| 1 | //===- Instructions.cpp - Implement the LLVM instructions -----------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements all of the non-inline methods for the LLVM instruction |
| 10 | // classes. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "llvm/IR/Instructions.h" |
| 15 | #include "LLVMContextImpl.h" |
| 16 | #include "llvm/ADT/SmallBitVector.h" |
| 17 | #include "llvm/ADT/SmallVector.h" |
| 18 | #include "llvm/ADT/Twine.h" |
| 19 | #include "llvm/IR/Attributes.h" |
| 20 | #include "llvm/IR/BasicBlock.h" |
| 21 | #include "llvm/IR/Constant.h" |
| 22 | #include "llvm/IR/ConstantRange.h" |
| 23 | #include "llvm/IR/Constants.h" |
| 24 | #include "llvm/IR/DataLayout.h" |
| 25 | #include "llvm/IR/DerivedTypes.h" |
| 26 | #include "llvm/IR/Function.h" |
| 27 | #include "llvm/IR/InstrTypes.h" |
| 28 | #include "llvm/IR/Instruction.h" |
| 29 | #include "llvm/IR/Intrinsics.h" |
| 30 | #include "llvm/IR/LLVMContext.h" |
| 31 | #include "llvm/IR/MDBuilder.h" |
| 32 | #include "llvm/IR/Metadata.h" |
| 33 | #include "llvm/IR/Module.h" |
| 34 | #include "llvm/IR/Operator.h" |
| 35 | #include "llvm/IR/PatternMatch.h" |
| 36 | #include "llvm/IR/ProfDataUtils.h" |
| 37 | #include "llvm/IR/Type.h" |
| 38 | #include "llvm/IR/Value.h" |
| 39 | #include "llvm/Support/AtomicOrdering.h" |
| 40 | #include "llvm/Support/Casting.h" |
| 41 | #include "llvm/Support/CheckedArithmetic.h" |
| 42 | #include "llvm/Support/Compiler.h" |
| 43 | #include "llvm/Support/ErrorHandling.h" |
| 44 | #include "llvm/Support/KnownBits.h" |
| 45 | #include "llvm/Support/MathExtras.h" |
| 46 | #include "llvm/Support/ModRef.h" |
| 47 | #include "llvm/Support/TypeSize.h" |
| 48 | #include <algorithm> |
| 49 | #include <cassert> |
| 50 | #include <cstdint> |
| 51 | #include <optional> |
| 52 | #include <vector> |
| 53 | |
| 54 | using namespace llvm; |
| 55 | |
| 56 | static cl::opt<bool> DisableI2pP2iOpt( |
| 57 | "disable-i2p-p2i-opt" , cl::init(Val: false), |
| 58 | cl::desc("Disables inttoptr/ptrtoint roundtrip optimization" )); |
| 59 | |
| 60 | //===----------------------------------------------------------------------===// |
| 61 | // AllocaInst Class |
| 62 | //===----------------------------------------------------------------------===// |
| 63 | |
| 64 | std::optional<TypeSize> |
| 65 | AllocaInst::getAllocationSize(const DataLayout &DL) const { |
| 66 | TypeSize Size = DL.getTypeAllocSize(Ty: getAllocatedType()); |
| 67 | if (isArrayAllocation()) { |
| 68 | auto *C = dyn_cast<ConstantInt>(Val: getArraySize()); |
| 69 | if (!C) |
| 70 | return std::nullopt; |
| 71 | assert(!Size.isScalable() && "Array elements cannot have a scalable size" ); |
| 72 | auto CheckedProd = |
| 73 | checkedMulUnsigned(LHS: Size.getKnownMinValue(), RHS: C->getZExtValue()); |
| 74 | if (!CheckedProd) |
| 75 | return std::nullopt; |
| 76 | return TypeSize::getFixed(ExactSize: *CheckedProd); |
| 77 | } |
| 78 | return Size; |
| 79 | } |
| 80 | |
| 81 | std::optional<TypeSize> |
| 82 | AllocaInst::getAllocationSizeInBits(const DataLayout &DL) const { |
| 83 | std::optional<TypeSize> Size = getAllocationSize(DL); |
| 84 | if (!Size) |
| 85 | return std::nullopt; |
| 86 | auto CheckedProd = checkedMulUnsigned(LHS: Size->getKnownMinValue(), |
| 87 | RHS: static_cast<TypeSize::ScalarTy>(8)); |
| 88 | if (!CheckedProd) |
| 89 | return std::nullopt; |
| 90 | return TypeSize::get(Quantity: *CheckedProd, Scalable: Size->isScalable()); |
| 91 | } |
| 92 | |
| 93 | //===----------------------------------------------------------------------===// |
| 94 | // SelectInst Class |
| 95 | //===----------------------------------------------------------------------===// |
| 96 | |
| 97 | /// areInvalidOperands - Return a string if the specified operands are invalid |
| 98 | /// for a select operation, otherwise return null. |
| 99 | const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) { |
| 100 | if (Op1->getType() != Op2->getType()) |
| 101 | return "both values to select must have same type" ; |
| 102 | |
| 103 | if (Op1->getType()->isTokenTy()) |
| 104 | return "select values cannot have token type" ; |
| 105 | |
| 106 | if (VectorType *VT = dyn_cast<VectorType>(Val: Op0->getType())) { |
| 107 | // Vector select. |
| 108 | if (VT->getElementType() != Type::getInt1Ty(C&: Op0->getContext())) |
| 109 | return "vector select condition element type must be i1" ; |
| 110 | VectorType *ET = dyn_cast<VectorType>(Val: Op1->getType()); |
| 111 | if (!ET) |
| 112 | return "selected values for vector select must be vectors" ; |
| 113 | if (ET->getElementCount() != VT->getElementCount()) |
| 114 | return "vector select requires selected vectors to have " |
| 115 | "the same vector length as select condition" ; |
| 116 | } else if (Op0->getType() != Type::getInt1Ty(C&: Op0->getContext())) { |
| 117 | return "select condition must be i1 or <n x i1>" ; |
| 118 | } |
| 119 | return nullptr; |
| 120 | } |
| 121 | |
| 122 | //===----------------------------------------------------------------------===// |
| 123 | // PHINode Class |
| 124 | //===----------------------------------------------------------------------===// |
| 125 | |
| 126 | PHINode::PHINode(const PHINode &PN) |
| 127 | : Instruction(PN.getType(), Instruction::PHI, AllocMarker), |
| 128 | ReservedSpace(PN.getNumOperands()) { |
| 129 | NumUserOperands = PN.getNumOperands(); |
| 130 | allocHungoffUses(N: PN.getNumOperands()); |
| 131 | std::copy(first: PN.op_begin(), last: PN.op_end(), result: op_begin()); |
| 132 | copyIncomingBlocks(BBRange: make_range(x: PN.block_begin(), y: PN.block_end())); |
| 133 | SubclassOptionalData = PN.SubclassOptionalData; |
| 134 | } |
| 135 | |
| 136 | // removeIncomingValue - Remove an incoming value. This is useful if a |
| 137 | // predecessor basic block is deleted. |
| 138 | Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) { |
| 139 | Value *Removed = getIncomingValue(i: Idx); |
| 140 | |
| 141 | // Move everything after this operand down. |
| 142 | // |
| 143 | // FIXME: we could just swap with the end of the list, then erase. However, |
| 144 | // clients might not expect this to happen. The code as it is thrashes the |
| 145 | // use/def lists, which is kinda lame. |
| 146 | std::copy(first: op_begin() + Idx + 1, last: op_end(), result: op_begin() + Idx); |
| 147 | copyIncomingBlocks(BBRange: drop_begin(RangeOrContainer: blocks(), N: Idx + 1), ToIdx: Idx); |
| 148 | |
| 149 | // Nuke the last value. |
| 150 | Op<-1>().set(nullptr); |
| 151 | setNumHungOffUseOperands(getNumOperands() - 1); |
| 152 | |
| 153 | // If the PHI node is dead, because it has zero entries, nuke it now. |
| 154 | if (getNumOperands() == 0 && DeletePHIIfEmpty) { |
| 155 | // If anyone is using this PHI, make them use a dummy value instead... |
| 156 | replaceAllUsesWith(V: PoisonValue::get(T: getType())); |
| 157 | eraseFromParent(); |
| 158 | } |
| 159 | return Removed; |
| 160 | } |
| 161 | |
| 162 | void PHINode::removeIncomingValueIf(function_ref<bool(unsigned)> Predicate, |
| 163 | bool DeletePHIIfEmpty) { |
| 164 | SmallDenseSet<unsigned> RemoveIndices; |
| 165 | for (unsigned Idx = 0; Idx < getNumIncomingValues(); ++Idx) |
| 166 | if (Predicate(Idx)) |
| 167 | RemoveIndices.insert(V: Idx); |
| 168 | |
| 169 | if (RemoveIndices.empty()) |
| 170 | return; |
| 171 | |
| 172 | // Remove operands. |
| 173 | auto NewOpEnd = remove_if(Range: operands(), P: [&](Use &U) { |
| 174 | return RemoveIndices.contains(V: U.getOperandNo()); |
| 175 | }); |
| 176 | for (Use &U : make_range(x: NewOpEnd, y: op_end())) |
