1//===- DebugInfoMetadata.cpp - Implement debug info metadata --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the debug info Metadata classes.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/IR/DebugInfoMetadata.h"
14#include "LLVMContextImpl.h"
15#include "MetadataImpl.h"
16#include "llvm/ADT/SetVector.h"
17#include "llvm/ADT/StringSwitch.h"
18#include "llvm/BinaryFormat/Dwarf.h"
19#include "llvm/IR/DebugProgramInstruction.h"
20#include "llvm/IR/Function.h"
21#include "llvm/IR/IntrinsicInst.h"
22#include "llvm/IR/Type.h"
23#include "llvm/IR/Value.h"
24#include "llvm/Support/CommandLine.h"
25#include "llvm/Support/Compiler.h"
26
27#include <numeric>
28#include <optional>
29
30using namespace llvm;
31
32namespace llvm {
33// Use FS-AFDO discriminator.
34cl::opt<bool> EnableFSDiscriminator(
35 "enable-fs-discriminator", cl::Hidden,
36 cl::desc("Enable adding flow sensitive discriminators"));
37
38// When true, preserves line and column number by picking one of the merged
39// location info in a deterministic manner to assist sample based PGO.
40LLVM_ABI cl::opt<bool> PickMergedSourceLocations(
41 "pick-merged-source-locations", cl::init(Val: false), cl::Hidden,
42 cl::desc("Preserve line and column number when merging locations."));
43} // namespace llvm
44
45uint32_t DIType::getAlignInBits() const {
46 return (getTag() == dwarf::DW_TAG_LLVM_ptrauth_type ? 0 : SubclassData32);
47}
48
49const DIExpression::FragmentInfo DebugVariable::DefaultFragment = {
50 std::numeric_limits<uint64_t>::max(), std::numeric_limits<uint64_t>::min()};
51
52DebugVariable::DebugVariable(const DbgVariableIntrinsic *DII)
53 : Variable(DII->getVariable()),
54 Fragment(DII->getExpression()->getFragmentInfo()),
55 InlinedAt(DII->getDebugLoc().getInlinedAt()) {}
56
57DebugVariable::DebugVariable(const DbgVariableRecord *DVR)
58 : Variable(DVR->getVariable()),
59 Fragment(DVR->getExpression()->getFragmentInfo()),
60 InlinedAt(DVR->getDebugLoc().getInlinedAt()) {}
61
62DebugVariableAggregate::DebugVariableAggregate(const DbgVariableIntrinsic *DVI)
63 : DebugVariable(DVI->getVariable(), std::nullopt,
64 DVI->getDebugLoc()->getInlinedAt()) {}
65
66DILocation::DILocation(LLVMContext &C, StorageType Storage, unsigned Line,
67 unsigned Column, uint64_t AtomGroup, uint8_t AtomRank,
68 ArrayRef<Metadata *> MDs, bool ImplicitCode)
69 : MDNode(C, DILocationKind, Storage, MDs)
70#ifdef EXPERIMENTAL_KEY_INSTRUCTIONS
71 ,
72 AtomGroup(AtomGroup), AtomRank(AtomRank)
73#endif
74{
75#ifdef EXPERIMENTAL_KEY_INSTRUCTIONS
76 assert(AtomRank <= 7 && "AtomRank number should fit in 3 bits");
77#endif
78 if (AtomGroup)
79 C.updateDILocationAtomGroupWaterline(G: AtomGroup + 1);
80
81 assert((MDs.size() == 1 || MDs.size() == 2) &&
82 "Expected a scope and optional inlined-at");
83 // Set line and column.
84 assert(Column < (1u << 16) && "Expected 16-bit column");
85
86 SubclassData32 = Line;
87 SubclassData16 = Column;
88
89 setImplicitCode(ImplicitCode);
90}
91
92static void adjustColumn(unsigned &Column) {
93 // Set to unknown on overflow. We only have 16 bits to play with here.
94 if (Column >= (1u << 16))
95 Column = 0;
96}
97
98DILocation *DILocation::getImpl(LLVMContext &Context, unsigned Line,
99 unsigned Column, Metadata *Scope,
100 Metadata *InlinedAt, bool ImplicitCode,
101 uint64_t AtomGroup, uint8_t AtomRank,
102 StorageType Storage, bool ShouldCreate) {
103 // Fixup column.
104 adjustColumn(Column);
105
106 if (Storage == Uniqued) {
107 if (auto *N = getUniqued(Store&: Context.pImpl->DILocations,
108 Key: DILocationInfo::KeyTy(Line, Column, Scope,
109 InlinedAt, ImplicitCode,
110 AtomGroup, AtomRank)))
111 return N;
112 if (!ShouldCreate)
113 return nullptr;
114 } else {
115 assert(ShouldCreate && "Expected non-uniqued nodes to always be created");
116 }
117
118 SmallVector<Metadata *, 2> Ops;
119 Ops.push_back(Elt: Scope);
120 if (InlinedAt)
121 Ops.push_back(Elt: InlinedAt);
122 return storeImpl(N: new (Ops.size(), Storage)
123 DILocation(Context, Storage, Line, Column, AtomGroup,
124 AtomRank, Ops, ImplicitCode),
125 Storage, Store&: Context.pImpl->DILocations);
126}
127
128DILocation *DILocation::getMergedLocations(ArrayRef<DILocation *> Locs) {
129 if (Locs.empty())
130 return nullptr;
131 if (Locs.size() == 1)
132 return Locs[0];
133 auto *Merged = Locs[0];
134 for (DILocation *L : llvm::drop_begin(RangeOrContainer&: Locs)) {
135 Merged = getMergedLocation(LocA: Merged, LocB: L);
136 if (Merged == nullptr)
137 break;
138 }
139 return Merged;
140}
141
142static DILexicalBlockBase *cloneAndReplaceParentScope(DILexicalBlockBase *LBB,
143 DIScope *NewParent) {
144 TempMDNode ClonedScope = LBB->clone();
145 cast<DILexicalBlockBase>(Val&: *ClonedScope).replaceScope(Scope: NewParent);
146 return cast<DILexicalBlockBase>(
147 Val: MDNode::replaceWithUniqued(N: std::move(ClonedScope)));
148}
149
150using LineColumn = std::pair<unsigned /* Line */, unsigned /* Column */>;
151
152/// Returns the location of DILocalScope, if present, or a default value.
153static LineColumn getLocalScopeLocationOr(DIScope *S, LineColumn Default) {
154 assert(isa<DILocalScope>(S) && "Expected DILocalScope.");
155
156 if (isa<DILexicalBlockFile>(Val: S))
157 return Default;
158 if (auto *LB = dyn_cast<DILexicalBlock>(Val: S))
159 return {LB->getLine(), LB->getColumn()};
160 if (auto *SP = dyn_cast<DISubprogram>(Val: S))
161 return {SP->getLine(), 0u};
162
163 llvm_unreachable("Unhandled type of DILocalScope.");
164}
165
166// Returns the nearest matching scope inside a subprogram.
167template <typename MatcherT>
168static std::pair<DIScope *, LineColumn>
169getNearestMatchingScope(const DILocation *L1, const DILocation *L2) {
170 MatcherT Matcher;
171
172 DIScope *S1 = L1->getScope();
173 DIScope *S2 = L2->getScope();
174
175 LineColumn Loc1(L1->getLine(), L1->getColumn());
176 for (; S1; S1 = S1->getScope()) {
177 Loc1 = getLocalScopeLocationOr(S: S1, Default: Loc1);
178 Matcher.insert(S1, Loc1);
179 if (isa<DISubprogram>(Val: S1))
180 break;
181 }
182
183 LineColumn Loc2(L2->getLine(), L2->getColumn());
184 for (; S2; S2 = S2->getScope()) {
185 Loc2 = getLocalScopeLocationOr(S: S2, Default: Loc2);
186
187 if (DIScope *S = Matcher.match(S2, Loc2))
188 return std::make_pair(x&: S, y&: Loc2);
189
190 if (isa<DISubprogram>(Val: S2))
191 break;
192 }
193 return std::make_pair(x: nullptr, y: LineColumn(L2->getLine(), L2->getColumn()));
194}
195
196// Matches equal scopes.
197struct EqualScopesMatcher {
198 SmallPtrSet<DIScope *, 8> Scopes;
199
200 void insert(DIScope *S, LineColumn Loc) { Scopes.insert(Ptr: S); }
201
202 DIScope *match(DIScope *S, LineColumn Loc) {
203 return Scopes.contains(Ptr: S) ? S : nullptr;
204 }
205};
206
207// Matches scopes with the same location.
208struct ScopeLocationsMatcher {
209 SmallMapVector<std::pair<DIFile *, LineColumn>, SmallSetVector<DIScope *, 8>,
210 8>
211 Scopes;
212
213 void insert(DIScope *S, LineColumn Loc) {
214 Scopes[{S->getFile(), Loc}].insert(X: S);
215 }
216
217 DIScope *match(DIScope *S, LineColumn Loc) {
218 auto ScopesAtLoc = Scopes.find(Key: {S->getFile(), Loc});
219 // No scope found with the given location.
220 if (ScopesAtLoc == Scopes.end())
221 return nullptr;
222
223 // Prefer S over other scopes with the same location.
224 if (ScopesAtLoc->second.contains(key: S))
225 return S;
226
227 if (!ScopesAtLoc->second.empty())
228 return *ScopesAtLoc->second.begin();
229
230 llvm_unreachable("Scopes must not have empty entries.");
231 }
232};
233
234DILocation *DILocation::getMergedLocation(DILocation *LocA, DILocation *LocB) {
235 if (LocA == LocB)
236 return LocA;
237
238 // For some use cases (SamplePGO), it is important to retain distinct source
239 // locations. When this flag is set, we choose arbitrarily between A and B,
240 // rather than computing a merged location using line 0, which is typically
241 // not useful for PGO. If one of them is null, then try to return one which is
242 // valid.
243 if (PickMergedSourceLocations) {
244 if (!LocA || !LocB)
245 return LocA ? LocA : LocB;
246
247 auto A = std::make_tuple(args: LocA->getLine(), args: LocA->getColumn(),
248 args: LocA->getDiscriminator(), args: LocA->getFilename(),
249 args: LocA->getDirectory());
250 auto B = std::make_tuple(args: LocB->getLine(), args: LocB->getColumn(),
251 args: LocB->getDiscriminator(), args: LocB->getFilename(),
252 args: LocB->getDirectory());
253 return A < B ? LocA : LocB;
254 }
255
256 if (!LocA || !LocB)
257 return nullptr;
258
259 LLVMContext &C = LocA->getContext();
260
261 using LocVec = SmallVector<const DILocation *>;
262 LocVec ALocs;
263 LocVec BLocs;
264 SmallDenseMap<std::pair<const DISubprogram *, const DILocation *>, unsigned,
265 4>
266 ALookup;
267
268 // Walk through LocA and its inlined-at locations, populate them in ALocs and
269 // save the index for the subprogram and inlined-at pair, which we use to find
270 // a matching starting location in LocB's chain.
271 for (auto [L, I] = std::make_pair(x&: LocA, y: 0U); L; L = L->getInlinedAt(), I++) {
272 ALocs.push_back(Elt: L);
273 auto Res = ALookup.try_emplace(
274 Key: {L->getScope()->getSubprogram(), L->getInlinedAt()}, Args&: I);
275 assert(Res.second && "Multiple <SP, InlinedAt> pairs in a location chain?");
276 (void)Res;
277 }
278
279 LocVec::reverse_iterator ARIt = ALocs.rend();
280 LocVec::reverse_iterator BRIt = BLocs.rend();
281
282 // Populate BLocs and look for a matching starting location, the first
283 // location with the same subprogram and inlined-at location as in LocA's
284 // chain. Since the two locations have the same inlined-at location we do
285 // not need to look at those parts of the chains.
286 for (auto [L, I] = std::make_pair(x&: LocB, y: 0U); L; L = L->getInlinedAt(), I++) {
287 BLocs.push_back(Elt: L);
288
289 if (ARIt != ALocs.rend())
290 // We have already found a matching starting location.
291 continue;
292
293 auto IT = ALookup.find(Val: {L->getScope()->getSubprogram(), L->getInlinedAt()});
294 if (IT == ALookup.end())
295 continue;
296
297 // The + 1 is to account for the &*rev_it = &(it - 1) relationship.
298 ARIt = LocVec::reverse_iterator(ALocs.begin() + IT->second + 1);
299 BRIt = LocVec::reverse_iterator(BLocs.begin() + I + 1);
300
301 // If we have found a matching starting location we do not need to add more
302 // locations to BLocs, since we will only look at location pairs preceding
303 // the matching starting location, and adding more elements to BLocs could
304 // invalidate the iterator that we initialized here.
305 break;
306 }
307
308 // Merge the two locations if possible, using the supplied
309 // inlined-at location for the created location.
310 auto *LocAIA = LocA->getInlinedAt();
311 auto *LocBIA = LocB->getInlinedAt();
312 auto MergeLocPair = [&C, LocAIA,
313 LocBIA](const DILocation *L1, const DILocation *L2,
314 DILocation *InlinedAt) -> DILocation * {
315 if (L1 == L2)
316 return DILocation::get(Context&: C, Line: L1->getLine(), Column: L1->getColumn(), Scope: L1->getScope(),
317 InlinedAt, ImplicitCode: L1->isImplicitCode(),
318 AtomGroup: L1->getAtomGroup(), AtomRank: L1->getAtomRank());
319
320 // If the locations originate from different subprograms we can't produce
321 // a common location.
322 if (L1->getScope()->getSubprogram() != L2->getScope()->getSubprogram())
323 return nullptr;
324
325 // Find nearest common scope inside subprogram.
326 DIScope *Scope = getNearestMatchingScope<EqualScopesMatcher>(L1, L2).first;
327 assert(Scope && "No common scope in the same subprogram?");
328
329 // Try using the nearest scope with common location if files are different.
330 if (Scope->getFile() != L1->getFile() || L1->getFile() != L2->getFile()) {
331 auto [CommonLocScope, CommonLoc] =
332 getNearestMatchingScope<ScopeLocationsMatcher>(L1, L2);
333
334 // If CommonLocScope is a DILexicalBlockBase, clone it and locate
335 // a new scope inside the nearest common scope to preserve
336 // lexical blocks structure.
337 if (auto *LBB = dyn_cast<DILexicalBlockBase>(Val: CommonLocScope);
338 LBB && LBB != Scope)
339 CommonLocScope = cloneAndReplaceParentScope(LBB, NewParent: Scope);
340
341 Scope = CommonLocScope;
342
343 // If files are still different, assume that L1 and L2 were "included"
344 // from CommonLoc. Use it as merged location.
345 if (Scope->getFile() != L1->getFile() || L1->getFile() != L2->getFile())
346 return DILocation::get(Context&: C, Line: CommonLoc.first, Column: CommonLoc.second,
347 Scope: CommonLocScope, InlinedAt);
348 }
349
350 bool SameLine = L1->getLine() == L2->getLine();
351 bool SameCol = L1->getColumn() == L2->getColumn();
352 unsigned Line = SameLine ? L1->getLine() : 0;
353 unsigned Col = SameLine && SameCol ? L1->getColumn() : 0;
354 bool IsImplicitCode = L1->isImplicitCode() && L2->isImplicitCode();
355
356 // Discard source location atom if the line becomes 0. And there's nothing
357 // further to do if neither location has an atom number.
358 if (!SameLine || !(L1->getAtomGroup() || L2->getAtomGroup()))
359 return DILocation::get(Context&: C, Line, Column: Col, Scope, InlinedAt, ImplicitCode: IsImplicitCode,
360 /*AtomGroup*/ 0, /*AtomRank*/ 0);
361
362 uint64_t Group = 0;
363 uint64_t Rank = 0;
364 // If we're preserving the same matching inlined-at field we can
365 // preserve the atom.
366 if (LocBIA == LocAIA && InlinedAt == LocBIA) {
367 // Deterministically keep the lowest non-zero ranking atom group
368 // number.
