| 1 | //===- TwoAddressInstructionPass.cpp - Two-Address instruction pass -------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the TwoAddress instruction pass which is used |
| 10 | // by most register allocators. Two-Address instructions are rewritten |
| 11 | // from: |
| 12 | // |
| 13 | // A = B op C |
| 14 | // |
| 15 | // to: |
| 16 | // |
| 17 | // A = B |
| 18 | // A op= C |
| 19 | // |
| 20 | // Note that if a register allocator chooses to use this pass, that it |
| 21 | // has to be capable of handling the non-SSA nature of these rewritten |
| 22 | // virtual registers. |
| 23 | // |
| 24 | // It is also worth noting that the duplicate operand of the two |
| 25 | // address instruction is removed. |
| 26 | // |
| 27 | //===----------------------------------------------------------------------===// |
| 28 | |
| 29 | #include "llvm/CodeGen/TwoAddressInstructionPass.h" |
| 30 | #include "llvm/ADT/DenseMap.h" |
| 31 | #include "llvm/ADT/SmallPtrSet.h" |
| 32 | #include "llvm/ADT/SmallVector.h" |
| 33 | #include "llvm/ADT/Statistic.h" |
| 34 | #include "llvm/ADT/iterator_range.h" |
| 35 | #include "llvm/Analysis/AliasAnalysis.h" |
| 36 | #include "llvm/CodeGen/LiveInterval.h" |
| 37 | #include "llvm/CodeGen/LiveIntervals.h" |
| 38 | #include "llvm/CodeGen/LiveVariables.h" |
| 39 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 40 | #include "llvm/CodeGen/MachineDominators.h" |
| 41 | #include "llvm/CodeGen/MachineFunction.h" |
| 42 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 43 | #include "llvm/CodeGen/MachineInstr.h" |
| 44 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 45 | #include "llvm/CodeGen/MachineLoopInfo.h" |
| 46 | #include "llvm/CodeGen/MachineOperand.h" |
| 47 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 48 | #include "llvm/CodeGen/Passes.h" |
| 49 | #include "llvm/CodeGen/SlotIndexes.h" |
| 50 | #include "llvm/CodeGen/TargetInstrInfo.h" |
| 51 | #include "llvm/CodeGen/TargetOpcodes.h" |
| 52 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
| 53 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 54 | #include "llvm/MC/MCInstrDesc.h" |
| 55 | #include "llvm/Pass.h" |
| 56 | #include "llvm/Support/CodeGen.h" |
| 57 | #include "llvm/Support/CommandLine.h" |
| 58 | #include "llvm/Support/Debug.h" |
| 59 | #include "llvm/Support/ErrorHandling.h" |
| 60 | #include "llvm/Support/raw_ostream.h" |
| 61 | #include "llvm/Target/TargetMachine.h" |
| 62 | #include <cassert> |
| 63 | #include <iterator> |
| 64 | #include <utility> |
| 65 | |
| 66 | using namespace llvm; |
| 67 | |
| 68 | #define DEBUG_TYPE "twoaddressinstruction" |
| 69 | |
| 70 | STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions" ); |
| 71 | STATISTIC(NumCommuted , "Number of instructions commuted to coalesce" ); |
| 72 | STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted" ); |
| 73 | STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address" ); |
| 74 | STATISTIC(NumReSchedUps, "Number of instructions re-scheduled up" ); |
| 75 | STATISTIC(NumReSchedDowns, "Number of instructions re-scheduled down" ); |
| 76 | |
| 77 | // Temporary flag to disable rescheduling. |
| 78 | static cl::opt<bool> |
| 79 | EnableRescheduling("twoaddr-reschedule" , |
| 80 | cl::desc("Coalesce copies by rescheduling (default=true)" ), |
| 81 | cl::init(Val: true), cl::Hidden); |
| 82 | |
| 83 | // Limit the number of dataflow edges to traverse when evaluating the benefit |
| 84 | // of commuting operands. |
| 85 | static cl::opt<unsigned> MaxDataFlowEdge( |
| 86 | "dataflow-edge-limit" , cl::Hidden, cl::init(Val: 3), |
| 87 | cl::desc("Maximum number of dataflow edges to traverse when evaluating " |
| 88 | "the benefit of commuting operands" )); |
| 89 | |
| 90 | namespace { |
| 91 | |
| 92 | class TwoAddressInstructionImpl { |
| 93 | MachineFunction *MF = nullptr; |
| 94 | const TargetInstrInfo *TII = nullptr; |
| 95 | const TargetRegisterInfo *TRI = nullptr; |
| 96 | const InstrItineraryData *InstrItins = nullptr; |
| 97 | MachineRegisterInfo *MRI = nullptr; |
| 98 | LiveVariables *LV = nullptr; |
| 99 | LiveIntervals *LIS = nullptr; |
| 100 | AliasAnalysis *AA = nullptr; |
| 101 | CodeGenOptLevel OptLevel = CodeGenOptLevel::None; |
| 102 | |
| 103 | // The current basic block being processed. |
| 104 | MachineBasicBlock *MBB = nullptr; |
| 105 | |
| 106 | // Keep track the distance of a MI from the start of the current basic block. |
| 107 | DenseMap<MachineInstr*, unsigned> DistanceMap; |
| 108 | |
| 109 | // Set of already processed instructions in the current block. |
| 110 | SmallPtrSet<MachineInstr*, 8> Processed; |
| 111 | |
| 112 | // A map from virtual registers to physical registers which are likely targets |
| 113 | // to be coalesced to due to copies from physical registers to virtual |
| 114 | // registers. e.g. v1024 = move r0. |
| 115 | DenseMap<Register, Register> SrcRegMap; |
| 116 | |
| 117 | // A map from virtual registers to physical registers which are likely targets |
| 118 | // to be coalesced to due to copies to physical registers from virtual |
| 119 | // registers. e.g. r1 = move v1024. |
| 120 | DenseMap<Register, Register> DstRegMap; |
| 121 | |
| 122 | MachineInstr *getSingleDef(Register Reg, MachineBasicBlock *BB) const; |
| 123 | |
| 124 | bool isRevCopyChain(Register FromReg, Register ToReg, int Maxlen); |
| 125 | |
| 126 | bool noUseAfterLastDef(Register Reg, unsigned Dist, unsigned &LastDef); |
| 127 | |
| 128 | bool isCopyToReg(MachineInstr &MI, Register &SrcReg, Register &DstReg, |
| 129 | bool &IsSrcPhys, bool &IsDstPhys) const; |
| 130 | |
| 131 | bool isPlainlyKilled(const MachineInstr *MI, LiveRange &LR) const; |
| 132 | bool isPlainlyKilled(const MachineInstr *MI, Register Reg) const; |
| 133 | bool isPlainlyKilled(const MachineOperand &MO) const; |
| 134 | |
| 135 | bool isKilled(MachineInstr &MI, Register Reg, bool allowFalsePositives) const; |
| 136 | |
| 137 | MachineInstr *findOnlyInterestingUse(Register Reg, MachineBasicBlock *MBB, |
| 138 | bool &IsCopy, Register &DstReg, |
| 139 | bool &IsDstPhys) const; |
| 140 | |
| 141 | bool regsAreCompatible(Register RegA, Register RegB) const; |
| 142 | |
| 143 | void removeMapRegEntry(const MachineOperand &MO, |
| 144 | DenseMap<Register, Register> &RegMap) const; |
| 145 | |
| 146 | void removeClobberedSrcRegMap(MachineInstr *MI); |
| 147 | |
| 148 | bool regOverlapsSet(const SmallVectorImpl<Register> &Set, Register Reg) const; |
| 149 | |
| 150 | bool isProfitableToCommute(Register RegA, Register RegB, Register RegC, |
| 151 | MachineInstr *MI, unsigned Dist); |
| 152 | |
| 153 | bool commuteInstruction(MachineInstr *MI, unsigned DstIdx, |
| 154 | unsigned RegBIdx, unsigned RegCIdx, unsigned Dist); |
| 155 | |
| 156 | bool isProfitableToConv3Addr(Register RegA, Register RegB); |
| 157 | |
| 158 | bool convertInstTo3Addr(MachineBasicBlock::iterator &mi, |
| 159 | MachineBasicBlock::iterator &nmi, Register RegA, |
| 160 | Register RegB, unsigned &Dist); |
| 161 | |
| 162 | bool isDefTooClose(Register Reg, unsigned Dist, MachineInstr *MI); |
| 163 | |
| 164 | bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, |
| 165 | MachineBasicBlock::iterator &nmi, Register Reg); |
| 166 | bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, |
| 167 | MachineBasicBlock::iterator &nmi, Register Reg); |
| 168 | |
| 169 | bool tryInstructionTransform(MachineBasicBlock::iterator &mi, |
| 170 | MachineBasicBlock::iterator &nmi, |
| 171 | unsigned SrcIdx, unsigned DstIdx, |
| 172 | unsigned &Dist, bool shouldOnlyCommute); |
| 173 | |
| 174 | bool tryInstructionCommute(MachineInstr *MI, |
| 175 | unsigned DstOpIdx, |
| 176 | unsigned BaseOpIdx, |
| 177 | bool BaseOpKilled, |
| 178 | unsigned Dist); |
| 179 | void scanUses(Register DstReg); |
| 180 | |
| 181 | void processCopy(MachineInstr *MI); |
| 182 | |
| 183 | using TiedPairList = SmallVector<std::pair<unsigned, unsigned>, 4>; |
| 184 | using TiedOperandMap = SmallDenseMap<Register, TiedPairList>; |
| 185 | |
| 186 | bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&); |
| 187 | void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist); |
| 188 | void eliminateRegSequence(MachineBasicBlock::iterator&); |
| 189 | bool processStatepoint(MachineInstr *MI, TiedOperandMap &TiedOperands); |
| 190 | |
| 191 | public: |
| 192 | TwoAddressInstructionImpl(MachineFunction &MF, MachineFunctionPass *P); |
| 193 | TwoAddressInstructionImpl(MachineFunction &MF, |
| 194 | MachineFunctionAnalysisManager &MFAM); |
| 195 | void setOptLevel(CodeGenOptLevel Level) { OptLevel = Level; } |
| 196 | bool run(); |
| 197 | }; |
| 198 | |
| 199 | class TwoAddressInstructionLegacyPass : public MachineFunctionPass { |
| 200 | public: |
| 201 | static char ID; // Pass identification, replacement for typeid |
| 202 | |
| 203 | TwoAddressInstructionLegacyPass() : MachineFunctionPass(ID) { |
| 204 | initializeTwoAddressInstructionLegacyPassPass( |
| 205 | *PassRegistry::getPassRegistry()); |
| 206 | } |
| 207 | |
| 208 | /// Pass entry point. |
| 209 | bool runOnMachineFunction(MachineFunction &MF) override { |
| 210 | TwoAddressInstructionImpl Impl(MF, this); |
| 211 | // Disable optimizations if requested. We cannot skip the whole pass as some |
| 212 | // fixups are necessary for correctness. |
| 213 | if (skipFunction(F: MF.getFunction())) |
| 214 | Impl.setOptLevel(CodeGenOptLevel::None); |
| 215 | return Impl.run(); |
| 216 | } |
| 217 | |
| 218 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 219 | AU.setPreservesCFG(); |
| 220 | AU.addUsedIfAvailable<AAResultsWrapperPass>(); |
| 221 | AU.addUsedIfAvailable<LiveVariablesWrapperPass>(); |
| 222 | AU.addPreserved<LiveVariablesWrapperPass>(); |
| 223 | AU.addPreserved<SlotIndexesWrapperPass>(); |
| 224 | AU.addPreserved<LiveIntervalsWrapperPass>(); |
| 225 | AU.addPreservedID(ID&: MachineLoopInfoID); |
| 226 | AU.addPreservedID(ID&: MachineDominatorsID); |
| 227 | MachineFunctionPass::getAnalysisUsage(AU); |
| 228 | } |
| 229 | }; |
| 230 | |
| 231 | } // end anonymous namespace |
| 232 | |
| 233 | PreservedAnalyses |
| 234 | TwoAddressInstructionPass::run(MachineFunction &MF, |
| 235 | MachineFunctionAnalysisManager &MFAM) { |
| 236 | // Disable optimizations if requested. We cannot skip the whole pass as some |
| 237 | // fixups are necessary for correctness. |
| 238 | TwoAddressInstructionImpl Impl(MF, MFAM); |
| 239 | if (MF.getFunction().hasOptNone()) |
| 240 | Impl.setOptLevel(CodeGenOptLevel::None); |
| 241 | |
| 242 | MFPropsModifier _(*this, MF); |
| 243 | bool Changed = Impl.run(); |
| 244 | if (!Changed) |
| 245 | return PreservedAnalyses::all(); |
| 246 | auto PA = getMachineFunctionPassPreservedAnalyses(); |
| 247 | PA.preserve<LiveIntervalsAnalysis>(); |
| 248 | PA.preserve<LiveVariablesAnalysis>(); |
| 249 | PA.preserve<MachineDominatorTreeAnalysis>(); |
| 250 | PA.preserve<MachineLoopAnalysis>(); |
| 251 | PA.preserve<SlotIndexesAnalysis>(); |
| 252 | PA.preserveSet<CFGAnalyses>(); |
| 253 | return PA; |
| 254 | } |
| 255 | |
| 256 | char TwoAddressInstructionLegacyPass::ID = 0; |
| 257 | |
| 258 | char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionLegacyPass::ID; |
| 259 | |
| 260 | INITIALIZE_PASS_BEGIN(TwoAddressInstructionLegacyPass, DEBUG_TYPE, |