| 177 | U.set(nullptr); |
| 178 | |
| 179 | // Remove incoming blocks. |
| 180 | (void)std::remove_if(first: const_cast<block_iterator>(block_begin()), |
| 181 | last: const_cast<block_iterator>(block_end()), pred: [&](BasicBlock *&BB) { |
| 182 | return RemoveIndices.contains(V: &BB - block_begin()); |
| 183 | }); |
| 184 | |
| 185 | setNumHungOffUseOperands(getNumOperands() - RemoveIndices.size()); |
| 186 | |
| 187 | // If the PHI node is dead, because it has zero entries, nuke it now. |
| 188 | if (getNumOperands() == 0 && DeletePHIIfEmpty) { |
| 189 | // If anyone is using this PHI, make them use a dummy value instead... |
| 190 | replaceAllUsesWith(V: PoisonValue::get(T: getType())); |
| 191 | eraseFromParent(); |
| 192 | } |
| 193 | } |
| 194 | |
| 195 | /// growOperands - grow operands - This grows the operand list in response |
| 196 | /// to a push_back style of operation. This grows the number of ops by 1.5 |
| 197 | /// times. |
| 198 | /// |
| 199 | void PHINode::growOperands() { |
| 200 | unsigned e = getNumOperands(); |
| 201 | unsigned NumOps = e + e / 2; |
| 202 | if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common. |
| 203 | |
| 204 | ReservedSpace = NumOps; |
| 205 | growHungoffUses(N: ReservedSpace, /* IsPhi */ true); |
| 206 | } |
| 207 | |
| 208 | /// hasConstantValue - If the specified PHI node always merges together the same |
| 209 | /// value, return the value, otherwise return null. |
| 210 | Value *PHINode::hasConstantValue() const { |
| 211 | // Exploit the fact that phi nodes always have at least one entry. |
| 212 | Value *ConstantValue = getIncomingValue(i: 0); |
| 213 | for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i) |
| 214 | if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) { |
| 215 | if (ConstantValue != this) |
| 216 | return nullptr; // Incoming values not all the same. |
| 217 | // The case where the first value is this PHI. |
| 218 | ConstantValue = getIncomingValue(i); |
| 219 | } |
| 220 | if (ConstantValue == this) |
| 221 | return PoisonValue::get(T: getType()); |
| 222 | return ConstantValue; |
| 223 | } |
| 224 | |
| 225 | /// hasConstantOrUndefValue - Whether the specified PHI node always merges |
| 226 | /// together the same value, assuming that undefs result in the same value as |
| 227 | /// non-undefs. |
| 228 | /// Unlike \ref hasConstantValue, this does not return a value because the |
| 229 | /// unique non-undef incoming value need not dominate the PHI node. |
| 230 | bool PHINode::hasConstantOrUndefValue() const { |
| 231 | Value *ConstantValue = nullptr; |
| 232 | for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) { |
| 233 | Value *Incoming = getIncomingValue(i); |
| 234 | if (Incoming != this && !isa<UndefValue>(Val: Incoming)) { |
| 235 | if (ConstantValue && ConstantValue != Incoming) |
| 236 | return false; |
| 237 | ConstantValue = Incoming; |
| 238 | } |
| 239 | } |
| 240 | return true; |
| 241 | } |
| 242 | |
| 243 | //===----------------------------------------------------------------------===// |
| 244 | // LandingPadInst Implementation |
| 245 | //===----------------------------------------------------------------------===// |
| 246 | |
| 247 | LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues, |
| 248 | const Twine &NameStr, |
| 249 | InsertPosition InsertBefore) |
| 250 | : Instruction(RetTy, Instruction::LandingPad, AllocMarker, InsertBefore) { |
| 251 | init(NumReservedValues, NameStr); |
| 252 | } |
| 253 | |
| 254 | LandingPadInst::LandingPadInst(const LandingPadInst &LP) |
| 255 | : Instruction(LP.getType(), Instruction::LandingPad, AllocMarker), |
| 256 | ReservedSpace(LP.getNumOperands()) { |
| 257 | NumUserOperands = LP.getNumOperands(); |
| 258 | allocHungoffUses(N: LP.getNumOperands()); |
| 259 | Use *OL = getOperandList(); |
| 260 | const Use *InOL = LP.getOperandList(); |
| 261 | for (unsigned I = 0, E = ReservedSpace; I != E; ++I) |
| 262 | OL[I] = InOL[I]; |
| 263 | |
| 264 | setCleanup(LP.isCleanup()); |
| 265 | } |
| 266 | |
| 267 | LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses, |
| 268 | const Twine &NameStr, |
| 269 | InsertPosition InsertBefore) { |
| 270 | return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore); |
| 271 | } |
| 272 | |
| 273 | void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) { |
| 274 | ReservedSpace = NumReservedValues; |
| 275 | setNumHungOffUseOperands(0); |
| 276 | allocHungoffUses(N: ReservedSpace); |
| 277 | setName(NameStr); |
| 278 | setCleanup(false); |
| 279 | } |
| 280 | |
| 281 | /// growOperands - grow operands - This grows the operand list in response to a |
| 282 | /// push_back style of operation. This grows the number of ops by 2 times. |
| 283 | void LandingPadInst::growOperands(unsigned Size) { |
| 284 | unsigned e = getNumOperands(); |
| 285 | if (ReservedSpace >= e + Size) return; |
| 286 | ReservedSpace = (std::max(a: e, b: 1U) + Size / 2) * 2; |
| 287 | growHungoffUses(N: ReservedSpace); |
| 288 | } |
| 289 | |
| 290 | void LandingPadInst::addClause(Constant *Val) { |
| 291 | unsigned OpNo = getNumOperands(); |
| 292 | growOperands(Size: 1); |
| 293 | assert(OpNo < ReservedSpace && "Growing didn't work!" ); |
| 294 | setNumHungOffUseOperands(getNumOperands() + 1); |
| 295 | getOperandList()[OpNo] = Val; |
| 296 | } |
| 297 | |
| 298 | //===----------------------------------------------------------------------===// |
| 299 | // CallBase Implementation |
| 300 | //===----------------------------------------------------------------------===// |
| 301 | |
| 302 | CallBase *CallBase::Create(CallBase *CB, ArrayRef<OperandBundleDef> Bundles, |
| 303 | InsertPosition InsertPt) { |
| 304 | switch (CB->getOpcode()) { |
| 305 | case Instruction::Call: |
| 306 | return CallInst::Create(CI: cast<CallInst>(Val: CB), Bundles, InsertPt); |
| 307 | case Instruction::Invoke: |
| 308 | return InvokeInst::Create(II: cast<InvokeInst>(Val: CB), Bundles, InsertPt); |
| 309 | case Instruction::CallBr: |
| 310 | return CallBrInst::Create(CBI: cast<CallBrInst>(Val: CB), Bundles, InsertBefore: InsertPt); |
| 311 | default: |
| 312 | llvm_unreachable("Unknown CallBase sub-class!" ); |
| 313 | } |
| 314 | } |
| 315 | |
| 316 | CallBase *CallBase::Create(CallBase *CI, OperandBundleDef OpB, |
| 317 | InsertPosition InsertPt) { |
| 318 | SmallVector<OperandBundleDef, 2> OpDefs; |
| 319 | for (unsigned i = 0, e = CI->getNumOperandBundles(); i < e; ++i) { |
| 320 | auto ChildOB = CI->getOperandBundleAt(Index: i); |
| 321 | if (ChildOB.getTagName() != OpB.getTag()) |
| 322 | OpDefs.emplace_back(Args&: ChildOB); |
| 323 | } |
| 324 | OpDefs.emplace_back(Args&: OpB); |
| 325 | return CallBase::Create(CB: CI, Bundles: OpDefs, InsertPt); |
| 326 | } |
| 327 | |
| 328 | Function *CallBase::getCaller() { return getParent()->getParent(); } |
| 329 | |
| 330 | unsigned CallBase::getNumSubclassExtraOperandsDynamic() const { |
| 331 | assert(getOpcode() == Instruction::CallBr && "Unexpected opcode!" ); |
| 332 | return cast<CallBrInst>(Val: this)->getNumIndirectDests() + 1; |
| 333 | } |
| 334 | |
| 335 | bool CallBase::isIndirectCall() const { |
| 336 | const Value *V = getCalledOperand(); |
| 337 | if (isa<Function>(Val: V) || isa<Constant>(Val: V)) |
| 338 | return false; |
| 339 | return !isInlineAsm(); |
| 340 | } |
| 341 | |
| 342 | /// Tests if this call site must be tail call optimized. Only a CallInst can |
| 343 | /// be tail call optimized. |
| 344 | bool CallBase::isMustTailCall() const { |
| 345 | if (auto *CI = dyn_cast<CallInst>(Val: this)) |
