| 1 | //===- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map -----------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the VirtRegMap class. |
| 10 | // |
| 11 | // It also contains implementations of the Spiller interface, which, given a |
| 12 | // virtual register map and a machine function, eliminates all virtual |
| 13 | // references by replacing them with physical register references - adding spill |
| 14 | // code as necessary. |
| 15 | // |
| 16 | //===----------------------------------------------------------------------===// |
| 17 | |
| 18 | #include "llvm/CodeGen/VirtRegMap.h" |
| 19 | #include "llvm/ADT/SmallVector.h" |
| 20 | #include "llvm/ADT/Statistic.h" |
| 21 | #include "llvm/CodeGen/LiveDebugVariables.h" |
| 22 | #include "llvm/CodeGen/LiveInterval.h" |
| 23 | #include "llvm/CodeGen/LiveIntervals.h" |
| 24 | #include "llvm/CodeGen/LiveRegMatrix.h" |
| 25 | #include "llvm/CodeGen/LiveStacks.h" |
| 26 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 27 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 28 | #include "llvm/CodeGen/MachineFunction.h" |
| 29 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 30 | #include "llvm/CodeGen/MachineInstr.h" |
| 31 | #include "llvm/CodeGen/MachineOperand.h" |
| 32 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 33 | #include "llvm/CodeGen/SlotIndexes.h" |
| 34 | #include "llvm/CodeGen/TargetFrameLowering.h" |
| 35 | #include "llvm/CodeGen/TargetInstrInfo.h" |
| 36 | #include "llvm/CodeGen/TargetOpcodes.h" |
| 37 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
| 38 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 39 | #include "llvm/Config/llvm-config.h" |
| 40 | #include "llvm/MC/LaneBitmask.h" |
| 41 | #include "llvm/Pass.h" |
| 42 | #include "llvm/Support/Compiler.h" |
| 43 | #include "llvm/Support/Debug.h" |
| 44 | #include "llvm/Support/raw_ostream.h" |
| 45 | #include <cassert> |
| 46 | #include <iterator> |
| 47 | #include <utility> |
| 48 | |
| 49 | using namespace llvm; |
| 50 | |
| 51 | #define DEBUG_TYPE "regalloc" |
| 52 | |
| 53 | STATISTIC(NumSpillSlots, "Number of spill slots allocated" ); |
| 54 | STATISTIC(NumIdCopies, "Number of identity moves eliminated after rewriting" ); |
| 55 | |
| 56 | //===----------------------------------------------------------------------===// |
| 57 | // VirtRegMap implementation |
| 58 | //===----------------------------------------------------------------------===// |
| 59 | |
| 60 | char VirtRegMapWrapperLegacy::ID = 0; |
| 61 | |
| 62 | INITIALIZE_PASS(VirtRegMapWrapperLegacy, "virtregmap" , "Virtual Register Map" , |
| 63 | false, true) |
| 64 | |
| 65 | void VirtRegMap::init(MachineFunction &mf) { |
| 66 | MRI = &mf.getRegInfo(); |
| 67 | TII = mf.getSubtarget().getInstrInfo(); |
| 68 | TRI = mf.getSubtarget().getRegisterInfo(); |
| 69 | MF = &mf; |
| 70 | |
| 71 | Virt2PhysMap.clear(); |
| 72 | Virt2StackSlotMap.clear(); |
| 73 | Virt2SplitMap.clear(); |
| 74 | Virt2ShapeMap.clear(); |
| 75 | |
| 76 | grow(); |
| 77 | } |
| 78 | |
| 79 | void VirtRegMap::grow() { |
| 80 | unsigned NumRegs = MF->getRegInfo().getNumVirtRegs(); |
| 81 | Virt2PhysMap.resize(s: NumRegs); |
| 82 | Virt2StackSlotMap.resize(s: NumRegs); |
| 83 | Virt2SplitMap.resize(s: NumRegs); |
| 84 | } |
| 85 | |
| 86 | void VirtRegMap::assignVirt2Phys(Register virtReg, MCRegister physReg) { |
| 87 | assert(virtReg.isVirtual() && physReg.isPhysical()); |
| 88 | assert(!Virt2PhysMap[virtReg] && |
| 89 | "attempt to assign physical register to already mapped " |
| 90 | "virtual register" ); |
| 91 | assert(!getRegInfo().isReserved(physReg) && |
| 92 | "Attempt to map virtReg to a reserved physReg" ); |
| 93 | Virt2PhysMap[virtReg] = physReg; |
| 94 | } |
| 95 | |
| 96 | unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass *RC) { |
| 97 | unsigned Size = TRI->getSpillSize(RC: *RC); |
| 98 | Align Alignment = TRI->getSpillAlign(RC: *RC); |
| 99 | // Set preferred alignment if we are still able to realign the stack |
| 100 | auto &ST = MF->getSubtarget(); |
| 101 | Align CurrentAlign = ST.getFrameLowering()->getStackAlign(); |
| 102 | if (Alignment > CurrentAlign && !ST.getRegisterInfo()->canRealignStack(MF: *MF)) { |