| 261 | "Two-Address instruction pass" , false, false) |
| 262 | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) |
| 263 | INITIALIZE_PASS_END(TwoAddressInstructionLegacyPass, DEBUG_TYPE, |
| 264 | "Two-Address instruction pass" , false, false) |
| 265 | |
| 266 | TwoAddressInstructionImpl::TwoAddressInstructionImpl( |
| 267 | MachineFunction &Func, MachineFunctionAnalysisManager &MFAM) |
| 268 | : MF(&Func), TII(Func.getSubtarget().getInstrInfo()), |
| 269 | TRI(Func.getSubtarget().getRegisterInfo()), |
| 270 | InstrItins(Func.getSubtarget().getInstrItineraryData()), |
| 271 | MRI(&Func.getRegInfo()), |
| 272 | LV(MFAM.getCachedResult<LiveVariablesAnalysis>(IR&: Func)), |
| 273 | LIS(MFAM.getCachedResult<LiveIntervalsAnalysis>(IR&: Func)), |
| 274 | OptLevel(Func.getTarget().getOptLevel()) { |
| 275 | auto &FAM = MFAM.getResult<FunctionAnalysisManagerMachineFunctionProxy>(IR&: Func) |
| 276 | .getManager(); |
| 277 | AA = FAM.getCachedResult<AAManager>(IR&: Func.getFunction()); |
| 278 | } |
| 279 | |
| 280 | TwoAddressInstructionImpl::TwoAddressInstructionImpl(MachineFunction &Func, |
| 281 | MachineFunctionPass *P) |
| 282 | : MF(&Func), TII(Func.getSubtarget().getInstrInfo()), |
| 283 | TRI(Func.getSubtarget().getRegisterInfo()), |
| 284 | InstrItins(Func.getSubtarget().getInstrItineraryData()), |
| 285 | MRI(&Func.getRegInfo()), OptLevel(Func.getTarget().getOptLevel()) { |
| 286 | auto *LVWrapper = P->getAnalysisIfAvailable<LiveVariablesWrapperPass>(); |
| 287 | LV = LVWrapper ? &LVWrapper->getLV() : nullptr; |
| 288 | auto *LISWrapper = P->getAnalysisIfAvailable<LiveIntervalsWrapperPass>(); |
| 289 | LIS = LISWrapper ? &LISWrapper->getLIS() : nullptr; |
| 290 | if (auto *AAPass = P->getAnalysisIfAvailable<AAResultsWrapperPass>()) |
| 291 | AA = &AAPass->getAAResults(); |
| 292 | else |
| 293 | AA = nullptr; |
| 294 | } |
| 295 | |
| 296 | /// Return the MachineInstr* if it is the single def of the Reg in current BB. |
| 297 | MachineInstr * |
| 298 | TwoAddressInstructionImpl::getSingleDef(Register Reg, |
| 299 | MachineBasicBlock *BB) const { |
| 300 | MachineInstr *Ret = nullptr; |
| 301 | for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { |
| 302 | if (DefMI.getParent() != BB || DefMI.isDebugValue()) |
| 303 | continue; |
| 304 | if (!Ret) |
| 305 | Ret = &DefMI; |
| 306 | else if (Ret != &DefMI) |
| 307 | return nullptr; |
| 308 | } |
| 309 | return Ret; |
| 310 | } |
| 311 | |
| 312 | /// Check if there is a reversed copy chain from FromReg to ToReg: |
| 313 | /// %Tmp1 = copy %Tmp2; |
| 314 | /// %FromReg = copy %Tmp1; |
| 315 | /// %ToReg = add %FromReg ... |
| 316 | /// %Tmp2 = copy %ToReg; |
| 317 | /// MaxLen specifies the maximum length of the copy chain the func |
| 318 | /// can walk through. |
| 319 | bool TwoAddressInstructionImpl::isRevCopyChain(Register FromReg, Register ToReg, |
| 320 | int Maxlen) { |
| 321 | Register TmpReg = FromReg; |
| 322 | for (int i = 0; i < Maxlen; i++) { |
| 323 | MachineInstr *Def = getSingleDef(Reg: TmpReg, BB: MBB); |
| 324 | if (!Def || !Def->isCopy()) |
| 325 | return false; |
| 326 | |
| 327 | TmpReg = Def->getOperand(i: 1).getReg(); |
| 328 | |
| 329 | if (TmpReg == ToReg) |
| 330 | return true; |
| 331 | } |
| 332 | return false; |
| 333 | } |
| 334 | |
| 335 | /// Return true if there are no intervening uses between the last instruction |
| 336 | /// in the MBB that defines the specified register and the two-address |
| 337 | /// instruction which is being processed. It also returns the last def location |
| 338 | /// by reference. |
| 339 | bool TwoAddressInstructionImpl::noUseAfterLastDef(Register Reg, unsigned Dist, |
| 340 | unsigned &LastDef) { |
| 341 | LastDef = 0; |
| 342 | unsigned LastUse = Dist; |
| 343 | for (MachineOperand &MO : MRI->reg_operands(Reg)) { |
| 344 | MachineInstr *MI = MO.getParent(); |
| 345 | if (MI->getParent() != MBB || MI->isDebugValue()) |
| 346 | continue; |
| 347 | DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(Val: MI); |
| 348 | if (DI == DistanceMap.end()) |
| 349 | continue; |
| 350 | if (MO.isUse() && DI->second < LastUse) |
| 351 | LastUse = DI->second; |
| 352 | if (MO.isDef() && DI->second > LastDef) |
| 353 | LastDef = DI->second; |
| 354 | } |
| 355 | |
| 356 | return !(LastUse > LastDef && LastUse < Dist); |
| 357 | } |
| 358 | |
| 359 | /// Return true if the specified MI is a copy instruction or an extract_subreg |
| 360 | /// instruction. It also returns the source and destination registers and |
| 361 | /// whether they are physical registers by reference. |
| 362 | bool TwoAddressInstructionImpl::isCopyToReg(MachineInstr &MI, Register &SrcReg, |
| 363 | Register &DstReg, bool &IsSrcPhys, |
| 364 | bool &IsDstPhys) const { |
| 365 | SrcReg = 0; |
| 366 | DstReg = 0; |
| 367 | if (MI.isCopy()) { |
| 368 | DstReg = MI.getOperand(i: 0).getReg(); |
| 369 | SrcReg = MI.getOperand(i: 1).getReg(); |
| 370 | } else if (MI.isInsertSubreg() || MI.isSubregToReg()) { |
| 371 | DstReg = MI.getOperand(i: 0).getReg(); |
| 372 | SrcReg = MI.getOperand(i: 2).getReg(); |
| 373 | } else { |
| 374 | return false; |
| 375 | } |
| 376 | |
| 377 | IsSrcPhys = SrcReg.isPhysical(); |
| 378 | IsDstPhys = DstReg.isPhysical(); |
| 379 | return true; |
| 380 | } |
| 381 | |
| 382 | bool TwoAddressInstructionImpl::isPlainlyKilled(const MachineInstr *MI, |
| 383 | LiveRange &LR) const { |
| 384 | // This is to match the kill flag version where undefs don't have kill flags. |
| 385 | if (!LR.hasAtLeastOneValue()) |
| 386 | return false; |
| 387 | |
| 388 | SlotIndex useIdx = LIS->getInstructionIndex(Instr: *MI); |
| 389 | LiveInterval::const_iterator I = LR.find(Pos: useIdx); |
| 390 | assert(I != LR.end() && "Reg must be live-in to use." ); |
| 391 | return !I->end.isBlock() && SlotIndex::isSameInstr(A: I->end, B: useIdx); |
| 392 | } |
| 393 | |
| 394 | /// Test if the given register value, which is used by the |
| 395 | /// given instruction, is killed by the given instruction. |
| 396 | bool TwoAddressInstructionImpl::isPlainlyKilled(const MachineInstr *MI, |
| 397 | Register Reg) const { |
| 398 | // FIXME: Sometimes tryInstructionTransform() will add instructions and |
| 399 | // test whether they can be folded before keeping them. In this case it |
| 400 | // sets a kill before recursively calling tryInstructionTransform() again. |
| 401 | // If there is no interval available, we assume that this instruction is |
| 402 | // one of those. A kill flag is manually inserted on the operand so the |
| 403 | // check below will handle it. |
| 404 | if (LIS && !LIS->isNotInMIMap(Instr: *MI)) { |
| 405 | if (Reg.isVirtual()) |
| 406 | return isPlainlyKilled(MI, LR&: LIS->getInterval(Reg)); |
| 407 | // Reserved registers are considered always live. |
| 408 | if (MRI->isReserved(PhysReg: Reg)) |
| 409 | return false; |
| 410 | return all_of(Range: TRI->regunits(Reg), P: [&](MCRegUnit U) { |
| 411 | return isPlainlyKilled(MI, LR&: LIS->getRegUnit(Unit: U)); |
| 412 | }); |
| 413 | } |
| 414 | |
| 415 | return MI->killsRegister(Reg, /*TRI=*/nullptr); |
| 416 | } |
| 417 | |
| 418 | /// Test if the register used by the given operand is killed by the operand's |
| 419 | /// instruction. |
| 420 | bool TwoAddressInstructionImpl::isPlainlyKilled( |
| 421 | const MachineOperand &MO) const { |
| 422 | return MO.isKill() || isPlainlyKilled(MI: MO.getParent(), Reg: MO.getReg()); |
| 423 | } |
| 424 | |
| 425 | /// Test if the given register value, which is used by the given |
| 426 | /// instruction, is killed by the given instruction. This looks through |
| 427 | /// coalescable copies to see if the original value is potentially not killed. |
| 428 | /// |
| 429 | /// For example, in this code: |
| 430 | /// |
| 431 | /// %reg1034 = copy %reg1024 |
| 432 | /// %reg1035 = copy killed %reg1025 |
| 433 | /// %reg1036 = add killed %reg1034, killed %reg1035 |
| 434 | /// |
| 435 | /// %reg1034 is not considered to be killed, since it is copied from a |
| 436 | /// register which is not killed. Treating it as not killed lets the |
| 437 | /// normal heuristics commute the (two-address) add, which lets |
| 438 | /// coalescing eliminate the extra copy. |
| 439 | /// |
| 440 | /// If allowFalsePositives is true then likely kills are treated as kills even |
| 441 | /// if it can't be proven that they are kills. |
| 442 | bool TwoAddressInstructionImpl::isKilled(MachineInstr &MI, Register Reg, |
| 443 | bool allowFalsePositives) const { |
| 444 | MachineInstr *DefMI = &MI; |
| 445 | while (true) { |
| 446 | // All uses of physical registers are likely to be kills. |
| 447 | if (Reg.isPhysical() && (allowFalsePositives || MRI->hasOneUse(RegNo: Reg))) |
| 448 | return true; |
| 449 | if (!isPlainlyKilled(MI: DefMI, Reg)) |
| 450 | return false; |
| 451 | if (Reg.isPhysical()) |
| 452 | return true; |
| 453 | MachineRegisterInfo::def_iterator Begin = MRI->def_begin(RegNo: Reg); |
| 454 | // If there are multiple defs, we can't do a simple analysis, so just |
| 455 | // go with what the kill flag says. |
| 456 | if (std::next(x: Begin) != MRI->def_end()) |
| 457 | return true; |
| 458 | DefMI = Begin->getParent(); |
| 459 | bool IsSrcPhys, IsDstPhys; |
| 460 | Register SrcReg, DstReg; |
| 461 | // If the def is something other than a copy, then it isn't going to |
| 462 | // be coalesced, so follow the kill flag. |
| 463 | if (!isCopyToReg(MI&: *DefMI, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) |
| 464 | return true; |
| 465 | Reg = SrcReg; |
| 466 | } |
| 467 | } |
| 468 | |
| 469 | /// Return true if the specified MI uses the specified register as a two-address |
| 470 | /// use. If so, return the destination register by reference. |
| 471 | static bool isTwoAddrUse(MachineInstr &MI, Register Reg, Register &DstReg) { |
| 472 | for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) { |
| 473 | const MachineOperand &MO = MI.getOperand(i); |
| 474 | if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg) |
| 475 | continue; |
| 476 | unsigned ti; |
| 477 | if (MI.isRegTiedToDefOperand(UseOpIdx: i, DefOpIdx: &ti)) { |
| 478 | DstReg = MI.getOperand(i: ti).getReg(); |
| 479 | return true; |
| 480 | } |
| 481 | } |
| 482 | return false; |
| 483 | } |
| 484 | |
| 485 | /// Given a register, if all its uses are in the same basic block, return the |
| 486 | /// last use instruction if it's a copy or a two-address use. |
| 487 | MachineInstr *TwoAddressInstructionImpl::findOnlyInterestingUse( |
| 488 | Register Reg, MachineBasicBlock *MBB, bool &IsCopy, Register &DstReg, |
| 489 | bool &IsDstPhys) const { |
| 490 | MachineOperand *UseOp = nullptr; |
| 491 | for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { |
| 492 | if (MO.isUndef()) |
| 493 | continue; |
| 494 | |
| 495 | MachineInstr *MI = MO.getParent(); |
| 496 | if (MI->getParent() != MBB) |
| 497 | return nullptr; |
| 498 | if (isPlainlyKilled(MI, Reg)) |
| 499 | UseOp = &MO; |
| 500 | } |
| 501 | if (!UseOp) |
| 502 | return nullptr; |
| 503 | MachineInstr &UseMI = *UseOp->getParent(); |
| 504 | |
| 505 | Register SrcReg; |
| 506 | bool IsSrcPhys; |
| 507 | if (isCopyToReg(MI&: UseMI, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) { |
| 508 | IsCopy = true; |
| 509 | return &UseMI; |
| 510 | } |