| 346 | return CI->isMustTailCall(); |
| 347 | return false; |
| 348 | } |
| 349 | |
| 350 | /// Tests if this call site is marked as a tail call. |
| 351 | bool CallBase::isTailCall() const { |
| 352 | if (auto *CI = dyn_cast<CallInst>(Val: this)) |
| 353 | return CI->isTailCall(); |
| 354 | return false; |
| 355 | } |
| 356 | |
| 357 | Intrinsic::ID CallBase::getIntrinsicID() const { |
| 358 | if (auto *F = getCalledFunction()) |
| 359 | return F->getIntrinsicID(); |
| 360 | return Intrinsic::not_intrinsic; |
| 361 | } |
| 362 | |
| 363 | FPClassTest CallBase::getRetNoFPClass() const { |
| 364 | FPClassTest Mask = Attrs.getRetNoFPClass(); |
| 365 | |
| 366 | if (const Function *F = getCalledFunction()) |
| 367 | Mask |= F->getAttributes().getRetNoFPClass(); |
| 368 | return Mask; |
| 369 | } |
| 370 | |
| 371 | FPClassTest CallBase::getParamNoFPClass(unsigned i) const { |
| 372 | FPClassTest Mask = Attrs.getParamNoFPClass(ArgNo: i); |
| 373 | |
| 374 | if (const Function *F = getCalledFunction()) |
| 375 | Mask |= F->getAttributes().getParamNoFPClass(ArgNo: i); |
| 376 | return Mask; |
| 377 | } |
| 378 | |
| 379 | std::optional<ConstantRange> CallBase::getRange() const { |
| 380 | Attribute CallAttr = Attrs.getRetAttr(Kind: Attribute::Range); |
| 381 | Attribute FnAttr; |
| 382 | if (const Function *F = getCalledFunction()) |
| 383 | FnAttr = F->getRetAttribute(Kind: Attribute::Range); |
| 384 | |
| 385 | if (CallAttr.isValid() && FnAttr.isValid()) |
| 386 | return CallAttr.getRange().intersectWith(CR: FnAttr.getRange()); |
| 387 | if (CallAttr.isValid()) |
| 388 | return CallAttr.getRange(); |
| 389 | if (FnAttr.isValid()) |
| 390 | return FnAttr.getRange(); |
| 391 | return std::nullopt; |
| 392 | } |
| 393 | |
| 394 | bool CallBase::isReturnNonNull() const { |
| 395 | if (hasRetAttr(Kind: Attribute::NonNull)) |
| 396 | return true; |
| 397 | |
| 398 | if (getRetDereferenceableBytes() > 0 && |
| 399 | !NullPointerIsDefined(F: getCaller(), AS: getType()->getPointerAddressSpace())) |
| 400 | return true; |
| 401 | |
| 402 | return false; |
| 403 | } |
| 404 | |
| 405 | Value *CallBase::getArgOperandWithAttribute(Attribute::AttrKind Kind) const { |
| 406 | unsigned Index; |
| 407 | |
| 408 | if (Attrs.hasAttrSomewhere(Kind, Index: &Index)) |
| 409 | return getArgOperand(i: Index - AttributeList::FirstArgIndex); |
| 410 | if (const Function *F = getCalledFunction()) |
| 411 | if (F->getAttributes().hasAttrSomewhere(Kind, Index: &Index)) |
| 412 | return getArgOperand(i: Index - AttributeList::FirstArgIndex); |
| 413 | |
| 414 | return nullptr; |
| 415 | } |
| 416 | |
| 417 | /// Determine whether the argument or parameter has the given attribute. |
| 418 | bool CallBase::paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const { |
| 419 | assert(ArgNo < arg_size() && "Param index out of bounds!" ); |
| 420 | |
| 421 | if (Attrs.hasParamAttr(ArgNo, Kind)) |
| 422 | return true; |
| 423 | |
| 424 | const Function *F = getCalledFunction(); |
| 425 | if (!F) |
| 426 | return false; |
| 427 | |
| 428 | if (!F->getAttributes().hasParamAttr(ArgNo, Kind)) |
| 429 | return false; |
| 430 | |
| 431 | // Take into account mod/ref by operand bundles. |
| 432 | switch (Kind) { |
| 433 | case Attribute::ReadNone: |
| 434 | return !hasReadingOperandBundles() && !hasClobberingOperandBundles(); |
| 435 | case Attribute::ReadOnly: |
| 436 | return !hasClobberingOperandBundles(); |
| 437 | case Attribute::WriteOnly: |
| 438 | return !hasReadingOperandBundles(); |
| 439 | default: |
| 440 | return true; |
| 441 | } |
| 442 | } |
| 443 | |
| 444 | bool CallBase::paramHasNonNullAttr(unsigned ArgNo, |
| 445 | bool AllowUndefOrPoison) const { |
| 446 | assert(getArgOperand(ArgNo)->getType()->isPointerTy() && |
| 447 | "Argument must be a pointer" ); |
| 448 | if (paramHasAttr(ArgNo, Kind: Attribute::NonNull) && |
| 449 | (AllowUndefOrPoison || paramHasAttr(ArgNo, Kind: Attribute::NoUndef))) |
| 450 | return true; |
| 451 | |
| 452 | if (paramHasAttr(ArgNo, Kind: Attribute::Dereferenceable) && |
| 453 | !NullPointerIsDefined( |
| 454 | F: getCaller(), |
| 455 | AS: getArgOperand(i: ArgNo)->getType()->getPointerAddressSpace())) |
| 456 | return true; |
| 457 | |
| 458 | return false; |
| 459 | } |
| 460 | |
| 461 | bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const { |
| 462 | if (auto *F = dyn_cast<Function>(Val: getCalledOperand())) |
| 463 | return F->getAttributes().hasFnAttr(Kind); |
| 464 | |
| 465 | return false; |
| 466 | } |
| 467 | |
| 468 | bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const { |
| 469 | if (auto *F = dyn_cast<Function>(Val: getCalledOperand())) |
| 470 | return F->getAttributes().hasFnAttr(Kind); |
| 471 | |
| 472 | return false; |
| 473 | } |
| 474 | |
| 475 | template <typename AK> |
| 476 | Attribute CallBase::getFnAttrOnCalledFunction(AK Kind) const { |
| 477 | if constexpr (std::is_same_v<AK, Attribute::AttrKind>) { |
| 478 | // getMemoryEffects() correctly combines memory effects from the call-site, |
| 479 | // operand bundles and function. |
| 480 | assert(Kind != Attribute::Memory && "Use getMemoryEffects() instead" ); |
| 481 | } |
| 482 | |
| 483 | if (auto *F = dyn_cast<Function>(Val: getCalledOperand())) |
| 484 | return F->getAttributes().getFnAttr(Kind); |
| 485 | |
| 486 | return Attribute(); |
| 487 | } |
| 488 | |
| 489 | template LLVM_ABI Attribute |
| 490 | CallBase::getFnAttrOnCalledFunction(Attribute::AttrKind Kind) const; |
| 491 | template LLVM_ABI Attribute |
| 492 | CallBase::getFnAttrOnCalledFunction(StringRef Kind) const; |
| 493 | |
| 494 | template <typename AK> |
| 495 | Attribute CallBase::getParamAttrOnCalledFunction(unsigned ArgNo, |
| 496 | AK Kind) const { |
| 497 | Value *V = getCalledOperand(); |
| 498 | |
| 499 | if (auto *F = dyn_cast<Function>(Val: V)) |
| 500 | return F->getAttributes().getParamAttr(ArgNo, Kind); |
| 501 | |
| 502 | return Attribute(); |
| 503 | } |
| 504 | template LLVM_ABI Attribute CallBase::getParamAttrOnCalledFunction( |
| 505 | unsigned ArgNo, Attribute::AttrKind Kind) const; |
| 506 | template LLVM_ABI Attribute |
| 507 | CallBase::getParamAttrOnCalledFunction(unsigned ArgNo, StringRef Kind) const; |
| 508 | |
| 509 | void CallBase::getOperandBundlesAsDefs( |
| 510 | SmallVectorImpl<OperandBundleDef> &Defs) const { |
| 511 | for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i) |
| 512 | Defs.emplace_back(Args: getOperandBundleAt(Index: i)); |
| 513 | } |
| 514 | |
| 515 | CallBase::op_iterator |
| 516 | CallBase::populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles, |
| 517 | const unsigned BeginIndex) { |
| 518 | auto It = op_begin() + BeginIndex; |
| 519 | for (auto &B : Bundles) |
| 520 | It = std::copy(first: B.input_begin(), last: B.input_end(), result: It); |
| 521 | |
| 522 | auto *ContextImpl = getContext().pImpl; |
| 523 | auto BI = Bundles.begin(); |
| 524 | unsigned CurrentIndex = BeginIndex; |
| 525 | |
| 526 | for (auto &BOI : bundle_op_infos()) { |
| 527 | assert(BI != Bundles.end() && "Incorrect allocation?" ); |
| 528 | |
| 529 | BOI.Tag = ContextImpl->getOrInsertBundleTag(Tag: BI->getTag()); |
| 530 | BOI.Begin = CurrentIndex; |
| 531 | BOI.End = CurrentIndex + BI->input_size(); |
| 532 | CurrentIndex = BOI.End; |
| 533 | BI++; |
| 534 | } |
| 535 | |
| 536 | assert(BI == Bundles.end() && "Incorrect allocation?" ); |
| 537 | |
| 538 | return It; |
| 539 | } |
| 540 | |
| 541 | CallBase::BundleOpInfo &CallBase::getBundleOpInfoForOperand(unsigned OpIdx) { |