| 103 | Alignment = CurrentAlign; |
| 104 | } |
| 105 | int SS = MF->getFrameInfo().CreateSpillStackObject(Size, Alignment); |
| 106 | ++NumSpillSlots; |
| 107 | return SS; |
| 108 | } |
| 109 | |
| 110 | bool VirtRegMap::hasPreferredPhys(Register VirtReg) const { |
| 111 | Register Hint = MRI->getSimpleHint(VReg: VirtReg); |
| 112 | if (!Hint.isValid()) |
| 113 | return false; |
| 114 | if (Hint.isVirtual()) |
| 115 | Hint = getPhys(virtReg: Hint); |
| 116 | return Register(getPhys(virtReg: VirtReg)) == Hint; |
| 117 | } |
| 118 | |
| 119 | bool VirtRegMap::hasKnownPreference(Register VirtReg) const { |
| 120 | std::pair<unsigned, Register> Hint = MRI->getRegAllocationHint(VReg: VirtReg); |
| 121 | if (Hint.second.isPhysical()) |
| 122 | return true; |
| 123 | if (Hint.second.isVirtual()) |
| 124 | return hasPhys(virtReg: Hint.second); |
| 125 | return false; |
| 126 | } |
| 127 | |
| 128 | int VirtRegMap::assignVirt2StackSlot(Register virtReg) { |
| 129 | assert(virtReg.isVirtual()); |
| 130 | assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT && |
| 131 | "attempt to assign stack slot to already spilled register" ); |
| 132 | const TargetRegisterClass* RC = MF->getRegInfo().getRegClass(Reg: virtReg); |
| 133 | return Virt2StackSlotMap[virtReg] = createSpillSlot(RC); |
| 134 | } |
| 135 | |
| 136 | void VirtRegMap::assignVirt2StackSlot(Register virtReg, int SS) { |
| 137 | assert(virtReg.isVirtual()); |
| 138 | assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT && |
| 139 | "attempt to assign stack slot to already spilled register" ); |
| 140 | assert((SS >= 0 || |
| 141 | (SS >= MF->getFrameInfo().getObjectIndexBegin())) && |
| 142 | "illegal fixed frame index" ); |
| 143 | Virt2StackSlotMap[virtReg] = SS; |
| 144 | } |
| 145 | |
| 146 | void VirtRegMap::print(raw_ostream &OS, const Module*) const { |
| 147 | OS << "********** REGISTER MAP **********\n" ; |
| 148 | for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { |
| 149 | Register Reg = Register::index2VirtReg(Index: i); |
| 150 | if (Virt2PhysMap[Reg]) { |
| 151 | OS << '[' << printReg(Reg, TRI) << " -> " |
| 152 | << printReg(Reg: Virt2PhysMap[Reg], TRI) << "] " |
| 153 | << TRI->getRegClassName(Class: MRI->getRegClass(Reg)) << "\n" ; |
| 154 | } |
| 155 | } |
| 156 | |
| 157 | for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { |
| 158 | Register Reg = Register::index2VirtReg(Index: i); |
| 159 | if (Virt2StackSlotMap[Reg] != VirtRegMap::NO_STACK_SLOT) { |
| 160 | OS << '[' << printReg(Reg, TRI) << " -> fi#" << Virt2StackSlotMap[Reg] |
| 161 | << "] " << TRI->getRegClassName(Class: MRI->getRegClass(Reg)) << "\n" ; |
| 162 | } |
| 163 | } |
| 164 | OS << '\n'; |
| 165 | } |
| 166 | |
| 167 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 168 | LLVM_DUMP_METHOD void VirtRegMap::dump() const { |
| 169 | print(dbgs()); |
| 170 | } |
| 171 | #endif |
| 172 | |
| 173 | AnalysisKey VirtRegMapAnalysis::Key; |
| 174 | |
| 175 | PreservedAnalyses |
| 176 | VirtRegMapPrinterPass::run(MachineFunction &MF, |
| 177 | MachineFunctionAnalysisManager &MFAM) { |
| 178 | OS << MFAM.getResult<VirtRegMapAnalysis>(IR&: MF); |
| 179 | return PreservedAnalyses::all(); |
| 180 | } |
| 181 | |
| 182 | VirtRegMap VirtRegMapAnalysis::run(MachineFunction &MF, |
| 183 | MachineFunctionAnalysisManager &MAM) { |
| 184 | VirtRegMap VRM; |
| 185 | VRM.init(mf&: MF); |
| 186 | return VRM; |
| 187 | } |
| 188 | |
| 189 | //===----------------------------------------------------------------------===// |
| 190 | // VirtRegRewriter |
| 191 | //===----------------------------------------------------------------------===// |
| 192 | // |
| 193 | // The VirtRegRewriter is the last of the register allocator passes. |
| 194 | // It rewrites virtual registers to physical registers as specified in the |
| 195 | // VirtRegMap analysis. It also updates live-in information on basic blocks |
| 196 | // according to LiveIntervals. |
| 197 | // |
| 198 | namespace { |
| 199 | |
| 200 | class VirtRegRewriter { |
| 201 | MachineFunction *MF = nullptr; |
| 202 | const TargetRegisterInfo *TRI = nullptr; |
| 203 | const TargetInstrInfo *TII = nullptr; |
| 204 | MachineRegisterInfo *MRI = nullptr; |
| 205 | SlotIndexes *Indexes = nullptr; |