369 // FIXME: It would be nice if we could track that an instruction
370 // belongs to two source atoms.
371 bool UseL1Atom = [L1, L2]() {
372 if (L1->getAtomRank() == L2->getAtomRank()) {
373 // Arbitrarily choose the lowest non-zero group number.
374 if (!L1->getAtomGroup() || !L2->getAtomGroup())
375 return !L2->getAtomGroup();
376 return L1->getAtomGroup() < L2->getAtomGroup();
377 }
378 // Choose the lowest non-zero rank.
379 if (!L1->getAtomRank() || !L2->getAtomRank())
380 return !L2->getAtomRank();
381 return L1->getAtomRank() < L2->getAtomRank();
382 }();
383 Group = UseL1Atom ? L1->getAtomGroup() : L2->getAtomGroup();
384 Rank = UseL1Atom ? L1->getAtomRank() : L2->getAtomRank();
385 } else {
386 // If either instruction is part of a source atom, reassign it a new
387 // atom group. This essentially regresses to non-key-instructions
388 // behaviour (now that it's the only instruction in its group it'll
389 // probably get is_stmt applied).
390 Group = C.incNextDILocationAtomGroup();
391 Rank = 1;
392 }
393 return DILocation::get(Context&: C, Line, Column: Col, Scope, InlinedAt, ImplicitCode: IsImplicitCode,
394 AtomGroup: Group, AtomRank: Rank);
395 };
396
397 DILocation *Result = ARIt != ALocs.rend() ? (*ARIt)->getInlinedAt() : nullptr;
398
399 // If we have found a common starting location, walk up the inlined-at chains
400 // and try to produce common locations.
401 for (; ARIt != ALocs.rend() && BRIt != BLocs.rend(); ++ARIt, ++BRIt) {
402 DILocation *Tmp = MergeLocPair(*ARIt, *BRIt, Result);
403
404 if (!Tmp)
405 // We have walked up to a point in the chains where the two locations
406 // are irreconsilable. At this point Result contains the nearest common
407 // location in the inlined-at chains of LocA and LocB, so we break here.
408 break;
409
410 Result = Tmp;
411 }
412
413 if (Result)
414 return Result;
415
416 // We ended up with LocA and LocB as irreconsilable locations. Produce a
417 // location at 0:0 with one of the locations' scope. The function has
418 // historically picked A's scope, and a nullptr inlined-at location, so that
419 // behavior is mimicked here but I am not sure if this is always the correct
420 // way to handle this.
421 // Key Instructions: it's fine to drop atom group and rank here, as line 0
422 // is a nonsensical is_stmt location.
423 return DILocation::get(Context&: C, Line: 0, Column: 0, Scope: LocA->getScope(), InlinedAt: nullptr, ImplicitCode: false,
424 /*AtomGroup*/ 0, /*AtomRank*/ 0);
425}
426
427std::optional<unsigned>
428DILocation::encodeDiscriminator(unsigned BD, unsigned DF, unsigned CI) {
429 std::array<unsigned, 3> Components = {BD, DF, CI};
430 uint64_t RemainingWork = 0U;
431 // We use RemainingWork to figure out if we have no remaining components to
432 // encode. For example: if BD != 0 but DF == 0 && CI == 0, we don't need to
433 // encode anything for the latter 2.
434 // Since any of the input components is at most 32 bits, their sum will be
435 // less than 34 bits, and thus RemainingWork won't overflow.
436 RemainingWork =
437 std::accumulate(first: Components.begin(), last: Components.end(), init: RemainingWork);
438
439 int I = 0;
440 unsigned Ret = 0;
441 unsigned NextBitInsertionIndex = 0;
442 while (RemainingWork > 0) {
443 unsigned C = Components[I++];
444 RemainingWork -= C;
445 unsigned EC = encodeComponent(C);
446 Ret |= (EC << NextBitInsertionIndex);
447 NextBitInsertionIndex += encodingBits(C);
448 }
449
450 // Encoding may be unsuccessful because of overflow. We determine success by
451 // checking equivalence of components before & after encoding. Alternatively,
452 // we could determine Success during encoding, but the current alternative is
453 // simpler.
454 unsigned TBD, TDF, TCI = 0;
455 decodeDiscriminator(D: Ret, BD&: TBD, DF&: TDF, CI&: TCI);
456 if (TBD == BD && TDF == DF && TCI == CI)
457 return Ret;
458 return std::nullopt;
459}
460
461void DILocation::decodeDiscriminator(unsigned D, unsigned &BD, unsigned &DF,
462 unsigned &CI) {
463 BD = getUnsignedFromPrefixEncoding(U: D);
464 DF = getUnsignedFromPrefixEncoding(U: getNextComponentInDiscriminator(D));
465 CI = getUnsignedFromPrefixEncoding(
466 U: getNextComponentInDiscriminator(D: getNextComponentInDiscriminator(D)));
467}
468dwarf::Tag DINode::getTag() const { return (dwarf::Tag)SubclassData16; }
469
470DINode::DIFlags DINode::getFlag(StringRef Flag) {
471 return StringSwitch<DIFlags>(Flag)
472#define HANDLE_DI_FLAG(ID, NAME) .Case("DIFlag" #NAME, Flag##NAME)
473#include "llvm/IR/DebugInfoFlags.def"
474 .Default(Value: DINode::FlagZero);
475}
476
477StringRef DINode::getFlagString(DIFlags Flag) {
478 switch (Flag) {
479#define HANDLE_DI_FLAG(ID, NAME) \
480 case Flag##NAME: \
481 return "DIFlag" #NAME;
482#include "llvm/IR/DebugInfoFlags.def"
483 }
484 return "";
485}
486
487DINode::DIFlags DINode::splitFlags(DIFlags Flags,
488 SmallVectorImpl<DIFlags> &SplitFlags) {
489 // Flags that are packed together need to be specially handled, so
490 // that, for example, we emit "DIFlagPublic" and not
491 // "DIFlagPrivate | DIFlagProtected".
492 if (DIFlags A = Flags & FlagAccessibility) {
493 if (A == FlagPrivate)
494 SplitFlags.push_back(Elt: FlagPrivate);
495 else if (A == FlagProtected)
496 SplitFlags.push_back(Elt: FlagProtected);
497 else
498 SplitFlags.push_back(Elt: FlagPublic);
499 Flags &= ~A;
500 }
501 if (DIFlags R = Flags & FlagPtrToMemberRep) {
502 if (R == FlagSingleInheritance)
503 SplitFlags.push_back(Elt: FlagSingleInheritance);
504 else if (R == FlagMultipleInheritance)
505 SplitFlags.push_back(Elt: FlagMultipleInheritance);
506 else
507 SplitFlags.push_back(Elt: FlagVirtualInheritance);
508 Flags &= ~R;
509 }
510 if ((Flags & FlagIndirectVirtualBase) == FlagIndirectVirtualBase) {
511 Flags &= ~FlagIndirectVirtualBase;
512 SplitFlags.push_back(Elt: FlagIndirectVirtualBase);
513 }
514
515#define HANDLE_DI_FLAG(ID, NAME) \
516 if (DIFlags Bit = Flags & Flag##NAME) { \
517 SplitFlags.push_back(Bit); \
518 Flags &= ~Bit; \
519 }
520#include "llvm/IR/DebugInfoFlags.def"
521 return Flags;
522}
523
524DIScope *DIScope::getScope() const {
525 if (auto *T = dyn_cast<DIType>(Val: this))
526 return T->getScope();
527
528 if (auto *SP = dyn_cast<DISubprogram>(Val: this))
529 return SP->getScope();
530
531 if (auto *LB = dyn_cast<DILexicalBlockBase>(Val: this))
532 return LB->getScope();
533
534 if (auto *NS = dyn_cast<DINamespace>(Val: this))
535 return NS->getScope();
536
537 if (auto *CB = dyn_cast<DICommonBlock>(Val: this))
538 return CB->getScope();
539
540 if (auto *M = dyn_cast<DIModule>(Val: this))
541 return M->getScope();
542
543 assert((isa<DIFile>(this) || isa<DICompileUnit>(this)) &&
544 "Unhandled type of scope.");
545 return nullptr;
546}
547
548StringRef DIScope::getName() const {
549 if (auto *T = dyn_cast<DIType>(Val: this))
550 return T->getName();
551 if (auto *SP = dyn_cast<DISubprogram>(Val: this))
552 return SP->getName();
553 if (auto *NS = dyn_cast<DINamespace>(Val: this))
554 return NS->getName();
555 if (auto *CB = dyn_cast<DICommonBlock>(Val: this))
556 return CB->getName();
557 if (auto *M = dyn_cast<DIModule>(Val: this))
558 return M->getName();
559 assert((isa<DILexicalBlockBase>(this) || isa<DIFile>(this) ||
560 isa<DICompileUnit>(this)) &&
561 "Unhandled type of scope.");
562 return "";
563}
564
565#ifndef NDEBUG
566static bool isCanonical(const MDString *S) {
567 return !S || !S->getString().empty();
568}
569#endif
570
571dwarf::Tag GenericDINode::getTag() const { return (dwarf::Tag)SubclassData16; }
572GenericDINode *GenericDINode::getImpl(LLVMContext &Context, unsigned Tag,
573 MDString *Header,
574 ArrayRef<Metadata *> DwarfOps,
575 StorageType Storage, bool ShouldCreate) {
576 unsigned Hash = 0;
577 if (Storage == Uniqued) {
578 GenericDINodeInfo::KeyTy Key(Tag, Header, DwarfOps);
579 if (auto *N = getUniqued(Store&: Context.pImpl->GenericDINodes, Key))
580 return N;
581 if (!ShouldCreate)
582 return nullptr;
583 Hash = Key.getHash();
584 } else {
585 assert(ShouldCreate && "Expected non-uniqued nodes to always be created");
586 }
587
588 // Use a nullptr for empty headers.
589 assert(isCanonical(Header) && "Expected canonical MDString");
590 Metadata *PreOps[] = {Header};
591 return storeImpl(N: new (DwarfOps.size() + 1, Storage) GenericDINode(
592 Context, Storage, Hash, Tag, PreOps, DwarfOps),
593 Storage, Store&: Context.pImpl->GenericDINodes);
594}
595
596void GenericDINode::recalculateHash() {
597 setHash(GenericDINodeInfo::KeyTy::calculateHash(N: this));
598}
599
600#define UNWRAP_ARGS_IMPL(...) __VA_ARGS__
601#define UNWRAP_ARGS(ARGS) UNWRAP_ARGS_IMPL ARGS
602#define DEFINE_GETIMPL_LOOKUP(CLASS, ARGS) \
603 do { \
604 if (Storage == Uniqued) { \
605 if (auto *N = getUniqued(Context.pImpl->CLASS##s, \
606 CLASS##Info::KeyTy(UNWRAP_ARGS(ARGS)))) \
607 return N; \
608 if (!ShouldCreate) \
609 return nullptr; \
610 } else { \
611 assert(ShouldCreate && \
612 "Expected non-uniqued nodes to always be created"); \
613 } \
614 } while (false)
615#define DEFINE_GETIMPL_STORE(CLASS, ARGS, OPS) \
616 return storeImpl(new (std::size(OPS), Storage) \
617 CLASS(Context, Storage, UNWRAP_ARGS(ARGS), OPS), \
618 Storage, Context.pImpl->CLASS##s)
619#define DEFINE_GETIMPL_STORE_NO_OPS(CLASS, ARGS) \
620 return storeImpl(new (0u, Storage) \
621 CLASS(Context, Storage, UNWRAP_ARGS(ARGS)), \
622 Storage, Context.pImpl->CLASS##s)
623#define DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(CLASS, OPS) \
624 return storeImpl(new (std::size(OPS), Storage) CLASS(Context, Storage, OPS), \
625 Storage, Context.pImpl->CLASS##s)
626#define DEFINE_GETIMPL_STORE_N(CLASS, ARGS, OPS, NUM_OPS) \
627 return storeImpl(new (NUM_OPS, Storage) \
628 CLASS(Context, Storage, UNWRAP_ARGS(ARGS), OPS), \
629 Storage, Context.pImpl->CLASS##s)
630
631DISubrange::DISubrange(LLVMContext &C, StorageType Storage,
632 ArrayRef<Metadata *> Ops)
633 : DINode(C, DISubrangeKind, Storage, dwarf::DW_TAG_subrange_type, Ops) {}
634DISubrange *DISubrange::getImpl(LLVMContext &Context, int64_t Count, int64_t Lo,
635 StorageType Storage, bool ShouldCreate) {
636 auto *CountNode = ConstantAsMetadata::get(
637 C: ConstantInt::getSigned(Ty: Type::getInt64Ty(C&: Context), V: Count));
638 auto *LB = ConstantAsMetadata::get(
639 C: ConstantInt::getSigned(Ty: Type::getInt64Ty(C&: Context), V: Lo));
640 return getImpl(Context, CountNode, LowerBound: LB, UpperBound: nullptr, Stride: nullptr, Storage,
641 ShouldCreate);
642}
643
644DISubrange *DISubrange::getImpl(LLVMContext &Context, Metadata *CountNode,
645 int64_t Lo, StorageType Storage,
646 bool ShouldCreate) {
647 auto *LB = ConstantAsMetadata::get(
648 C: ConstantInt::getSigned(Ty: Type::getInt64Ty(C&: Context), V: Lo));
649 return getImpl(Context, CountNode, LowerBound: LB, UpperBound: nullptr, Stride: nullptr, Storage,
650 ShouldCreate);
651}
652
653DISubrange *DISubrange::getImpl(LLVMContext &Context, Metadata *CountNode,
654 Metadata *LB, Metadata *UB, Metadata *Stride,
655 StorageType Storage, bool ShouldCreate) {
656 DEFINE_GETIMPL_LOOKUP(DISubrange, (CountNode, LB, UB, Stride));
657 Metadata *Ops[] = {CountNode, LB, UB, Stride};
658 DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(DISubrange, Ops);
659}
660
661DISubrange::BoundType DISubrange::getCount() const {
662 Metadata *CB = getRawCountNode();
663 if (!CB)
664 return BoundType();
665
666 assert((isa<ConstantAsMetadata>(CB) || isa<DIVariable>(CB) ||
667 isa<DIExpression>(CB)) &&
668 "Count must be signed constant or DIVariable or DIExpression");
669
670 if (auto *MD = dyn_cast<ConstantAsMetadata>(Val: CB))
671 return BoundType(cast<ConstantInt>(Val: MD->getValue()));
672
673 if (auto *MD = dyn_cast<DIVariable>(Val: CB))
674 return BoundType(MD);
675
676 if (auto *MD = dyn_cast<DIExpression>(Val: CB))
677 return BoundType(MD);
678
679 return BoundType();
680}
681
682DISubrange::BoundType DISubrange::getLowerBound() const {
683 Metadata *LB = getRawLowerBound();
684 if (!LB)
685 return BoundType();
686
687 assert((isa<ConstantAsMetadata>(LB) || isa<DIVariable>(LB) ||
688 isa<DIExpression>(LB)) &&
689 "LowerBound must be signed constant or DIVariable or DIExpression");
690
691 if (auto *MD = dyn_cast<ConstantAsMetadata>(Val: LB))
692 return BoundType(cast<ConstantInt>(Val: MD->getValue()));
693
694 if (auto *MD = dyn_cast<DIVariable>(Val: LB))
695 return BoundType(MD);
696
697 if (auto *MD = dyn_cast<DIExpression>(Val: LB))
698 return BoundType(MD);
699
700 return BoundType();
701}
702