| 542 | /// When there isn't many bundles, we do a simple linear search. |
| 543 | /// Else fallback to a binary-search that use the fact that bundles usually |
| 544 | /// have similar number of argument to get faster convergence. |
| 545 | if (bundle_op_info_end() - bundle_op_info_begin() < 8) { |
| 546 | for (auto &BOI : bundle_op_infos()) |
| 547 | if (BOI.Begin <= OpIdx && OpIdx < BOI.End) |
| 548 | return BOI; |
| 549 | |
| 550 | llvm_unreachable("Did not find operand bundle for operand!" ); |
| 551 | } |
| 552 | |
| 553 | assert(OpIdx >= arg_size() && "the Idx is not in the operand bundles" ); |
| 554 | assert(bundle_op_info_end() - bundle_op_info_begin() > 0 && |
| 555 | OpIdx < std::prev(bundle_op_info_end())->End && |
| 556 | "The Idx isn't in the operand bundle" ); |
| 557 | |
| 558 | /// We need a decimal number below and to prevent using floating point numbers |
| 559 | /// we use an intergal value multiplied by this constant. |
| 560 | constexpr unsigned NumberScaling = 1024; |
| 561 | |
| 562 | bundle_op_iterator Begin = bundle_op_info_begin(); |
| 563 | bundle_op_iterator End = bundle_op_info_end(); |
| 564 | bundle_op_iterator Current = Begin; |
| 565 | |
| 566 | while (Begin != End) { |
| 567 | unsigned ScaledOperandPerBundle = |
| 568 | NumberScaling * (std::prev(x: End)->End - Begin->Begin) / (End - Begin); |
| 569 | Current = Begin + (((OpIdx - Begin->Begin) * NumberScaling) / |
| 570 | ScaledOperandPerBundle); |
| 571 | if (Current >= End) |
| 572 | Current = std::prev(x: End); |
| 573 | assert(Current < End && Current >= Begin && |
| 574 | "the operand bundle doesn't cover every value in the range" ); |
| 575 | if (OpIdx >= Current->Begin && OpIdx < Current->End) |
| 576 | break; |
| 577 | if (OpIdx >= Current->End) |
| 578 | Begin = Current + 1; |
| 579 | else |
| 580 | End = Current; |
| 581 | } |
| 582 | |
| 583 | assert(OpIdx >= Current->Begin && OpIdx < Current->End && |
| 584 | "the operand bundle doesn't cover every value in the range" ); |
| 585 | return *Current; |
| 586 | } |
| 587 | |
| 588 | CallBase *CallBase::addOperandBundle(CallBase *CB, uint32_t ID, |
| 589 | OperandBundleDef OB, |
| 590 | InsertPosition InsertPt) { |
| 591 | if (CB->getOperandBundle(ID)) |
| 592 | return CB; |
| 593 | |
| 594 | SmallVector<OperandBundleDef, 1> Bundles; |
| 595 | CB->getOperandBundlesAsDefs(Defs&: Bundles); |
| 596 | Bundles.push_back(Elt: OB); |
| 597 | return Create(CB, Bundles, InsertPt); |
| 598 | } |
| 599 | |
| 600 | CallBase *CallBase::removeOperandBundle(CallBase *CB, uint32_t ID, |
| 601 | InsertPosition InsertPt) { |
| 602 | SmallVector<OperandBundleDef, 1> Bundles; |
| 603 | bool CreateNew = false; |
| 604 | |
| 605 | for (unsigned I = 0, E = CB->getNumOperandBundles(); I != E; ++I) { |
| 606 | auto Bundle = CB->getOperandBundleAt(Index: I); |
| 607 | if (Bundle.getTagID() == ID) { |
| 608 | CreateNew = true; |
| 609 | continue; |
| 610 | } |
| 611 | Bundles.emplace_back(Args&: Bundle); |
| 612 | } |
| 613 | |
| 614 | return CreateNew ? Create(CB, Bundles, InsertPt) : CB; |
| 615 | } |
| 616 | |
| 617 | bool CallBase::hasReadingOperandBundles() const { |
| 618 | // Implementation note: this is a conservative implementation of operand |
| 619 | // bundle semantics, where *any* non-assume operand bundle (other than |
| 620 | // ptrauth) forces a callsite to be at least readonly. |
| 621 | return hasOperandBundlesOtherThan(IDs: {LLVMContext::OB_ptrauth, |
| 622 | LLVMContext::OB_kcfi, |
| 623 | LLVMContext::OB_convergencectrl}) && |
| 624 | getIntrinsicID() != Intrinsic::assume; |
| 625 | } |
| 626 | |
| 627 | bool CallBase::hasClobberingOperandBundles() const { |
| 628 | return hasOperandBundlesOtherThan( |
| 629 | IDs: {LLVMContext::OB_deopt, LLVMContext::OB_funclet, |
| 630 | LLVMContext::OB_ptrauth, LLVMContext::OB_kcfi, |
| 631 | LLVMContext::OB_convergencectrl}) && |
| 632 | getIntrinsicID() != Intrinsic::assume; |
| 633 | } |
| 634 | |
| 635 | MemoryEffects CallBase::getMemoryEffects() const { |
| 636 | MemoryEffects ME = getAttributes().getMemoryEffects(); |
| 637 | if (auto *Fn = dyn_cast<Function>(Val: getCalledOperand())) { |
| 638 | MemoryEffects FnME = Fn->getMemoryEffects(); |
| 639 | if (hasOperandBundles()) { |
| 640 | // TODO: Add a method to get memory effects for operand bundles instead. |
| 641 | if (hasReadingOperandBundles()) |
| 642 | FnME |= MemoryEffects::readOnly(); |
| 643 | if (hasClobberingOperandBundles()) |
| 644 | FnME |= MemoryEffects::writeOnly(); |
| 645 | } |
| 646 | if (isVolatile()) { |
| 647 | // Volatile operations also access inaccessible memory. |
| 648 | FnME |= MemoryEffects::inaccessibleMemOnly(); |
| 649 | } |
| 650 | ME &= FnME; |
| 651 | } |
| 652 | return ME; |
| 653 | } |
| 654 | void CallBase::setMemoryEffects(MemoryEffects ME) { |
| 655 | addFnAttr(Attr: Attribute::getWithMemoryEffects(Context&: getContext(), ME)); |
| 656 | } |
| 657 | |
| 658 | /// Determine if the function does not access memory. |
| 659 | bool CallBase::doesNotAccessMemory() const { |
| 660 | return getMemoryEffects().doesNotAccessMemory(); |
| 661 | } |
| 662 | void CallBase::setDoesNotAccessMemory() { |
| 663 | setMemoryEffects(MemoryEffects::none()); |
| 664 | } |
| 665 | |
| 666 | /// Determine if the function does not access or only reads memory. |
| 667 | bool CallBase::onlyReadsMemory() const { |
| 668 | return getMemoryEffects().onlyReadsMemory(); |
| 669 | } |
| 670 | void CallBase::setOnlyReadsMemory() { |
| 671 | setMemoryEffects(getMemoryEffects() & MemoryEffects::readOnly()); |
| 672 | } |
| 673 | |
| 674 | /// Determine if the function does not access or only writes memory. |
| 675 | bool CallBase::onlyWritesMemory() const { |
| 676 | return getMemoryEffects().onlyWritesMemory(); |
| 677 | } |
| 678 | void CallBase::setOnlyWritesMemory() { |
| 679 | setMemoryEffects(getMemoryEffects() & MemoryEffects::writeOnly()); |
| 680 | } |
| 681 | |
| 682 | /// Determine if the call can access memmory only using pointers based |
| 683 | /// on its arguments. |
| 684 | bool CallBase::onlyAccessesArgMemory() const { |
| 685 | return getMemoryEffects().onlyAccessesArgPointees(); |
| 686 | } |
| 687 | void CallBase::setOnlyAccessesArgMemory() { |
| 688 | setMemoryEffects(getMemoryEffects() & MemoryEffects::argMemOnly()); |
| 689 | } |
| 690 | |
| 691 | /// Determine if the function may only access memory that is |
| 692 | /// inaccessible from the IR. |
| 693 | bool CallBase::onlyAccessesInaccessibleMemory() const { |
| 694 | return getMemoryEffects().onlyAccessesInaccessibleMem(); |
| 695 | } |
| 696 | void CallBase::setOnlyAccessesInaccessibleMemory() { |
| 697 | setMemoryEffects(getMemoryEffects() & MemoryEffects::inaccessibleMemOnly()); |
| 698 | } |
| 699 | |
| 700 | /// Determine if the function may only access memory that is |
| 701 | /// either inaccessible from the IR or pointed to by its arguments. |
| 702 | bool CallBase::onlyAccessesInaccessibleMemOrArgMem() const { |
| 703 | return getMemoryEffects().onlyAccessesInaccessibleOrArgMem(); |
| 704 | } |
| 705 | void CallBase::setOnlyAccessesInaccessibleMemOrArgMem() { |
| 706 | setMemoryEffects(getMemoryEffects() & |
| 707 | MemoryEffects::inaccessibleOrArgMemOnly()); |
| 708 | } |
| 709 | |
| 710 | CaptureInfo CallBase::getCaptureInfo(unsigned OpNo) const { |
| 711 | if (OpNo < arg_size()) { |
| 712 | // If the argument is passed byval, the callee does not have access to the |
| 713 | // original pointer and thus cannot capture it. |
| 714 | if (isByValArgument(ArgNo: OpNo)) |