| 206 | LiveIntervals *LIS = nullptr; |
| 207 | LiveRegMatrix *LRM = nullptr; |
| 208 | VirtRegMap *VRM = nullptr; |
| 209 | LiveDebugVariables *DebugVars = nullptr; |
| 210 | DenseSet<Register> RewriteRegs; |
| 211 | bool ClearVirtRegs; |
| 212 | |
| 213 | void rewrite(); |
| 214 | void addMBBLiveIns(); |
| 215 | bool readsUndefSubreg(const MachineOperand &MO) const; |
| 216 | void addLiveInsForSubRanges(const LiveInterval &LI, MCRegister PhysReg) const; |
| 217 | void handleIdentityCopy(MachineInstr &MI); |
| 218 | void expandCopyBundle(MachineInstr &MI) const; |
| 219 | bool subRegLiveThrough(const MachineInstr &MI, MCRegister SuperPhysReg) const; |
| 220 | LaneBitmask liveOutUndefPhiLanesForUndefSubregDef( |
| 221 | const LiveInterval &LI, const MachineBasicBlock &MBB, unsigned SubReg, |
| 222 | MCRegister PhysReg, const MachineInstr &MI) const; |
| 223 | |
| 224 | public: |
| 225 | VirtRegRewriter(bool ClearVirtRegs, SlotIndexes *Indexes, LiveIntervals *LIS, |
| 226 | LiveRegMatrix *LRM, VirtRegMap *VRM, |
| 227 | LiveDebugVariables *DebugVars) |
| 228 | : Indexes(Indexes), LIS(LIS), LRM(LRM), VRM(VRM), DebugVars(DebugVars), |
| 229 | ClearVirtRegs(ClearVirtRegs) {} |
| 230 | |
| 231 | bool run(MachineFunction &); |
| 232 | }; |
| 233 | |
| 234 | class VirtRegRewriterLegacy : public MachineFunctionPass { |
| 235 | public: |
| 236 | static char ID; |
| 237 | bool ClearVirtRegs; |
| 238 | VirtRegRewriterLegacy(bool ClearVirtRegs = true) |
| 239 | : MachineFunctionPass(ID), ClearVirtRegs(ClearVirtRegs) {} |
| 240 | |
| 241 | void getAnalysisUsage(AnalysisUsage &AU) const override; |
| 242 | |
| 243 | bool runOnMachineFunction(MachineFunction&) override; |
| 244 | |
| 245 | MachineFunctionProperties getSetProperties() const override { |
| 246 | if (ClearVirtRegs) { |
| 247 | return MachineFunctionProperties().setNoVRegs(); |
| 248 | } |
| 249 | |
| 250 | return MachineFunctionProperties(); |
| 251 | } |
| 252 | }; |
| 253 | |
| 254 | } // end anonymous namespace |
| 255 | |
| 256 | char VirtRegRewriterLegacy::ID = 0; |
| 257 | |
| 258 | char &llvm::VirtRegRewriterID = VirtRegRewriterLegacy::ID; |
| 259 | |
| 260 | INITIALIZE_PASS_BEGIN(VirtRegRewriterLegacy, "virtregrewriter" , |
| 261 | "Virtual Register Rewriter" , false, false) |
| 262 | INITIALIZE_PASS_DEPENDENCY(SlotIndexesWrapperPass) |
| 263 | INITIALIZE_PASS_DEPENDENCY(LiveIntervalsWrapperPass) |
| 264 | INITIALIZE_PASS_DEPENDENCY(LiveDebugVariablesWrapperLegacy) |
| 265 | INITIALIZE_PASS_DEPENDENCY(LiveRegMatrixWrapperLegacy) |
| 266 | INITIALIZE_PASS_DEPENDENCY(LiveStacksWrapperLegacy) |
| 267 | INITIALIZE_PASS_DEPENDENCY(VirtRegMapWrapperLegacy) |
| 268 | INITIALIZE_PASS_END(VirtRegRewriterLegacy, "virtregrewriter" , |
| 269 | "Virtual Register Rewriter" , false, false) |
| 270 | |
| 271 | void VirtRegRewriterLegacy::getAnalysisUsage(AnalysisUsage &AU) const { |
| 272 | AU.setPreservesCFG(); |
| 273 | AU.addRequired<LiveIntervalsWrapperPass>(); |
| 274 | AU.addPreserved<LiveIntervalsWrapperPass>(); |
| 275 | AU.addRequired<SlotIndexesWrapperPass>(); |
| 276 | AU.addPreserved<SlotIndexesWrapperPass>(); |
| 277 | AU.addRequired<LiveDebugVariablesWrapperLegacy>(); |
| 278 | AU.addRequired<LiveStacksWrapperLegacy>(); |
| 279 | AU.addPreserved<LiveStacksWrapperLegacy>(); |
| 280 | AU.addRequired<VirtRegMapWrapperLegacy>(); |
| 281 | AU.addRequired<LiveRegMatrixWrapperLegacy>(); |
| 282 | |
| 283 | if (!ClearVirtRegs) |
| 284 | AU.addPreserved<LiveDebugVariablesWrapperLegacy>(); |
| 285 | |
| 286 | MachineFunctionPass::getAnalysisUsage(AU); |
| 287 | } |
| 288 | |
| 289 | bool VirtRegRewriterLegacy::runOnMachineFunction(MachineFunction &MF) { |
| 290 | VirtRegMap &VRM = getAnalysis<VirtRegMapWrapperLegacy>().getVRM(); |
| 291 | LiveIntervals &LIS = getAnalysis<LiveIntervalsWrapperPass>().getLIS(); |
| 292 | LiveRegMatrix &LRM = getAnalysis<LiveRegMatrixWrapperLegacy>().getLRM(); |
| 293 | SlotIndexes &Indexes = getAnalysis<SlotIndexesWrapperPass>().getSI(); |
| 294 | LiveDebugVariables &DebugVars = |
| 295 | getAnalysis<LiveDebugVariablesWrapperLegacy>().getLDV(); |
| 296 | |
| 297 | VirtRegRewriter R(ClearVirtRegs, &Indexes, &LIS, &LRM, &VRM, &DebugVars); |
| 298 | return R.run(MF); |