703DISubrange::BoundType DISubrange::getUpperBound() const {
704 Metadata *UB = getRawUpperBound();
705 if (!UB)
706 return BoundType();
707
708 assert((isa<ConstantAsMetadata>(UB) || isa<DIVariable>(UB) ||
709 isa<DIExpression>(UB)) &&
710 "UpperBound must be signed constant or DIVariable or DIExpression");
711
712 if (auto *MD = dyn_cast<ConstantAsMetadata>(Val: UB))
713 return BoundType(cast<ConstantInt>(Val: MD->getValue()));
714
715 if (auto *MD = dyn_cast<DIVariable>(Val: UB))
716 return BoundType(MD);
717
718 if (auto *MD = dyn_cast<DIExpression>(Val: UB))
719 return BoundType(MD);
720
721 return BoundType();
722}
723
724DISubrange::BoundType DISubrange::getStride() const {
725 Metadata *ST = getRawStride();
726 if (!ST)
727 return BoundType();
728
729 assert((isa<ConstantAsMetadata>(ST) || isa<DIVariable>(ST) ||
730 isa<DIExpression>(ST)) &&
731 "Stride must be signed constant or DIVariable or DIExpression");
732
733 if (auto *MD = dyn_cast<ConstantAsMetadata>(Val: ST))
734 return BoundType(cast<ConstantInt>(Val: MD->getValue()));
735
736 if (auto *MD = dyn_cast<DIVariable>(Val: ST))
737 return BoundType(MD);
738
739 if (auto *MD = dyn_cast<DIExpression>(Val: ST))
740 return BoundType(MD);
741
742 return BoundType();
743}
744DIGenericSubrange::DIGenericSubrange(LLVMContext &C, StorageType Storage,
745 ArrayRef<Metadata *> Ops)
746 : DINode(C, DIGenericSubrangeKind, Storage, dwarf::DW_TAG_generic_subrange,
747 Ops) {}
748
749DIGenericSubrange *DIGenericSubrange::getImpl(LLVMContext &Context,
750 Metadata *CountNode, Metadata *LB,
751 Metadata *UB, Metadata *Stride,
752 StorageType Storage,
753 bool ShouldCreate) {
754 DEFINE_GETIMPL_LOOKUP(DIGenericSubrange, (CountNode, LB, UB, Stride));
755 Metadata *Ops[] = {CountNode, LB, UB, Stride};
756 DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(DIGenericSubrange, Ops);
757}
758
759DIGenericSubrange::BoundType DIGenericSubrange::getCount() const {
760 Metadata *CB = getRawCountNode();
761 if (!CB)
762 return BoundType();
763
764 assert((isa<DIVariable>(CB) || isa<DIExpression>(CB)) &&
765 "Count must be signed constant or DIVariable or DIExpression");
766
767 if (auto *MD = dyn_cast<DIVariable>(Val: CB))
768 return BoundType(MD);
769
770 if (auto *MD = dyn_cast<DIExpression>(Val: CB))
771 return BoundType(MD);
772
773 return BoundType();
774}
775
776DIGenericSubrange::BoundType DIGenericSubrange::getLowerBound() const {
777 Metadata *LB = getRawLowerBound();
778 if (!LB)
779 return BoundType();
780
781 assert((isa<DIVariable>(LB) || isa<DIExpression>(LB)) &&
782 "LowerBound must be signed constant or DIVariable or DIExpression");
783
784 if (auto *MD = dyn_cast<DIVariable>(Val: LB))
785 return BoundType(MD);
786
787 if (auto *MD = dyn_cast<DIExpression>(Val: LB))
788 return BoundType(MD);
789
790 return BoundType();
791}
792
793DIGenericSubrange::BoundType DIGenericSubrange::getUpperBound() const {
794 Metadata *UB = getRawUpperBound();
795 if (!UB)
796 return BoundType();
797
798 assert((isa<DIVariable>(UB) || isa<DIExpression>(UB)) &&
799 "UpperBound must be signed constant or DIVariable or DIExpression");
800
801 if (auto *MD = dyn_cast<DIVariable>(Val: UB))
802 return BoundType(MD);
803
804 if (auto *MD = dyn_cast<DIExpression>(Val: UB))
805 return BoundType(MD);
806
807 return BoundType();
808}
809
810DIGenericSubrange::BoundType DIGenericSubrange::getStride() const {
811 Metadata *ST = getRawStride();
812 if (!ST)
813 return BoundType();
814
815 assert((isa<DIVariable>(ST) || isa<DIExpression>(ST)) &&
816 "Stride must be signed constant or DIVariable or DIExpression");
817
818 if (auto *MD = dyn_cast<DIVariable>(Val: ST))
819 return BoundType(MD);
820
821 if (auto *MD = dyn_cast<DIExpression>(Val: ST))
822 return BoundType(MD);
823
824 return BoundType();
825}
826
827DISubrangeType::DISubrangeType(LLVMContext &C, StorageType Storage,
828 unsigned Line, uint32_t AlignInBits,
829 DIFlags Flags, ArrayRef<Metadata *> Ops)
830 : DIType(C, DISubrangeTypeKind, Storage, dwarf::DW_TAG_subrange_type, Line,
831 AlignInBits, 0, Flags, Ops) {}
832
833DISubrangeType *DISubrangeType::getImpl(
834 LLVMContext &Context, MDString *Name, Metadata *File, unsigned Line,
835 Metadata *Scope, Metadata *SizeInBits, uint32_t AlignInBits, DIFlags Flags,
836 Metadata *BaseType, Metadata *LowerBound, Metadata *UpperBound,
837 Metadata *Stride, Metadata *Bias, StorageType Storage, bool ShouldCreate) {
838 assert(isCanonical(Name) && "Expected canonical MDString");
839 DEFINE_GETIMPL_LOOKUP(DISubrangeType, (Name, File, Line, Scope, SizeInBits,
840 AlignInBits, Flags, BaseType,
841 LowerBound, UpperBound, Stride, Bias));
842 Metadata *Ops[] = {File, Scope, Name, SizeInBits, nullptr,
843 BaseType, LowerBound, UpperBound, Stride, Bias};
844 DEFINE_GETIMPL_STORE(DISubrangeType, (Line, AlignInBits, Flags), Ops);
845}
846
847DISubrangeType::BoundType
848DISubrangeType::convertRawToBound(Metadata *IN) const {
849 if (!IN)
850 return BoundType();
851
852 assert(isa<ConstantAsMetadata>(IN) || isa<DIVariable>(IN) ||
853 isa<DIExpression>(IN));
854
855 if (auto *MD = dyn_cast<ConstantAsMetadata>(Val: IN))
856 return BoundType(cast<ConstantInt>(Val: MD->getValue()));
857
858 if (auto *MD = dyn_cast<DIVariable>(Val: IN))
859 return BoundType(MD);
860
861 if (auto *MD = dyn_cast<DIExpression>(Val: IN))
862 return BoundType(MD);
863
864 return BoundType();
865}
866
867DIEnumerator::DIEnumerator(LLVMContext &C, StorageType Storage,
868 const APInt &Value, bool IsUnsigned,
869 ArrayRef<Metadata *> Ops)
870 : DINode(C, DIEnumeratorKind, Storage, dwarf::DW_TAG_enumerator, Ops),
871 Value(Value) {
872 SubclassData32 = IsUnsigned;
873}
874DIEnumerator *DIEnumerator::getImpl(LLVMContext &Context, const APInt &Value,
875 bool IsUnsigned, MDString *Name,
876 StorageType Storage, bool ShouldCreate) {
877 assert(isCanonical(Name) && "Expected canonical MDString");
878 DEFINE_GETIMPL_LOOKUP(DIEnumerator, (Value, IsUnsigned, Name));
879 Metadata *Ops[] = {Name};
880 DEFINE_GETIMPL_STORE(DIEnumerator, (Value, IsUnsigned), Ops);
881}
882
883DIBasicType *DIBasicType::getImpl(LLVMContext &Context, unsigned Tag,
884 MDString *Name, Metadata *SizeInBits,
885 uint32_t AlignInBits, unsigned Encoding,
886 uint32_t NumExtraInhabitants, DIFlags Flags,
887 StorageType Storage, bool ShouldCreate) {
888 assert(isCanonical(Name) && "Expected canonical MDString");
889 DEFINE_GETIMPL_LOOKUP(DIBasicType, (Tag, Name, SizeInBits, AlignInBits,
890 Encoding, NumExtraInhabitants, Flags));
891 Metadata *Ops[] = {nullptr, nullptr, Name, SizeInBits, nullptr};
892 DEFINE_GETIMPL_STORE(DIBasicType,
893 (Tag, AlignInBits, Encoding, NumExtraInhabitants, Flags),
894 Ops);
895}
896
897std::optional<DIBasicType::Signedness> DIBasicType::getSignedness() const {
898 switch (getEncoding()) {
899 case dwarf::DW_ATE_signed:
900 case dwarf::DW_ATE_signed_char:
901 case dwarf::DW_ATE_signed_fixed:
902 return Signedness::Signed;
903 case dwarf::DW_ATE_unsigned:
904 case dwarf::DW_ATE_unsigned_char:
905 case dwarf::DW_ATE_unsigned_fixed:
906 return Signedness::Unsigned;
907 default:
908 return std::nullopt;
909 }
910}
911
912DIFixedPointType *
913DIFixedPointType::getImpl(LLVMContext &Context, unsigned Tag, MDString *Name,
914 Metadata *SizeInBits, uint32_t AlignInBits,
915 unsigned Encoding, DIFlags Flags, unsigned Kind,
916 int Factor, APInt Numerator, APInt Denominator,
917 StorageType Storage, bool ShouldCreate) {
918 DEFINE_GETIMPL_LOOKUP(DIFixedPointType,
919 (Tag, Name, SizeInBits, AlignInBits, Encoding, Flags,
920 Kind, Factor, Numerator, Denominator));
921 Metadata *Ops[] = {nullptr, nullptr, Name, SizeInBits, nullptr};
922 DEFINE_GETIMPL_STORE(
923 DIFixedPointType,
924 (Tag, AlignInBits, Encoding, Flags, Kind, Factor, Numerator, Denominator),
925 Ops);
926}
927
928bool DIFixedPointType::isSigned() const {
929 return getEncoding() == dwarf::DW_ATE_signed_fixed;
930}
931
932std::optional<DIFixedPointType::FixedPointKind>
933DIFixedPointType::getFixedPointKind(StringRef Str) {
934 return StringSwitch<std::optional<FixedPointKind>>(Str)
935 .Case(S: "Binary", Value: FixedPointBinary)
936 .Case(S: "Decimal", Value: FixedPointDecimal)
937 .Case(S: "Rational", Value: FixedPointRational)
938 .Default(Value: std::nullopt);
939}
940
941const char *DIFixedPointType::fixedPointKindString(FixedPointKind V) {
942 switch (V) {
943 case FixedPointBinary:
944 return "Binary";
945 case FixedPointDecimal:
946 return "Decimal";
947 case FixedPointRational:
948 return "Rational";
949 }
950 return nullptr;
951}
952
953DIStringType *DIStringType::getImpl(LLVMContext &Context, unsigned Tag,
954 MDString *Name, Metadata *StringLength,
955 Metadata *StringLengthExp,
956 Metadata *StringLocationExp,
957 Metadata *SizeInBits, uint32_t AlignInBits,
958 unsigned Encoding, StorageType Storage,
959 bool ShouldCreate) {
960 assert(isCanonical(Name) && "Expected canonical MDString");
961 DEFINE_GETIMPL_LOOKUP(DIStringType,
962 (Tag, Name, StringLength, StringLengthExp,
963 StringLocationExp, SizeInBits, AlignInBits, Encoding));
964 Metadata *Ops[] = {nullptr, nullptr, Name,
965 SizeInBits, nullptr, StringLength,
966 StringLengthExp, StringLocationExp};
967 DEFINE_GETIMPL_STORE(DIStringType, (Tag, AlignInBits, Encoding), Ops);
968}
969DIType *DIDerivedType::getClassType() const {
970 assert(getTag() == dwarf::DW_TAG_ptr_to_member_type);
971 return cast_or_null<DIType>(Val: getExtraData());
972}
973uint32_t DIDerivedType::getVBPtrOffset() const {
974 assert(getTag() == dwarf::DW_TAG_inheritance);
975 if (auto *CM = cast_or_null<ConstantAsMetadata>(Val: getExtraData()))
976 if (auto *CI = dyn_cast_or_null<ConstantInt>(Val: CM->getValue()))
977 return static_cast<uint32_t>(CI->getZExtValue());
978 return 0;
979}
980Constant *DIDerivedType::getStorageOffsetInBits() const {
981 assert(getTag() == dwarf::DW_TAG_member && isBitField());
982 if (auto *C = cast_or_null<ConstantAsMetadata>(Val: getExtraData()))
983 return C->getValue();
984 return nullptr;
985}
986
987Constant *DIDerivedType::getConstant() const {
988 assert((getTag() == dwarf::DW_TAG_member ||
989 getTag() == dwarf::DW_TAG_variable) &&
990 isStaticMember());
991 if (auto *C = cast_or_null<ConstantAsMetadata>(Val: getExtraData()))
992 return C->getValue();
993 return nullptr;
994}
995Constant *DIDerivedType::getDiscriminantValue() const {
996 assert(getTag() == dwarf::DW_TAG_member && !isStaticMember());
997 if (auto *C = cast_or_null<ConstantAsMetadata>(Val: getExtraData()))
998 return C->getValue();
999 return nullptr;
1000}
1001
1002DIDerivedType *DIDerivedType::getImpl(
1003 LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *File,
1004 unsigned Line, Metadata *Scope, Metadata *BaseType, Metadata *SizeInBits,
1005 uint32_t AlignInBits, Metadata *OffsetInBits,
1006 std::optional<unsigned> DWARFAddressSpace,
1007 std::optional<PtrAuthData> PtrAuthData, DIFlags Flags, Metadata *ExtraData,
1008 Metadata *Annotations, StorageType Storage, bool ShouldCreate) {
1009 assert(isCanonical(Name) && "Expected canonical MDString");
1010 DEFINE_GETIMPL_LOOKUP(DIDerivedType,
1011 (Tag, Name, File, Line, Scope, BaseType, SizeInBits,
1012 AlignInBits, OffsetInBits, DWARFAddressSpace,
1013 PtrAuthData, Flags, ExtraData, Annotations));
1014 Metadata *Ops[] = {File, Scope, Name, SizeInBits,
1015 OffsetInBits, BaseType, ExtraData, Annotations};
1016 DEFINE_GETIMPL_STORE(
1017 DIDerivedType,
1018 (Tag, Line, AlignInBits, DWARFAddressSpace, PtrAuthData, Flags), Ops);
1019}
1020
1021std::optional<DIDerivedType::PtrAuthData>
1022DIDerivedType::getPtrAuthData() const {
1023 return getTag() == dwarf::DW_TAG_LLVM_ptrauth_type
1024 ? std::optional<PtrAuthData>(PtrAuthData(SubclassData32))
1025 : std::nullopt;
1026}
1027
1028DICompositeType *DICompositeType::getImpl(
1029 LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *File,
1030 unsigned Line, Metadata *Scope, Metadata *BaseType, Metadata *SizeInBits,
1031 uint32_t AlignInBits, Metadata *OffsetInBits, DIFlags Flags,
1032 Metadata *Elements, unsigned RuntimeLang, std::optional<uint32_t> EnumKind,
1033 Metadata *VTableHolder, Metadata *TemplateParams, MDString *Identifier,
1034 Metadata *Discriminator, Metadata *DataLocation, Metadata *Associated,
1035 Metadata *Allocated, Metadata *Rank, Metadata *Annotations,
1036 Metadata *Specification, uint32_t NumExtraInhabitants, Metadata *BitStride,
1037 StorageType Storage, bool ShouldCreate) {
1038 assert(isCanonical(Name) && "Expected canonical MDString");
1039
1040 // Keep this in sync with buildODRType.
