return true; |
| 7799 | } |
| 7800 | return false; |
| 7801 | }; |
| 7802 | |
| 7803 | SDValue Lo, Hi; |
| 7804 | |
| 7805 | if (!LL.getNode() && !RL.getNode() && |
| 7806 | isOperationLegalOrCustom(Op: ISD::TRUNCATE, VT: HiLoVT)) { |
| 7807 | LL = DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: HiLoVT, Operand: LHS); |
| 7808 | RL = DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: HiLoVT, Operand: RHS); |
| 7809 | } |
| 7810 | |
| 7811 | if (!LL.getNode()) |
| 7812 | return false; |
| 7813 | |
| 7814 | APInt HighMask = APInt::getHighBitsSet(numBits: OuterBitSize, hiBitsSet: InnerBitSize); |
| 7815 | if (DAG.MaskedValueIsZero(Op: LHS, Mask: HighMask) && |
| 7816 | DAG.MaskedValueIsZero(Op: RHS, Mask: HighMask)) { |
| 7817 | // The inputs are both zero-extended. |
| 7818 | if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { |
| 7819 | Result.push_back(Elt: Lo); |
| 7820 | Result.push_back(Elt: Hi); |
| 7821 | if (Opcode != ISD::MUL) { |
| 7822 | SDValue Zero = DAG.getConstant(Val: 0, DL: dl, VT: HiLoVT); |
| 7823 | Result.push_back(Elt: Zero); |
| 7824 | Result.push_back(Elt: Zero); |
| 7825 | } |
| 7826 | return true; |
| 7827 | } |
| 7828 | } |
| 7829 | |
| 7830 | if (!VT.isVector() && Opcode == ISD::MUL && |
| 7831 | DAG.ComputeMaxSignificantBits(Op: LHS) <= InnerBitSize && |
| 7832 | DAG.ComputeMaxSignificantBits(Op: RHS) <= InnerBitSize) { |
| 7833 | // The input values are both sign-extended. |
| 7834 | // TODO non-MUL case? |
| 7835 | if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { |
| 7836 | Result.push_back(Elt: Lo); |
| 7837 | Result.push_back(Elt: Hi); |
| 7838 | return true; |
| 7839 | } |
| 7840 | } |
| 7841 | |
| 7842 | unsigned ShiftAmount = OuterBitSize - InnerBitSize; |
| 7843 | SDValue Shift = DAG.getShiftAmountConstant(Val: ShiftAmount, VT, DL: dl); |
| 7844 | |
| 7845 | if (!LH.getNode() && !RH.getNode() && |
| 7846 | isOperationLegalOrCustom(Op: ISD::SRL, VT) && |
| 7847 | isOperationLegalOrCustom(Op: ISD::TRUNCATE, VT: HiLoVT)) { |
| 7848 | LH = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: LHS, N2: Shift); |
| 7849 | LH = DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: HiLoVT, Operand: LH); |
| 7850 | RH = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: RHS, N2: Shift); |
| 7851 | RH = DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: HiLoVT, Operand: RH); |
| 7852 | } |
| 7853 | |
| 7854 | if (!LH.getNode()) |
| 7855 | return false; |
| 7856 | |
| 7857 | if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) |
| 7858 | return false; |
| 7859 | |
| 7860 | Result.push_back(Elt: Lo); |
| 7861 | |
| 7862 | if (Opcode == ISD::MUL) { |
| 7863 | RH = DAG.getNode(Opcode: ISD::MUL, DL: dl, VT: HiLoVT, N1: LL, N2: RH); |
| 7864 | LH = DAG.getNode(Opcode: ISD::MUL, DL: dl, VT: HiLoVT, N1: LH, N2: RL); |
| 7865 | Hi = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: HiLoVT, N1: Hi, N2: RH); |
| 7866 | Hi = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: HiLoVT, N1: Hi, N2: LH); |
| 7867 | Result.push_back(Elt: Hi); |
| 7868 | return true; |
| 7869 | } |
| 7870 | |
| 7871 | // Compute the full width result. |
| 7872 | auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { |
| 7873 | Lo = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: dl, VT, Operand: Lo); |
| 7874 | Hi = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: dl, VT, Operand: Hi); |
| 7875 | Hi = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: Hi, N2: Shift); |
| 7876 | return DAG.getNode(Opcode: ISD::OR, DL: dl, VT, N1: Lo, N2: Hi); |
| 7877 | }; |
| 7878 | |
| 7879 | SDValue Next = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: dl, VT, Operand: Hi); |
| 7880 | if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) |
| 7881 | return false; |
| 7882 | |
| 7883 | // This is effectively the add part of a multiply-add of half-sized operands, |
| 7884 | // so it cannot overflow. |
| 7885 | Next = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT, N1: Next, N2: Merge(Lo, Hi)); |
| 7886 | |
| 7887 | if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) |
| 7888 | return false; |
| 7889 | |
| 7890 | SDValue Zero = DAG.getConstant(Val: 0, DL: dl, VT: HiLoVT); |
| 7891 | EVT BoolType = getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT); |
| 7892 | |
| 7893 | bool UseGlue = (isOperationLegalOrCustom(Op: ISD::ADDC, VT) && |
| 7894 | isOperationLegalOrCustom(Op: ISD::ADDE, VT)); |
| 7895 | if (UseGlue) |
| 7896 | Next = DAG.getNode(Opcode: ISD::ADDC, DL: dl, VTList: DAG.getVTList(VT1: VT, VT2: MVT::Glue), N1: Next, |
| 7897 | N2: Merge(Lo, Hi)); |
| 7898 | else |
| 7899 | Next = DAG.getNode(Opcode: ISD::UADDO_CARRY, DL: dl, VTList: DAG.getVTList(VT1: VT, VT2: BoolType), N1: Next, |
| 7900 | N2: Merge(Lo, Hi), N3: DAG.getConstant(Val: 0, DL: dl, VT: BoolType)); |
| 7901 | |
| 7902 | SDValue Carry = Next.getValue(R: 1); |
| 7903 | Result.push_back(Elt: DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: HiLoVT, Operand: Next)); |
| 7904 | Next = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Next, N2: Shift); |
| 7905 | |
| 7906 | if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) |
| 7907 | return false; |
| 7908 | |
| 7909 | if (UseGlue) |
| 7910 | Hi = DAG.getNode(Opcode: ISD::ADDE, DL: dl, VTList: DAG.getVTList(VT1: HiLoVT, VT2: MVT::Glue), N1: Hi, N2: Zero, |
| 7911 | N3: Carry); |
| 7912 | else |
| 7913 | Hi = DAG.getNode(Opcode: ISD::UADDO_CARRY, DL: dl, VTList: DAG.getVTList(VT1: HiLoVT, VT2: BoolType), N1: Hi, |
| 7914 | N2: Zero, N3: Carry); |
| 7915 | |
| 7916 | Next = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT, N1: Next, N2: Merge(Lo, Hi)); |
| 7917 | |
| 7918 | if (Opcode == ISD::SMUL_LOHI) { |
| 7919 | SDValue NextSub = DAG.getNode(Opcode: ISD::SUB, DL: dl, VT, N1: Next, |
| 7920 | N2: DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: dl, VT, Operand: RL)); |
| 7921 | Next = DAG.getSelectCC(DL: dl, LHS: LH, RHS: Zero, True: NextSub, False: Next, Cond: ISD::SETLT); |
| 7922 | |
| 7923 | NextSub = DAG.getNode(Opcode: ISD::SUB, DL: dl, VT, N1: Next, |
| 7924 | N2: DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: dl, VT, Operand: LL)); |
| 7925 | Next = DAG.getSelectCC(DL: dl, LHS: RH, RHS: Zero, True: NextSub, False: Next, Cond: ISD::SETLT); |
| 7926 | } |
| 7927 | |
| 7928 | Result.push_back(Elt: DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: HiLoVT, Operand: Next)); |
| 7929 | Next = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Next, N2: Shift); |
| 7930 | Result.push_back(Elt: DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: HiLoVT, Operand: Next)); |
| 7931 | return true; |
| 7932 | } |
| 7933 | |
| 7934 | bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, |
| 7935 | SelectionDAG &DAG, MulExpansionKind Kind, |
| 7936 | SDValue LL, SDValue LH, SDValue RL, |
| 7937 | SDValue RH) const { |
| 7938 | SmallVector<SDValue, 2> Result; |
| 7939 | bool Ok = expandMUL_LOHI(Opcode: N->getOpcode(), VT: N->getValueType(ResNo: 0), dl: SDLoc(N), |
| 7940 | LHS: N->getOperand(Num: 0), RHS: N->getOperand(Num: 1), Result, HiLoVT, |
| 7941 | DAG, Kind, LL, LH, RL, RH); |
| 7942 | if (Ok) { |
| 7943 | assert(Result.size() == 2); |
| 7944 | Lo = Result[0]; |
| 7945 | Hi = Result[1]; |
| 7946 | } |
| 7947 | return Ok; |
| 7948 | } |
| 7949 | |
| 7950 | // Optimize unsigned division or remainder by constants for types twice as large |
| 7951 | // as a legal VT. |
| 7952 | // |
| 7953 | // If (1 << (BitWidth / 2)) % Constant == 1, then the remainder |
| 7954 | // can be computed |
| 7955 | // as: |
| 7956 | // Sum += __builtin_uadd_overflow(Lo, High, &Sum); |
| 7957 | // Remainder = Sum % Constant |
| 7958 | // This is based on "Remainder by Summing Digits" from Hacker's Delight. |
| 7959 | // |
| 7960 | // For division, we can compute the remainder using the algorithm described |
| 7961 | // above, subtract it from the dividend to get an exact multiple of Constant. |
| 7962 | // Then multiply that exact multiply by the multiplicative inverse modulo |
| 7963 | // (1 << (BitWidth / 2)) to get the quotient. |
| 7964 | |
| 7965 | // If Constant is even, we can shift right the dividend and the divisor by the |
| 7966 | // number of trailing zeros in Constant before applying the remainder algorithm. |
| 7967 | // If we're after the quotient, we can subtract this value from the shifted |
| 7968 | // dividend and multiply by the multiplicative inverse of the shifted divisor. |
| 7969 | // If we want the remainder, we shift the value left by the number of trailing |
| 7970 | // zeros and add the bits that were shifted out of the dividend. |
| 7971 | bool TargetLowering::expandDIVREMByConstant(SDNode *N, |
| 7972 | SmallVectorImpl<SDValue> &Result, |
| 7973 | EVT HiLoVT, SelectionDAG &DAG, |
| 7974 | SDValue LL, SDValue LH) const { |
| 7975 | unsigned Opcode = N->getOpcode(); |
| 7976 | EVT VT = N->getValueType(ResNo: 0); |
| 7977 | |
| 7978 | // TODO: Support signed division/remainder. |
| 7979 | if (Opcode == ISD::SREM || Opcode == ISD::SDIV || Opcode == ISD::SDIVREM) |
| 7980 | return false; |
| 7981 | assert( |
| 7982 | (Opcode == ISD::UREM || Opcode == ISD::UDIV || Opcode == ISD::UDIVREM) && |
| 7983 | "Unexpected opcode" ); |
| 7984 | |
| 7985 | auto *CN = dyn_cast<ConstantSDNode>(Val: N->getOperand(Num: 1)); |
| 7986 | if (!CN) |
| 7987 | return false; |
| 7988 | |
| 7989 | APInt Divisor = CN->getAPIntValue(); |
| 7990 | unsigned BitWidth = Divisor.getBitWidth(); |
| 7991 | unsigned HBitWidth = BitWidth / 2; |
| 7992 | assert(VT.getScalarSizeInBits() == BitWidth && |
| 7993 | HiLoVT.getScalarSizeInBits() == HBitWidth && "Unexpected VTs" ); |
| 7994 | |
| 7995 | // Divisor needs to less than (1 << HBitWidth). |
| 7996 | APInt HalfMaxPlus1 = APInt::getOneBitSet(numBits: BitWidth, BitNo: HBitWidth); |
| 7997 | if (Divisor.uge(RHS: HalfMaxPlus1)) |
| 7998 | return false; |
| 7999 | |
| 8000 | // We depend on the UREM by constant optimization in DAGCombiner that requires |
| 8001 | // high multiply. |
| 8002 | if (!isOperationLegalOrCustom(Op: ISD::MULHU, VT: HiLoVT) && |
| 8003 | !isOperationLegalOrCustom(Op: ISD::UMUL_LOHI, VT: HiLoVT)) |
| 8004 | return false; |
| 8005 | |
| 8006 | // Don't expand if optimizing for size. |
| 8007 | if (DAG.shouldOptForSize()) |
| 8008 | return false; |
| 8009 | |
| 8010 | // Early out for 0 or 1 divisors. |
| 8011 | if (Divisor.ule(RHS: 1)) |
| 8012 | return false; |
| 8013 | |
| 8014 | // If the divisor is even, shift it until it becomes odd. |
| 8015 | unsigned TrailingZeros = 0; |
| 8016 | if (!Divisor[0]) { |
| 8017 | TrailingZeros = Divisor.countr_zero(); |
| 8018 | Divisor.lshrInPlace(ShiftAmt: TrailingZeros); |
| 8019 | } |
| 8020 | |
| 8021 | SDLoc dl(N); |
| 8022 | SDValue Sum; |
| 8023 | SDValue PartialRem; |
| 8024 | |
| 8025 | // If (1 << HBitWidth) % divisor == 1, we can add the two halves together and |
| 8026 | // then add in the carry. |
| 8027 | // TODO: If we can't split it in half, we might be able to split into 3 or |
| 8028 | // more pieces using a smaller bit width. |
| 8029 | if (HalfMaxPlus1.urem(RHS: Divisor).isOne()) { |
| 8030 | assert(!LL == !LH && "Expected both input halves or no input halves!" ); |
| 8031 | if (!LL) |
| 8032 | std::tie(args&: LL, args&: LH) = DAG.SplitScalar(N: N->getOperand(Num: 0), DL: dl, LoVT: HiLoVT, HiVT: HiLoVT); |
| 8033 | |
| 8034 | // Shift the input by the number of TrailingZeros in the divisor. The |
| 8035 | // shifted out bits will be added to the remainder later. |
| 8036 | if (TrailingZeros) { |
| 8037 | // Save the shifted off bits if we need the remainder. |
| 8038 | if (Opcode != ISD::UDIV) { |
| 8039 | APInt Mask = APInt::getLowBitsSet(numBits: HBitWidth, loBitsSet: TrailingZeros); |
| 8040 | PartialRem = DAG.getNode(Opcode: ISD::AND, DL: dl, VT: HiLoVT, N1: LL, |
| 8041 | N2: DAG.getConstant(Val: Mask, DL: dl, VT: HiLoVT)); |
| 8042 | } |
| 8043 | |
| 8044 | LL = DAG.getNode( |
| 8045 | Opcode: ISD::OR, DL: dl, VT: HiLoVT, |
| 8046 | N1: DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: HiLoVT, N1: LL, |
| 8047 | N2: DAG.getShiftAmountConstant(Val: TrailingZeros, VT: HiLoVT, DL: dl)), |
| 8048 | N2: DAG.getNode(Opcode: ISD::SHL, DL: dl, VT: HiLoVT, N1: LH, |
| 8049 | N2: DAG.getShiftAmountConstant(Val: HBitWidth - TrailingZeros, |
| 8050 | VT: HiLoVT, DL: dl))); |
| 8051 | LH = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: HiLoVT, N1: LH, |
| 8052 | N2: DAG.getShiftAmountConstant(Val: TrailingZeros, VT: HiLoVT, DL: dl)); |
| 8053 | } |
| 8054 | |
| 8055 | // Use uaddo_carry if we can, otherwise use a compare to detect overflow. |
| 8056 | EVT SetCCType = |
| 8057 | getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT: HiLoVT); |
| 8058 | if (isOperationLegalOrCustom(Op: ISD::UADDO_CARRY, VT: HiLoVT)) { |
| 8059 | SDVTList VTList = DAG.getVTList(VT1: HiLoVT, VT2: SetCCType); |
| 8060 | Sum = DAG.getNode(Opcode: ISD::UADDO, DL: dl, VTList, N1: LL, N2: LH); |
| 8061 | Sum = DAG.getNode(Opcode: ISD::UADDO_CARRY, DL: dl, VTList, N1: Sum, |
| 8062 | N2: DAG.getConstant(Val: 0, DL: dl, VT: HiLoVT), N3: Sum.getValue(R: 1)); |
| 8063 | } else { |
| 8064 | Sum = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: HiLoVT, N1: LL, N2: LH); |
| 8065 | SDValue Carry = DAG.getSetCC(DL: dl, VT: SetCCType, LHS: Sum, RHS: LL, Cond: ISD::SETULT); |
| 8066 | // If the boolean for the target is 0 or 1, we can add the setcc result |
| 8067 | // directly. |
| 8068 | if (getBooleanContents(Type: HiLoVT) == |
| 8069 | TargetLoweringBase::ZeroOrOneBooleanContent) |
| 8070 | Carry = DAG.getZExtOrTrunc(Op: Carry, DL: dl, VT: HiLoVT); |
| 8071 | else |
| 8072 | Carry = DAG.getSelect(DL: dl, VT: HiLoVT, Cond: Carry, LHS: DAG.getConstant(Val: 1, DL: dl, VT: HiLoVT), |
| 8073 | RHS: DAG.getConstant(Val: 0, DL: dl, VT: HiLoVT)); |
| 8074 | Sum = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: HiLoVT, N1: Sum, N2: Carry); |
| 8075 | } |
| 8076 | } |
| 8077 | |
| 8078 | // If we didn't find a sum, we can't do the expansion. |
| 8079 | if (!Sum) |
| 8080 | return false; |
| 8081 | |
| 8082 | // Perform a HiLoVT urem on the Sum using truncated divisor. |
| 8083 | SDValue RemL = |
| 8084 | DAG.getNode(Opcode: ISD::UREM, DL: dl, VT: HiLoVT, N1: Sum, |
| 8085 | N2: DAG.getConstant(Val: Divisor.trunc(width: HBitWidth), DL: dl, VT: HiLoVT)); |
| 8086 | SDValue RemH = DAG.getConstant(Val: 0, DL: dl, VT: HiLoVT); |
| 8087 | |
| 8088 | if (Opcode != ISD::UREM) { |
| 8089 | // Subtract the remainder from the shifted dividend. |
| 8090 | SDValue Dividend = DAG.getNode(Opcode: ISD::BUILD_PAIR, DL: dl, VT, N1: LL, N2: LH); |
| 8091 | SDValue Rem = DAG.getNode(Opcode: ISD::BUILD_PAIR, DL: dl, VT, N1: RemL, N2: RemH); |
| 8092 | |
| 8093 | Dividend = DAG.getNode(Opcode: ISD::SUB, DL: dl, VT, N1: Dividend, N2: Rem); |
| 8094 | |
| 8095 | // Multiply by the multiplicative inverse of the divisor modulo |
| 8096 | // (1 << BitWidth). |
| 8097 | APInt MulFactor = Divisor.multiplicativeInverse(); |
| 8098 | |
| 8099 | SDValue Quotient = DAG.getNode(Opcode: ISD::MUL, DL: dl, VT, N1: Dividend, |
| 8100 | N2: DAG.getConstant(Val: MulFactor, DL: dl, VT)); |
| 8101 | |
| 8102 | // Split the quotient into low and high parts. |
| 8103 | SDValue QuotL, QuotH; |
| 8104 | std::tie(args&: QuotL, args&: QuotH) = DAG.SplitScalar(N: Quotient, DL: dl, LoVT: HiLoVT, HiVT: HiLoVT); |
| 8105 | Result.push_back(Elt: QuotL); |
| 8106 | Result.push_back(Elt: QuotH); |
| 8107 | } |
| 8108 | |
| 8109 | if (Opcode != ISD::UDIV) { |
| 8110 | // If we shifted the input, shift the remainder left and add the bits we |
| 8111 | // shifted off the input. |
| 8112 | if (TrailingZeros) { |
| 8113 | RemL = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT: HiLoVT, N1: RemL, |
| 8114 | N2: DAG.getShiftAmountConstant(Val: TrailingZeros, VT: HiLoVT, DL: dl)); |
| 8115 | RemL = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: HiLoVT, N1: RemL, N2: PartialRem); |
| 8116 | } |
| 8117 | Result.push_back(Elt: RemL); |
| 8118 | Result.push_back(Elt: DAG.getConstant(Val: 0, DL: dl, VT: HiLoVT)); |
| 8119 | } |
| 8120 | |
| 8121 | return true; |
| 8122 | } |
| 8123 | |
| 8124 | // Check that (every element of) Z is undef or not an exact multiple of BW. |
| 8125 | static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { |
| 8126 | return ISD::matchUnaryPredicate( |
| 8127 | Op: Z, |
| 8128 | Match: [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(RHS: BW) != 0; }, |
| 8129 | /*AllowUndef=*/AllowUndefs: true, /*AllowTruncation=*/true); |
| 8130 | } |
| 8131 | |
| 8132 | static SDValue expandVPFunnelShift(SDNode *Node, SelectionDAG &DAG) { |
| 8133 | EVT VT = Node->getValueType(ResNo: 0); |
| 8134 | SDValue ShX, ShY; |
| 8135 | SDValue ShAmt, InvShAmt; |
| 8136 | SDValue X = Node->getOperand(Num: 0); |
| 8137 | SDValue Y = Node->getOperand(Num: 1); |
| 8138 | SDValue Z = Node->getOperand(Num: 2); |
| 8139 | SDValue Mask = Node->getOperand(Num: 3); |
| 8140 | SDValue VL = Node->getOperand(Num: 4); |
| 8141 | |
| 8142 | unsigned BW = VT.getScalarSizeInBits(); |
| 8143 | bool IsFSHL = Node->getOpcode() == ISD::VP_FSHL; |
| 8144 | SDLoc DL(SDValue(Node, 0)); |
| 8145 | |
| 8146 | EVT ShVT = Z.getValueType(); |
| 8147 | if (isNonZeroModBitWidthOrUndef(Z, BW)) { |
| 8148 | // fshl: X << C | Y >> (BW - C) |
| 8149 | // fshr: X << (BW - C) | Y >> C |
| 8150 | // where C = Z % BW is not zero |
| 8151 | SDValue BitWidthC = DAG.getConstant(Val: BW, DL, VT: ShVT); |
| 8152 | ShAmt = DAG.getNode(Opcode: ISD::VP_UREM, DL, VT: ShVT, N1: Z, N2: BitWidthC, N3: Mask, N4: VL); |
| 8153 | InvShAmt = DAG.getNode(Opcode: ISD::VP_SUB, DL, VT: ShVT, N1: BitWidthC, N2: ShAmt, N3: Mask, N4: VL); |
| 8154 | ShX = DAG.getNode(Opcode: ISD::VP_SHL, DL, VT, N1: X, N2: IsFSHL ? ShAmt : InvShAmt, N3: Mask, |
| 8155 | N4: VL); |
| 8156 | ShY = DAG.getNode(Opcode: ISD::VP_SRL, DL, VT, N1: Y, N2: IsFSHL ? InvShAmt : ShAmt, N3: Mask, |
| 8157 | N4: VL); |
| 8158 | } else { |
| 8159 | // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) |
| 8160 | // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) |
| 8161 | SDValue BitMask = DAG.getConstant(Val: BW - 1, DL, VT: ShVT); |
| 8162 | if (isPowerOf2_32(Value: BW)) { |
| 8163 | // Z % BW -> Z & (BW - 1) |
| 8164 | ShAmt = DAG.getNode(Opcode: ISD::VP_AND, DL, VT: ShVT, N1: Z, N2: BitMask, N3: Mask, N4: VL); |
| 8165 | // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) |
| 8166 | SDValue NotZ = DAG.getNode(Opcode: ISD::VP_XOR, DL, VT: ShVT, N1: Z, |
| 8167 | N2: DAG.getAllOnesConstant(DL, VT: ShVT), N3: Mask, N4: VL); |
| 8168 | InvShAmt = DAG.getNode(Opcode: ISD::VP_AND, DL, VT: ShVT, N1: NotZ, N2: BitMask, N3: Mask, N4: VL); |
| 8169 | } else { |
| 8170 | SDValue BitWidthC = DAG.getConstant(Val: BW, DL, VT: ShVT); |
| 8171 | ShAmt = DAG.getNode(Opcode: ISD::VP_UREM, DL, VT: ShVT, N1: Z, N2: BitWidthC, N3: Mask, N4: VL); |
| 8172 | InvShAmt = DAG.getNode(Opcode: ISD::VP_SUB, DL, VT: ShVT, N1: BitMask, N2: ShAmt, N3: Mask, N4: VL); |
| 8173 | } |
| 8174 | |
| 8175 | SDValue One = DAG.getConstant(Val: 1, DL, VT: ShVT); |
| 8176 | if (IsFSHL) { |
| 8177 | ShX = DAG.getNode(Opcode: ISD::VP_SHL, DL, VT, N1: X, N2: ShAmt, N3: Mask, N4: VL); |
| 8178 | SDValue ShY1 = DAG.getNode(Opcode: ISD::VP_SRL, DL, VT, N1: Y, N2: One, N3: Mask, N4: VL); |
| 8179 | ShY = DAG.getNode(Opcode: ISD::VP_SRL, DL, VT, N1: ShY1, N2: InvShAmt, N3: Mask, N4: VL); |
| 8180 | } else { |
| 8181 | SDValue ShX1 = DAG.getNode(Opcode: ISD::VP_SHL, DL, VT, N1: X, N2: One, N3: Mask, N4: VL); |
| 8182 | ShX = DAG.getNode(Opcode: ISD::VP_SHL, DL, VT, N1: ShX1, N2: InvShAmt, N3: Mask, N4: VL); |
| 8183 | ShY = DAG.getNode(Opcode: ISD::VP_SRL, DL, VT, N1: Y, N2: ShAmt, N3: Mask, N4: VL); |
| 8184 | } |
| 8185 | } |
| 8186 | return DAG.getNode(Opcode: ISD::VP_OR, DL, VT, N1: ShX, N2: ShY, N3: Mask, N4: VL); |
| 8187 | } |
| 8188 | |
| 8189 | SDValue TargetLowering::expandFunnelShift(SDNode *Node, |
| 8190 | SelectionDAG &DAG) const { |
| 8191 | if (Node->isVPOpcode()) |
| 8192 | return expandVPFunnelShift(Node, DAG); |
| 8193 | |
| 8194 | EVT VT = Node->getValueType(ResNo: 0); |
| 8195 | |
| 8196 | if (VT.isVector() && (!isOperationLegalOrCustom(Op: ISD::SHL, VT) || |
| 8197 | !isOperationLegalOrCustom(Op: ISD::SRL, VT) || |
| 8198 | !isOperationLegalOrCustom(Op: ISD::SUB, VT) || |
| 8199 | !isOperationLegalOrCustomOrPromote(Op: ISD::OR, VT))) |
| 8200 | return SDValue(); |
| 8201 | |
| 8202 | SDValue X = Node->getOperand(Num: 0); |
| 8203 | SDValue Y = Node->getOperand(Num: 1); |
| 8204 | SDValue Z = Node->getOperand(Num: 2); |
| 8205 | |
| 8206 | unsigned BW = VT.getScalarSizeInBits(); |
| 8207 | bool IsFSHL = Node->getOpcode() == ISD::FSHL; |
| 8208 | SDLoc DL(SDValue(Node, 0)); |
| 8209 | |
| 8210 | EVT ShVT = Z.getValueType(); |
| 8211 | |
| 8212 | // If a funnel shift in the other direction is more supported, use it. |
| 8213 | unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; |
| 8214 | if (!isOperationLegalOrCustom(Op: Node->getOpcode(), VT) && |
| 8215 | isOperationLegalOrCustom(Op: RevOpcode, VT) && isPowerOf2_32(Value: BW)) { |
| 8216 | if (isNonZeroModBitWidthOrUndef(Z, BW)) { |
| 8217 | // fshl X, Y, Z -> fshr X, Y, -Z |
| 8218 | // fshr X, Y, Z -> fshl X, Y, -Z |
| 8219 | SDValue Zero = DAG.getConstant(Val: 0, DL, VT: ShVT); |
| 8220 | Z = DAG.getNode(Opcode: ISD::SUB, DL, VT, N1: Zero, N2: Z); |
| 8221 | } else { |
| 8222 | // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z |
| 8223 | // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z |
| 8224 | SDValue One = DAG.getConstant(Val: 1, DL, VT: ShVT); |
| 8225 | if (IsFSHL) { |
| 8226 | Y = DAG.getNode(Opcode: RevOpcode, DL, VT, N1: X, N2: Y, N3: One); |
| 8227 | X = DAG.getNode(Opcode: ISD::SRL, DL, VT, N1: X, N2: One); |
| 8228 | } else { |
| 8229 | X = DAG.getNode(Opcode: RevOpcode, DL, VT, N1: X, N2: Y, N3: One); |
| 8230 | Y = DAG.getNode(Opcode: ISD::SHL, DL, VT, N1: Y, N2: One); |
| 8231 | } |
| 8232 | Z = DAG.getNOT(DL, Val: Z, VT: ShVT); |
| 8233 | } |
| 8234 | return DAG.getNode(Opcode: RevOpcode, DL, VT, N1: X, N2: Y, N3: Z); |
| 8235 | } |
| 8236 | |
| 8237 | SDValue ShX, ShY; |
| 8238 | SDValue ShAmt, InvShAmt; |
| 8239 | if (isNonZeroModBitWidthOrUndef(Z, BW)) { |
| 8240 | // fshl: X << C | Y >> (BW - C) |
| 8241 | // fshr: X << (BW - C) | Y >> C |
| 8242 | // where C = Z % BW is not zero |
| 8243 | SDValue BitWidthC = DAG.getConstant(Val: BW, DL, VT: ShVT); |
| 8244 | ShAmt = DAG.getNode(Opcode: ISD::UREM, DL, VT: ShVT, N1: Z, N2: BitWidthC); |
| 8245 | InvShAmt = DAG.getNode(Opcode: ISD::SUB, DL, VT: ShVT, N1: BitWidthC, N2: ShAmt); |
| 8246 | ShX = DAG.getNode(Opcode: ISD::SHL, DL, VT, N1: X, N2: IsFSHL ? ShAmt : InvShAmt); |
| 8247 | ShY = DAG.getNode(Opcode: ISD::SRL, DL, VT, N1: Y, N2: IsFSHL ? InvShAmt : ShAmt); |
| 8248 | } else { |
| 8249 | // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) |
| 8250 | // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) |
| 8251 | SDValue Mask = DAG.getConstant(Val: BW - 1, DL, VT: ShVT); |
| 8252 | if (isPowerOf2_32(Value: BW)) { |
| 8253 | // Z % BW -> Z & (BW - 1) |
| 8254 | ShAmt = DAG.getNode(Opcode: ISD::AND, DL, VT: ShVT, N1: Z, N2: Mask); |
| 8255 | // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) |
| 8256 | InvShAmt = DAG.getNode(Opcode: ISD::AND, DL, VT: ShVT, N1: DAG.getNOT(DL, Val: Z, VT: ShVT), N2: Mask); |
| 8257 | } else { |
| 8258 | SDValue BitWidthC = DAG.getConstant(Val: BW, DL, VT: ShVT); |
| 8259 | ShAmt = DAG.getNode(Opcode: ISD::UREM, DL, VT: ShVT, N1: Z, N2: BitWidthC); |
| 8260 | InvShAmt = DAG.getNode(Opcode: ISD::SUB, DL, VT: ShVT, N1: Mask, N2: ShAmt); |
| 8261 | } |
| 8262 | |
| 8263 | SDValue One = DAG.getConstant(Val: 1, DL, VT: ShVT); |
| 8264 | if (IsFSHL) { |
| 8265 | ShX = DAG.getNode(Opcode: ISD::SHL, DL, VT, N1: X, N2: ShAmt); |
| 8266 | SDValue ShY1 = DAG.getNode(Opcode: ISD::SRL, DL, VT, N1: Y, N2: One); |
| 8267 | ShY = DAG.getNode(Opcode: ISD::SRL, DL, VT, N1: ShY1, N2: InvShAmt); |
| 8268 | } else { |
| 8269 | SDValue ShX1 = DAG.getNode(Opcode: ISD::SHL, DL, VT, N1: X, N2: One); |
| 8270 | ShX = DAG.getNode(Opcode: ISD::SHL, DL, VT, N1: ShX1, N2: InvShAmt); |
| 8271 | ShY = DAG.getNode(Opcode: ISD::SRL, DL, VT, N1: Y, N2: ShAmt); |
| 8272 | } |
| 8273 | } |
| 8274 | return DAG.getNode(Opcode: ISD::OR, DL, VT, N1: ShX, N2: ShY); |
| 8275 | } |
| 8276 | |
| 8277 | // TODO: Merge with expandFunnelShift. |
| 8278 | SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, |
| 8279 | SelectionDAG &DAG) const { |
| 8280 | EVT VT = Node->getValueType(ResNo: 0); |
| 8281 | unsigned EltSizeInBits = VT.getScalarSizeInBits(); |
| 8282 | bool IsLeft = Node->getOpcode() == ISD::ROTL; |
| 8283 | SDValue Op0 = Node->getOperand(Num: 0); |
| 8284 | SDValue Op1 = Node->getOperand(Num: 1); |
| 8285 | SDLoc DL(SDValue(Node, 0)); |
| 8286 | |
| 8287 | EVT ShVT = Op1.getValueType(); |
| 8288 | SDValue Zero = DAG.getConstant(Val: 0, DL, VT: ShVT); |
| 8289 | |
| 8290 | // If a rotate in the other direction is more supported, use it. |
| 8291 | unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; |
| 8292 | if (!isOperationLegalOrCustom(Op: Node->getOpcode(), VT) && |
| 8293 | isOperationLegalOrCustom(Op: RevRot, VT) && isPowerOf2_32(Value: EltSizeInBits)) { |
| 8294 | SDValue Sub = DAG.getNode(Opcode: ISD::SUB, DL, VT: ShVT, N1: Zero, N2: Op1); |
| 8295 | return DAG.getNode(Opcode: RevRot, DL, VT, N1: Op0, N2: Sub); |
| 8296 | } |
| 8297 | |
| 8298 | if (!AllowVectorOps && VT.isVector() && |
| 8299 | (!isOperationLegalOrCustom(Op: ISD::SHL, VT) || |
| 8300 | !isOperationLegalOrCustom(Op: ISD::SRL, VT) || |
| 8301 | !isOperationLegalOrCustom(Op: ISD::SUB, VT) || |
| 8302 | !isOperationLegalOrCustomOrPromote(Op: ISD::OR, VT) || |
| 8303 | !isOperationLegalOrCustomOrPromote(Op: ISD::AND, VT))) |
| 8304 | return SDValue(); |
| 8305 | |
| 8306 | unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; |
| 8307 | unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; |
| 8308 | SDValue BitWidthMinusOneC = DAG.getConstant(Val: EltSizeInBits - 1, DL, VT: ShVT); |
| 8309 | SDValue ShVal; |
| 8310 | SDValue HsVal; |
| 8311 | if (isPowerOf2_32(Value: EltSizeInBits)) { |
| 8312 | // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) |
| 8313 | // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) |
| 8314 | SDValue NegOp1 = DAG.getNode(Opcode: ISD::SUB, DL, VT: ShVT, N1: Zero, N2: Op1); |
| 8315 | SDValue ShAmt = DAG.getNode(Opcode: ISD::AND, DL, VT: ShVT, N1: Op1, N2: BitWidthMinusOneC); |
| 8316 | ShVal = DAG.getNode(Opcode: ShOpc, DL, VT, N1: Op0, N2: ShAmt); |
| 8317 | SDValue HsAmt = DAG.getNode(Opcode: ISD::AND, DL, VT: ShVT, N1: NegOp1, N2: BitWidthMinusOneC); |
| 8318 | HsVal = DAG.getNode(Opcode: HsOpc, DL, VT, N1: Op0, N2: HsAmt); |
| 8319 | } else { |
| 8320 | // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) |
| 8321 | // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) |
| 8322 | SDValue BitWidthC = DAG.getConstant(Val: EltSizeInBits, DL, VT: ShVT); |
| 8323 | SDValue ShAmt = DAG.getNode(Opcode: ISD::UREM, DL, VT: ShVT, N1: Op1, N2: BitWidthC); |
| 8324 | ShVal = DAG.getNode(Opcode: ShOpc, DL, VT, N1: Op0, N2: ShAmt); |
| 8325 | SDValue HsAmt = DAG.getNode(Opcode: ISD::SUB, DL, VT: ShVT, N1: BitWidthMinusOneC, N2: ShAmt); |
| 8326 | SDValue One = DAG.getConstant(Val: 1, DL, VT: ShVT); |
| 8327 | HsVal = |
| 8328 | DAG.getNode(Opcode: HsOpc, DL, VT, N1: DAG.getNode(Opcode: HsOpc, DL, VT, N1: Op0, N2: One), N2: HsAmt); |
| 8329 | } |
| 8330 | return DAG.getNode(Opcode: ISD::OR, DL, VT, N1: ShVal, N2: HsVal); |
| 8331 | } |
| 8332 | |
| 8333 | void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi, |
| 8334 | SelectionDAG &DAG) const { |
| 8335 | assert(Node->getNumOperands() == 3 && "Not a double-shift!" ); |
| 8336 | EVT VT = Node->getValueType(ResNo: 0); |
| 8337 | unsigned VTBits = VT.getScalarSizeInBits(); |
| 8338 | assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected" ); |
| 8339 | |
| 8340 | bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS; |
| 8341 | bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS; |
| 8342 | SDValue ShOpLo = Node->getOperand(Num: 0); |
| 8343 | SDValue ShOpHi = Node->getOperand(Num: 1); |
| 8344 | SDValue ShAmt = Node->getOperand(Num: 2); |
| 8345 | EVT ShAmtVT = ShAmt.getValueType(); |
| 8346 | EVT ShAmtCCVT = |
| 8347 | getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT: ShAmtVT); |
| 8348 | SDLoc dl(Node); |
| 8349 | |
| 8350 | // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and |
| 8351 | // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized |
| 8352 | // away during isel. |
| 8353 | SDValue SafeShAmt = DAG.getNode(Opcode: ISD::AND, DL: dl, VT: ShAmtVT, N1: ShAmt, |
| 8354 | N2: DAG.getConstant(Val: VTBits - 1, DL: dl, VT: ShAmtVT)); |
| 8355 | SDValue Tmp1 = IsSRA ? DAG.getNode(Opcode: ISD::SRA, DL: dl, VT, N1: ShOpHi, |
| 8356 | N2: DAG.getConstant(Val: VTBits - 1, DL: dl, VT: ShAmtVT)) |
| 8357 | : DAG.getConstant(Val: 0, DL: dl, VT); |
| 8358 | |
| 8359 | SDValue Tmp2, Tmp3; |
| 8360 | if (IsSHL) { |
| 8361 | Tmp2 = DAG.getNode(Opcode: ISD::FSHL, DL: dl, VT, N1: ShOpHi, N2: ShOpLo, N3: ShAmt); |
| 8362 | Tmp3 = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: ShOpLo, N2: SafeShAmt); |
| 8363 | } else { |
| 8364 | Tmp2 = DAG.getNode(Opcode: ISD::FSHR, DL: dl, VT, N1: ShOpHi, N2: ShOpLo, N3: ShAmt); |
| 8365 | Tmp3 = DAG.getNode(Opcode: IsSRA ? ISD::SRA : ISD::SRL, DL: dl, VT, N1: ShOpHi, N2: SafeShAmt); |
| 8366 | } |
| 8367 | |
| 8368 | // If the shift amount is larger or equal than the width of a part we don't |
| 8369 | // use the result from the FSHL/FSHR. Insert a test and select the appropriate |
| 8370 | // values for large shift amounts. |
| 8371 | SDValue AndNode = DAG.getNode(Opcode: ISD::AND, DL: dl, VT: ShAmtVT, N1: ShAmt, |
| 8372 | N2: DAG.getConstant(Val: VTBits, DL: dl, VT: ShAmtVT)); |
| 8373 | SDValue Cond = DAG.getSetCC(DL: dl, VT: ShAmtCCVT, LHS: AndNode, |
| 8374 | RHS: DAG.getConstant(Val: 0, DL: dl, VT: ShAmtVT), Cond: ISD::SETNE); |
| 8375 | |
| 8376 | if (IsSHL) { |
| 8377 | Hi = DAG.getNode(Opcode: ISD::SELECT, DL: dl, VT, N1: Cond, N2: Tmp3, N3: Tmp2); |
| 8378 | Lo = DAG.getNode(Opcode: ISD::SELECT, DL: dl, VT, N1: Cond, N2: Tmp1, N3: Tmp3); |
| 8379 | } else { |
| 8380 | Lo = DAG.getNode(Opcode: ISD::SELECT, DL: dl, VT, N1: Cond, N2: Tmp3, N3: Tmp2); |
| 8381 | Hi = DAG.getNode(Opcode: ISD::SELECT, DL: dl, VT, N1: Cond, N2: Tmp1, N3: Tmp3); |
| 8382 | } |
| 8383 | } |
| 8384 | |
| 8385 | bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, |
| 8386 | SelectionDAG &DAG) const { |
| 8387 | unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; |
| 8388 | SDValue Src = Node->getOperand(Num: OpNo); |
| 8389 | EVT SrcVT = Src.getValueType(); |