| 715 | return CaptureInfo::none(); |
| 716 | |
| 717 | CaptureInfo CI = getParamAttributes(ArgNo: OpNo).getCaptureInfo(); |
| 718 | if (auto *Fn = dyn_cast<Function>(Val: getCalledOperand())) |
| 719 | CI &= Fn->getAttributes().getParamAttrs(ArgNo: OpNo).getCaptureInfo(); |
| 720 | return CI; |
| 721 | } |
| 722 | |
| 723 | // deopt operand bundles are captures(none) |
| 724 | auto &BOI = getBundleOpInfoForOperand(OpIdx: OpNo); |
| 725 | auto OBU = operandBundleFromBundleOpInfo(BOI); |
| 726 | return OBU.isDeoptOperandBundle() ? CaptureInfo::none() : CaptureInfo::all(); |
| 727 | } |
| 728 | |
| 729 | bool CallBase::hasArgumentWithAdditionalReturnCaptureComponents() const { |
| 730 | for (unsigned I = 0, E = arg_size(); I < E; ++I) { |
| 731 | if (!getArgOperand(i: I)->getType()->isPointerTy()) |
| 732 | continue; |
| 733 | |
| 734 | CaptureInfo CI = getParamAttributes(ArgNo: I).getCaptureInfo(); |
| 735 | if (auto *Fn = dyn_cast<Function>(Val: getCalledOperand())) |
| 736 | CI &= Fn->getAttributes().getParamAttrs(ArgNo: I).getCaptureInfo(); |
| 737 | if (capturesAnything(CC: CI.getRetComponents() & ~CI.getOtherComponents())) |
| 738 | return true; |
| 739 | } |
| 740 | return false; |
| 741 | } |
| 742 | |
| 743 | //===----------------------------------------------------------------------===// |
| 744 | // CallInst Implementation |
| 745 | //===----------------------------------------------------------------------===// |
| 746 | |
| 747 | void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args, |
| 748 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) { |
| 749 | this->FTy = FTy; |
| 750 | assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 && |
| 751 | "NumOperands not set up?" ); |
| 752 | |
| 753 | #ifndef NDEBUG |
| 754 | assert((Args.size() == FTy->getNumParams() || |
| 755 | (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && |
| 756 | "Calling a function with bad signature!" ); |
| 757 | |
| 758 | for (unsigned i = 0; i != Args.size(); ++i) |
| 759 | assert((i >= FTy->getNumParams() || |
| 760 | FTy->getParamType(i) == Args[i]->getType()) && |
| 761 | "Calling a function with a bad signature!" ); |
| 762 | #endif |
| 763 | |
| 764 | // Set operands in order of their index to match use-list-order |
| 765 | // prediction. |
| 766 | llvm::copy(Range&: Args, Out: op_begin()); |
| 767 | setCalledOperand(Func); |
| 768 | |
| 769 | auto It = populateBundleOperandInfos(Bundles, BeginIndex: Args.size()); |
| 770 | (void)It; |
| 771 | assert(It + 1 == op_end() && "Should add up!" ); |
| 772 | |
| 773 | setName(NameStr); |
| 774 | } |
| 775 | |
| 776 | void CallInst::init(FunctionType *FTy, Value *Func, const Twine &NameStr) { |
| 777 | this->FTy = FTy; |
| 778 | assert(getNumOperands() == 1 && "NumOperands not set up?" ); |
| 779 | setCalledOperand(Func); |
| 780 | |
| 781 | assert(FTy->getNumParams() == 0 && "Calling a function with bad signature" ); |
| 782 | |
| 783 | setName(NameStr); |
| 784 | } |
| 785 | |
| 786 | CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name, |
| 787 | AllocInfo AllocInfo, InsertPosition InsertBefore) |
| 788 | : CallBase(Ty->getReturnType(), Instruction::Call, AllocInfo, |
| 789 | InsertBefore) { |
| 790 | init(FTy: Ty, Func, NameStr: Name); |
| 791 | } |
| 792 | |
| 793 | CallInst::CallInst(const CallInst &CI, AllocInfo AllocInfo) |
| 794 | : CallBase(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call, AllocInfo) { |
| 795 | assert(getNumOperands() == CI.getNumOperands() && |
| 796 | "Wrong number of operands allocated" ); |
| 797 | setTailCallKind(CI.getTailCallKind()); |
| 798 | setCallingConv(CI.getCallingConv()); |
| 799 | |
| 800 | std::copy(first: CI.op_begin(), last: CI.op_end(), result: op_begin()); |
| 801 | std::copy(first: CI.bundle_op_info_begin(), last: CI.bundle_op_info_end(), |
| 802 | result: bundle_op_info_begin()); |
| 803 | SubclassOptionalData = CI.SubclassOptionalData; |
| 804 | } |
| 805 | |
| 806 | CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB, |
| 807 | InsertPosition InsertPt) { |
| 808 | std::vector<Value *> Args(CI->arg_begin(), CI->arg_end()); |
| 809 | |
| 810 | auto *NewCI = CallInst::Create(Ty: CI->getFunctionType(), Func: CI->getCalledOperand(), |
| 811 | Args, Bundles: OpB, NameStr: CI->getName(), InsertBefore: InsertPt); |
| 812 | NewCI->setTailCallKind(CI->getTailCallKind()); |
| 813 | NewCI->setCallingConv(CI->getCallingConv()); |
| 814 | NewCI->SubclassOptionalData = CI->SubclassOptionalData; |
| 815 | NewCI->setAttributes(CI->getAttributes()); |
| 816 | NewCI->setDebugLoc(CI->getDebugLoc()); |
| 817 | return NewCI; |
| 818 | } |
| 819 | |
| 820 | // Update profile weight for call instruction by scaling it using the ratio |
| 821 | // of S/T. The meaning of "branch_weights" meta data for call instruction is |
| 822 | // transfered to represent call count. |
| 823 | void CallInst::updateProfWeight(uint64_t S, uint64_t T) { |
| 824 | if (T == 0) { |
| 825 | LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in " |
| 826 | "div by 0. Ignoring. Likely the function " |
| 827 | << getParent()->getParent()->getName() |
| 828 | << " has 0 entry count, and contains call instructions " |
| 829 | "with non-zero prof info." ); |
| 830 | return; |
| 831 | } |
| 832 | scaleProfData(I&: *this, S, T); |
| 833 | } |
| 834 | |
| 835 | //===----------------------------------------------------------------------===// |
| 836 | // InvokeInst Implementation |
| 837 | //===----------------------------------------------------------------------===// |
| 838 | |
| 839 | void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal, |
| 840 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 841 | ArrayRef<OperandBundleDef> Bundles, |
| 842 | const Twine &NameStr) { |
| 843 | this->FTy = FTy; |
| 844 | |
| 845 | assert(getNumOperands() == |
| 846 | ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)) && |
| 847 | "NumOperands not set up?" ); |
| 848 | |
| 849 | #ifndef NDEBUG |
| 850 | assert(((Args.size() == FTy->getNumParams()) || |
| 851 | (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && |
| 852 | "Invoking a function with bad signature" ); |
| 853 | |
| 854 | for (unsigned i = 0, e = Args.size(); i != e; i++) |
| 855 | assert((i >= FTy->getNumParams() || |
| 856 | FTy->getParamType(i) == Args[i]->getType()) && |
| 857 | "Invoking a function with a bad signature!" ); |
| 858 | #endif |
| 859 | |
| 860 | // Set operands in order of their index to match use-list-order |
| 861 | // prediction. |
| 862 | llvm::copy(Range&: Args, Out: op_begin()); |
| 863 | setNormalDest(IfNormal); |
| 864 | setUnwindDest(IfException); |
| 865 | setCalledOperand(Fn); |
| 866 | |
| 867 | auto It = populateBundleOperandInfos(Bundles, BeginIndex: Args.size()); |
| 868 | (void)It; |
| 869 | assert(It + 3 == op_end() && "Should add up!" ); |
| 870 | |
| 871 | setName(NameStr); |
| 872 | } |
| 873 | |
| 874 | InvokeInst::InvokeInst(const InvokeInst &II, AllocInfo AllocInfo) |
| 875 | : CallBase(II.Attrs, II.FTy, II.getType(), Instruction::Invoke, AllocInfo) { |
| 876 | assert(getNumOperands() == II.getNumOperands() && |
| 877 | "Wrong number of operands allocated" ); |
| 878 | setCallingConv(II.getCallingConv()); |
| 879 | std::copy(first: II.op_begin(), last: II.op_end(), result: op_begin()); |
| 880 | std::copy(first: II.bundle_op_info_begin(), last: II.bundle_op_info_end(), |
| 881 | result: bundle_op_info_begin()); |
| 882 | SubclassOptionalData = II.SubclassOptionalData; |
| 883 | } |
| 884 | |
| 885 | InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB, |