| 511 | IsDstPhys = false; |
| 512 | if (isTwoAddrUse(MI&: UseMI, Reg, DstReg)) { |
| 513 | IsDstPhys = DstReg.isPhysical(); |
| 514 | return &UseMI; |
| 515 | } |
| 516 | if (UseMI.isCommutable()) { |
| 517 | unsigned Src1 = TargetInstrInfo::CommuteAnyOperandIndex; |
| 518 | unsigned Src2 = UseOp->getOperandNo(); |
| 519 | if (TII->findCommutedOpIndices(MI: UseMI, SrcOpIdx1&: Src1, SrcOpIdx2&: Src2)) { |
| 520 | MachineOperand &MO = UseMI.getOperand(i: Src1); |
| 521 | if (MO.isReg() && MO.isUse() && |
| 522 | isTwoAddrUse(MI&: UseMI, Reg: MO.getReg(), DstReg)) { |
| 523 | IsDstPhys = DstReg.isPhysical(); |
| 524 | return &UseMI; |
| 525 | } |
| 526 | } |
| 527 | } |
| 528 | return nullptr; |
| 529 | } |
| 530 | |
| 531 | /// Return the physical register the specified virtual register might be mapped |
| 532 | /// to. |
| 533 | static MCRegister getMappedReg(Register Reg, |
| 534 | DenseMap<Register, Register> &RegMap) { |
| 535 | while (Reg.isVirtual()) { |
| 536 | DenseMap<Register, Register>::iterator SI = RegMap.find(Val: Reg); |
| 537 | if (SI == RegMap.end()) |
| 538 | return 0; |
| 539 | Reg = SI->second; |
| 540 | } |
| 541 | if (Reg.isPhysical()) |
| 542 | return Reg; |
| 543 | return 0; |
| 544 | } |
| 545 | |
| 546 | /// Return true if the two registers are equal or aliased. |
| 547 | bool TwoAddressInstructionImpl::regsAreCompatible(Register RegA, |
| 548 | Register RegB) const { |
| 549 | if (RegA == RegB) |
| 550 | return true; |
| 551 | if (!RegA || !RegB) |
| 552 | return false; |
| 553 | return TRI->regsOverlap(RegA, RegB); |
| 554 | } |
| 555 | |
| 556 | /// From RegMap remove entries mapped to a physical register which overlaps MO. |
| 557 | void TwoAddressInstructionImpl::removeMapRegEntry( |
| 558 | const MachineOperand &MO, DenseMap<Register, Register> &RegMap) const { |
| 559 | assert( |
| 560 | (MO.isReg() || MO.isRegMask()) && |
| 561 | "removeMapRegEntry must be called with a register or regmask operand." ); |
| 562 | |
| 563 | SmallVector<Register, 2> Srcs; |
| 564 | for (auto SI : RegMap) { |
| 565 | Register ToReg = SI.second; |
| 566 | if (ToReg.isVirtual()) |
| 567 | continue; |
| 568 | |
| 569 | if (MO.isReg()) { |
| 570 | Register Reg = MO.getReg(); |
| 571 | if (TRI->regsOverlap(RegA: ToReg, RegB: Reg)) |
| 572 | Srcs.push_back(Elt: SI.first); |
| 573 | } else if (MO.clobbersPhysReg(PhysReg: ToReg)) |
| 574 | Srcs.push_back(Elt: SI.first); |
| 575 | } |
| 576 | |
| 577 | for (auto SrcReg : Srcs) |
| 578 | RegMap.erase(Val: SrcReg); |
| 579 | } |
| 580 | |
| 581 | /// If a physical register is clobbered, old entries mapped to it should be |
| 582 | /// deleted. For example |
| 583 | /// |
| 584 | /// %2:gr64 = COPY killed $rdx |
| 585 | /// MUL64r %3:gr64, implicit-def $rax, implicit-def $rdx |
| 586 | /// |
| 587 | /// After the MUL instruction, $rdx contains different value than in the COPY |
| 588 | /// instruction. So %2 should not map to $rdx after MUL. |
| 589 | void TwoAddressInstructionImpl::removeClobberedSrcRegMap(MachineInstr *MI) { |
| 590 | if (MI->isCopy()) { |
| 591 | // If a virtual register is copied to its mapped physical register, it |
| 592 | // doesn't change the potential coalescing between them, so we don't remove |
| 593 | // entries mapped to the physical register. For example |
| 594 | // |
| 595 | // %100 = COPY $r8 |
| 596 | // ... |
| 597 | // $r8 = COPY %100 |
| 598 | // |
| 599 | // The first copy constructs SrcRegMap[%100] = $r8, the second copy doesn't |
| 600 | // destroy the content of $r8, and should not impact SrcRegMap. |
| 601 | Register Dst = MI->getOperand(i: 0).getReg(); |
| 602 | if (!Dst || Dst.isVirtual()) |
| 603 | return; |
| 604 | |
| 605 | Register Src = MI->getOperand(i: 1).getReg(); |
| 606 | if (regsAreCompatible(RegA: Dst, RegB: getMappedReg(Reg: Src, RegMap&: SrcRegMap))) |
| 607 | return; |
| 608 | } |
| 609 | |
| 610 | for (const MachineOperand &MO : MI->operands()) { |
| 611 | if (MO.isRegMask()) { |
| 612 | removeMapRegEntry(MO, RegMap&: SrcRegMap); |
| 613 | continue; |
| 614 | } |
| 615 | if (!MO.isReg() || !MO.isDef()) |
| 616 | continue; |
| 617 | Register Reg = MO.getReg(); |
| 618 | if (!Reg || Reg.isVirtual()) |
| 619 | continue; |
| 620 | removeMapRegEntry(MO, RegMap&: SrcRegMap); |
| 621 | } |
| 622 | } |
| 623 | |
| 624 | // Returns true if Reg is equal or aliased to at least one register in Set. |
| 625 | bool TwoAddressInstructionImpl::regOverlapsSet( |
| 626 | const SmallVectorImpl<Register> &Set, Register Reg) const { |
| 627 | for (Register R : Set) |
| 628 | if (TRI->regsOverlap(RegA: R, RegB: Reg)) |
| 629 | return true; |
| 630 | |
| 631 | return false; |
| 632 | } |
| 633 | |
| 634 | /// Return true if it's potentially profitable to commute the two-address |
| 635 | /// instruction that's being processed. |
| 636 | bool TwoAddressInstructionImpl::isProfitableToCommute(Register RegA, |
| 637 | Register RegB, |
| 638 | Register RegC, |
| 639 | MachineInstr *MI, |
| 640 | unsigned Dist) { |
| 641 | if (OptLevel == CodeGenOptLevel::None) |
| 642 | return false; |
| 643 | |
| 644 | // Determine if it's profitable to commute this two address instruction. In |
| 645 | // general, we want no uses between this instruction and the definition of |
| 646 | // the two-address register. |
| 647 | // e.g. |
| 648 | // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1 |
| 649 | // %reg1029 = COPY %reg1028 |
| 650 | // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags |
| 651 | // insert => %reg1030 = COPY %reg1028 |
| 652 | // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags |
| 653 | // In this case, it might not be possible to coalesce the second COPY |
| 654 | // instruction if the first one is coalesced. So it would be profitable to |
| 655 | // commute it: |
| 656 | // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1 |
| 657 | // %reg1029 = COPY %reg1028 |
| 658 | // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags |
| 659 | // insert => %reg1030 = COPY %reg1029 |
| 660 | // %reg1030 = ADD8rr killed %reg1029, killed %reg1028, implicit dead %eflags |
| 661 | |
| 662 | if (!isPlainlyKilled(MI, Reg: RegC)) |
| 663 | return false; |
| 664 | |
| 665 | // Ok, we have something like: |
| 666 | // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags |
| 667 | // let's see if it's worth commuting it. |
| 668 | |
| 669 | // Look for situations like this: |
| 670 | // %reg1024 = MOV r1 |
| 671 | // %reg1025 = MOV r0 |
| 672 | // %reg1026 = ADD %reg1024, %reg1025 |
| 673 | // r0 = MOV %reg1026 |
| 674 | // Commute the ADD to hopefully eliminate an otherwise unavoidable copy. |
| 675 | MCRegister ToRegA = getMappedReg(Reg: RegA, RegMap&: DstRegMap); |
| 676 | if (ToRegA) { |
| 677 | MCRegister FromRegB = getMappedReg(Reg: RegB, RegMap&: SrcRegMap); |
| 678 | MCRegister FromRegC = getMappedReg(Reg: RegC, RegMap&: SrcRegMap); |
| 679 | bool CompB = FromRegB && regsAreCompatible(RegA: FromRegB, RegB: ToRegA); |
| 680 | bool CompC = FromRegC && regsAreCompatible(RegA: FromRegC, RegB: ToRegA); |
| 681 | |
| 682 | // Compute if any of the following are true: |
| 683 | // -RegB is not tied to a register and RegC is compatible with RegA. |
| 684 | // -RegB is tied to the wrong physical register, but RegC is. |
| 685 | // -RegB is tied to the wrong physical register, and RegC isn't tied. |
| 686 | if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC))) |
| 687 | return true; |
| 688 | // Don't compute if any of the following are true: |
| 689 | // -RegC is not tied to a register and RegB is compatible with RegA. |
| 690 | // -RegC is tied to the wrong physical register, but RegB is. |
| 691 | // -RegC is tied to the wrong physical register, and RegB isn't tied. |
| 692 | if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB))) |
| 693 | return false; |
| 694 | } |
| 695 | |
| 696 | // If there is a use of RegC between its last def (could be livein) and this |
| 697 | // instruction, then bail. |
| 698 | unsigned LastDefC = 0; |
| 699 | if (!noUseAfterLastDef(Reg: RegC, Dist, LastDef&: LastDefC)) |
| 700 | return false; |
| 701 | |
| 702 | // If there is a use of RegB between its last def (could be livein) and this |
| 703 | // instruction, then go ahead and make this transformation. |
| 704 | unsigned LastDefB = 0; |
| 705 | if (!noUseAfterLastDef(Reg: RegB, Dist, LastDef&: LastDefB)) |
| 706 | return true; |
| 707 | |
| 708 | // Look for situation like this: |
| 709 | // %reg101 = MOV %reg100 |
| 710 | // %reg102 = ... |
| 711 | // %reg103 = ADD %reg102, %reg101 |
| 712 | // ... = %reg103 ... |
| 713 | // %reg100 = MOV %reg103 |
| 714 | // If there is a reversed copy chain from reg101 to reg103, commute the ADD |
| 715 | // to eliminate an otherwise unavoidable copy. |
| 716 | // FIXME: |
| 717 | // We can extend the logic further: If an pair of operands in an insn has |
| 718 | // been merged, the insn could be regarded as a virtual copy, and the virtual |
| 719 | // copy could also be used to construct a copy chain. |
| 720 | // To more generally minimize register copies, ideally the logic of two addr |
| 721 | // instruction pass should be integrated with register allocation pass where |
| 722 | // interference graph is available. |
| 723 | if (isRevCopyChain(FromReg: RegC, ToReg: RegA, Maxlen: MaxDataFlowEdge)) |
| 724 | return true; |
| 725 | |
| 726 | if (isRevCopyChain(FromReg: RegB, ToReg: RegA, Maxlen: MaxDataFlowEdge)) |
| 727 | return false; |
| 728 | |
| 729 | // Look for other target specific commute preference. |
| 730 | bool Commute; |
| 731 | if (TII->hasCommutePreference(MI&: *MI, Commute)) |
| 732 | return Commute; |
| 733 | |
| 734 | // Since there are no intervening uses for both registers, then commute |
| 735 | // if the def of RegC is closer. Its live interval is shorter. |
| 736 | return LastDefB && LastDefC && LastDefC > LastDefB; |
| 737 | } |
| 738 | |
| 739 | /// Commute a two-address instruction and update the basic block, distance map, |
| 740 | /// and live variables if needed. Return true if it is successful. |
| 741 | bool TwoAddressInstructionImpl::commuteInstruction(MachineInstr *MI, |
| 742 | unsigned DstIdx, |
| 743 | unsigned RegBIdx, |
| 744 | unsigned RegCIdx, |
| 745 | unsigned Dist) { |
| 746 | Register RegC = MI->getOperand(i: RegCIdx).getReg(); |
| 747 | LLVM_DEBUG(dbgs() << "2addr: COMMUTING : " << *MI); |
| 748 | MachineInstr *NewMI = TII->commuteInstruction(MI&: *MI, NewMI: false, OpIdx1: RegBIdx, OpIdx2: RegCIdx); |
| 749 | |
| 750 | if (NewMI == nullptr) { |
| 751 | LLVM_DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n" ); |
| 752 | return false; |
| 753 | } |
| 754 | |
| 755 | LLVM_DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI); |
| 756 | assert(NewMI == MI && |
| 757 | "TargetInstrInfo::commuteInstruction() should not return a new " |
| 758 | "instruction unless it was requested." ); |
| 759 | |
| 760 | // Update source register map. |
| 761 | MCRegister FromRegC = getMappedReg(Reg: RegC, RegMap&: SrcRegMap); |
| 762 | if (FromRegC) { |
| 763 | Register RegA = MI->getOperand(i: DstIdx).getReg(); |
| 764 | SrcRegMap[RegA] = FromRegC; |
| 765 | } |
| 766 | |
| 767 | return true; |
| 768 | } |
| 769 | |
| 770 | /// Return true if it is profitable to convert the given 2-address instruction |