| 8390 | EVT DstVT = Node->getValueType(ResNo: 0); |
| 8391 | SDLoc dl(SDValue(Node, 0)); |
| 8392 | |
| 8393 | // FIXME: Only f32 to i64 conversions are supported. |
| 8394 | if (SrcVT != MVT::f32 || DstVT != MVT::i64) |
| 8395 | return false; |
| 8396 | |
| 8397 | if (Node->isStrictFPOpcode()) |
| 8398 | // When a NaN is converted to an integer a trap is allowed. We can't |
| 8399 | // use this expansion here because it would eliminate that trap. Other |
| 8400 | // traps are also allowed and cannot be eliminated. See |
| 8401 | // IEEE 754-2008 sec 5.8. |
| 8402 | return false; |
| 8403 | |
| 8404 | // Expand f32 -> i64 conversion |
| 8405 | // This algorithm comes from compiler-rt's implementation of fixsfdi: |
| 8406 | // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c |
| 8407 | unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); |
| 8408 | EVT IntVT = SrcVT.changeTypeToInteger(); |
| 8409 | EVT IntShVT = getShiftAmountTy(LHSTy: IntVT, DL: DAG.getDataLayout()); |
| 8410 | |
| 8411 | SDValue ExponentMask = DAG.getConstant(Val: 0x7F800000, DL: dl, VT: IntVT); |
| 8412 | SDValue ExponentLoBit = DAG.getConstant(Val: 23, DL: dl, VT: IntVT); |
| 8413 | SDValue Bias = DAG.getConstant(Val: 127, DL: dl, VT: IntVT); |
| 8414 | SDValue SignMask = DAG.getConstant(Val: APInt::getSignMask(BitWidth: SrcEltBits), DL: dl, VT: IntVT); |
| 8415 | SDValue SignLowBit = DAG.getConstant(Val: SrcEltBits - 1, DL: dl, VT: IntVT); |
| 8416 | SDValue MantissaMask = DAG.getConstant(Val: 0x007FFFFF, DL: dl, VT: IntVT); |
| 8417 | |
| 8418 | SDValue Bits = DAG.getNode(Opcode: ISD::BITCAST, DL: dl, VT: IntVT, Operand: Src); |
| 8419 | |
| 8420 | SDValue ExponentBits = DAG.getNode( |
| 8421 | Opcode: ISD::SRL, DL: dl, VT: IntVT, N1: DAG.getNode(Opcode: ISD::AND, DL: dl, VT: IntVT, N1: Bits, N2: ExponentMask), |
| 8422 | N2: DAG.getZExtOrTrunc(Op: ExponentLoBit, DL: dl, VT: IntShVT)); |
| 8423 | SDValue Exponent = DAG.getNode(Opcode: ISD::SUB, DL: dl, VT: IntVT, N1: ExponentBits, N2: Bias); |
| 8424 | |
| 8425 | SDValue Sign = DAG.getNode(Opcode: ISD::SRA, DL: dl, VT: IntVT, |
| 8426 | N1: DAG.getNode(Opcode: ISD::AND, DL: dl, VT: IntVT, N1: Bits, N2: SignMask), |
| 8427 | N2: DAG.getZExtOrTrunc(Op: SignLowBit, DL: dl, VT: IntShVT)); |
| 8428 | Sign = DAG.getSExtOrTrunc(Op: Sign, DL: dl, VT: DstVT); |
| 8429 | |
| 8430 | SDValue R = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: IntVT, |
| 8431 | N1: DAG.getNode(Opcode: ISD::AND, DL: dl, VT: IntVT, N1: Bits, N2: MantissaMask), |
| 8432 | N2: DAG.getConstant(Val: 0x00800000, DL: dl, VT: IntVT)); |
| 8433 | |
| 8434 | R = DAG.getZExtOrTrunc(Op: R, DL: dl, VT: DstVT); |
| 8435 | |
| 8436 | R = DAG.getSelectCC( |
| 8437 | DL: dl, LHS: Exponent, RHS: ExponentLoBit, |
| 8438 | True: DAG.getNode(Opcode: ISD::SHL, DL: dl, VT: DstVT, N1: R, |
| 8439 | N2: DAG.getZExtOrTrunc( |
| 8440 | Op: DAG.getNode(Opcode: ISD::SUB, DL: dl, VT: IntVT, N1: Exponent, N2: ExponentLoBit), |
| 8441 | DL: dl, VT: IntShVT)), |
| 8442 | False: DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: DstVT, N1: R, |
| 8443 | N2: DAG.getZExtOrTrunc( |
| 8444 | Op: DAG.getNode(Opcode: ISD::SUB, DL: dl, VT: IntVT, N1: ExponentLoBit, N2: Exponent), |
| 8445 | DL: dl, VT: IntShVT)), |
| 8446 | Cond: ISD::SETGT); |
| 8447 | |
| 8448 | SDValue Ret = DAG.getNode(Opcode: ISD::SUB, DL: dl, VT: DstVT, |
| 8449 | N1: DAG.getNode(Opcode: ISD::XOR, DL: dl, VT: DstVT, N1: R, N2: Sign), N2: Sign); |
| 8450 | |
| 8451 | Result = DAG.getSelectCC(DL: dl, LHS: Exponent, RHS: DAG.getConstant(Val: 0, DL: dl, VT: IntVT), |
| 8452 | True: DAG.getConstant(Val: 0, DL: dl, VT: DstVT), False: Ret, Cond: ISD::SETLT); |
| 8453 | return true; |
| 8454 | } |
| 8455 | |
| 8456 | bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, |
| 8457 | SDValue &Chain, |
| 8458 | SelectionDAG &DAG) const { |
| 8459 | SDLoc dl(SDValue(Node, 0)); |
| 8460 | unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; |
| 8461 | SDValue Src = Node->getOperand(Num: OpNo); |
| 8462 | |
| 8463 | EVT SrcVT = Src.getValueType(); |
| 8464 | EVT DstVT = Node->getValueType(ResNo: 0); |
| 8465 | EVT SetCCVT = |
| 8466 | getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT: SrcVT); |
| 8467 | EVT DstSetCCVT = |
| 8468 | getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT: DstVT); |
| 8469 | |
| 8470 | // Only expand vector types if we have the appropriate vector bit operations. |
| 8471 | unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : |
| 8472 | ISD::FP_TO_SINT; |
| 8473 | if (DstVT.isVector() && (!isOperationLegalOrCustom(Op: SIntOpcode, VT: DstVT) || |
| 8474 | !isOperationLegalOrCustomOrPromote(Op: ISD::XOR, VT: SrcVT))) |
| 8475 | return false; |
| 8476 | |
| 8477 | // If the maximum float value is smaller then the signed integer range, |
| 8478 | // the destination signmask can't be represented by the float, so we can |
| 8479 | // just use FP_TO_SINT directly. |
| 8480 | const fltSemantics &APFSem = SrcVT.getFltSemantics(); |
| 8481 | APFloat APF(APFSem, APInt::getZero(numBits: SrcVT.getScalarSizeInBits())); |
| 8482 | APInt SignMask = APInt::getSignMask(BitWidth: DstVT.getScalarSizeInBits()); |
| 8483 | if (APFloat::opOverflow & |
| 8484 | APF.convertFromAPInt(Input: SignMask, IsSigned: false, RM: APFloat::rmNearestTiesToEven)) { |
| 8485 | if (Node->isStrictFPOpcode()) { |
| 8486 | Result = DAG.getNode(Opcode: ISD::STRICT_FP_TO_SINT, DL: dl, ResultTys: { DstVT, MVT::Other }, |
| 8487 | Ops: { Node->getOperand(Num: 0), Src }); |
| 8488 | Chain = Result.getValue(R: 1); |
| 8489 | } else |
| 8490 | Result = DAG.getNode(Opcode: ISD::FP_TO_SINT, DL: dl, VT: DstVT, Operand: Src); |
| 8491 | return true; |
| 8492 | } |
| 8493 | |
| 8494 | // Don't expand it if there isn't cheap fsub instruction. |
| 8495 | if (!isOperationLegalOrCustom( |
| 8496 | Op: Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, VT: SrcVT)) |
| 8497 | return false; |
| 8498 | |
| 8499 | SDValue Cst = DAG.getConstantFP(Val: APF, DL: dl, VT: SrcVT); |
| 8500 | SDValue Sel; |
| 8501 | |
| 8502 | if (Node->isStrictFPOpcode()) { |
| 8503 | Sel = DAG.getSetCC(DL: dl, VT: SetCCVT, LHS: Src, RHS: Cst, Cond: ISD::SETLT, |
| 8504 | Chain: Node->getOperand(Num: 0), /*IsSignaling*/ true); |
| 8505 | Chain = Sel.getValue(R: 1); |
| 8506 | } else { |
| 8507 | Sel = DAG.getSetCC(DL: dl, VT: SetCCVT, LHS: Src, RHS: Cst, Cond: ISD::SETLT); |
| 8508 | } |
| 8509 | |
| 8510 | bool Strict = Node->isStrictFPOpcode() || |
| 8511 | shouldUseStrictFP_TO_INT(FpVT: SrcVT, IntVT: DstVT, /*IsSigned*/ false); |
| 8512 | |
| 8513 | if (Strict) { |
| 8514 | // Expand based on maximum range of FP_TO_SINT, if the value exceeds the |
| 8515 | // signmask then offset (the result of which should be fully representable). |
| 8516 | // Sel = Src < 0x8000000000000000 |
| 8517 | // FltOfs = select Sel, 0, 0x8000000000000000 |
| 8518 | // IntOfs = select Sel, 0, 0x8000000000000000 |
| 8519 | // Result = fp_to_sint(Src - FltOfs) ^ IntOfs |
| 8520 | |
| 8521 | // TODO: Should any fast-math-flags be set for the FSUB? |
| 8522 | SDValue FltOfs = DAG.getSelect(DL: dl, VT: SrcVT, Cond: Sel, |
| 8523 | LHS: DAG.getConstantFP(Val: 0.0, DL: dl, VT: SrcVT), RHS: Cst); |
| 8524 | Sel = DAG.getBoolExtOrTrunc(Op: Sel, SL: dl, VT: DstSetCCVT, OpVT: DstVT); |
| 8525 | SDValue IntOfs = DAG.getSelect(DL: dl, VT: DstVT, Cond: Sel, |
| 8526 | LHS: DAG.getConstant(Val: 0, DL: dl, VT: DstVT), |
| 8527 | RHS: DAG.getConstant(Val: SignMask, DL: dl, VT: DstVT)); |
| 8528 | SDValue SInt; |
| 8529 | if (Node->isStrictFPOpcode()) { |
| 8530 | SDValue Val = DAG.getNode(Opcode: ISD::STRICT_FSUB, DL: dl, ResultTys: { SrcVT, MVT::Other }, |
| 8531 | Ops: { Chain, Src, FltOfs }); |
| 8532 | SInt = DAG.getNode(Opcode: ISD::STRICT_FP_TO_SINT, DL: dl, ResultTys: { DstVT, MVT::Other }, |
| 8533 | Ops: { Val.getValue(R: 1), Val }); |
| 8534 | Chain = SInt.getValue(R: 1); |
| 8535 | } else { |
| 8536 | SDValue Val = DAG.getNode(Opcode: ISD::FSUB, DL: dl, VT: SrcVT, N1: Src, N2: FltOfs); |
| 8537 | SInt = DAG.getNode(Opcode: ISD::FP_TO_SINT, DL: dl, VT: DstVT, Operand: Val); |
| 8538 | } |
| 8539 | Result = DAG.getNode(Opcode: ISD::XOR, DL: dl, VT: DstVT, N1: SInt, N2: IntOfs); |
| 8540 | } else { |
| 8541 | // Expand based on maximum range of FP_TO_SINT: |
| 8542 | // True = fp_to_sint(Src) |
| 8543 | // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) |
| 8544 | // Result = select (Src < 0x8000000000000000), True, False |
| 8545 | |
| 8546 | SDValue True = DAG.getNode(Opcode: ISD::FP_TO_SINT, DL: dl, VT: DstVT, Operand: Src); |
| 8547 | // TODO: Should any fast-math-flags be set for the FSUB? |
| 8548 | SDValue False = DAG.getNode(Opcode: ISD::FP_TO_SINT, DL: dl, VT: DstVT, |
| 8549 | Operand: DAG.getNode(Opcode: ISD::FSUB, DL: dl, VT: SrcVT, N1: Src, N2: Cst)); |
| 8550 | False = DAG.getNode(Opcode: ISD::XOR, DL: dl, VT: DstVT, N1: False, |
| 8551 | N2: DAG.getConstant(Val: SignMask, DL: dl, VT: DstVT)); |
| 8552 | Sel = DAG.getBoolExtOrTrunc(Op: Sel, SL: dl, VT: DstSetCCVT, OpVT: DstVT); |
| 8553 | Result = DAG.getSelect(DL: dl, VT: DstVT, Cond: Sel, LHS: True, RHS: False); |
| 8554 | } |
| 8555 | return true; |
| 8556 | } |
| 8557 | |
| 8558 | bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, |
| 8559 | SDValue &Chain, SelectionDAG &DAG) const { |
| 8560 | // This transform is not correct for converting 0 when rounding mode is set |
| 8561 | // to round toward negative infinity which will produce -0.0. So disable |
| 8562 | // under strictfp. |
| 8563 | if (Node->isStrictFPOpcode()) |
| 8564 | return false; |
| 8565 | |
| 8566 | SDValue Src = Node->getOperand(Num: 0); |
| 8567 | EVT SrcVT = Src.getValueType(); |
| 8568 | EVT DstVT = Node->getValueType(ResNo: 0); |
| 8569 | |
| 8570 | // If the input is known to be non-negative and SINT_TO_FP is legal then use |
| 8571 | // it. |
| 8572 | if (Node->getFlags().hasNonNeg() && |
| 8573 | isOperationLegalOrCustom(Op: ISD::SINT_TO_FP, VT: SrcVT)) { |
| 8574 | Result = |
| 8575 | DAG.getNode(Opcode: ISD::SINT_TO_FP, DL: SDLoc(Node), VT: DstVT, Operand: Node->getOperand(Num: 0)); |
| 8576 | return true; |
| 8577 | } |
| 8578 | |
| 8579 | if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) |
| 8580 | return false; |
| 8581 | |
| 8582 | // Only expand vector types if we have the appropriate vector bit |
| 8583 | // operations. |
| 8584 | if (SrcVT.isVector() && (!isOperationLegalOrCustom(Op: ISD::SRL, VT: SrcVT) || |
| 8585 | !isOperationLegalOrCustom(Op: ISD::FADD, VT: DstVT) || |
| 8586 | !isOperationLegalOrCustom(Op: ISD::FSUB, VT: DstVT) || |
| 8587 | !isOperationLegalOrCustomOrPromote(Op: ISD::OR, VT: SrcVT) || |
| 8588 | !isOperationLegalOrCustomOrPromote(Op: ISD::AND, VT: SrcVT))) |
| 8589 | return false; |
| 8590 | |
| 8591 | SDLoc dl(SDValue(Node, 0)); |
| 8592 | |
| 8593 | // Implementation of unsigned i64 to f64 following the algorithm in |
| 8594 | // __floatundidf in compiler_rt. This implementation performs rounding |
| 8595 | // correctly in all rounding modes with the exception of converting 0 |
| 8596 | // when rounding toward negative infinity. In that case the fsub will |
| 8597 | // produce -0.0. This will be added to +0.0 and produce -0.0 which is |
| 8598 | // incorrect. |
| 8599 | SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), DL: dl, VT: SrcVT); |
| 8600 | SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( |
| 8601 | Val: llvm::bit_cast<double>(UINT64_C(0x4530000000100000)), DL: dl, VT: DstVT); |
| 8602 | SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), DL: dl, VT: SrcVT); |
| 8603 | SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), DL: dl, VT: SrcVT); |
| 8604 | SDValue HiShift = DAG.getShiftAmountConstant(Val: 32, VT: SrcVT, DL: dl); |
| 8605 | |
| 8606 | SDValue Lo = DAG.getNode(Opcode: ISD::AND, DL: dl, VT: SrcVT, N1: Src, N2: LoMask); |
| 8607 | SDValue Hi = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: SrcVT, N1: Src, N2: HiShift); |
| 8608 | SDValue LoOr = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: SrcVT, N1: Lo, N2: TwoP52); |
| 8609 | SDValue HiOr = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: SrcVT, N1: Hi, N2: TwoP84); |
| 8610 | SDValue LoFlt = DAG.getBitcast(VT: DstVT, V: LoOr); |
| 8611 | SDValue HiFlt = DAG.getBitcast(VT: DstVT, V: HiOr); |
| 8612 | SDValue HiSub = DAG.getNode(Opcode: ISD::FSUB, DL: dl, VT: DstVT, N1: HiFlt, N2: TwoP84PlusTwoP52); |
| 8613 | Result = DAG.getNode(Opcode: ISD::FADD, DL: dl, VT: DstVT, N1: LoFlt, N2: HiSub); |
| 8614 | return true; |
| 8615 | } |
| 8616 | |
| 8617 | SDValue |
| 8618 | TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node, |
| 8619 | SelectionDAG &DAG) const { |
| 8620 | unsigned Opcode = Node->getOpcode(); |
| 8621 | assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM || |
| 8622 | Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) && |
| 8623 | "Wrong opcode" ); |
| 8624 | |
| 8625 | if (Node->getFlags().hasNoNaNs()) { |
| 8626 | ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; |
| 8627 | EVT VT = Node->getValueType(ResNo: 0); |
| 8628 | if ((!isCondCodeLegal(CC: Pred, VT: VT.getSimpleVT()) || |
| 8629 | !isOperationLegalOrCustom(Op: ISD::VSELECT, VT)) && |
| 8630 | VT.isVector()) |
| 8631 | return SDValue(); |
| 8632 | SDValue Op1 = Node->getOperand(Num: 0); |
| 8633 | SDValue Op2 = Node->getOperand(Num: 1); |
| 8634 | SDValue SelCC = DAG.getSelectCC(DL: SDLoc(Node), LHS: Op1, RHS: Op2, True: Op1, False: Op2, Cond: Pred); |
| 8635 | SelCC->setFlags(Node->getFlags()); |
| 8636 | return SelCC; |
| 8637 | } |
| 8638 | |
| 8639 | return SDValue(); |
| 8640 | } |
| 8641 | |
| 8642 | SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, |
| 8643 | SelectionDAG &DAG) const { |
| 8644 | if (SDValue Expanded = expandVectorNaryOpBySplitting(Node, DAG)) |
| 8645 | return Expanded; |
| 8646 | |
| 8647 | EVT VT = Node->getValueType(ResNo: 0); |
| 8648 | if (VT.isScalableVector()) |
| 8649 | report_fatal_error( |
| 8650 | reason: "Expanding fminnum/fmaxnum for scalable vectors is undefined." ); |
| 8651 | |
| 8652 | SDLoc dl(Node); |
| 8653 | unsigned NewOp = |
| 8654 | Node->getOpcode() == ISD::FMINNUM ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; |
| 8655 | |
| 8656 | if (isOperationLegalOrCustom(Op: NewOp, VT)) { |
| 8657 | SDValue Quiet0 = Node->getOperand(Num: 0); |
| 8658 | SDValue Quiet1 = Node->getOperand(Num: 1); |
| 8659 | |
| 8660 | if (!Node->getFlags().hasNoNaNs()) { |
| 8661 | // Insert canonicalizes if it's possible we need to quiet to get correct |
| 8662 | // sNaN behavior. |
| 8663 | if (!DAG.isKnownNeverSNaN(Op: Quiet0)) { |
| 8664 | Quiet0 = DAG.getNode(Opcode: ISD::FCANONICALIZE, DL: dl, VT, Operand: Quiet0, |
| 8665 | Flags: Node->getFlags()); |
| 8666 | } |
| 8667 | if (!DAG.isKnownNeverSNaN(Op: Quiet1)) { |
| 8668 | Quiet1 = DAG.getNode(Opcode: ISD::FCANONICALIZE, DL: dl, VT, Operand: Quiet1, |
| 8669 | Flags: Node->getFlags()); |
| 8670 | } |
| 8671 | } |
| 8672 | |
| 8673 | return DAG.getNode(Opcode: NewOp, DL: dl, VT, N1: Quiet0, N2: Quiet1, Flags: Node->getFlags()); |
| 8674 | } |
| 8675 | |
| 8676 | // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that |
| 8677 | // instead if there are no NaNs and there can't be an incompatible zero |
| 8678 | // compare: at least one operand isn't +/-0, or there are no signed-zeros. |
| 8679 | if ((Node->getFlags().hasNoNaNs() || |
| 8680 | (DAG.isKnownNeverNaN(Op: Node->getOperand(Num: 0)) && |
| 8681 | DAG.isKnownNeverNaN(Op: Node->getOperand(Num: 1)))) && |
| 8682 | (Node->getFlags().hasNoSignedZeros() || |
| 8683 | DAG.isKnownNeverZeroFloat(Op: Node->getOperand(Num: 0)) || |
| 8684 | DAG.isKnownNeverZeroFloat(Op: Node->getOperand(Num: 1)))) { |
| 8685 | unsigned IEEE2018Op = |
| 8686 | Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; |
| 8687 | if (isOperationLegalOrCustom(Op: IEEE2018Op, VT)) |
| 8688 | return DAG.getNode(Opcode: IEEE2018Op, DL: dl, VT, N1: Node->getOperand(Num: 0), |
| 8689 | N2: Node->getOperand(Num: 1), Flags: Node->getFlags()); |
| 8690 | } |
| 8691 | |
| 8692 | if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG)) |
| 8693 | return SelCC; |
| 8694 | |
| 8695 | return SDValue(); |
| 8696 | } |
| 8697 | |
| 8698 | SDValue TargetLowering::expandFMINIMUM_FMAXIMUM(SDNode *N, |
| 8699 | SelectionDAG &DAG) const { |
| 8700 | if (SDValue Expanded = expandVectorNaryOpBySplitting(Node: N, DAG)) |
| 8701 | return Expanded; |
| 8702 | |
| 8703 | SDLoc DL(N); |
| 8704 | SDValue LHS = N->getOperand(Num: 0); |
| 8705 | SDValue RHS = N->getOperand(Num: 1); |
| 8706 | unsigned Opc = N->getOpcode(); |
| 8707 | EVT VT = N->getValueType(ResNo: 0); |
| 8708 | EVT CCVT = getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT); |
| 8709 | bool IsMax = Opc == ISD::FMAXIMUM; |
| 8710 | SDNodeFlags Flags = N->getFlags(); |
| 8711 | |
| 8712 | // First, implement comparison not propagating NaN. If no native fmin or fmax |
| 8713 | // available, use plain select with setcc instead. |
| 8714 | SDValue MinMax; |
| 8715 | unsigned CompOpcIeee = IsMax ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE; |
| 8716 | unsigned CompOpc = IsMax ? ISD::FMAXNUM : ISD::FMINNUM; |
| 8717 | |
| 8718 | // FIXME: We should probably define fminnum/fmaxnum variants with correct |
| 8719 | // signed zero behavior. |
| 8720 | bool MinMaxMustRespectOrderedZero = false; |
| 8721 | |
| 8722 | if (isOperationLegalOrCustom(Op: CompOpcIeee, VT)) { |
| 8723 | MinMax = DAG.getNode(Opcode: CompOpcIeee, DL, VT, N1: LHS, N2: RHS, Flags); |
| 8724 | MinMaxMustRespectOrderedZero = true; |
| 8725 | } else if (isOperationLegalOrCustom(Op: CompOpc, VT)) { |
| 8726 | MinMax = DAG.getNode(Opcode: CompOpc, DL, VT, N1: LHS, N2: RHS, Flags); |
| 8727 | } else { |
| 8728 | if (VT.isVector() && !isOperationLegalOrCustom(Op: ISD::VSELECT, VT)) |
| 8729 | return DAG.UnrollVectorOp(N); |
| 8730 | |
| 8731 | // NaN (if exists) will be propagated later, so orderness doesn't matter. |
| 8732 | SDValue Compare = |
| 8733 | DAG.getSetCC(DL, VT: CCVT, LHS, RHS, Cond: IsMax ? ISD::SETOGT : ISD::SETOLT); |
| 8734 | MinMax = DAG.getSelect(DL, VT, Cond: Compare, LHS, RHS, Flags); |
| 8735 | } |
| 8736 | |
| 8737 | // Propagate any NaN of both operands |
| 8738 | if (!N->getFlags().hasNoNaNs() && |
| 8739 | (!DAG.isKnownNeverNaN(Op: RHS) || !DAG.isKnownNeverNaN(Op: LHS))) { |
| 8740 | ConstantFP *FPNaN = ConstantFP::get(Context&: *DAG.getContext(), |
| 8741 | V: APFloat::getNaN(Sem: VT.getFltSemantics())); |
| 8742 | MinMax = DAG.getSelect(DL, VT, Cond: DAG.getSetCC(DL, VT: CCVT, LHS, RHS, Cond: ISD::SETUO), |
| 8743 | LHS: DAG.getConstantFP(V: *FPNaN, DL, VT), RHS: MinMax, Flags); |
| 8744 | } |
| 8745 | |
| 8746 | // fminimum/fmaximum requires -0.0 less than +0.0 |
| 8747 | if (!MinMaxMustRespectOrderedZero && !N->getFlags().hasNoSignedZeros() && |
| 8748 | !DAG.isKnownNeverZeroFloat(Op: RHS) && !DAG.isKnownNeverZeroFloat(Op: LHS)) { |
| 8749 | SDValue IsZero = DAG.getSetCC(DL, VT: CCVT, LHS: MinMax, |
| 8750 | RHS: DAG.getConstantFP(Val: 0.0, DL, VT), Cond: ISD::SETOEQ); |
| 8751 | SDValue TestZero = |
| 8752 | DAG.getTargetConstant(Val: IsMax ? fcPosZero : fcNegZero, DL, VT: MVT::i32); |
| 8753 | SDValue LCmp = DAG.getSelect( |
| 8754 | DL, VT, Cond: DAG.getNode(Opcode: ISD::IS_FPCLASS, DL, VT: CCVT, N1: LHS, N2: TestZero), LHS, |
| 8755 | RHS: MinMax, Flags); |
| 8756 | SDValue RCmp = DAG.getSelect( |
| 8757 | DL, VT, Cond: DAG.getNode(Opcode: ISD::IS_FPCLASS, DL, VT: CCVT, N1: RHS, N2: TestZero), LHS: RHS, |
| 8758 | RHS: LCmp, Flags); |
| 8759 | MinMax = DAG.getSelect(DL, VT, Cond: IsZero, LHS: RCmp, RHS: MinMax, Flags); |
| 8760 | } |
| 8761 | |
| 8762 | return MinMax; |
| 8763 | } |
| 8764 | |
| 8765 | SDValue TargetLowering::expandFMINIMUMNUM_FMAXIMUMNUM(SDNode *Node, |
| 8766 | SelectionDAG &DAG) const { |
| 8767 | SDLoc DL(Node); |
| 8768 | SDValue LHS = Node->getOperand(Num: 0); |
| 8769 | SDValue RHS = Node->getOperand(Num: 1); |
| 8770 | unsigned Opc = Node->getOpcode(); |
| 8771 | EVT VT = Node->getValueType(ResNo: 0); |
| 8772 | EVT CCVT = getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT); |
| 8773 | bool IsMax = Opc == ISD::FMAXIMUMNUM; |
| 8774 | const TargetOptions &Options = DAG.getTarget().Options; |
| 8775 | SDNodeFlags Flags = Node->getFlags(); |
| 8776 | |
| 8777 | unsigned NewOp = |
| 8778 | Opc == ISD::FMINIMUMNUM ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; |
| 8779 | |
| 8780 | if (isOperationLegalOrCustom(Op: NewOp, VT)) { |
| 8781 | if (!Flags.hasNoNaNs()) { |
| 8782 | // Insert canonicalizes if it's possible we need to quiet to get correct |
| 8783 | // sNaN behavior. |
| 8784 | if (!DAG.isKnownNeverSNaN(Op: LHS)) { |
| 8785 | LHS = DAG.getNode(Opcode: ISD::FCANONICALIZE, DL, VT, Operand: LHS, Flags); |
| 8786 | } |
| 8787 | if (!DAG.isKnownNeverSNaN(Op: RHS)) { |
| 8788 | RHS = DAG.getNode(Opcode: ISD::FCANONICALIZE, DL, VT, Operand: RHS, Flags); |
| 8789 | } |
| 8790 | } |
| 8791 | |
| 8792 | return DAG.getNode(Opcode: NewOp, DL, VT, N1: LHS, N2: RHS, Flags); |
| 8793 | } |
| 8794 | |
| 8795 | // We can use FMINIMUM/FMAXIMUM if there is no NaN, since it has |
| 8796 | // same behaviors for all of other cases: +0.0 vs -0.0 included. |
| 8797 | if (Flags.hasNoNaNs() || |
| 8798 | (DAG.isKnownNeverNaN(Op: LHS) && DAG.isKnownNeverNaN(Op: RHS))) { |
| 8799 | unsigned IEEE2019Op = |
| 8800 | Opc == ISD::FMINIMUMNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; |
| 8801 | if (isOperationLegalOrCustom(Op: IEEE2019Op, VT)) |
| 8802 | return DAG.getNode(Opcode: IEEE2019Op, DL, VT, N1: LHS, N2: RHS, Flags); |
| 8803 | } |
| 8804 | |
| 8805 | // FMINNUM/FMAXMUM returns qNaN if either operand is sNaN, and it may return |
| 8806 | // either one for +0.0 vs -0.0. |
| 8807 | if ((Flags.hasNoNaNs() || |
| 8808 | (DAG.isKnownNeverSNaN(Op: LHS) && DAG.isKnownNeverSNaN(Op: RHS))) && |
| 8809 | (Flags.hasNoSignedZeros() || DAG.isKnownNeverZeroFloat(Op: LHS) || |
| 8810 | DAG.isKnownNeverZeroFloat(Op: RHS))) { |
| 8811 | unsigned IEEE2008Op = Opc == ISD::FMINIMUMNUM ? ISD::FMINNUM : ISD::FMAXNUM; |
| 8812 | if (isOperationLegalOrCustom(Op: IEEE2008Op, VT)) |
| 8813 | return DAG.getNode(Opcode: IEEE2008Op, DL, VT, N1: LHS, N2: RHS, Flags); |
| 8814 | } |
| 8815 | |
| 8816 | if (VT.isVector() && !isOperationLegalOrCustom(Op: ISD::VSELECT, VT)) |
| 8817 | return DAG.UnrollVectorOp(N: Node); |
| 8818 | |
| 8819 | // If only one operand is NaN, override it with another operand. |
| 8820 | if (!Flags.hasNoNaNs() && !DAG.isKnownNeverNaN(Op: LHS)) { |
| 8821 | LHS = DAG.getSelectCC(DL, LHS, RHS: LHS, True: RHS, False: LHS, Cond: ISD::SETUO); |
| 8822 | } |
| 8823 | if (!Flags.hasNoNaNs() && !DAG.isKnownNeverNaN(Op: RHS)) { |
| 8824 | RHS = DAG.getSelectCC(DL, LHS: RHS, RHS, True: LHS, False: RHS, Cond: ISD::SETUO); |
| 8825 | } |
| 8826 | |
| 8827 | SDValue MinMax = |
| 8828 | DAG.getSelectCC(DL, LHS, RHS, True: LHS, False: RHS, Cond: IsMax ? ISD::SETGT : ISD::SETLT); |
| 8829 | |
| 8830 | // TODO: We need quiet sNaN if strictfp. |
| 8831 | |
| 8832 | // Fixup signed zero behavior. |
| 8833 | if (Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros() || |
| 8834 | DAG.isKnownNeverZeroFloat(Op: LHS) || DAG.isKnownNeverZeroFloat(Op: RHS)) { |
| 8835 | return MinMax; |
| 8836 | } |
| 8837 | SDValue TestZero = |
| 8838 | DAG.getTargetConstant(Val: IsMax ? fcPosZero : fcNegZero, DL, VT: MVT::i32); |
| 8839 | SDValue IsZero = DAG.getSetCC(DL, VT: CCVT, LHS: MinMax, |
| 8840 | RHS: DAG.getConstantFP(Val: 0.0, DL, VT), Cond: ISD::SETEQ); |
| 8841 | SDValue LCmp = DAG.getSelect( |
| 8842 | DL, VT, Cond: DAG.getNode(Opcode: ISD::IS_FPCLASS, DL, VT: CCVT, N1: LHS, N2: TestZero), LHS, |
| 8843 | RHS: MinMax, Flags); |
| 8844 | SDValue RCmp = DAG.getSelect( |
| 8845 | DL, VT, Cond: DAG.getNode(Opcode: ISD::IS_FPCLASS, DL, VT: CCVT, N1: RHS, N2: TestZero), LHS: RHS, RHS: LCmp, |
| 8846 | Flags); |
| 8847 | return DAG.getSelect(DL, VT, Cond: IsZero, LHS: RCmp, RHS: MinMax, Flags); |
| 8848 | } |
| 8849 | |
| 8850 | /// Returns a true value if if this FPClassTest can be performed with an ordered |
| 8851 | /// fcmp to 0, and a false value if it's an unordered fcmp to 0. Returns |
| 8852 | /// std::nullopt if it cannot be performed as a compare with 0. |
| 8853 | static std::optional<bool> isFCmpEqualZero(FPClassTest Test, |
| 8854 | const fltSemantics &Semantics, |
| 8855 | const MachineFunction &MF) { |
| 8856 | FPClassTest OrderedMask = Test & ~fcNan; |
| 8857 | FPClassTest NanTest = Test & fcNan; |
| 8858 | bool IsOrdered = NanTest == fcNone; |
| 8859 | bool IsUnordered = NanTest == fcNan; |
| 8860 | |
| 8861 | // Skip cases that are testing for only a qnan or snan. |
| 8862 | if (!IsOrdered && !IsUnordered) |
| 8863 | return std::nullopt; |
| 8864 | |
| 8865 | if (OrderedMask == fcZero && |
| 8866 | MF.getDenormalMode(FPType: Semantics).Input == DenormalMode::IEEE) |
| 8867 | return IsOrdered; |
| 8868 | if (OrderedMask == (fcZero | fcSubnormal) && |
| 8869 | MF.getDenormalMode(FPType: Semantics).inputsAreZero()) |
| 8870 | return IsOrdered; |
| 8871 | return std::nullopt; |
| 8872 | } |
| 8873 | |
| 8874 | SDValue TargetLowering::expandIS_FPCLASS(EVT ResultVT, SDValue Op, |
| 8875 | const FPClassTest OrigTestMask, |
| 8876 | SDNodeFlags Flags, const SDLoc &DL, |
| 8877 | SelectionDAG &DAG) const { |
| 8878 | EVT OperandVT = Op.getValueType(); |
| 8879 | assert(OperandVT.isFloatingPoint()); |
| 8880 | FPClassTest Test = OrigTestMask; |
| 8881 | |
| 8882 | // Degenerated cases. |
| 8883 | if (Test == fcNone) |
| 8884 | return DAG.getBoolConstant(V: false, DL, VT: ResultVT, OpVT: OperandVT); |
| 8885 | if (Test == fcAllFlags) |
| 8886 | return DAG.getBoolConstant(V: true, DL, VT: ResultVT, OpVT: OperandVT); |
| 8887 | |
| 8888 | // PPC double double is a pair of doubles, of which the higher part determines |
| 8889 | // the value class. |
| 8890 | if (OperandVT == MVT::ppcf128) { |
| 8891 | Op = DAG.getNode(Opcode: ISD::EXTRACT_ELEMENT, DL, VT: MVT::f64, N1: Op, |
| 8892 | N2: DAG.getConstant(Val: 1, DL, VT: MVT::i32)); |
| 8893 | OperandVT = MVT::f64; |
| 8894 | } |
| 8895 | |
| 8896 | // Floating-point type properties. |
| 8897 | EVT ScalarFloatVT = OperandVT.getScalarType(); |
| 8898 | const Type *FloatTy = ScalarFloatVT.getTypeForEVT(Context&: *DAG.getContext()); |
| 8899 | const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics(); |
| 8900 | bool IsF80 = (ScalarFloatVT == MVT::f80); |
| 8901 | |
| 8902 | // Some checks can be implemented using float comparisons, if floating point |
| 8903 | // exceptions are ignored. |
| 8904 | if (Flags.hasNoFPExcept() && |
| 8905 | isOperationLegalOrCustom(Op: ISD::SETCC, VT: OperandVT.getScalarType())) { |
| 8906 | FPClassTest FPTestMask = Test; |
| 8907 | bool IsInvertedFP = false; |
| 8908 | |
| 8909 | if (FPClassTest InvertedFPCheck = |
| 8910 | invertFPClassTestIfSimpler(Test: FPTestMask, UseFCmp: true)) { |
| 8911 | FPTestMask = InvertedFPCheck; |
| 8912 | IsInvertedFP = true; |
| 8913 | } |
| 8914 | |
| 8915 | ISD::CondCode OrderedCmpOpcode = IsInvertedFP ? ISD::SETUNE : ISD::SETOEQ; |
| 8916 | ISD::CondCode UnorderedCmpOpcode = IsInvertedFP ? ISD::SETONE : ISD::SETUEQ; |
| 8917 | |
| 8918 | // See if we can fold an | fcNan into an unordered compare. |
| 8919 | FPClassTest OrderedFPTestMask = FPTestMask & ~fcNan; |
| 8920 | |
| 8921 | // Can't fold the ordered check if we're only testing for snan or qnan |
| 8922 | // individually. |
| 8923 | if ((FPTestMask & fcNan) != fcNan) |
| 8924 | OrderedFPTestMask = FPTestMask; |
| 8925 | |
| 8926 | const bool IsOrdered = FPTestMask == OrderedFPTestMask; |
| 8927 | |
| 8928 | if (std::optional<bool> IsCmp0 = |
| 8929 | isFCmpEqualZero(Test: FPTestMask, Semantics, MF: DAG.getMachineFunction()); |
| 8930 | IsCmp0 && (isCondCodeLegalOrCustom( |
| 8931 | CC: *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode, |
| 8932 | VT: OperandVT.getScalarType().getSimpleVT()))) { |
| 8933 | |
| 8934 | // If denormals could be implicitly treated as 0, this is not equivalent |
| 8935 | // to a compare with 0 since it will also be true for denormals. |
| 8936 | return DAG.getSetCC(DL, VT: ResultVT, LHS: Op, |
| 8937 | RHS: DAG.getConstantFP(Val: 0.0, DL, VT: OperandVT), |
| 8938 | Cond: *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode); |
| 8939 | } |
| 8940 | |
| 8941 | if (FPTestMask == fcNan && |
| 8942 | isCondCodeLegalOrCustom(CC: IsInvertedFP ? ISD::SETO : ISD::SETUO, |
| 8943 | VT: OperandVT.getScalarType().getSimpleVT())) |
| 8944 | return DAG.getSetCC(DL, VT: ResultVT, LHS: Op, RHS: Op, |
| 8945 | Cond: IsInvertedFP ? ISD::SETO : ISD::SETUO); |
| 8946 | |
| 8947 | bool IsOrderedInf = FPTestMask == fcInf; |
| 8948 | if ((FPTestMask == fcInf || FPTestMask == (fcInf | fcNan)) && |
| 8949 | isCondCodeLegalOrCustom(CC: IsOrderedInf ? OrderedCmpOpcode |
| 8950 | : UnorderedCmpOpcode, |
| 8951 | VT: OperandVT.getScalarType().getSimpleVT()) && |
| 8952 | isOperationLegalOrCustom(Op: ISD::FABS, VT: OperandVT.getScalarType()) && |
| 8953 | (isOperationLegal(Op: ISD::ConstantFP, VT: OperandVT.getScalarType()) || |
| 8954 | (OperandVT.isVector() && |
| 8955 | isOperationLegalOrCustom(Op: ISD::BUILD_VECTOR, VT: OperandVT)))) { |
| 8956 | // isinf(x) --> fabs(x) == inf |
| 8957 | SDValue Abs = DAG.getNode(Opcode: ISD::FABS, DL, VT: OperandVT, Operand: Op); |
| 8958 | SDValue Inf = |
| 8959 | DAG.getConstantFP(Val: APFloat::getInf(Sem: Semantics), DL, VT: OperandVT); |
| 8960 | return DAG.getSetCC(DL, VT: ResultVT, LHS: Abs, RHS: Inf, |
| 8961 | Cond: IsOrderedInf ? OrderedCmpOpcode : UnorderedCmpOpcode); |
| 8962 | } |
| 8963 | |
| 8964 | if ((OrderedFPTestMask == fcPosInf || OrderedFPTestMask == fcNegInf) && |
| 8965 | isCondCodeLegalOrCustom(CC: IsOrdered ? OrderedCmpOpcode |
| 8966 | : UnorderedCmpOpcode, |
| 8967 | VT: OperandVT.getSimpleVT())) { |
| 8968 | // isposinf(x) --> x == inf |
| 8969 | // isneginf(x) --> x == -inf |
| 8970 | // isposinf(x) || nan --> x u== inf |
| 8971 | // isneginf(x) || nan --> x u== -inf |
| 8972 | |
| 8973 | SDValue Inf = DAG.getConstantFP( |
| 8974 | Val: APFloat::getInf(Sem: Semantics, Negative: OrderedFPTestMask == fcNegInf), DL, |
| 8975 | VT: OperandVT); |
| 8976 | return DAG.getSetCC(DL, VT: ResultVT, LHS: Op, RHS: Inf, |
| 8977 | Cond: IsOrdered ? OrderedCmpOpcode : UnorderedCmpOpcode); |
| 8978 | } |
| 8979 | |
| 8980 | if (OrderedFPTestMask == (fcSubnormal | fcZero) && !IsOrdered) { |
| 8981 | // TODO: Could handle ordered case, but it produces worse code for |
| 8982 | // x86. Maybe handle ordered if fabs is free? |
| 8983 | |
| 8984 | ISD::CondCode OrderedOp = IsInvertedFP ? ISD::SETUGE : ISD::SETOLT; |
| 8985 | ISD::CondCode UnorderedOp = IsInvertedFP ? ISD::SETOGE : ISD::SETULT; |
| 8986 | |
| 8987 | if (isCondCodeLegalOrCustom(CC: IsOrdered ? OrderedOp : UnorderedOp, |