| 886 | InsertPosition InsertPt) { |
| 887 | std::vector<Value *> Args(II->arg_begin(), II->arg_end()); |
| 888 | |
| 889 | auto *NewII = InvokeInst::Create( |
| 890 | Ty: II->getFunctionType(), Func: II->getCalledOperand(), IfNormal: II->getNormalDest(), |
| 891 | IfException: II->getUnwindDest(), Args, Bundles: OpB, NameStr: II->getName(), InsertBefore: InsertPt); |
| 892 | NewII->setCallingConv(II->getCallingConv()); |
| 893 | NewII->SubclassOptionalData = II->SubclassOptionalData; |
| 894 | NewII->setAttributes(II->getAttributes()); |
| 895 | NewII->setDebugLoc(II->getDebugLoc()); |
| 896 | return NewII; |
| 897 | } |
| 898 | |
| 899 | LandingPadInst *InvokeInst::getLandingPadInst() const { |
| 900 | return cast<LandingPadInst>(Val: getUnwindDest()->getFirstNonPHIIt()); |
| 901 | } |
| 902 | |
| 903 | void InvokeInst::updateProfWeight(uint64_t S, uint64_t T) { |
| 904 | if (T == 0) { |
| 905 | LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in " |
| 906 | "div by 0. Ignoring. Likely the function " |
| 907 | << getParent()->getParent()->getName() |
| 908 | << " has 0 entry count, and contains call instructions " |
| 909 | "with non-zero prof info." ); |
| 910 | return; |
| 911 | } |
| 912 | scaleProfData(I&: *this, S, T); |
| 913 | } |
| 914 | |
| 915 | //===----------------------------------------------------------------------===// |
| 916 | // CallBrInst Implementation |
| 917 | //===----------------------------------------------------------------------===// |
| 918 | |
| 919 | void CallBrInst::init(FunctionType *FTy, Value *Fn, BasicBlock *Fallthrough, |
| 920 | ArrayRef<BasicBlock *> IndirectDests, |
| 921 | ArrayRef<Value *> Args, |
| 922 | ArrayRef<OperandBundleDef> Bundles, |
| 923 | const Twine &NameStr) { |
| 924 | this->FTy = FTy; |
| 925 | |
| 926 | assert(getNumOperands() == ComputeNumOperands(Args.size(), |
| 927 | IndirectDests.size(), |
| 928 | CountBundleInputs(Bundles)) && |
| 929 | "NumOperands not set up?" ); |
| 930 | |
| 931 | #ifndef NDEBUG |
| 932 | assert(((Args.size() == FTy->getNumParams()) || |
| 933 | (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && |
| 934 | "Calling a function with bad signature" ); |
| 935 | |
| 936 | for (unsigned i = 0, e = Args.size(); i != e; i++) |
| 937 | assert((i >= FTy->getNumParams() || |
| 938 | FTy->getParamType(i) == Args[i]->getType()) && |
| 939 | "Calling a function with a bad signature!" ); |
| 940 | #endif |
| 941 | |
| 942 | // Set operands in order of their index to match use-list-order |
| 943 | // prediction. |
| 944 | llvm::copy(Range&: Args, Out: op_begin()); |
| 945 | NumIndirectDests = IndirectDests.size(); |
| 946 | setDefaultDest(Fallthrough); |
| 947 | for (unsigned i = 0; i != NumIndirectDests; ++i) |
| 948 | setIndirectDest(i, B: IndirectDests[i]); |
| 949 | setCalledOperand(Fn); |
| 950 | |
| 951 | auto It = populateBundleOperandInfos(Bundles, BeginIndex: Args.size()); |
| 952 | (void)It; |
| 953 | assert(It + 2 + IndirectDests.size() == op_end() && "Should add up!" ); |
| 954 | |
| 955 | setName(NameStr); |
| 956 | } |
| 957 | |
| 958 | CallBrInst::CallBrInst(const CallBrInst &CBI, AllocInfo AllocInfo) |
| 959 | : CallBase(CBI.Attrs, CBI.FTy, CBI.getType(), Instruction::CallBr, |
| 960 | AllocInfo) { |
| 961 | assert(getNumOperands() == CBI.getNumOperands() && |
| 962 | "Wrong number of operands allocated" ); |
| 963 | setCallingConv(CBI.getCallingConv()); |
| 964 | std::copy(first: CBI.op_begin(), last: CBI.op_end(), result: op_begin()); |
| 965 | std::copy(first: CBI.bundle_op_info_begin(), last: CBI.bundle_op_info_end(), |
| 966 | result: bundle_op_info_begin()); |
| 967 | SubclassOptionalData = CBI.SubclassOptionalData; |
| 968 | NumIndirectDests = CBI.NumIndirectDests; |
| 969 | } |
| 970 | |
| 971 | CallBrInst *CallBrInst::Create(CallBrInst *CBI, ArrayRef<OperandBundleDef> OpB, |
| 972 | InsertPosition InsertPt) { |
| 973 | std::vector<Value *> Args(CBI->arg_begin(), CBI->arg_end()); |
| 974 | |
| 975 | auto *NewCBI = CallBrInst::Create( |
| 976 | Ty: CBI->getFunctionType(), Func: CBI->getCalledOperand(), DefaultDest: CBI->getDefaultDest(), |
| 977 | IndirectDests: CBI->getIndirectDests(), Args, Bundles: OpB, NameStr: CBI->getName(), InsertBefore: InsertPt); |
| 978 | NewCBI->setCallingConv(CBI->getCallingConv()); |
| 979 | NewCBI->SubclassOptionalData = CBI->SubclassOptionalData; |
| 980 | NewCBI->setAttributes(CBI->getAttributes()); |
| 981 | NewCBI->setDebugLoc(CBI->getDebugLoc()); |
| 982 | NewCBI->NumIndirectDests = CBI->NumIndirectDests; |
| 983 | return NewCBI; |
| 984 | } |
| 985 | |
| 986 | //===----------------------------------------------------------------------===// |
| 987 | // ReturnInst Implementation |
| 988 | //===----------------------------------------------------------------------===// |
| 989 | |
| 990 | ReturnInst::ReturnInst(const ReturnInst &RI, AllocInfo AllocInfo) |
| 991 | : Instruction(Type::getVoidTy(C&: RI.getContext()), Instruction::Ret, |
| 992 | AllocInfo) { |
| 993 | assert(getNumOperands() == RI.getNumOperands() && |
| 994 | "Wrong number of operands allocated" ); |
| 995 | if (RI.getNumOperands()) |
| 996 | Op<0>() = RI.Op<0>(); |
| 997 | SubclassOptionalData = RI.SubclassOptionalData; |
| 998 | } |
| 999 | |
| 1000 | ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, AllocInfo AllocInfo, |
| 1001 | InsertPosition InsertBefore) |
| 1002 | : Instruction(Type::getVoidTy(C), Instruction::Ret, AllocInfo, |
| 1003 | InsertBefore) { |
| 1004 | if (retVal) |
| 1005 | Op<0>() = retVal; |
| 1006 | } |
| 1007 | |
| 1008 | //===----------------------------------------------------------------------===// |
| 1009 | // ResumeInst Implementation |
| 1010 | //===----------------------------------------------------------------------===// |
| 1011 | |
| 1012 | ResumeInst::ResumeInst(const ResumeInst &RI) |
| 1013 | : Instruction(Type::getVoidTy(C&: RI.getContext()), Instruction::Resume, |
| 1014 | AllocMarker) { |
| 1015 | Op<0>() = RI.Op<0>(); |
| 1016 | } |
| 1017 | |
| 1018 | ResumeInst::ResumeInst(Value *Exn, InsertPosition InsertBefore) |
| 1019 | : Instruction(Type::getVoidTy(C&: Exn->getContext()), Instruction::Resume, |
| 1020 | AllocMarker, InsertBefore) { |
| 1021 | Op<0>() = Exn; |
| 1022 | } |
| 1023 | |
| 1024 | //===----------------------------------------------------------------------===// |
| 1025 | // CleanupReturnInst Implementation |
| 1026 | //===----------------------------------------------------------------------===// |
| 1027 | |
| 1028 | CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI, |
| 1029 | AllocInfo AllocInfo) |
| 1030 | : Instruction(CRI.getType(), Instruction::CleanupRet, AllocInfo) { |
| 1031 | assert(getNumOperands() == CRI.getNumOperands() && |
| 1032 | "Wrong number of operands allocated" ); |
| 1033 | setSubclassData<Instruction::OpaqueField>( |
| 1034 | CRI.getSubclassData<Instruction::OpaqueField>()); |
| 1035 | Op<0>() = CRI.Op<0>(); |
| 1036 | if (CRI.hasUnwindDest()) |
| 1037 | Op<1>() = CRI.Op<1>(); |
| 1038 | } |
| 1039 | |
| 1040 | void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) { |
| 1041 | if (UnwindBB) |
| 1042 | setSubclassData<UnwindDestField>(true); |
| 1043 | |
| 1044 | Op<0>() = CleanupPad; |
| 1045 | if (UnwindBB) |
| 1046 | Op<1>() = UnwindBB; |
| 1047 | } |
| 1048 | |
| 1049 | CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, |
| 1050 | AllocInfo AllocInfo, |
| 1051 | InsertPosition InsertBefore) |
| 1052 | : Instruction(Type::getVoidTy(C&: CleanupPad->getContext()), |