| 771 | /// to a 3-address one. |
| 772 | bool TwoAddressInstructionImpl::isProfitableToConv3Addr(Register RegA, |
| 773 | Register RegB) { |
| 774 | // Look for situations like this: |
| 775 | // %reg1024 = MOV r1 |
| 776 | // %reg1025 = MOV r0 |
| 777 | // %reg1026 = ADD %reg1024, %reg1025 |
| 778 | // r2 = MOV %reg1026 |
| 779 | // Turn ADD into a 3-address instruction to avoid a copy. |
| 780 | MCRegister FromRegB = getMappedReg(Reg: RegB, RegMap&: SrcRegMap); |
| 781 | if (!FromRegB) |
| 782 | return false; |
| 783 | MCRegister ToRegA = getMappedReg(Reg: RegA, RegMap&: DstRegMap); |
| 784 | return (ToRegA && !regsAreCompatible(RegA: FromRegB, RegB: ToRegA)); |
| 785 | } |
| 786 | |
| 787 | /// Convert the specified two-address instruction into a three address one. |
| 788 | /// Return true if this transformation was successful. |
| 789 | bool TwoAddressInstructionImpl::convertInstTo3Addr( |
| 790 | MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi, |
| 791 | Register RegA, Register RegB, unsigned &Dist) { |
| 792 | MachineInstrSpan MIS(mi, MBB); |
| 793 | MachineInstr *NewMI = TII->convertToThreeAddress(MI&: *mi, LV, LIS); |
| 794 | if (!NewMI) |
| 795 | return false; |
| 796 | |
| 797 | LLVM_DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi); |
| 798 | LLVM_DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI); |
| 799 | |
| 800 | // If the old instruction is debug value tracked, an update is required. |
| 801 | if (auto OldInstrNum = mi->peekDebugInstrNum()) { |
| 802 | assert(mi->getNumExplicitDefs() == 1); |
| 803 | assert(NewMI->getNumExplicitDefs() == 1); |
| 804 | |
| 805 | // Find the old and new def location. |
| 806 | unsigned OldIdx = mi->defs().begin()->getOperandNo(); |
| 807 | unsigned NewIdx = NewMI->defs().begin()->getOperandNo(); |
| 808 | |
| 809 | // Record that one def has been replaced by the other. |
| 810 | unsigned NewInstrNum = NewMI->getDebugInstrNum(); |
| 811 | MF->makeDebugValueSubstitution(std::make_pair(x&: OldInstrNum, y&: OldIdx), |
| 812 | std::make_pair(x&: NewInstrNum, y&: NewIdx)); |
| 813 | } |
| 814 | |
| 815 | MBB->erase(I: mi); // Nuke the old inst. |
| 816 | |
| 817 | for (MachineInstr &MI : MIS) |
| 818 | DistanceMap.insert(KV: std::make_pair(x: &MI, y: Dist++)); |
| 819 | Dist--; |
| 820 | mi = NewMI; |
| 821 | nmi = std::next(x: mi); |
| 822 | |
| 823 | // Update source and destination register maps. |
| 824 | SrcRegMap.erase(Val: RegA); |
| 825 | DstRegMap.erase(Val: RegB); |
| 826 | return true; |
| 827 | } |
| 828 | |
| 829 | /// Scan forward recursively for only uses, update maps if the use is a copy or |
| 830 | /// a two-address instruction. |
| 831 | void TwoAddressInstructionImpl::scanUses(Register DstReg) { |
| 832 | SmallVector<Register, 4> VirtRegPairs; |
| 833 | bool IsDstPhys; |
| 834 | bool IsCopy = false; |
| 835 | Register NewReg; |
| 836 | Register Reg = DstReg; |
| 837 | while (MachineInstr *UseMI = |
| 838 | findOnlyInterestingUse(Reg, MBB, IsCopy, DstReg&: NewReg, IsDstPhys)) { |
| 839 | if (IsCopy && !Processed.insert(Ptr: UseMI).second) |
| 840 | break; |
| 841 | |
| 842 | DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(Val: UseMI); |
| 843 | if (DI != DistanceMap.end()) |
| 844 | // Earlier in the same MBB.Reached via a back edge. |
| 845 | break; |
| 846 | |
| 847 | if (IsDstPhys) { |
| 848 | VirtRegPairs.push_back(Elt: NewReg); |
| 849 | break; |
| 850 | } |
| 851 | SrcRegMap[NewReg] = Reg; |
| 852 | VirtRegPairs.push_back(Elt: NewReg); |
| 853 | Reg = NewReg; |
| 854 | } |
| 855 | |
| 856 | if (!VirtRegPairs.empty()) { |
| 857 | Register ToReg = VirtRegPairs.pop_back_val(); |
| 858 | while (!VirtRegPairs.empty()) { |
| 859 | Register FromReg = VirtRegPairs.pop_back_val(); |
| 860 | bool isNew = DstRegMap.insert(KV: std::make_pair(x&: FromReg, y&: ToReg)).second; |
| 861 | if (!isNew) |
| 862 | assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!" ); |
| 863 | ToReg = FromReg; |
| 864 | } |
| 865 | bool isNew = DstRegMap.insert(KV: std::make_pair(x&: DstReg, y&: ToReg)).second; |
| 866 | if (!isNew) |
| 867 | assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!" ); |
| 868 | } |
| 869 | } |
| 870 | |
| 871 | /// If the specified instruction is not yet processed, process it if it's a |
| 872 | /// copy. For a copy instruction, we find the physical registers the |
| 873 | /// source and destination registers might be mapped to. These are kept in |
| 874 | /// point-to maps used to determine future optimizations. e.g. |
| 875 | /// v1024 = mov r0 |
| 876 | /// v1025 = mov r1 |
| 877 | /// v1026 = add v1024, v1025 |
| 878 | /// r1 = mov r1026 |
| 879 | /// If 'add' is a two-address instruction, v1024, v1026 are both potentially |
| 880 | /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is |
| 881 | /// potentially joined with r1 on the output side. It's worthwhile to commute |
| 882 | /// 'add' to eliminate a copy. |
| 883 | void TwoAddressInstructionImpl::processCopy(MachineInstr *MI) { |
| 884 | if (Processed.count(Ptr: MI)) |
| 885 | return; |
| 886 | |
| 887 | bool IsSrcPhys, IsDstPhys; |
| 888 | Register SrcReg, DstReg; |
| 889 | if (!isCopyToReg(MI&: *MI, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) |
| 890 | return; |
| 891 | |
| 892 | if (IsDstPhys && !IsSrcPhys) { |
| 893 | DstRegMap.insert(KV: std::make_pair(x&: SrcReg, y&: DstReg)); |
| 894 | } else if (!IsDstPhys && IsSrcPhys) { |
| 895 | bool isNew = SrcRegMap.insert(KV: std::make_pair(x&: DstReg, y&: SrcReg)).second; |
| 896 | if (!isNew) |
| 897 | assert(SrcRegMap[DstReg] == SrcReg && |
| 898 | "Can't map to two src physical registers!" ); |
| 899 | |
| 900 | scanUses(DstReg); |
| 901 | } |
| 902 | |
| 903 | Processed.insert(Ptr: MI); |
| 904 | } |
| 905 | |
| 906 | /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, |
| 907 | /// consider moving the instruction below the kill instruction in order to |
| 908 | /// eliminate the need for the copy. |
| 909 | bool TwoAddressInstructionImpl::rescheduleMIBelowKill( |
| 910 | MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi, |
| 911 | Register Reg) { |
| 912 | // Bail immediately if we don't have LV or LIS available. We use them to find |
| 913 | // kills efficiently. |
| 914 | if (!LV && !LIS) |
| 915 | return false; |
| 916 | |
| 917 | MachineInstr *MI = &*mi; |
| 918 | DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(Val: MI); |
| 919 | if (DI == DistanceMap.end()) |
| 920 | // Must be created from unfolded load. Don't waste time trying this. |
| 921 | return false; |
| 922 | |
| 923 | MachineInstr *KillMI = nullptr; |
| 924 | if (LIS) { |
| 925 | LiveInterval &LI = LIS->getInterval(Reg); |
| 926 | assert(LI.end() != LI.begin() && |
| 927 | "Reg should not have empty live interval." ); |
| 928 | |
| 929 | SlotIndex MBBEndIdx = LIS->getMBBEndIdx(mbb: MBB).getPrevSlot(); |
| 930 | LiveInterval::const_iterator I = LI.find(Pos: MBBEndIdx); |
| 931 | if (I != LI.end() && I->start < MBBEndIdx) |
| 932 | return false; |
| 933 | |
| 934 | --I; |
| 935 | KillMI = LIS->getInstructionFromIndex(index: I->end); |
| 936 | } else { |
| 937 | KillMI = LV->getVarInfo(Reg).findKill(MBB); |
| 938 | } |
| 939 | if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) |
| 940 | // Don't mess with copies, they may be coalesced later. |
| 941 | return false; |
| 942 | |
| 943 | if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() || |
| 944 | KillMI->isBranch() || KillMI->isTerminator()) |
| 945 | // Don't move pass calls, etc. |
| 946 | return false; |
| 947 | |
| 948 | Register DstReg; |
| 949 | if (isTwoAddrUse(MI&: *KillMI, Reg, DstReg)) |
| 950 | return false; |
| 951 | |
| 952 | bool SeenStore = true; |
| 953 | if (!MI->isSafeToMove(SawStore&: SeenStore)) |
| 954 | return false; |
| 955 | |
| 956 | if (TII->getInstrLatency(ItinData: InstrItins, MI: *MI) > 1) |
| 957 | // FIXME: Needs more sophisticated heuristics. |
| 958 | return false; |
| 959 | |
| 960 | SmallVector<Register, 2> Uses; |
| 961 | SmallVector<Register, 2> Kills; |
| 962 | SmallVector<Register, 2> Defs; |
| 963 | for (const MachineOperand &MO : MI->operands()) { |
| 964 | if (!MO.isReg()) |
| 965 | continue; |
| 966 | Register MOReg = MO.getReg(); |
| 967 | if (!MOReg) |
| 968 | continue; |
| 969 | if (MO.isDef()) |
| 970 | Defs.push_back(Elt: MOReg); |
| 971 | else { |
| 972 | Uses.push_back(Elt: MOReg); |
| 973 | if (MOReg != Reg && isPlainlyKilled(MO)) |
| 974 | Kills.push_back(Elt: MOReg); |
| 975 | } |
| 976 | } |
| 977 | |
| 978 | // Move the copies connected to MI down as well. |
| 979 | MachineBasicBlock::iterator Begin = MI; |
| 980 | MachineBasicBlock::iterator AfterMI = std::next(x: Begin); |
| 981 | MachineBasicBlock::iterator End = AfterMI; |
| 982 | while (End != MBB->end()) { |
| 983 | End = skipDebugInstructionsForward(It: End, End: MBB->end()); |
| 984 | if (End->isCopy() && regOverlapsSet(Set: Defs, Reg: End->getOperand(i: 1).getReg())) |
| 985 | Defs.push_back(Elt: End->getOperand(i: 0).getReg()); |
| 986 | else |
| 987 | break; |
| 988 | ++End; |
| 989 | } |
| 990 | |
| 991 | // Check if the reschedule will not break dependencies. |
| 992 | unsigned NumVisited = 0; |
| 993 | MachineBasicBlock::iterator KillPos = KillMI; |
| 994 | ++KillPos; |
| 995 | for (MachineInstr &OtherMI : make_range(x: End, y: KillPos)) { |
| 996 | // Debug or pseudo instructions cannot be counted against the limit. |
| 997 | if (OtherMI.isDebugOrPseudoInstr()) |
| 998 | continue; |
| 999 | if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. |
| 1000 | return false; |
| 1001 | ++NumVisited; |
| 1002 | if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() || |
| 1003 | OtherMI.isBranch() || OtherMI.isTerminator()) |
| 1004 | // Don't move pass calls, etc. |
| 1005 | return false; |
| 1006 | for (const MachineOperand &MO : OtherMI.operands()) { |
| 1007 | if (!MO.isReg()) |
| 1008 | continue; |
| 1009 | Register MOReg = MO.getReg(); |
| 1010 | if (!MOReg) |
| 1011 | continue; |
| 1012 | if (MO.isDef()) { |
| 1013 | if (regOverlapsSet(Set: Uses, Reg: MOReg)) |
| 1014 | // Physical register use would be clobbered. |
| 1015 | return false; |
| 1016 | if (!MO.isDead() && regOverlapsSet(Set: Defs, Reg: MOReg)) |
| 1017 | // May clobber a physical register def. |
| 1018 | // FIXME: This may be too conservative. It's ok if the instruction |
| 1019 | // is sunken completely below the use. |
| 1020 | return false; |
| 1021 | } else { |
| 1022 | if (regOverlapsSet(Set: Defs, Reg: MOReg)) |
| 1023 | return false; |
| 1024 | bool isKill = isPlainlyKilled(MO); |
| 1025 | if (MOReg != Reg && ((isKill && regOverlapsSet(Set: Uses, Reg: MOReg)) || |
| 1026 | regOverlapsSet(Set: Kills, Reg: MOReg))) |
| 1027 | // Don't want to extend other live ranges and update kills. |
| 1028 | return false; |
| 1029 | if (MOReg == Reg && !isKill) |
| 1030 | // We can't schedule across a use of the register in question. |
| 1031 | return false; |
| 1032 | // Ensure that if this is register in question, its the kill we expect. |
| 1033 | assert((MOReg != Reg || &OtherMI == KillMI) && |
| 1034 | "Found multiple kills of a register in a basic block" ); |
| 1035 | } |
| 1036 | } |
| 1037 | } |
| 1038 | |
| 1039 | // Move debug info as well. |