| 8988 | VT: OperandVT.getScalarType().getSimpleVT())) { |
| 8989 | // (issubnormal(x) || iszero(x)) --> fabs(x) < smallest_normal |
| 8990 | |
| 8991 | // TODO: Maybe only makes sense if fabs is free. Integer test of |
| 8992 | // exponent bits seems better for x86. |
| 8993 | SDValue Abs = DAG.getNode(Opcode: ISD::FABS, DL, VT: OperandVT, Operand: Op); |
| 8994 | SDValue SmallestNormal = DAG.getConstantFP( |
| 8995 | Val: APFloat::getSmallestNormalized(Sem: Semantics), DL, VT: OperandVT); |
| 8996 | return DAG.getSetCC(DL, VT: ResultVT, LHS: Abs, RHS: SmallestNormal, |
| 8997 | Cond: IsOrdered ? OrderedOp : UnorderedOp); |
| 8998 | } |
| 8999 | } |
| 9000 | |
| 9001 | if (FPTestMask == fcNormal) { |
| 9002 | // TODO: Handle unordered |
| 9003 | ISD::CondCode IsFiniteOp = IsInvertedFP ? ISD::SETUGE : ISD::SETOLT; |
| 9004 | ISD::CondCode IsNormalOp = IsInvertedFP ? ISD::SETOLT : ISD::SETUGE; |
| 9005 | |
| 9006 | if (isCondCodeLegalOrCustom(CC: IsFiniteOp, |
| 9007 | VT: OperandVT.getScalarType().getSimpleVT()) && |
| 9008 | isCondCodeLegalOrCustom(CC: IsNormalOp, |
| 9009 | VT: OperandVT.getScalarType().getSimpleVT()) && |
| 9010 | isFAbsFree(VT: OperandVT)) { |
| 9011 | // isnormal(x) --> fabs(x) < infinity && !(fabs(x) < smallest_normal) |
| 9012 | SDValue Inf = |
| 9013 | DAG.getConstantFP(Val: APFloat::getInf(Sem: Semantics), DL, VT: OperandVT); |
| 9014 | SDValue SmallestNormal = DAG.getConstantFP( |
| 9015 | Val: APFloat::getSmallestNormalized(Sem: Semantics), DL, VT: OperandVT); |
| 9016 | |
| 9017 | SDValue Abs = DAG.getNode(Opcode: ISD::FABS, DL, VT: OperandVT, Operand: Op); |
| 9018 | SDValue IsFinite = DAG.getSetCC(DL, VT: ResultVT, LHS: Abs, RHS: Inf, Cond: IsFiniteOp); |
| 9019 | SDValue IsNormal = |
| 9020 | DAG.getSetCC(DL, VT: ResultVT, LHS: Abs, RHS: SmallestNormal, Cond: IsNormalOp); |
| 9021 | unsigned LogicOp = IsInvertedFP ? ISD::OR : ISD::AND; |
| 9022 | return DAG.getNode(Opcode: LogicOp, DL, VT: ResultVT, N1: IsFinite, N2: IsNormal); |
| 9023 | } |
| 9024 | } |
| 9025 | } |
| 9026 | |
| 9027 | // Some checks may be represented as inversion of simpler check, for example |
| 9028 | // "inf|normal|subnormal|zero" => !"nan". |
| 9029 | bool IsInverted = false; |
| 9030 | |
| 9031 | if (FPClassTest InvertedCheck = invertFPClassTestIfSimpler(Test, UseFCmp: false)) { |
| 9032 | Test = InvertedCheck; |
| 9033 | IsInverted = true; |
| 9034 | } |
| 9035 | |
| 9036 | // In the general case use integer operations. |
| 9037 | unsigned BitSize = OperandVT.getScalarSizeInBits(); |
| 9038 | EVT IntVT = EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: BitSize); |
| 9039 | if (OperandVT.isVector()) |
| 9040 | IntVT = EVT::getVectorVT(Context&: *DAG.getContext(), VT: IntVT, |
| 9041 | EC: OperandVT.getVectorElementCount()); |
| 9042 | SDValue OpAsInt = DAG.getBitcast(VT: IntVT, V: Op); |
| 9043 | |
| 9044 | // Various masks. |
| 9045 | APInt SignBit = APInt::getSignMask(BitWidth: BitSize); |
| 9046 | APInt ValueMask = APInt::getSignedMaxValue(numBits: BitSize); // All bits but sign. |
| 9047 | APInt Inf = APFloat::getInf(Sem: Semantics).bitcastToAPInt(); // Exp and int bit. |
| 9048 | const unsigned ExplicitIntBitInF80 = 63; |
| 9049 | APInt ExpMask = Inf; |
| 9050 | if (IsF80) |
| 9051 | ExpMask.clearBit(BitPosition: ExplicitIntBitInF80); |
| 9052 | APInt AllOneMantissa = APFloat::getLargest(Sem: Semantics).bitcastToAPInt() & ~Inf; |
| 9053 | APInt QNaNBitMask = |
| 9054 | APInt::getOneBitSet(numBits: BitSize, BitNo: AllOneMantissa.getActiveBits() - 1); |
| 9055 | APInt InvertionMask = APInt::getAllOnes(numBits: ResultVT.getScalarSizeInBits()); |
| 9056 | |
| 9057 | SDValue ValueMaskV = DAG.getConstant(Val: ValueMask, DL, VT: IntVT); |
| 9058 | SDValue SignBitV = DAG.getConstant(Val: SignBit, DL, VT: IntVT); |
| 9059 | SDValue ExpMaskV = DAG.getConstant(Val: ExpMask, DL, VT: IntVT); |
| 9060 | SDValue ZeroV = DAG.getConstant(Val: 0, DL, VT: IntVT); |
| 9061 | SDValue InfV = DAG.getConstant(Val: Inf, DL, VT: IntVT); |
| 9062 | SDValue ResultInvertionMask = DAG.getConstant(Val: InvertionMask, DL, VT: ResultVT); |
| 9063 | |
| 9064 | SDValue Res; |
| 9065 | const auto appendResult = [&](SDValue PartialRes) { |
| 9066 | if (PartialRes) { |
| 9067 | if (Res) |
| 9068 | Res = DAG.getNode(Opcode: ISD::OR, DL, VT: ResultVT, N1: Res, N2: PartialRes); |
| 9069 | else |
| 9070 | Res = PartialRes; |
| 9071 | } |
| 9072 | }; |
| 9073 | |
| 9074 | SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set. |
| 9075 | const auto getIntBitIsSet = [&]() -> SDValue { |
| 9076 | if (!IntBitIsSetV) { |
| 9077 | APInt IntBitMask(BitSize, 0); |
| 9078 | IntBitMask.setBit(ExplicitIntBitInF80); |
| 9079 | SDValue IntBitMaskV = DAG.getConstant(Val: IntBitMask, DL, VT: IntVT); |
| 9080 | SDValue IntBitV = DAG.getNode(Opcode: ISD::AND, DL, VT: IntVT, N1: OpAsInt, N2: IntBitMaskV); |
| 9081 | IntBitIsSetV = DAG.getSetCC(DL, VT: ResultVT, LHS: IntBitV, RHS: ZeroV, Cond: ISD::SETNE); |
| 9082 | } |
| 9083 | return IntBitIsSetV; |
| 9084 | }; |
| 9085 | |
| 9086 | // Split the value into sign bit and absolute value. |
| 9087 | SDValue AbsV = DAG.getNode(Opcode: ISD::AND, DL, VT: IntVT, N1: OpAsInt, N2: ValueMaskV); |
| 9088 | SDValue SignV = DAG.getSetCC(DL, VT: ResultVT, LHS: OpAsInt, |
| 9089 | RHS: DAG.getConstant(Val: 0, DL, VT: IntVT), Cond: ISD::SETLT); |
| 9090 | |
| 9091 | // Tests that involve more than one class should be processed first. |
| 9092 | SDValue PartialRes; |
| 9093 | |
| 9094 | if (IsF80) |
| 9095 | ; // Detect finite numbers of f80 by checking individual classes because |
| 9096 | // they have different settings of the explicit integer bit. |
| 9097 | else if ((Test & fcFinite) == fcFinite) { |
| 9098 | // finite(V) ==> abs(V) < exp_mask |
| 9099 | PartialRes = DAG.getSetCC(DL, VT: ResultVT, LHS: AbsV, RHS: ExpMaskV, Cond: ISD::SETLT); |
| 9100 | Test &= ~fcFinite; |
| 9101 | } else if ((Test & fcFinite) == fcPosFinite) { |
| 9102 | // finite(V) && V > 0 ==> V < exp_mask |
| 9103 | PartialRes = DAG.getSetCC(DL, VT: ResultVT, LHS: OpAsInt, RHS: ExpMaskV, Cond: ISD::SETULT); |
| 9104 | Test &= ~fcPosFinite; |
| 9105 | } else if ((Test & fcFinite) == fcNegFinite) { |
| 9106 | // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1 |
| 9107 | PartialRes = DAG.getSetCC(DL, VT: ResultVT, LHS: AbsV, RHS: ExpMaskV, Cond: ISD::SETLT); |
| 9108 | PartialRes = DAG.getNode(Opcode: ISD::AND, DL, VT: ResultVT, N1: PartialRes, N2: SignV); |
| 9109 | Test &= ~fcNegFinite; |
| 9110 | } |
| 9111 | appendResult(PartialRes); |
| 9112 | |
| 9113 | if (FPClassTest PartialCheck = Test & (fcZero | fcSubnormal)) { |
| 9114 | // fcZero | fcSubnormal => test all exponent bits are 0 |
| 9115 | // TODO: Handle sign bit specific cases |
| 9116 | if (PartialCheck == (fcZero | fcSubnormal)) { |
| 9117 | SDValue ExpBits = DAG.getNode(Opcode: ISD::AND, DL, VT: IntVT, N1: OpAsInt, N2: ExpMaskV); |
| 9118 | SDValue ExpIsZero = |
| 9119 | DAG.getSetCC(DL, VT: ResultVT, LHS: ExpBits, RHS: ZeroV, Cond: ISD::SETEQ); |
| 9120 | appendResult(ExpIsZero); |
| 9121 | Test &= ~PartialCheck & fcAllFlags; |
| 9122 | } |
| 9123 | } |
| 9124 | |
| 9125 | // Check for individual classes. |
| 9126 | |
| 9127 | if (unsigned PartialCheck = Test & fcZero) { |
| 9128 | if (PartialCheck == fcPosZero) |
| 9129 | PartialRes = DAG.getSetCC(DL, VT: ResultVT, LHS: OpAsInt, RHS: ZeroV, Cond: ISD::SETEQ); |
| 9130 | else if (PartialCheck == fcZero) |
| 9131 | PartialRes = DAG.getSetCC(DL, VT: ResultVT, LHS: AbsV, RHS: ZeroV, Cond: ISD::SETEQ); |
| 9132 | else // ISD::fcNegZero |
| 9133 | PartialRes = DAG.getSetCC(DL, VT: ResultVT, LHS: OpAsInt, RHS: SignBitV, Cond: ISD::SETEQ); |
| 9134 | appendResult(PartialRes); |
| 9135 | } |
| 9136 | |
| 9137 | if (unsigned PartialCheck = Test & fcSubnormal) { |
| 9138 | // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set) |
| 9139 | // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set) |
| 9140 | SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV; |
| 9141 | SDValue MantissaV = DAG.getConstant(Val: AllOneMantissa, DL, VT: IntVT); |
| 9142 | SDValue VMinusOneV = |
| 9143 | DAG.getNode(Opcode: ISD::SUB, DL, VT: IntVT, N1: V, N2: DAG.getConstant(Val: 1, DL, VT: IntVT)); |
| 9144 | PartialRes = DAG.getSetCC(DL, VT: ResultVT, LHS: VMinusOneV, RHS: MantissaV, Cond: ISD::SETULT); |
| 9145 | if (PartialCheck == fcNegSubnormal) |
| 9146 | PartialRes = DAG.getNode(Opcode: ISD::AND, DL, VT: ResultVT, N1: PartialRes, N2: SignV); |
| 9147 | appendResult(PartialRes); |
| 9148 | } |
| 9149 | |
| 9150 | if (unsigned PartialCheck = Test & fcInf) { |
| 9151 | if (PartialCheck == fcPosInf) |
| 9152 | PartialRes = DAG.getSetCC(DL, VT: ResultVT, LHS: OpAsInt, RHS: InfV, Cond: ISD::SETEQ); |
| 9153 | else if (PartialCheck == fcInf) |
| 9154 | PartialRes = DAG.getSetCC(DL, VT: ResultVT, LHS: AbsV, RHS: InfV, Cond: ISD::SETEQ); |
| 9155 | else { // ISD::fcNegInf |
| 9156 | APInt NegInf = APFloat::getInf(Sem: Semantics, Negative: true).bitcastToAPInt(); |
| 9157 | SDValue NegInfV = DAG.getConstant(Val: NegInf, DL, VT: IntVT); |
| 9158 | PartialRes = DAG.getSetCC(DL, VT: ResultVT, LHS: OpAsInt, RHS: NegInfV, Cond: ISD::SETEQ); |
| 9159 | } |
| 9160 | appendResult(PartialRes); |
| 9161 | } |
| 9162 | |
| 9163 | if (unsigned PartialCheck = Test & fcNan) { |
| 9164 | APInt InfWithQnanBit = Inf | QNaNBitMask; |
| 9165 | SDValue InfWithQnanBitV = DAG.getConstant(Val: InfWithQnanBit, DL, VT: IntVT); |
| 9166 | if (PartialCheck == fcNan) { |
| 9167 | // isnan(V) ==> abs(V) > int(inf) |
| 9168 | PartialRes = DAG.getSetCC(DL, VT: ResultVT, LHS: AbsV, RHS: InfV, Cond: ISD::SETGT); |
| 9169 | if (IsF80) { |
| 9170 | // Recognize unsupported values as NaNs for compatibility with glibc. |
| 9171 | // In them (exp(V)==0) == int_bit. |
| 9172 | SDValue ExpBits = DAG.getNode(Opcode: ISD::AND, DL, VT: IntVT, N1: AbsV, N2: ExpMaskV); |
| 9173 | SDValue ExpIsZero = |
| 9174 | DAG.getSetCC(DL, VT: ResultVT, LHS: ExpBits, RHS: ZeroV, Cond: ISD::SETEQ); |
| 9175 | SDValue IsPseudo = |
| 9176 | DAG.getSetCC(DL, VT: ResultVT, LHS: getIntBitIsSet(), RHS: ExpIsZero, Cond: ISD::SETEQ); |
| 9177 | PartialRes = DAG.getNode(Opcode: ISD::OR, DL, VT: ResultVT, N1: PartialRes, N2: IsPseudo); |
| 9178 | } |
| 9179 | } else if (PartialCheck == fcQNan) { |
| 9180 | // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit) |
| 9181 | PartialRes = |
| 9182 | DAG.getSetCC(DL, VT: ResultVT, LHS: AbsV, RHS: InfWithQnanBitV, Cond: ISD::SETGE); |
| 9183 | } else { // ISD::fcSNan |
| 9184 | // issignaling(V) ==> abs(V) > unsigned(Inf) && |
| 9185 | // abs(V) < (unsigned(Inf) | quiet_bit) |
| 9186 | SDValue IsNan = DAG.getSetCC(DL, VT: ResultVT, LHS: AbsV, RHS: InfV, Cond: ISD::SETGT); |
| 9187 | SDValue IsNotQnan = |
| 9188 | DAG.getSetCC(DL, VT: ResultVT, LHS: AbsV, RHS: InfWithQnanBitV, Cond: ISD::SETLT); |
| 9189 | PartialRes = DAG.getNode(Opcode: ISD::AND, DL, VT: ResultVT, N1: IsNan, N2: IsNotQnan); |
| 9190 | } |
| 9191 | appendResult(PartialRes); |
| 9192 | } |
| 9193 | |
| 9194 | if (unsigned PartialCheck = Test & fcNormal) { |
| 9195 | // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1)) |
| 9196 | APInt ExpLSB = ExpMask & ~(ExpMask.shl(shiftAmt: 1)); |
| 9197 | SDValue ExpLSBV = DAG.getConstant(Val: ExpLSB, DL, VT: IntVT); |
| 9198 | SDValue ExpMinus1 = DAG.getNode(Opcode: ISD::SUB, DL, VT: IntVT, N1: AbsV, N2: ExpLSBV); |
| 9199 | APInt ExpLimit = ExpMask - ExpLSB; |
| 9200 | SDValue ExpLimitV = DAG.getConstant(Val: ExpLimit, DL, VT: IntVT); |
| 9201 | PartialRes = DAG.getSetCC(DL, VT: ResultVT, LHS: ExpMinus1, RHS: ExpLimitV, Cond: ISD::SETULT); |
| 9202 | if (PartialCheck == fcNegNormal) |
| 9203 | PartialRes = DAG.getNode(Opcode: ISD::AND, DL, VT: ResultVT, N1: PartialRes, N2: SignV); |
| 9204 | else if (PartialCheck == fcPosNormal) { |
| 9205 | SDValue PosSignV = |
| 9206 | DAG.getNode(Opcode: ISD::XOR, DL, VT: ResultVT, N1: SignV, N2: ResultInvertionMask); |
| 9207 | PartialRes = DAG.getNode(Opcode: ISD::AND, DL, VT: ResultVT, N1: PartialRes, N2: PosSignV); |
| 9208 | } |
| 9209 | if (IsF80) |
| 9210 | PartialRes = |
| 9211 | DAG.getNode(Opcode: ISD::AND, DL, VT: ResultVT, N1: PartialRes, N2: getIntBitIsSet()); |
| 9212 | appendResult(PartialRes); |
| 9213 | } |
| 9214 | |
| 9215 | if (!Res) |
| 9216 | return DAG.getConstant(Val: IsInverted, DL, VT: ResultVT); |
| 9217 | if (IsInverted) |
| 9218 | Res = DAG.getNode(Opcode: ISD::XOR, DL, VT: ResultVT, N1: Res, N2: ResultInvertionMask); |
| 9219 | return Res; |
| 9220 | } |
| 9221 | |
| 9222 | // Only expand vector types if we have the appropriate vector bit operations. |
| 9223 | static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) { |
| 9224 | assert(VT.isVector() && "Expected vector type" ); |
| 9225 | unsigned Len = VT.getScalarSizeInBits(); |
| 9226 | return TLI.isOperationLegalOrCustom(Op: ISD::ADD, VT) && |
| 9227 | TLI.isOperationLegalOrCustom(Op: ISD::SUB, VT) && |
| 9228 | TLI.isOperationLegalOrCustom(Op: ISD::SRL, VT) && |
| 9229 | (Len == 8 || TLI.isOperationLegalOrCustom(Op: ISD::MUL, VT)) && |
| 9230 | TLI.isOperationLegalOrCustomOrPromote(Op: ISD::AND, VT); |
| 9231 | } |
| 9232 | |
| 9233 | SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const { |
| 9234 | SDLoc dl(Node); |
| 9235 | EVT VT = Node->getValueType(ResNo: 0); |
| 9236 | EVT ShVT = getShiftAmountTy(LHSTy: VT, DL: DAG.getDataLayout()); |
| 9237 | SDValue Op = Node->getOperand(Num: 0); |
| 9238 | unsigned Len = VT.getScalarSizeInBits(); |
| 9239 | assert(VT.isInteger() && "CTPOP not implemented for this type." ); |
| 9240 | |
| 9241 | // TODO: Add support for irregular type lengths. |
| 9242 | if (!(Len <= 128 && Len % 8 == 0)) |
| 9243 | return SDValue(); |
| 9244 | |
| 9245 | // Only expand vector types if we have the appropriate vector bit operations. |
| 9246 | if (VT.isVector() && !canExpandVectorCTPOP(TLI: *this, VT)) |
| 9247 | return SDValue(); |
| 9248 | |
| 9249 | // This is the "best" algorithm from |
| 9250 | // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel |
| 9251 | SDValue Mask55 = |
| 9252 | DAG.getConstant(Val: APInt::getSplat(NewLen: Len, V: APInt(8, 0x55)), DL: dl, VT); |
| 9253 | SDValue Mask33 = |
| 9254 | DAG.getConstant(Val: APInt::getSplat(NewLen: Len, V: APInt(8, 0x33)), DL: dl, VT); |
| 9255 | SDValue Mask0F = |
| 9256 | DAG.getConstant(Val: APInt::getSplat(NewLen: Len, V: APInt(8, 0x0F)), DL: dl, VT); |
| 9257 | |
| 9258 | // v = v - ((v >> 1) & 0x55555555...) |
| 9259 | Op = DAG.getNode(Opcode: ISD::SUB, DL: dl, VT, N1: Op, |
| 9260 | N2: DAG.getNode(Opcode: ISD::AND, DL: dl, VT, |
| 9261 | N1: DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Op, |
| 9262 | N2: DAG.getConstant(Val: 1, DL: dl, VT: ShVT)), |
| 9263 | N2: Mask55)); |
| 9264 | // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) |
| 9265 | Op = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT, N1: DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: Op, N2: Mask33), |
| 9266 | N2: DAG.getNode(Opcode: ISD::AND, DL: dl, VT, |
| 9267 | N1: DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Op, |
| 9268 | N2: DAG.getConstant(Val: 2, DL: dl, VT: ShVT)), |
| 9269 | N2: Mask33)); |
| 9270 | // v = (v + (v >> 4)) & 0x0F0F0F0F... |
| 9271 | Op = DAG.getNode(Opcode: ISD::AND, DL: dl, VT, |
| 9272 | N1: DAG.getNode(Opcode: ISD::ADD, DL: dl, VT, N1: Op, |
| 9273 | N2: DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Op, |
| 9274 | N2: DAG.getConstant(Val: 4, DL: dl, VT: ShVT))), |
| 9275 | N2: Mask0F); |
| 9276 | |
| 9277 | if (Len <= 8) |
| 9278 | return Op; |
| 9279 | |
| 9280 | // Avoid the multiply if we only have 2 bytes to add. |
| 9281 | // TODO: Only doing this for scalars because vectors weren't as obviously |
| 9282 | // improved. |
| 9283 | if (Len == 16 && !VT.isVector()) { |
| 9284 | // v = (v + (v >> 8)) & 0x00FF; |
| 9285 | return DAG.getNode(Opcode: ISD::AND, DL: dl, VT, |
| 9286 | N1: DAG.getNode(Opcode: ISD::ADD, DL: dl, VT, N1: Op, |
| 9287 | N2: DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Op, |
| 9288 | N2: DAG.getConstant(Val: 8, DL: dl, VT: ShVT))), |
| 9289 | N2: DAG.getConstant(Val: 0xFF, DL: dl, VT)); |
| 9290 | } |
| 9291 | |
| 9292 | // v = (v * 0x01010101...) >> (Len - 8) |
| 9293 | SDValue V; |
| 9294 | if (isOperationLegalOrCustomOrPromote( |
| 9295 | Op: ISD::MUL, VT: getTypeToTransformTo(Context&: *DAG.getContext(), VT))) { |
| 9296 | SDValue Mask01 = |
| 9297 | DAG.getConstant(Val: APInt::getSplat(NewLen: Len, V: APInt(8, 0x01)), DL: dl, VT); |
| 9298 | V = DAG.getNode(Opcode: ISD::MUL, DL: dl, VT, N1: Op, N2: Mask01); |
| 9299 | } else { |
| 9300 | V = Op; |
| 9301 | for (unsigned Shift = 8; Shift < Len; Shift *= 2) { |
| 9302 | SDValue ShiftC = DAG.getShiftAmountConstant(Val: Shift, VT, DL: dl); |
| 9303 | V = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT, N1: V, |
| 9304 | N2: DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: V, N2: ShiftC)); |
| 9305 | } |
| 9306 | } |
| 9307 | return DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: V, N2: DAG.getConstant(Val: Len - 8, DL: dl, VT: ShVT)); |
| 9308 | } |
| 9309 | |
| 9310 | SDValue TargetLowering::expandVPCTPOP(SDNode *Node, SelectionDAG &DAG) const { |
| 9311 | SDLoc dl(Node); |
| 9312 | EVT VT = Node->getValueType(ResNo: 0); |
| 9313 | EVT ShVT = getShiftAmountTy(LHSTy: VT, DL: DAG.getDataLayout()); |
| 9314 | SDValue Op = Node->getOperand(Num: 0); |
| 9315 | SDValue Mask = Node->getOperand(Num: 1); |
| 9316 | SDValue VL = Node->getOperand(Num: 2); |
| 9317 | unsigned Len = VT.getScalarSizeInBits(); |
| 9318 | assert(VT.isInteger() && "VP_CTPOP not implemented for this type." ); |
| 9319 | |
| 9320 | // TODO: Add support for irregular type lengths. |
| 9321 | if (!(Len <= 128 && Len % 8 == 0)) |
| 9322 | return SDValue(); |
| 9323 | |
| 9324 | // This is same algorithm of expandCTPOP from |
| 9325 | // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel |
| 9326 | SDValue Mask55 = |
| 9327 | DAG.getConstant(Val: APInt::getSplat(NewLen: Len, V: APInt(8, 0x55)), DL: dl, VT); |
| 9328 | SDValue Mask33 = |
| 9329 | DAG.getConstant(Val: APInt::getSplat(NewLen: Len, V: APInt(8, 0x33)), DL: dl, VT); |
| 9330 | SDValue Mask0F = |
| 9331 | DAG.getConstant(Val: APInt::getSplat(NewLen: Len, V: APInt(8, 0x0F)), DL: dl, VT); |
| 9332 | |
| 9333 | SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5; |
| 9334 | |
| 9335 | // v = v - ((v >> 1) & 0x55555555...) |
| 9336 | Tmp1 = DAG.getNode(Opcode: ISD::VP_AND, DL: dl, VT, |
| 9337 | N1: DAG.getNode(Opcode: ISD::VP_SRL, DL: dl, VT, N1: Op, |
| 9338 | N2: DAG.getConstant(Val: 1, DL: dl, VT: ShVT), N3: Mask, N4: VL), |
| 9339 | N2: Mask55, N3: Mask, N4: VL); |
| 9340 | Op = DAG.getNode(Opcode: ISD::VP_SUB, DL: dl, VT, N1: Op, N2: Tmp1, N3: Mask, N4: VL); |
| 9341 | |
| 9342 | // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) |
| 9343 | Tmp2 = DAG.getNode(Opcode: ISD::VP_AND, DL: dl, VT, N1: Op, N2: Mask33, N3: Mask, N4: VL); |
| 9344 | Tmp3 = DAG.getNode(Opcode: ISD::VP_AND, DL: dl, VT, |
| 9345 | N1: DAG.getNode(Opcode: ISD::VP_SRL, DL: dl, VT, N1: Op, |
| 9346 | N2: DAG.getConstant(Val: 2, DL: dl, VT: ShVT), N3: Mask, N4: VL), |
| 9347 | N2: Mask33, N3: Mask, N4: VL); |
| 9348 | Op = DAG.getNode(Opcode: ISD::VP_ADD, DL: dl, VT, N1: Tmp2, N2: Tmp3, N3: Mask, N4: VL); |
| 9349 | |
| 9350 | // v = (v + (v >> 4)) & 0x0F0F0F0F... |
| 9351 | Tmp4 = DAG.getNode(Opcode: ISD::VP_SRL, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: 4, DL: dl, VT: ShVT), |
| 9352 | N3: Mask, N4: VL), |
| 9353 | Tmp5 = DAG.getNode(Opcode: ISD::VP_ADD, DL: dl, VT, N1: Op, N2: Tmp4, N3: Mask, N4: VL); |
| 9354 | Op = DAG.getNode(Opcode: ISD::VP_AND, DL: dl, VT, N1: Tmp5, N2: Mask0F, N3: Mask, N4: VL); |
| 9355 | |
| 9356 | if (Len <= 8) |
| 9357 | return Op; |
| 9358 | |
| 9359 | // v = (v * 0x01010101...) >> (Len - 8) |
| 9360 | SDValue V; |
| 9361 | if (isOperationLegalOrCustomOrPromote( |
| 9362 | Op: ISD::VP_MUL, VT: getTypeToTransformTo(Context&: *DAG.getContext(), VT))) { |
| 9363 | SDValue Mask01 = |
| 9364 | DAG.getConstant(Val: APInt::getSplat(NewLen: Len, V: APInt(8, 0x01)), DL: dl, VT); |
| 9365 | V = DAG.getNode(Opcode: ISD::VP_MUL, DL: dl, VT, N1: Op, N2: Mask01, N3: Mask, N4: VL); |
| 9366 | } else { |
| 9367 | V = Op; |
| 9368 | for (unsigned Shift = 8; Shift < Len; Shift *= 2) { |
| 9369 | SDValue ShiftC = DAG.getShiftAmountConstant(Val: Shift, VT, DL: dl); |
| 9370 | V = DAG.getNode(Opcode: ISD::VP_ADD, DL: dl, VT, N1: V, |
| 9371 | N2: DAG.getNode(Opcode: ISD::VP_SHL, DL: dl, VT, N1: V, N2: ShiftC, N3: Mask, N4: VL), |
| 9372 | N3: Mask, N4: VL); |
| 9373 | } |
| 9374 | } |
| 9375 | return DAG.getNode(Opcode: ISD::VP_SRL, DL: dl, VT, N1: V, N2: DAG.getConstant(Val: Len - 8, DL: dl, VT: ShVT), |
| 9376 | N3: Mask, N4: VL); |
| 9377 | } |
| 9378 | |
| 9379 | SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const { |
| 9380 | SDLoc dl(Node); |
| 9381 | EVT VT = Node->getValueType(ResNo: 0); |
| 9382 | EVT ShVT = getShiftAmountTy(LHSTy: VT, DL: DAG.getDataLayout()); |
| 9383 | SDValue Op = Node->getOperand(Num: 0); |
| 9384 | unsigned NumBitsPerElt = VT.getScalarSizeInBits(); |
| 9385 | |
| 9386 | // If the non-ZERO_UNDEF version is supported we can use that instead. |
| 9387 | if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && |
| 9388 | isOperationLegalOrCustom(Op: ISD::CTLZ, VT)) |
| 9389 | return DAG.getNode(Opcode: ISD::CTLZ, DL: dl, VT, Operand: Op); |
| 9390 | |
| 9391 | // If the ZERO_UNDEF version is supported use that and handle the zero case. |
| 9392 | if (isOperationLegalOrCustom(Op: ISD::CTLZ_ZERO_UNDEF, VT)) { |
| 9393 | EVT SetCCVT = |
| 9394 | getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT); |
| 9395 | SDValue CTLZ = DAG.getNode(Opcode: ISD::CTLZ_ZERO_UNDEF, DL: dl, VT, Operand: Op); |
| 9396 | SDValue Zero = DAG.getConstant(Val: 0, DL: dl, VT); |
| 9397 | SDValue SrcIsZero = DAG.getSetCC(DL: dl, VT: SetCCVT, LHS: Op, RHS: Zero, Cond: ISD::SETEQ); |
| 9398 | return DAG.getSelect(DL: dl, VT, Cond: SrcIsZero, |
| 9399 | LHS: DAG.getConstant(Val: NumBitsPerElt, DL: dl, VT), RHS: CTLZ); |
| 9400 | } |
| 9401 | |
| 9402 | // Only expand vector types if we have the appropriate vector bit operations. |
| 9403 | // This includes the operations needed to expand CTPOP if it isn't supported. |
| 9404 | if (VT.isVector() && (!isPowerOf2_32(Value: NumBitsPerElt) || |
| 9405 | (!isOperationLegalOrCustom(Op: ISD::CTPOP, VT) && |
| 9406 | !canExpandVectorCTPOP(TLI: *this, VT)) || |
| 9407 | !isOperationLegalOrCustom(Op: ISD::SRL, VT) || |
| 9408 | !isOperationLegalOrCustomOrPromote(Op: ISD::OR, VT))) |
| 9409 | return SDValue(); |
| 9410 | |
| 9411 | // for now, we do this: |
| 9412 | // x = x | (x >> 1); |
| 9413 | // x = x | (x >> 2); |
| 9414 | // ... |
| 9415 | // x = x | (x >>16); |
| 9416 | // x = x | (x >>32); // for 64-bit input |
| 9417 | // return popcount(~x); |
| 9418 | // |
| 9419 | // Ref: "Hacker's Delight" by Henry Warren |
| 9420 | for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) { |
| 9421 | SDValue Tmp = DAG.getConstant(Val: 1ULL << i, DL: dl, VT: ShVT); |
| 9422 | Op = DAG.getNode(Opcode: ISD::OR, DL: dl, VT, N1: Op, |
| 9423 | N2: DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Op, N2: Tmp)); |
| 9424 | } |
| 9425 | Op = DAG.getNOT(DL: dl, Val: Op, VT); |
| 9426 | return DAG.getNode(Opcode: ISD::CTPOP, DL: dl, VT, Operand: Op); |
| 9427 | } |
| 9428 | |
| 9429 | SDValue TargetLowering::expandVPCTLZ(SDNode *Node, SelectionDAG &DAG) const { |
| 9430 | SDLoc dl(Node); |
| 9431 | EVT VT = Node->getValueType(ResNo: 0); |
| 9432 | EVT ShVT = getShiftAmountTy(LHSTy: VT, DL: DAG.getDataLayout()); |
| 9433 | SDValue Op = Node->getOperand(Num: 0); |
| 9434 | SDValue Mask = Node->getOperand(Num: 1); |
| 9435 | SDValue VL = Node->getOperand(Num: 2); |
| 9436 | unsigned NumBitsPerElt = VT.getScalarSizeInBits(); |
| 9437 | |
| 9438 | // do this: |
| 9439 | // x = x | (x >> 1); |
| 9440 | // x = x | (x >> 2); |
| 9441 | // ... |
| 9442 | // x = x | (x >>16); |
| 9443 | // x = x | (x >>32); // for 64-bit input |
| 9444 | // return popcount(~x); |
| 9445 | for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) { |
| 9446 | SDValue Tmp = DAG.getConstant(Val: 1ULL << i, DL: dl, VT: ShVT); |
| 9447 | Op = DAG.getNode(Opcode: ISD::VP_OR, DL: dl, VT, N1: Op, |
| 9448 | N2: DAG.getNode(Opcode: ISD::VP_SRL, DL: dl, VT, N1: Op, N2: Tmp, N3: Mask, N4: VL), N3: Mask, |
| 9449 | N4: VL); |
| 9450 | } |
| 9451 | Op = DAG.getNode(Opcode: ISD::VP_XOR, DL: dl, VT, N1: Op, N2: DAG.getAllOnesConstant(DL: dl, VT), |
| 9452 | N3: Mask, N4: VL); |
| 9453 | return DAG.getNode(Opcode: ISD::VP_CTPOP, DL: dl, VT, N1: Op, N2: Mask, N3: VL); |
| 9454 | } |
| 9455 | |
| 9456 | SDValue TargetLowering::CTTZTableLookup(SDNode *Node, SelectionDAG &DAG, |
| 9457 | const SDLoc &DL, EVT VT, SDValue Op, |
| 9458 | unsigned BitWidth) const { |
| 9459 | if (BitWidth != 32 && BitWidth != 64) |
| 9460 | return SDValue(); |
| 9461 | APInt DeBruijn = BitWidth == 32 ? APInt(32, 0x077CB531U) |
| 9462 | : APInt(64, 0x0218A392CD3D5DBFULL); |
| 9463 | const DataLayout &TD = DAG.getDataLayout(); |
| 9464 | MachinePointerInfo PtrInfo = |
| 9465 | MachinePointerInfo::getConstantPool(MF&: DAG.getMachineFunction()); |
| 9466 | unsigned ShiftAmt = BitWidth - Log2_32(Value: BitWidth); |
| 9467 | SDValue Neg = DAG.getNode(Opcode: ISD::SUB, DL, VT, N1: DAG.getConstant(Val: 0, DL, VT), N2: Op); |
| 9468 | SDValue Lookup = DAG.getNode( |
| 9469 | Opcode: ISD::SRL, DL, VT, |
| 9470 | N1: DAG.getNode(Opcode: ISD::MUL, DL, VT, N1: DAG.getNode(Opcode: ISD::AND, DL, VT, N1: Op, N2: Neg), |
| 9471 | N2: DAG.getConstant(Val: DeBruijn, DL, VT)), |
| 9472 | N2: DAG.getConstant(Val: ShiftAmt, DL, VT)); |
| 9473 | Lookup = DAG.getSExtOrTrunc(Op: Lookup, DL, VT: getPointerTy(DL: TD)); |
| 9474 | |
| 9475 | SmallVector<uint8_t> Table(BitWidth, 0); |
| 9476 | for (unsigned i = 0; i < BitWidth; i++) { |
| 9477 | APInt Shl = DeBruijn.shl(shiftAmt: i); |
| 9478 | APInt Lshr = Shl.lshr(shiftAmt: ShiftAmt); |
| 9479 | Table[Lshr.getZExtValue()] = i; |
| 9480 | } |
| 9481 | |
| 9482 | // Create a ConstantArray in Constant Pool |
| 9483 | auto *CA = ConstantDataArray::get(Context&: *DAG.getContext(), Elts&: Table); |
| 9484 | SDValue CPIdx = DAG.getConstantPool(C: CA, VT: getPointerTy(DL: TD), |
| 9485 | Align: TD.getPrefTypeAlign(Ty: CA->getType())); |
| 9486 | SDValue ExtLoad = DAG.getExtLoad(ExtType: ISD::ZEXTLOAD, dl: DL, VT, Chain: DAG.getEntryNode(), |
| 9487 | Ptr: DAG.getMemBasePlusOffset(Base: CPIdx, Offset: Lookup, DL), |
| 9488 | PtrInfo, MemVT: MVT::i8); |
| 9489 | if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF) |
| 9490 | return ExtLoad; |
| 9491 | |
| 9492 | EVT SetCCVT = |
| 9493 | getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT); |
| 9494 | SDValue Zero = DAG.getConstant(Val: 0, DL, VT); |
| 9495 | SDValue SrcIsZero = DAG.getSetCC(DL, VT: SetCCVT, LHS: Op, RHS: Zero, Cond: ISD::SETEQ); |
| 9496 | return DAG.getSelect(DL, VT, Cond: SrcIsZero, |
| 9497 | LHS: DAG.getConstant(Val: BitWidth, DL, VT), RHS: ExtLoad); |
| 9498 | } |
| 9499 | |
| 9500 | SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const { |
| 9501 | SDLoc dl(Node); |
| 9502 | EVT VT = Node->getValueType(ResNo: 0); |
| 9503 | SDValue Op = Node->getOperand(Num: 0); |
| 9504 | unsigned NumBitsPerElt = VT.getScalarSizeInBits(); |
| 9505 | |
| 9506 | // If the non-ZERO_UNDEF version is supported we can use that instead. |
| 9507 | if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && |
| 9508 | isOperationLegalOrCustom(Op: ISD::CTTZ, VT)) |
| 9509 | return DAG.getNode(Opcode: ISD::CTTZ, DL: dl, VT, Operand: Op); |
| 9510 | |
| 9511 | // If the ZERO_UNDEF version is supported use that and handle the zero case. |
| 9512 | if (isOperationLegalOrCustom(Op: ISD::CTTZ_ZERO_UNDEF, VT)) { |
| 9513 | EVT SetCCVT = |
| 9514 | getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT); |
| 9515 | SDValue CTTZ = DAG.getNode(Opcode: ISD::CTTZ_ZERO_UNDEF, DL: dl, VT, Operand: Op); |
| 9516 | SDValue Zero = DAG.getConstant(Val: 0, DL: dl, VT); |
| 9517 | SDValue SrcIsZero = DAG.getSetCC(DL: dl, VT: SetCCVT, LHS: Op, RHS: Zero, Cond: ISD::SETEQ); |
| 9518 | return DAG.getSelect(DL: dl, VT, Cond: SrcIsZero, |
| 9519 | LHS: DAG.getConstant(Val: NumBitsPerElt, DL: dl, VT), RHS: CTTZ); |
| 9520 | } |
| 9521 | |
| 9522 | // Only expand vector types if we have the appropriate vector bit operations. |
| 9523 | // This includes the operations needed to expand CTPOP if it isn't supported. |
| 9524 | if (VT.isVector() && (!isPowerOf2_32(Value: NumBitsPerElt) || |
| 9525 | (!isOperationLegalOrCustom(Op: ISD::CTPOP, VT) && |
| 9526 | !isOperationLegalOrCustom(Op: ISD::CTLZ, VT) && |
| 9527 | !canExpandVectorCTPOP(TLI: *this, VT)) || |
| 9528 | !isOperationLegalOrCustom(Op: ISD::SUB, VT) || |
| 9529 | !isOperationLegalOrCustomOrPromote(Op: ISD::AND, VT) || |
| 9530 | !isOperationLegalOrCustomOrPromote(Op: ISD::XOR, VT))) |
| 9531 | return SDValue(); |
| 9532 | |
| 9533 | // Emit Table Lookup if ISD::CTPOP used in the fallback path below is going |
| 9534 | // to be expanded or converted to a libcall. |
| 9535 | if (!VT.isVector() && !isOperationLegalOrCustomOrPromote(Op: ISD::CTPOP, VT) && |
| 9536 | !isOperationLegal(Op: ISD::CTLZ, VT)) |
| 9537 | if (SDValue V = CTTZTableLookup(Node, DAG, DL: dl, VT, Op, BitWidth: NumBitsPerElt)) |
| 9538 | return V; |
| 9539 | |
| 9540 | // for now, we use: { return popcount(~x & (x - 1)); } |
| 9541 | // unless the target has ctlz but not ctpop, in which case we use: |
| 9542 | // { return 32 - nlz(~x & (x-1)); } |
| 9543 | // Ref: "Hacker's Delight" by Henry Warren |
| 9544 | SDValue Tmp = DAG.getNode( |
| 9545 | Opcode: ISD::AND, DL: dl, VT, N1: DAG.getNOT(DL: dl, Val: Op, VT), |
| 9546 | N2: DAG.getNode(Opcode: ISD::SUB, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: 1, DL: dl, VT))); |
| 9547 | |
| 9548 | // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. |
| 9549 | if (isOperationLegal(Op: ISD::CTLZ, VT) && !isOperationLegal(Op: ISD::CTPOP, VT)) { |
| 9550 | return DAG.getNode(Opcode: ISD::SUB, DL: dl, VT, N1: DAG.getConstant(Val: NumBitsPerElt, DL: dl, VT), |
| 9551 | N2: DAG.getNode(Opcode: ISD::CTLZ, DL: dl, VT, Operand: Tmp)); |
| 9552 | } |
| 9553 | |
| 9554 | return DAG.getNode(Opcode: ISD::CTPOP, DL: dl, VT, Operand: Tmp); |
| 9555 | } |
| 9556 | |
| 9557 | SDValue TargetLowering::expandVPCTTZ(SDNode *Node, SelectionDAG &DAG) const { |
| 9558 | SDValue Op = Node->getOperand(Num: 0); |
| 9559 | SDValue Mask = Node->getOperand(Num: 1); |
| 9560 | SDValue VL = Node->getOperand(Num: 2); |
| 9561 | SDLoc dl(Node); |
| 9562 | EVT VT = Node->getValueType(ResNo: 0); |
| 9563 | |
| 9564 | // Same as the vector part of expandCTTZ, use: popcount(~x & (x - 1)) |