1041 DEFINE_GETIMPL_LOOKUP(
1042 DICompositeType,
1043 (Tag, Name, File, Line, Scope, BaseType, SizeInBits, AlignInBits,
1044 OffsetInBits, Flags, Elements, RuntimeLang, VTableHolder, TemplateParams,
1045 Identifier, Discriminator, DataLocation, Associated, Allocated, Rank,
1046 Annotations, Specification, NumExtraInhabitants, BitStride));
1047 Metadata *Ops[] = {File, Scope, Name, SizeInBits,
1048 OffsetInBits, BaseType, Elements, VTableHolder,
1049 TemplateParams, Identifier, Discriminator, DataLocation,
1050 Associated, Allocated, Rank, Annotations,
1051 Specification, BitStride};
1052 DEFINE_GETIMPL_STORE(DICompositeType,
1053 (Tag, Line, RuntimeLang, AlignInBits,
1054 NumExtraInhabitants, EnumKind, Flags),
1055 Ops);
1056}
1057
1058DICompositeType *DICompositeType::buildODRType(
1059 LLVMContext &Context, MDString &Identifier, unsigned Tag, MDString *Name,
1060 Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType,
1061 Metadata *SizeInBits, uint32_t AlignInBits, Metadata *OffsetInBits,
1062 Metadata *Specification, uint32_t NumExtraInhabitants, DIFlags Flags,
1063 Metadata *Elements, unsigned RuntimeLang, std::optional<uint32_t> EnumKind,
1064 Metadata *VTableHolder, Metadata *TemplateParams, Metadata *Discriminator,
1065 Metadata *DataLocation, Metadata *Associated, Metadata *Allocated,
1066 Metadata *Rank, Metadata *Annotations, Metadata *BitStride) {
1067 assert(!Identifier.getString().empty() && "Expected valid identifier");
1068 if (!Context.isODRUniquingDebugTypes())
1069 return nullptr;
1070 auto *&CT = (*Context.pImpl->DITypeMap)[&Identifier];
1071 if (!CT)
1072 return CT = DICompositeType::getDistinct(
1073 Context, Tag, Name, File, Line, Scope, BaseType, SizeInBits,
1074 AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang,
1075 EnumKind, VTableHolder, TemplateParams, Identifier: &Identifier,
1076 Discriminator, DataLocation, Associated, Allocated, Rank,
1077 Annotations, Specification, NumExtraInhabitants, BitStride);
1078 if (CT->getTag() != Tag)
1079 return nullptr;
1080
1081 // Only mutate CT if it's a forward declaration and the new operands aren't.
1082 assert(CT->getRawIdentifier() == &Identifier && "Wrong ODR identifier?");
1083 if (!CT->isForwardDecl() || (Flags & DINode::FlagFwdDecl))
1084 return CT;
1085
1086 // Mutate CT in place. Keep this in sync with getImpl.
1087 CT->mutate(Tag, Line, RuntimeLang, AlignInBits, NumExtraInhabitants, EnumKind,
1088 Flags);
1089 Metadata *Ops[] = {File, Scope, Name, SizeInBits,
1090 OffsetInBits, BaseType, Elements, VTableHolder,
1091 TemplateParams, &Identifier, Discriminator, DataLocation,
1092 Associated, Allocated, Rank, Annotations,
1093 Specification, BitStride};
1094 assert((std::end(Ops) - std::begin(Ops)) == (int)CT->getNumOperands() &&
1095 "Mismatched number of operands");
1096 for (unsigned I = 0, E = CT->getNumOperands(); I != E; ++I)
1097 if (Ops[I] != CT->getOperand(I))
1098 CT->setOperand(I, New: Ops[I]);
1099 return CT;
1100}
1101
1102DICompositeType *DICompositeType::getODRType(
1103 LLVMContext &Context, MDString &Identifier, unsigned Tag, MDString *Name,
1104 Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType,
1105 Metadata *SizeInBits, uint32_t AlignInBits, Metadata *OffsetInBits,
1106 Metadata *Specification, uint32_t NumExtraInhabitants, DIFlags Flags,
1107 Metadata *Elements, unsigned RuntimeLang, std::optional<uint32_t> EnumKind,
1108 Metadata *VTableHolder, Metadata *TemplateParams, Metadata *Discriminator,
1109 Metadata *DataLocation, Metadata *Associated, Metadata *Allocated,
1110 Metadata *Rank, Metadata *Annotations, Metadata *BitStride) {
1111 assert(!Identifier.getString().empty() && "Expected valid identifier");
1112 if (!Context.isODRUniquingDebugTypes())
1113 return nullptr;
1114 auto *&CT = (*Context.pImpl->DITypeMap)[&Identifier];
1115 if (!CT) {
1116 CT = DICompositeType::getDistinct(
1117 Context, Tag, Name, File, Line, Scope, BaseType, SizeInBits,
1118 AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, EnumKind,
1119 VTableHolder, TemplateParams, Identifier: &Identifier, Discriminator, DataLocation,
1120 Associated, Allocated, Rank, Annotations, Specification,
1121 NumExtraInhabitants, BitStride);
1122 } else {
1123 if (CT->getTag() != Tag)
1124 return nullptr;
1125 }
1126 return CT;
1127}
1128
1129DICompositeType *DICompositeType::getODRTypeIfExists(LLVMContext &Context,
1130 MDString &Identifier) {
1131 assert(!Identifier.getString().empty() && "Expected valid identifier");
1132 if (!Context.isODRUniquingDebugTypes())
1133 return nullptr;
1134 return Context.pImpl->DITypeMap->lookup(Val: &Identifier);
1135}
1136DISubroutineType::DISubroutineType(LLVMContext &C, StorageType Storage,
1137 DIFlags Flags, uint8_t CC,
1138 ArrayRef<Metadata *> Ops)
1139 : DIType(C, DISubroutineTypeKind, Storage, dwarf::DW_TAG_subroutine_type, 0,
1140 0, 0, Flags, Ops),
1141 CC(CC) {}
1142
1143DISubroutineType *DISubroutineType::getImpl(LLVMContext &Context, DIFlags Flags,
1144 uint8_t CC, Metadata *TypeArray,
1145 StorageType Storage,
1146 bool ShouldCreate) {
1147 DEFINE_GETIMPL_LOOKUP(DISubroutineType, (Flags, CC, TypeArray));
1148 Metadata *Ops[] = {nullptr, nullptr, nullptr, nullptr, nullptr, TypeArray};
1149 DEFINE_GETIMPL_STORE(DISubroutineType, (Flags, CC), Ops);
1150}
1151
1152DIFile::DIFile(LLVMContext &C, StorageType Storage,
1153 std::optional<ChecksumInfo<MDString *>> CS, MDString *Src,
1154 ArrayRef<Metadata *> Ops)
1155 : DIScope(C, DIFileKind, Storage, dwarf::DW_TAG_file_type, Ops),
1156 Checksum(CS), Source(Src) {}
1157
1158// FIXME: Implement this string-enum correspondence with a .def file and macros,
1159// so that the association is explicit rather than implied.
1160static const char *ChecksumKindName[DIFile::CSK_Last] = {
1161 "CSK_MD5",
1162 "CSK_SHA1",
1163 "CSK_SHA256",
1164};
1165
1166StringRef DIFile::getChecksumKindAsString(ChecksumKind CSKind) {
1167 assert(CSKind <= DIFile::CSK_Last && "Invalid checksum kind");
1168 // The first space was originally the CSK_None variant, which is now
1169 // obsolete, but the space is still reserved in ChecksumKind, so we account
1170 // for it here.
1171 return ChecksumKindName[CSKind - 1];
1172}
1173
1174std::optional<DIFile::ChecksumKind>
1175DIFile::getChecksumKind(StringRef CSKindStr) {
1176 return StringSwitch<std::optional<DIFile::ChecksumKind>>(CSKindStr)
1177 .Case(S: "CSK_MD5", Value: DIFile::CSK_MD5)
1178 .Case(S: "CSK_SHA1", Value: DIFile::CSK_SHA1)
1179 .Case(S: "CSK_SHA256", Value: DIFile::CSK_SHA256)
1180 .Default(Value: std::nullopt);
1181}
1182
1183DIFile *DIFile::getImpl(LLVMContext &Context, MDString *Filename,
1184 MDString *Directory,
1185 std::optional<DIFile::ChecksumInfo<MDString *>> CS,
1186 MDString *Source, StorageType Storage,
1187 bool ShouldCreate) {
1188 assert(isCanonical(Filename) && "Expected canonical MDString");
1189 assert(isCanonical(Directory) && "Expected canonical MDString");
1190 assert((!CS || isCanonical(CS->Value)) && "Expected canonical MDString");
1191 // We do *NOT* expect Source to be a canonical MDString because nullptr
1192 // means none, so we need something to represent the empty file.
1193 DEFINE_GETIMPL_LOOKUP(DIFile, (Filename, Directory, CS, Source));
1194 Metadata *Ops[] = {Filename, Directory, CS ? CS->Value : nullptr, Source};
1195 DEFINE_GETIMPL_STORE(DIFile, (CS, Source), Ops);
1196}
1197DICompileUnit::DICompileUnit(LLVMContext &C, StorageType Storage,
1198 unsigned SourceLanguage, bool IsOptimized,
1199 unsigned RuntimeVersion, unsigned EmissionKind,
1200 uint64_t DWOId, bool SplitDebugInlining,
1201 bool DebugInfoForProfiling, unsigned NameTableKind,
1202 bool RangesBaseAddress, ArrayRef<Metadata *> Ops)
1203 : DIScope(C, DICompileUnitKind, Storage, dwarf::DW_TAG_compile_unit, Ops),
1204 SourceLanguage(SourceLanguage), RuntimeVersion(RuntimeVersion),
1205 DWOId(DWOId), EmissionKind(EmissionKind), NameTableKind(NameTableKind),
1206 IsOptimized(IsOptimized), SplitDebugInlining(SplitDebugInlining),
1207 DebugInfoForProfiling(DebugInfoForProfiling),
1208 RangesBaseAddress(RangesBaseAddress) {
1209 assert(Storage != Uniqued);
1210}
1211
1212DICompileUnit *DICompileUnit::getImpl(
1213 LLVMContext &Context, unsigned SourceLanguage, Metadata *File,
1214 MDString *Producer, bool IsOptimized, MDString *Flags,
1215 unsigned RuntimeVersion, MDString *SplitDebugFilename,
1216 unsigned EmissionKind, Metadata *EnumTypes, Metadata *RetainedTypes,
1217 Metadata *GlobalVariables, Metadata *ImportedEntities, Metadata *Macros,
1218 uint64_t DWOId, bool SplitDebugInlining, bool DebugInfoForProfiling,
1219 unsigned NameTableKind, bool RangesBaseAddress, MDString *SysRoot,
1220 MDString *SDK, StorageType Storage, bool ShouldCreate) {
1221 assert(Storage != Uniqued && "Cannot unique DICompileUnit");
1222 assert(isCanonical(Producer) && "Expected canonical MDString");
1223 assert(isCanonical(Flags) && "Expected canonical MDString");
1224 assert(isCanonical(SplitDebugFilename) && "Expected canonical MDString");
1225
1226 Metadata *Ops[] = {File,
1227 Producer,
1228 Flags,
1229 SplitDebugFilename,
1230 EnumTypes,
1231 RetainedTypes,
1232 GlobalVariables,
1233 ImportedEntities,
1234 Macros,
1235 SysRoot,
1236 SDK};
1237 return storeImpl(N: new (std::size(Ops), Storage) DICompileUnit(
1238 Context, Storage, SourceLanguage, IsOptimized,
1239 RuntimeVersion, EmissionKind, DWOId, SplitDebugInlining,
1240 DebugInfoForProfiling, NameTableKind, RangesBaseAddress,
1241 Ops),
1242 Storage);
1243}
1244
1245std::optional<DICompileUnit::DebugEmissionKind>
1246DICompileUnit::getEmissionKind(StringRef Str) {
1247 return StringSwitch<std::optional<DebugEmissionKind>>(Str)
1248 .Case(S: "NoDebug", Value: NoDebug)
1249 .Case(S: "FullDebug", Value: FullDebug)
1250 .Case(S: "LineTablesOnly", Value: LineTablesOnly)
1251 .Case(S: "DebugDirectivesOnly", Value: DebugDirectivesOnly)
1252 .Default(Value: std::nullopt);
1253}
1254
1255std::optional<DICompileUnit::DebugNameTableKind>
1256DICompileUnit::getNameTableKind(StringRef Str) {
1257 return StringSwitch<std::optional<DebugNameTableKind>>(Str)
1258 .Case(S: "Default", Value: DebugNameTableKind::Default)
1259 .Case(S: "GNU", Value: DebugNameTableKind::GNU)
1260 .Case(S: "Apple", Value: DebugNameTableKind::Apple)
1261 .Case(S: "None", Value: DebugNameTableKind::None)
1262 .Default(Value: std::nullopt);
1263}
1264
1265const char *DICompileUnit::emissionKindString(DebugEmissionKind EK) {
1266 switch (EK) {
1267 case NoDebug:
1268 return "NoDebug";
1269 case FullDebug:
1270 return "FullDebug";
1271 case LineTablesOnly:
1272 return "LineTablesOnly";
1273 case DebugDirectivesOnly:
1274 return "DebugDirectivesOnly";
1275 }
1276 return nullptr;
1277}
1278
1279const char *DICompileUnit::nameTableKindString(DebugNameTableKind NTK) {
1280 switch (NTK) {
1281 case DebugNameTableKind::Default:
1282 return nullptr;
1283 case DebugNameTableKind::GNU:
1284 return "GNU";
1285 case DebugNameTableKind::Apple:
1286 return "Apple";
1287 case DebugNameTableKind::None:
1288 return "None";
1289 }
1290 return nullptr;
1291}
1292DISubprogram::DISubprogram(LLVMContext &C, StorageType Storage, unsigned Line,
1293 unsigned ScopeLine, unsigned VirtualIndex,
1294 int ThisAdjustment, DIFlags Flags, DISPFlags SPFlags,
1295 bool UsesKeyInstructions, ArrayRef<Metadata *> Ops)
1296 : DILocalScope(C, DISubprogramKind, Storage, dwarf::DW_TAG_subprogram, Ops),
1297 Line(Line), ScopeLine(ScopeLine), VirtualIndex(VirtualIndex),
1298 ThisAdjustment(ThisAdjustment), Flags(Flags), SPFlags(SPFlags) {
1299 static_assert(dwarf::DW_VIRTUALITY_max < 4, "Virtuality out of range");
1300 SubclassData1 = UsesKeyInstructions;
1301}
1302DISubprogram::DISPFlags
1303DISubprogram::toSPFlags(bool IsLocalToUnit, bool IsDefinition, bool IsOptimized,
1304 unsigned Virtuality, bool IsMainSubprogram) {
1305 // We're assuming virtuality is the low-order field.
1306 static_assert(int(SPFlagVirtual) == int(dwarf::DW_VIRTUALITY_virtual) &&
1307 int(SPFlagPureVirtual) ==
1308 int(dwarf::DW_VIRTUALITY_pure_virtual),
1309 "Virtuality constant mismatch");
1310 return static_cast<DISPFlags>(
1311 (Virtuality & SPFlagVirtuality) |
1312 (IsLocalToUnit ? SPFlagLocalToUnit : SPFlagZero) |
1313 (IsDefinition ? SPFlagDefinition : SPFlagZero) |
1314 (IsOptimized ? SPFlagOptimized : SPFlagZero) |
1315 (IsMainSubprogram ? SPFlagMainSubprogram : SPFlagZero));
1316}
1317
1318DISubprogram *DILocalScope::getSubprogram() const {
1319 if (auto *Block = dyn_cast<DILexicalBlockBase>(Val: this))
1320 return Block->getScope()->getSubprogram();
1321 return const_cast<DISubprogram *>(cast<DISubprogram>(Val: this));
1322}
1323
1324DILocalScope *DILocalScope::getNonLexicalBlockFileScope() const {
1325 if (auto *File = dyn_cast<DILexicalBlockFile>(Val: this))
1326 return File->getScope()->getNonLexicalBlockFileScope();
1327 return const_cast<DILocalScope *>(this);
1328}
1329
1330DILocalScope *DILocalScope::cloneScopeForSubprogram(
1331 DILocalScope &RootScope, DISubprogram &NewSP, LLVMContext &Ctx,
1332 DenseMap<const MDNode *, MDNode *> &Cache) {
1333 SmallVector<DIScope *> ScopeChain;
1334 DIScope *CachedResult = nullptr;
1335
1336 for (DIScope *Scope = &RootScope; !isa<DISubprogram>(Val: Scope);
1337 Scope = Scope->getScope()) {
1338 if (auto It = Cache.find(Val: Scope); It != Cache.end()) {
1339 CachedResult = cast<DIScope>(Val: It->second);
1340 break;
1341 }
1342 ScopeChain.push_back(Elt: Scope);
1343 }
1344
1345 // Recreate the scope chain, bottom-up, starting at the new subprogram (or a
1346 // cached result).