| 1040 | while (Begin != MBB->begin() && std::prev(x: Begin)->isDebugInstr()) |
| 1041 | --Begin; |
| 1042 | |
| 1043 | nmi = End; |
| 1044 | MachineBasicBlock::iterator InsertPos = KillPos; |
| 1045 | if (LIS) { |
| 1046 | // We have to move the copies (and any interleaved debug instructions) |
| 1047 | // first so that the MBB is still well-formed when calling handleMove(). |
| 1048 | for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) { |
| 1049 | auto CopyMI = MBBI++; |
| 1050 | MBB->splice(Where: InsertPos, Other: MBB, From: CopyMI); |
| 1051 | if (!CopyMI->isDebugOrPseudoInstr()) |
| 1052 | LIS->handleMove(MI&: *CopyMI); |
| 1053 | InsertPos = CopyMI; |
| 1054 | } |
| 1055 | End = std::next(x: MachineBasicBlock::iterator(MI)); |
| 1056 | } |
| 1057 | |
| 1058 | // Copies following MI may have been moved as well. |
| 1059 | MBB->splice(Where: InsertPos, Other: MBB, From: Begin, To: End); |
| 1060 | DistanceMap.erase(I: DI); |
| 1061 | |
| 1062 | // Update live variables |
| 1063 | if (LIS) { |
| 1064 | LIS->handleMove(MI&: *MI); |
| 1065 | } else { |
| 1066 | LV->removeVirtualRegisterKilled(Reg, MI&: *KillMI); |
| 1067 | LV->addVirtualRegisterKilled(IncomingReg: Reg, MI&: *MI); |
| 1068 | } |
| 1069 | |
| 1070 | LLVM_DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI); |
| 1071 | return true; |
| 1072 | } |
| 1073 | |
| 1074 | /// Return true if the re-scheduling will put the given instruction too close |
| 1075 | /// to the defs of its register dependencies. |
| 1076 | bool TwoAddressInstructionImpl::isDefTooClose(Register Reg, unsigned Dist, |
| 1077 | MachineInstr *MI) { |
| 1078 | for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { |
| 1079 | if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike()) |
| 1080 | continue; |
| 1081 | if (&DefMI == MI) |
| 1082 | return true; // MI is defining something KillMI uses |
| 1083 | DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(Val: &DefMI); |
| 1084 | if (DDI == DistanceMap.end()) |
| 1085 | return true; // Below MI |
| 1086 | unsigned DefDist = DDI->second; |
| 1087 | assert(Dist > DefDist && "Visited def already?" ); |
| 1088 | if (TII->getInstrLatency(ItinData: InstrItins, MI: DefMI) > (Dist - DefDist)) |
| 1089 | return true; |
| 1090 | } |
| 1091 | return false; |
| 1092 | } |
| 1093 | |
| 1094 | /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, |
| 1095 | /// consider moving the kill instruction above the current two-address |
| 1096 | /// instruction in order to eliminate the need for the copy. |
| 1097 | bool TwoAddressInstructionImpl::rescheduleKillAboveMI( |
| 1098 | MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi, |
| 1099 | Register Reg) { |
| 1100 | // Bail immediately if we don't have LV or LIS available. We use them to find |
| 1101 | // kills efficiently. |
| 1102 | if (!LV && !LIS) |
| 1103 | return false; |
| 1104 | |
| 1105 | MachineInstr *MI = &*mi; |
| 1106 | DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(Val: MI); |
| 1107 | if (DI == DistanceMap.end()) |
| 1108 | // Must be created from unfolded load. Don't waste time trying this. |
| 1109 | return false; |
| 1110 | |
| 1111 | MachineInstr *KillMI = nullptr; |
| 1112 | if (LIS) { |
| 1113 | LiveInterval &LI = LIS->getInterval(Reg); |
| 1114 | assert(LI.end() != LI.begin() && |
| 1115 | "Reg should not have empty live interval." ); |
| 1116 | |
| 1117 | SlotIndex MBBEndIdx = LIS->getMBBEndIdx(mbb: MBB).getPrevSlot(); |
| 1118 | LiveInterval::const_iterator I = LI.find(Pos: MBBEndIdx); |
| 1119 | if (I != LI.end() && I->start < MBBEndIdx) |
| 1120 | return false; |
| 1121 | |
| 1122 | --I; |
| 1123 | KillMI = LIS->getInstructionFromIndex(index: I->end); |
| 1124 | } else { |
| 1125 | KillMI = LV->getVarInfo(Reg).findKill(MBB); |
| 1126 | } |
| 1127 | if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) |
| 1128 | // Don't mess with copies, they may be coalesced later. |
| 1129 | return false; |
| 1130 | |
| 1131 | Register DstReg; |
| 1132 | if (isTwoAddrUse(MI&: *KillMI, Reg, DstReg)) |
| 1133 | return false; |
| 1134 | |
| 1135 | bool SeenStore = true; |
| 1136 | if (!KillMI->isSafeToMove(SawStore&: SeenStore)) |
| 1137 | return false; |
| 1138 | |
| 1139 | SmallVector<Register, 2> Uses; |
| 1140 | SmallVector<Register, 2> Kills; |
| 1141 | SmallVector<Register, 2> Defs; |
| 1142 | SmallVector<Register, 2> LiveDefs; |
| 1143 | for (const MachineOperand &MO : KillMI->operands()) { |
| 1144 | if (!MO.isReg()) |
| 1145 | continue; |
| 1146 | Register MOReg = MO.getReg(); |
| 1147 | if (MO.isUse()) { |
| 1148 | if (!MOReg) |
| 1149 | continue; |
| 1150 | if (isDefTooClose(Reg: MOReg, Dist: DI->second, MI)) |
| 1151 | return false; |
| 1152 | bool isKill = isPlainlyKilled(MO); |
| 1153 | if (MOReg == Reg && !isKill) |
| 1154 | return false; |
| 1155 | Uses.push_back(Elt: MOReg); |
| 1156 | if (isKill && MOReg != Reg) |
| 1157 | Kills.push_back(Elt: MOReg); |
| 1158 | } else if (MOReg.isPhysical()) { |
| 1159 | Defs.push_back(Elt: MOReg); |
| 1160 | if (!MO.isDead()) |
| 1161 | LiveDefs.push_back(Elt: MOReg); |
| 1162 | } |
| 1163 | } |
| 1164 | |
| 1165 | // Check if the reschedule will not break dependencies. |
| 1166 | unsigned NumVisited = 0; |
| 1167 | for (MachineInstr &OtherMI : |
| 1168 | make_range(x: mi, y: MachineBasicBlock::iterator(KillMI))) { |
| 1169 | // Debug or pseudo instructions cannot be counted against the limit. |
| 1170 | if (OtherMI.isDebugOrPseudoInstr()) |
| 1171 | continue; |
| 1172 | if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. |
| 1173 | return false; |
| 1174 | ++NumVisited; |
| 1175 | if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() || |
| 1176 | OtherMI.isBranch() || OtherMI.isTerminator()) |
| 1177 | // Don't move pass calls, etc. |
| 1178 | return false; |
| 1179 | SmallVector<Register, 2> OtherDefs; |
| 1180 | for (const MachineOperand &MO : OtherMI.operands()) { |
| 1181 | if (!MO.isReg()) |
| 1182 | continue; |
| 1183 | Register MOReg = MO.getReg(); |
| 1184 | if (!MOReg) |
| 1185 | continue; |
| 1186 | if (MO.isUse()) { |
| 1187 | if (regOverlapsSet(Set: Defs, Reg: MOReg)) |
| 1188 | // Moving KillMI can clobber the physical register if the def has |
| 1189 | // not been seen. |
| 1190 | return false; |
| 1191 | if (regOverlapsSet(Set: Kills, Reg: MOReg)) |
| 1192 | // Don't want to extend other live ranges and update kills. |
| 1193 | return false; |
| 1194 | if (&OtherMI != MI && MOReg == Reg && !isPlainlyKilled(MO)) |
| 1195 | // We can't schedule across a use of the register in question. |
| 1196 | return false; |
| 1197 | } else { |
| 1198 | OtherDefs.push_back(Elt: MOReg); |
| 1199 | } |
| 1200 | } |
| 1201 | |
| 1202 | for (Register MOReg : OtherDefs) { |
| 1203 | if (regOverlapsSet(Set: Uses, Reg: MOReg)) |
| 1204 | return false; |
| 1205 | if (MOReg.isPhysical() && regOverlapsSet(Set: LiveDefs, Reg: MOReg)) |
| 1206 | return false; |
| 1207 | // Physical register def is seen. |
| 1208 | llvm::erase(C&: Defs, V: MOReg); |
| 1209 | } |
| 1210 | } |
| 1211 | |
| 1212 | // Move the old kill above MI, don't forget to move debug info as well. |
| 1213 | MachineBasicBlock::iterator InsertPos = mi; |
| 1214 | while (InsertPos != MBB->begin() && std::prev(x: InsertPos)->isDebugInstr()) |
| 1215 | --InsertPos; |
| 1216 | MachineBasicBlock::iterator From = KillMI; |
| 1217 | MachineBasicBlock::iterator To = std::next(x: From); |
| 1218 | while (std::prev(x: From)->isDebugInstr()) |
| 1219 | --From; |
| 1220 | MBB->splice(Where: InsertPos, Other: MBB, From, To); |
| 1221 | |
| 1222 | nmi = std::prev(x: InsertPos); // Backtrack so we process the moved instr. |
| 1223 | DistanceMap.erase(I: DI); |
| 1224 | |
| 1225 | // Update live variables |
| 1226 | if (LIS) { |
| 1227 | LIS->handleMove(MI&: *KillMI); |
| 1228 | } else { |
| 1229 | LV->removeVirtualRegisterKilled(Reg, MI&: *KillMI); |
| 1230 | LV->addVirtualRegisterKilled(IncomingReg: Reg, MI&: *MI); |
| 1231 | } |
| 1232 | |
| 1233 | LLVM_DEBUG(dbgs() << "\trescheduled kill: " << *KillMI); |
| 1234 | return true; |
| 1235 | } |
| 1236 | |
| 1237 | /// Tries to commute the operand 'BaseOpIdx' and some other operand in the |
| 1238 | /// given machine instruction to improve opportunities for coalescing and |
| 1239 | /// elimination of a register to register copy. |
| 1240 | /// |
| 1241 | /// 'DstOpIdx' specifies the index of MI def operand. |
| 1242 | /// 'BaseOpKilled' specifies if the register associated with 'BaseOpIdx' |
| 1243 | /// operand is killed by the given instruction. |
| 1244 | /// The 'Dist' arguments provides the distance of MI from the start of the |
| 1245 | /// current basic block and it is used to determine if it is profitable |
| 1246 | /// to commute operands in the instruction. |
| 1247 | /// |
| 1248 | /// Returns true if the transformation happened. Otherwise, returns false. |
| 1249 | bool TwoAddressInstructionImpl::tryInstructionCommute(MachineInstr *MI, |
| 1250 | unsigned DstOpIdx, |
| 1251 | unsigned BaseOpIdx, |
| 1252 | bool BaseOpKilled, |
| 1253 | unsigned Dist) { |
| 1254 | if (!MI->isCommutable()) |
| 1255 | return false; |
| 1256 | |
| 1257 | bool MadeChange = false; |
| 1258 | Register DstOpReg = MI->getOperand(i: DstOpIdx).getReg(); |
| 1259 | Register BaseOpReg = MI->getOperand(i: BaseOpIdx).getReg(); |
| 1260 | unsigned OpsNum = MI->getDesc().getNumOperands(); |
| 1261 | unsigned OtherOpIdx = MI->getDesc().getNumDefs(); |
| 1262 | for (; OtherOpIdx < OpsNum; OtherOpIdx++) { |
| 1263 | // The call of findCommutedOpIndices below only checks if BaseOpIdx |
| 1264 | // and OtherOpIdx are commutable, it does not really search for |
| 1265 | // other commutable operands and does not change the values of passed |
| 1266 | // variables. |
| 1267 | if (OtherOpIdx == BaseOpIdx || !MI->getOperand(i: OtherOpIdx).isReg() || |
| 1268 | !TII->findCommutedOpIndices(MI: *MI, SrcOpIdx1&: BaseOpIdx, SrcOpIdx2&: OtherOpIdx)) |
| 1269 | continue; |
| 1270 | |
| 1271 | Register OtherOpReg = MI->getOperand(i: OtherOpIdx).getReg(); |
| 1272 | bool AggressiveCommute = false; |
| 1273 | |
| 1274 | // If OtherOp dies but BaseOp does not, swap the OtherOp and BaseOp |
| 1275 | // operands. This makes the live ranges of DstOp and OtherOp joinable. |
| 1276 | bool OtherOpKilled = isKilled(MI&: *MI, Reg: OtherOpReg, allowFalsePositives: false); |
| 1277 | bool DoCommute = !BaseOpKilled && OtherOpKilled; |
| 1278 | |
| 1279 | if (!DoCommute && |
| 1280 | isProfitableToCommute(RegA: DstOpReg, RegB: BaseOpReg, RegC: OtherOpReg, MI, Dist)) { |
| 1281 | DoCommute = true; |
| 1282 | AggressiveCommute = true; |
| 1283 | } |
| 1284 | |
| 1285 | // If it's profitable to commute, try to do so. |
| 1286 | if (DoCommute && commuteInstruction(MI, DstIdx: DstOpIdx, RegBIdx: BaseOpIdx, RegCIdx: OtherOpIdx, |
| 1287 | Dist)) { |
| 1288 | MadeChange = true; |
| 1289 | ++NumCommuted; |
| 1290 | if (AggressiveCommute) |
| 1291 | ++NumAggrCommuted; |
| 1292 | |
| 1293 | // There might be more than two commutable operands, update BaseOp and |
| 1294 | // continue scanning. |
| 1295 | // FIXME: This assumes that the new instruction's operands are in the |
| 1296 | // same positions and were simply swapped. |
| 1297 | BaseOpReg = OtherOpReg; |
| 1298 | BaseOpKilled = OtherOpKilled; |