| 9565 | SDValue Not = DAG.getNode(Opcode: ISD::VP_XOR, DL: dl, VT, N1: Op, |
| 9566 | N2: DAG.getAllOnesConstant(DL: dl, VT), N3: Mask, N4: VL); |
| 9567 | SDValue MinusOne = DAG.getNode(Opcode: ISD::VP_SUB, DL: dl, VT, N1: Op, |
| 9568 | N2: DAG.getConstant(Val: 1, DL: dl, VT), N3: Mask, N4: VL); |
| 9569 | SDValue Tmp = DAG.getNode(Opcode: ISD::VP_AND, DL: dl, VT, N1: Not, N2: MinusOne, N3: Mask, N4: VL); |
| 9570 | return DAG.getNode(Opcode: ISD::VP_CTPOP, DL: dl, VT, N1: Tmp, N2: Mask, N3: VL); |
| 9571 | } |
| 9572 | |
| 9573 | SDValue TargetLowering::expandVPCTTZElements(SDNode *N, |
| 9574 | SelectionDAG &DAG) const { |
| 9575 | // %cond = to_bool_vec %source |
| 9576 | // %splat = splat /*val=*/VL |
| 9577 | // %tz = step_vector |
| 9578 | // %v = vp.select %cond, /*true=*/tz, /*false=*/%splat |
| 9579 | // %r = vp.reduce.umin %v |
| 9580 | SDLoc DL(N); |
| 9581 | SDValue Source = N->getOperand(Num: 0); |
| 9582 | SDValue Mask = N->getOperand(Num: 1); |
| 9583 | SDValue EVL = N->getOperand(Num: 2); |
| 9584 | EVT SrcVT = Source.getValueType(); |
| 9585 | EVT ResVT = N->getValueType(ResNo: 0); |
| 9586 | EVT ResVecVT = |
| 9587 | EVT::getVectorVT(Context&: *DAG.getContext(), VT: ResVT, EC: SrcVT.getVectorElementCount()); |
| 9588 | |
| 9589 | // Convert to boolean vector. |
| 9590 | if (SrcVT.getScalarType() != MVT::i1) { |
| 9591 | SDValue AllZero = DAG.getConstant(Val: 0, DL, VT: SrcVT); |
| 9592 | SrcVT = EVT::getVectorVT(Context&: *DAG.getContext(), VT: MVT::i1, |
| 9593 | EC: SrcVT.getVectorElementCount()); |
| 9594 | Source = DAG.getNode(Opcode: ISD::VP_SETCC, DL, VT: SrcVT, N1: Source, N2: AllZero, |
| 9595 | N3: DAG.getCondCode(Cond: ISD::SETNE), N4: Mask, N5: EVL); |
| 9596 | } |
| 9597 | |
| 9598 | SDValue ExtEVL = DAG.getZExtOrTrunc(Op: EVL, DL, VT: ResVT); |
| 9599 | SDValue Splat = DAG.getSplat(VT: ResVecVT, DL, Op: ExtEVL); |
| 9600 | SDValue StepVec = DAG.getStepVector(DL, ResVT: ResVecVT); |
| 9601 | SDValue Select = |
| 9602 | DAG.getNode(Opcode: ISD::VP_SELECT, DL, VT: ResVecVT, N1: Source, N2: StepVec, N3: Splat, N4: EVL); |
| 9603 | return DAG.getNode(Opcode: ISD::VP_REDUCE_UMIN, DL, VT: ResVT, N1: ExtEVL, N2: Select, N3: Mask, N4: EVL); |
| 9604 | } |
| 9605 | |
| 9606 | SDValue TargetLowering::expandVectorFindLastActive(SDNode *N, |
| 9607 | SelectionDAG &DAG) const { |
| 9608 | SDLoc DL(N); |
| 9609 | SDValue Mask = N->getOperand(Num: 0); |
| 9610 | EVT MaskVT = Mask.getValueType(); |
| 9611 | EVT BoolVT = MaskVT.getScalarType(); |
| 9612 | |
| 9613 | // Find a suitable type for a stepvector. |
| 9614 | ConstantRange VScaleRange(1, /*isFullSet=*/true); // Fixed length default. |
| 9615 | if (MaskVT.isScalableVector()) |
| 9616 | VScaleRange = getVScaleRange(F: &DAG.getMachineFunction().getFunction(), BitWidth: 64); |
| 9617 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| 9618 | unsigned EltWidth = TLI.getBitWidthForCttzElements( |
| 9619 | RetTy: BoolVT.getTypeForEVT(Context&: *DAG.getContext()), EC: MaskVT.getVectorElementCount(), |
| 9620 | /*ZeroIsPoison=*/true, VScaleRange: &VScaleRange); |
| 9621 | EVT StepVT = MVT::getIntegerVT(BitWidth: EltWidth); |
| 9622 | EVT StepVecVT = MaskVT.changeVectorElementType(EltVT: StepVT); |
| 9623 | |
| 9624 | // If promotion is required to make the type legal, do it here; promotion |
| 9625 | // of integers within LegalizeVectorOps is looking for types of the same |
| 9626 | // size but with a smaller number of larger elements, not the usual larger |
| 9627 | // size with the same number of larger elements. |
| 9628 | if (TLI.getTypeAction(VT: StepVecVT.getSimpleVT()) == |
| 9629 | TargetLowering::TypePromoteInteger) { |
| 9630 | StepVecVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: StepVecVT); |
| 9631 | StepVT = StepVecVT.getVectorElementType(); |
| 9632 | } |
| 9633 | |
| 9634 | // Zero out lanes with inactive elements, then find the highest remaining |
| 9635 | // value from the stepvector. |
| 9636 | SDValue Zeroes = DAG.getConstant(Val: 0, DL, VT: StepVecVT); |
| 9637 | SDValue StepVec = DAG.getStepVector(DL, ResVT: StepVecVT); |
| 9638 | SDValue ActiveElts = DAG.getSelect(DL, VT: StepVecVT, Cond: Mask, LHS: StepVec, RHS: Zeroes); |
| 9639 | SDValue HighestIdx = DAG.getNode(Opcode: ISD::VECREDUCE_UMAX, DL, VT: StepVT, Operand: ActiveElts); |
| 9640 | return DAG.getZExtOrTrunc(Op: HighestIdx, DL, VT: N->getValueType(ResNo: 0)); |
| 9641 | } |
| 9642 | |
| 9643 | SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG, |
| 9644 | bool IsNegative) const { |
| 9645 | SDLoc dl(N); |
| 9646 | EVT VT = N->getValueType(ResNo: 0); |
| 9647 | SDValue Op = N->getOperand(Num: 0); |
| 9648 | |
| 9649 | // abs(x) -> smax(x,sub(0,x)) |
| 9650 | if (!IsNegative && isOperationLegal(Op: ISD::SUB, VT) && |
| 9651 | isOperationLegal(Op: ISD::SMAX, VT)) { |
| 9652 | SDValue Zero = DAG.getConstant(Val: 0, DL: dl, VT); |
| 9653 | Op = DAG.getFreeze(V: Op); |
| 9654 | return DAG.getNode(Opcode: ISD::SMAX, DL: dl, VT, N1: Op, |
| 9655 | N2: DAG.getNode(Opcode: ISD::SUB, DL: dl, VT, N1: Zero, N2: Op)); |
| 9656 | } |
| 9657 | |
| 9658 | // abs(x) -> umin(x,sub(0,x)) |
| 9659 | if (!IsNegative && isOperationLegal(Op: ISD::SUB, VT) && |
| 9660 | isOperationLegal(Op: ISD::UMIN, VT)) { |
| 9661 | SDValue Zero = DAG.getConstant(Val: 0, DL: dl, VT); |
| 9662 | Op = DAG.getFreeze(V: Op); |
| 9663 | return DAG.getNode(Opcode: ISD::UMIN, DL: dl, VT, N1: Op, |
| 9664 | N2: DAG.getNode(Opcode: ISD::SUB, DL: dl, VT, N1: Zero, N2: Op)); |
| 9665 | } |
| 9666 | |
| 9667 | // 0 - abs(x) -> smin(x, sub(0,x)) |
| 9668 | if (IsNegative && isOperationLegal(Op: ISD::SUB, VT) && |
| 9669 | isOperationLegal(Op: ISD::SMIN, VT)) { |
| 9670 | SDValue Zero = DAG.getConstant(Val: 0, DL: dl, VT); |
| 9671 | Op = DAG.getFreeze(V: Op); |
| 9672 | return DAG.getNode(Opcode: ISD::SMIN, DL: dl, VT, N1: Op, |
| 9673 | N2: DAG.getNode(Opcode: ISD::SUB, DL: dl, VT, N1: Zero, N2: Op)); |
| 9674 | } |
| 9675 | |
| 9676 | // Only expand vector types if we have the appropriate vector operations. |
| 9677 | if (VT.isVector() && |
| 9678 | (!isOperationLegalOrCustom(Op: ISD::SRA, VT) || |
| 9679 | (!IsNegative && !isOperationLegalOrCustom(Op: ISD::ADD, VT)) || |
| 9680 | (IsNegative && !isOperationLegalOrCustom(Op: ISD::SUB, VT)) || |
| 9681 | !isOperationLegalOrCustomOrPromote(Op: ISD::XOR, VT))) |
| 9682 | return SDValue(); |
| 9683 | |
| 9684 | Op = DAG.getFreeze(V: Op); |
| 9685 | SDValue Shift = DAG.getNode( |
| 9686 | Opcode: ISD::SRA, DL: dl, VT, N1: Op, |
| 9687 | N2: DAG.getShiftAmountConstant(Val: VT.getScalarSizeInBits() - 1, VT, DL: dl)); |
| 9688 | SDValue Xor = DAG.getNode(Opcode: ISD::XOR, DL: dl, VT, N1: Op, N2: Shift); |
| 9689 | |
| 9690 | // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y) |
| 9691 | if (!IsNegative) |
| 9692 | return DAG.getNode(Opcode: ISD::SUB, DL: dl, VT, N1: Xor, N2: Shift); |
| 9693 | |
| 9694 | // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) |
| 9695 | return DAG.getNode(Opcode: ISD::SUB, DL: dl, VT, N1: Shift, N2: Xor); |
| 9696 | } |
| 9697 | |
| 9698 | SDValue TargetLowering::expandABD(SDNode *N, SelectionDAG &DAG) const { |
| 9699 | SDLoc dl(N); |
| 9700 | EVT VT = N->getValueType(ResNo: 0); |
| 9701 | SDValue LHS = DAG.getFreeze(V: N->getOperand(Num: 0)); |
| 9702 | SDValue RHS = DAG.getFreeze(V: N->getOperand(Num: 1)); |
| 9703 | bool IsSigned = N->getOpcode() == ISD::ABDS; |
| 9704 | |
| 9705 | // abds(lhs, rhs) -> sub(smax(lhs,rhs), smin(lhs,rhs)) |
| 9706 | // abdu(lhs, rhs) -> sub(umax(lhs,rhs), umin(lhs,rhs)) |
| 9707 | unsigned MaxOpc = IsSigned ? ISD::SMAX : ISD::UMAX; |
| 9708 | unsigned MinOpc = IsSigned ? ISD::SMIN : ISD::UMIN; |
| 9709 | if (isOperationLegal(Op: MaxOpc, VT) && isOperationLegal(Op: MinOpc, VT)) { |
| 9710 | SDValue Max = DAG.getNode(Opcode: MaxOpc, DL: dl, VT, N1: LHS, N2: RHS); |
| 9711 | SDValue Min = DAG.getNode(Opcode: MinOpc, DL: dl, VT, N1: LHS, N2: RHS); |
| 9712 | return DAG.getNode(Opcode: ISD::SUB, DL: dl, VT, N1: Max, N2: Min); |
| 9713 | } |
| 9714 | |
| 9715 | // abdu(lhs, rhs) -> or(usubsat(lhs,rhs), usubsat(rhs,lhs)) |
| 9716 | if (!IsSigned && isOperationLegal(Op: ISD::USUBSAT, VT)) |
| 9717 | return DAG.getNode(Opcode: ISD::OR, DL: dl, VT, |
| 9718 | N1: DAG.getNode(Opcode: ISD::USUBSAT, DL: dl, VT, N1: LHS, N2: RHS), |
| 9719 | N2: DAG.getNode(Opcode: ISD::USUBSAT, DL: dl, VT, N1: RHS, N2: LHS)); |
| 9720 | |
| 9721 | // If the subtract doesn't overflow then just use abs(sub()) |
| 9722 | // NOTE: don't use frozen operands for value tracking. |
| 9723 | bool IsNonNegative = DAG.SignBitIsZero(Op: N->getOperand(Num: 1)) && |
| 9724 | DAG.SignBitIsZero(Op: N->getOperand(Num: 0)); |
| 9725 | |
| 9726 | if (DAG.willNotOverflowSub(IsSigned: IsSigned || IsNonNegative, N0: N->getOperand(Num: 0), |
| 9727 | N1: N->getOperand(Num: 1))) |
| 9728 | return DAG.getNode(Opcode: ISD::ABS, DL: dl, VT, |
| 9729 | Operand: DAG.getNode(Opcode: ISD::SUB, DL: dl, VT, N1: LHS, N2: RHS)); |
| 9730 | |
| 9731 | if (DAG.willNotOverflowSub(IsSigned: IsSigned || IsNonNegative, N0: N->getOperand(Num: 1), |
| 9732 | N1: N->getOperand(Num: 0))) |
| 9733 | return DAG.getNode(Opcode: ISD::ABS, DL: dl, VT, |
| 9734 | Operand: DAG.getNode(Opcode: ISD::SUB, DL: dl, VT, N1: RHS, N2: LHS)); |
| 9735 | |
| 9736 | EVT CCVT = getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT); |
| 9737 | ISD::CondCode CC = IsSigned ? ISD::CondCode::SETGT : ISD::CondCode::SETUGT; |
| 9738 | SDValue Cmp = DAG.getSetCC(DL: dl, VT: CCVT, LHS, RHS, Cond: CC); |
| 9739 | |
| 9740 | // Branchless expansion iff cmp result is allbits: |
| 9741 | // abds(lhs, rhs) -> sub(sgt(lhs, rhs), xor(sgt(lhs, rhs), sub(lhs, rhs))) |
| 9742 | // abdu(lhs, rhs) -> sub(ugt(lhs, rhs), xor(ugt(lhs, rhs), sub(lhs, rhs))) |
| 9743 | if (CCVT == VT && getBooleanContents(Type: VT) == ZeroOrNegativeOneBooleanContent) { |
| 9744 | SDValue Diff = DAG.getNode(Opcode: ISD::SUB, DL: dl, VT, N1: LHS, N2: RHS); |
| 9745 | SDValue Xor = DAG.getNode(Opcode: ISD::XOR, DL: dl, VT, N1: Diff, N2: Cmp); |
| 9746 | return DAG.getNode(Opcode: ISD::SUB, DL: dl, VT, N1: Cmp, N2: Xor); |
| 9747 | } |
| 9748 | |
| 9749 | // Similar to the branchless expansion, use the (sign-extended) usubo overflow |
| 9750 | // flag if the (scalar) type is illegal as this is more likely to legalize |
| 9751 | // cleanly: |
| 9752 | // abdu(lhs, rhs) -> sub(xor(sub(lhs, rhs), uof(lhs, rhs)), uof(lhs, rhs)) |
| 9753 | if (!IsSigned && VT.isScalarInteger() && !isTypeLegal(VT)) { |
| 9754 | SDValue USubO = |
| 9755 | DAG.getNode(Opcode: ISD::USUBO, DL: dl, VTList: DAG.getVTList(VT1: VT, VT2: MVT::i1), Ops: {LHS, RHS}); |
| 9756 | SDValue Cmp = DAG.getNode(Opcode: ISD::SIGN_EXTEND, DL: dl, VT, Operand: USubO.getValue(R: 1)); |
| 9757 | SDValue Xor = DAG.getNode(Opcode: ISD::XOR, DL: dl, VT, N1: USubO.getValue(R: 0), N2: Cmp); |
| 9758 | return DAG.getNode(Opcode: ISD::SUB, DL: dl, VT, N1: Xor, N2: Cmp); |
| 9759 | } |
| 9760 | |
| 9761 | // FIXME: Should really try to split the vector in case it's legal on a |
| 9762 | // subvector. |
| 9763 | if (VT.isVector() && !isOperationLegalOrCustom(Op: ISD::VSELECT, VT)) |
| 9764 | return DAG.UnrollVectorOp(N); |
| 9765 | |
| 9766 | // abds(lhs, rhs) -> select(sgt(lhs,rhs), sub(lhs,rhs), sub(rhs,lhs)) |
| 9767 | // abdu(lhs, rhs) -> select(ugt(lhs,rhs), sub(lhs,rhs), sub(rhs,lhs)) |
| 9768 | return DAG.getSelect(DL: dl, VT, Cond: Cmp, LHS: DAG.getNode(Opcode: ISD::SUB, DL: dl, VT, N1: LHS, N2: RHS), |
| 9769 | RHS: DAG.getNode(Opcode: ISD::SUB, DL: dl, VT, N1: RHS, N2: LHS)); |
| 9770 | } |
| 9771 | |
| 9772 | SDValue TargetLowering::expandAVG(SDNode *N, SelectionDAG &DAG) const { |
| 9773 | SDLoc dl(N); |
| 9774 | EVT VT = N->getValueType(ResNo: 0); |
| 9775 | SDValue LHS = N->getOperand(Num: 0); |
| 9776 | SDValue RHS = N->getOperand(Num: 1); |
| 9777 | |
| 9778 | unsigned Opc = N->getOpcode(); |
| 9779 | bool IsFloor = Opc == ISD::AVGFLOORS || Opc == ISD::AVGFLOORU; |
| 9780 | bool IsSigned = Opc == ISD::AVGCEILS || Opc == ISD::AVGFLOORS; |
| 9781 | unsigned SumOpc = IsFloor ? ISD::ADD : ISD::SUB; |
| 9782 | unsigned SignOpc = IsFloor ? ISD::AND : ISD::OR; |
| 9783 | unsigned ShiftOpc = IsSigned ? ISD::SRA : ISD::SRL; |
| 9784 | unsigned ExtOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; |
| 9785 | assert((Opc == ISD::AVGFLOORS || Opc == ISD::AVGCEILS || |
| 9786 | Opc == ISD::AVGFLOORU || Opc == ISD::AVGCEILU) && |
| 9787 | "Unknown AVG node" ); |
| 9788 | |
| 9789 | // If the operands are already extended, we can add+shift. |
| 9790 | bool IsExt = |
| 9791 | (IsSigned && DAG.ComputeNumSignBits(Op: LHS) >= 2 && |
| 9792 | DAG.ComputeNumSignBits(Op: RHS) >= 2) || |
| 9793 | (!IsSigned && DAG.computeKnownBits(Op: LHS).countMinLeadingZeros() >= 1 && |
| 9794 | DAG.computeKnownBits(Op: RHS).countMinLeadingZeros() >= 1); |
| 9795 | if (IsExt) { |
| 9796 | SDValue Sum = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT, N1: LHS, N2: RHS); |
| 9797 | if (!IsFloor) |
| 9798 | Sum = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT, N1: Sum, N2: DAG.getConstant(Val: 1, DL: dl, VT)); |
| 9799 | return DAG.getNode(Opcode: ShiftOpc, DL: dl, VT, N1: Sum, |
| 9800 | N2: DAG.getShiftAmountConstant(Val: 1, VT, DL: dl)); |
| 9801 | } |
| 9802 | |
| 9803 | // For scalars, see if we can efficiently extend/truncate to use add+shift. |
| 9804 | if (VT.isScalarInteger()) { |
| 9805 | unsigned BW = VT.getScalarSizeInBits(); |
| 9806 | EVT ExtVT = VT.getIntegerVT(Context&: *DAG.getContext(), BitWidth: 2 * BW); |
| 9807 | if (isTypeLegal(VT: ExtVT) && isTruncateFree(FromVT: ExtVT, ToVT: VT)) { |
| 9808 | LHS = DAG.getNode(Opcode: ExtOpc, DL: dl, VT: ExtVT, Operand: LHS); |
| 9809 | RHS = DAG.getNode(Opcode: ExtOpc, DL: dl, VT: ExtVT, Operand: RHS); |
| 9810 | SDValue Avg = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: ExtVT, N1: LHS, N2: RHS); |
| 9811 | if (!IsFloor) |
| 9812 | Avg = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: ExtVT, N1: Avg, |
| 9813 | N2: DAG.getConstant(Val: 1, DL: dl, VT: ExtVT)); |
| 9814 | // Just use SRL as we will be truncating away the extended sign bits. |
| 9815 | Avg = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: ExtVT, N1: Avg, |
| 9816 | N2: DAG.getShiftAmountConstant(Val: 1, VT: ExtVT, DL: dl)); |
| 9817 | return DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT, Operand: Avg); |
| 9818 | } |
| 9819 | } |
| 9820 | |
| 9821 | // avgflooru(lhs, rhs) -> or(lshr(add(lhs, rhs),1),shl(overflow, typesize-1)) |
| 9822 | if (Opc == ISD::AVGFLOORU && VT.isScalarInteger() && !isTypeLegal(VT)) { |
| 9823 | SDValue UAddWithOverflow = |
| 9824 | DAG.getNode(Opcode: ISD::UADDO, DL: dl, VTList: DAG.getVTList(VT1: VT, VT2: MVT::i1), Ops: {RHS, LHS}); |
| 9825 | |
| 9826 | SDValue Sum = UAddWithOverflow.getValue(R: 0); |
| 9827 | SDValue Overflow = UAddWithOverflow.getValue(R: 1); |
| 9828 | |
| 9829 | // Right shift the sum by 1 |
| 9830 | SDValue LShrVal = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Sum, |
| 9831 | N2: DAG.getShiftAmountConstant(Val: 1, VT, DL: dl)); |
| 9832 | |
| 9833 | SDValue ZeroExtOverflow = DAG.getNode(Opcode: ISD::ANY_EXTEND, DL: dl, VT, Operand: Overflow); |
| 9834 | SDValue OverflowShl = DAG.getNode( |
| 9835 | Opcode: ISD::SHL, DL: dl, VT, N1: ZeroExtOverflow, |
| 9836 | N2: DAG.getShiftAmountConstant(Val: VT.getScalarSizeInBits() - 1, VT, DL: dl)); |
| 9837 | |
| 9838 | return DAG.getNode(Opcode: ISD::OR, DL: dl, VT, N1: LShrVal, N2: OverflowShl); |
| 9839 | } |
| 9840 | |
| 9841 | // avgceils(lhs, rhs) -> sub(or(lhs,rhs),ashr(xor(lhs,rhs),1)) |
| 9842 | // avgceilu(lhs, rhs) -> sub(or(lhs,rhs),lshr(xor(lhs,rhs),1)) |
| 9843 | // avgfloors(lhs, rhs) -> add(and(lhs,rhs),ashr(xor(lhs,rhs),1)) |
| 9844 | // avgflooru(lhs, rhs) -> add(and(lhs,rhs),lshr(xor(lhs,rhs),1)) |
| 9845 | LHS = DAG.getFreeze(V: LHS); |
| 9846 | RHS = DAG.getFreeze(V: RHS); |
| 9847 | SDValue Sign = DAG.getNode(Opcode: SignOpc, DL: dl, VT, N1: LHS, N2: RHS); |
| 9848 | SDValue Xor = DAG.getNode(Opcode: ISD::XOR, DL: dl, VT, N1: LHS, N2: RHS); |
| 9849 | SDValue Shift = |
| 9850 | DAG.getNode(Opcode: ShiftOpc, DL: dl, VT, N1: Xor, N2: DAG.getShiftAmountConstant(Val: 1, VT, DL: dl)); |
| 9851 | return DAG.getNode(Opcode: SumOpc, DL: dl, VT, N1: Sign, N2: Shift); |
| 9852 | } |
| 9853 | |
| 9854 | SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { |
| 9855 | SDLoc dl(N); |
| 9856 | EVT VT = N->getValueType(ResNo: 0); |
| 9857 | SDValue Op = N->getOperand(Num: 0); |
| 9858 | |
| 9859 | if (!VT.isSimple()) |
| 9860 | return SDValue(); |
| 9861 | |
| 9862 | EVT SHVT = getShiftAmountTy(LHSTy: VT, DL: DAG.getDataLayout()); |
| 9863 | SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; |
| 9864 | switch (VT.getSimpleVT().getScalarType().SimpleTy) { |
| 9865 | default: |
| 9866 | return SDValue(); |
| 9867 | case MVT::i16: |
| 9868 | // Use a rotate by 8. This can be further expanded if necessary. |
| 9869 | return DAG.getNode(Opcode: ISD::ROTL, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: 8, DL: dl, VT: SHVT)); |
| 9870 | case MVT::i32: |
| 9871 | Tmp4 = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: 24, DL: dl, VT: SHVT)); |
| 9872 | Tmp3 = DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: Op, |
| 9873 | N2: DAG.getConstant(Val: 0xFF00, DL: dl, VT)); |
| 9874 | Tmp3 = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: Tmp3, N2: DAG.getConstant(Val: 8, DL: dl, VT: SHVT)); |
| 9875 | Tmp2 = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: 8, DL: dl, VT: SHVT)); |
| 9876 | Tmp2 = DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: Tmp2, N2: DAG.getConstant(Val: 0xFF00, DL: dl, VT)); |
| 9877 | Tmp1 = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: 24, DL: dl, VT: SHVT)); |
| 9878 | Tmp4 = DAG.getNode(Opcode: ISD::OR, DL: dl, VT, N1: Tmp4, N2: Tmp3); |
| 9879 | Tmp2 = DAG.getNode(Opcode: ISD::OR, DL: dl, VT, N1: Tmp2, N2: Tmp1); |
| 9880 | return DAG.getNode(Opcode: ISD::OR, DL: dl, VT, N1: Tmp4, N2: Tmp2); |
| 9881 | case MVT::i64: |
| 9882 | Tmp8 = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: 56, DL: dl, VT: SHVT)); |
| 9883 | Tmp7 = DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: Op, |
| 9884 | N2: DAG.getConstant(Val: 255ULL<<8, DL: dl, VT)); |
| 9885 | Tmp7 = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: Tmp7, N2: DAG.getConstant(Val: 40, DL: dl, VT: SHVT)); |
| 9886 | Tmp6 = DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: Op, |
| 9887 | N2: DAG.getConstant(Val: 255ULL<<16, DL: dl, VT)); |
| 9888 | Tmp6 = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: Tmp6, N2: DAG.getConstant(Val: 24, DL: dl, VT: SHVT)); |
| 9889 | Tmp5 = DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: Op, |
| 9890 | N2: DAG.getConstant(Val: 255ULL<<24, DL: dl, VT)); |
| 9891 | Tmp5 = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: Tmp5, N2: DAG.getConstant(Val: 8, DL: dl, VT: SHVT)); |
| 9892 | Tmp4 = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: 8, DL: dl, VT: SHVT)); |
| 9893 | Tmp4 = DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: Tmp4, |
| 9894 | N2: DAG.getConstant(Val: 255ULL<<24, DL: dl, VT)); |
| 9895 | Tmp3 = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: 24, DL: dl, VT: SHVT)); |
| 9896 | Tmp3 = DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: Tmp3, |
| 9897 | N2: DAG.getConstant(Val: 255ULL<<16, DL: dl, VT)); |
| 9898 | Tmp2 = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: 40, DL: dl, VT: SHVT)); |
| 9899 | Tmp2 = DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: Tmp2, |
| 9900 | N2: DAG.getConstant(Val: 255ULL<<8, DL: dl, VT)); |
| 9901 | Tmp1 = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: 56, DL: dl, VT: SHVT)); |
| 9902 | Tmp8 = DAG.getNode(Opcode: ISD::OR, DL: dl, VT, N1: Tmp8, N2: Tmp7); |
| 9903 | Tmp6 = DAG.getNode(Opcode: ISD::OR, DL: dl, VT, N1: Tmp6, N2: Tmp5); |
| 9904 | Tmp4 = DAG.getNode(Opcode: ISD::OR, DL: dl, VT, N1: Tmp4, N2: Tmp3); |
| 9905 | Tmp2 = DAG.getNode(Opcode: ISD::OR, DL: dl, VT, N1: Tmp2, N2: Tmp1); |
| 9906 | Tmp8 = DAG.getNode(Opcode: ISD::OR, DL: dl, VT, N1: Tmp8, N2: Tmp6); |
| 9907 | Tmp4 = DAG.getNode(Opcode: ISD::OR, DL: dl, VT, N1: Tmp4, N2: Tmp2); |
| 9908 | return DAG.getNode(Opcode: ISD::OR, DL: dl, VT, N1: Tmp8, N2: Tmp4); |
| 9909 | } |
| 9910 | } |
| 9911 | |
| 9912 | SDValue TargetLowering::expandVPBSWAP(SDNode *N, SelectionDAG &DAG) const { |
| 9913 | SDLoc dl(N); |
| 9914 | EVT VT = N->getValueType(ResNo: 0); |
| 9915 | SDValue Op = N->getOperand(Num: 0); |
| 9916 | SDValue Mask = N->getOperand(Num: 1); |
| 9917 | SDValue EVL = N->getOperand(Num: 2); |
| 9918 | |
| 9919 | if (!VT.isSimple()) |
| 9920 | return SDValue(); |
| 9921 | |
| 9922 | EVT SHVT = getShiftAmountTy(LHSTy: VT, DL: DAG.getDataLayout()); |
| 9923 | SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; |
| 9924 | switch (VT.getSimpleVT().getScalarType().SimpleTy) { |
| 9925 | default: |
| 9926 | return SDValue(); |
| 9927 | case MVT::i16: |
| 9928 | Tmp1 = DAG.getNode(Opcode: ISD::VP_SHL, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: 8, DL: dl, VT: SHVT), |
| 9929 | N3: Mask, N4: EVL); |
| 9930 | Tmp2 = DAG.getNode(Opcode: ISD::VP_SRL, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: 8, DL: dl, VT: SHVT), |
| 9931 | N3: Mask, N4: EVL); |
| 9932 | return DAG.getNode(Opcode: ISD::VP_OR, DL: dl, VT, N1: Tmp1, N2: Tmp2, N3: Mask, N4: EVL); |
| 9933 | case MVT::i32: |
| 9934 | Tmp4 = DAG.getNode(Opcode: ISD::VP_SHL, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: 24, DL: dl, VT: SHVT), |
| 9935 | N3: Mask, N4: EVL); |
| 9936 | Tmp3 = DAG.getNode(Opcode: ISD::VP_AND, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: 0xFF00, DL: dl, VT), |
| 9937 | N3: Mask, N4: EVL); |
| 9938 | Tmp3 = DAG.getNode(Opcode: ISD::VP_SHL, DL: dl, VT, N1: Tmp3, N2: DAG.getConstant(Val: 8, DL: dl, VT: SHVT), |
| 9939 | N3: Mask, N4: EVL); |
| 9940 | Tmp2 = DAG.getNode(Opcode: ISD::VP_SRL, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: 8, DL: dl, VT: SHVT), |
| 9941 | N3: Mask, N4: EVL); |
| 9942 | Tmp2 = DAG.getNode(Opcode: ISD::VP_AND, DL: dl, VT, N1: Tmp2, |
| 9943 | N2: DAG.getConstant(Val: 0xFF00, DL: dl, VT), N3: Mask, N4: EVL); |
| 9944 | Tmp1 = DAG.getNode(Opcode: ISD::VP_SRL, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: 24, DL: dl, VT: SHVT), |
| 9945 | N3: Mask, N4: EVL); |
| 9946 | Tmp4 = DAG.getNode(Opcode: ISD::VP_OR, DL: dl, VT, N1: Tmp4, N2: Tmp3, N3: Mask, N4: EVL); |
| 9947 | Tmp2 = DAG.getNode(Opcode: ISD::VP_OR, DL: dl, VT, N1: Tmp2, N2: Tmp1, N3: Mask, N4: EVL); |
| 9948 | return DAG.getNode(Opcode: ISD::VP_OR, DL: dl, VT, N1: Tmp4, N2: Tmp2, N3: Mask, N4: EVL); |
| 9949 | case MVT::i64: |
| 9950 | Tmp8 = DAG.getNode(Opcode: ISD::VP_SHL, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: 56, DL: dl, VT: SHVT), |
| 9951 | N3: Mask, N4: EVL); |
| 9952 | Tmp7 = DAG.getNode(Opcode: ISD::VP_AND, DL: dl, VT, N1: Op, |
| 9953 | N2: DAG.getConstant(Val: 255ULL << 8, DL: dl, VT), N3: Mask, N4: EVL); |
| 9954 | Tmp7 = DAG.getNode(Opcode: ISD::VP_SHL, DL: dl, VT, N1: Tmp7, N2: DAG.getConstant(Val: 40, DL: dl, VT: SHVT), |
| 9955 | N3: Mask, N4: EVL); |
| 9956 | Tmp6 = DAG.getNode(Opcode: ISD::VP_AND, DL: dl, VT, N1: Op, |
| 9957 | N2: DAG.getConstant(Val: 255ULL << 16, DL: dl, VT), N3: Mask, N4: EVL); |
| 9958 | Tmp6 = DAG.getNode(Opcode: ISD::VP_SHL, DL: dl, VT, N1: Tmp6, N2: DAG.getConstant(Val: 24, DL: dl, VT: SHVT), |
| 9959 | N3: Mask, N4: EVL); |
| 9960 | Tmp5 = DAG.getNode(Opcode: ISD::VP_AND, DL: dl, VT, N1: Op, |
| 9961 | N2: DAG.getConstant(Val: 255ULL << 24, DL: dl, VT), N3: Mask, N4: EVL); |
| 9962 | Tmp5 = DAG.getNode(Opcode: ISD::VP_SHL, DL: dl, VT, N1: Tmp5, N2: DAG.getConstant(Val: 8, DL: dl, VT: SHVT), |
| 9963 | N3: Mask, N4: EVL); |
| 9964 | Tmp4 = DAG.getNode(Opcode: ISD::VP_SRL, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: 8, DL: dl, VT: SHVT), |
| 9965 | N3: Mask, N4: EVL); |
| 9966 | Tmp4 = DAG.getNode(Opcode: ISD::VP_AND, DL: dl, VT, N1: Tmp4, |
| 9967 | N2: DAG.getConstant(Val: 255ULL << 24, DL: dl, VT), N3: Mask, N4: EVL); |
| 9968 | Tmp3 = DAG.getNode(Opcode: ISD::VP_SRL, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: 24, DL: dl, VT: SHVT), |
| 9969 | N3: Mask, N4: EVL); |
| 9970 | Tmp3 = DAG.getNode(Opcode: ISD::VP_AND, DL: dl, VT, N1: Tmp3, |
| 9971 | N2: DAG.getConstant(Val: 255ULL << 16, DL: dl, VT), N3: Mask, N4: EVL); |
| 9972 | Tmp2 = DAG.getNode(Opcode: ISD::VP_SRL, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: 40, DL: dl, VT: SHVT), |
| 9973 | N3: Mask, N4: EVL); |
| 9974 | Tmp2 = DAG.getNode(Opcode: ISD::VP_AND, DL: dl, VT, N1: Tmp2, |
| 9975 | N2: DAG.getConstant(Val: 255ULL << 8, DL: dl, VT), N3: Mask, N4: EVL); |
| 9976 | Tmp1 = DAG.getNode(Opcode: ISD::VP_SRL, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: 56, DL: dl, VT: SHVT), |
| 9977 | N3: Mask, N4: EVL); |
| 9978 | Tmp8 = DAG.getNode(Opcode: ISD::VP_OR, DL: dl, VT, N1: Tmp8, N2: Tmp7, N3: Mask, N4: EVL); |
| 9979 | Tmp6 = DAG.getNode(Opcode: ISD::VP_OR, DL: dl, VT, N1: Tmp6, N2: Tmp5, N3: Mask, N4: EVL); |
| 9980 | Tmp4 = DAG.getNode(Opcode: ISD::VP_OR, DL: dl, VT, N1: Tmp4, N2: Tmp3, N3: Mask, N4: EVL); |
| 9981 | Tmp2 = DAG.getNode(Opcode: ISD::VP_OR, DL: dl, VT, N1: Tmp2, N2: Tmp1, N3: Mask, N4: EVL); |
| 9982 | Tmp8 = DAG.getNode(Opcode: ISD::VP_OR, DL: dl, VT, N1: Tmp8, N2: Tmp6, N3: Mask, N4: EVL); |
| 9983 | Tmp4 = DAG.getNode(Opcode: ISD::VP_OR, DL: dl, VT, N1: Tmp4, N2: Tmp2, N3: Mask, N4: EVL); |
| 9984 | return DAG.getNode(Opcode: ISD::VP_OR, DL: dl, VT, N1: Tmp8, N2: Tmp4, N3: Mask, N4: EVL); |
| 9985 | } |
| 9986 | } |
| 9987 | |
| 9988 | SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { |
| 9989 | SDLoc dl(N); |
| 9990 | EVT VT = N->getValueType(ResNo: 0); |
| 9991 | SDValue Op = N->getOperand(Num: 0); |
| 9992 | EVT SHVT = getShiftAmountTy(LHSTy: VT, DL: DAG.getDataLayout()); |
| 9993 | unsigned Sz = VT.getScalarSizeInBits(); |
| 9994 | |
| 9995 | SDValue Tmp, Tmp2, Tmp3; |
| 9996 | |
| 9997 | // If we can, perform BSWAP first and then the mask+swap the i4, then i2 |
| 9998 | // and finally the i1 pairs. |
| 9999 | // TODO: We can easily support i4/i2 legal types if any target ever does. |
| 10000 | if (Sz >= 8 && isPowerOf2_32(Value: Sz)) { |
| 10001 | // Create the masks - repeating the pattern every byte. |
| 10002 | APInt Mask4 = APInt::getSplat(NewLen: Sz, V: APInt(8, 0x0F)); |
| 10003 | APInt Mask2 = APInt::getSplat(NewLen: Sz, V: APInt(8, 0x33)); |
| 10004 | APInt Mask1 = APInt::getSplat(NewLen: Sz, V: APInt(8, 0x55)); |
| 10005 | |
| 10006 | // BSWAP if the type is wider than a single byte. |
| 10007 | Tmp = (Sz > 8 ? DAG.getNode(Opcode: ISD::BSWAP, DL: dl, VT, Operand: Op) : Op); |
| 10008 | |
| 10009 | // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) |
| 10010 | Tmp2 = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Tmp, N2: DAG.getConstant(Val: 4, DL: dl, VT: SHVT)); |
| 10011 | Tmp2 = DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: Tmp2, N2: DAG.getConstant(Val: Mask4, DL: dl, VT)); |
| 10012 | Tmp3 = DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: Tmp, N2: DAG.getConstant(Val: Mask4, DL: dl, VT)); |
| 10013 | Tmp3 = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: Tmp3, N2: DAG.getConstant(Val: 4, DL: dl, VT: SHVT)); |
| 10014 | Tmp = DAG.getNode(Opcode: ISD::OR, DL: dl, VT, N1: Tmp2, N2: Tmp3); |
| 10015 | |
| 10016 | // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) |
| 10017 | Tmp2 = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Tmp, N2: DAG.getConstant(Val: 2, DL: dl, VT: SHVT)); |
| 10018 | Tmp2 = DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: Tmp2, N2: DAG.getConstant(Val: Mask2, DL: dl, VT)); |
| 10019 | Tmp3 = DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: Tmp, N2: DAG.getConstant(Val: Mask2, DL: dl, VT)); |
| 10020 | Tmp3 = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: Tmp3, N2: DAG.getConstant(Val: 2, DL: dl, VT: SHVT)); |
| 10021 | Tmp = DAG.getNode(Opcode: ISD::OR, DL: dl, VT, N1: Tmp2, N2: Tmp3); |
| 10022 | |
| 10023 | // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) |
| 10024 | Tmp2 = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Tmp, N2: DAG.getConstant(Val: 1, DL: dl, VT: SHVT)); |
| 10025 | Tmp2 = DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: Tmp2, N2: DAG.getConstant(Val: Mask1, DL: dl, VT)); |
| 10026 | Tmp3 = DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: Tmp, N2: DAG.getConstant(Val: Mask1, DL: dl, VT)); |
| 10027 | Tmp3 = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: Tmp3, N2: DAG.getConstant(Val: 1, DL: dl, VT: SHVT)); |
| 10028 | Tmp = DAG.getNode(Opcode: ISD::OR, DL: dl, VT, N1: Tmp2, N2: Tmp3); |
| 10029 | return Tmp; |
| 10030 | } |
| 10031 | |
| 10032 | Tmp = DAG.getConstant(Val: 0, DL: dl, VT); |
| 10033 | for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { |
| 10034 | if (I < J) |
| 10035 | Tmp2 = |
| 10036 | DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: J - I, DL: dl, VT: SHVT)); |
| 10037 | else |
| 10038 | Tmp2 = |
| 10039 | DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: I - J, DL: dl, VT: SHVT)); |
| 10040 | |
| 10041 | APInt Shift = APInt::getOneBitSet(numBits: Sz, BitNo: J); |
| 10042 | Tmp2 = DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: Tmp2, N2: DAG.getConstant(Val: Shift, DL: dl, VT)); |
| 10043 | Tmp = DAG.getNode(Opcode: ISD::OR, DL: dl, VT, N1: Tmp, N2: Tmp2); |
| 10044 | } |
| 10045 | |
| 10046 | return Tmp; |
| 10047 | } |
| 10048 | |
| 10049 | SDValue TargetLowering::expandVPBITREVERSE(SDNode *N, SelectionDAG &DAG) const { |
| 10050 | assert(N->getOpcode() == ISD::VP_BITREVERSE); |
| 10051 | |
| 10052 | SDLoc dl(N); |
| 10053 | EVT VT = N->getValueType(ResNo: 0); |
| 10054 | SDValue Op = N->getOperand(Num: 0); |
| 10055 | SDValue Mask = N->getOperand(Num: 1); |
| 10056 | SDValue EVL = N->getOperand(Num: 2); |
| 10057 | EVT SHVT = getShiftAmountTy(LHSTy: VT, DL: DAG.getDataLayout()); |
| 10058 | unsigned Sz = VT.getScalarSizeInBits(); |
| 10059 | |
| 10060 | SDValue Tmp, Tmp2, Tmp3; |
| 10061 | |
| 10062 | // If we can, perform BSWAP first and then the mask+swap the i4, then i2 |
| 10063 | // and finally the i1 pairs. |
| 10064 | // TODO: We can easily support i4/i2 legal types if any target ever does. |
| 10065 | if (Sz >= 8 && isPowerOf2_32(Value: Sz)) { |
| 10066 | // Create the masks - repeating the pattern every byte. |
| 10067 | APInt Mask4 = APInt::getSplat(NewLen: Sz, V: APInt(8, 0x0F)); |
| 10068 | APInt Mask2 = APInt::getSplat(NewLen: Sz, V: APInt(8, 0x33)); |
| 10069 | APInt Mask1 = APInt::getSplat(NewLen: Sz, V: APInt(8, 0x55)); |
| 10070 | |
| 10071 | // BSWAP if the type is wider than a single byte. |