1347 DIScope *UpdatedScope = CachedResult ? CachedResult : &NewSP;
1348 for (DIScope *ScopeToUpdate : reverse(C&: ScopeChain)) {
1349 UpdatedScope = cloneAndReplaceParentScope(
1350 LBB: cast<DILexicalBlockBase>(Val: ScopeToUpdate), NewParent: UpdatedScope);
1351 Cache[ScopeToUpdate] = UpdatedScope;
1352 }
1353
1354 return cast<DILocalScope>(Val: UpdatedScope);
1355}
1356
1357DISubprogram::DISPFlags DISubprogram::getFlag(StringRef Flag) {
1358 return StringSwitch<DISPFlags>(Flag)
1359#define HANDLE_DISP_FLAG(ID, NAME) .Case("DISPFlag" #NAME, SPFlag##NAME)
1360#include "llvm/IR/DebugInfoFlags.def"
1361 .Default(Value: SPFlagZero);
1362}
1363
1364StringRef DISubprogram::getFlagString(DISPFlags Flag) {
1365 switch (Flag) {
1366 // Appease a warning.
1367 case SPFlagVirtuality:
1368 return "";
1369#define HANDLE_DISP_FLAG(ID, NAME) \
1370 case SPFlag##NAME: \
1371 return "DISPFlag" #NAME;
1372#include "llvm/IR/DebugInfoFlags.def"
1373 }
1374 return "";
1375}
1376
1377DISubprogram::DISPFlags
1378DISubprogram::splitFlags(DISPFlags Flags,
1379 SmallVectorImpl<DISPFlags> &SplitFlags) {
1380 // Multi-bit fields can require special handling. In our case, however, the
1381 // only multi-bit field is virtuality, and all its values happen to be
1382 // single-bit values, so the right behavior just falls out.
1383#define HANDLE_DISP_FLAG(ID, NAME) \
1384 if (DISPFlags Bit = Flags & SPFlag##NAME) { \
1385 SplitFlags.push_back(Bit); \
1386 Flags &= ~Bit; \
1387 }
1388#include "llvm/IR/DebugInfoFlags.def"
1389 return Flags;
1390}
1391
1392DISubprogram *DISubprogram::getImpl(
1393 LLVMContext &Context, Metadata *Scope, MDString *Name,
1394 MDString *LinkageName, Metadata *File, unsigned Line, Metadata *Type,
1395 unsigned ScopeLine, Metadata *ContainingType, unsigned VirtualIndex,
1396 int ThisAdjustment, DIFlags Flags, DISPFlags SPFlags, Metadata *Unit,
1397 Metadata *TemplateParams, Metadata *Declaration, Metadata *RetainedNodes,
1398 Metadata *ThrownTypes, Metadata *Annotations, MDString *TargetFuncName,
1399 bool UsesKeyInstructions, StorageType Storage, bool ShouldCreate) {
1400 assert(isCanonical(Name) && "Expected canonical MDString");
1401 assert(isCanonical(LinkageName) && "Expected canonical MDString");
1402 assert(isCanonical(TargetFuncName) && "Expected canonical MDString");
1403 DEFINE_GETIMPL_LOOKUP(DISubprogram,
1404 (Scope, Name, LinkageName, File, Line, Type, ScopeLine,
1405 ContainingType, VirtualIndex, ThisAdjustment, Flags,
1406 SPFlags, Unit, TemplateParams, Declaration,
1407 RetainedNodes, ThrownTypes, Annotations,
1408 TargetFuncName, UsesKeyInstructions));
1409 SmallVector<Metadata *, 13> Ops = {
1410 File, Scope, Name, LinkageName,
1411 Type, Unit, Declaration, RetainedNodes,
1412 ContainingType, TemplateParams, ThrownTypes, Annotations,
1413 TargetFuncName};
1414 if (!TargetFuncName) {
1415 Ops.pop_back();
1416 if (!Annotations) {
1417 Ops.pop_back();
1418 if (!ThrownTypes) {
1419 Ops.pop_back();
1420 if (!TemplateParams) {
1421 Ops.pop_back();
1422 if (!ContainingType)
1423 Ops.pop_back();
1424 }
1425 }
1426 }
1427 }
1428 DEFINE_GETIMPL_STORE_N(DISubprogram,
1429 (Line, ScopeLine, VirtualIndex, ThisAdjustment, Flags,
1430 SPFlags, UsesKeyInstructions),
1431 Ops, Ops.size());
1432}
1433
1434bool DISubprogram::describes(const Function *F) const {
1435 assert(F && "Invalid function");
1436 return F->getSubprogram() == this;
1437}
1438DILexicalBlockBase::DILexicalBlockBase(LLVMContext &C, unsigned ID,
1439 StorageType Storage,
1440 ArrayRef<Metadata *> Ops)
1441 : DILocalScope(C, ID, Storage, dwarf::DW_TAG_lexical_block, Ops) {}
1442
1443DILexicalBlock *DILexicalBlock::getImpl(LLVMContext &Context, Metadata *Scope,
1444 Metadata *File, unsigned Line,
1445 unsigned Column, StorageType Storage,
1446 bool ShouldCreate) {
1447 // Fixup column.
1448 adjustColumn(Column);
1449
1450 assert(Scope && "Expected scope");
1451 DEFINE_GETIMPL_LOOKUP(DILexicalBlock, (Scope, File, Line, Column));
1452 Metadata *Ops[] = {File, Scope};
1453 DEFINE_GETIMPL_STORE(DILexicalBlock, (Line, Column), Ops);
1454}
1455
1456DILexicalBlockFile *DILexicalBlockFile::getImpl(LLVMContext &Context,
1457 Metadata *Scope, Metadata *File,
1458 unsigned Discriminator,
1459 StorageType Storage,
1460 bool ShouldCreate) {
1461 assert(Scope && "Expected scope");
1462 DEFINE_GETIMPL_LOOKUP(DILexicalBlockFile, (Scope, File, Discriminator));
1463 Metadata *Ops[] = {File, Scope};
1464 DEFINE_GETIMPL_STORE(DILexicalBlockFile, (Discriminator), Ops);
1465}
1466
1467DINamespace::DINamespace(LLVMContext &Context, StorageType Storage,
1468 bool ExportSymbols, ArrayRef<Metadata *> Ops)
1469 : DIScope(Context, DINamespaceKind, Storage, dwarf::DW_TAG_namespace, Ops) {
1470 SubclassData1 = ExportSymbols;
1471}
1472DINamespace *DINamespace::getImpl(LLVMContext &Context, Metadata *Scope,
1473 MDString *Name, bool ExportSymbols,
1474 StorageType Storage, bool ShouldCreate) {
1475 assert(isCanonical(Name) && "Expected canonical MDString");
1476 DEFINE_GETIMPL_LOOKUP(DINamespace, (Scope, Name, ExportSymbols));
1477 // The nullptr is for DIScope's File operand. This should be refactored.
1478 Metadata *Ops[] = {nullptr, Scope, Name};
1479 DEFINE_GETIMPL_STORE(DINamespace, (ExportSymbols), Ops);
1480}
1481
1482DICommonBlock::DICommonBlock(LLVMContext &Context, StorageType Storage,
1483 unsigned LineNo, ArrayRef<Metadata *> Ops)
1484 : DIScope(Context, DICommonBlockKind, Storage, dwarf::DW_TAG_common_block,
1485 Ops) {
1486 SubclassData32 = LineNo;
1487}
1488DICommonBlock *DICommonBlock::getImpl(LLVMContext &Context, Metadata *Scope,
1489 Metadata *Decl, MDString *Name,
1490 Metadata *File, unsigned LineNo,
1491 StorageType Storage, bool ShouldCreate) {
1492 assert(isCanonical(Name) && "Expected canonical MDString");
1493 DEFINE_GETIMPL_LOOKUP(DICommonBlock, (Scope, Decl, Name, File, LineNo));
1494 // The nullptr is for DIScope's File operand. This should be refactored.
1495 Metadata *Ops[] = {Scope, Decl, Name, File};
1496 DEFINE_GETIMPL_STORE(DICommonBlock, (LineNo), Ops);
1497}
1498
1499DIModule::DIModule(LLVMContext &Context, StorageType Storage, unsigned LineNo,
1500 bool IsDecl, ArrayRef<Metadata *> Ops)
1501 : DIScope(Context, DIModuleKind, Storage, dwarf::DW_TAG_module, Ops) {
1502 SubclassData1 = IsDecl;
1503 SubclassData32 = LineNo;
1504}
1505DIModule *DIModule::getImpl(LLVMContext &Context, Metadata *File,
1506 Metadata *Scope, MDString *Name,
1507 MDString *ConfigurationMacros,
1508 MDString *IncludePath, MDString *APINotesFile,
1509 unsigned LineNo, bool IsDecl, StorageType Storage,
1510 bool ShouldCreate) {
1511 assert(isCanonical(Name) && "Expected canonical MDString");
1512 DEFINE_GETIMPL_LOOKUP(DIModule, (File, Scope, Name, ConfigurationMacros,
1513 IncludePath, APINotesFile, LineNo, IsDecl));
1514 Metadata *Ops[] = {File, Scope, Name, ConfigurationMacros,
1515 IncludePath, APINotesFile};
1516 DEFINE_GETIMPL_STORE(DIModule, (LineNo, IsDecl), Ops);
1517}
1518DITemplateTypeParameter::DITemplateTypeParameter(LLVMContext &Context,
1519 StorageType Storage,
1520 bool IsDefault,
1521 ArrayRef<Metadata *> Ops)
1522 : DITemplateParameter(Context, DITemplateTypeParameterKind, Storage,
1523 dwarf::DW_TAG_template_type_parameter, IsDefault,
1524 Ops) {}
1525
1526DITemplateTypeParameter *
1527DITemplateTypeParameter::getImpl(LLVMContext &Context, MDString *Name,
1528 Metadata *Type, bool isDefault,
1529 StorageType Storage, bool ShouldCreate) {
1530 assert(isCanonical(Name) && "Expected canonical MDString");
1531 DEFINE_GETIMPL_LOOKUP(DITemplateTypeParameter, (Name, Type, isDefault));
1532 Metadata *Ops[] = {Name, Type};
1533 DEFINE_GETIMPL_STORE(DITemplateTypeParameter, (isDefault), Ops);
1534}
1535
1536DITemplateValueParameter *DITemplateValueParameter::getImpl(
1537 LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *Type,
1538 bool isDefault, Metadata *Value, StorageType Storage, bool ShouldCreate) {
1539 assert(isCanonical(Name) && "Expected canonical MDString");
1540 DEFINE_GETIMPL_LOOKUP(DITemplateValueParameter,
1541 (Tag, Name, Type, isDefault, Value));
1542 Metadata *Ops[] = {Name, Type, Value};
1543 DEFINE_GETIMPL_STORE(DITemplateValueParameter, (Tag, isDefault), Ops);
1544}
1545
1546DIGlobalVariable *
1547DIGlobalVariable::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name,
1548 MDString *LinkageName, Metadata *File, unsigned Line,
1549 Metadata *Type, bool IsLocalToUnit, bool IsDefinition,
1550 Metadata *StaticDataMemberDeclaration,
1551 Metadata *TemplateParams, uint32_t AlignInBits,
1552 Metadata *Annotations, StorageType Storage,
1553 bool ShouldCreate) {
1554 assert(isCanonical(Name) && "Expected canonical MDString");
1555 assert(isCanonical(LinkageName) && "Expected canonical MDString");
1556 DEFINE_GETIMPL_LOOKUP(
1557 DIGlobalVariable,
1558 (Scope, Name, LinkageName, File, Line, Type, IsLocalToUnit, IsDefinition,
1559 StaticDataMemberDeclaration, TemplateParams, AlignInBits, Annotations));
1560 Metadata *Ops[] = {Scope,
1561 Name,
1562 File,
1563 Type,
1564 Name,
1565 LinkageName,
1566 StaticDataMemberDeclaration,
1567 TemplateParams,
1568 Annotations};
1569 DEFINE_GETIMPL_STORE(DIGlobalVariable,
1570 (Line, IsLocalToUnit, IsDefinition, AlignInBits), Ops);
1571}
1572
1573DILocalVariable *
1574DILocalVariable::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name,
1575 Metadata *File, unsigned Line, Metadata *Type,
1576 unsigned Arg, DIFlags Flags, uint32_t AlignInBits,
1577 Metadata *Annotations, StorageType Storage,
1578 bool ShouldCreate) {
1579 // 64K ought to be enough for any frontend.
1580 assert(Arg <= UINT16_MAX && "Expected argument number to fit in 16-bits");
1581
1582 assert(Scope && "Expected scope");
1583 assert(isCanonical(Name) && "Expected canonical MDString");
1584 DEFINE_GETIMPL_LOOKUP(DILocalVariable, (Scope, Name, File, Line, Type, Arg,
1585 Flags, AlignInBits, Annotations));
1586 Metadata *Ops[] = {Scope, Name, File, Type, Annotations};
1587 DEFINE_GETIMPL_STORE(DILocalVariable, (Line, Arg, Flags, AlignInBits), Ops);
1588}
1589
1590DIVariable::DIVariable(LLVMContext &C, unsigned ID, StorageType Storage,
1591 signed Line, ArrayRef<Metadata *> Ops,
1592 uint32_t AlignInBits)
1593 : DINode(C, ID, Storage, dwarf::DW_TAG_variable, Ops), Line(Line) {
1594 SubclassData32 = AlignInBits;
1595}
1596std::optional<uint64_t> DIVariable::getSizeInBits() const {
1597 // This is used by the Verifier so be mindful of broken types.
1598 const Metadata *RawType = getRawType();
1599 while (RawType) {
1600 // Try to get the size directly.
1601 if (auto *T = dyn_cast<DIType>(Val: RawType))
1602 if (uint64_t Size = T->getSizeInBits())
1603 return Size;
1604
1605 if (auto *DT = dyn_cast<DIDerivedType>(Val: RawType)) {
1606 // Look at the base type.
1607 RawType = DT->getRawBaseType();
1608 continue;
1609 }
1610
1611 // Missing type or size.
1612 break;
1613 }
1614
1615 // Fail gracefully.