| 1299 | // Resamples OpsNum in case the number of operands was reduced. This |
| 1300 | // happens with X86. |
| 1301 | OpsNum = MI->getDesc().getNumOperands(); |
| 1302 | } |
| 1303 | } |
| 1304 | return MadeChange; |
| 1305 | } |
| 1306 | |
| 1307 | /// For the case where an instruction has a single pair of tied register |
| 1308 | /// operands, attempt some transformations that may either eliminate the tied |
| 1309 | /// operands or improve the opportunities for coalescing away the register copy. |
| 1310 | /// Returns true if no copy needs to be inserted to untie mi's operands |
| 1311 | /// (either because they were untied, or because mi was rescheduled, and will |
| 1312 | /// be visited again later). If the shouldOnlyCommute flag is true, only |
| 1313 | /// instruction commutation is attempted. |
| 1314 | bool TwoAddressInstructionImpl::tryInstructionTransform( |
| 1315 | MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi, |
| 1316 | unsigned SrcIdx, unsigned DstIdx, unsigned &Dist, bool shouldOnlyCommute) { |
| 1317 | if (OptLevel == CodeGenOptLevel::None) |
| 1318 | return false; |
| 1319 | |
| 1320 | MachineInstr &MI = *mi; |
| 1321 | Register regA = MI.getOperand(i: DstIdx).getReg(); |
| 1322 | Register regB = MI.getOperand(i: SrcIdx).getReg(); |
| 1323 | |
| 1324 | assert(regB.isVirtual() && "cannot make instruction into two-address form" ); |
| 1325 | bool regBKilled = isKilled(MI, Reg: regB, allowFalsePositives: true); |
| 1326 | |
| 1327 | if (regA.isVirtual()) |
| 1328 | scanUses(DstReg: regA); |
| 1329 | |
| 1330 | bool Commuted = tryInstructionCommute(MI: &MI, DstOpIdx: DstIdx, BaseOpIdx: SrcIdx, BaseOpKilled: regBKilled, Dist); |
| 1331 | |
| 1332 | // If the instruction is convertible to 3 Addr, instead |
| 1333 | // of returning try 3 Addr transformation aggressively and |
| 1334 | // use this variable to check later. Because it might be better. |
| 1335 | // For example, we can just use `leal (%rsi,%rdi), %eax` and `ret` |
| 1336 | // instead of the following code. |
| 1337 | // addl %esi, %edi |
| 1338 | // movl %edi, %eax |
| 1339 | // ret |
| 1340 | if (Commuted && !MI.isConvertibleTo3Addr()) |
| 1341 | return false; |
| 1342 | |
| 1343 | if (shouldOnlyCommute) |
| 1344 | return false; |
| 1345 | |
| 1346 | // If there is one more use of regB later in the same MBB, consider |
| 1347 | // re-schedule this MI below it. |
| 1348 | if (!Commuted && EnableRescheduling && rescheduleMIBelowKill(mi, nmi, Reg: regB)) { |
| 1349 | ++NumReSchedDowns; |
| 1350 | return true; |
| 1351 | } |
| 1352 | |
| 1353 | // If we commuted, regB may have changed so we should re-sample it to avoid |
| 1354 | // confusing the three address conversion below. |
| 1355 | if (Commuted) { |
| 1356 | regB = MI.getOperand(i: SrcIdx).getReg(); |
| 1357 | regBKilled = isKilled(MI, Reg: regB, allowFalsePositives: true); |
| 1358 | } |
| 1359 | |
| 1360 | if (MI.isConvertibleTo3Addr()) { |
| 1361 | // This instruction is potentially convertible to a true |
| 1362 | // three-address instruction. Check if it is profitable. |
| 1363 | if (!regBKilled || isProfitableToConv3Addr(RegA: regA, RegB: regB)) { |
| 1364 | // Try to convert it. |
| 1365 | if (convertInstTo3Addr(mi, nmi, RegA: regA, RegB: regB, Dist)) { |
| 1366 | ++NumConvertedTo3Addr; |
| 1367 | return true; // Done with this instruction. |
| 1368 | } |
| 1369 | } |
| 1370 | } |
| 1371 | |
| 1372 | // Return if it is commuted but 3 addr conversion is failed. |
| 1373 | if (Commuted) |
| 1374 | return false; |
| 1375 | |
| 1376 | // If there is one more use of regB later in the same MBB, consider |
| 1377 | // re-schedule it before this MI if it's legal. |
| 1378 | if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, Reg: regB)) { |
| 1379 | ++NumReSchedUps; |
| 1380 | return true; |
| 1381 | } |
| 1382 | |
| 1383 | // If this is an instruction with a load folded into it, try unfolding |
| 1384 | // the load, e.g. avoid this: |
| 1385 | // movq %rdx, %rcx |
| 1386 | // addq (%rax), %rcx |
| 1387 | // in favor of this: |
| 1388 | // movq (%rax), %rcx |
| 1389 | // addq %rdx, %rcx |
| 1390 | // because it's preferable to schedule a load than a register copy. |
| 1391 | if (MI.mayLoad() && !regBKilled) { |
| 1392 | // Determine if a load can be unfolded. |
| 1393 | unsigned LoadRegIndex; |
| 1394 | unsigned NewOpc = |
| 1395 | TII->getOpcodeAfterMemoryUnfold(Opc: MI.getOpcode(), |
| 1396 | /*UnfoldLoad=*/true, |
| 1397 | /*UnfoldStore=*/false, |
| 1398 | LoadRegIndex: &LoadRegIndex); |
| 1399 | if (NewOpc != 0) { |
| 1400 | const MCInstrDesc &UnfoldMCID = TII->get(Opcode: NewOpc); |
| 1401 | if (UnfoldMCID.getNumDefs() == 1) { |
| 1402 | // Unfold the load. |
| 1403 | LLVM_DEBUG(dbgs() << "2addr: UNFOLDING: " << MI); |
| 1404 | const TargetRegisterClass *RC = |
| 1405 | TRI->getAllocatableClass( |
| 1406 | RC: TII->getRegClass(MCID: UnfoldMCID, OpNum: LoadRegIndex, TRI, MF: *MF)); |
| 1407 | Register Reg = MRI->createVirtualRegister(RegClass: RC); |
| 1408 | SmallVector<MachineInstr *, 2> NewMIs; |
| 1409 | if (!TII->unfoldMemoryOperand(MF&: *MF, MI, Reg, |
| 1410 | /*UnfoldLoad=*/true, |
| 1411 | /*UnfoldStore=*/false, NewMIs)) { |
| 1412 | LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n" ); |
| 1413 | return false; |
| 1414 | } |
| 1415 | assert(NewMIs.size() == 2 && |
| 1416 | "Unfolded a load into multiple instructions!" ); |
| 1417 | // The load was previously folded, so this is the only use. |
| 1418 | NewMIs[1]->addRegisterKilled(IncomingReg: Reg, RegInfo: TRI); |
| 1419 | |
| 1420 | // Tentatively insert the instructions into the block so that they |
| 1421 | // look "normal" to the transformation logic. |
| 1422 | MBB->insert(I: mi, MI: NewMIs[0]); |
| 1423 | MBB->insert(I: mi, MI: NewMIs[1]); |
| 1424 | DistanceMap.insert(KV: std::make_pair(x&: NewMIs[0], y: Dist++)); |
| 1425 | DistanceMap.insert(KV: std::make_pair(x&: NewMIs[1], y&: Dist)); |
| 1426 | |
| 1427 | LLVM_DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs[0] |
| 1428 | << "2addr: NEW INST: " << *NewMIs[1]); |
| 1429 | |
| 1430 | // Transform the instruction, now that it no longer has a load. |
| 1431 | unsigned NewDstIdx = |
| 1432 | NewMIs[1]->findRegisterDefOperandIdx(Reg: regA, /*TRI=*/nullptr); |
| 1433 | unsigned NewSrcIdx = |
| 1434 | NewMIs[1]->findRegisterUseOperandIdx(Reg: regB, /*TRI=*/nullptr); |
| 1435 | MachineBasicBlock::iterator NewMI = NewMIs[1]; |
| 1436 | bool TransformResult = |
| 1437 | tryInstructionTransform(mi&: NewMI, nmi&: mi, SrcIdx: NewSrcIdx, DstIdx: NewDstIdx, Dist, shouldOnlyCommute: true); |
| 1438 | (void)TransformResult; |
| 1439 | assert(!TransformResult && |
| 1440 | "tryInstructionTransform() should return false." ); |
| 1441 | if (NewMIs[1]->getOperand(i: NewSrcIdx).isKill()) { |
| 1442 | // Success, or at least we made an improvement. Keep the unfolded |
| 1443 | // instructions and discard the original. |
| 1444 | if (LV) { |
| 1445 | for (const MachineOperand &MO : MI.operands()) { |
| 1446 | if (MO.isReg() && MO.getReg().isVirtual()) { |
| 1447 | if (MO.isUse()) { |
| 1448 | if (MO.isKill()) { |
| 1449 | if (NewMIs[0]->killsRegister(Reg: MO.getReg(), /*TRI=*/nullptr)) |
| 1450 | LV->replaceKillInstruction(Reg: MO.getReg(), OldMI&: MI, NewMI&: *NewMIs[0]); |
| 1451 | else { |
| 1452 | assert(NewMIs[1]->killsRegister(MO.getReg(), |
| 1453 | /*TRI=*/nullptr) && |
| 1454 | "Kill missing after load unfold!" ); |
| 1455 | LV->replaceKillInstruction(Reg: MO.getReg(), OldMI&: MI, NewMI&: *NewMIs[1]); |
| 1456 | } |
| 1457 | } |
| 1458 | } else if (LV->removeVirtualRegisterDead(Reg: MO.getReg(), MI)) { |
| 1459 | if (NewMIs[1]->registerDefIsDead(Reg: MO.getReg(), |
| 1460 | /*TRI=*/nullptr)) |
| 1461 | LV->addVirtualRegisterDead(IncomingReg: MO.getReg(), MI&: *NewMIs[1]); |
| 1462 | else { |
| 1463 | assert(NewMIs[0]->registerDefIsDead(MO.getReg(), |
| 1464 | /*TRI=*/nullptr) && |
| 1465 | "Dead flag missing after load unfold!" ); |
| 1466 | LV->addVirtualRegisterDead(IncomingReg: MO.getReg(), MI&: *NewMIs[0]); |
| 1467 | } |
| 1468 | } |
| 1469 | } |
| 1470 | } |
| 1471 | LV->addVirtualRegisterKilled(IncomingReg: Reg, MI&: *NewMIs[1]); |
| 1472 | } |
| 1473 | |
| 1474 | SmallVector<Register, 4> OrigRegs; |
| 1475 | if (LIS) { |
| 1476 | for (const MachineOperand &MO : MI.operands()) { |
| 1477 | if (MO.isReg()) |
| 1478 | OrigRegs.push_back(Elt: MO.getReg()); |
| 1479 | } |
| 1480 | |
| 1481 | LIS->RemoveMachineInstrFromMaps(MI); |
| 1482 | } |
| 1483 | |
| 1484 | MI.eraseFromParent(); |
| 1485 | DistanceMap.erase(Val: &MI); |
| 1486 | |
| 1487 | // Update LiveIntervals. |
| 1488 | if (LIS) { |
| 1489 | MachineBasicBlock::iterator Begin(NewMIs[0]); |
| 1490 | MachineBasicBlock::iterator End(NewMIs[1]); |
| 1491 | LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs); |
| 1492 | } |
| 1493 | |
| 1494 | mi = NewMIs[1]; |
| 1495 | } else { |
| 1496 | // Transforming didn't eliminate the tie and didn't lead to an |
| 1497 | // improvement. Clean up the unfolded instructions and keep the |
| 1498 | // original. |
| 1499 | LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n" ); |
| 1500 | NewMIs[0]->eraseFromParent(); |
| 1501 | NewMIs[1]->eraseFromParent(); |
| 1502 | DistanceMap.erase(Val: NewMIs[0]); |
| 1503 | DistanceMap.erase(Val: NewMIs[1]); |
| 1504 | Dist--; |
| 1505 | } |
| 1506 | } |
| 1507 | } |
| 1508 | } |
| 1509 | |
| 1510 | return false; |
| 1511 | } |
| 1512 | |
| 1513 | // Collect tied operands of MI that need to be handled. |
| 1514 | // Rewrite trivial cases immediately. |
| 1515 | // Return true if any tied operands where found, including the trivial ones. |
| 1516 | bool TwoAddressInstructionImpl::collectTiedOperands( |
| 1517 | MachineInstr *MI, TiedOperandMap &TiedOperands) { |
| 1518 | bool AnyOps = false; |
| 1519 | unsigned NumOps = MI->getNumOperands(); |
| 1520 | |
| 1521 | for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) { |
| 1522 | unsigned DstIdx = 0; |
| 1523 | if (!MI->isRegTiedToDefOperand(UseOpIdx: SrcIdx, DefOpIdx: &DstIdx)) |
| 1524 | continue; |
| 1525 | AnyOps = true; |
| 1526 | MachineOperand &SrcMO = MI->getOperand(i: SrcIdx); |
| 1527 | MachineOperand &DstMO = MI->getOperand(i: DstIdx); |
| 1528 | Register SrcReg = SrcMO.getReg(); |
| 1529 | Register DstReg = DstMO.getReg(); |
| 1530 | // Tied constraint already satisfied? |
| 1531 | if (SrcReg == DstReg) |
| 1532 | continue; |
| 1533 | |
| 1534 | assert(SrcReg && SrcMO.isUse() && "two address instruction invalid" ); |
| 1535 | |
| 1536 | // Deal with undef uses immediately - simply rewrite the src operand. |
| 1537 | if (SrcMO.isUndef() && !DstMO.getSubReg()) { |
| 1538 | // Constrain the DstReg register class if required. |
| 1539 | if (DstReg.isVirtual()) { |
| 1540 | const TargetRegisterClass *RC = MRI->getRegClass(Reg: SrcReg); |
| 1541 | MRI->constrainRegClass(Reg: DstReg, RC); |
| 1542 | } |
| 1543 | SrcMO.setReg(DstReg); |
| 1544 | SrcMO.setSubReg(0); |
| 1545 | LLVM_DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI); |
| 1546 | continue; |
| 1547 | } |
| 1548 | TiedOperands[SrcReg].push_back(Elt: std::make_pair(x&: SrcIdx, y&: DstIdx)); |
| 1549 | } |
| 1550 | return AnyOps; |
| 1551 | } |
| 1552 | |
| 1553 | // Process a list of tied MI operands that all use the same source register. |