| 299 | } |
| 300 | |
| 301 | PreservedAnalyses |
| 302 | VirtRegRewriterPass::run(MachineFunction &MF, |
| 303 | MachineFunctionAnalysisManager &MFAM) { |
| 304 | VirtRegMap &VRM = MFAM.getResult<VirtRegMapAnalysis>(IR&: MF); |
| 305 | LiveIntervals &LIS = MFAM.getResult<LiveIntervalsAnalysis>(IR&: MF); |
| 306 | LiveRegMatrix &LRM = MFAM.getResult<LiveRegMatrixAnalysis>(IR&: MF); |
| 307 | SlotIndexes &Indexes = MFAM.getResult<SlotIndexesAnalysis>(IR&: MF); |
| 308 | LiveDebugVariables &DebugVars = |
| 309 | MFAM.getResult<LiveDebugVariablesAnalysis>(IR&: MF); |
| 310 | |
| 311 | VirtRegRewriter R(ClearVirtRegs, &Indexes, &LIS, &LRM, &VRM, &DebugVars); |
| 312 | if (!R.run(MF)) |
| 313 | return PreservedAnalyses::all(); |
| 314 | |
| 315 | auto PA = getMachineFunctionPassPreservedAnalyses(); |
| 316 | PA.preserveSet<CFGAnalyses>(); |
| 317 | PA.preserve<LiveIntervalsAnalysis>(); |
| 318 | PA.preserve<SlotIndexesAnalysis>(); |
| 319 | PA.preserve<LiveStacksAnalysis>(); |
| 320 | // LiveDebugVariables is preserved by default, so clear it |
| 321 | // if this VRegRewriter is the last one in the pipeline. |
| 322 | if (ClearVirtRegs) |
| 323 | PA.abandon<LiveDebugVariablesAnalysis>(); |
| 324 | return PA; |
| 325 | } |
| 326 | |
| 327 | bool VirtRegRewriter::run(MachineFunction &fn) { |
| 328 | MF = &fn; |
| 329 | TRI = MF->getSubtarget().getRegisterInfo(); |
| 330 | TII = MF->getSubtarget().getInstrInfo(); |
| 331 | MRI = &MF->getRegInfo(); |
| 332 | |
| 333 | LLVM_DEBUG(dbgs() << "********** REWRITE VIRTUAL REGISTERS **********\n" |
| 334 | << "********** Function: " << MF->getName() << '\n'); |
| 335 | LLVM_DEBUG(VRM->dump()); |
| 336 | |
| 337 | // Add kill flags while we still have virtual registers. |
| 338 | LIS->addKillFlags(VRM); |
| 339 | |
| 340 | // Live-in lists on basic blocks are required for physregs. |
| 341 | addMBBLiveIns(); |
| 342 | |
| 343 | // Rewrite virtual registers. |
| 344 | rewrite(); |
| 345 | |
| 346 | if (ClearVirtRegs) { |
| 347 | // Write out new DBG_VALUE instructions. |
| 348 | |
| 349 | // We only do this if ClearVirtRegs is specified since this should be the |
| 350 | // final run of the pass and we don't want to emit them multiple times. |
| 351 | DebugVars->emitDebugValues(VRM); |
| 352 | |
| 353 | // All machine operands and other references to virtual registers have been |
| 354 | // replaced. Remove the virtual registers and release all the transient data. |
| 355 | VRM->clearAllVirt(); |
| 356 | MRI->clearVirtRegs(); |
| 357 | } |
| 358 | |
| 359 | return true; |
| 360 | } |
| 361 | |
| 362 | void VirtRegRewriter::addLiveInsForSubRanges(const LiveInterval &LI, |
| 363 | MCRegister PhysReg) const { |
| 364 | assert(!LI.empty()); |
| 365 | assert(LI.hasSubRanges()); |
| 366 | |
| 367 | using SubRangeIteratorPair = |
| 368 | std::pair<const LiveInterval::SubRange *, LiveInterval::const_iterator>; |
| 369 | |
| 370 | SmallVector<SubRangeIteratorPair, 4> SubRanges; |
| 371 | SlotIndex First; |
| 372 | SlotIndex Last; |
| 373 | for (const LiveInterval::SubRange &SR : LI.subranges()) { |
| 374 | SubRanges.push_back(Elt: std::make_pair(x: &SR, y: SR.begin())); |
| 375 | if (!First.isValid() || SR.segments.front().start < First) |
| 376 | First = SR.segments.front().start; |
| 377 | if (!Last.isValid() || SR.segments.back().end > Last) |
| 378 | Last = SR.segments.back().end; |
| 379 | } |
| 380 | |
| 381 | // Check all mbb start positions between First and Last while |
| 382 | // simultaneously advancing an iterator for each subrange. |
| 383 | for (SlotIndexes::MBBIndexIterator MBBI = Indexes->getMBBLowerBound(Idx: First); |
| 384 | MBBI != Indexes->MBBIndexEnd() && MBBI->first <= Last; ++MBBI) { |
| 385 | SlotIndex MBBBegin = MBBI->first; |
| 386 | // Advance all subrange iterators so that their end position is just |
| 387 | // behind MBBBegin (or the iterator is at the end). |
| 388 | LaneBitmask LaneMask; |
| 389 | for (auto &RangeIterPair : SubRanges) { |
| 390 | const LiveInterval::SubRange *SR = RangeIterPair.first; |
| 391 | LiveInterval::const_iterator &SRI = RangeIterPair.second; |
| 392 | while (SRI != SR->end() && SRI->end <= MBBBegin) |
| 393 | ++SRI; |
| 394 | if (SRI == SR->end()) |