| 10072 | Tmp = (Sz > 8 ? DAG.getNode(Opcode: ISD::VP_BSWAP, DL: dl, VT, N1: Op, N2: Mask, N3: EVL) : Op); |
| 10073 | |
| 10074 | // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) |
| 10075 | Tmp2 = DAG.getNode(Opcode: ISD::VP_SRL, DL: dl, VT, N1: Tmp, N2: DAG.getConstant(Val: 4, DL: dl, VT: SHVT), |
| 10076 | N3: Mask, N4: EVL); |
| 10077 | Tmp2 = DAG.getNode(Opcode: ISD::VP_AND, DL: dl, VT, N1: Tmp2, |
| 10078 | N2: DAG.getConstant(Val: Mask4, DL: dl, VT), N3: Mask, N4: EVL); |
| 10079 | Tmp3 = DAG.getNode(Opcode: ISD::VP_AND, DL: dl, VT, N1: Tmp, N2: DAG.getConstant(Val: Mask4, DL: dl, VT), |
| 10080 | N3: Mask, N4: EVL); |
| 10081 | Tmp3 = DAG.getNode(Opcode: ISD::VP_SHL, DL: dl, VT, N1: Tmp3, N2: DAG.getConstant(Val: 4, DL: dl, VT: SHVT), |
| 10082 | N3: Mask, N4: EVL); |
| 10083 | Tmp = DAG.getNode(Opcode: ISD::VP_OR, DL: dl, VT, N1: Tmp2, N2: Tmp3, N3: Mask, N4: EVL); |
| 10084 | |
| 10085 | // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) |
| 10086 | Tmp2 = DAG.getNode(Opcode: ISD::VP_SRL, DL: dl, VT, N1: Tmp, N2: DAG.getConstant(Val: 2, DL: dl, VT: SHVT), |
| 10087 | N3: Mask, N4: EVL); |
| 10088 | Tmp2 = DAG.getNode(Opcode: ISD::VP_AND, DL: dl, VT, N1: Tmp2, |
| 10089 | N2: DAG.getConstant(Val: Mask2, DL: dl, VT), N3: Mask, N4: EVL); |
| 10090 | Tmp3 = DAG.getNode(Opcode: ISD::VP_AND, DL: dl, VT, N1: Tmp, N2: DAG.getConstant(Val: Mask2, DL: dl, VT), |
| 10091 | N3: Mask, N4: EVL); |
| 10092 | Tmp3 = DAG.getNode(Opcode: ISD::VP_SHL, DL: dl, VT, N1: Tmp3, N2: DAG.getConstant(Val: 2, DL: dl, VT: SHVT), |
| 10093 | N3: Mask, N4: EVL); |
| 10094 | Tmp = DAG.getNode(Opcode: ISD::VP_OR, DL: dl, VT, N1: Tmp2, N2: Tmp3, N3: Mask, N4: EVL); |
| 10095 | |
| 10096 | // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) |
| 10097 | Tmp2 = DAG.getNode(Opcode: ISD::VP_SRL, DL: dl, VT, N1: Tmp, N2: DAG.getConstant(Val: 1, DL: dl, VT: SHVT), |
| 10098 | N3: Mask, N4: EVL); |
| 10099 | Tmp2 = DAG.getNode(Opcode: ISD::VP_AND, DL: dl, VT, N1: Tmp2, |
| 10100 | N2: DAG.getConstant(Val: Mask1, DL: dl, VT), N3: Mask, N4: EVL); |
| 10101 | Tmp3 = DAG.getNode(Opcode: ISD::VP_AND, DL: dl, VT, N1: Tmp, N2: DAG.getConstant(Val: Mask1, DL: dl, VT), |
| 10102 | N3: Mask, N4: EVL); |
| 10103 | Tmp3 = DAG.getNode(Opcode: ISD::VP_SHL, DL: dl, VT, N1: Tmp3, N2: DAG.getConstant(Val: 1, DL: dl, VT: SHVT), |
| 10104 | N3: Mask, N4: EVL); |
| 10105 | Tmp = DAG.getNode(Opcode: ISD::VP_OR, DL: dl, VT, N1: Tmp2, N2: Tmp3, N3: Mask, N4: EVL); |
| 10106 | return Tmp; |
| 10107 | } |
| 10108 | return SDValue(); |
| 10109 | } |
| 10110 | |
| 10111 | std::pair<SDValue, SDValue> |
| 10112 | TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, |
| 10113 | SelectionDAG &DAG) const { |
| 10114 | SDLoc SL(LD); |
| 10115 | SDValue Chain = LD->getChain(); |
| 10116 | SDValue BasePTR = LD->getBasePtr(); |
| 10117 | EVT SrcVT = LD->getMemoryVT(); |
| 10118 | EVT DstVT = LD->getValueType(ResNo: 0); |
| 10119 | ISD::LoadExtType ExtType = LD->getExtensionType(); |
| 10120 | |
| 10121 | if (SrcVT.isScalableVector()) |
| 10122 | report_fatal_error(reason: "Cannot scalarize scalable vector loads" ); |
| 10123 | |
| 10124 | unsigned NumElem = SrcVT.getVectorNumElements(); |
| 10125 | |
| 10126 | EVT SrcEltVT = SrcVT.getScalarType(); |
| 10127 | EVT DstEltVT = DstVT.getScalarType(); |
| 10128 | |
| 10129 | // A vector must always be stored in memory as-is, i.e. without any padding |
| 10130 | // between the elements, since various code depend on it, e.g. in the |
| 10131 | // handling of a bitcast of a vector type to int, which may be done with a |
| 10132 | // vector store followed by an integer load. A vector that does not have |
| 10133 | // elements that are byte-sized must therefore be stored as an integer |
| 10134 | // built out of the extracted vector elements. |
| 10135 | if (!SrcEltVT.isByteSized()) { |
| 10136 | unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); |
| 10137 | EVT LoadVT = EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: NumLoadBits); |
| 10138 | |
| 10139 | unsigned NumSrcBits = SrcVT.getSizeInBits(); |
| 10140 | EVT SrcIntVT = EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: NumSrcBits); |
| 10141 | |
| 10142 | unsigned SrcEltBits = SrcEltVT.getSizeInBits(); |
| 10143 | SDValue SrcEltBitMask = DAG.getConstant( |
| 10144 | Val: APInt::getLowBitsSet(numBits: NumLoadBits, loBitsSet: SrcEltBits), DL: SL, VT: LoadVT); |
| 10145 | |
| 10146 | // Load the whole vector and avoid masking off the top bits as it makes |
| 10147 | // the codegen worse. |
| 10148 | SDValue Load = |
| 10149 | DAG.getExtLoad(ExtType: ISD::EXTLOAD, dl: SL, VT: LoadVT, Chain, Ptr: BasePTR, |
| 10150 | PtrInfo: LD->getPointerInfo(), MemVT: SrcIntVT, Alignment: LD->getBaseAlign(), |
| 10151 | MMOFlags: LD->getMemOperand()->getFlags(), AAInfo: LD->getAAInfo()); |
| 10152 | |
| 10153 | SmallVector<SDValue, 8> Vals; |
| 10154 | for (unsigned Idx = 0; Idx < NumElem; ++Idx) { |
| 10155 | unsigned ShiftIntoIdx = |
| 10156 | (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); |
| 10157 | SDValue ShiftAmount = DAG.getShiftAmountConstant( |
| 10158 | Val: ShiftIntoIdx * SrcEltVT.getSizeInBits(), VT: LoadVT, DL: SL); |
| 10159 | SDValue ShiftedElt = DAG.getNode(Opcode: ISD::SRL, DL: SL, VT: LoadVT, N1: Load, N2: ShiftAmount); |
| 10160 | SDValue Elt = |
| 10161 | DAG.getNode(Opcode: ISD::AND, DL: SL, VT: LoadVT, N1: ShiftedElt, N2: SrcEltBitMask); |
| 10162 | SDValue Scalar = DAG.getNode(Opcode: ISD::TRUNCATE, DL: SL, VT: SrcEltVT, Operand: Elt); |
| 10163 | |
| 10164 | if (ExtType != ISD::NON_EXTLOAD) { |
| 10165 | unsigned ExtendOp = ISD::getExtForLoadExtType(IsFP: false, ExtType); |
| 10166 | Scalar = DAG.getNode(Opcode: ExtendOp, DL: SL, VT: DstEltVT, Operand: Scalar); |
| 10167 | } |
| 10168 | |
| 10169 | Vals.push_back(Elt: Scalar); |
| 10170 | } |
| 10171 | |
| 10172 | SDValue Value = DAG.getBuildVector(VT: DstVT, DL: SL, Ops: Vals); |
| 10173 | return std::make_pair(x&: Value, y: Load.getValue(R: 1)); |
| 10174 | } |
| 10175 | |
| 10176 | unsigned Stride = SrcEltVT.getSizeInBits() / 8; |
| 10177 | assert(SrcEltVT.isByteSized()); |
| 10178 | |
| 10179 | SmallVector<SDValue, 8> Vals; |
| 10180 | SmallVector<SDValue, 8> LoadChains; |
| 10181 | |
| 10182 | for (unsigned Idx = 0; Idx < NumElem; ++Idx) { |
| 10183 | SDValue ScalarLoad = DAG.getExtLoad( |
| 10184 | ExtType, dl: SL, VT: DstEltVT, Chain, Ptr: BasePTR, |
| 10185 | PtrInfo: LD->getPointerInfo().getWithOffset(O: Idx * Stride), MemVT: SrcEltVT, |
| 10186 | Alignment: LD->getBaseAlign(), MMOFlags: LD->getMemOperand()->getFlags(), AAInfo: LD->getAAInfo()); |
| 10187 | |
| 10188 | BasePTR = DAG.getObjectPtrOffset(SL, Ptr: BasePTR, Offset: TypeSize::getFixed(ExactSize: Stride)); |
| 10189 | |
| 10190 | Vals.push_back(Elt: ScalarLoad.getValue(R: 0)); |
| 10191 | LoadChains.push_back(Elt: ScalarLoad.getValue(R: 1)); |
| 10192 | } |
| 10193 | |
| 10194 | SDValue NewChain = DAG.getNode(Opcode: ISD::TokenFactor, DL: SL, VT: MVT::Other, Ops: LoadChains); |
| 10195 | SDValue Value = DAG.getBuildVector(VT: DstVT, DL: SL, Ops: Vals); |
| 10196 | |
| 10197 | return std::make_pair(x&: Value, y&: NewChain); |
| 10198 | } |
| 10199 | |
| 10200 | SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, |
| 10201 | SelectionDAG &DAG) const { |
| 10202 | SDLoc SL(ST); |
| 10203 | |
| 10204 | SDValue Chain = ST->getChain(); |
| 10205 | SDValue BasePtr = ST->getBasePtr(); |
| 10206 | SDValue Value = ST->getValue(); |
| 10207 | EVT StVT = ST->getMemoryVT(); |
| 10208 | |
| 10209 | if (StVT.isScalableVector()) |
| 10210 | report_fatal_error(reason: "Cannot scalarize scalable vector stores" ); |
| 10211 | |
| 10212 | // The type of the data we want to save |
| 10213 | EVT RegVT = Value.getValueType(); |
| 10214 | EVT RegSclVT = RegVT.getScalarType(); |
| 10215 | |
| 10216 | // The type of data as saved in memory. |
| 10217 | EVT MemSclVT = StVT.getScalarType(); |
| 10218 | |
| 10219 | unsigned NumElem = StVT.getVectorNumElements(); |
| 10220 | |
| 10221 | // A vector must always be stored in memory as-is, i.e. without any padding |
| 10222 | // between the elements, since various code depend on it, e.g. in the |
| 10223 | // handling of a bitcast of a vector type to int, which may be done with a |
| 10224 | // vector store followed by an integer load. A vector that does not have |
| 10225 | // elements that are byte-sized must therefore be stored as an integer |
| 10226 | // built out of the extracted vector elements. |
| 10227 | if (!MemSclVT.isByteSized()) { |
| 10228 | unsigned NumBits = StVT.getSizeInBits(); |
| 10229 | EVT IntVT = EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: NumBits); |
| 10230 | |
| 10231 | SDValue CurrVal = DAG.getConstant(Val: 0, DL: SL, VT: IntVT); |
| 10232 | |
| 10233 | for (unsigned Idx = 0; Idx < NumElem; ++Idx) { |
| 10234 | SDValue Elt = DAG.getExtractVectorElt(DL: SL, VT: RegSclVT, Vec: Value, Idx); |
| 10235 | SDValue Trunc = DAG.getNode(Opcode: ISD::TRUNCATE, DL: SL, VT: MemSclVT, Operand: Elt); |
| 10236 | SDValue ExtElt = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: SL, VT: IntVT, Operand: Trunc); |
| 10237 | unsigned ShiftIntoIdx = |
| 10238 | (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); |
| 10239 | SDValue ShiftAmount = |
| 10240 | DAG.getConstant(Val: ShiftIntoIdx * MemSclVT.getSizeInBits(), DL: SL, VT: IntVT); |
| 10241 | SDValue ShiftedElt = |
| 10242 | DAG.getNode(Opcode: ISD::SHL, DL: SL, VT: IntVT, N1: ExtElt, N2: ShiftAmount); |
| 10243 | CurrVal = DAG.getNode(Opcode: ISD::OR, DL: SL, VT: IntVT, N1: CurrVal, N2: ShiftedElt); |
| 10244 | } |
| 10245 | |
| 10246 | return DAG.getStore(Chain, dl: SL, Val: CurrVal, Ptr: BasePtr, PtrInfo: ST->getPointerInfo(), |
| 10247 | Alignment: ST->getBaseAlign(), MMOFlags: ST->getMemOperand()->getFlags(), |
| 10248 | AAInfo: ST->getAAInfo()); |
| 10249 | } |
| 10250 | |
| 10251 | // Store Stride in bytes |
| 10252 | unsigned Stride = MemSclVT.getSizeInBits() / 8; |
| 10253 | assert(Stride && "Zero stride!" ); |
| 10254 | // Extract each of the elements from the original vector and save them into |
| 10255 | // memory individually. |
| 10256 | SmallVector<SDValue, 8> Stores; |
| 10257 | for (unsigned Idx = 0; Idx < NumElem; ++Idx) { |
| 10258 | SDValue Elt = DAG.getExtractVectorElt(DL: SL, VT: RegSclVT, Vec: Value, Idx); |
| 10259 | |
| 10260 | SDValue Ptr = |
| 10261 | DAG.getObjectPtrOffset(SL, Ptr: BasePtr, Offset: TypeSize::getFixed(ExactSize: Idx * Stride)); |
| 10262 | |
| 10263 | // This scalar TruncStore may be illegal, but we legalize it later. |
| 10264 | SDValue Store = DAG.getTruncStore( |
| 10265 | Chain, dl: SL, Val: Elt, Ptr, PtrInfo: ST->getPointerInfo().getWithOffset(O: Idx * Stride), |
| 10266 | SVT: MemSclVT, Alignment: ST->getBaseAlign(), MMOFlags: ST->getMemOperand()->getFlags(), |
| 10267 | AAInfo: ST->getAAInfo()); |
| 10268 | |
| 10269 | Stores.push_back(Elt: Store); |
| 10270 | } |
| 10271 | |
| 10272 | return DAG.getNode(Opcode: ISD::TokenFactor, DL: SL, VT: MVT::Other, Ops: Stores); |
| 10273 | } |
| 10274 | |
| 10275 | std::pair<SDValue, SDValue> |
| 10276 | TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { |
| 10277 | assert(LD->getAddressingMode() == ISD::UNINDEXED && |
| 10278 | "unaligned indexed loads not implemented!" ); |
| 10279 | SDValue Chain = LD->getChain(); |
| 10280 | SDValue Ptr = LD->getBasePtr(); |
| 10281 | EVT VT = LD->getValueType(ResNo: 0); |
| 10282 | EVT LoadedVT = LD->getMemoryVT(); |
| 10283 | SDLoc dl(LD); |
| 10284 | auto &MF = DAG.getMachineFunction(); |
| 10285 | |
| 10286 | if (VT.isFloatingPoint() || VT.isVector()) { |
| 10287 | EVT intVT = EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: LoadedVT.getSizeInBits()); |
| 10288 | if (isTypeLegal(VT: intVT) && isTypeLegal(VT: LoadedVT)) { |
| 10289 | if (!isOperationLegalOrCustom(Op: ISD::LOAD, VT: intVT) && |
| 10290 | LoadedVT.isVector()) { |
| 10291 | // Scalarize the load and let the individual components be handled. |
| 10292 | return scalarizeVectorLoad(LD, DAG); |
| 10293 | } |
| 10294 | |
| 10295 | // Expand to a (misaligned) integer load of the same size, |
| 10296 | // then bitconvert to floating point or vector. |
| 10297 | SDValue newLoad = DAG.getLoad(VT: intVT, dl, Chain, Ptr, |
| 10298 | MMO: LD->getMemOperand()); |
| 10299 | SDValue Result = DAG.getNode(Opcode: ISD::BITCAST, DL: dl, VT: LoadedVT, Operand: newLoad); |
| 10300 | if (LoadedVT != VT) |
| 10301 | Result = DAG.getNode(Opcode: VT.isFloatingPoint() ? ISD::FP_EXTEND : |
| 10302 | ISD::ANY_EXTEND, DL: dl, VT, Operand: Result); |
| 10303 | |
| 10304 | return std::make_pair(x&: Result, y: newLoad.getValue(R: 1)); |
| 10305 | } |
| 10306 | |
| 10307 | // Copy the value to a (aligned) stack slot using (unaligned) integer |
| 10308 | // loads and stores, then do a (aligned) load from the stack slot. |
| 10309 | MVT RegVT = getRegisterType(Context&: *DAG.getContext(), VT: intVT); |
| 10310 | unsigned LoadedBytes = LoadedVT.getStoreSize(); |
| 10311 | unsigned RegBytes = RegVT.getSizeInBits() / 8; |
| 10312 | unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; |
| 10313 | |
| 10314 | // Make sure the stack slot is also aligned for the register type. |
| 10315 | SDValue StackBase = DAG.CreateStackTemporary(VT1: LoadedVT, VT2: RegVT); |
| 10316 | auto FrameIndex = cast<FrameIndexSDNode>(Val: StackBase.getNode())->getIndex(); |
| 10317 | SmallVector<SDValue, 8> Stores; |
| 10318 | SDValue StackPtr = StackBase; |
| 10319 | unsigned Offset = 0; |
| 10320 | |
| 10321 | EVT PtrVT = Ptr.getValueType(); |
| 10322 | EVT StackPtrVT = StackPtr.getValueType(); |
| 10323 | |
| 10324 | SDValue PtrIncrement = DAG.getConstant(Val: RegBytes, DL: dl, VT: PtrVT); |
| 10325 | SDValue StackPtrIncrement = DAG.getConstant(Val: RegBytes, DL: dl, VT: StackPtrVT); |
| 10326 | |
| 10327 | // Do all but one copies using the full register width. |
| 10328 | for (unsigned i = 1; i < NumRegs; i++) { |
| 10329 | // Load one integer register's worth from the original location. |
| 10330 | SDValue Load = DAG.getLoad( |
| 10331 | VT: RegVT, dl, Chain, Ptr, PtrInfo: LD->getPointerInfo().getWithOffset(O: Offset), |
| 10332 | Alignment: LD->getBaseAlign(), MMOFlags: LD->getMemOperand()->getFlags(), AAInfo: LD->getAAInfo()); |
| 10333 | // Follow the load with a store to the stack slot. Remember the store. |
| 10334 | Stores.push_back(Elt: DAG.getStore( |
| 10335 | Chain: Load.getValue(R: 1), dl, Val: Load, Ptr: StackPtr, |
| 10336 | PtrInfo: MachinePointerInfo::getFixedStack(MF, FI: FrameIndex, Offset))); |
| 10337 | // Increment the pointers. |
| 10338 | Offset += RegBytes; |
| 10339 | |
| 10340 | Ptr = DAG.getObjectPtrOffset(SL: dl, Ptr, Offset: PtrIncrement); |
| 10341 | StackPtr = DAG.getObjectPtrOffset(SL: dl, Ptr: StackPtr, Offset: StackPtrIncrement); |
| 10342 | } |
| 10343 | |
| 10344 | // The last copy may be partial. Do an extending load. |
| 10345 | EVT MemVT = EVT::getIntegerVT(Context&: *DAG.getContext(), |
| 10346 | BitWidth: 8 * (LoadedBytes - Offset)); |
| 10347 | SDValue Load = DAG.getExtLoad( |
| 10348 | ExtType: ISD::EXTLOAD, dl, VT: RegVT, Chain, Ptr, |
| 10349 | PtrInfo: LD->getPointerInfo().getWithOffset(O: Offset), MemVT, Alignment: LD->getBaseAlign(), |
| 10350 | MMOFlags: LD->getMemOperand()->getFlags(), AAInfo: LD->getAAInfo()); |
| 10351 | // Follow the load with a store to the stack slot. Remember the store. |
| 10352 | // On big-endian machines this requires a truncating store to ensure |
| 10353 | // that the bits end up in the right place. |
| 10354 | Stores.push_back(Elt: DAG.getTruncStore( |
| 10355 | Chain: Load.getValue(R: 1), dl, Val: Load, Ptr: StackPtr, |
| 10356 | PtrInfo: MachinePointerInfo::getFixedStack(MF, FI: FrameIndex, Offset), SVT: MemVT)); |
| 10357 | |
| 10358 | // The order of the stores doesn't matter - say it with a TokenFactor. |
| 10359 | SDValue TF = DAG.getNode(Opcode: ISD::TokenFactor, DL: dl, VT: MVT::Other, Ops: Stores); |
| 10360 | |
| 10361 | // Finally, perform the original load only redirected to the stack slot. |
| 10362 | Load = DAG.getExtLoad(ExtType: LD->getExtensionType(), dl, VT, Chain: TF, Ptr: StackBase, |
| 10363 | PtrInfo: MachinePointerInfo::getFixedStack(MF, FI: FrameIndex, Offset: 0), |
| 10364 | MemVT: LoadedVT); |
| 10365 | |
| 10366 | // Callers expect a MERGE_VALUES node. |
| 10367 | return std::make_pair(x&: Load, y&: TF); |
| 10368 | } |
| 10369 | |
| 10370 | assert(LoadedVT.isInteger() && !LoadedVT.isVector() && |
| 10371 | "Unaligned load of unsupported type." ); |
| 10372 | |
| 10373 | // Compute the new VT that is half the size of the old one. This is an |
| 10374 | // integer MVT. |
| 10375 | unsigned NumBits = LoadedVT.getSizeInBits(); |
| 10376 | EVT NewLoadedVT; |
| 10377 | NewLoadedVT = EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: NumBits/2); |
| 10378 | NumBits >>= 1; |
| 10379 | |
| 10380 | Align Alignment = LD->getBaseAlign(); |
| 10381 | unsigned IncrementSize = NumBits / 8; |
| 10382 | ISD::LoadExtType HiExtType = LD->getExtensionType(); |
| 10383 | |
| 10384 | // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. |
| 10385 | if (HiExtType == ISD::NON_EXTLOAD) |
| 10386 | HiExtType = ISD::ZEXTLOAD; |
| 10387 | |
| 10388 | // Load the value in two parts |
| 10389 | SDValue Lo, Hi; |
| 10390 | if (DAG.getDataLayout().isLittleEndian()) { |
| 10391 | Lo = DAG.getExtLoad(ExtType: ISD::ZEXTLOAD, dl, VT, Chain, Ptr, PtrInfo: LD->getPointerInfo(), |
| 10392 | MemVT: NewLoadedVT, Alignment, MMOFlags: LD->getMemOperand()->getFlags(), |
| 10393 | AAInfo: LD->getAAInfo()); |
| 10394 | |
| 10395 | Ptr = DAG.getObjectPtrOffset(SL: dl, Ptr, Offset: TypeSize::getFixed(ExactSize: IncrementSize)); |
| 10396 | Hi = DAG.getExtLoad(ExtType: HiExtType, dl, VT, Chain, Ptr, |
| 10397 | PtrInfo: LD->getPointerInfo().getWithOffset(O: IncrementSize), |
| 10398 | MemVT: NewLoadedVT, Alignment, MMOFlags: LD->getMemOperand()->getFlags(), |
| 10399 | AAInfo: LD->getAAInfo()); |
| 10400 | } else { |
| 10401 | Hi = DAG.getExtLoad(ExtType: HiExtType, dl, VT, Chain, Ptr, PtrInfo: LD->getPointerInfo(), |
| 10402 | MemVT: NewLoadedVT, Alignment, MMOFlags: LD->getMemOperand()->getFlags(), |
| 10403 | AAInfo: LD->getAAInfo()); |
| 10404 | |
| 10405 | Ptr = DAG.getObjectPtrOffset(SL: dl, Ptr, Offset: TypeSize::getFixed(ExactSize: IncrementSize)); |
| 10406 | Lo = DAG.getExtLoad(ExtType: ISD::ZEXTLOAD, dl, VT, Chain, Ptr, |
| 10407 | PtrInfo: LD->getPointerInfo().getWithOffset(O: IncrementSize), |
| 10408 | MemVT: NewLoadedVT, Alignment, MMOFlags: LD->getMemOperand()->getFlags(), |
| 10409 | AAInfo: LD->getAAInfo()); |
| 10410 | } |
| 10411 | |
| 10412 | // aggregate the two parts |
| 10413 | SDValue ShiftAmount = DAG.getShiftAmountConstant(Val: NumBits, VT, DL: dl); |
| 10414 | SDValue Result = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: Hi, N2: ShiftAmount); |
| 10415 | Result = DAG.getNode(Opcode: ISD::OR, DL: dl, VT, N1: Result, N2: Lo); |
| 10416 | |
| 10417 | SDValue TF = DAG.getNode(Opcode: ISD::TokenFactor, DL: dl, VT: MVT::Other, N1: Lo.getValue(R: 1), |
| 10418 | N2: Hi.getValue(R: 1)); |
| 10419 | |
| 10420 | return std::make_pair(x&: Result, y&: TF); |
| 10421 | } |
| 10422 | |
| 10423 | SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, |
| 10424 | SelectionDAG &DAG) const { |
| 10425 | assert(ST->getAddressingMode() == ISD::UNINDEXED && |
| 10426 | "unaligned indexed stores not implemented!" ); |
| 10427 | SDValue Chain = ST->getChain(); |
| 10428 | SDValue Ptr = ST->getBasePtr(); |
| 10429 | SDValue Val = ST->getValue(); |
| 10430 | EVT VT = Val.getValueType(); |
| 10431 | Align Alignment = ST->getBaseAlign(); |
| 10432 | auto &MF = DAG.getMachineFunction(); |
| 10433 | EVT StoreMemVT = ST->getMemoryVT(); |
| 10434 | |
| 10435 | SDLoc dl(ST); |
| 10436 | if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { |
| 10437 | EVT intVT = EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: VT.getSizeInBits()); |
| 10438 | if (isTypeLegal(VT: intVT)) { |
| 10439 | if (!isOperationLegalOrCustom(Op: ISD::STORE, VT: intVT) && |
| 10440 | StoreMemVT.isVector()) { |
| 10441 | // Scalarize the store and let the individual components be handled. |
| 10442 | SDValue Result = scalarizeVectorStore(ST, DAG); |
| 10443 | return Result; |
| 10444 | } |
| 10445 | // Expand to a bitconvert of the value to the integer type of the |
| 10446 | // same size, then a (misaligned) int store. |
| 10447 | // FIXME: Does not handle truncating floating point stores! |
| 10448 | SDValue Result = DAG.getNode(Opcode: ISD::BITCAST, DL: dl, VT: intVT, Operand: Val); |
| 10449 | Result = DAG.getStore(Chain, dl, Val: Result, Ptr, PtrInfo: ST->getPointerInfo(), |
| 10450 | Alignment, MMOFlags: ST->getMemOperand()->getFlags()); |
| 10451 | return Result; |
| 10452 | } |
| 10453 | // Do a (aligned) store to a stack slot, then copy from the stack slot |
| 10454 | // to the final destination using (unaligned) integer loads and stores. |
| 10455 | MVT RegVT = getRegisterType( |
| 10456 | Context&: *DAG.getContext(), |
| 10457 | VT: EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: StoreMemVT.getSizeInBits())); |
| 10458 | EVT PtrVT = Ptr.getValueType(); |
| 10459 | unsigned StoredBytes = StoreMemVT.getStoreSize(); |
| 10460 | unsigned RegBytes = RegVT.getSizeInBits() / 8; |
| 10461 | unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; |
| 10462 | |
| 10463 | // Make sure the stack slot is also aligned for the register type. |
| 10464 | SDValue StackPtr = DAG.CreateStackTemporary(VT1: StoreMemVT, VT2: RegVT); |
| 10465 | auto FrameIndex = cast<FrameIndexSDNode>(Val: StackPtr.getNode())->getIndex(); |
| 10466 | |
| 10467 | // Perform the original store, only redirected to the stack slot. |
| 10468 | SDValue Store = DAG.getTruncStore( |
| 10469 | Chain, dl, Val, Ptr: StackPtr, |
| 10470 | PtrInfo: MachinePointerInfo::getFixedStack(MF, FI: FrameIndex, Offset: 0), SVT: StoreMemVT); |
| 10471 | |
| 10472 | EVT StackPtrVT = StackPtr.getValueType(); |
| 10473 | |
| 10474 | SDValue PtrIncrement = DAG.getConstant(Val: RegBytes, DL: dl, VT: PtrVT); |
| 10475 | SDValue StackPtrIncrement = DAG.getConstant(Val: RegBytes, DL: dl, VT: StackPtrVT); |
| 10476 | SmallVector<SDValue, 8> Stores; |
| 10477 | unsigned Offset = 0; |
| 10478 | |
| 10479 | // Do all but one copies using the full register width. |
| 10480 | for (unsigned i = 1; i < NumRegs; i++) { |
| 10481 | // Load one integer register's worth from the stack slot. |
| 10482 | SDValue Load = DAG.getLoad( |
| 10483 | VT: RegVT, dl, Chain: Store, Ptr: StackPtr, |
| 10484 | PtrInfo: MachinePointerInfo::getFixedStack(MF, FI: FrameIndex, Offset)); |
| 10485 | // Store it to the final location. Remember the store. |
| 10486 | Stores.push_back(Elt: DAG.getStore(Chain: Load.getValue(R: 1), dl, Val: Load, Ptr, |
| 10487 | PtrInfo: ST->getPointerInfo().getWithOffset(O: Offset), |
| 10488 | Alignment: ST->getBaseAlign(), |
| 10489 | MMOFlags: ST->getMemOperand()->getFlags())); |
| 10490 | // Increment the pointers. |
| 10491 | Offset += RegBytes; |
| 10492 | StackPtr = DAG.getObjectPtrOffset(SL: dl, Ptr: StackPtr, Offset: StackPtrIncrement); |
| 10493 | Ptr = DAG.getObjectPtrOffset(SL: dl, Ptr, Offset: PtrIncrement); |
| 10494 | } |
| 10495 | |
| 10496 | // The last store may be partial. Do a truncating store. On big-endian |
| 10497 | // machines this requires an extending load from the stack slot to ensure |
| 10498 | // that the bits are in the right place. |
| 10499 | EVT LoadMemVT = |
| 10500 | EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: 8 * (StoredBytes - Offset)); |
| 10501 | |
| 10502 | // Load from the stack slot. |
| 10503 | SDValue Load = DAG.getExtLoad( |
| 10504 | ExtType: ISD::EXTLOAD, dl, VT: RegVT, Chain: Store, Ptr: StackPtr, |
| 10505 | PtrInfo: MachinePointerInfo::getFixedStack(MF, FI: FrameIndex, Offset), MemVT: LoadMemVT); |
| 10506 | |
| 10507 | Stores.push_back(Elt: DAG.getTruncStore( |
| 10508 | Chain: Load.getValue(R: 1), dl, Val: Load, Ptr, |
| 10509 | PtrInfo: ST->getPointerInfo().getWithOffset(O: Offset), SVT: LoadMemVT, |
| 10510 | Alignment: ST->getBaseAlign(), MMOFlags: ST->getMemOperand()->getFlags(), AAInfo: ST->getAAInfo())); |
| 10511 | // The order of the stores doesn't matter - say it with a TokenFactor. |
| 10512 | SDValue Result = DAG.getNode(Opcode: ISD::TokenFactor, DL: dl, VT: MVT::Other, Ops: Stores); |
| 10513 | return Result; |
| 10514 | } |
| 10515 | |
| 10516 | assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && |
| 10517 | "Unaligned store of unknown type." ); |
| 10518 | // Get the half-size VT |
| 10519 | EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(Context&: *DAG.getContext()); |
| 10520 | unsigned NumBits = NewStoredVT.getFixedSizeInBits(); |
| 10521 | unsigned IncrementSize = NumBits / 8; |
| 10522 | |
| 10523 | // Divide the stored value in two parts. |
| 10524 | SDValue ShiftAmount = |
| 10525 | DAG.getShiftAmountConstant(Val: NumBits, VT: Val.getValueType(), DL: dl); |
| 10526 | SDValue Lo = Val; |
| 10527 | // If Val is a constant, replace the upper bits with 0. The SRL will constant |
| 10528 | // fold and not use the upper bits. A smaller constant may be easier to |
| 10529 | // materialize. |
| 10530 | if (auto *C = dyn_cast<ConstantSDNode>(Val&: Lo); C && !C->isOpaque()) |
| 10531 | Lo = DAG.getNode( |
| 10532 | Opcode: ISD::AND, DL: dl, VT, N1: Lo, |
| 10533 | N2: DAG.getConstant(Val: APInt::getLowBitsSet(numBits: VT.getSizeInBits(), loBitsSet: NumBits), DL: dl, |
| 10534 | VT)); |
| 10535 | SDValue Hi = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Val, N2: ShiftAmount); |
| 10536 | |
| 10537 | // Store the two parts |
| 10538 | SDValue Store1, Store2; |
| 10539 | Store1 = DAG.getTruncStore(Chain, dl, |
| 10540 | Val: DAG.getDataLayout().isLittleEndian() ? Lo : Hi, |
| 10541 | Ptr, PtrInfo: ST->getPointerInfo(), SVT: NewStoredVT, Alignment, |
| 10542 | MMOFlags: ST->getMemOperand()->getFlags()); |
| 10543 | |
| 10544 | Ptr = DAG.getObjectPtrOffset(SL: dl, Ptr, Offset: TypeSize::getFixed(ExactSize: IncrementSize)); |
| 10545 | Store2 = DAG.getTruncStore( |
| 10546 | Chain, dl, Val: DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, |
| 10547 | PtrInfo: ST->getPointerInfo().getWithOffset(O: IncrementSize), SVT: NewStoredVT, Alignment, |
| 10548 | MMOFlags: ST->getMemOperand()->getFlags(), AAInfo: ST->getAAInfo()); |
| 10549 | |
| 10550 | SDValue Result = |
| 10551 | DAG.getNode(Opcode: ISD::TokenFactor, DL: dl, VT: MVT::Other, N1: Store1, N2: Store2); |
| 10552 | return Result; |
| 10553 | } |
| 10554 | |
| 10555 | SDValue |
| 10556 | TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, |
| 10557 | const SDLoc &DL, EVT DataVT, |
| 10558 | SelectionDAG &DAG, |
| 10559 | bool IsCompressedMemory) const { |
| 10560 | SDValue Increment; |
| 10561 | EVT AddrVT = Addr.getValueType(); |
| 10562 | EVT MaskVT = Mask.getValueType(); |
| 10563 | assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && |
| 10564 | "Incompatible types of Data and Mask" ); |
| 10565 | if (IsCompressedMemory) { |
| 10566 | if (DataVT.isScalableVector()) |
| 10567 | report_fatal_error( |
| 10568 | reason: "Cannot currently handle compressed memory with scalable vectors" ); |
| 10569 | // Incrementing the pointer according to number of '1's in the mask. |
| 10570 | EVT MaskIntVT = EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: MaskVT.getSizeInBits()); |
| 10571 | SDValue MaskInIntReg = DAG.getBitcast(VT: MaskIntVT, V: Mask); |
| 10572 | if (MaskIntVT.getSizeInBits() < 32) { |
| 10573 | MaskInIntReg = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL, VT: MVT::i32, Operand: MaskInIntReg); |
| 10574 | MaskIntVT = MVT::i32; |
| 10575 | } |
| 10576 | |
| 10577 | // Count '1's with POPCNT. |
| 10578 | Increment = DAG.getNode(Opcode: ISD::CTPOP, DL, VT: MaskIntVT, Operand: MaskInIntReg); |
| 10579 | Increment = DAG.getZExtOrTrunc(Op: Increment, DL, VT: AddrVT); |
| 10580 | // Scale is an element size in bytes. |
| 10581 | SDValue Scale = DAG.getConstant(Val: DataVT.getScalarSizeInBits() / 8, DL, |
| 10582 | VT: AddrVT); |
| 10583 | Increment = DAG.getNode(Opcode: ISD::MUL, DL, VT: AddrVT, N1: Increment, N2: Scale); |
| 10584 | } else if (DataVT.isScalableVector()) { |
| 10585 | Increment = DAG.getVScale(DL, VT: AddrVT, |
| 10586 | MulImm: APInt(AddrVT.getFixedSizeInBits(), |
| 10587 | DataVT.getStoreSize().getKnownMinValue())); |
| 10588 | } else |
| 10589 | Increment = DAG.getConstant(Val: DataVT.getStoreSize(), DL, VT: AddrVT); |
| 10590 | |
| 10591 | return DAG.getNode(Opcode: ISD::ADD, DL, VT: AddrVT, N1: Addr, N2: Increment); |
| 10592 | } |
| 10593 | |
| 10594 | static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, |
| 10595 | EVT VecVT, const SDLoc &dl, |
| 10596 | ElementCount SubEC) { |
| 10597 | assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) && |
| 10598 | "Cannot index a scalable vector within a fixed-width vector" ); |
| 10599 | |
| 10600 | unsigned NElts = VecVT.getVectorMinNumElements(); |
| 10601 | unsigned NumSubElts = SubEC.getKnownMinValue(); |
| 10602 | EVT IdxVT = Idx.getValueType(); |
| 10603 | |
| 10604 | if (VecVT.isScalableVector() && !SubEC.isScalable()) { |
| 10605 | // If this is a constant index and we know the value plus the number of the |
| 10606 | // elements in the subvector minus one is less than the minimum number of |
| 10607 | // elements then it's safe to return Idx. |
| 10608 | if (auto *IdxCst = dyn_cast<ConstantSDNode>(Val&: Idx)) |
| 10609 | if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts) |
| 10610 | return Idx; |
| 10611 | SDValue VS = |
| 10612 | DAG.getVScale(DL: dl, VT: IdxVT, MulImm: APInt(IdxVT.getFixedSizeInBits(), NElts)); |
| 10613 | unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT; |
| 10614 | SDValue Sub = DAG.getNode(Opcode: SubOpcode, DL: dl, VT: IdxVT, N1: VS, |
| 10615 | N2: DAG.getConstant(Val: NumSubElts, DL: dl, VT: IdxVT)); |
| 10616 | return DAG.getNode(Opcode: ISD::UMIN, DL: dl, VT: IdxVT, N1: Idx, N2: Sub); |
| 10617 | } |
| 10618 | if (isPowerOf2_32(Value: NElts) && NumSubElts == 1) { |
| 10619 | APInt Imm = APInt::getLowBitsSet(numBits: IdxVT.getSizeInBits(), loBitsSet: Log2_32(Value: NElts)); |
| 10620 | return DAG.getNode(Opcode: ISD::AND, DL: dl, VT: IdxVT, N1: Idx, |
| 10621 | N2: DAG.getConstant(Val: Imm, DL: dl, VT: IdxVT)); |
| 10622 | } |
| 10623 | unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0; |
| 10624 | return DAG.getNode(Opcode: ISD::UMIN, DL: dl, VT: IdxVT, N1: Idx, |
| 10625 | N2: DAG.getConstant(Val: MaxIndex, DL: dl, VT: IdxVT)); |
| 10626 | } |
| 10627 | |
| 10628 | SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, |
| 10629 | SDValue VecPtr, EVT VecVT, |
| 10630 | SDValue Index) const { |
| 10631 | return getVectorSubVecPointer( |
| 10632 | DAG, VecPtr, VecVT, |