| 1554 | // The tied pairs are of the form (SrcIdx, DstIdx). |
| 1555 | void TwoAddressInstructionImpl::processTiedPairs(MachineInstr *MI, |
| 1556 | TiedPairList &TiedPairs, |
| 1557 | unsigned &Dist) { |
| 1558 | bool IsEarlyClobber = llvm::any_of(Range&: TiedPairs, P: [MI](auto const &TP) { |
| 1559 | return MI->getOperand(TP.second).isEarlyClobber(); |
| 1560 | }); |
| 1561 | |
| 1562 | bool RemovedKillFlag = false; |
| 1563 | bool AllUsesCopied = true; |
| 1564 | Register LastCopiedReg; |
| 1565 | SlotIndex LastCopyIdx; |
| 1566 | Register RegB = 0; |
| 1567 | unsigned SubRegB = 0; |
| 1568 | for (auto &TP : TiedPairs) { |
| 1569 | unsigned SrcIdx = TP.first; |
| 1570 | unsigned DstIdx = TP.second; |
| 1571 | |
| 1572 | const MachineOperand &DstMO = MI->getOperand(i: DstIdx); |
| 1573 | Register RegA = DstMO.getReg(); |
| 1574 | |
| 1575 | // Grab RegB from the instruction because it may have changed if the |
| 1576 | // instruction was commuted. |
| 1577 | RegB = MI->getOperand(i: SrcIdx).getReg(); |
| 1578 | SubRegB = MI->getOperand(i: SrcIdx).getSubReg(); |
| 1579 | |
| 1580 | if (RegA == RegB) { |
| 1581 | // The register is tied to multiple destinations (or else we would |
| 1582 | // not have continued this far), but this use of the register |
| 1583 | // already matches the tied destination. Leave it. |
| 1584 | AllUsesCopied = false; |
| 1585 | continue; |
| 1586 | } |
| 1587 | LastCopiedReg = RegA; |
| 1588 | |
| 1589 | assert(RegB.isVirtual() && "cannot make instruction into two-address form" ); |
| 1590 | |
| 1591 | #ifndef NDEBUG |
| 1592 | // First, verify that we don't have a use of "a" in the instruction |
| 1593 | // (a = b + a for example) because our transformation will not |
| 1594 | // work. This should never occur because we are in SSA form. |
| 1595 | for (unsigned i = 0; i != MI->getNumOperands(); ++i) |
| 1596 | assert(i == DstIdx || |
| 1597 | !MI->getOperand(i).isReg() || |
| 1598 | MI->getOperand(i).getReg() != RegA); |
| 1599 | #endif |
| 1600 | |
| 1601 | // Emit a copy. |
| 1602 | MachineInstrBuilder MIB = BuildMI(BB&: *MI->getParent(), I: MI, MIMD: MI->getDebugLoc(), |
| 1603 | MCID: TII->get(Opcode: TargetOpcode::COPY), DestReg: RegA); |
| 1604 | // If this operand is folding a truncation, the truncation now moves to the |
| 1605 | // copy so that the register classes remain valid for the operands. |
| 1606 | MIB.addReg(RegNo: RegB, flags: 0, SubReg: SubRegB); |
| 1607 | const TargetRegisterClass *RC = MRI->getRegClass(Reg: RegB); |
| 1608 | if (SubRegB) { |
| 1609 | if (RegA.isVirtual()) { |
| 1610 | assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA), |
| 1611 | SubRegB) && |
| 1612 | "tied subregister must be a truncation" ); |
| 1613 | // The superreg class will not be used to constrain the subreg class. |
| 1614 | RC = nullptr; |
| 1615 | } else { |
| 1616 | assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB)) |
| 1617 | && "tied subregister must be a truncation" ); |
| 1618 | } |
| 1619 | } |
| 1620 | |
| 1621 | // Update DistanceMap. |
| 1622 | MachineBasicBlock::iterator PrevMI = MI; |
| 1623 | --PrevMI; |
| 1624 | DistanceMap.insert(KV: std::make_pair(x: &*PrevMI, y&: Dist)); |
| 1625 | DistanceMap[MI] = ++Dist; |
| 1626 | |
| 1627 | if (LIS) { |
| 1628 | LastCopyIdx = LIS->InsertMachineInstrInMaps(MI&: *PrevMI).getRegSlot(); |
| 1629 | |
| 1630 | SlotIndex endIdx = |
| 1631 | LIS->getInstructionIndex(Instr: *MI).getRegSlot(EC: IsEarlyClobber); |
| 1632 | if (RegA.isVirtual()) { |
| 1633 | LiveInterval &LI = LIS->getInterval(Reg: RegA); |
| 1634 | VNInfo *VNI = LI.getNextValue(Def: LastCopyIdx, VNInfoAllocator&: LIS->getVNInfoAllocator()); |
| 1635 | LI.addSegment(S: LiveRange::Segment(LastCopyIdx, endIdx, VNI)); |
| 1636 | for (auto &S : LI.subranges()) { |
| 1637 | VNI = S.getNextValue(Def: LastCopyIdx, VNInfoAllocator&: LIS->getVNInfoAllocator()); |
| 1638 | S.addSegment(S: LiveRange::Segment(LastCopyIdx, endIdx, VNI)); |
| 1639 | } |
| 1640 | } else { |
| 1641 | for (MCRegUnit Unit : TRI->regunits(Reg: RegA)) { |
| 1642 | if (LiveRange *LR = LIS->getCachedRegUnit(Unit)) { |
| 1643 | VNInfo *VNI = |
| 1644 | LR->getNextValue(Def: LastCopyIdx, VNInfoAllocator&: LIS->getVNInfoAllocator()); |
| 1645 | LR->addSegment(S: LiveRange::Segment(LastCopyIdx, endIdx, VNI)); |
| 1646 | } |
| 1647 | } |
| 1648 | } |
| 1649 | } |
| 1650 | |
| 1651 | LLVM_DEBUG(dbgs() << "\t\tprepend:\t" << *MIB); |
| 1652 | |
| 1653 | MachineOperand &MO = MI->getOperand(i: SrcIdx); |
| 1654 | assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() && |
| 1655 | "inconsistent operand info for 2-reg pass" ); |
| 1656 | if (isPlainlyKilled(MO)) { |
| 1657 | MO.setIsKill(false); |
| 1658 | RemovedKillFlag = true; |
| 1659 | } |
| 1660 | |
| 1661 | // Make sure regA is a legal regclass for the SrcIdx operand. |
| 1662 | if (RegA.isVirtual() && RegB.isVirtual()) |
| 1663 | MRI->constrainRegClass(Reg: RegA, RC); |
| 1664 | MO.setReg(RegA); |
| 1665 | // The getMatchingSuper asserts guarantee that the register class projected |
| 1666 | // by SubRegB is compatible with RegA with no subregister. So regardless of |
| 1667 | // whether the dest oper writes a subreg, the source oper should not. |
| 1668 | MO.setSubReg(0); |
| 1669 | } |
| 1670 | |
| 1671 | if (AllUsesCopied) { |
| 1672 | LaneBitmask RemainingUses = LaneBitmask::getNone(); |
| 1673 | // Replace other (un-tied) uses of regB with LastCopiedReg. |
| 1674 | for (MachineOperand &MO : MI->all_uses()) { |
| 1675 | if (MO.getReg() == RegB) { |
| 1676 | if (MO.getSubReg() == SubRegB && !IsEarlyClobber) { |
| 1677 | if (isPlainlyKilled(MO)) { |
| 1678 | MO.setIsKill(false); |
| 1679 | RemovedKillFlag = true; |
| 1680 | } |
| 1681 | MO.setReg(LastCopiedReg); |
| 1682 | MO.setSubReg(0); |
| 1683 | } else { |
| 1684 | RemainingUses |= TRI->getSubRegIndexLaneMask(SubIdx: MO.getSubReg()); |
| 1685 | } |
| 1686 | } |
| 1687 | } |
| 1688 | |
| 1689 | // Update live variables for regB. |
| 1690 | if (RemovedKillFlag && RemainingUses.none() && LV && |
| 1691 | LV->getVarInfo(Reg: RegB).removeKill(MI&: *MI)) { |
| 1692 | MachineBasicBlock::iterator PrevMI = MI; |
| 1693 | --PrevMI; |
| 1694 | LV->addVirtualRegisterKilled(IncomingReg: RegB, MI&: *PrevMI); |
| 1695 | } |
| 1696 | |
| 1697 | if (RemovedKillFlag && RemainingUses.none()) |
| 1698 | SrcRegMap[LastCopiedReg] = RegB; |
| 1699 | |
| 1700 | // Update LiveIntervals. |
| 1701 | if (LIS) { |
| 1702 | SlotIndex UseIdx = LIS->getInstructionIndex(Instr: *MI); |
| 1703 | auto Shrink = [=](LiveRange &LR, LaneBitmask LaneMask) { |
| 1704 | LiveRange::Segment *S = LR.getSegmentContaining(Idx: LastCopyIdx); |
| 1705 | if (!S) |
| 1706 | return true; |
| 1707 | if ((LaneMask & RemainingUses).any()) |
| 1708 | return false; |
| 1709 | if (S->end.getBaseIndex() != UseIdx) |
| 1710 | return false; |
| 1711 | S->end = LastCopyIdx; |
| 1712 | return true; |
| 1713 | }; |
| 1714 | |
| 1715 | LiveInterval &LI = LIS->getInterval(Reg: RegB); |
| 1716 | bool ShrinkLI = true; |
| 1717 | for (auto &S : LI.subranges()) |
| 1718 | ShrinkLI &= Shrink(S, S.LaneMask); |
| 1719 | if (ShrinkLI) |
| 1720 | Shrink(LI, LaneBitmask::getAll()); |
| 1721 | } |
| 1722 | } else if (RemovedKillFlag) { |
| 1723 | // Some tied uses of regB matched their destination registers, so |
| 1724 | // regB is still used in this instruction, but a kill flag was |
| 1725 | // removed from a different tied use of regB, so now we need to add |
| 1726 | // a kill flag to one of the remaining uses of regB. |
| 1727 | for (MachineOperand &MO : MI->all_uses()) { |
| 1728 | if (MO.getReg() == RegB) { |
| 1729 | MO.setIsKill(true); |
| 1730 | break; |
| 1731 | } |
| 1732 | } |
| 1733 | } |
| 1734 | } |
| 1735 | |
| 1736 | // For every tied operand pair this function transforms statepoint from |
| 1737 | // RegA = STATEPOINT ... RegB(tied-def N) |
| 1738 | // to |
| 1739 | // RegB = STATEPOINT ... RegB(tied-def N) |
| 1740 | // and replaces all uses of RegA with RegB. |
| 1741 | // No extra COPY instruction is necessary because tied use is killed at |
| 1742 | // STATEPOINT. |
| 1743 | bool TwoAddressInstructionImpl::processStatepoint( |
| 1744 | MachineInstr *MI, TiedOperandMap &TiedOperands) { |
| 1745 | |
| 1746 | bool NeedCopy = false; |
| 1747 | for (auto &TO : TiedOperands) { |
| 1748 | Register RegB = TO.first; |
| 1749 | if (TO.second.size() != 1) { |
| 1750 | NeedCopy = true; |
| 1751 | continue; |
| 1752 | } |
| 1753 | |
| 1754 | unsigned SrcIdx = TO.second[0].first; |
| 1755 | unsigned DstIdx = TO.second[0].second; |
| 1756 | |
| 1757 | MachineOperand &DstMO = MI->getOperand(i: DstIdx); |
| 1758 | Register RegA = DstMO.getReg(); |
| 1759 | |
| 1760 | assert(RegB == MI->getOperand(SrcIdx).getReg()); |
| 1761 | |
| 1762 | if (RegA == RegB) |
| 1763 | continue; |
| 1764 | |
| 1765 | // CodeGenPrepare can sink pointer compare past statepoint, which |
| 1766 | // breaks assumption that statepoint kills tied-use register when |
| 1767 | // in SSA form (see note in IR/SafepointIRVerifier.cpp). Fall back |
| 1768 | // to generic tied register handling to avoid assertion failures. |
| 1769 | // TODO: Recompute LIS/LV information for new range here. |
| 1770 | if (LIS) { |
| 1771 | const auto &UseLI = LIS->getInterval(Reg: RegB); |
| 1772 | const auto &DefLI = LIS->getInterval(Reg: RegA); |
| 1773 | if (DefLI.overlaps(other: UseLI)) { |
| 1774 | LLVM_DEBUG(dbgs() << "LIS: " << printReg(RegB, TRI, 0) |
| 1775 | << " UseLI overlaps with DefLI\n" ); |
| 1776 | NeedCopy = true; |
| 1777 | continue; |
| 1778 | } |
| 1779 | } else if (LV && LV->getVarInfo(Reg: RegB).findKill(MBB: MI->getParent()) != MI) { |
| 1780 | // Note that MachineOperand::isKill does not work here, because it |
| 1781 | // is set only on first register use in instruction and for statepoint |
| 1782 | // tied-use register will usually be found in preceeding deopt bundle. |
| 1783 | LLVM_DEBUG(dbgs() << "LV: " << printReg(RegB, TRI, 0) |
| 1784 | << " not killed by statepoint\n" ); |
| 1785 | NeedCopy = true; |
| 1786 | continue; |
| 1787 | } |
| 1788 | |
| 1789 | if (!MRI->constrainRegClass(Reg: RegB, RC: MRI->getRegClass(Reg: RegA))) { |
| 1790 | LLVM_DEBUG(dbgs() << "MRI: couldn't constrain" << printReg(RegB, TRI, 0) |
| 1791 | << " to register class of " << printReg(RegA, TRI, 0) |
| 1792 | << '\n'); |
| 1793 | NeedCopy = true; |
| 1794 | continue; |
| 1795 | } |
| 1796 | MRI->replaceRegWith(FromReg: RegA, ToReg: RegB); |
| 1797 | |
| 1798 | if (LIS) { |
| 1799 | VNInfo::Allocator &A = LIS->getVNInfoAllocator(); |
| 1800 | LiveInterval &LI = LIS->getInterval(Reg: RegB); |
| 1801 | LiveInterval &Other = LIS->getInterval(Reg: RegA); |
| 1802 | SmallVector<VNInfo *> NewVNIs; |
| 1803 | for (const VNInfo *VNI : Other.valnos) { |
| 1804 | assert(VNI->id == NewVNIs.size() && "assumed" ); |
| 1805 | NewVNIs.push_back(Elt: LI.createValueCopy(orig: VNI, VNInfoAllocator&: A)); |
| 1806 | } |
| 1807 | for (auto &S : Other) { |
| 1808 | VNInfo *VNI = NewVNIs[S.valno->id]; |
| 1809 | LiveRange::Segment NewSeg(S.start, S.end, VNI); |
| 1810 | LI.addSegment(S: NewSeg); |
| 1811 | } |
| 1812 | LIS->removeInterval(Reg: RegA); |
| 1813 | } |
| 1814 | |
| 1815 | if (LV) { |
| 1816 | if (MI->getOperand(i: SrcIdx).isKill()) |