| 395 | continue; |
| 396 | if (SRI->start <= MBBBegin) |
| 397 | LaneMask |= SR->LaneMask; |
| 398 | } |
| 399 | if (LaneMask.none()) |
| 400 | continue; |
| 401 | MachineBasicBlock *MBB = MBBI->second; |
| 402 | MBB->addLiveIn(PhysReg, LaneMask); |
| 403 | } |
| 404 | } |
| 405 | |
| 406 | // Compute MBB live-in lists from virtual register live ranges and their |
| 407 | // assignments. |
| 408 | void VirtRegRewriter::addMBBLiveIns() { |
| 409 | for (unsigned Idx = 0, IdxE = MRI->getNumVirtRegs(); Idx != IdxE; ++Idx) { |
| 410 | Register VirtReg = Register::index2VirtReg(Index: Idx); |
| 411 | if (MRI->reg_nodbg_empty(RegNo: VirtReg)) |
| 412 | continue; |
| 413 | LiveInterval &LI = LIS->getInterval(Reg: VirtReg); |
| 414 | if (LI.empty() || LIS->intervalIsInOneMBB(LI)) |
| 415 | continue; |
| 416 | // This is a virtual register that is live across basic blocks. Its |
| 417 | // assigned PhysReg must be marked as live-in to those blocks. |
| 418 | MCRegister PhysReg = VRM->getPhys(virtReg: VirtReg); |
| 419 | if (!PhysReg) { |
| 420 | // There may be no physical register assigned if only some register |
| 421 | // classes were already allocated. |
| 422 | assert(!ClearVirtRegs && "Unmapped virtual register" ); |
| 423 | continue; |
| 424 | } |
| 425 | |
| 426 | if (LI.hasSubRanges()) { |
| 427 | addLiveInsForSubRanges(LI, PhysReg); |
| 428 | } else { |
| 429 | // Go over MBB begin positions and see if we have segments covering them. |
| 430 | // The following works because segments and the MBBIndex list are both |
| 431 | // sorted by slot indexes. |
| 432 | SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(); |
| 433 | for (const auto &Seg : LI) { |
| 434 | I = Indexes->getMBBLowerBound(Start: I, Idx: Seg.start); |
| 435 | for (; I != Indexes->MBBIndexEnd() && I->first < Seg.end; ++I) { |
| 436 | MachineBasicBlock *MBB = I->second; |
| 437 | MBB->addLiveIn(PhysReg); |
| 438 | } |
| 439 | } |
| 440 | } |
| 441 | } |
| 442 | |
| 443 | // Sort and unique MBB LiveIns as we've not checked if SubReg/PhysReg were in |
| 444 | // each MBB's LiveIns set before calling addLiveIn on them. |
| 445 | for (MachineBasicBlock &MBB : *MF) |
| 446 | MBB.sortUniqueLiveIns(); |
| 447 | } |
| 448 | |
| 449 | /// Returns true if the given machine operand \p MO only reads undefined lanes. |
| 450 | /// The function only works for use operands with a subregister set. |
| 451 | bool VirtRegRewriter::readsUndefSubreg(const MachineOperand &MO) const { |
| 452 | // Shortcut if the operand is already marked undef. |
| 453 | if (MO.isUndef()) |
| 454 | return true; |
| 455 | |
| 456 | Register Reg = MO.getReg(); |
| 457 | const LiveInterval &LI = LIS->getInterval(Reg); |
| 458 | const MachineInstr &MI = *MO.getParent(); |
| 459 | SlotIndex BaseIndex = LIS->getInstructionIndex(Instr: MI); |
| 460 | // This code is only meant to handle reading undefined subregisters which |
| 461 | // we couldn't properly detect before. |
| 462 | assert(LI.liveAt(BaseIndex) && |
| 463 | "Reads of completely dead register should be marked undef already" ); |
| 464 | unsigned SubRegIdx = MO.getSubReg(); |
| 465 | assert(SubRegIdx != 0 && LI.hasSubRanges()); |
| 466 | LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(SubIdx: SubRegIdx); |
| 467 | // See if any of the relevant subregister liveranges is defined at this point. |
| 468 | for (const LiveInterval::SubRange &SR : LI.subranges()) { |
| 469 | if ((SR.LaneMask & UseMask).any() && SR.liveAt(index: BaseIndex)) |
| 470 | return false; |
| 471 | } |
| 472 | return true; |
| 473 | } |
| 474 | |
| 475 | void VirtRegRewriter::handleIdentityCopy(MachineInstr &MI) { |
| 476 | if (!MI.isIdentityCopy()) |
| 477 | return; |
| 478 | LLVM_DEBUG(dbgs() << "Identity copy: " << MI); |
| 479 | ++NumIdCopies; |
| 480 | |
| 481 | Register DstReg = MI.getOperand(i: 0).getReg(); |
| 482 | |
| 483 | // We may have deferred allocation of the virtual register, and the rewrite |
| 484 | // regs code doesn't handle the liveness update. |
| 485 | if (DstReg.isVirtual()) |
| 486 | return; |
| 487 | |
| 488 | RewriteRegs.insert(V: DstReg); |
| 489 | |
| 490 | // Copies like: |
| 491 | // %r0 = COPY undef %r0 |
| 492 | // %al = COPY %al, implicit-def %eax |