| 10633 | SubVecVT: EVT::getVectorVT(Context&: *DAG.getContext(), VT: VecVT.getVectorElementType(), NumElements: 1), |
| 10634 | Index); |
| 10635 | } |
| 10636 | |
| 10637 | SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG, |
| 10638 | SDValue VecPtr, EVT VecVT, |
| 10639 | EVT SubVecVT, |
| 10640 | SDValue Index) const { |
| 10641 | SDLoc dl(Index); |
| 10642 | // Make sure the index type is big enough to compute in. |
| 10643 | Index = DAG.getZExtOrTrunc(Op: Index, DL: dl, VT: VecPtr.getValueType()); |
| 10644 | |
| 10645 | EVT EltVT = VecVT.getVectorElementType(); |
| 10646 | |
| 10647 | // Calculate the element offset and add it to the pointer. |
| 10648 | unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. |
| 10649 | assert(EltSize * 8 == EltVT.getFixedSizeInBits() && |
| 10650 | "Converting bits to bytes lost precision" ); |
| 10651 | assert(SubVecVT.getVectorElementType() == EltVT && |
| 10652 | "Sub-vector must be a vector with matching element type" ); |
| 10653 | Index = clampDynamicVectorIndex(DAG, Idx: Index, VecVT, dl, |
| 10654 | SubEC: SubVecVT.getVectorElementCount()); |
| 10655 | |
| 10656 | EVT IdxVT = Index.getValueType(); |
| 10657 | if (SubVecVT.isScalableVector()) |
| 10658 | Index = |
| 10659 | DAG.getNode(Opcode: ISD::MUL, DL: dl, VT: IdxVT, N1: Index, |
| 10660 | N2: DAG.getVScale(DL: dl, VT: IdxVT, MulImm: APInt(IdxVT.getSizeInBits(), 1))); |
| 10661 | |
| 10662 | Index = DAG.getNode(Opcode: ISD::MUL, DL: dl, VT: IdxVT, N1: Index, |
| 10663 | N2: DAG.getConstant(Val: EltSize, DL: dl, VT: IdxVT)); |
| 10664 | return DAG.getMemBasePlusOffset(Base: VecPtr, Offset: Index, DL: dl); |
| 10665 | } |
| 10666 | |
| 10667 | //===----------------------------------------------------------------------===// |
| 10668 | // Implementation of Emulated TLS Model |
| 10669 | //===----------------------------------------------------------------------===// |
| 10670 | |
| 10671 | SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, |
| 10672 | SelectionDAG &DAG) const { |
| 10673 | // Access to address of TLS varialbe xyz is lowered to a function call: |
| 10674 | // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) |
| 10675 | EVT PtrVT = getPointerTy(DL: DAG.getDataLayout()); |
| 10676 | PointerType *VoidPtrType = PointerType::get(C&: *DAG.getContext(), AddressSpace: 0); |
| 10677 | SDLoc dl(GA); |
| 10678 | |
| 10679 | ArgListTy Args; |
| 10680 | ArgListEntry Entry; |
| 10681 | const GlobalValue *GV = |
| 10682 | cast<GlobalValue>(Val: GA->getGlobal()->stripPointerCastsAndAliases()); |
| 10683 | SmallString<32> NameString("__emutls_v." ); |
| 10684 | NameString += GV->getName(); |
| 10685 | StringRef EmuTlsVarName(NameString); |
| 10686 | const GlobalVariable *EmuTlsVar = |
| 10687 | GV->getParent()->getNamedGlobal(Name: EmuTlsVarName); |
| 10688 | assert(EmuTlsVar && "Cannot find EmuTlsVar " ); |
| 10689 | Entry.Node = DAG.getGlobalAddress(GV: EmuTlsVar, DL: dl, VT: PtrVT); |
| 10690 | Entry.Ty = VoidPtrType; |
| 10691 | Args.push_back(x: Entry); |
| 10692 | |
| 10693 | SDValue EmuTlsGetAddr = DAG.getExternalSymbol(Sym: "__emutls_get_address" , VT: PtrVT); |
| 10694 | |
| 10695 | TargetLowering::CallLoweringInfo CLI(DAG); |
| 10696 | CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); |
| 10697 | CLI.setLibCallee(CC: CallingConv::C, ResultType: VoidPtrType, Target: EmuTlsGetAddr, ArgsList: std::move(Args)); |
| 10698 | std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); |
| 10699 | |
| 10700 | // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. |
| 10701 | // At last for X86 targets, maybe good for other targets too? |
| 10702 | MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); |
| 10703 | MFI.setAdjustsStack(true); // Is this only for X86 target? |
| 10704 | MFI.setHasCalls(true); |
| 10705 | |
| 10706 | assert((GA->getOffset() == 0) && |
| 10707 | "Emulated TLS must have zero offset in GlobalAddressSDNode" ); |
| 10708 | return CallResult.first; |
| 10709 | } |
| 10710 | |
| 10711 | SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, |
| 10712 | SelectionDAG &DAG) const { |
| 10713 | assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node." ); |
| 10714 | if (!isCtlzFast()) |
| 10715 | return SDValue(); |
| 10716 | ISD::CondCode CC = cast<CondCodeSDNode>(Val: Op.getOperand(i: 2))->get(); |
| 10717 | SDLoc dl(Op); |
| 10718 | if (isNullConstant(V: Op.getOperand(i: 1)) && CC == ISD::SETEQ) { |
| 10719 | EVT VT = Op.getOperand(i: 0).getValueType(); |
| 10720 | SDValue Zext = Op.getOperand(i: 0); |
| 10721 | if (VT.bitsLT(VT: MVT::i32)) { |
| 10722 | VT = MVT::i32; |
| 10723 | Zext = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: dl, VT, Operand: Op.getOperand(i: 0)); |
| 10724 | } |
| 10725 | unsigned Log2b = Log2_32(Value: VT.getSizeInBits()); |
| 10726 | SDValue Clz = DAG.getNode(Opcode: ISD::CTLZ, DL: dl, VT, Operand: Zext); |
| 10727 | SDValue Scc = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Clz, |
| 10728 | N2: DAG.getConstant(Val: Log2b, DL: dl, VT: MVT::i32)); |
| 10729 | return DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: MVT::i32, Operand: Scc); |
| 10730 | } |
| 10731 | return SDValue(); |
| 10732 | } |
| 10733 | |
| 10734 | SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { |
| 10735 | SDValue Op0 = Node->getOperand(Num: 0); |
| 10736 | SDValue Op1 = Node->getOperand(Num: 1); |
| 10737 | EVT VT = Op0.getValueType(); |
| 10738 | EVT BoolVT = getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT); |
| 10739 | unsigned Opcode = Node->getOpcode(); |
| 10740 | SDLoc DL(Node); |
| 10741 | |
| 10742 | // umax(x,1) --> sub(x,cmpeq(x,0)) iff cmp result is allbits |
| 10743 | if (Opcode == ISD::UMAX && llvm::isOneOrOneSplat(V: Op1, AllowUndefs: true) && BoolVT == VT && |
| 10744 | getBooleanContents(Type: VT) == ZeroOrNegativeOneBooleanContent) { |
| 10745 | Op0 = DAG.getFreeze(V: Op0); |
| 10746 | SDValue Zero = DAG.getConstant(Val: 0, DL, VT); |
| 10747 | return DAG.getNode(Opcode: ISD::SUB, DL, VT, N1: Op0, |
| 10748 | N2: DAG.getSetCC(DL, VT, LHS: Op0, RHS: Zero, Cond: ISD::SETEQ)); |
| 10749 | } |
| 10750 | |
| 10751 | // umin(x,y) -> sub(x,usubsat(x,y)) |
| 10752 | // TODO: Missing freeze(Op0)? |
| 10753 | if (Opcode == ISD::UMIN && isOperationLegal(Op: ISD::SUB, VT) && |
| 10754 | isOperationLegal(Op: ISD::USUBSAT, VT)) { |
| 10755 | return DAG.getNode(Opcode: ISD::SUB, DL, VT, N1: Op0, |
| 10756 | N2: DAG.getNode(Opcode: ISD::USUBSAT, DL, VT, N1: Op0, N2: Op1)); |
| 10757 | } |
| 10758 | |
| 10759 | // umax(x,y) -> add(x,usubsat(y,x)) |
| 10760 | // TODO: Missing freeze(Op0)? |
| 10761 | if (Opcode == ISD::UMAX && isOperationLegal(Op: ISD::ADD, VT) && |
| 10762 | isOperationLegal(Op: ISD::USUBSAT, VT)) { |
| 10763 | return DAG.getNode(Opcode: ISD::ADD, DL, VT, N1: Op0, |
| 10764 | N2: DAG.getNode(Opcode: ISD::USUBSAT, DL, VT, N1: Op1, N2: Op0)); |
| 10765 | } |
| 10766 | |
| 10767 | // FIXME: Should really try to split the vector in case it's legal on a |
| 10768 | // subvector. |
| 10769 | if (VT.isVector() && !isOperationLegalOrCustom(Op: ISD::VSELECT, VT)) |
| 10770 | return DAG.UnrollVectorOp(N: Node); |
| 10771 | |
| 10772 | // Attempt to find an existing SETCC node that we can reuse. |
| 10773 | // TODO: Do we need a generic doesSETCCNodeExist? |
| 10774 | // TODO: Missing freeze(Op0)/freeze(Op1)? |
| 10775 | auto buildMinMax = [&](ISD::CondCode PrefCC, ISD::CondCode AltCC, |
| 10776 | ISD::CondCode PrefCommuteCC, |
| 10777 | ISD::CondCode AltCommuteCC) { |
| 10778 | SDVTList BoolVTList = DAG.getVTList(VT: BoolVT); |
| 10779 | for (ISD::CondCode CC : {PrefCC, AltCC}) { |
| 10780 | if (DAG.doesNodeExist(Opcode: ISD::SETCC, VTList: BoolVTList, |
| 10781 | Ops: {Op0, Op1, DAG.getCondCode(Cond: CC)})) { |
| 10782 | SDValue Cond = DAG.getSetCC(DL, VT: BoolVT, LHS: Op0, RHS: Op1, Cond: CC); |
| 10783 | return DAG.getSelect(DL, VT, Cond, LHS: Op0, RHS: Op1); |
| 10784 | } |
| 10785 | } |
| 10786 | for (ISD::CondCode CC : {PrefCommuteCC, AltCommuteCC}) { |
| 10787 | if (DAG.doesNodeExist(Opcode: ISD::SETCC, VTList: BoolVTList, |
| 10788 | Ops: {Op0, Op1, DAG.getCondCode(Cond: CC)})) { |
| 10789 | SDValue Cond = DAG.getSetCC(DL, VT: BoolVT, LHS: Op0, RHS: Op1, Cond: CC); |
| 10790 | return DAG.getSelect(DL, VT, Cond, LHS: Op1, RHS: Op0); |
| 10791 | } |
| 10792 | } |
| 10793 | SDValue Cond = DAG.getSetCC(DL, VT: BoolVT, LHS: Op0, RHS: Op1, Cond: PrefCC); |
| 10794 | return DAG.getSelect(DL, VT, Cond, LHS: Op0, RHS: Op1); |
| 10795 | }; |
| 10796 | |
| 10797 | // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B |
| 10798 | // -> Y = (A < B) ? B : A |
| 10799 | // -> Y = (A >= B) ? A : B |
| 10800 | // -> Y = (A <= B) ? B : A |
| 10801 | switch (Opcode) { |
| 10802 | case ISD::SMAX: |
| 10803 | return buildMinMax(ISD::SETGT, ISD::SETGE, ISD::SETLT, ISD::SETLE); |
| 10804 | case ISD::SMIN: |
| 10805 | return buildMinMax(ISD::SETLT, ISD::SETLE, ISD::SETGT, ISD::SETGE); |
| 10806 | case ISD::UMAX: |
| 10807 | return buildMinMax(ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE); |
| 10808 | case ISD::UMIN: |
| 10809 | return buildMinMax(ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE); |
| 10810 | } |
| 10811 | |
| 10812 | llvm_unreachable("How did we get here?" ); |
| 10813 | } |
| 10814 | |
| 10815 | SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { |
| 10816 | unsigned Opcode = Node->getOpcode(); |
| 10817 | SDValue LHS = Node->getOperand(Num: 0); |
| 10818 | SDValue RHS = Node->getOperand(Num: 1); |
| 10819 | EVT VT = LHS.getValueType(); |
| 10820 | SDLoc dl(Node); |
| 10821 | |
| 10822 | assert(VT == RHS.getValueType() && "Expected operands to be the same type" ); |
| 10823 | assert(VT.isInteger() && "Expected operands to be integers" ); |
| 10824 | |
| 10825 | // usub.sat(a, b) -> umax(a, b) - b |
| 10826 | if (Opcode == ISD::USUBSAT && isOperationLegal(Op: ISD::UMAX, VT)) { |
| 10827 | SDValue Max = DAG.getNode(Opcode: ISD::UMAX, DL: dl, VT, N1: LHS, N2: RHS); |
| 10828 | return DAG.getNode(Opcode: ISD::SUB, DL: dl, VT, N1: Max, N2: RHS); |
| 10829 | } |
| 10830 | |
| 10831 | // uadd.sat(a, b) -> umin(a, ~b) + b |
| 10832 | if (Opcode == ISD::UADDSAT && isOperationLegal(Op: ISD::UMIN, VT)) { |
| 10833 | SDValue InvRHS = DAG.getNOT(DL: dl, Val: RHS, VT); |
| 10834 | SDValue Min = DAG.getNode(Opcode: ISD::UMIN, DL: dl, VT, N1: LHS, N2: InvRHS); |
| 10835 | return DAG.getNode(Opcode: ISD::ADD, DL: dl, VT, N1: Min, N2: RHS); |
| 10836 | } |
| 10837 | |
| 10838 | unsigned OverflowOp; |
| 10839 | switch (Opcode) { |
| 10840 | case ISD::SADDSAT: |
| 10841 | OverflowOp = ISD::SADDO; |
| 10842 | break; |
| 10843 | case ISD::UADDSAT: |
| 10844 | OverflowOp = ISD::UADDO; |
| 10845 | break; |
| 10846 | case ISD::SSUBSAT: |
| 10847 | OverflowOp = ISD::SSUBO; |
| 10848 | break; |
| 10849 | case ISD::USUBSAT: |
| 10850 | OverflowOp = ISD::USUBO; |
| 10851 | break; |
| 10852 | default: |
| 10853 | llvm_unreachable("Expected method to receive signed or unsigned saturation " |
| 10854 | "addition or subtraction node." ); |
| 10855 | } |
| 10856 | |
| 10857 | // FIXME: Should really try to split the vector in case it's legal on a |
| 10858 | // subvector. |
| 10859 | if (VT.isVector() && !isOperationLegalOrCustom(Op: ISD::VSELECT, VT)) |
| 10860 | return DAG.UnrollVectorOp(N: Node); |
| 10861 | |
| 10862 | unsigned BitWidth = LHS.getScalarValueSizeInBits(); |
| 10863 | EVT BoolVT = getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT); |
| 10864 | SDValue Result = DAG.getNode(Opcode: OverflowOp, DL: dl, VTList: DAG.getVTList(VT1: VT, VT2: BoolVT), N1: LHS, N2: RHS); |
| 10865 | SDValue SumDiff = Result.getValue(R: 0); |
| 10866 | SDValue Overflow = Result.getValue(R: 1); |
| 10867 | SDValue Zero = DAG.getConstant(Val: 0, DL: dl, VT); |
| 10868 | SDValue AllOnes = DAG.getAllOnesConstant(DL: dl, VT); |
| 10869 | |
| 10870 | if (Opcode == ISD::UADDSAT) { |
| 10871 | if (getBooleanContents(Type: VT) == ZeroOrNegativeOneBooleanContent) { |
| 10872 | // (LHS + RHS) | OverflowMask |
| 10873 | SDValue OverflowMask = DAG.getSExtOrTrunc(Op: Overflow, DL: dl, VT); |
| 10874 | return DAG.getNode(Opcode: ISD::OR, DL: dl, VT, N1: SumDiff, N2: OverflowMask); |
| 10875 | } |
| 10876 | // Overflow ? 0xffff.... : (LHS + RHS) |
| 10877 | return DAG.getSelect(DL: dl, VT, Cond: Overflow, LHS: AllOnes, RHS: SumDiff); |
| 10878 | } |
| 10879 | |
| 10880 | if (Opcode == ISD::USUBSAT) { |
| 10881 | if (getBooleanContents(Type: VT) == ZeroOrNegativeOneBooleanContent) { |
| 10882 | // (LHS - RHS) & ~OverflowMask |
| 10883 | SDValue OverflowMask = DAG.getSExtOrTrunc(Op: Overflow, DL: dl, VT); |
| 10884 | SDValue Not = DAG.getNOT(DL: dl, Val: OverflowMask, VT); |
| 10885 | return DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: SumDiff, N2: Not); |
| 10886 | } |
| 10887 | // Overflow ? 0 : (LHS - RHS) |
| 10888 | return DAG.getSelect(DL: dl, VT, Cond: Overflow, LHS: Zero, RHS: SumDiff); |
| 10889 | } |
| 10890 | |
| 10891 | if (Opcode == ISD::SADDSAT || Opcode == ISD::SSUBSAT) { |
| 10892 | APInt MinVal = APInt::getSignedMinValue(numBits: BitWidth); |
| 10893 | APInt MaxVal = APInt::getSignedMaxValue(numBits: BitWidth); |
| 10894 | |
| 10895 | KnownBits KnownLHS = DAG.computeKnownBits(Op: LHS); |
| 10896 | KnownBits KnownRHS = DAG.computeKnownBits(Op: RHS); |
| 10897 | |
| 10898 | // If either of the operand signs are known, then they are guaranteed to |
| 10899 | // only saturate in one direction. If non-negative they will saturate |
| 10900 | // towards SIGNED_MAX, if negative they will saturate towards SIGNED_MIN. |
| 10901 | // |
| 10902 | // In the case of ISD::SSUBSAT, 'x - y' is equivalent to 'x + (-y)', so the |
| 10903 | // sign of 'y' has to be flipped. |
| 10904 | |
| 10905 | bool LHSIsNonNegative = KnownLHS.isNonNegative(); |
| 10906 | bool RHSIsNonNegative = Opcode == ISD::SADDSAT ? KnownRHS.isNonNegative() |
| 10907 | : KnownRHS.isNegative(); |
| 10908 | if (LHSIsNonNegative || RHSIsNonNegative) { |
| 10909 | SDValue SatMax = DAG.getConstant(Val: MaxVal, DL: dl, VT); |
| 10910 | return DAG.getSelect(DL: dl, VT, Cond: Overflow, LHS: SatMax, RHS: SumDiff); |
| 10911 | } |
| 10912 | |
| 10913 | bool LHSIsNegative = KnownLHS.isNegative(); |
| 10914 | bool RHSIsNegative = Opcode == ISD::SADDSAT ? KnownRHS.isNegative() |
| 10915 | : KnownRHS.isNonNegative(); |
| 10916 | if (LHSIsNegative || RHSIsNegative) { |
| 10917 | SDValue SatMin = DAG.getConstant(Val: MinVal, DL: dl, VT); |
| 10918 | return DAG.getSelect(DL: dl, VT, Cond: Overflow, LHS: SatMin, RHS: SumDiff); |
| 10919 | } |
| 10920 | } |
| 10921 | |
| 10922 | // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff |
| 10923 | APInt MinVal = APInt::getSignedMinValue(numBits: BitWidth); |
| 10924 | SDValue SatMin = DAG.getConstant(Val: MinVal, DL: dl, VT); |
| 10925 | SDValue Shift = DAG.getNode(Opcode: ISD::SRA, DL: dl, VT, N1: SumDiff, |
| 10926 | N2: DAG.getConstant(Val: BitWidth - 1, DL: dl, VT)); |
| 10927 | Result = DAG.getNode(Opcode: ISD::XOR, DL: dl, VT, N1: Shift, N2: SatMin); |
| 10928 | return DAG.getSelect(DL: dl, VT, Cond: Overflow, LHS: Result, RHS: SumDiff); |
| 10929 | } |
| 10930 | |
| 10931 | SDValue TargetLowering::expandCMP(SDNode *Node, SelectionDAG &DAG) const { |
| 10932 | unsigned Opcode = Node->getOpcode(); |
| 10933 | SDValue LHS = Node->getOperand(Num: 0); |
| 10934 | SDValue RHS = Node->getOperand(Num: 1); |
| 10935 | EVT VT = LHS.getValueType(); |
| 10936 | EVT ResVT = Node->getValueType(ResNo: 0); |
| 10937 | EVT BoolVT = getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT); |
| 10938 | SDLoc dl(Node); |
| 10939 | |
| 10940 | auto LTPredicate = (Opcode == ISD::UCMP ? ISD::SETULT : ISD::SETLT); |
| 10941 | auto GTPredicate = (Opcode == ISD::UCMP ? ISD::SETUGT : ISD::SETGT); |
| 10942 | SDValue IsLT = DAG.getSetCC(DL: dl, VT: BoolVT, LHS, RHS, Cond: LTPredicate); |
| 10943 | SDValue IsGT = DAG.getSetCC(DL: dl, VT: BoolVT, LHS, RHS, Cond: GTPredicate); |
| 10944 | |
| 10945 | // We can't perform arithmetic on i1 values. Extending them would |
| 10946 | // probably result in worse codegen, so let's just use two selects instead. |
| 10947 | // Some targets are also just better off using selects rather than subtraction |
| 10948 | // because one of the conditions can be merged with one of the selects. |
| 10949 | // And finally, if we don't know the contents of high bits of a boolean value |
| 10950 | // we can't perform any arithmetic either. |
| 10951 | if (shouldExpandCmpUsingSelects(VT) || BoolVT.getScalarSizeInBits() == 1 || |
| 10952 | getBooleanContents(Type: BoolVT) == UndefinedBooleanContent) { |
| 10953 | SDValue SelectZeroOrOne = |
| 10954 | DAG.getSelect(DL: dl, VT: ResVT, Cond: IsGT, LHS: DAG.getConstant(Val: 1, DL: dl, VT: ResVT), |
| 10955 | RHS: DAG.getConstant(Val: 0, DL: dl, VT: ResVT)); |
| 10956 | return DAG.getSelect(DL: dl, VT: ResVT, Cond: IsLT, LHS: DAG.getAllOnesConstant(DL: dl, VT: ResVT), |
| 10957 | RHS: SelectZeroOrOne); |
| 10958 | } |
| 10959 | |
| 10960 | if (getBooleanContents(Type: BoolVT) == ZeroOrNegativeOneBooleanContent) |
| 10961 | std::swap(a&: IsGT, b&: IsLT); |
| 10962 | return DAG.getSExtOrTrunc(Op: DAG.getNode(Opcode: ISD::SUB, DL: dl, VT: BoolVT, N1: IsGT, N2: IsLT), DL: dl, |
| 10963 | VT: ResVT); |
| 10964 | } |
| 10965 | |
| 10966 | SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { |
| 10967 | unsigned Opcode = Node->getOpcode(); |
| 10968 | bool IsSigned = Opcode == ISD::SSHLSAT; |
| 10969 | SDValue LHS = Node->getOperand(Num: 0); |
| 10970 | SDValue RHS = Node->getOperand(Num: 1); |
| 10971 | EVT VT = LHS.getValueType(); |
| 10972 | SDLoc dl(Node); |
| 10973 | |
| 10974 | assert((Node->getOpcode() == ISD::SSHLSAT || |
| 10975 | Node->getOpcode() == ISD::USHLSAT) && |
| 10976 | "Expected a SHLSAT opcode" ); |
| 10977 | assert(VT == RHS.getValueType() && "Expected operands to be the same type" ); |
| 10978 | assert(VT.isInteger() && "Expected operands to be integers" ); |
| 10979 | |
| 10980 | if (VT.isVector() && !isOperationLegalOrCustom(Op: ISD::VSELECT, VT)) |
| 10981 | return DAG.UnrollVectorOp(N: Node); |
| 10982 | |
| 10983 | // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. |
| 10984 | |
| 10985 | unsigned BW = VT.getScalarSizeInBits(); |
| 10986 | EVT BoolVT = getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT); |
| 10987 | SDValue Result = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: LHS, N2: RHS); |
| 10988 | SDValue Orig = |
| 10989 | DAG.getNode(Opcode: IsSigned ? ISD::SRA : ISD::SRL, DL: dl, VT, N1: Result, N2: RHS); |
| 10990 | |
| 10991 | SDValue SatVal; |
| 10992 | if (IsSigned) { |
| 10993 | SDValue SatMin = DAG.getConstant(Val: APInt::getSignedMinValue(numBits: BW), DL: dl, VT); |
| 10994 | SDValue SatMax = DAG.getConstant(Val: APInt::getSignedMaxValue(numBits: BW), DL: dl, VT); |
| 10995 | SDValue Cond = |
| 10996 | DAG.getSetCC(DL: dl, VT: BoolVT, LHS, RHS: DAG.getConstant(Val: 0, DL: dl, VT), Cond: ISD::SETLT); |
| 10997 | SatVal = DAG.getSelect(DL: dl, VT, Cond, LHS: SatMin, RHS: SatMax); |
| 10998 | } else { |
| 10999 | SatVal = DAG.getConstant(Val: APInt::getMaxValue(numBits: BW), DL: dl, VT); |
| 11000 | } |
| 11001 | SDValue Cond = DAG.getSetCC(DL: dl, VT: BoolVT, LHS, RHS: Orig, Cond: ISD::SETNE); |
| 11002 | return DAG.getSelect(DL: dl, VT, Cond, LHS: SatVal, RHS: Result); |
| 11003 | } |
| 11004 | |
| 11005 | void TargetLowering::forceExpandMultiply(SelectionDAG &DAG, const SDLoc &dl, |
| 11006 | bool Signed, SDValue &Lo, SDValue &Hi, |
| 11007 | SDValue LHS, SDValue RHS, |
| 11008 | SDValue HiLHS, SDValue HiRHS) const { |
| 11009 | EVT VT = LHS.getValueType(); |
| 11010 | assert(RHS.getValueType() == VT && "Mismatching operand types" ); |
| 11011 | |
| 11012 | assert((HiLHS && HiRHS) || (!HiLHS && !HiRHS)); |
| 11013 | assert((!Signed || !HiLHS) && |
| 11014 | "Signed flag should only be set when HiLHS and RiRHS are null" ); |
| 11015 | |
| 11016 | // We'll expand the multiplication by brute force because we have no other |
| 11017 | // options. This is a trivially-generalized version of the code from |
| 11018 | // Hacker's Delight (itself derived from Knuth's Algorithm M from section |
| 11019 | // 4.3.1). If Signed is set, we can use arithmetic right shifts to propagate |
| 11020 | // sign bits while calculating the Hi half. |
| 11021 | unsigned Bits = VT.getSizeInBits(); |
| 11022 | unsigned HalfBits = Bits / 2; |
| 11023 | SDValue Mask = DAG.getConstant(Val: APInt::getLowBitsSet(numBits: Bits, loBitsSet: HalfBits), DL: dl, VT); |
| 11024 | SDValue LL = DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: LHS, N2: Mask); |
| 11025 | SDValue RL = DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: RHS, N2: Mask); |
| 11026 | |
| 11027 | SDValue T = DAG.getNode(Opcode: ISD::MUL, DL: dl, VT, N1: LL, N2: RL); |
| 11028 | SDValue TL = DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: T, N2: Mask); |
| 11029 | |
| 11030 | SDValue Shift = DAG.getShiftAmountConstant(Val: HalfBits, VT, DL: dl); |
| 11031 | // This is always an unsigned shift. |
| 11032 | SDValue TH = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: T, N2: Shift); |
| 11033 | |
| 11034 | unsigned ShiftOpc = Signed ? ISD::SRA : ISD::SRL; |
| 11035 | SDValue LH = DAG.getNode(Opcode: ShiftOpc, DL: dl, VT, N1: LHS, N2: Shift); |
| 11036 | SDValue RH = DAG.getNode(Opcode: ShiftOpc, DL: dl, VT, N1: RHS, N2: Shift); |
| 11037 | |
| 11038 | SDValue U = |
| 11039 | DAG.getNode(Opcode: ISD::ADD, DL: dl, VT, N1: DAG.getNode(Opcode: ISD::MUL, DL: dl, VT, N1: LH, N2: RL), N2: TH); |
| 11040 | SDValue UL = DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: U, N2: Mask); |
| 11041 | SDValue UH = DAG.getNode(Opcode: ShiftOpc, DL: dl, VT, N1: U, N2: Shift); |
| 11042 | |
| 11043 | SDValue V = |
| 11044 | DAG.getNode(Opcode: ISD::ADD, DL: dl, VT, N1: DAG.getNode(Opcode: ISD::MUL, DL: dl, VT, N1: LL, N2: RH), N2: UL); |
| 11045 | SDValue VH = DAG.getNode(Opcode: ShiftOpc, DL: dl, VT, N1: V, N2: Shift); |
| 11046 | |
| 11047 | Lo = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT, N1: TL, |
| 11048 | N2: DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: V, N2: Shift)); |
| 11049 | |
| 11050 | Hi = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT, N1: DAG.getNode(Opcode: ISD::MUL, DL: dl, VT, N1: LH, N2: RH), |
| 11051 | N2: DAG.getNode(Opcode: ISD::ADD, DL: dl, VT, N1: UH, N2: VH)); |
| 11052 | |
| 11053 | // If HiLHS and HiRHS are set, multiply them by the opposite low part and add |
| 11054 | // the products to Hi. |
| 11055 | if (HiLHS) { |
| 11056 | Hi = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT, N1: Hi, |
| 11057 | N2: DAG.getNode(Opcode: ISD::ADD, DL: dl, VT, |
| 11058 | N1: DAG.getNode(Opcode: ISD::MUL, DL: dl, VT, N1: HiRHS, N2: LHS), |
| 11059 | N2: DAG.getNode(Opcode: ISD::MUL, DL: dl, VT, N1: RHS, N2: HiLHS))); |
| 11060 | } |
| 11061 | } |
| 11062 | |
| 11063 | void TargetLowering::forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl, |
| 11064 | bool Signed, const SDValue LHS, |
| 11065 | const SDValue RHS, SDValue &Lo, |
| 11066 | SDValue &Hi) const { |
| 11067 | EVT VT = LHS.getValueType(); |
| 11068 | assert(RHS.getValueType() == VT && "Mismatching operand types" ); |
| 11069 | EVT WideVT = EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: VT.getSizeInBits() * 2); |
| 11070 | // We can fall back to a libcall with an illegal type for the MUL if we |
| 11071 | // have a libcall big enough. |
| 11072 | RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; |
| 11073 | if (WideVT == MVT::i16) |
| 11074 | LC = RTLIB::MUL_I16; |
| 11075 | else if (WideVT == MVT::i32) |
| 11076 | LC = RTLIB::MUL_I32; |
| 11077 | else if (WideVT == MVT::i64) |
| 11078 | LC = RTLIB::MUL_I64; |
| 11079 | else if (WideVT == MVT::i128) |
| 11080 | LC = RTLIB::MUL_I128; |
| 11081 | |
| 11082 | if (LC == RTLIB::UNKNOWN_LIBCALL || !getLibcallName(Call: LC)) { |
| 11083 | forceExpandMultiply(DAG, dl, Signed, Lo, Hi, LHS, RHS); |
| 11084 | return; |
| 11085 | } |
| 11086 | |
| 11087 | SDValue HiLHS, HiRHS; |
| 11088 | if (Signed) { |
| 11089 | // The high part is obtained by SRA'ing all but one of the bits of low |
| 11090 | // part. |
| 11091 | unsigned LoSize = VT.getFixedSizeInBits(); |
| 11092 | SDValue Shift = DAG.getShiftAmountConstant(Val: LoSize - 1, VT, DL: dl); |
| 11093 | HiLHS = DAG.getNode(Opcode: ISD::SRA, DL: dl, VT, N1: LHS, N2: Shift); |
| 11094 | HiRHS = DAG.getNode(Opcode: ISD::SRA, DL: dl, VT, N1: RHS, N2: Shift); |
| 11095 | } else { |
| 11096 | HiLHS = DAG.getConstant(Val: 0, DL: dl, VT); |
| 11097 | HiRHS = DAG.getConstant(Val: 0, DL: dl, VT); |
| 11098 | } |
| 11099 | |
| 11100 | // Attempt a libcall. |
| 11101 | SDValue Ret; |
| 11102 | TargetLowering::MakeLibCallOptions CallOptions; |
| 11103 | CallOptions.setIsSigned(Signed); |
| 11104 | CallOptions.setIsPostTypeLegalization(true); |
| 11105 | if (shouldSplitFunctionArgumentsAsLittleEndian(DL: DAG.getDataLayout())) { |
| 11106 | // Halves of WideVT are packed into registers in different order |
| 11107 | // depending on platform endianness. This is usually handled by |
| 11108 | // the C calling convention, but we can't defer to it in |
| 11109 | // the legalizer. |
| 11110 | SDValue Args[] = {LHS, HiLHS, RHS, HiRHS}; |
| 11111 | Ret = makeLibCall(DAG, LC, RetVT: WideVT, Ops: Args, CallOptions, dl).first; |
| 11112 | } else { |
| 11113 | SDValue Args[] = {HiLHS, LHS, HiRHS, RHS}; |
| 11114 | Ret = makeLibCall(DAG, LC, RetVT: WideVT, Ops: Args, CallOptions, dl).first; |
| 11115 | } |
| 11116 | assert(Ret.getOpcode() == ISD::MERGE_VALUES && |
| 11117 | "Ret value is a collection of constituent nodes holding result." ); |
| 11118 | if (DAG.getDataLayout().isLittleEndian()) { |
| 11119 | // Same as above. |
| 11120 | Lo = Ret.getOperand(i: 0); |
| 11121 | Hi = Ret.getOperand(i: 1); |
| 11122 | } else { |
| 11123 | Lo = Ret.getOperand(i: 1); |
| 11124 | Hi = Ret.getOperand(i: 0); |
| 11125 | } |
| 11126 | } |
| 11127 | |
| 11128 | SDValue |
| 11129 | TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { |
| 11130 | assert((Node->getOpcode() == ISD::SMULFIX || |
| 11131 | Node->getOpcode() == ISD::UMULFIX || |
| 11132 | Node->getOpcode() == ISD::SMULFIXSAT || |
| 11133 | Node->getOpcode() == ISD::UMULFIXSAT) && |
| 11134 | "Expected a fixed point multiplication opcode" ); |
| 11135 | |
| 11136 | SDLoc dl(Node); |
| 11137 | SDValue LHS = Node->getOperand(Num: 0); |
| 11138 | SDValue RHS = Node->getOperand(Num: 1); |
| 11139 | EVT VT = LHS.getValueType(); |
| 11140 | unsigned Scale = Node->getConstantOperandVal(Num: 2); |
| 11141 | bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || |
| 11142 | Node->getOpcode() == ISD::UMULFIXSAT); |
| 11143 | bool Signed = (Node->getOpcode() == ISD::SMULFIX || |
| 11144 | Node->getOpcode() == ISD::SMULFIXSAT); |
| 11145 | EVT BoolVT = getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT); |
| 11146 | unsigned VTSize = VT.getScalarSizeInBits(); |
| 11147 | |
| 11148 | if (!Scale) { |
| 11149 | // [us]mul.fix(a, b, 0) -> mul(a, b) |
| 11150 | if (!Saturating) { |
| 11151 | if (isOperationLegalOrCustom(Op: ISD::MUL, VT)) |
| 11152 | return DAG.getNode(Opcode: ISD::MUL, DL: dl, VT, N1: LHS, N2: RHS); |
| 11153 | } else if (Signed && isOperationLegalOrCustom(Op: ISD::SMULO, VT)) { |
| 11154 | SDValue Result = |
| 11155 | DAG.getNode(Opcode: ISD::SMULO, DL: dl, VTList: DAG.getVTList(VT1: VT, VT2: BoolVT), N1: LHS, N2: RHS); |
| 11156 | SDValue Product = Result.getValue(R: 0); |
| 11157 | SDValue Overflow = Result.getValue(R: 1); |
| 11158 | SDValue Zero = DAG.getConstant(Val: 0, DL: dl, VT); |
| 11159 | |
| 11160 | APInt MinVal = APInt::getSignedMinValue(numBits: VTSize); |
| 11161 | APInt MaxVal = APInt::getSignedMaxValue(numBits: VTSize); |
| 11162 | SDValue SatMin = DAG.getConstant(Val: MinVal, DL: dl, VT); |
| 11163 | SDValue SatMax = DAG.getConstant(Val: MaxVal, DL: dl, VT); |
| 11164 | // Xor the inputs, if resulting sign bit is 0 the product will be |
| 11165 | // positive, else negative. |
| 11166 | SDValue Xor = DAG.getNode(Opcode: ISD::XOR, DL: dl, VT, N1: LHS, N2: RHS); |
| 11167 | SDValue ProdNeg = DAG.getSetCC(DL: dl, VT: BoolVT, LHS: Xor, RHS: Zero, Cond: ISD::SETLT); |
| 11168 | Result = DAG.getSelect(DL: dl, VT, Cond: ProdNeg, LHS: SatMin, RHS: SatMax); |
| 11169 | return DAG.getSelect(DL: dl, VT, Cond: Overflow, LHS: Result, RHS: Product); |
| 11170 | } else if (!Signed && isOperationLegalOrCustom(Op: ISD::UMULO, VT)) { |
| 11171 | SDValue Result = |
| 11172 | DAG.getNode(Opcode: ISD::UMULO, DL: dl, VTList: DAG.getVTList(VT1: VT, VT2: BoolVT), N1: LHS, N2: RHS); |
| 11173 | SDValue Product = Result.getValue(R: 0); |
| 11174 | SDValue Overflow = Result.getValue(R: 1); |
| 11175 | |
| 11176 | APInt MaxVal = APInt::getMaxValue(numBits: VTSize); |
| 11177 | SDValue SatMax = DAG.getConstant(Val: MaxVal, DL: dl, VT); |
| 11178 | return DAG.getSelect(DL: dl, VT, Cond: Overflow, LHS: SatMax, RHS: Product); |
| 11179 | } |
| 11180 | } |
| 11181 | |
| 11182 | assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && |
| 11183 | "Expected scale to be less than the number of bits if signed or at " |
| 11184 | "most the number of bits if unsigned." ); |
| 11185 | assert(LHS.getValueType() == RHS.getValueType() && |
| 11186 | "Expected both operands to be the same type" ); |
| 11187 | |
| 11188 | // Get the upper and lower bits of the result. |
| 11189 | SDValue Lo, Hi; |
| 11190 | unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; |
| 11191 | unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; |
| 11192 | EVT WideVT = EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: VTSize * 2); |
| 11193 | if (VT.isVector()) |
| 11194 | WideVT = |
| 11195 | EVT::getVectorVT(Context&: *DAG.getContext(), VT: WideVT, EC: VT.getVectorElementCount()); |
| 11196 | if (isOperationLegalOrCustom(Op: LoHiOp, VT)) { |
| 11197 | SDValue Result = DAG.getNode(Opcode: LoHiOp, DL: dl, VTList: DAG.getVTList(VT1: VT, VT2: VT), N1: LHS, N2: RHS); |
| 11198 | Lo = Result.getValue(R: 0); |
| 11199 | Hi = Result.getValue(R: 1); |
| 11200 | } else if (isOperationLegalOrCustom(Op: HiOp, VT)) { |
| 11201 | Lo = DAG.getNode(Opcode: ISD::MUL, DL: dl, VT, N1: LHS, N2: RHS); |
| 11202 | Hi = DAG.getNode(Opcode: HiOp, DL: dl, VT, N1: LHS, N2: RHS); |
| 11203 | } else if (isOperationLegalOrCustom(Op: ISD::MUL, VT: WideVT)) { |
| 11204 | // Try for a multiplication using a wider type. |
| 11205 | unsigned Ext = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; |
| 11206 | SDValue LHSExt = DAG.getNode(Opcode: Ext, DL: dl, VT: WideVT, Operand: LHS); |
| 11207 | SDValue RHSExt = DAG.getNode(Opcode: Ext, DL: dl, VT: WideVT, Operand: RHS); |
| 11208 | SDValue Res = DAG.getNode(Opcode: ISD::MUL, DL: dl, VT: WideVT, N1: LHSExt, N2: RHSExt); |