| 1053 | Instruction::CleanupRet, AllocInfo, InsertBefore) { |
| 1054 | init(CleanupPad, UnwindBB); |
| 1055 | } |
| 1056 | |
| 1057 | //===----------------------------------------------------------------------===// |
| 1058 | // CatchReturnInst Implementation |
| 1059 | //===----------------------------------------------------------------------===// |
| 1060 | void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) { |
| 1061 | Op<0>() = CatchPad; |
| 1062 | Op<1>() = BB; |
| 1063 | } |
| 1064 | |
| 1065 | CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI) |
| 1066 | : Instruction(Type::getVoidTy(C&: CRI.getContext()), Instruction::CatchRet, |
| 1067 | AllocMarker) { |
| 1068 | Op<0>() = CRI.Op<0>(); |
| 1069 | Op<1>() = CRI.Op<1>(); |
| 1070 | } |
| 1071 | |
| 1072 | CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB, |
| 1073 | InsertPosition InsertBefore) |
| 1074 | : Instruction(Type::getVoidTy(C&: BB->getContext()), Instruction::CatchRet, |
| 1075 | AllocMarker, InsertBefore) { |
| 1076 | init(CatchPad, BB); |
| 1077 | } |
| 1078 | |
| 1079 | //===----------------------------------------------------------------------===// |
| 1080 | // CatchSwitchInst Implementation |
| 1081 | //===----------------------------------------------------------------------===// |
| 1082 | |
| 1083 | CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, |
| 1084 | unsigned NumReservedValues, |
| 1085 | const Twine &NameStr, |
| 1086 | InsertPosition InsertBefore) |
| 1087 | : Instruction(ParentPad->getType(), Instruction::CatchSwitch, AllocMarker, |
| 1088 | InsertBefore) { |
| 1089 | if (UnwindDest) |
| 1090 | ++NumReservedValues; |
| 1091 | init(ParentPad, UnwindDest, NumReserved: NumReservedValues + 1); |
| 1092 | setName(NameStr); |
| 1093 | } |
| 1094 | |
| 1095 | CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI) |
| 1096 | : Instruction(CSI.getType(), Instruction::CatchSwitch, AllocMarker) { |
| 1097 | NumUserOperands = CSI.NumUserOperands; |
| 1098 | init(ParentPad: CSI.getParentPad(), UnwindDest: CSI.getUnwindDest(), NumReserved: CSI.getNumOperands()); |
| 1099 | setNumHungOffUseOperands(ReservedSpace); |
| 1100 | Use *OL = getOperandList(); |
| 1101 | const Use *InOL = CSI.getOperandList(); |
| 1102 | for (unsigned I = 1, E = ReservedSpace; I != E; ++I) |
| 1103 | OL[I] = InOL[I]; |
| 1104 | } |
| 1105 | |
| 1106 | void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest, |
| 1107 | unsigned NumReservedValues) { |
| 1108 | assert(ParentPad && NumReservedValues); |
| 1109 | |
| 1110 | ReservedSpace = NumReservedValues; |
| 1111 | setNumHungOffUseOperands(UnwindDest ? 2 : 1); |
| 1112 | allocHungoffUses(N: ReservedSpace); |
| 1113 | |
| 1114 | Op<0>() = ParentPad; |
| 1115 | if (UnwindDest) { |
| 1116 | setSubclassData<UnwindDestField>(true); |
| 1117 | setUnwindDest(UnwindDest); |
| 1118 | } |
| 1119 | } |
| 1120 | |
| 1121 | /// growOperands - grow operands - This grows the operand list in response to a |
| 1122 | /// push_back style of operation. This grows the number of ops by 2 times. |
| 1123 | void CatchSwitchInst::growOperands(unsigned Size) { |
| 1124 | unsigned NumOperands = getNumOperands(); |
| 1125 | assert(NumOperands >= 1); |
| 1126 | if (ReservedSpace >= NumOperands + Size) |
| 1127 | return; |
| 1128 | ReservedSpace = (NumOperands + Size / 2) * 2; |
| 1129 | growHungoffUses(N: ReservedSpace); |
| 1130 | } |
| 1131 | |
| 1132 | void CatchSwitchInst::addHandler(BasicBlock *Handler) { |
| 1133 | unsigned OpNo = getNumOperands(); |
| 1134 | growOperands(Size: 1); |
| 1135 | assert(OpNo < ReservedSpace && "Growing didn't work!" ); |
| 1136 | setNumHungOffUseOperands(getNumOperands() + 1); |
| 1137 | getOperandList()[OpNo] = Handler; |
| 1138 | } |
| 1139 | |
| 1140 | void CatchSwitchInst::removeHandler(handler_iterator HI) { |
| 1141 | // Move all subsequent handlers up one. |
| 1142 | Use *EndDst = op_end() - 1; |
| 1143 | for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst) |
| 1144 | *CurDst = *(CurDst + 1); |
| 1145 | // Null out the last handler use. |
| 1146 | *EndDst = nullptr; |
| 1147 | |
| 1148 | setNumHungOffUseOperands(getNumOperands() - 1); |
| 1149 | } |
| 1150 | |
| 1151 | //===----------------------------------------------------------------------===// |
| 1152 | // FuncletPadInst Implementation |
| 1153 | //===----------------------------------------------------------------------===// |
| 1154 | void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args, |
| 1155 | const Twine &NameStr) { |
| 1156 | assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?" ); |
| 1157 | llvm::copy(Range&: Args, Out: op_begin()); |
| 1158 | setParentPad(ParentPad); |
| 1159 | setName(NameStr); |
| 1160 | } |
| 1161 | |
| 1162 | FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI, AllocInfo AllocInfo) |
| 1163 | : Instruction(FPI.getType(), FPI.getOpcode(), AllocInfo) { |
| 1164 | assert(getNumOperands() == FPI.getNumOperands() && |
| 1165 | "Wrong number of operands allocated" ); |
| 1166 | std::copy(first: FPI.op_begin(), last: FPI.op_end(), result: op_begin()); |
| 1167 | setParentPad(FPI.getParentPad()); |
| 1168 | } |
| 1169 | |
| 1170 | FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad, |
| 1171 | ArrayRef<Value *> Args, AllocInfo AllocInfo, |
| 1172 | const Twine &NameStr, |
| 1173 | InsertPosition InsertBefore) |
| 1174 | : Instruction(ParentPad->getType(), Op, AllocInfo, InsertBefore) { |
| 1175 | init(ParentPad, Args, NameStr); |
| 1176 | } |
| 1177 | |
| 1178 | //===----------------------------------------------------------------------===// |
| 1179 | // UnreachableInst Implementation |
| 1180 | //===----------------------------------------------------------------------===// |
| 1181 | |
| 1182 | UnreachableInst::UnreachableInst(LLVMContext &Context, |
| 1183 | InsertPosition InsertBefore) |
| 1184 | : Instruction(Type::getVoidTy(C&: Context), Instruction::Unreachable, |
| 1185 | AllocMarker, InsertBefore) {} |
| 1186 | |
| 1187 | //===----------------------------------------------------------------------===// |
| 1188 | // BranchInst Implementation |
| 1189 | //===----------------------------------------------------------------------===// |
| 1190 | |
| 1191 | void BranchInst::AssertOK() { |
| 1192 | if (isConditional()) |
| 1193 | assert(getCondition()->getType()->isIntegerTy(1) && |
| 1194 | "May only branch on boolean predicates!" ); |
| 1195 | } |
| 1196 | |
| 1197 | BranchInst::BranchInst(BasicBlock *IfTrue, AllocInfo AllocInfo, |
| 1198 | InsertPosition InsertBefore) |
| 1199 | : Instruction(Type::getVoidTy(C&: IfTrue->getContext()), Instruction::Br, |
| 1200 | AllocInfo, InsertBefore) { |
| 1201 | assert(IfTrue && "Branch destination may not be null!" ); |
| 1202 | Op<-1>() = IfTrue; |
| 1203 | } |
| 1204 | |
| 1205 | BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, |
| 1206 | AllocInfo AllocInfo, InsertPosition InsertBefore) |
| 1207 | : Instruction(Type::getVoidTy(C&: IfTrue->getContext()), Instruction::Br, |
| 1208 | AllocInfo, InsertBefore) { |
| 1209 | // Assign in order of operand index to make use-list order predictable. |
| 1210 | Op<-3>() = Cond; |
| 1211 | Op<-2>() = IfFalse; |
| 1212 | Op<-1>() = IfTrue; |
| 1213 | #ifndef NDEBUG |
| 1214 | AssertOK(); |
| 1215 | #endif |
| 1216 | } |
| 1217 | |
| 1218 | BranchInst::BranchInst(const BranchInst &BI, AllocInfo AllocInfo) |
| 1219 | : Instruction(Type::getVoidTy(C&: BI.getContext()), Instruction::Br, |
| 1220 | AllocInfo) { |
| 1221 | assert(getNumOperands() == BI.getNumOperands() && |