| 493 | // give us additional liveness information: The target (super-)register |
| 494 | // must not be valid before this point. Replace the COPY with a KILL |
| 495 | // instruction to maintain this information. |
| 496 | if (MI.getOperand(i: 1).isUndef() || MI.getNumOperands() > 2) { |
| 497 | MI.setDesc(TII->get(Opcode: TargetOpcode::KILL)); |
| 498 | LLVM_DEBUG(dbgs() << " replace by: " << MI); |
| 499 | return; |
| 500 | } |
| 501 | |
| 502 | if (Indexes) |
| 503 | Indexes->removeSingleMachineInstrFromMaps(MI); |
| 504 | MI.eraseFromBundle(); |
| 505 | LLVM_DEBUG(dbgs() << " deleted.\n" ); |
| 506 | } |
| 507 | |
| 508 | /// The liverange splitting logic sometimes produces bundles of copies when |
| 509 | /// subregisters are involved. Expand these into a sequence of copy instructions |
| 510 | /// after processing the last in the bundle. Does not update LiveIntervals |
| 511 | /// which we shouldn't need for this instruction anymore. |
| 512 | void VirtRegRewriter::expandCopyBundle(MachineInstr &MI) const { |
| 513 | if (!MI.isCopy() && !MI.isKill()) |
| 514 | return; |
| 515 | |
| 516 | if (MI.isBundledWithPred() && !MI.isBundledWithSucc()) { |
| 517 | SmallVector<MachineInstr *, 2> MIs({&MI}); |
| 518 | |
| 519 | // Only do this when the complete bundle is made out of COPYs and KILLs. |
| 520 | MachineBasicBlock &MBB = *MI.getParent(); |
| 521 | for (MachineBasicBlock::reverse_instr_iterator I = |
| 522 | std::next(x: MI.getReverseIterator()), E = MBB.instr_rend(); |
| 523 | I != E && I->isBundledWithSucc(); ++I) { |
| 524 | if (!I->isCopy() && !I->isKill()) |
| 525 | return; |
| 526 | MIs.push_back(Elt: &*I); |
| 527 | } |
| 528 | MachineInstr *FirstMI = MIs.back(); |
| 529 | |
| 530 | auto anyRegsAlias = [](const MachineInstr *Dst, |
| 531 | ArrayRef<MachineInstr *> Srcs, |
| 532 | const TargetRegisterInfo *TRI) { |
| 533 | for (const MachineInstr *Src : Srcs) |
| 534 | if (Src != Dst) |
| 535 | if (TRI->regsOverlap(RegA: Dst->getOperand(i: 0).getReg(), |
| 536 | RegB: Src->getOperand(i: 1).getReg())) |
| 537 | return true; |
| 538 | return false; |
| 539 | }; |
| 540 | |
| 541 | // If any of the destination registers in the bundle of copies alias any of |
| 542 | // the source registers, try to schedule the instructions to avoid any |
| 543 | // clobbering. |
| 544 | for (int E = MIs.size(), PrevE = E; E > 1; PrevE = E) { |
| 545 | for (int I = E; I--; ) |
| 546 | if (!anyRegsAlias(MIs[I], ArrayRef(MIs).take_front(N: E), TRI)) { |
| 547 | if (I + 1 != E) |
| 548 | std::swap(a&: MIs[I], b&: MIs[E - 1]); |
| 549 | --E; |
| 550 | } |
| 551 | if (PrevE == E) { |
| 552 | MF->getFunction().getContext().emitError( |
| 553 | ErrorStr: "register rewriting failed: cycle in copy bundle" ); |
| 554 | break; |
| 555 | } |
| 556 | } |
| 557 | |
| 558 | MachineInstr *BundleStart = FirstMI; |
| 559 | for (MachineInstr *BundledMI : llvm::reverse(C&: MIs)) { |
| 560 | // If instruction is in the middle of the bundle, move it before the |
| 561 | // bundle starts, otherwise, just unbundle it. When we get to the last |
| 562 | // instruction, the bundle will have been completely undone. |
| 563 | if (BundledMI != BundleStart) { |
| 564 | BundledMI->removeFromBundle(); |
| 565 | MBB.insert(I: BundleStart, MI: BundledMI); |
| 566 | } else if (BundledMI->isBundledWithSucc()) { |
| 567 | BundledMI->unbundleFromSucc(); |
| 568 | BundleStart = &*std::next(x: BundledMI->getIterator()); |
| 569 | } |
| 570 | |
| 571 | if (Indexes && BundledMI != FirstMI) |
| 572 | Indexes->insertMachineInstrInMaps(MI&: *BundledMI); |
| 573 | } |
| 574 | } |
| 575 | } |
| 576 | |
| 577 | /// Check whether (part of) \p SuperPhysReg is live through \p MI. |
| 578 | /// \pre \p MI defines a subregister of a virtual register that |
| 579 | /// has been assigned to \p SuperPhysReg. |
| 580 | bool VirtRegRewriter::subRegLiveThrough(const MachineInstr &MI, |
| 581 | MCRegister SuperPhysReg) const { |
| 582 | SlotIndex MIIndex = LIS->getInstructionIndex(Instr: MI); |
| 583 | SlotIndex BeforeMIUses = MIIndex.getBaseIndex(); |
| 584 | SlotIndex AfterMIDefs = MIIndex.getBoundaryIndex(); |
| 585 | for (MCRegUnit Unit : TRI->regunits(Reg: SuperPhysReg)) { |
| 586 | const LiveRange &UnitRange = LIS->getRegUnit(Unit); |