1616 return std::nullopt;
1617}
1618
1619DILabel::DILabel(LLVMContext &C, StorageType Storage, unsigned Line,
1620 unsigned Column, bool IsArtificial,
1621 std::optional<unsigned> CoroSuspendIdx,
1622 ArrayRef<Metadata *> Ops)
1623 : DINode(C, DILabelKind, Storage, dwarf::DW_TAG_label, Ops) {
1624 this->SubclassData32 = Line;
1625 this->Column = Column;
1626 this->IsArtificial = IsArtificial;
1627 this->CoroSuspendIdx = CoroSuspendIdx;
1628}
1629DILabel *DILabel::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name,
1630 Metadata *File, unsigned Line, unsigned Column,
1631 bool IsArtificial,
1632 std::optional<unsigned> CoroSuspendIdx,
1633 StorageType Storage, bool ShouldCreate) {
1634 assert(Scope && "Expected scope");
1635 assert(isCanonical(Name) && "Expected canonical MDString");
1636 DEFINE_GETIMPL_LOOKUP(
1637 DILabel, (Scope, Name, File, Line, Column, IsArtificial, CoroSuspendIdx));
1638 Metadata *Ops[] = {Scope, Name, File};
1639 DEFINE_GETIMPL_STORE(DILabel, (Line, Column, IsArtificial, CoroSuspendIdx),
1640 Ops);
1641}
1642
1643DIExpression *DIExpression::getImpl(LLVMContext &Context,
1644 ArrayRef<uint64_t> Elements,
1645 StorageType Storage, bool ShouldCreate) {
1646 DEFINE_GETIMPL_LOOKUP(DIExpression, (Elements));
1647 DEFINE_GETIMPL_STORE_NO_OPS(DIExpression, (Elements));
1648}
1649bool DIExpression::isEntryValue() const {
1650 if (auto singleLocElts = getSingleLocationExpressionElements()) {
1651 return singleLocElts->size() > 0 &&
1652 (*singleLocElts)[0] == dwarf::DW_OP_LLVM_entry_value;
1653 }
1654 return false;
1655}
1656bool DIExpression::startsWithDeref() const {
1657 if (auto singleLocElts = getSingleLocationExpressionElements())
1658 return singleLocElts->size() > 0 &&
1659 (*singleLocElts)[0] == dwarf::DW_OP_deref;
1660 return false;
1661}
1662bool DIExpression::isDeref() const {
1663 if (auto singleLocElts = getSingleLocationExpressionElements())
1664 return singleLocElts->size() == 1 &&
1665 (*singleLocElts)[0] == dwarf::DW_OP_deref;
1666 return false;
1667}
1668
1669DIAssignID *DIAssignID::getImpl(LLVMContext &Context, StorageType Storage,
1670 bool ShouldCreate) {
1671 // Uniqued DIAssignID are not supported as the instance address *is* the ID.
1672 assert(Storage != StorageType::Uniqued && "uniqued DIAssignID unsupported");
1673 return storeImpl(N: new (0u, Storage) DIAssignID(Context, Storage), Storage);
1674}
1675
1676unsigned DIExpression::ExprOperand::getSize() const {
1677 uint64_t Op = getOp();
1678
1679 if (Op >= dwarf::DW_OP_breg0 && Op <= dwarf::DW_OP_breg31)
1680 return 2;
1681
1682 switch (Op) {
1683 case dwarf::DW_OP_LLVM_convert:
1684 case dwarf::DW_OP_LLVM_fragment:
1685 case dwarf::DW_OP_LLVM_extract_bits_sext:
1686 case dwarf::DW_OP_LLVM_extract_bits_zext:
1687 case dwarf::DW_OP_bregx:
1688 return 3;
1689 case dwarf::DW_OP_constu:
1690 case dwarf::DW_OP_consts:
1691 case dwarf::DW_OP_deref_size:
1692 case dwarf::DW_OP_plus_uconst:
1693 case dwarf::DW_OP_LLVM_tag_offset:
1694 case dwarf::DW_OP_LLVM_entry_value:
1695 case dwarf::DW_OP_LLVM_arg:
1696 case dwarf::DW_OP_regx:
1697 return 2;
1698 default:
1699 return 1;
1700 }
1701}
1702
1703bool DIExpression::isValid() const {
1704 for (auto I = expr_op_begin(), E = expr_op_end(); I != E; ++I) {
1705 // Check that there's space for the operand.
1706 if (I->get() + I->getSize() > E->get())
1707 return false;
1708
1709 uint64_t Op = I->getOp();
1710 if ((Op >= dwarf::DW_OP_reg0 && Op <= dwarf::DW_OP_reg31) ||
1711 (Op >= dwarf::DW_OP_breg0 && Op <= dwarf::DW_OP_breg31))
1712 return true;
1713
1714 // Check that the operand is valid.
1715 switch (Op) {
1716 default:
1717 return false;
1718 case dwarf::DW_OP_LLVM_fragment:
1719 // A fragment operator must appear at the end.
1720 return I->get() + I->getSize() == E->get();
1721 case dwarf::DW_OP_stack_value: {
1722 // Must be the last one or followed by a DW_OP_LLVM_fragment.
1723 if (I->get() + I->getSize() == E->get())
1724 break;
1725 auto J = I;
1726 if ((++J)->getOp() != dwarf::DW_OP_LLVM_fragment)
1727 return false;
1728 break;
1729 }
1730 case dwarf::DW_OP_swap: {
1731 // Must be more than one implicit element on the stack.
1732
1733 // FIXME: A better way to implement this would be to add a local variable
1734 // that keeps track of the stack depth and introduce something like a
1735 // DW_LLVM_OP_implicit_location as a placeholder for the location this
1736 // DIExpression is attached to, or else pass the number of implicit stack
1737 // elements into isValid.
1738 if (getNumElements() == 1)
1739 return false;
1740 break;
1741 }
1742 case dwarf::DW_OP_LLVM_entry_value: {
1743 // An entry value operator must appear at the beginning or immediately
1744 // following `DW_OP_LLVM_arg 0`, and the number of operations it cover can
1745 // currently only be 1, because we support only entry values of a simple
1746 // register location. One reason for this is that we currently can't
1747 // calculate the size of the resulting DWARF block for other expressions.
1748 auto FirstOp = expr_op_begin();
1749 if (FirstOp->getOp() == dwarf::DW_OP_LLVM_arg && FirstOp->getArg(I: 0) == 0)
1750 ++FirstOp;
1751 return I->get() == FirstOp->get() && I->getArg(I: 0) == 1;
1752 }
1753 case dwarf::DW_OP_LLVM_implicit_pointer:
1754 case dwarf::DW_OP_LLVM_convert:
1755 case dwarf::DW_OP_LLVM_arg:
1756 case dwarf::DW_OP_LLVM_tag_offset:
1757 case dwarf::DW_OP_LLVM_extract_bits_sext:
1758 case dwarf::DW_OP_LLVM_extract_bits_zext:
1759 case dwarf::DW_OP_constu:
1760 case dwarf::DW_OP_plus_uconst:
1761 case dwarf::DW_OP_plus:
1762 case dwarf::DW_OP_minus:
1763 case dwarf::DW_OP_mul:
1764 case dwarf::DW_OP_div:
1765 case dwarf::DW_OP_mod:
1766 case dwarf::DW_OP_or:
1767 case dwarf::DW_OP_and:
1768 case dwarf::DW_OP_xor:
1769 case dwarf::DW_OP_shl:
1770 case dwarf::DW_OP_shr:
1771 case dwarf::DW_OP_shra:
1772 case dwarf::DW_OP_deref:
1773 case dwarf::DW_OP_deref_size:
1774 case dwarf::DW_OP_xderef:
1775 case dwarf::DW_OP_lit0:
1776 case dwarf::DW_OP_not:
1777 case dwarf::DW_OP_dup:
1778 case dwarf::DW_OP_regx:
1779 case dwarf::DW_OP_bregx:
1780 case dwarf::DW_OP_push_object_address:
1781 case dwarf::DW_OP_over:
1782 case dwarf::DW_OP_consts:
1783 case dwarf::DW_OP_eq:
1784 case dwarf::DW_OP_ne:
1785 case dwarf::DW_OP_gt:
1786 case dwarf::DW_OP_ge:
1787 case dwarf::DW_OP_lt:
1788 case dwarf::DW_OP_le:
1789 break;
1790 }
1791 }
1792 return true;
1793}
1794
1795bool DIExpression::isImplicit() const {
1796 if (!isValid())
1797 return false;
1798
1799 if (getNumElements() == 0)
1800 return false;
1801
1802 for (const auto &It : expr_ops()) {
1803 switch (It.getOp()) {
1804 default:
1805 break;
1806 case dwarf::DW_OP_stack_value:
1807 return true;
1808 }
1809 }
1810
1811 return false;
1812}
1813
1814bool DIExpression::isComplex() const {
1815 if (!isValid())
1816 return false;
1817
1818 if (getNumElements() == 0)
1819 return false;
1820
1821 // If there are any elements other than fragment or tag_offset, then some
1822 // kind of complex computation occurs.
1823 for (const auto &It : expr_ops()) {
1824 switch (It.getOp()) {
1825 case dwarf::DW_OP_LLVM_tag_offset:
1826 case dwarf::DW_OP_LLVM_fragment:
1827 case dwarf::DW_OP_LLVM_arg:
1828 continue;
1829 default:
1830 return true;
1831 }
1832 }
1833
1834 return false;
1835}
1836
1837bool DIExpression::isSingleLocationExpression() const {
1838 if (!isValid())
1839 return false;
1840
1841 if (getNumElements() == 0)
1842 return true;
1843
1844 auto ExprOpBegin = expr_ops().begin();
1845 auto ExprOpEnd = expr_ops().end();
1846 if (ExprOpBegin->getOp() == dwarf::DW_OP_LLVM_arg) {
1847 if (ExprOpBegin->getArg(I: 0) != 0)
1848 return false;
1849 ++ExprOpBegin;
1850 }
1851
1852 return !std::any_of(first: ExprOpBegin, last: ExprOpEnd, pred: [](auto Op) {
1853 return Op.getOp() == dwarf::DW_OP_LLVM_arg;
1854 });
1855}
1856
1857std::optional<ArrayRef<uint64_t>>
1858DIExpression::getSingleLocationExpressionElements() const {
1859 // Check for `isValid` covered by `isSingleLocationExpression`.
1860 if (!isSingleLocationExpression())
1861 return std::nullopt;
1862
1863 // An empty expression is already non-variadic.
1864 if (!getNumElements())
1865 return ArrayRef<uint64_t>();
1866
1867 // If Expr does not have a leading DW_OP_LLVM_arg then we don't need to do
1868 // anything.
1869 if (getElements()[0] == dwarf::DW_OP_LLVM_arg)
1870 return getElements().drop_front(N: 2);
1871 return getElements();
1872}
1873
1874const DIExpression *
1875DIExpression::convertToUndefExpression(const DIExpression *Expr) {
1876 SmallVector<uint64_t, 3> UndefOps;
1877 if (auto FragmentInfo = Expr->getFragmentInfo()) {
1878 UndefOps.append(IL: {dwarf::DW_OP_LLVM_fragment, FragmentInfo->OffsetInBits,
1879 FragmentInfo->SizeInBits});
1880 }
1881 return DIExpression::get(Context&: Expr->getContext(), Elements: UndefOps);
1882}
1883
1884const DIExpression *
1885DIExpression::convertToVariadicExpression(const DIExpression *Expr) {
1886 if (any_of(Range: Expr->expr_ops(), P: [](auto ExprOp) {
1887 return ExprOp.getOp() == dwarf::DW_OP_LLVM_arg;
1888 }))
1889 return Expr;
1890 SmallVector<uint64_t> NewOps;
1891 NewOps.reserve(N: Expr->getNumElements() + 2);
1892 NewOps.append(IL: {dwarf::DW_OP_LLVM_arg, 0});
1893 NewOps.append(in_start: Expr->elements_begin(), in_end: Expr->elements_end());
1894 return DIExpression::get(Context&: Expr->getContext(), Elements: NewOps);
1895}
1896
1897std::optional<const DIExpression *>
1898DIExpression::convertToNonVariadicExpression(const DIExpression *Expr) {
1899 if (!Expr)
1900 return std::nullopt;
1901
1902 if (auto Elts = Expr->getSingleLocationExpressionElements())
1903 return DIExpression::get(Context&: Expr->getContext(), Elements: *Elts);
1904
1905 return std::nullopt;
1906}
1907
1908void DIExpression::canonicalizeExpressionOps(SmallVectorImpl<uint64_t> &Ops,
1909 const DIExpression *Expr,
1910 bool IsIndirect) {
1911 // If Expr is not already variadic, insert the implied `DW_OP_LLVM_arg 0`
1912 // to the existing expression ops.
1913 if (none_of(Range: Expr->expr_ops(), P: [](auto ExprOp) {
1914 return ExprOp.getOp() == dwarf::DW_OP_LLVM_arg;
1915 }))
1916 Ops.append(IL: {dwarf::DW_OP_LLVM_arg, 0});
1917 // If Expr is not indirect, we only need to insert the expression elements and
1918 // we're done.
1919 if (!IsIndirect) {
1920 Ops.append(in_start: Expr->elements_begin(), in_end: Expr->elements_end());
1921 return;
1922 }
1923 // If Expr is indirect, insert the implied DW_OP_deref at the end of the
1924 // expression but before DW_OP_{stack_value, LLVM_fragment} if they are
1925 // present.
1926 for (auto Op : Expr->expr_ops()) {
1927 if (Op.getOp() == dwarf::DW_OP_stack_value ||
1928 Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
1929 Ops.push_back(Elt: dwarf::DW_OP_deref);
1930 IsIndirect = false;
1931 }
1932 Op.appendToVector(V&: Ops);
1933 }
1934 if (IsIndirect)
1935 Ops.push_back(Elt: dwarf::DW_OP_deref);
1936}
1937
1938bool DIExpression::isEqualExpression(const DIExpression *FirstExpr,
1939 bool FirstIndirect,
1940 const DIExpression *SecondExpr,
1941 bool SecondIndirect) {
1942 SmallVector<uint64_t> FirstOps;
1943 DIExpression::canonicalizeExpressionOps(Ops&: FirstOps, Expr: FirstExpr, IsIndirect: FirstIndirect);
1944 SmallVector<uint64_t> SecondOps;
1945 DIExpression::canonicalizeExpressionOps(Ops&: SecondOps, Expr: SecondExpr,
1946 IsIndirect: SecondIndirect);
1947 return FirstOps == SecondOps;
1948}
1949
1950std::optional<DIExpression::FragmentInfo>
1951DIExpression::getFragmentInfo(expr_op_iterator Start, expr_op_iterator End) {
1952 for (auto I = Start; I != End; ++I)
1953 if (I->getOp() == dwarf::DW_OP_LLVM_fragment) {
1954 DIExpression::FragmentInfo Info = {I->getArg(I: 1), I->getArg(I: 0)};
1955 return Info;
1956 }
1957 return std::nullopt;
1958}
1959
1960std::optional<uint64_t> DIExpression::getActiveBits(DIVariable *Var) {
1961 std::optional<uint64_t> InitialActiveBits = Var->getSizeInBits();
1962 std::optional<uint64_t> ActiveBits = InitialActiveBits;
1963 for (auto Op : expr_ops()) {
1964 switch (Op.getOp()) {
1965 default:
1966 // We assume the worst case for anything we don't currently handle and
1967 // revert to the initial active bits.
1968 ActiveBits = InitialActiveBits;
1969 break;
1970 case dwarf::DW_OP_LLVM_extract_bits_zext:
1971 case dwarf::DW_OP_LLVM_extract_bits_sext: {
1972 // We can't handle an extract whose sign doesn't match that of the
1973 // variable.
1974 std::optional<DIBasicType::Signedness> VarSign = Var->getSignedness();
1975 bool VarSigned = (VarSign == DIBasicType::Signedness::Signed);
1976 bool OpSigned = (Op.getOp() == dwarf::DW_OP_LLVM_extract_bits_sext);
1977 if (!VarSign || VarSigned != OpSigned) {
1978 ActiveBits = InitialActiveBits;
1979 break;
1980 }
1981 [[fallthrough]];
1982 }
1983 case dwarf::DW_OP_LLVM_fragment:
1984 // Extract or fragment narrows the active bits
1985 if (ActiveBits)
1986 ActiveBits = std::min(a: *ActiveBits, b: Op.getArg(I: 1));
1987 else
1988 ActiveBits = Op.getArg(I: 1);
1989 break;
1990 }
1991 }
1992 return ActiveBits;
1993}
1994
1995void DIExpression::appendOffset(SmallVectorImpl<uint64_t> &Ops,
1996 int64_t Offset) {
1997 if (Offset > 0) {
1998 Ops.push_back(Elt: dwarf::DW_OP_plus_uconst);
1999 Ops.push_back(Elt: Offset);
2000 } else if (Offset < 0) {
2001 Ops.push_back(Elt: dwarf::DW_OP_constu);
2002 // Avoid UB when encountering LLONG_MIN, because in 2's complement
2003 // abs(LLONG_MIN) is LLONG_MAX+1.