| 1817 | LV->removeVirtualRegisterKilled(Reg: RegB, MI&: *MI); |
| 1818 | LiveVariables::VarInfo &SrcInfo = LV->getVarInfo(Reg: RegB); |
| 1819 | LiveVariables::VarInfo &DstInfo = LV->getVarInfo(Reg: RegA); |
| 1820 | SrcInfo.AliveBlocks |= DstInfo.AliveBlocks; |
| 1821 | DstInfo.AliveBlocks.clear(); |
| 1822 | for (auto *KillMI : DstInfo.Kills) |
| 1823 | LV->addVirtualRegisterKilled(IncomingReg: RegB, MI&: *KillMI, AddIfNotFound: false); |
| 1824 | } |
| 1825 | } |
| 1826 | return !NeedCopy; |
| 1827 | } |
| 1828 | |
| 1829 | /// Reduce two-address instructions to two operands. |
| 1830 | bool TwoAddressInstructionImpl::run() { |
| 1831 | bool MadeChange = false; |
| 1832 | |
| 1833 | LLVM_DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n" ); |
| 1834 | LLVM_DEBUG(dbgs() << "********** Function: " << MF->getName() << '\n'); |
| 1835 | |
| 1836 | // This pass takes the function out of SSA form. |
| 1837 | MRI->leaveSSA(); |
| 1838 | |
| 1839 | // This pass will rewrite the tied-def to meet the RegConstraint. |
| 1840 | MF->getProperties().setTiedOpsRewritten(); |
| 1841 | |
| 1842 | TiedOperandMap TiedOperands; |
| 1843 | for (MachineBasicBlock &MBBI : *MF) { |
| 1844 | MBB = &MBBI; |
| 1845 | unsigned Dist = 0; |
| 1846 | DistanceMap.clear(); |
| 1847 | SrcRegMap.clear(); |
| 1848 | DstRegMap.clear(); |
| 1849 | Processed.clear(); |
| 1850 | for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end(); |
| 1851 | mi != me; ) { |
| 1852 | MachineBasicBlock::iterator nmi = std::next(x: mi); |
| 1853 | // Skip debug instructions. |
| 1854 | if (mi->isDebugInstr()) { |
| 1855 | mi = nmi; |
| 1856 | continue; |
| 1857 | } |
| 1858 | |
| 1859 | // Expand REG_SEQUENCE instructions. This will position mi at the first |
| 1860 | // expanded instruction. |
| 1861 | if (mi->isRegSequence()) |
| 1862 | eliminateRegSequence(mi); |
| 1863 | |
| 1864 | DistanceMap.insert(KV: std::make_pair(x: &*mi, y&: ++Dist)); |
| 1865 | |
| 1866 | processCopy(MI: &*mi); |
| 1867 | |
| 1868 | // First scan through all the tied register uses in this instruction |
| 1869 | // and record a list of pairs of tied operands for each register. |
| 1870 | if (!collectTiedOperands(MI: &*mi, TiedOperands)) { |
| 1871 | removeClobberedSrcRegMap(MI: &*mi); |
| 1872 | mi = nmi; |
| 1873 | continue; |
| 1874 | } |
| 1875 | |
| 1876 | ++NumTwoAddressInstrs; |
| 1877 | MadeChange = true; |
| 1878 | LLVM_DEBUG(dbgs() << '\t' << *mi); |
| 1879 | |
| 1880 | // If the instruction has a single pair of tied operands, try some |
| 1881 | // transformations that may either eliminate the tied operands or |
| 1882 | // improve the opportunities for coalescing away the register copy. |
| 1883 | if (TiedOperands.size() == 1) { |
| 1884 | SmallVectorImpl<std::pair<unsigned, unsigned>> &TiedPairs |
| 1885 | = TiedOperands.begin()->second; |
| 1886 | if (TiedPairs.size() == 1) { |
| 1887 | unsigned SrcIdx = TiedPairs[0].first; |
| 1888 | unsigned DstIdx = TiedPairs[0].second; |
| 1889 | Register SrcReg = mi->getOperand(i: SrcIdx).getReg(); |
| 1890 | Register DstReg = mi->getOperand(i: DstIdx).getReg(); |
| 1891 | if (SrcReg != DstReg && |
| 1892 | tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, shouldOnlyCommute: false)) { |
| 1893 | // The tied operands have been eliminated or shifted further down |
| 1894 | // the block to ease elimination. Continue processing with 'nmi'. |
| 1895 | TiedOperands.clear(); |
| 1896 | removeClobberedSrcRegMap(MI: &*mi); |
| 1897 | mi = nmi; |
| 1898 | continue; |
| 1899 | } |
| 1900 | } |
| 1901 | } |
| 1902 | |
| 1903 | if (mi->getOpcode() == TargetOpcode::STATEPOINT && |
| 1904 | processStatepoint(MI: &*mi, TiedOperands)) { |
| 1905 | TiedOperands.clear(); |
| 1906 | LLVM_DEBUG(dbgs() << "\t\trewrite to:\t" << *mi); |
| 1907 | mi = nmi; |
| 1908 | continue; |
| 1909 | } |
| 1910 | |
| 1911 | // Now iterate over the information collected above. |
| 1912 | for (auto &TO : TiedOperands) { |
| 1913 | processTiedPairs(MI: &*mi, TiedPairs&: TO.second, Dist); |
| 1914 | LLVM_DEBUG(dbgs() << "\t\trewrite to:\t" << *mi); |
| 1915 | } |
| 1916 | |
| 1917 | // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form. |
| 1918 | if (mi->isInsertSubreg()) { |
| 1919 | // From %reg = INSERT_SUBREG %reg, %subreg, subidx |
| 1920 | // To %reg:subidx = COPY %subreg |
| 1921 | unsigned SubIdx = mi->getOperand(i: 3).getImm(); |
| 1922 | mi->removeOperand(OpNo: 3); |
| 1923 | assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx" ); |
| 1924 | mi->getOperand(i: 0).setSubReg(SubIdx); |
| 1925 | mi->getOperand(i: 0).setIsUndef(mi->getOperand(i: 1).isUndef()); |
| 1926 | mi->removeOperand(OpNo: 1); |
| 1927 | mi->setDesc(TII->get(Opcode: TargetOpcode::COPY)); |
| 1928 | LLVM_DEBUG(dbgs() << "\t\tconvert to:\t" << *mi); |
| 1929 | |
| 1930 | // Update LiveIntervals. |
| 1931 | if (LIS) { |
| 1932 | Register Reg = mi->getOperand(i: 0).getReg(); |
| 1933 | LiveInterval &LI = LIS->getInterval(Reg); |
| 1934 | if (LI.hasSubRanges()) { |
| 1935 | // The COPY no longer defines subregs of %reg except for |
| 1936 | // %reg.subidx. |
| 1937 | LaneBitmask LaneMask = |
| 1938 | TRI->getSubRegIndexLaneMask(SubIdx: mi->getOperand(i: 0).getSubReg()); |
| 1939 | SlotIndex Idx = LIS->getInstructionIndex(Instr: *mi).getRegSlot(); |
| 1940 | for (auto &S : LI.subranges()) { |
| 1941 | if ((S.LaneMask & LaneMask).none()) { |
| 1942 | LiveRange::iterator DefSeg = S.FindSegmentContaining(Idx); |
| 1943 | if (mi->getOperand(i: 0).isUndef()) { |
| 1944 | S.removeValNo(ValNo: DefSeg->valno); |
| 1945 | } else { |
| 1946 | LiveRange::iterator UseSeg = std::prev(x: DefSeg); |
| 1947 | S.MergeValueNumberInto(V1: DefSeg->valno, V2: UseSeg->valno); |
| 1948 | } |
| 1949 | } |
| 1950 | } |
| 1951 | |
| 1952 | // The COPY no longer has a use of %reg. |
| 1953 | LIS->shrinkToUses(li: &LI); |
| 1954 | } else { |
| 1955 | // The live interval for Reg did not have subranges but now it needs |
| 1956 | // them because we have introduced a subreg def. Recompute it. |
| 1957 | LIS->removeInterval(Reg); |
| 1958 | LIS->createAndComputeVirtRegInterval(Reg); |
| 1959 | } |
| 1960 | } |
| 1961 | } |
| 1962 | |
| 1963 | // Clear TiedOperands here instead of at the top of the loop |
| 1964 | // since most instructions do not have tied operands. |
| 1965 | TiedOperands.clear(); |
| 1966 | removeClobberedSrcRegMap(MI: &*mi); |
| 1967 | mi = nmi; |
| 1968 | } |
| 1969 | } |
| 1970 | |
| 1971 | return MadeChange; |
| 1972 | } |
| 1973 | |
| 1974 | /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process. |
| 1975 | /// |
| 1976 | /// The instruction is turned into a sequence of sub-register copies: |
| 1977 | /// |
| 1978 | /// %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1 |
| 1979 | /// |
| 1980 | /// Becomes: |
| 1981 | /// |
| 1982 | /// undef %dst:ssub0 = COPY %v1 |
| 1983 | /// %dst:ssub1 = COPY %v2 |
| 1984 | void TwoAddressInstructionImpl::eliminateRegSequence( |
| 1985 | MachineBasicBlock::iterator &MBBI) { |
| 1986 | MachineInstr &MI = *MBBI; |
| 1987 | Register DstReg = MI.getOperand(i: 0).getReg(); |
| 1988 | |
| 1989 | SmallVector<Register, 4> OrigRegs; |
| 1990 | VNInfo *DefVN = nullptr; |
| 1991 | if (LIS) { |
| 1992 | OrigRegs.push_back(Elt: MI.getOperand(i: 0).getReg()); |
| 1993 | for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) |
| 1994 | OrigRegs.push_back(Elt: MI.getOperand(i).getReg()); |
| 1995 | if (LIS->hasInterval(Reg: DstReg)) { |
| 1996 | DefVN = LIS->getInterval(Reg: DstReg) |
| 1997 | .Query(Idx: LIS->getInstructionIndex(Instr: MI)) |
| 1998 | .valueOut(); |
| 1999 | } |
| 2000 | } |
| 2001 | |
| 2002 | LaneBitmask UndefLanes = LaneBitmask::getNone(); |
| 2003 | bool DefEmitted = false; |
| 2004 | for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) { |
| 2005 | MachineOperand &UseMO = MI.getOperand(i); |
| 2006 | Register SrcReg = UseMO.getReg(); |
| 2007 | unsigned SubIdx = MI.getOperand(i: i+1).getImm(); |
| 2008 | // Nothing needs to be inserted for undef operands. |
| 2009 | if (UseMO.isUndef()) { |
| 2010 | UndefLanes |= TRI->getSubRegIndexLaneMask(SubIdx); |
| 2011 | continue; |
| 2012 | } |
| 2013 | |
| 2014 | // Defer any kill flag to the last operand using SrcReg. Otherwise, we |
| 2015 | // might insert a COPY that uses SrcReg after is was killed. |
| 2016 | bool isKill = UseMO.isKill(); |
| 2017 | if (isKill) |
| 2018 | for (unsigned j = i + 2; j < e; j += 2) |
| 2019 | if (MI.getOperand(i: j).getReg() == SrcReg) { |
| 2020 | MI.getOperand(i: j).setIsKill(); |
| 2021 | UseMO.setIsKill(false); |
| 2022 | isKill = false; |
| 2023 | break; |
| 2024 | } |
| 2025 | |
| 2026 | // Insert the sub-register copy. |
| 2027 | MachineInstr *CopyMI = BuildMI(BB&: *MI.getParent(), I&: MI, MIMD: MI.getDebugLoc(), |
| 2028 | MCID: TII->get(Opcode: TargetOpcode::COPY)) |
| 2029 | .addReg(RegNo: DstReg, flags: RegState::Define, SubReg: SubIdx) |
| 2030 | .add(MO: UseMO); |
| 2031 | |
| 2032 | // The first def needs an undef flag because there is no live register |
| 2033 | // before it. |
| 2034 | if (!DefEmitted) { |
| 2035 | CopyMI->getOperand(i: 0).setIsUndef(true); |
| 2036 | // Return an iterator pointing to the first inserted instr. |
| 2037 | MBBI = CopyMI; |
| 2038 | } |
| 2039 | DefEmitted = true; |
| 2040 | |
| 2041 | // Update LiveVariables' kill info. |
| 2042 | if (LV && isKill && !SrcReg.isPhysical()) |
| 2043 | LV->replaceKillInstruction(Reg: SrcReg, OldMI&: MI, NewMI&: *CopyMI); |
| 2044 | |
| 2045 | LLVM_DEBUG(dbgs() << "Inserted: " << *CopyMI); |
| 2046 | } |
| 2047 | |
| 2048 | MachineBasicBlock::iterator EndMBBI = |
| 2049 | std::next(x: MachineBasicBlock::iterator(MI)); |
| 2050 | |
| 2051 | if (!DefEmitted) { |
| 2052 | LLVM_DEBUG(dbgs() << "Turned: " << MI << " into an IMPLICIT_DEF" ); |
| 2053 | MI.setDesc(TII->get(Opcode: TargetOpcode::IMPLICIT_DEF)); |
| 2054 | for (int j = MI.getNumOperands() - 1, ee = 0; j > ee; --j) |
| 2055 | MI.removeOperand(OpNo: j); |
| 2056 | } else { |
| 2057 | if (LIS) { |
| 2058 | // Force live interval recomputation if we moved to a partial definition |
| 2059 | // of the register. Undef flags must be propagate to uses of undefined |
| 2060 | // subregister for accurate interval computation. |
| 2061 | if (UndefLanes.any() && DefVN && MRI->shouldTrackSubRegLiveness(VReg: DstReg)) { |
| 2062 | auto &LI = LIS->getInterval(Reg: DstReg); |
| 2063 | for (MachineOperand &UseOp : MRI->use_operands(Reg: DstReg)) { |
| 2064 | unsigned SubReg = UseOp.getSubReg(); |
| 2065 | if (UseOp.isUndef() || !SubReg) |
| 2066 | continue; |
| 2067 | auto *VN = |
| 2068 | LI.getVNInfoAt(Idx: LIS->getInstructionIndex(Instr: *UseOp.getParent())); |
| 2069 | if (DefVN != VN) |
| 2070 | continue; |
| 2071 | LaneBitmask LaneMask = TRI->getSubRegIndexLaneMask(SubIdx: SubReg); |
| 2072 | if ((UndefLanes & LaneMask).any()) |
| 2073 | UseOp.setIsUndef(true); |
| 2074 | } |
| 2075 | LIS->removeInterval(Reg: DstReg); |
| 2076 | } |
| 2077 | LIS->RemoveMachineInstrFromMaps(MI); |
| 2078 | } |
| 2079 | |
| 2080 | LLVM_DEBUG(dbgs() << "Eliminated: " << MI); |
| 2081 | MI.eraseFromParent(); |
| 2082 | } |
| 2083 | |
| 2084 | // Udpate LiveIntervals. |
| 2085 | if (LIS) |
| 2086 | LIS->repairIntervalsInRange(MBB, Begin: MBBI, End: EndMBBI, OrigRegs); |
| 2087 | } |
| 2088 | |