| 587 | // If the regunit is live both before and after MI, |
| 588 | // we assume it is live through. |
| 589 | // Generally speaking, this is not true, because something like |
| 590 | // "RU = op RU" would match that description. |
| 591 | // However, we know that we are trying to assess whether |
| 592 | // a def of a virtual reg, vreg, is live at the same time of RU. |
| 593 | // If we are in the "RU = op RU" situation, that means that vreg |
| 594 | // is defined at the same time as RU (i.e., "vreg, RU = op RU"). |
| 595 | // Thus, vreg and RU interferes and vreg cannot be assigned to |
| 596 | // SuperPhysReg. Therefore, this situation cannot happen. |
| 597 | if (UnitRange.liveAt(index: AfterMIDefs) && UnitRange.liveAt(index: BeforeMIUses)) |
| 598 | return true; |
| 599 | } |
| 600 | return false; |
| 601 | } |
| 602 | |
| 603 | /// Compute a lanemask for undef lanes which need to be preserved out of the |
| 604 | /// defining block for a register assignment for a subregister def. \p PhysReg |
| 605 | /// is assigned to \p LI, which is the main range. |
| 606 | LaneBitmask VirtRegRewriter::liveOutUndefPhiLanesForUndefSubregDef( |
| 607 | const LiveInterval &LI, const MachineBasicBlock &MBB, unsigned SubReg, |
| 608 | MCRegister PhysReg, const MachineInstr &MI) const { |
| 609 | LaneBitmask UndefMask = ~TRI->getSubRegIndexLaneMask(SubIdx: SubReg); |
| 610 | LaneBitmask LiveOutUndefLanes; |
| 611 | |
| 612 | for (const LiveInterval::SubRange &SR : LI.subranges()) { |
| 613 | // Figure out which lanes are undef live into a successor. |
| 614 | LaneBitmask NeedImpDefLanes = UndefMask & SR.LaneMask; |
| 615 | if (NeedImpDefLanes.any() && !LIS->isLiveOutOfMBB(LR: SR, mbb: &MBB)) { |
| 616 | for (const MachineBasicBlock *Succ : MBB.successors()) { |
| 617 | if (LIS->isLiveInToMBB(LR: SR, mbb: Succ)) |
| 618 | LiveOutUndefLanes |= NeedImpDefLanes; |
| 619 | } |
| 620 | } |
| 621 | } |
| 622 | |
| 623 | SlotIndex MIIndex = LIS->getInstructionIndex(Instr: MI); |
| 624 | SlotIndex BeforeMIUses = MIIndex.getBaseIndex(); |
| 625 | LaneBitmask InterferingLanes = |
| 626 | LRM->checkInterferenceLanes(Start: BeforeMIUses, End: MIIndex.getRegSlot(), PhysReg); |
| 627 | LiveOutUndefLanes &= ~InterferingLanes; |
| 628 | |
| 629 | LLVM_DEBUG(if (LiveOutUndefLanes.any()) { |
| 630 | dbgs() << "Need live out undef defs for " << printReg(PhysReg) |
| 631 | << LiveOutUndefLanes << " from " << printMBBReference(MBB) << '\n'; |
| 632 | }); |
| 633 | |
| 634 | return LiveOutUndefLanes; |
| 635 | } |
| 636 | |
| 637 | void VirtRegRewriter::rewrite() { |
| 638 | bool NoSubRegLiveness = !MRI->subRegLivenessEnabled(); |
| 639 | SmallVector<Register, 8> SuperDeads; |
| 640 | SmallVector<Register, 8> SuperDefs; |
| 641 | SmallVector<Register, 8> SuperKills; |
| 642 | |
| 643 | for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end(); |
| 644 | MBBI != MBBE; ++MBBI) { |
| 645 | LLVM_DEBUG(MBBI->print(dbgs(), Indexes)); |
| 646 | for (MachineInstr &MI : llvm::make_early_inc_range(Range: MBBI->instrs())) { |
| 647 | for (MachineOperand &MO : MI.operands()) { |
| 648 | // Make sure MRI knows about registers clobbered by regmasks. |
| 649 | if (MO.isRegMask()) |
| 650 | MRI->addPhysRegsUsedFromRegMask(RegMask: MO.getRegMask()); |
| 651 | |
| 652 | if (!MO.isReg() || !MO.getReg().isVirtual()) |
| 653 | continue; |
| 654 | Register VirtReg = MO.getReg(); |
| 655 | MCRegister PhysReg = VRM->getPhys(virtReg: VirtReg); |
| 656 | if (!PhysReg) |
| 657 | continue; |
| 658 | |
| 659 | assert(Register(PhysReg).isPhysical()); |
| 660 | |
| 661 | RewriteRegs.insert(V: PhysReg); |
| 662 | assert(!MRI->isReserved(PhysReg) && "Reserved register assignment" ); |
| 663 | |
| 664 | // Preserve semantics of sub-register operands. |
| 665 | unsigned SubReg = MO.getSubReg(); |
| 666 | if (SubReg != 0) { |
| 667 | if (NoSubRegLiveness || !MRI->shouldTrackSubRegLiveness(VReg: VirtReg)) { |
| 668 | // A virtual register kill refers to the whole register, so we may |
| 669 | // have to add implicit killed operands for the super-register. A |
| 670 | // partial redef always kills and redefines the super-register. |
| 671 | if ((MO.readsReg() && (MO.isDef() || MO.isKill())) || |