| 11209 | Lo = DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT, Operand: Res); |
| 11210 | SDValue Shifted = |
| 11211 | DAG.getNode(Opcode: ISD::SRA, DL: dl, VT: WideVT, N1: Res, |
| 11212 | N2: DAG.getShiftAmountConstant(Val: VTSize, VT: WideVT, DL: dl)); |
| 11213 | Hi = DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT, Operand: Shifted); |
| 11214 | } else if (VT.isVector()) { |
| 11215 | return SDValue(); |
| 11216 | } else { |
| 11217 | forceExpandWideMUL(DAG, dl, Signed, LHS, RHS, Lo, Hi); |
| 11218 | } |
| 11219 | |
| 11220 | if (Scale == VTSize) |
| 11221 | // Result is just the top half since we'd be shifting by the width of the |
| 11222 | // operand. Overflow impossible so this works for both UMULFIX and |
| 11223 | // UMULFIXSAT. |
| 11224 | return Hi; |
| 11225 | |
| 11226 | // The result will need to be shifted right by the scale since both operands |
| 11227 | // are scaled. The result is given to us in 2 halves, so we only want part of |
| 11228 | // both in the result. |
| 11229 | SDValue Result = DAG.getNode(Opcode: ISD::FSHR, DL: dl, VT, N1: Hi, N2: Lo, |
| 11230 | N3: DAG.getShiftAmountConstant(Val: Scale, VT, DL: dl)); |
| 11231 | if (!Saturating) |
| 11232 | return Result; |
| 11233 | |
| 11234 | if (!Signed) { |
| 11235 | // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the |
| 11236 | // widened multiplication) aren't all zeroes. |
| 11237 | |
| 11238 | // Saturate to max if ((Hi >> Scale) != 0), |
| 11239 | // which is the same as if (Hi > ((1 << Scale) - 1)) |
| 11240 | APInt MaxVal = APInt::getMaxValue(numBits: VTSize); |
| 11241 | SDValue LowMask = DAG.getConstant(Val: APInt::getLowBitsSet(numBits: VTSize, loBitsSet: Scale), |
| 11242 | DL: dl, VT); |
| 11243 | Result = DAG.getSelectCC(DL: dl, LHS: Hi, RHS: LowMask, |
| 11244 | True: DAG.getConstant(Val: MaxVal, DL: dl, VT), False: Result, |
| 11245 | Cond: ISD::SETUGT); |
| 11246 | |
| 11247 | return Result; |
| 11248 | } |
| 11249 | |
| 11250 | // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the |
| 11251 | // widened multiplication) aren't all ones or all zeroes. |
| 11252 | |
| 11253 | SDValue SatMin = DAG.getConstant(Val: APInt::getSignedMinValue(numBits: VTSize), DL: dl, VT); |
| 11254 | SDValue SatMax = DAG.getConstant(Val: APInt::getSignedMaxValue(numBits: VTSize), DL: dl, VT); |
| 11255 | |
| 11256 | if (Scale == 0) { |
| 11257 | SDValue Sign = DAG.getNode(Opcode: ISD::SRA, DL: dl, VT, N1: Lo, |
| 11258 | N2: DAG.getShiftAmountConstant(Val: VTSize - 1, VT, DL: dl)); |
| 11259 | SDValue Overflow = DAG.getSetCC(DL: dl, VT: BoolVT, LHS: Hi, RHS: Sign, Cond: ISD::SETNE); |
| 11260 | // Saturated to SatMin if wide product is negative, and SatMax if wide |
| 11261 | // product is positive ... |
| 11262 | SDValue Zero = DAG.getConstant(Val: 0, DL: dl, VT); |
| 11263 | SDValue ResultIfOverflow = DAG.getSelectCC(DL: dl, LHS: Hi, RHS: Zero, True: SatMin, False: SatMax, |
| 11264 | Cond: ISD::SETLT); |
| 11265 | // ... but only if we overflowed. |
| 11266 | return DAG.getSelect(DL: dl, VT, Cond: Overflow, LHS: ResultIfOverflow, RHS: Result); |
| 11267 | } |
| 11268 | |
| 11269 | // We handled Scale==0 above so all the bits to examine is in Hi. |
| 11270 | |
| 11271 | // Saturate to max if ((Hi >> (Scale - 1)) > 0), |
| 11272 | // which is the same as if (Hi > (1 << (Scale - 1)) - 1) |
| 11273 | SDValue LowMask = DAG.getConstant(Val: APInt::getLowBitsSet(numBits: VTSize, loBitsSet: Scale - 1), |
| 11274 | DL: dl, VT); |
| 11275 | Result = DAG.getSelectCC(DL: dl, LHS: Hi, RHS: LowMask, True: SatMax, False: Result, Cond: ISD::SETGT); |
| 11276 | // Saturate to min if (Hi >> (Scale - 1)) < -1), |
| 11277 | // which is the same as if (HI < (-1 << (Scale - 1)) |
| 11278 | SDValue HighMask = |
| 11279 | DAG.getConstant(Val: APInt::getHighBitsSet(numBits: VTSize, hiBitsSet: VTSize - Scale + 1), |
| 11280 | DL: dl, VT); |
| 11281 | Result = DAG.getSelectCC(DL: dl, LHS: Hi, RHS: HighMask, True: SatMin, False: Result, Cond: ISD::SETLT); |
| 11282 | return Result; |
| 11283 | } |
| 11284 | |
| 11285 | SDValue |
| 11286 | TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, |
| 11287 | SDValue LHS, SDValue RHS, |
| 11288 | unsigned Scale, SelectionDAG &DAG) const { |
| 11289 | assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || |
| 11290 | Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && |
| 11291 | "Expected a fixed point division opcode" ); |
| 11292 | |
| 11293 | EVT VT = LHS.getValueType(); |
| 11294 | bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; |
| 11295 | bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; |
| 11296 | EVT BoolVT = getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT); |
| 11297 | |
| 11298 | // If there is enough room in the type to upscale the LHS or downscale the |
| 11299 | // RHS before the division, we can perform it in this type without having to |
| 11300 | // resize. For signed operations, the LHS headroom is the number of |
| 11301 | // redundant sign bits, and for unsigned ones it is the number of zeroes. |
| 11302 | // The headroom for the RHS is the number of trailing zeroes. |
| 11303 | unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(Op: LHS) - 1 |
| 11304 | : DAG.computeKnownBits(Op: LHS).countMinLeadingZeros(); |
| 11305 | unsigned RHSTrail = DAG.computeKnownBits(Op: RHS).countMinTrailingZeros(); |
| 11306 | |
| 11307 | // For signed saturating operations, we need to be able to detect true integer |
| 11308 | // division overflow; that is, when you have MIN / -EPS. However, this |
| 11309 | // is undefined behavior and if we emit divisions that could take such |
| 11310 | // values it may cause undesired behavior (arithmetic exceptions on x86, for |
| 11311 | // example). |
| 11312 | // Avoid this by requiring an extra bit so that we never get this case. |
| 11313 | // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale |
| 11314 | // signed saturating division, we need to emit a whopping 32-bit division. |
| 11315 | if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) |
| 11316 | return SDValue(); |
| 11317 | |
| 11318 | unsigned LHSShift = std::min(a: LHSLead, b: Scale); |
| 11319 | unsigned RHSShift = Scale - LHSShift; |
| 11320 | |
| 11321 | // At this point, we know that if we shift the LHS up by LHSShift and the |
| 11322 | // RHS down by RHSShift, we can emit a regular division with a final scaling |
| 11323 | // factor of Scale. |
| 11324 | |
| 11325 | if (LHSShift) |
| 11326 | LHS = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: LHS, |
| 11327 | N2: DAG.getShiftAmountConstant(Val: LHSShift, VT, DL: dl)); |
| 11328 | if (RHSShift) |
| 11329 | RHS = DAG.getNode(Opcode: Signed ? ISD::SRA : ISD::SRL, DL: dl, VT, N1: RHS, |
| 11330 | N2: DAG.getShiftAmountConstant(Val: RHSShift, VT, DL: dl)); |
| 11331 | |
| 11332 | SDValue Quot; |
| 11333 | if (Signed) { |
| 11334 | // For signed operations, if the resulting quotient is negative and the |
| 11335 | // remainder is nonzero, subtract 1 from the quotient to round towards |
| 11336 | // negative infinity. |
| 11337 | SDValue Rem; |
| 11338 | // FIXME: Ideally we would always produce an SDIVREM here, but if the |
| 11339 | // type isn't legal, SDIVREM cannot be expanded. There is no reason why |
| 11340 | // we couldn't just form a libcall, but the type legalizer doesn't do it. |
| 11341 | if (isTypeLegal(VT) && |
| 11342 | isOperationLegalOrCustom(Op: ISD::SDIVREM, VT)) { |
| 11343 | Quot = DAG.getNode(Opcode: ISD::SDIVREM, DL: dl, |
| 11344 | VTList: DAG.getVTList(VT1: VT, VT2: VT), |
| 11345 | N1: LHS, N2: RHS); |
| 11346 | Rem = Quot.getValue(R: 1); |
| 11347 | Quot = Quot.getValue(R: 0); |
| 11348 | } else { |
| 11349 | Quot = DAG.getNode(Opcode: ISD::SDIV, DL: dl, VT, |
| 11350 | N1: LHS, N2: RHS); |
| 11351 | Rem = DAG.getNode(Opcode: ISD::SREM, DL: dl, VT, |
| 11352 | N1: LHS, N2: RHS); |
| 11353 | } |
| 11354 | SDValue Zero = DAG.getConstant(Val: 0, DL: dl, VT); |
| 11355 | SDValue RemNonZero = DAG.getSetCC(DL: dl, VT: BoolVT, LHS: Rem, RHS: Zero, Cond: ISD::SETNE); |
| 11356 | SDValue LHSNeg = DAG.getSetCC(DL: dl, VT: BoolVT, LHS, RHS: Zero, Cond: ISD::SETLT); |
| 11357 | SDValue RHSNeg = DAG.getSetCC(DL: dl, VT: BoolVT, LHS: RHS, RHS: Zero, Cond: ISD::SETLT); |
| 11358 | SDValue QuotNeg = DAG.getNode(Opcode: ISD::XOR, DL: dl, VT: BoolVT, N1: LHSNeg, N2: RHSNeg); |
| 11359 | SDValue Sub1 = DAG.getNode(Opcode: ISD::SUB, DL: dl, VT, N1: Quot, |
| 11360 | N2: DAG.getConstant(Val: 1, DL: dl, VT)); |
| 11361 | Quot = DAG.getSelect(DL: dl, VT, |
| 11362 | Cond: DAG.getNode(Opcode: ISD::AND, DL: dl, VT: BoolVT, N1: RemNonZero, N2: QuotNeg), |
| 11363 | LHS: Sub1, RHS: Quot); |
| 11364 | } else |
| 11365 | Quot = DAG.getNode(Opcode: ISD::UDIV, DL: dl, VT, |
| 11366 | N1: LHS, N2: RHS); |
| 11367 | |
| 11368 | return Quot; |
| 11369 | } |
| 11370 | |
| 11371 | void TargetLowering::expandUADDSUBO( |
| 11372 | SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { |
| 11373 | SDLoc dl(Node); |
| 11374 | SDValue LHS = Node->getOperand(Num: 0); |
| 11375 | SDValue RHS = Node->getOperand(Num: 1); |
| 11376 | bool IsAdd = Node->getOpcode() == ISD::UADDO; |
| 11377 | |
| 11378 | // If UADDO_CARRY/SUBO_CARRY is legal, use that instead. |
| 11379 | unsigned OpcCarry = IsAdd ? ISD::UADDO_CARRY : ISD::USUBO_CARRY; |
| 11380 | if (isOperationLegalOrCustom(Op: OpcCarry, VT: Node->getValueType(ResNo: 0))) { |
| 11381 | SDValue CarryIn = DAG.getConstant(Val: 0, DL: dl, VT: Node->getValueType(ResNo: 1)); |
| 11382 | SDValue NodeCarry = DAG.getNode(Opcode: OpcCarry, DL: dl, VTList: Node->getVTList(), |
| 11383 | Ops: { LHS, RHS, CarryIn }); |
| 11384 | Result = SDValue(NodeCarry.getNode(), 0); |
| 11385 | Overflow = SDValue(NodeCarry.getNode(), 1); |
| 11386 | return; |
| 11387 | } |
| 11388 | |
| 11389 | Result = DAG.getNode(Opcode: IsAdd ? ISD::ADD : ISD::SUB, DL: dl, |
| 11390 | VT: LHS.getValueType(), N1: LHS, N2: RHS); |
| 11391 | |
| 11392 | EVT ResultType = Node->getValueType(ResNo: 1); |
| 11393 | EVT SetCCType = getSetCCResultType( |
| 11394 | DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT: Node->getValueType(ResNo: 0)); |
| 11395 | SDValue SetCC; |
| 11396 | if (IsAdd && isOneConstant(V: RHS)) { |
| 11397 | // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces |
| 11398 | // the live range of X. We assume comparing with 0 is cheap. |
| 11399 | // The general case (X + C) < C is not necessarily beneficial. Although we |
| 11400 | // reduce the live range of X, we may introduce the materialization of |
| 11401 | // constant C. |
| 11402 | SetCC = |
| 11403 | DAG.getSetCC(DL: dl, VT: SetCCType, LHS: Result, |
| 11404 | RHS: DAG.getConstant(Val: 0, DL: dl, VT: Node->getValueType(ResNo: 0)), Cond: ISD::SETEQ); |
| 11405 | } else if (IsAdd && isAllOnesConstant(V: RHS)) { |
| 11406 | // Special case: uaddo X, -1 overflows if X != 0. |
| 11407 | SetCC = |
| 11408 | DAG.getSetCC(DL: dl, VT: SetCCType, LHS, |
| 11409 | RHS: DAG.getConstant(Val: 0, DL: dl, VT: Node->getValueType(ResNo: 0)), Cond: ISD::SETNE); |
| 11410 | } else { |
| 11411 | ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; |
| 11412 | SetCC = DAG.getSetCC(DL: dl, VT: SetCCType, LHS: Result, RHS: LHS, Cond: CC); |
| 11413 | } |
| 11414 | Overflow = DAG.getBoolExtOrTrunc(Op: SetCC, SL: dl, VT: ResultType, OpVT: ResultType); |
| 11415 | } |
| 11416 | |
| 11417 | void TargetLowering::expandSADDSUBO( |
| 11418 | SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { |
| 11419 | SDLoc dl(Node); |
| 11420 | SDValue LHS = Node->getOperand(Num: 0); |
| 11421 | SDValue RHS = Node->getOperand(Num: 1); |
| 11422 | bool IsAdd = Node->getOpcode() == ISD::SADDO; |
| 11423 | |
| 11424 | Result = DAG.getNode(Opcode: IsAdd ? ISD::ADD : ISD::SUB, DL: dl, |
| 11425 | VT: LHS.getValueType(), N1: LHS, N2: RHS); |
| 11426 | |
| 11427 | EVT ResultType = Node->getValueType(ResNo: 1); |
| 11428 | EVT OType = getSetCCResultType( |
| 11429 | DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT: Node->getValueType(ResNo: 0)); |
| 11430 | |
| 11431 | // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. |
| 11432 | unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; |
| 11433 | if (isOperationLegal(Op: OpcSat, VT: LHS.getValueType())) { |
| 11434 | SDValue Sat = DAG.getNode(Opcode: OpcSat, DL: dl, VT: LHS.getValueType(), N1: LHS, N2: RHS); |
| 11435 | SDValue SetCC = DAG.getSetCC(DL: dl, VT: OType, LHS: Result, RHS: Sat, Cond: ISD::SETNE); |
| 11436 | Overflow = DAG.getBoolExtOrTrunc(Op: SetCC, SL: dl, VT: ResultType, OpVT: ResultType); |
| 11437 | return; |
| 11438 | } |
| 11439 | |
| 11440 | SDValue Zero = DAG.getConstant(Val: 0, DL: dl, VT: LHS.getValueType()); |
| 11441 | |
| 11442 | // For an addition, the result should be less than one of the operands (LHS) |
| 11443 | // if and only if the other operand (RHS) is negative, otherwise there will |
| 11444 | // be overflow. |
| 11445 | // For a subtraction, the result should be less than one of the operands |
| 11446 | // (LHS) if and only if the other operand (RHS) is (non-zero) positive, |
| 11447 | // otherwise there will be overflow. |
| 11448 | SDValue ResultLowerThanLHS = DAG.getSetCC(DL: dl, VT: OType, LHS: Result, RHS: LHS, Cond: ISD::SETLT); |
| 11449 | SDValue ConditionRHS = |
| 11450 | DAG.getSetCC(DL: dl, VT: OType, LHS: RHS, RHS: Zero, Cond: IsAdd ? ISD::SETLT : ISD::SETGT); |
| 11451 | |
| 11452 | Overflow = DAG.getBoolExtOrTrunc( |
| 11453 | Op: DAG.getNode(Opcode: ISD::XOR, DL: dl, VT: OType, N1: ConditionRHS, N2: ResultLowerThanLHS), SL: dl, |
| 11454 | VT: ResultType, OpVT: ResultType); |
| 11455 | } |
| 11456 | |
| 11457 | bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, |
| 11458 | SDValue &Overflow, SelectionDAG &DAG) const { |
| 11459 | SDLoc dl(Node); |
| 11460 | EVT VT = Node->getValueType(ResNo: 0); |
| 11461 | EVT SetCCVT = getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT); |
| 11462 | SDValue LHS = Node->getOperand(Num: 0); |
| 11463 | SDValue RHS = Node->getOperand(Num: 1); |
| 11464 | bool isSigned = Node->getOpcode() == ISD::SMULO; |
| 11465 | |
| 11466 | // For power-of-two multiplications we can use a simpler shift expansion. |
| 11467 | if (ConstantSDNode *RHSC = isConstOrConstSplat(N: RHS)) { |
| 11468 | const APInt &C = RHSC->getAPIntValue(); |
| 11469 | // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } |
| 11470 | if (C.isPowerOf2()) { |
| 11471 | // smulo(x, signed_min) is same as umulo(x, signed_min). |
| 11472 | bool UseArithShift = isSigned && !C.isMinSignedValue(); |
| 11473 | SDValue ShiftAmt = DAG.getShiftAmountConstant(Val: C.logBase2(), VT, DL: dl); |
| 11474 | Result = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: LHS, N2: ShiftAmt); |
| 11475 | Overflow = DAG.getSetCC(DL: dl, VT: SetCCVT, |
| 11476 | LHS: DAG.getNode(Opcode: UseArithShift ? ISD::SRA : ISD::SRL, |
| 11477 | DL: dl, VT, N1: Result, N2: ShiftAmt), |
| 11478 | RHS: LHS, Cond: ISD::SETNE); |
| 11479 | return true; |
| 11480 | } |
| 11481 | } |
| 11482 | |
| 11483 | EVT WideVT = EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: VT.getScalarSizeInBits() * 2); |
| 11484 | if (VT.isVector()) |
| 11485 | WideVT = |
| 11486 | EVT::getVectorVT(Context&: *DAG.getContext(), VT: WideVT, EC: VT.getVectorElementCount()); |
| 11487 | |
| 11488 | SDValue BottomHalf; |
| 11489 | SDValue TopHalf; |
| 11490 | static const unsigned Ops[2][3] = |
| 11491 | { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, |
| 11492 | { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; |
| 11493 | if (isOperationLegalOrCustom(Op: Ops[isSigned][0], VT)) { |
| 11494 | BottomHalf = DAG.getNode(Opcode: ISD::MUL, DL: dl, VT, N1: LHS, N2: RHS); |
| 11495 | TopHalf = DAG.getNode(Opcode: Ops[isSigned][0], DL: dl, VT, N1: LHS, N2: RHS); |
| 11496 | } else if (isOperationLegalOrCustom(Op: Ops[isSigned][1], VT)) { |
| 11497 | BottomHalf = DAG.getNode(Opcode: Ops[isSigned][1], DL: dl, VTList: DAG.getVTList(VT1: VT, VT2: VT), N1: LHS, |
| 11498 | N2: RHS); |
| 11499 | TopHalf = BottomHalf.getValue(R: 1); |
| 11500 | } else if (isTypeLegal(VT: WideVT)) { |
| 11501 | LHS = DAG.getNode(Opcode: Ops[isSigned][2], DL: dl, VT: WideVT, Operand: LHS); |
| 11502 | RHS = DAG.getNode(Opcode: Ops[isSigned][2], DL: dl, VT: WideVT, Operand: RHS); |
| 11503 | SDValue Mul = DAG.getNode(Opcode: ISD::MUL, DL: dl, VT: WideVT, N1: LHS, N2: RHS); |
| 11504 | BottomHalf = DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT, Operand: Mul); |
| 11505 | SDValue ShiftAmt = |
| 11506 | DAG.getShiftAmountConstant(Val: VT.getScalarSizeInBits(), VT: WideVT, DL: dl); |
| 11507 | TopHalf = DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT, |
| 11508 | Operand: DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: WideVT, N1: Mul, N2: ShiftAmt)); |
| 11509 | } else { |
| 11510 | if (VT.isVector()) |
| 11511 | return false; |
| 11512 | |
| 11513 | forceExpandWideMUL(DAG, dl, Signed: isSigned, LHS, RHS, Lo&: BottomHalf, Hi&: TopHalf); |
| 11514 | } |
| 11515 | |
| 11516 | Result = BottomHalf; |
| 11517 | if (isSigned) { |
| 11518 | SDValue ShiftAmt = DAG.getShiftAmountConstant( |
| 11519 | Val: VT.getScalarSizeInBits() - 1, VT: BottomHalf.getValueType(), DL: dl); |
| 11520 | SDValue Sign = DAG.getNode(Opcode: ISD::SRA, DL: dl, VT, N1: BottomHalf, N2: ShiftAmt); |
| 11521 | Overflow = DAG.getSetCC(DL: dl, VT: SetCCVT, LHS: TopHalf, RHS: Sign, Cond: ISD::SETNE); |
| 11522 | } else { |
| 11523 | Overflow = DAG.getSetCC(DL: dl, VT: SetCCVT, LHS: TopHalf, |
| 11524 | RHS: DAG.getConstant(Val: 0, DL: dl, VT), Cond: ISD::SETNE); |
| 11525 | } |
| 11526 | |
| 11527 | // Truncate the result if SetCC returns a larger type than needed. |
| 11528 | EVT RType = Node->getValueType(ResNo: 1); |
| 11529 | if (RType.bitsLT(VT: Overflow.getValueType())) |
| 11530 | Overflow = DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: RType, Operand: Overflow); |
| 11531 | |
| 11532 | assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && |
| 11533 | "Unexpected result type for S/UMULO legalization" ); |
| 11534 | return true; |
| 11535 | } |
| 11536 | |
| 11537 | SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { |
| 11538 | SDLoc dl(Node); |
| 11539 | unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(VecReduceOpcode: Node->getOpcode()); |
| 11540 | SDValue Op = Node->getOperand(Num: 0); |
| 11541 | EVT VT = Op.getValueType(); |
| 11542 | |
| 11543 | // Try to use a shuffle reduction for power of two vectors. |
| 11544 | if (VT.isPow2VectorType()) { |
| 11545 | while (VT.getVectorElementCount().isKnownMultipleOf(RHS: 2)) { |
| 11546 | EVT HalfVT = VT.getHalfNumVectorElementsVT(Context&: *DAG.getContext()); |
| 11547 | if (!isOperationLegalOrCustom(Op: BaseOpcode, VT: HalfVT)) |
| 11548 | break; |
| 11549 | |
| 11550 | SDValue Lo, Hi; |
| 11551 | std::tie(args&: Lo, args&: Hi) = DAG.SplitVector(N: Op, DL: dl); |
| 11552 | Op = DAG.getNode(Opcode: BaseOpcode, DL: dl, VT: HalfVT, N1: Lo, N2: Hi, Flags: Node->getFlags()); |
| 11553 | VT = HalfVT; |
| 11554 | |
| 11555 | // Stop if splitting is enough to make the reduction legal. |
| 11556 | if (isOperationLegalOrCustom(Op: Node->getOpcode(), VT: HalfVT)) |
| 11557 | return DAG.getNode(Opcode: Node->getOpcode(), DL: dl, VT: Node->getValueType(ResNo: 0), Operand: Op, |
| 11558 | Flags: Node->getFlags()); |
| 11559 | } |
| 11560 | } |
| 11561 | |
| 11562 | if (VT.isScalableVector()) |
| 11563 | reportFatalInternalError( |
| 11564 | reason: "Expanding reductions for scalable vectors is undefined." ); |
| 11565 | |
| 11566 | EVT EltVT = VT.getVectorElementType(); |
| 11567 | unsigned NumElts = VT.getVectorNumElements(); |
| 11568 | |
| 11569 | SmallVector<SDValue, 8> Ops; |
| 11570 | DAG.ExtractVectorElements(Op, Args&: Ops, Start: 0, Count: NumElts); |
| 11571 | |
| 11572 | SDValue Res = Ops[0]; |
| 11573 | for (unsigned i = 1; i < NumElts; i++) |
| 11574 | Res = DAG.getNode(Opcode: BaseOpcode, DL: dl, VT: EltVT, N1: Res, N2: Ops[i], Flags: Node->getFlags()); |
| 11575 | |
| 11576 | // Result type may be wider than element type. |
| 11577 | if (EltVT != Node->getValueType(ResNo: 0)) |
| 11578 | Res = DAG.getNode(Opcode: ISD::ANY_EXTEND, DL: dl, VT: Node->getValueType(ResNo: 0), Operand: Res); |
| 11579 | return Res; |
| 11580 | } |
| 11581 | |
| 11582 | SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { |
| 11583 | SDLoc dl(Node); |
| 11584 | SDValue AccOp = Node->getOperand(Num: 0); |
| 11585 | SDValue VecOp = Node->getOperand(Num: 1); |
| 11586 | SDNodeFlags Flags = Node->getFlags(); |
| 11587 | |
| 11588 | EVT VT = VecOp.getValueType(); |
| 11589 | EVT EltVT = VT.getVectorElementType(); |
| 11590 | |
| 11591 | if (VT.isScalableVector()) |
| 11592 | report_fatal_error( |
| 11593 | reason: "Expanding reductions for scalable vectors is undefined." ); |
| 11594 | |
| 11595 | unsigned NumElts = VT.getVectorNumElements(); |
| 11596 | |
| 11597 | SmallVector<SDValue, 8> Ops; |
| 11598 | DAG.ExtractVectorElements(Op: VecOp, Args&: Ops, Start: 0, Count: NumElts); |
| 11599 | |
| 11600 | unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(VecReduceOpcode: Node->getOpcode()); |
| 11601 | |
| 11602 | SDValue Res = AccOp; |
| 11603 | for (unsigned i = 0; i < NumElts; i++) |
| 11604 | Res = DAG.getNode(Opcode: BaseOpcode, DL: dl, VT: EltVT, N1: Res, N2: Ops[i], Flags); |
| 11605 | |
| 11606 | return Res; |
| 11607 | } |
| 11608 | |
| 11609 | bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, |
| 11610 | SelectionDAG &DAG) const { |
| 11611 | EVT VT = Node->getValueType(ResNo: 0); |
| 11612 | SDLoc dl(Node); |
| 11613 | bool isSigned = Node->getOpcode() == ISD::SREM; |
| 11614 | unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; |
| 11615 | unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; |
| 11616 | SDValue Dividend = Node->getOperand(Num: 0); |
| 11617 | SDValue Divisor = Node->getOperand(Num: 1); |
| 11618 | if (isOperationLegalOrCustom(Op: DivRemOpc, VT)) { |
| 11619 | SDVTList VTs = DAG.getVTList(VT1: VT, VT2: VT); |
| 11620 | Result = DAG.getNode(Opcode: DivRemOpc, DL: dl, VTList: VTs, N1: Dividend, N2: Divisor).getValue(R: 1); |
| 11621 | return true; |
| 11622 | } |
| 11623 | if (isOperationLegalOrCustom(Op: DivOpc, VT)) { |
| 11624 | // X % Y -> X-X/Y*Y |
| 11625 | SDValue Divide = DAG.getNode(Opcode: DivOpc, DL: dl, VT, N1: Dividend, N2: Divisor); |
| 11626 | SDValue Mul = DAG.getNode(Opcode: ISD::MUL, DL: dl, VT, N1: Divide, N2: Divisor); |
| 11627 | Result = DAG.getNode(Opcode: ISD::SUB, DL: dl, VT, N1: Dividend, N2: Mul); |
| 11628 | return true; |
| 11629 | } |
| 11630 | return false; |
| 11631 | } |
| 11632 | |
| 11633 | SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, |
| 11634 | SelectionDAG &DAG) const { |
| 11635 | bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; |
| 11636 | SDLoc dl(SDValue(Node, 0)); |
| 11637 | SDValue Src = Node->getOperand(Num: 0); |
| 11638 | |
| 11639 | // DstVT is the result type, while SatVT is the size to which we saturate |
| 11640 | EVT SrcVT = Src.getValueType(); |
| 11641 | EVT DstVT = Node->getValueType(ResNo: 0); |
| 11642 | |
| 11643 | EVT SatVT = cast<VTSDNode>(Val: Node->getOperand(Num: 1))->getVT(); |
| 11644 | unsigned SatWidth = SatVT.getScalarSizeInBits(); |
| 11645 | unsigned DstWidth = DstVT.getScalarSizeInBits(); |
| 11646 | assert(SatWidth <= DstWidth && |
| 11647 | "Expected saturation width smaller than result width" ); |
| 11648 | |
| 11649 | // Determine minimum and maximum integer values and their corresponding |
| 11650 | // floating-point values. |
| 11651 | APInt MinInt, MaxInt; |
| 11652 | if (IsSigned) { |
| 11653 | MinInt = APInt::getSignedMinValue(numBits: SatWidth).sext(width: DstWidth); |
| 11654 | MaxInt = APInt::getSignedMaxValue(numBits: SatWidth).sext(width: DstWidth); |
| 11655 | } else { |
| 11656 | MinInt = APInt::getMinValue(numBits: SatWidth).zext(width: DstWidth); |
| 11657 | MaxInt = APInt::getMaxValue(numBits: SatWidth).zext(width: DstWidth); |
| 11658 | } |
| 11659 | |
| 11660 | // We cannot risk emitting FP_TO_XINT nodes with a source VT of [b]f16, as |
| 11661 | // libcall emission cannot handle this. Large result types will fail. |
| 11662 | if (SrcVT == MVT::f16 || SrcVT == MVT::bf16) { |
| 11663 | Src = DAG.getNode(Opcode: ISD::FP_EXTEND, DL: dl, VT: MVT::f32, Operand: Src); |
| 11664 | SrcVT = Src.getValueType(); |
| 11665 | } |
| 11666 | |
| 11667 | const fltSemantics &Sem = SrcVT.getFltSemantics(); |
| 11668 | APFloat MinFloat(Sem); |
| 11669 | APFloat MaxFloat(Sem); |
| 11670 | |
| 11671 | APFloat::opStatus MinStatus = |
| 11672 | MinFloat.convertFromAPInt(Input: MinInt, IsSigned, RM: APFloat::rmTowardZero); |
| 11673 | APFloat::opStatus MaxStatus = |
| 11674 | MaxFloat.convertFromAPInt(Input: MaxInt, IsSigned, RM: APFloat::rmTowardZero); |
| 11675 | bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && |
| 11676 | !(MaxStatus & APFloat::opStatus::opInexact); |
| 11677 | |
| 11678 | SDValue MinFloatNode = DAG.getConstantFP(Val: MinFloat, DL: dl, VT: SrcVT); |
| 11679 | SDValue MaxFloatNode = DAG.getConstantFP(Val: MaxFloat, DL: dl, VT: SrcVT); |
| 11680 | |
| 11681 | // If the integer bounds are exactly representable as floats and min/max are |
| 11682 | // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence |
| 11683 | // of comparisons and selects. |
| 11684 | bool MinMaxLegal = isOperationLegal(Op: ISD::FMINNUM, VT: SrcVT) && |
| 11685 | isOperationLegal(Op: ISD::FMAXNUM, VT: SrcVT); |
| 11686 | if (AreExactFloatBounds && MinMaxLegal) { |
| 11687 | SDValue Clamped = Src; |
| 11688 | |
| 11689 | // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. |
| 11690 | Clamped = DAG.getNode(Opcode: ISD::FMAXNUM, DL: dl, VT: SrcVT, N1: Clamped, N2: MinFloatNode); |
| 11691 | // Clamp by MaxFloat from above. NaN cannot occur. |
| 11692 | Clamped = DAG.getNode(Opcode: ISD::FMINNUM, DL: dl, VT: SrcVT, N1: Clamped, N2: MaxFloatNode); |
| 11693 | // Convert clamped value to integer. |
| 11694 | SDValue FpToInt = DAG.getNode(Opcode: IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, |
| 11695 | DL: dl, VT: DstVT, Operand: Clamped); |
| 11696 | |
| 11697 | // In the unsigned case we're done, because we mapped NaN to MinFloat, |
| 11698 | // which will cast to zero. |
| 11699 | if (!IsSigned) |
| 11700 | return FpToInt; |
| 11701 | |
| 11702 | // Otherwise, select 0 if Src is NaN. |
| 11703 | SDValue ZeroInt = DAG.getConstant(Val: 0, DL: dl, VT: DstVT); |
| 11704 | EVT SetCCVT = |
| 11705 | getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT: SrcVT); |
| 11706 | SDValue IsNan = DAG.getSetCC(DL: dl, VT: SetCCVT, LHS: Src, RHS: Src, Cond: ISD::CondCode::SETUO); |
| 11707 | return DAG.getSelect(DL: dl, VT: DstVT, Cond: IsNan, LHS: ZeroInt, RHS: FpToInt); |
| 11708 | } |
| 11709 | |
| 11710 | SDValue MinIntNode = DAG.getConstant(Val: MinInt, DL: dl, VT: DstVT); |
| 11711 | SDValue MaxIntNode = DAG.getConstant(Val: MaxInt, DL: dl, VT: DstVT); |
| 11712 | |
| 11713 | // Result of direct conversion. The assumption here is that the operation is |
| 11714 | // non-trapping and it's fine to apply it to an out-of-range value if we |
| 11715 | // select it away later. |
| 11716 | SDValue FpToInt = |
| 11717 | DAG.getNode(Opcode: IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, DL: dl, VT: DstVT, Operand: Src); |
| 11718 | |
| 11719 | SDValue Select = FpToInt; |
| 11720 | |
| 11721 | EVT SetCCVT = |
| 11722 | getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT: SrcVT); |
| 11723 | |
| 11724 | // If Src ULT MinFloat, select MinInt. In particular, this also selects |
| 11725 | // MinInt if Src is NaN. |
| 11726 | SDValue ULT = DAG.getSetCC(DL: dl, VT: SetCCVT, LHS: Src, RHS: MinFloatNode, Cond: ISD::SETULT); |
| 11727 | Select = DAG.getSelect(DL: dl, VT: DstVT, Cond: ULT, LHS: MinIntNode, RHS: Select); |
| 11728 | // If Src OGT MaxFloat, select MaxInt. |
| 11729 | SDValue OGT = DAG.getSetCC(DL: dl, VT: SetCCVT, LHS: Src, RHS: MaxFloatNode, Cond: ISD::SETOGT); |
| 11730 | Select = DAG.getSelect(DL: dl, VT: DstVT, Cond: OGT, LHS: MaxIntNode, RHS: Select); |
| 11731 | |
| 11732 | // In the unsigned case we are done, because we mapped NaN to MinInt, which |
| 11733 | // is already zero. |
| 11734 | if (!IsSigned) |
| 11735 | return Select; |
| 11736 | |
| 11737 | // Otherwise, select 0 if Src is NaN. |
| 11738 | SDValue ZeroInt = DAG.getConstant(Val: 0, DL: dl, VT: DstVT); |
| 11739 | SDValue IsNan = DAG.getSetCC(DL: dl, VT: SetCCVT, LHS: Src, RHS: Src, Cond: ISD::CondCode::SETUO); |
| 11740 | return DAG.getSelect(DL: dl, VT: DstVT, Cond: IsNan, LHS: ZeroInt, RHS: Select); |
| 11741 | } |
| 11742 | |
| 11743 | SDValue TargetLowering::expandRoundInexactToOdd(EVT ResultVT, SDValue Op, |
| 11744 | const SDLoc &dl, |
| 11745 | SelectionDAG &DAG) const { |
| 11746 | EVT OperandVT = Op.getValueType(); |
| 11747 | if (OperandVT.getScalarType() == ResultVT.getScalarType()) |
| 11748 | return Op; |
| 11749 | EVT ResultIntVT = ResultVT.changeTypeToInteger(); |
| 11750 | // We are rounding binary64/binary128 -> binary32 -> bfloat16. This |
| 11751 | // can induce double-rounding which may alter the results. We can |
| 11752 | // correct for this using a trick explained in: Boldo, Sylvie, and |
| 11753 | // Guillaume Melquiond. "When double rounding is odd." 17th IMACS |
| 11754 | // World Congress. 2005. |
| 11755 | SDValue Narrow = DAG.getFPExtendOrRound(Op, DL: dl, VT: ResultVT); |
| 11756 | SDValue NarrowAsWide = DAG.getFPExtendOrRound(Op: Narrow, DL: dl, VT: OperandVT); |
| 11757 | |
| 11758 | // We can keep the narrow value as-is if narrowing was exact (no |
| 11759 | // rounding error), the wide value was NaN (the narrow value is also |
| 11760 | // NaN and should be preserved) or if we rounded to the odd value. |
| 11761 | SDValue NarrowBits = DAG.getNode(Opcode: ISD::BITCAST, DL: dl, VT: ResultIntVT, Operand: Narrow); |
| 11762 | SDValue One = DAG.getConstant(Val: 1, DL: dl, VT: ResultIntVT); |
| 11763 | SDValue NegativeOne = DAG.getAllOnesConstant(DL: dl, VT: ResultIntVT); |
| 11764 | SDValue And = DAG.getNode(Opcode: ISD::AND, DL: dl, VT: ResultIntVT, N1: NarrowBits, N2: One); |
| 11765 | EVT ResultIntVTCCVT = getSetCCResultType( |
| 11766 | DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT: And.getValueType()); |
| 11767 | SDValue Zero = DAG.getConstant(Val: 0, DL: dl, VT: ResultIntVT); |
| 11768 | // The result is already odd so we don't need to do anything. |
| 11769 | SDValue AlreadyOdd = DAG.getSetCC(DL: dl, VT: ResultIntVTCCVT, LHS: And, RHS: Zero, Cond: ISD::SETNE); |
| 11770 | |
| 11771 | EVT WideSetCCVT = getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), |
| 11772 | VT: Op.getValueType()); |
| 11773 | // We keep results which are exact, odd or NaN. |
| 11774 | SDValue KeepNarrow = |