2004 uint64_t AbsMinusOne = -(Offset+1);
2005 Ops.push_back(Elt: AbsMinusOne + 1);
2006 Ops.push_back(Elt: dwarf::DW_OP_minus);
2007 }
2008}
2009
2010bool DIExpression::extractIfOffset(int64_t &Offset) const {
2011 auto SingleLocEltsOpt = getSingleLocationExpressionElements();
2012 if (!SingleLocEltsOpt)
2013 return false;
2014 auto SingleLocElts = *SingleLocEltsOpt;
2015
2016 if (SingleLocElts.size() == 0) {
2017 Offset = 0;
2018 return true;
2019 }
2020
2021 if (SingleLocElts.size() == 2 &&
2022 SingleLocElts[0] == dwarf::DW_OP_plus_uconst) {
2023 Offset = SingleLocElts[1];
2024 return true;
2025 }
2026
2027 if (SingleLocElts.size() == 3 && SingleLocElts[0] == dwarf::DW_OP_constu) {
2028 if (SingleLocElts[2] == dwarf::DW_OP_plus) {
2029 Offset = SingleLocElts[1];
2030 return true;
2031 }
2032 if (SingleLocElts[2] == dwarf::DW_OP_minus) {
2033 Offset = -SingleLocElts[1];
2034 return true;
2035 }
2036 }
2037
2038 return false;
2039}
2040
2041bool DIExpression::extractLeadingOffset(
2042 int64_t &OffsetInBytes, SmallVectorImpl<uint64_t> &RemainingOps) const {
2043 OffsetInBytes = 0;
2044 RemainingOps.clear();
2045
2046 auto SingleLocEltsOpt = getSingleLocationExpressionElements();
2047 if (!SingleLocEltsOpt)
2048 return false;
2049
2050 auto ExprOpEnd = expr_op_iterator(SingleLocEltsOpt->end());
2051 auto ExprOpIt = expr_op_iterator(SingleLocEltsOpt->begin());
2052 while (ExprOpIt != ExprOpEnd) {
2053 uint64_t Op = ExprOpIt->getOp();
2054 if (Op == dwarf::DW_OP_deref || Op == dwarf::DW_OP_deref_size ||
2055 Op == dwarf::DW_OP_deref_type || Op == dwarf::DW_OP_LLVM_fragment ||
2056 Op == dwarf::DW_OP_LLVM_extract_bits_zext ||
2057 Op == dwarf::DW_OP_LLVM_extract_bits_sext) {
2058 break;
2059 } else if (Op == dwarf::DW_OP_plus_uconst) {
2060 OffsetInBytes += ExprOpIt->getArg(I: 0);
2061 } else if (Op == dwarf::DW_OP_constu) {
2062 uint64_t Value = ExprOpIt->getArg(I: 0);
2063 ++ExprOpIt;
2064 if (ExprOpIt->getOp() == dwarf::DW_OP_plus)
2065 OffsetInBytes += Value;
2066 else if (ExprOpIt->getOp() == dwarf::DW_OP_minus)
2067 OffsetInBytes -= Value;
2068 else
2069 return false;
2070 } else {
2071 // Not a const plus/minus operation or deref.
2072 return false;
2073 }
2074 ++ExprOpIt;
2075 }
2076 RemainingOps.append(in_start: ExprOpIt.getBase(), in_end: ExprOpEnd.getBase());
2077 return true;
2078}
2079
2080bool DIExpression::hasAllLocationOps(unsigned N) const {
2081 SmallDenseSet<uint64_t, 4> SeenOps;
2082 for (auto ExprOp : expr_ops())
2083 if (ExprOp.getOp() == dwarf::DW_OP_LLVM_arg)
2084 SeenOps.insert(V: ExprOp.getArg(I: 0));
2085 for (uint64_t Idx = 0; Idx < N; ++Idx)
2086 if (!SeenOps.contains(V: Idx))
2087 return false;
2088 return true;
2089}
2090
2091const DIExpression *DIExpression::extractAddressClass(const DIExpression *Expr,
2092 unsigned &AddrClass) {
2093 // FIXME: This seems fragile. Nothing that verifies that these elements
2094 // actually map to ops and not operands.
2095 auto SingleLocEltsOpt = Expr->getSingleLocationExpressionElements();
2096 if (!SingleLocEltsOpt)
2097 return nullptr;
2098 auto SingleLocElts = *SingleLocEltsOpt;
2099
2100 const unsigned PatternSize = 4;
2101 if (SingleLocElts.size() >= PatternSize &&
2102 SingleLocElts[PatternSize - 4] == dwarf::DW_OP_constu &&
2103 SingleLocElts[PatternSize - 2] == dwarf::DW_OP_swap &&
2104 SingleLocElts[PatternSize - 1] == dwarf::DW_OP_xderef) {
2105 AddrClass = SingleLocElts[PatternSize - 3];
2106
2107 if (SingleLocElts.size() == PatternSize)
2108 return nullptr;
2109 return DIExpression::get(
2110 Context&: Expr->getContext(),
2111 Elements: ArrayRef(&*SingleLocElts.begin(), SingleLocElts.size() - PatternSize));
2112 }
2113 return Expr;
2114}
2115
2116DIExpression *DIExpression::prepend(const DIExpression *Expr, uint8_t Flags,
2117 int64_t Offset) {
2118 SmallVector<uint64_t, 8> Ops;
2119 if (Flags & DIExpression::DerefBefore)
2120 Ops.push_back(Elt: dwarf::DW_OP_deref);
2121
2122 appendOffset(Ops, Offset);
2123 if (Flags & DIExpression::DerefAfter)
2124 Ops.push_back(Elt: dwarf::DW_OP_deref);
2125
2126 bool StackValue = Flags & DIExpression::StackValue;
2127 bool EntryValue = Flags & DIExpression::EntryValue;
2128
2129 return prependOpcodes(Expr, Ops, StackValue, EntryValue);
2130}
2131
2132DIExpression *DIExpression::appendOpsToArg(const DIExpression *Expr,
2133 ArrayRef<uint64_t> Ops,
2134 unsigned ArgNo, bool StackValue) {
2135 assert(Expr && "Can't add ops to this expression");
2136
2137 // Handle non-variadic intrinsics by prepending the opcodes.
2138 if (!any_of(Range: Expr->expr_ops(),
2139 P: [](auto Op) { return Op.getOp() == dwarf::DW_OP_LLVM_arg; })) {
2140 assert(ArgNo == 0 &&
2141 "Location Index must be 0 for a non-variadic expression.");
2142 SmallVector<uint64_t, 8> NewOps(Ops);
2143 return DIExpression::prependOpcodes(Expr, Ops&: NewOps, StackValue);
2144 }
2145
2146 SmallVector<uint64_t, 8> NewOps;
2147 for (auto Op : Expr->expr_ops()) {
2148 // A DW_OP_stack_value comes at the end, but before a DW_OP_LLVM_fragment.
2149 if (StackValue) {
2150 if (Op.getOp() == dwarf::DW_OP_stack_value)
2151 StackValue = false;
2152 else if (Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
2153 NewOps.push_back(Elt: dwarf::DW_OP_stack_value);
2154 StackValue = false;
2155 }
2156 }
2157 Op.appendToVector(V&: NewOps);
2158 if (Op.getOp() == dwarf::DW_OP_LLVM_arg && Op.getArg(I: 0) == ArgNo)
2159 llvm::append_range(C&: NewOps, R&: Ops);
2160 }
2161 if (StackValue)
2162 NewOps.push_back(Elt: dwarf::DW_OP_stack_value);
2163
2164 return DIExpression::get(Context&: Expr->getContext(), Elements: NewOps);
2165}
2166
2167DIExpression *DIExpression::replaceArg(const DIExpression *Expr,
2168 uint64_t OldArg, uint64_t NewArg) {
2169 assert(Expr && "Can't replace args in this expression");
2170
2171 SmallVector<uint64_t, 8> NewOps;
2172
2173 for (auto Op : Expr->expr_ops()) {
2174 if (Op.getOp() != dwarf::DW_OP_LLVM_arg || Op.getArg(I: 0) < OldArg) {
2175 Op.appendToVector(V&: NewOps);
2176 continue;
2177 }
2178 NewOps.push_back(Elt: dwarf::DW_OP_LLVM_arg);
2179 uint64_t Arg = Op.getArg(I: 0) == OldArg ? NewArg : Op.getArg(I: 0);
2180 // OldArg has been deleted from the Op list, so decrement all indices
2181 // greater than it.
2182 if (Arg > OldArg)
2183 --Arg;
2184 NewOps.push_back(Elt: Arg);
2185 }
2186 return DIExpression::get(Context&: Expr->getContext(), Elements: NewOps);
2187}
2188
2189DIExpression *DIExpression::prependOpcodes(const DIExpression *Expr,
2190 SmallVectorImpl<uint64_t> &Ops,
2191 bool StackValue, bool EntryValue) {
2192 assert(Expr && "Can't prepend ops to this expression");
2193
2194 if (EntryValue) {
2195 Ops.push_back(Elt: dwarf::DW_OP_LLVM_entry_value);
2196 // Use a block size of 1 for the target register operand. The
2197 // DWARF backend currently cannot emit entry values with a block
2198 // size > 1.
2199 Ops.push_back(Elt: 1);
2200 }
2201
2202 // If there are no ops to prepend, do not even add the DW_OP_stack_value.
2203 if (Ops.empty())
2204 StackValue = false;
2205 for (auto Op : Expr->expr_ops()) {
2206 // A DW_OP_stack_value comes at the end, but before a DW_OP_LLVM_fragment.
2207 if (StackValue) {
2208 if (Op.getOp() == dwarf::DW_OP_stack_value)
2209 StackValue = false;
2210 else if (Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
2211 Ops.push_back(Elt: dwarf::DW_OP_stack_value);
2212 StackValue = false;
2213 }
2214 }
2215 Op.appendToVector(V&: Ops);
2216 }
2217 if (StackValue)
2218 Ops.push_back(Elt: dwarf::DW_OP_stack_value);
2219 return DIExpression::get(Context&: Expr->getContext(), Elements: Ops);
2220}
2221
2222DIExpression *DIExpression::append(const DIExpression *Expr,
2223 ArrayRef<uint64_t> Ops) {
2224 assert(Expr && !Ops.empty() && "Can't append ops to this expression");
2225
2226 // Copy Expr's current op list.
2227 SmallVector<uint64_t, 16> NewOps;
2228 for (auto Op : Expr->expr_ops()) {
2229 // Append new opcodes before DW_OP_{stack_value, LLVM_fragment}.
2230 if (Op.getOp() == dwarf::DW_OP_stack_value ||
2231 Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
2232 NewOps.append(in_start: Ops.begin(), in_end: Ops.end());
2233
2234 // Ensure that the new opcodes are only appended once.
2235 Ops = {};
2236 }
2237 Op.appendToVector(V&: NewOps);
2238 }
2239 NewOps.append(in_start: Ops.begin(), in_end: Ops.end());
2240 auto *result =
2241 DIExpression::get(Context&: Expr->getContext(), Elements: NewOps)->foldConstantMath();
2242 assert(result->isValid() && "concatenated expression is not valid");
2243 return result;
2244}
2245
2246DIExpression *DIExpression::appendToStack(const DIExpression *Expr,
2247 ArrayRef<uint64_t> Ops) {
2248 assert(Expr && !Ops.empty() && "Can't append ops to this expression");
2249 assert(std::none_of(expr_op_iterator(Ops.begin()),
2250 expr_op_iterator(Ops.end()),
2251 [](auto Op) {
2252 return Op.getOp() == dwarf::DW_OP_stack_value ||
2253 Op.getOp() == dwarf::DW_OP_LLVM_fragment;
2254 }) &&
2255 "Can't append this op");
2256
2257 // Append a DW_OP_deref after Expr's current op list if it's non-empty and
2258 // has no DW_OP_stack_value.
2259 //
2260 // Match .* DW_OP_stack_value (DW_OP_LLVM_fragment A B)?.
2261 std::optional<FragmentInfo> FI = Expr->getFragmentInfo();
2262 unsigned DropUntilStackValue = FI ? 3 : 0;
2263 ArrayRef<uint64_t> ExprOpsBeforeFragment =
2264 Expr->getElements().drop_back(N: DropUntilStackValue);
2265 bool NeedsDeref = (Expr->getNumElements() > DropUntilStackValue) &&
2266 (ExprOpsBeforeFragment.back() != dwarf::DW_OP_stack_value);
2267 bool NeedsStackValue = NeedsDeref || ExprOpsBeforeFragment.empty();
2268
2269 // Append a DW_OP_deref after Expr's current op list if needed, then append
2270 // the new ops, and finally ensure that a single DW_OP_stack_value is present.
2271 SmallVector<uint64_t, 16> NewOps;
2272 if (NeedsDeref)
2273 NewOps.push_back(Elt: dwarf::DW_OP_deref);
2274 NewOps.append(in_start: Ops.begin(), in_end: Ops.end());
2275 if (NeedsStackValue)
2276 NewOps.push_back(Elt: dwarf::DW_OP_stack_value);
2277 return DIExpression::append(Expr, Ops: NewOps);
2278}
2279
2280std::optional<DIExpression *> DIExpression::createFragmentExpression(
2281 const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits) {
2282 SmallVector<uint64_t, 8> Ops;
2283 // Track whether it's safe to split the value at the top of the DWARF stack,
2284 // assuming that it'll be used as an implicit location value.
2285 bool CanSplitValue = true;
2286 // Track whether we need to add a fragment expression to the end of Expr.
2287 bool EmitFragment = true;
2288 // Copy over the expression, but leave off any trailing DW_OP_LLVM_fragment.
2289 if (Expr) {
2290 for (auto Op : Expr->expr_ops()) {
2291 switch (Op.getOp()) {
2292 default:
2293 break;
2294 case dwarf::DW_OP_shr:
2295 case dwarf::DW_OP_shra:
2296 case dwarf::DW_OP_shl:
2297 case dwarf::DW_OP_plus:
2298 case dwarf::DW_OP_plus_uconst:
2299 case dwarf::DW_OP_minus:
2300 // We can't safely split arithmetic or shift operations into multiple
2301 // fragments because we can't express carry-over between fragments.
2302 //
2303 // FIXME: We *could* preserve the lowest fragment of a constant offset
2304 // operation if the offset fits into SizeInBits.
2305 CanSplitValue = false;
2306 break;
2307 case dwarf::DW_OP_deref:
2308 case dwarf::DW_OP_deref_size:
2309 case dwarf::DW_OP_deref_type:
2310 case dwarf::DW_OP_xderef:
2311 case dwarf::DW_OP_xderef_size:
2312 case dwarf::DW_OP_xderef_type:
2313 // Preceeding arithmetic operations have been applied to compute an
2314 // address. It's okay to split the value loaded from that address.
2315 CanSplitValue = true;
2316 break;
2317 case dwarf::DW_OP_stack_value:
2318 // Bail if this expression computes a value that cannot be split.
2319 if (!CanSplitValue)
2320 return std::nullopt;
2321 break;
2322 case dwarf::DW_OP_LLVM_fragment: {
2323 // If we've decided we don't need a fragment then give up if we see that
2324 // there's already a fragment expression.
2325 // FIXME: We could probably do better here
2326 if (!EmitFragment)
2327 return std::nullopt;
2328 // Make the new offset point into the existing fragment.
2329 uint64_t FragmentOffsetInBits = Op.getArg(I: 0);
2330 uint64_t FragmentSizeInBits = Op.getArg(I: 1);
2331 (void)FragmentSizeInBits;
2332 assert((OffsetInBits + SizeInBits <= FragmentSizeInBits) &&
2333 "new fragment outside of original fragment");
2334 OffsetInBits += FragmentOffsetInBits;
2335 continue;
2336 }
2337 case dwarf::DW_OP_LLVM_extract_bits_zext:
2338 case dwarf::DW_OP_LLVM_extract_bits_sext: {
2339 // If we're extracting bits from inside of the fragment that we're
2340 // creating then we don't have a fragment after all, and just need to
2341 // adjust the offset that we're extracting from.