| 672 | (MO.isDef() && subRegLiveThrough(MI, SuperPhysReg: PhysReg))) |
| 673 | SuperKills.push_back(Elt: PhysReg); |
| 674 | |
| 675 | if (MO.isDef()) { |
| 676 | // Also add implicit defs for the super-register. |
| 677 | if (MO.isDead()) |
| 678 | SuperDeads.push_back(Elt: PhysReg); |
| 679 | else |
| 680 | SuperDefs.push_back(Elt: PhysReg); |
| 681 | } |
| 682 | } else { |
| 683 | if (MO.isUse()) { |
| 684 | if (readsUndefSubreg(MO)) |
| 685 | // We need to add an <undef> flag if the subregister is |
| 686 | // completely undefined (and we are not adding super-register |
| 687 | // defs). |
| 688 | MO.setIsUndef(true); |
| 689 | } else if (!MO.isDead()) { |
| 690 | assert(MO.isDef()); |
| 691 | if (MO.isUndef()) { |
| 692 | const LiveInterval &LI = LIS->getInterval(Reg: VirtReg); |
| 693 | |
| 694 | LaneBitmask LiveOutUndefLanes = |
| 695 | liveOutUndefPhiLanesForUndefSubregDef(LI, MBB: *MBBI, SubReg, |
| 696 | PhysReg, MI); |
| 697 | if (LiveOutUndefLanes.any()) { |
| 698 | SmallVector<unsigned, 16> CoveringIndexes; |
| 699 | |
| 700 | // TODO: Just use one super register def if none of the lanes |
| 701 | // are needed? |
| 702 | if (!TRI->getCoveringSubRegIndexes(RC: MRI->getRegClass(Reg: VirtReg), |
| 703 | LaneMask: LiveOutUndefLanes, |
| 704 | Indexes&: CoveringIndexes)) |
| 705 | llvm_unreachable( |
| 706 | "cannot represent required subregister defs" ); |
| 707 | |
| 708 | // Try to represent the minimum needed live out def as a |
| 709 | // sequence of subregister defs. |
| 710 | // |
| 711 | // FIXME: It would be better if we could directly represent |
| 712 | // liveness with a lanemask instead of spamming operands. |
| 713 | for (unsigned SubIdx : CoveringIndexes) |
| 714 | SuperDefs.push_back(Elt: TRI->getSubReg(Reg: PhysReg, Idx: SubIdx)); |
| 715 | } |
| 716 | } |
| 717 | } |
| 718 | } |
| 719 | |
| 720 | // The def undef and def internal flags only make sense for |
| 721 | // sub-register defs, and we are substituting a full physreg. An |
| 722 | // implicit killed operand from the SuperKills list will represent the |
| 723 | // partial read of the super-register. |
| 724 | if (MO.isDef()) { |
| 725 | MO.setIsUndef(false); |
| 726 | MO.setIsInternalRead(false); |
| 727 | } |
| 728 | |
| 729 | // PhysReg operands cannot have subregister indexes. |
| 730 | PhysReg = TRI->getSubReg(Reg: PhysReg, Idx: SubReg); |
| 731 | assert(PhysReg.isValid() && "Invalid SubReg for physical register" ); |
| 732 | MO.setSubReg(0); |
| 733 | } |
| 734 | // Rewrite. Note we could have used MachineOperand::substPhysReg(), but |
| 735 | // we need the inlining here. |
| 736 | MO.setReg(PhysReg); |
| 737 | MO.setIsRenamable(true); |
| 738 | } |
| 739 | |
| 740 | // Add any missing super-register kills after rewriting the whole |
| 741 | // instruction. |
| 742 | while (!SuperKills.empty()) |
| 743 | MI.addRegisterKilled(IncomingReg: SuperKills.pop_back_val(), RegInfo: TRI, AddIfNotFound: true); |
| 744 | |
| 745 | while (!SuperDeads.empty()) |
| 746 | MI.addRegisterDead(Reg: SuperDeads.pop_back_val(), RegInfo: TRI, AddIfNotFound: true); |
| 747 | |
| 748 | while (!SuperDefs.empty()) |
| 749 | MI.addRegisterDefined(Reg: SuperDefs.pop_back_val(), RegInfo: TRI); |
| 750 | |
| 751 | LLVM_DEBUG(dbgs() << "> " << MI); |
| 752 | |
| 753 | expandCopyBundle(MI); |
| 754 | |
| 755 | // We can remove identity copies right now. |
| 756 | handleIdentityCopy(MI); |
| 757 | } |
| 758 | } |
| 759 | |
| 760 | if (LIS) { |
| 761 | // Don't bother maintaining accurate LiveIntervals for registers which were |
| 762 | // already allocated. |
| 763 | for (Register PhysReg : RewriteRegs) { |
| 764 | for (MCRegUnit Unit : TRI->regunits(Reg: PhysReg)) { |
| 765 | LIS->removeRegUnit(Unit); |
| 766 | } |
| 767 | } |
| 768 | } |
| 769 | |
| 770 | RewriteRegs.clear(); |
| 771 | } |
| 772 | |
| 773 | void VirtRegRewriterPass::printPipeline( |
| 774 | raw_ostream &OS, function_ref<StringRef(StringRef)>) const { |
| 775 | OS << "virt-reg-rewriter" ; |
| 776 | if (!ClearVirtRegs) |
| 777 | OS << "<no-clear-vregs>" ; |
| 778 | } |
| 779 | |
| 780 | FunctionPass *llvm::createVirtRegRewriter(bool ClearVirtRegs) { |
| 781 | return new VirtRegRewriterLegacy(ClearVirtRegs); |
| 782 | } |
| 783 | |