| 11775 | DAG.getSetCC(DL: dl, VT: WideSetCCVT, LHS: Op, RHS: NarrowAsWide, Cond: ISD::SETUEQ); |
| 11776 | KeepNarrow = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: WideSetCCVT, N1: KeepNarrow, N2: AlreadyOdd); |
| 11777 | // We morally performed a round-down if AbsNarrow is smaller than |
| 11778 | // AbsWide. |
| 11779 | SDValue AbsWide = DAG.getNode(Opcode: ISD::FABS, DL: dl, VT: OperandVT, Operand: Op); |
| 11780 | SDValue AbsNarrowAsWide = DAG.getNode(Opcode: ISD::FABS, DL: dl, VT: OperandVT, Operand: NarrowAsWide); |
| 11781 | SDValue NarrowIsRd = |
| 11782 | DAG.getSetCC(DL: dl, VT: WideSetCCVT, LHS: AbsWide, RHS: AbsNarrowAsWide, Cond: ISD::SETOGT); |
| 11783 | // If the narrow value is odd or exact, pick it. |
| 11784 | // Otherwise, narrow is even and corresponds to either the rounded-up |
| 11785 | // or rounded-down value. If narrow is the rounded-down value, we want |
| 11786 | // the rounded-up value as it will be odd. |
| 11787 | SDValue Adjust = DAG.getSelect(DL: dl, VT: ResultIntVT, Cond: NarrowIsRd, LHS: One, RHS: NegativeOne); |
| 11788 | SDValue Adjusted = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: ResultIntVT, N1: NarrowBits, N2: Adjust); |
| 11789 | Op = DAG.getSelect(DL: dl, VT: ResultIntVT, Cond: KeepNarrow, LHS: NarrowBits, RHS: Adjusted); |
| 11790 | return DAG.getNode(Opcode: ISD::BITCAST, DL: dl, VT: ResultVT, Operand: Op); |
| 11791 | } |
| 11792 | |
| 11793 | SDValue TargetLowering::expandFP_ROUND(SDNode *Node, SelectionDAG &DAG) const { |
| 11794 | assert(Node->getOpcode() == ISD::FP_ROUND && "Unexpected opcode!" ); |
| 11795 | SDValue Op = Node->getOperand(Num: 0); |
| 11796 | EVT VT = Node->getValueType(ResNo: 0); |
| 11797 | SDLoc dl(Node); |
| 11798 | if (VT.getScalarType() == MVT::bf16) { |
| 11799 | if (Node->getConstantOperandVal(Num: 1) == 1) { |
| 11800 | return DAG.getNode(Opcode: ISD::FP_TO_BF16, DL: dl, VT, Operand: Node->getOperand(Num: 0)); |
| 11801 | } |
| 11802 | EVT OperandVT = Op.getValueType(); |
| 11803 | SDValue IsNaN = DAG.getSetCC( |
| 11804 | DL: dl, |
| 11805 | VT: getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT: OperandVT), |
| 11806 | LHS: Op, RHS: Op, Cond: ISD::SETUO); |
| 11807 | |
| 11808 | // We are rounding binary64/binary128 -> binary32 -> bfloat16. This |
| 11809 | // can induce double-rounding which may alter the results. We can |
| 11810 | // correct for this using a trick explained in: Boldo, Sylvie, and |
| 11811 | // Guillaume Melquiond. "When double rounding is odd." 17th IMACS |
| 11812 | // World Congress. 2005. |
| 11813 | EVT F32 = VT.isVector() ? VT.changeVectorElementType(EltVT: MVT::f32) : MVT::f32; |
| 11814 | EVT I32 = F32.changeTypeToInteger(); |
| 11815 | Op = expandRoundInexactToOdd(ResultVT: F32, Op, dl, DAG); |
| 11816 | Op = DAG.getNode(Opcode: ISD::BITCAST, DL: dl, VT: I32, Operand: Op); |
| 11817 | |
| 11818 | // Conversions should set NaN's quiet bit. This also prevents NaNs from |
| 11819 | // turning into infinities. |
| 11820 | SDValue NaN = |
| 11821 | DAG.getNode(Opcode: ISD::OR, DL: dl, VT: I32, N1: Op, N2: DAG.getConstant(Val: 0x400000, DL: dl, VT: I32)); |
| 11822 | |
| 11823 | // Factor in the contribution of the low 16 bits. |
| 11824 | SDValue One = DAG.getConstant(Val: 1, DL: dl, VT: I32); |
| 11825 | SDValue Lsb = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: I32, N1: Op, |
| 11826 | N2: DAG.getShiftAmountConstant(Val: 16, VT: I32, DL: dl)); |
| 11827 | Lsb = DAG.getNode(Opcode: ISD::AND, DL: dl, VT: I32, N1: Lsb, N2: One); |
| 11828 | SDValue RoundingBias = |
| 11829 | DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: I32, N1: DAG.getConstant(Val: 0x7fff, DL: dl, VT: I32), N2: Lsb); |
| 11830 | SDValue Add = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: I32, N1: Op, N2: RoundingBias); |
| 11831 | |
| 11832 | // Don't round if we had a NaN, we don't want to turn 0x7fffffff into |
| 11833 | // 0x80000000. |
| 11834 | Op = DAG.getSelect(DL: dl, VT: I32, Cond: IsNaN, LHS: NaN, RHS: Add); |
| 11835 | |
| 11836 | // Now that we have rounded, shift the bits into position. |
| 11837 | Op = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: I32, N1: Op, |
| 11838 | N2: DAG.getShiftAmountConstant(Val: 16, VT: I32, DL: dl)); |
| 11839 | Op = DAG.getNode(Opcode: ISD::BITCAST, DL: dl, VT: I32, Operand: Op); |
| 11840 | EVT I16 = I32.isVector() ? I32.changeVectorElementType(EltVT: MVT::i16) : MVT::i16; |
| 11841 | Op = DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: I16, Operand: Op); |
| 11842 | return DAG.getNode(Opcode: ISD::BITCAST, DL: dl, VT, Operand: Op); |
| 11843 | } |
| 11844 | return SDValue(); |
| 11845 | } |
| 11846 | |
| 11847 | SDValue TargetLowering::expandVectorSplice(SDNode *Node, |
| 11848 | SelectionDAG &DAG) const { |
| 11849 | assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!" ); |
| 11850 | assert(Node->getValueType(0).isScalableVector() && |
| 11851 | "Fixed length vector types expected to use SHUFFLE_VECTOR!" ); |
| 11852 | |
| 11853 | EVT VT = Node->getValueType(ResNo: 0); |
| 11854 | SDValue V1 = Node->getOperand(Num: 0); |
| 11855 | SDValue V2 = Node->getOperand(Num: 1); |
| 11856 | int64_t Imm = cast<ConstantSDNode>(Val: Node->getOperand(Num: 2))->getSExtValue(); |
| 11857 | SDLoc DL(Node); |
| 11858 | |
| 11859 | // Expand through memory thusly: |
| 11860 | // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr |
| 11861 | // Store V1, Ptr |
| 11862 | // Store V2, Ptr + sizeof(V1) |
| 11863 | // If (Imm < 0) |
| 11864 | // TrailingElts = -Imm |
| 11865 | // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) |
| 11866 | // else |
| 11867 | // Ptr = Ptr + (Imm * sizeof(VT.Elt)) |
| 11868 | // Res = Load Ptr |
| 11869 | |
| 11870 | Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); |
| 11871 | |
| 11872 | EVT MemVT = EVT::getVectorVT(Context&: *DAG.getContext(), VT: VT.getVectorElementType(), |
| 11873 | EC: VT.getVectorElementCount() * 2); |
| 11874 | SDValue StackPtr = DAG.CreateStackTemporary(Bytes: MemVT.getStoreSize(), Alignment); |
| 11875 | EVT PtrVT = StackPtr.getValueType(); |
| 11876 | auto &MF = DAG.getMachineFunction(); |
| 11877 | auto FrameIndex = cast<FrameIndexSDNode>(Val: StackPtr.getNode())->getIndex(); |
| 11878 | auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FI: FrameIndex); |
| 11879 | |
| 11880 | // Store the lo part of CONCAT_VECTORS(V1, V2) |
| 11881 | SDValue StoreV1 = DAG.getStore(Chain: DAG.getEntryNode(), dl: DL, Val: V1, Ptr: StackPtr, PtrInfo); |
| 11882 | // Store the hi part of CONCAT_VECTORS(V1, V2) |
| 11883 | SDValue OffsetToV2 = DAG.getVScale( |
| 11884 | DL, VT: PtrVT, |
| 11885 | MulImm: APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinValue())); |
| 11886 | SDValue StackPtr2 = DAG.getNode(Opcode: ISD::ADD, DL, VT: PtrVT, N1: StackPtr, N2: OffsetToV2); |
| 11887 | SDValue StoreV2 = DAG.getStore(Chain: StoreV1, dl: DL, Val: V2, Ptr: StackPtr2, PtrInfo); |
| 11888 | |
| 11889 | if (Imm >= 0) { |
| 11890 | // Load back the required element. getVectorElementPointer takes care of |
| 11891 | // clamping the index if it's out-of-bounds. |
| 11892 | StackPtr = getVectorElementPointer(DAG, VecPtr: StackPtr, VecVT: VT, Index: Node->getOperand(Num: 2)); |
| 11893 | // Load the spliced result |
| 11894 | return DAG.getLoad(VT, dl: DL, Chain: StoreV2, Ptr: StackPtr, |
| 11895 | PtrInfo: MachinePointerInfo::getUnknownStack(MF)); |
| 11896 | } |
| 11897 | |
| 11898 | uint64_t TrailingElts = -Imm; |
| 11899 | |
| 11900 | // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. |
| 11901 | TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); |
| 11902 | SDValue TrailingBytes = |
| 11903 | DAG.getConstant(Val: TrailingElts * EltByteSize, DL, VT: PtrVT); |
| 11904 | |
| 11905 | if (TrailingElts > VT.getVectorMinNumElements()) { |
| 11906 | SDValue VLBytes = |
| 11907 | DAG.getVScale(DL, VT: PtrVT, |
| 11908 | MulImm: APInt(PtrVT.getFixedSizeInBits(), |
| 11909 | VT.getStoreSize().getKnownMinValue())); |
| 11910 | TrailingBytes = DAG.getNode(Opcode: ISD::UMIN, DL, VT: PtrVT, N1: TrailingBytes, N2: VLBytes); |
| 11911 | } |
| 11912 | |
| 11913 | // Calculate the start address of the spliced result. |
| 11914 | StackPtr2 = DAG.getNode(Opcode: ISD::SUB, DL, VT: PtrVT, N1: StackPtr2, N2: TrailingBytes); |
| 11915 | |
| 11916 | // Load the spliced result |
| 11917 | return DAG.getLoad(VT, dl: DL, Chain: StoreV2, Ptr: StackPtr2, |
| 11918 | PtrInfo: MachinePointerInfo::getUnknownStack(MF)); |
| 11919 | } |
| 11920 | |
| 11921 | SDValue TargetLowering::expandVECTOR_COMPRESS(SDNode *Node, |
| 11922 | SelectionDAG &DAG) const { |
| 11923 | SDLoc DL(Node); |
| 11924 | SDValue Vec = Node->getOperand(Num: 0); |
| 11925 | SDValue Mask = Node->getOperand(Num: 1); |
| 11926 | SDValue Passthru = Node->getOperand(Num: 2); |
| 11927 | |
| 11928 | EVT VecVT = Vec.getValueType(); |
| 11929 | EVT ScalarVT = VecVT.getScalarType(); |
| 11930 | EVT MaskVT = Mask.getValueType(); |
| 11931 | EVT MaskScalarVT = MaskVT.getScalarType(); |
| 11932 | |
| 11933 | // Needs to be handled by targets that have scalable vector types. |
| 11934 | if (VecVT.isScalableVector()) |
| 11935 | report_fatal_error(reason: "Cannot expand masked_compress for scalable vectors." ); |
| 11936 | |
| 11937 | SDValue StackPtr = DAG.CreateStackTemporary( |
| 11938 | Bytes: VecVT.getStoreSize(), Alignment: DAG.getReducedAlign(VT: VecVT, /*UseABI=*/false)); |
| 11939 | int FI = cast<FrameIndexSDNode>(Val: StackPtr.getNode())->getIndex(); |
| 11940 | MachinePointerInfo PtrInfo = |
| 11941 | MachinePointerInfo::getFixedStack(MF&: DAG.getMachineFunction(), FI); |
| 11942 | |
| 11943 | MVT PositionVT = getVectorIdxTy(DL: DAG.getDataLayout()); |
| 11944 | SDValue Chain = DAG.getEntryNode(); |
| 11945 | SDValue OutPos = DAG.getConstant(Val: 0, DL, VT: PositionVT); |
| 11946 | |
| 11947 | bool HasPassthru = !Passthru.isUndef(); |
| 11948 | |
| 11949 | // If we have a passthru vector, store it on the stack, overwrite the matching |
| 11950 | // positions and then re-write the last element that was potentially |
| 11951 | // overwritten even though mask[i] = false. |
| 11952 | if (HasPassthru) |
| 11953 | Chain = DAG.getStore(Chain, dl: DL, Val: Passthru, Ptr: StackPtr, PtrInfo); |
| 11954 | |
| 11955 | SDValue LastWriteVal; |
| 11956 | APInt PassthruSplatVal; |
| 11957 | bool IsSplatPassthru = |
| 11958 | ISD::isConstantSplatVector(N: Passthru.getNode(), SplatValue&: PassthruSplatVal); |
| 11959 | |
| 11960 | if (IsSplatPassthru) { |
| 11961 | // As we do not know which position we wrote to last, we cannot simply |
| 11962 | // access that index from the passthru vector. So we first check if passthru |
| 11963 | // is a splat vector, to use any element ... |
| 11964 | LastWriteVal = DAG.getConstant(Val: PassthruSplatVal, DL, VT: ScalarVT); |
| 11965 | } else if (HasPassthru) { |
| 11966 | // ... if it is not a splat vector, we need to get the passthru value at |
| 11967 | // position = popcount(mask) and re-load it from the stack before it is |
| 11968 | // overwritten in the loop below. |
| 11969 | EVT PopcountVT = ScalarVT.changeTypeToInteger(); |
| 11970 | SDValue Popcount = DAG.getNode( |
| 11971 | Opcode: ISD::TRUNCATE, DL, VT: MaskVT.changeVectorElementType(EltVT: MVT::i1), Operand: Mask); |
| 11972 | Popcount = |
| 11973 | DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL, |
| 11974 | VT: MaskVT.changeVectorElementType(EltVT: PopcountVT), Operand: Popcount); |
| 11975 | Popcount = DAG.getNode(Opcode: ISD::VECREDUCE_ADD, DL, VT: PopcountVT, Operand: Popcount); |
| 11976 | SDValue LastElmtPtr = |
| 11977 | getVectorElementPointer(DAG, VecPtr: StackPtr, VecVT, Index: Popcount); |
| 11978 | LastWriteVal = DAG.getLoad( |
| 11979 | VT: ScalarVT, dl: DL, Chain, Ptr: LastElmtPtr, |
| 11980 | PtrInfo: MachinePointerInfo::getUnknownStack(MF&: DAG.getMachineFunction())); |
| 11981 | Chain = LastWriteVal.getValue(R: 1); |
| 11982 | } |
| 11983 | |
| 11984 | unsigned NumElms = VecVT.getVectorNumElements(); |
| 11985 | for (unsigned I = 0; I < NumElms; I++) { |
| 11986 | SDValue ValI = DAG.getExtractVectorElt(DL, VT: ScalarVT, Vec, Idx: I); |
| 11987 | SDValue OutPtr = getVectorElementPointer(DAG, VecPtr: StackPtr, VecVT, Index: OutPos); |
| 11988 | Chain = DAG.getStore( |
| 11989 | Chain, dl: DL, Val: ValI, Ptr: OutPtr, |
| 11990 | PtrInfo: MachinePointerInfo::getUnknownStack(MF&: DAG.getMachineFunction())); |
| 11991 | |
| 11992 | // Get the mask value and add it to the current output position. This |
| 11993 | // either increments by 1 if MaskI is true or adds 0 otherwise. |
| 11994 | // Freeze in case we have poison/undef mask entries. |
| 11995 | SDValue MaskI = |
| 11996 | DAG.getFreeze(V: DAG.getExtractVectorElt(DL, VT: MaskScalarVT, Vec: Mask, Idx: I)); |
| 11997 | MaskI = DAG.getFreeze(V: MaskI); |
| 11998 | MaskI = DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT: MVT::i1, Operand: MaskI); |
| 11999 | MaskI = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL, VT: PositionVT, Operand: MaskI); |
| 12000 | OutPos = DAG.getNode(Opcode: ISD::ADD, DL, VT: PositionVT, N1: OutPos, N2: MaskI); |
| 12001 | |
| 12002 | if (HasPassthru && I == NumElms - 1) { |
| 12003 | SDValue EndOfVector = |
| 12004 | DAG.getConstant(Val: VecVT.getVectorNumElements() - 1, DL, VT: PositionVT); |
| 12005 | SDValue AllLanesSelected = |
| 12006 | DAG.getSetCC(DL, VT: MVT::i1, LHS: OutPos, RHS: EndOfVector, Cond: ISD::CondCode::SETUGT); |
| 12007 | OutPos = DAG.getNode(Opcode: ISD::UMIN, DL, VT: PositionVT, N1: OutPos, N2: EndOfVector); |
| 12008 | OutPtr = getVectorElementPointer(DAG, VecPtr: StackPtr, VecVT, Index: OutPos); |
| 12009 | |
| 12010 | // Re-write the last ValI if all lanes were selected. Otherwise, |
| 12011 | // overwrite the last write it with the passthru value. |
| 12012 | LastWriteVal = DAG.getSelect(DL, VT: ScalarVT, Cond: AllLanesSelected, LHS: ValI, |
| 12013 | RHS: LastWriteVal, Flags: SDNodeFlags::Unpredictable); |
| 12014 | Chain = DAG.getStore( |
| 12015 | Chain, dl: DL, Val: LastWriteVal, Ptr: OutPtr, |
| 12016 | PtrInfo: MachinePointerInfo::getUnknownStack(MF&: DAG.getMachineFunction())); |
| 12017 | } |
| 12018 | } |
| 12019 | |
| 12020 | return DAG.getLoad(VT: VecVT, dl: DL, Chain, Ptr: StackPtr, PtrInfo); |
| 12021 | } |
| 12022 | |
| 12023 | SDValue TargetLowering::expandPartialReduceMLA(SDNode *N, |
| 12024 | SelectionDAG &DAG) const { |
| 12025 | SDLoc DL(N); |
| 12026 | SDValue Acc = N->getOperand(Num: 0); |
| 12027 | SDValue MulLHS = N->getOperand(Num: 1); |
| 12028 | SDValue MulRHS = N->getOperand(Num: 2); |
| 12029 | EVT AccVT = Acc.getValueType(); |
| 12030 | EVT MulOpVT = MulLHS.getValueType(); |
| 12031 | |
| 12032 | EVT ExtMulOpVT = |
| 12033 | EVT::getVectorVT(Context&: *DAG.getContext(), VT: AccVT.getVectorElementType(), |
| 12034 | EC: MulOpVT.getVectorElementCount()); |
| 12035 | |
| 12036 | unsigned ExtOpcLHS = N->getOpcode() == ISD::PARTIAL_REDUCE_UMLA |
| 12037 | ? ISD::ZERO_EXTEND |
| 12038 | : ISD::SIGN_EXTEND; |
| 12039 | unsigned ExtOpcRHS = N->getOpcode() == ISD::PARTIAL_REDUCE_SMLA |
| 12040 | ? ISD::SIGN_EXTEND |
| 12041 | : ISD::ZERO_EXTEND; |
| 12042 | |
| 12043 | if (ExtMulOpVT != MulOpVT) { |
| 12044 | MulLHS = DAG.getNode(Opcode: ExtOpcLHS, DL, VT: ExtMulOpVT, Operand: MulLHS); |
| 12045 | MulRHS = DAG.getNode(Opcode: ExtOpcRHS, DL, VT: ExtMulOpVT, Operand: MulRHS); |
| 12046 | } |
| 12047 | SDValue Input = MulLHS; |
| 12048 | APInt ConstantOne; |
| 12049 | if (!ISD::isConstantSplatVector(N: MulRHS.getNode(), SplatValue&: ConstantOne) || |
| 12050 | !ConstantOne.isOne()) |
| 12051 | Input = DAG.getNode(Opcode: ISD::MUL, DL, VT: ExtMulOpVT, N1: MulLHS, N2: MulRHS); |
| 12052 | |
| 12053 | unsigned Stride = AccVT.getVectorMinNumElements(); |
| 12054 | unsigned ScaleFactor = MulOpVT.getVectorMinNumElements() / Stride; |
| 12055 | |
| 12056 | // Collect all of the subvectors |
| 12057 | std::deque<SDValue> Subvectors = {Acc}; |
| 12058 | for (unsigned I = 0; I < ScaleFactor; I++) |
| 12059 | Subvectors.push_back(x: DAG.getExtractSubvector(DL, VT: AccVT, Vec: Input, Idx: I * Stride)); |
| 12060 | |
| 12061 | // Flatten the subvector tree |
| 12062 | while (Subvectors.size() > 1) { |
| 12063 | Subvectors.push_back( |
| 12064 | x: DAG.getNode(Opcode: ISD::ADD, DL, VT: AccVT, Ops: {Subvectors[0], Subvectors[1]})); |
| 12065 | Subvectors.pop_front(); |
| 12066 | Subvectors.pop_front(); |
| 12067 | } |
| 12068 | |
| 12069 | assert(Subvectors.size() == 1 && |
| 12070 | "There should only be one subvector after tree flattening" ); |
| 12071 | |
| 12072 | return Subvectors[0]; |
| 12073 | } |
| 12074 | |
| 12075 | bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, |
| 12076 | SDValue &LHS, SDValue &RHS, |
| 12077 | SDValue &CC, SDValue Mask, |
| 12078 | SDValue EVL, bool &NeedInvert, |
| 12079 | const SDLoc &dl, SDValue &Chain, |
| 12080 | bool IsSignaling) const { |
| 12081 | MVT OpVT = LHS.getSimpleValueType(); |
| 12082 | ISD::CondCode CCCode = cast<CondCodeSDNode>(Val&: CC)->get(); |
| 12083 | NeedInvert = false; |
| 12084 | assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset" ); |
| 12085 | bool IsNonVP = !EVL; |
| 12086 | switch (getCondCodeAction(CC: CCCode, VT: OpVT)) { |
| 12087 | default: |
| 12088 | llvm_unreachable("Unknown condition code action!" ); |
| 12089 | case TargetLowering::Legal: |
| 12090 | // Nothing to do. |
| 12091 | break; |
| 12092 | case TargetLowering::Expand: { |
| 12093 | ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(Operation: CCCode); |
| 12094 | if (isCondCodeLegalOrCustom(CC: InvCC, VT: OpVT)) { |
| 12095 | std::swap(a&: LHS, b&: RHS); |
| 12096 | CC = DAG.getCondCode(Cond: InvCC); |
| 12097 | return true; |
| 12098 | } |
| 12099 | // Swapping operands didn't work. Try inverting the condition. |
| 12100 | bool NeedSwap = false; |
| 12101 | InvCC = getSetCCInverse(Operation: CCCode, Type: OpVT); |
| 12102 | if (!isCondCodeLegalOrCustom(CC: InvCC, VT: OpVT)) { |
| 12103 | // If inverting the condition is not enough, try swapping operands |
| 12104 | // on top of it. |
| 12105 | InvCC = ISD::getSetCCSwappedOperands(Operation: InvCC); |
| 12106 | NeedSwap = true; |
| 12107 | } |
| 12108 | if (isCondCodeLegalOrCustom(CC: InvCC, VT: OpVT)) { |
| 12109 | CC = DAG.getCondCode(Cond: InvCC); |
| 12110 | NeedInvert = true; |
| 12111 | if (NeedSwap) |
| 12112 | std::swap(a&: LHS, b&: RHS); |
| 12113 | return true; |
| 12114 | } |
| 12115 | |
| 12116 | // Special case: expand i1 comparisons using logical operations. |
| 12117 | if (OpVT == MVT::i1) { |
| 12118 | SDValue Ret; |
| 12119 | switch (CCCode) { |
| 12120 | default: |
| 12121 | llvm_unreachable("Unknown integer setcc!" ); |
| 12122 | case ISD::SETEQ: // X == Y --> ~(X ^ Y) |
| 12123 | Ret = DAG.getNOT(DL: dl, Val: DAG.getNode(Opcode: ISD::XOR, DL: dl, VT: MVT::i1, N1: LHS, N2: RHS), |
| 12124 | VT: MVT::i1); |
| 12125 | break; |
| 12126 | case ISD::SETNE: // X != Y --> (X ^ Y) |
| 12127 | Ret = DAG.getNode(Opcode: ISD::XOR, DL: dl, VT: MVT::i1, N1: LHS, N2: RHS); |
| 12128 | break; |
| 12129 | case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y |
| 12130 | case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y |
| 12131 | Ret = DAG.getNode(Opcode: ISD::AND, DL: dl, VT: MVT::i1, N1: RHS, |
| 12132 | N2: DAG.getNOT(DL: dl, Val: LHS, VT: MVT::i1)); |
| 12133 | break; |
| 12134 | case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X |
| 12135 | case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X |
| 12136 | Ret = DAG.getNode(Opcode: ISD::AND, DL: dl, VT: MVT::i1, N1: LHS, |
| 12137 | N2: DAG.getNOT(DL: dl, Val: RHS, VT: MVT::i1)); |
| 12138 | break; |
| 12139 | case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y |
| 12140 | case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y |
| 12141 | Ret = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: MVT::i1, N1: RHS, |
| 12142 | N2: DAG.getNOT(DL: dl, Val: LHS, VT: MVT::i1)); |
| 12143 | break; |
| 12144 | case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X |
| 12145 | case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X |
| 12146 | Ret = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: MVT::i1, N1: LHS, |
| 12147 | N2: DAG.getNOT(DL: dl, Val: RHS, VT: MVT::i1)); |
| 12148 | break; |
| 12149 | } |
| 12150 | |
| 12151 | LHS = DAG.getZExtOrTrunc(Op: Ret, DL: dl, VT); |
| 12152 | RHS = SDValue(); |
| 12153 | CC = SDValue(); |
| 12154 | return true; |
| 12155 | } |
| 12156 | |
| 12157 | ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; |
| 12158 | unsigned Opc = 0; |
| 12159 | switch (CCCode) { |
| 12160 | default: |
| 12161 | llvm_unreachable("Don't know how to expand this condition!" ); |
| 12162 | case ISD::SETUO: |
| 12163 | if (isCondCodeLegal(CC: ISD::SETUNE, VT: OpVT)) { |
| 12164 | CC1 = ISD::SETUNE; |
| 12165 | CC2 = ISD::SETUNE; |
| 12166 | Opc = ISD::OR; |
| 12167 | break; |
| 12168 | } |
| 12169 | assert(isCondCodeLegal(ISD::SETOEQ, OpVT) && |
| 12170 | "If SETUE is expanded, SETOEQ or SETUNE must be legal!" ); |
| 12171 | NeedInvert = true; |
| 12172 | [[fallthrough]]; |
| 12173 | case ISD::SETO: |
| 12174 | assert(isCondCodeLegal(ISD::SETOEQ, OpVT) && |
| 12175 | "If SETO is expanded, SETOEQ must be legal!" ); |
| 12176 | CC1 = ISD::SETOEQ; |
| 12177 | CC2 = ISD::SETOEQ; |
| 12178 | Opc = ISD::AND; |
| 12179 | break; |
| 12180 | case ISD::SETONE: |
| 12181 | case ISD::SETUEQ: |
| 12182 | // If the SETUO or SETO CC isn't legal, we might be able to use |
| 12183 | // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one |
| 12184 | // of SETOGT/SETOLT to be legal, the other can be emulated by swapping |
| 12185 | // the operands. |
| 12186 | CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; |
| 12187 | if (!isCondCodeLegal(CC: CC2, VT: OpVT) && (isCondCodeLegal(CC: ISD::SETOGT, VT: OpVT) || |
| 12188 | isCondCodeLegal(CC: ISD::SETOLT, VT: OpVT))) { |
| 12189 | CC1 = ISD::SETOGT; |
| 12190 | CC2 = ISD::SETOLT; |
| 12191 | Opc = ISD::OR; |
| 12192 | NeedInvert = ((unsigned)CCCode & 0x8U); |
| 12193 | break; |
| 12194 | } |
| 12195 | [[fallthrough]]; |
| 12196 | case ISD::SETOEQ: |
| 12197 | case ISD::SETOGT: |
| 12198 | case ISD::SETOGE: |
| 12199 | case ISD::SETOLT: |
| 12200 | case ISD::SETOLE: |
| 12201 | case ISD::SETUNE: |
| 12202 | case ISD::SETUGT: |
| 12203 | case ISD::SETUGE: |
| 12204 | case ISD::SETULT: |
| 12205 | case ISD::SETULE: |
| 12206 | // If we are floating point, assign and break, otherwise fall through. |
| 12207 | if (!OpVT.isInteger()) { |
| 12208 | // We can use the 4th bit to tell if we are the unordered |
| 12209 | // or ordered version of the opcode. |
| 12210 | CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; |
| 12211 | Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; |
| 12212 | CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); |
| 12213 | break; |
| 12214 | } |
| 12215 | // Fallthrough if we are unsigned integer. |
| 12216 | [[fallthrough]]; |
| 12217 | case ISD::SETLE: |
| 12218 | case ISD::SETGT: |
| 12219 | case ISD::SETGE: |
| 12220 | case ISD::SETLT: |
| 12221 | case ISD::SETNE: |
| 12222 | case ISD::SETEQ: |
| 12223 | // If all combinations of inverting the condition and swapping operands |
| 12224 | // didn't work then we have no means to expand the condition. |
| 12225 | llvm_unreachable("Don't know how to expand this condition!" ); |
| 12226 | } |
| 12227 | |
| 12228 | SDValue SetCC1, SetCC2; |
| 12229 | if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { |
| 12230 | // If we aren't the ordered or unorder operation, |
| 12231 | // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). |
| 12232 | if (IsNonVP) { |
| 12233 | SetCC1 = DAG.getSetCC(DL: dl, VT, LHS, RHS, Cond: CC1, Chain, IsSignaling); |
| 12234 | SetCC2 = DAG.getSetCC(DL: dl, VT, LHS, RHS, Cond: CC2, Chain, IsSignaling); |
| 12235 | } else { |
| 12236 | SetCC1 = DAG.getSetCCVP(DL: dl, VT, LHS, RHS, Cond: CC1, Mask, EVL); |
| 12237 | SetCC2 = DAG.getSetCCVP(DL: dl, VT, LHS, RHS, Cond: CC2, Mask, EVL); |
| 12238 | } |
| 12239 | } else { |
| 12240 | // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) |
| 12241 | if (IsNonVP) { |
| 12242 | SetCC1 = DAG.getSetCC(DL: dl, VT, LHS, RHS: LHS, Cond: CC1, Chain, IsSignaling); |
| 12243 | SetCC2 = DAG.getSetCC(DL: dl, VT, LHS: RHS, RHS, Cond: CC2, Chain, IsSignaling); |
| 12244 | } else { |
| 12245 | SetCC1 = DAG.getSetCCVP(DL: dl, VT, LHS, RHS: LHS, Cond: CC1, Mask, EVL); |
| 12246 | SetCC2 = DAG.getSetCCVP(DL: dl, VT, LHS: RHS, RHS, Cond: CC2, Mask, EVL); |
| 12247 | } |
| 12248 | } |
| 12249 | if (Chain) |
| 12250 | Chain = DAG.getNode(Opcode: ISD::TokenFactor, DL: dl, VT: MVT::Other, N1: SetCC1.getValue(R: 1), |
| 12251 | N2: SetCC2.getValue(R: 1)); |
| 12252 | if (IsNonVP) |
| 12253 | LHS = DAG.getNode(Opcode: Opc, DL: dl, VT, N1: SetCC1, N2: SetCC2); |
| 12254 | else { |
| 12255 | // Transform the binary opcode to the VP equivalent. |
| 12256 | assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode" ); |
| 12257 | Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND; |
| 12258 | LHS = DAG.getNode(Opcode: Opc, DL: dl, VT, N1: SetCC1, N2: SetCC2, N3: Mask, N4: EVL); |
| 12259 | } |
| 12260 | RHS = SDValue(); |
| 12261 | CC = SDValue(); |
| 12262 | return true; |
| 12263 | } |
| 12264 | } |
| 12265 | return false; |
| 12266 | } |
| 12267 | |
| 12268 | SDValue TargetLowering::expandVectorNaryOpBySplitting(SDNode *Node, |
| 12269 | SelectionDAG &DAG) const { |
| 12270 | EVT VT = Node->getValueType(ResNo: 0); |
| 12271 | // Despite its documentation, GetSplitDestVTs will assert if VT cannot be |
| 12272 | // split into two equal parts. |
| 12273 | if (!VT.isVector() || !VT.getVectorElementCount().isKnownMultipleOf(RHS: 2)) |
| 12274 | return SDValue(); |
| 12275 | |
| 12276 | // Restrict expansion to cases where both parts can be concatenated. |
| 12277 | auto [LoVT, HiVT] = DAG.GetSplitDestVTs(VT); |
| 12278 | if (LoVT != HiVT || !isTypeLegal(VT: LoVT)) |
| 12279 | return SDValue(); |
| 12280 | |
| 12281 | SDLoc DL(Node); |
| 12282 | unsigned Opcode = Node->getOpcode(); |
| 12283 | |
| 12284 | // Don't expand if the result is likely to be unrolled anyway. |
| 12285 | if (!isOperationLegalOrCustomOrPromote(Op: Opcode, VT: LoVT)) |
| 12286 | return SDValue(); |
| 12287 | |
| 12288 | SmallVector<SDValue, 4> LoOps, HiOps; |
| 12289 | for (const SDValue &V : Node->op_values()) { |
| 12290 | auto [Lo, Hi] = DAG.SplitVector(N: V, DL, LoVT, HiVT); |
| 12291 | LoOps.push_back(Elt: Lo); |
| 12292 | HiOps.push_back(Elt: Hi); |
| 12293 | } |
| 12294 | |
| 12295 | SDValue SplitOpLo = DAG.getNode(Opcode, DL, VT: LoVT, Ops: LoOps); |
| 12296 | SDValue SplitOpHi = DAG.getNode(Opcode, DL, VT: HiVT, Ops: HiOps); |
| 12297 | return DAG.getNode(Opcode: ISD::CONCAT_VECTORS, DL, VT, N1: SplitOpLo, N2: SplitOpHi); |
| 12298 | } |
| 12299 | |
| 12300 | SDValue TargetLowering::(EVT ResultVT, |
| 12301 | const SDLoc &DL, |
| 12302 | EVT InVecVT, SDValue EltNo, |
| 12303 | LoadSDNode *OriginalLoad, |
| 12304 | SelectionDAG &DAG) const { |
| 12305 | assert(OriginalLoad->isSimple()); |
| 12306 | |
| 12307 | EVT VecEltVT = InVecVT.getVectorElementType(); |
| 12308 | |
| 12309 | // If the vector element type is not a multiple of a byte then we are unable |
| 12310 | // to correctly compute an address to load only the extracted element as a |
| 12311 | // scalar. |
| 12312 | if (!VecEltVT.isByteSized()) |
| 12313 | return SDValue(); |
| 12314 | |
| 12315 | ISD::LoadExtType ExtTy = |
| 12316 | ResultVT.bitsGT(VT: VecEltVT) ? ISD::EXTLOAD : ISD::NON_EXTLOAD; |
| 12317 | if (!isOperationLegalOrCustom(Op: ISD::LOAD, VT: VecEltVT)) |
| 12318 | return SDValue(); |
| 12319 | |
| 12320 | std::optional<unsigned> ByteOffset; |
| 12321 | Align Alignment = OriginalLoad->getAlign(); |
| 12322 | MachinePointerInfo MPI; |
| 12323 | if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(Val&: EltNo)) { |
| 12324 | int Elt = ConstEltNo->getZExtValue(); |
| 12325 | ByteOffset = VecEltVT.getSizeInBits() * Elt / 8; |
| 12326 | MPI = OriginalLoad->getPointerInfo().getWithOffset(O: *ByteOffset); |
| 12327 | Alignment = commonAlignment(A: Alignment, Offset: *ByteOffset); |
| 12328 | } else { |
| 12329 | // Discard the pointer info except the address space because the memory |
| 12330 | // operand can't represent this new access since the offset is variable. |
| 12331 | MPI = MachinePointerInfo(OriginalLoad->getPointerInfo().getAddrSpace()); |
| 12332 | Alignment = commonAlignment(A: Alignment, Offset: VecEltVT.getSizeInBits() / 8); |
| 12333 | } |
| 12334 | |
| 12335 | if (!shouldReduceLoadWidth(Load: OriginalLoad, ExtTy, NewVT: VecEltVT, ByteOffset)) |
| 12336 | return SDValue(); |
| 12337 | |
| 12338 | unsigned IsFast = 0; |
| 12339 | if (!allowsMemoryAccess(Context&: *DAG.getContext(), DL: DAG.getDataLayout(), VT: VecEltVT, |
| 12340 | AddrSpace: OriginalLoad->getAddressSpace(), Alignment, |
| 12341 | Flags: OriginalLoad->getMemOperand()->getFlags(), Fast: &IsFast) || |
| 12342 | !IsFast) |
| 12343 | return SDValue(); |
| 12344 | |
| 12345 | SDValue NewPtr = |
| 12346 | getVectorElementPointer(DAG, VecPtr: OriginalLoad->getBasePtr(), VecVT: InVecVT, Index: EltNo); |
| 12347 | |
| 12348 | // We are replacing a vector load with a scalar load. The new load must have |
| 12349 | // identical memory op ordering to the original. |
| 12350 | SDValue Load; |
| 12351 | if (ResultVT.bitsGT(VT: VecEltVT)) { |
| 12352 | // If the result type of vextract is wider than the load, then issue an |
| 12353 | // extending load instead. |
| 12354 | ISD::LoadExtType ExtType = isLoadExtLegal(ExtType: ISD::ZEXTLOAD, ValVT: ResultVT, MemVT: VecEltVT) |
| 12355 | ? ISD::ZEXTLOAD |
| 12356 | : ISD::EXTLOAD; |
| 12357 | Load = DAG.getExtLoad(ExtType, dl: DL, VT: ResultVT, Chain: OriginalLoad->getChain(), |
| 12358 | Ptr: NewPtr, PtrInfo: MPI, MemVT: VecEltVT, Alignment, |
| 12359 | MMOFlags: OriginalLoad->getMemOperand()->getFlags(), |
| 12360 | AAInfo: OriginalLoad->getAAInfo()); |
| 12361 | DAG.makeEquivalentMemoryOrdering(OldLoad: OriginalLoad, NewMemOp: Load); |
| 12362 | } else { |
| 12363 | // The result type is narrower or the same width as the vector element |
| 12364 | Load = DAG.getLoad(VT: VecEltVT, dl: DL, Chain: OriginalLoad->getChain(), Ptr: NewPtr, PtrInfo: MPI, |
| 12365 | Alignment, MMOFlags: OriginalLoad->getMemOperand()->getFlags(), |
| 12366 | AAInfo: OriginalLoad->getAAInfo()); |
| 12367 | DAG.makeEquivalentMemoryOrdering(OldLoad: OriginalLoad, NewMemOp: Load); |
| 12368 | if (ResultVT.bitsLT(VT: VecEltVT)) |
| 12369 | Load = DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT: ResultVT, Operand: Load); |
| 12370 | else |
| 12371 | Load = DAG.getBitcast(VT: ResultVT, V: Load); |
| 12372 | } |
| 12373 | |
| 12374 | return Load; |
| 12375 | } |
| 12376 | |