2342 uint64_t ExtractOffsetInBits = Op.getArg(I: 0);
2343 uint64_t ExtractSizeInBits = Op.getArg(I: 1);
2344 if (ExtractOffsetInBits >= OffsetInBits &&
2345 ExtractOffsetInBits + ExtractSizeInBits <=
2346 OffsetInBits + SizeInBits) {
2347 Ops.push_back(Elt: Op.getOp());
2348 Ops.push_back(Elt: ExtractOffsetInBits - OffsetInBits);
2349 Ops.push_back(Elt: ExtractSizeInBits);
2350 EmitFragment = false;
2351 continue;
2352 }
2353 // If the extracted bits aren't fully contained within the fragment then
2354 // give up.
2355 // FIXME: We could probably do better here
2356 return std::nullopt;
2357 }
2358 }
2359 Op.appendToVector(V&: Ops);
2360 }
2361 }
2362 assert((!Expr->isImplicit() || CanSplitValue) && "Expr can't be split");
2363 assert(Expr && "Unknown DIExpression");
2364 if (EmitFragment) {
2365 Ops.push_back(Elt: dwarf::DW_OP_LLVM_fragment);
2366 Ops.push_back(Elt: OffsetInBits);
2367 Ops.push_back(Elt: SizeInBits);
2368 }
2369 return DIExpression::get(Context&: Expr->getContext(), Elements: Ops);
2370}
2371
2372/// See declaration for more info.
2373bool DIExpression::calculateFragmentIntersect(
2374 const DataLayout &DL, const Value *SliceStart, uint64_t SliceOffsetInBits,
2375 uint64_t SliceSizeInBits, const Value *DbgPtr, int64_t DbgPtrOffsetInBits,
2376 int64_t DbgExtractOffsetInBits, DIExpression::FragmentInfo VarFrag,
2377 std::optional<DIExpression::FragmentInfo> &Result,
2378 int64_t &OffsetFromLocationInBits) {
2379
2380 if (VarFrag.SizeInBits == 0)
2381 return false; // Variable size is unknown.
2382
2383 // Difference between mem slice start and the dbg location start.
2384 // 0 4 8 12 16 ...
2385 // | |
2386 // dbg location start
2387 // |
2388 // mem slice start
2389 // Here MemStartRelToDbgStartInBits is 8. Note this can be negative.
2390 int64_t MemStartRelToDbgStartInBits;
2391 {
2392 auto MemOffsetFromDbgInBytes = SliceStart->getPointerOffsetFrom(Other: DbgPtr, DL);
2393 if (!MemOffsetFromDbgInBytes)
2394 return false; // Can't calculate difference in addresses.
2395 // Difference between the pointers.
2396 MemStartRelToDbgStartInBits = *MemOffsetFromDbgInBytes * 8;
2397 // Add the difference of the offsets.
2398 MemStartRelToDbgStartInBits +=
2399 SliceOffsetInBits - (DbgPtrOffsetInBits + DbgExtractOffsetInBits);
2400 }
2401
2402 // Out-param. Invert offset to get offset from debug location.
2403 OffsetFromLocationInBits = -MemStartRelToDbgStartInBits;
2404
2405 // Check if the variable fragment sits outside (before) this memory slice.
2406 int64_t MemEndRelToDbgStart = MemStartRelToDbgStartInBits + SliceSizeInBits;
2407 if (MemEndRelToDbgStart < 0) {
2408 Result = {0, 0}; // Out-param.
2409 return true;
2410 }
2411
2412 // Work towards creating SliceOfVariable which is the bits of the variable
2413 // that the memory region covers.
2414 // 0 4 8 12 16 ...
2415 // | |
2416 // dbg location start with VarFrag offset=32
2417 // |
2418 // mem slice start: SliceOfVariable offset=40
2419 int64_t MemStartRelToVarInBits =
2420 MemStartRelToDbgStartInBits + VarFrag.OffsetInBits;
2421 int64_t MemEndRelToVarInBits = MemStartRelToVarInBits + SliceSizeInBits;
2422 // If the memory region starts before the debug location the fragment
2423 // offset would be negative, which we can't encode. Limit those to 0. This
2424 // is fine because those bits necessarily don't overlap with the existing
2425 // variable fragment.
2426 int64_t MemFragStart = std::max<int64_t>(a: 0, b: MemStartRelToVarInBits);
2427 int64_t MemFragSize =
2428 std::max<int64_t>(a: 0, b: MemEndRelToVarInBits - MemFragStart);
2429 DIExpression::FragmentInfo SliceOfVariable(MemFragSize, MemFragStart);
2430
2431 // Intersect the memory region fragment with the variable location fragment.
2432 DIExpression::FragmentInfo TrimmedSliceOfVariable =
2433 DIExpression::FragmentInfo::intersect(A: SliceOfVariable, B: VarFrag);
2434 if (TrimmedSliceOfVariable == VarFrag)
2435 Result = std::nullopt; // Out-param.
2436 else
2437 Result = TrimmedSliceOfVariable; // Out-param.
2438 return true;
2439}
2440
2441std::pair<DIExpression *, const ConstantInt *>
2442DIExpression::constantFold(const ConstantInt *CI) {
2443 // Copy the APInt so we can modify it.
2444 APInt NewInt = CI->getValue();
2445 SmallVector<uint64_t, 8> Ops;
2446
2447 // Fold operators only at the beginning of the expression.
2448 bool First = true;
2449 bool Changed = false;
2450 for (auto Op : expr_ops()) {
2451 switch (Op.getOp()) {
2452 default:
2453 // We fold only the leading part of the expression; if we get to a part
2454 // that we're going to copy unchanged, and haven't done any folding,
2455 // then the entire expression is unchanged and we can return early.
2456 if (!Changed)
2457 return {this, CI};
2458 First = false;
2459 break;
2460 case dwarf::DW_OP_LLVM_convert:
2461 if (!First)
2462 break;
2463 Changed = true;
2464 if (Op.getArg(I: 1) == dwarf::DW_ATE_signed)
2465 NewInt = NewInt.sextOrTrunc(width: Op.getArg(I: 0));
2466 else {
2467 assert(Op.getArg(1) == dwarf::DW_ATE_unsigned && "Unexpected operand");
2468 NewInt = NewInt.zextOrTrunc(width: Op.getArg(I: 0));
2469 }
2470 continue;
2471 }
2472 Op.appendToVector(V&: Ops);
2473 }
2474 if (!Changed)
2475 return {this, CI};
2476 return {DIExpression::get(Context&: getContext(), Elements: Ops),
2477 ConstantInt::get(Context&: getContext(), V: NewInt)};
2478}
2479
2480uint64_t DIExpression::getNumLocationOperands() const {
2481 uint64_t Result = 0;
2482 for (auto ExprOp : expr_ops())
2483 if (ExprOp.getOp() == dwarf::DW_OP_LLVM_arg)
2484 Result = std::max(a: Result, b: ExprOp.getArg(I: 0) + 1);
2485 assert(hasAllLocationOps(Result) &&
2486 "Expression is missing one or more location operands.");
2487 return Result;
2488}
2489
2490std::optional<DIExpression::SignedOrUnsignedConstant>
2491DIExpression::isConstant() const {
2492
2493 // Recognize signed and unsigned constants.
2494 // An signed constants can be represented as DW_OP_consts C DW_OP_stack_value
2495 // (DW_OP_LLVM_fragment of Len).
2496 // An unsigned constant can be represented as
2497 // DW_OP_constu C DW_OP_stack_value (DW_OP_LLVM_fragment of Len).
2498
2499 if ((getNumElements() != 2 && getNumElements() != 3 &&
2500 getNumElements() != 6) ||
2501 (getElement(I: 0) != dwarf::DW_OP_consts &&
2502 getElement(I: 0) != dwarf::DW_OP_constu))
2503 return std::nullopt;
2504
2505 if (getNumElements() == 2 && getElement(I: 0) == dwarf::DW_OP_consts)
2506 return SignedOrUnsignedConstant::SignedConstant;
2507
2508 if ((getNumElements() == 3 && getElement(I: 2) != dwarf::DW_OP_stack_value) ||
2509 (getNumElements() == 6 && (getElement(I: 2) != dwarf::DW_OP_stack_value ||
2510 getElement(I: 3) != dwarf::DW_OP_LLVM_fragment)))
2511 return std::nullopt;
2512 return getElement(I: 0) == dwarf::DW_OP_constu
2513 ? SignedOrUnsignedConstant::UnsignedConstant
2514 : SignedOrUnsignedConstant::SignedConstant;
2515}
2516
2517DIExpression::ExtOps DIExpression::getExtOps(unsigned FromSize, unsigned ToSize,
2518 bool Signed) {
2519 dwarf::TypeKind TK = Signed ? dwarf::DW_ATE_signed : dwarf::DW_ATE_unsigned;
2520 DIExpression::ExtOps Ops{._M_elems: {dwarf::DW_OP_LLVM_convert, FromSize, TK,
2521 dwarf::DW_OP_LLVM_convert, ToSize, TK}};
2522 return Ops;
2523}
2524
2525DIExpression *DIExpression::appendExt(const DIExpression *Expr,
2526 unsigned FromSize, unsigned ToSize,
2527 bool Signed) {
2528 return appendToStack(Expr, Ops: getExtOps(FromSize, ToSize, Signed));
2529}
2530
2531DIGlobalVariableExpression *
2532DIGlobalVariableExpression::getImpl(LLVMContext &Context, Metadata *Variable,
2533 Metadata *Expression, StorageType Storage,
2534 bool ShouldCreate) {
2535 DEFINE_GETIMPL_LOOKUP(DIGlobalVariableExpression, (Variable, Expression));
2536 Metadata *Ops[] = {Variable, Expression};
2537 DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(DIGlobalVariableExpression, Ops);
2538}
2539DIObjCProperty::DIObjCProperty(LLVMContext &C, StorageType Storage,
2540 unsigned Line, unsigned Attributes,
2541 ArrayRef<Metadata *> Ops)
2542 : DINode(C, DIObjCPropertyKind, Storage, dwarf::DW_TAG_APPLE_property, Ops),
2543 Line(Line), Attributes(Attributes) {}
2544
2545DIObjCProperty *DIObjCProperty::getImpl(
2546 LLVMContext &Context, MDString *Name, Metadata *File, unsigned Line,
2547 MDString *GetterName, MDString *SetterName, unsigned Attributes,
2548 Metadata *Type, StorageType Storage, bool ShouldCreate) {
2549 assert(isCanonical(Name) && "Expected canonical MDString");
2550 assert(isCanonical(GetterName) && "Expected canonical MDString");
2551 assert(isCanonical(SetterName) && "Expected canonical MDString");
2552 DEFINE_GETIMPL_LOOKUP(DIObjCProperty, (Name, File, Line, GetterName,
2553 SetterName, Attributes, Type));
2554 Metadata *Ops[] = {Name, File, GetterName, SetterName, Type};
2555 DEFINE_GETIMPL_STORE(DIObjCProperty, (Line, Attributes), Ops);
2556}
2557
2558DIImportedEntity *DIImportedEntity::getImpl(LLVMContext &Context, unsigned Tag,
2559 Metadata *Scope, Metadata *Entity,
2560 Metadata *File, unsigned Line,
2561 MDString *Name, Metadata *Elements,
2562 StorageType Storage,
2563 bool ShouldCreate) {
2564 assert(isCanonical(Name) && "Expected canonical MDString");
2565 DEFINE_GETIMPL_LOOKUP(DIImportedEntity,
2566 (Tag, Scope, Entity, File, Line, Name, Elements));
2567 Metadata *Ops[] = {Scope, Entity, Name, File, Elements};
2568 DEFINE_GETIMPL_STORE(DIImportedEntity, (Tag, Line), Ops);
2569}
2570
2571DIMacro *DIMacro::getImpl(LLVMContext &Context, unsigned MIType, unsigned Line,
2572 MDString *Name, MDString *Value, StorageType Storage,
2573 bool ShouldCreate) {
2574 assert(isCanonical(Name) && "Expected canonical MDString");
2575 DEFINE_GETIMPL_LOOKUP(DIMacro, (MIType, Line, Name, Value));
2576 Metadata *Ops[] = {Name, Value};
2577 DEFINE_GETIMPL_STORE(DIMacro, (MIType, Line), Ops);
2578}
2579
2580DIMacroFile *DIMacroFile::getImpl(LLVMContext &Context, unsigned MIType,
2581 unsigned Line, Metadata *File,
2582 Metadata *Elements, StorageType Storage,
2583 bool ShouldCreate) {
2584 DEFINE_GETIMPL_LOOKUP(DIMacroFile, (MIType, Line, File, Elements));
2585 Metadata *Ops[] = {File, Elements};
2586 DEFINE_GETIMPL_STORE(DIMacroFile, (MIType, Line), Ops);
2587}
2588
2589DIArgList *DIArgList::get(LLVMContext &Context,
2590 ArrayRef<ValueAsMetadata *> Args) {
2591 auto ExistingIt = Context.pImpl->DIArgLists.find_as(Val: DIArgListKeyInfo(Args));
2592 if (ExistingIt != Context.pImpl->DIArgLists.end())
2593 return *ExistingIt;
2594 DIArgList *NewArgList = new DIArgList(Context, Args);
2595 Context.pImpl->DIArgLists.insert(V: NewArgList);
2596 return NewArgList;
2597}
2598
2599void DIArgList::handleChangedOperand(void *Ref, Metadata *New) {
2600 ValueAsMetadata **OldVMPtr = static_cast<ValueAsMetadata **>(Ref);
2601 assert((!New || isa<ValueAsMetadata>(New)) &&
2602 "DIArgList must be passed a ValueAsMetadata");
2603 untrack();
2604 // We need to update the set storage once the Args are updated since they
2605 // form the key to the DIArgLists store.
2606 getContext().pImpl->DIArgLists.erase(V: this);
2607 ValueAsMetadata *NewVM = cast_or_null<ValueAsMetadata>(Val: New);
2608 for (ValueAsMetadata *&VM : Args) {
2609 if (&VM == OldVMPtr) {
2610 if (NewVM)
2611 VM = NewVM;
2612 else
2613 VM = ValueAsMetadata::get(V: PoisonValue::get(T: VM->getValue()->getType()));
2614 }
2615 }
2616 // We've changed the contents of this DIArgList, and the set storage may
2617 // already contain a DIArgList with our new set of args; if it does, then we
2618 // must RAUW this with the existing DIArgList, otherwise we simply insert this
2619 // back into the set storage.
2620 DIArgList *ExistingArgList = getUniqued(Store&: getContext().pImpl->DIArgLists, Key: this);
2621 if (ExistingArgList) {
2622 replaceAllUsesWith(MD: ExistingArgList);
2623 // Clear this here so we don't try to untrack in the destructor.
2624 Args.clear();
2625 delete this;
2626 return;
2627 }
2628 getContext().pImpl->DIArgLists.insert(V: this);
2629 track();
2630}
2631void DIArgList::track() {
2632 for (ValueAsMetadata *&VAM : Args)
2633 if (VAM)
2634 MetadataTracking::track(Ref: &VAM, MD&: *VAM, Owner&: *this);
2635}
2636void DIArgList::untrack() {
2637 for (ValueAsMetadata *&VAM : Args)
2638 if (VAM)
2639 MetadataTracking::untrack(Ref: &VAM, MD&: *VAM);
2640}
2641void DIArgList::dropAllReferences(bool Untrack) {
2642 if (Untrack)
2643 untrack();
2644 Args.clear();
2645 ReplaceableMetadataImpl::resolveAllUses(/* ResolveUsers */ false);
2646}
2647