| 1222 | "Wrong number of operands allocated" ); |
| 1223 | // Assign in order of operand index to make use-list order predictable. |
| 1224 | if (BI.getNumOperands() != 1) { |
| 1225 | assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!" ); |
| 1226 | Op<-3>() = BI.Op<-3>(); |
| 1227 | Op<-2>() = BI.Op<-2>(); |
| 1228 | } |
| 1229 | Op<-1>() = BI.Op<-1>(); |
| 1230 | SubclassOptionalData = BI.SubclassOptionalData; |
| 1231 | } |
| 1232 | |
| 1233 | void BranchInst::swapSuccessors() { |
| 1234 | assert(isConditional() && |
| 1235 | "Cannot swap successors of an unconditional branch" ); |
| 1236 | Op<-1>().swap(RHS&: Op<-2>()); |
| 1237 | |
| 1238 | // Update profile metadata if present and it matches our structural |
| 1239 | // expectations. |
| 1240 | swapProfMetadata(); |
| 1241 | } |
| 1242 | |
| 1243 | //===----------------------------------------------------------------------===// |
| 1244 | // AllocaInst Implementation |
| 1245 | //===----------------------------------------------------------------------===// |
| 1246 | |
| 1247 | static Value *getAISize(LLVMContext &Context, Value *Amt) { |
| 1248 | if (!Amt) |
| 1249 | Amt = ConstantInt::get(Ty: Type::getInt32Ty(C&: Context), V: 1); |
| 1250 | else { |
| 1251 | assert(!isa<BasicBlock>(Amt) && |
| 1252 | "Passed basic block into allocation size parameter! Use other ctor" ); |
| 1253 | assert(Amt->getType()->isIntegerTy() && |
| 1254 | "Allocation array size is not an integer!" ); |
| 1255 | } |
| 1256 | return Amt; |
| 1257 | } |
| 1258 | |
| 1259 | static Align computeAllocaDefaultAlign(Type *Ty, InsertPosition Pos) { |
| 1260 | assert(Pos.isValid() && |
| 1261 | "Insertion position cannot be null when alignment not provided!" ); |
| 1262 | BasicBlock *BB = Pos.getBasicBlock(); |
| 1263 | assert(BB->getParent() && |
| 1264 | "BB must be in a Function when alignment not provided!" ); |
| 1265 | const DataLayout &DL = BB->getDataLayout(); |
| 1266 | return DL.getPrefTypeAlign(Ty); |
| 1267 | } |
| 1268 | |
| 1269 | AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name, |
| 1270 | InsertPosition InsertBefore) |
| 1271 | : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {} |
| 1272 | |
| 1273 | AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, |
| 1274 | const Twine &Name, InsertPosition InsertBefore) |
| 1275 | : AllocaInst(Ty, AddrSpace, ArraySize, |
| 1276 | computeAllocaDefaultAlign(Ty, Pos: InsertBefore), Name, |
| 1277 | InsertBefore) {} |
| 1278 | |
| 1279 | AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, |
| 1280 | Align Align, const Twine &Name, |
| 1281 | InsertPosition InsertBefore) |
| 1282 | : UnaryInstruction(PointerType::get(C&: Ty->getContext(), AddressSpace: AddrSpace), Alloca, |
| 1283 | getAISize(Context&: Ty->getContext(), Amt: ArraySize), InsertBefore), |
| 1284 | AllocatedType(Ty) { |
| 1285 | setAlignment(Align); |
| 1286 | assert(!Ty->isVoidTy() && "Cannot allocate void!" ); |
| 1287 | setName(Name); |
| 1288 | } |
| 1289 | |
| 1290 | bool AllocaInst::isArrayAllocation() const { |
| 1291 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: getOperand(i_nocapture: 0))) |
| 1292 | return !CI->isOne(); |
| 1293 | return true; |
| 1294 | } |
| 1295 | |
| 1296 | /// isStaticAlloca - Return true if this alloca is in the entry block of the |
| 1297 | /// function and is a constant size. If so, the code generator will fold it |
| 1298 | /// into the prolog/epilog code, so it is basically free. |
| 1299 | bool AllocaInst::isStaticAlloca() const { |
| 1300 | // Must be constant size. |
| 1301 | if (!isa<ConstantInt>(Val: getArraySize())) return false; |
| 1302 | |
| 1303 | // Must be in the entry block. |
| 1304 | const BasicBlock *Parent = getParent(); |
| 1305 | return Parent->isEntryBlock() && !isUsedWithInAlloca(); |
| 1306 | } |
| 1307 | |
| 1308 | //===----------------------------------------------------------------------===// |
| 1309 | // LoadInst Implementation |
| 1310 | //===----------------------------------------------------------------------===// |
| 1311 | |
| 1312 | void LoadInst::AssertOK() { |
| 1313 | assert(getOperand(0)->getType()->isPointerTy() && |
| 1314 | "Ptr must have pointer type." ); |
| 1315 | } |
| 1316 | |
| 1317 | static Align computeLoadStoreDefaultAlign(Type *Ty, InsertPosition Pos) { |
| 1318 | assert(Pos.isValid() && |
| 1319 | "Insertion position cannot be null when alignment not provided!" ); |
| 1320 | BasicBlock *BB = Pos.getBasicBlock(); |
| 1321 | assert(BB->getParent() && |
| 1322 | "BB must be in a Function when alignment not provided!" ); |
| 1323 | const DataLayout &DL = BB->getDataLayout(); |
| 1324 | return DL.getABITypeAlign(Ty); |
| 1325 | } |
| 1326 | |
| 1327 | LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, |
| 1328 | InsertPosition InsertBef) |
| 1329 | : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertBef) {} |
| 1330 | |
| 1331 | LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, |
| 1332 | InsertPosition InsertBef) |
| 1333 | : LoadInst(Ty, Ptr, Name, isVolatile, |
| 1334 | computeLoadStoreDefaultAlign(Ty, Pos: InsertBef), InsertBef) {} |
| 1335 | |
| 1336 | LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, |
| 1337 | Align Align, InsertPosition InsertBef) |
| 1338 | : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic, |
| 1339 | SyncScope::System, InsertBef) {} |
| 1340 | |
| 1341 | LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, |
| 1342 | Align Align, AtomicOrdering Order, SyncScope::ID SSID, |
| 1343 | InsertPosition InsertBef) |
| 1344 | : UnaryInstruction(Ty, Load, Ptr, InsertBef) { |
| 1345 | setVolatile(isVolatile); |
| 1346 | setAlignment(Align); |
| 1347 | setAtomic(Ordering: Order, SSID); |
| 1348 | AssertOK(); |
| 1349 | setName(Name); |
| 1350 | } |
| 1351 | |
| 1352 | //===----------------------------------------------------------------------===// |
| 1353 | // StoreInst Implementation |
| 1354 | //===----------------------------------------------------------------------===// |
| 1355 | |
| 1356 | void StoreInst::AssertOK() { |
| 1357 | assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!" ); |
| 1358 | assert(getOperand(1)->getType()->isPointerTy() && |
| 1359 | "Ptr must have pointer type!" ); |
| 1360 | } |
| 1361 | |
| 1362 | StoreInst::StoreInst(Value *val, Value *addr, InsertPosition InsertBefore) |
| 1363 | : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {} |
| 1364 | |
| 1365 | StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, |
| 1366 | InsertPosition InsertBefore) |
| 1367 | : StoreInst(val, addr, isVolatile, |
| 1368 | computeLoadStoreDefaultAlign(Ty: val->getType(), Pos: InsertBefore), |
| 1369 | InsertBefore) {} |
| 1370 | |
| 1371 | StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align, |
| 1372 | InsertPosition InsertBefore) |
| 1373 | : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic, |
| 1374 | SyncScope::System, InsertBefore) {} |
| 1375 | |
| 1376 | StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align, |
| 1377 | AtomicOrdering Order, SyncScope::ID SSID, |
| 1378 | InsertPosition InsertBefore) |
| 1379 | : Instruction(Type::getVoidTy(C&: val->getContext()), Store, AllocMarker, |
| 1380 | InsertBefore) { |
| 1381 | Op<0>() = val; |
| 1382 | Op<1>() = addr; |
| 1383 | setVolatile(isVolatile); |
| 1384 | setAlignment(Align); |
| 1385 | setAtomic(Ordering: Order, SSID); |
| 1386 | AssertOK(); |
| 1387 | } |
| 1388 | |
| 1389 | //===----------------------------------------------------------------------===// |
| 1390 | // AtomicCmpXchgInst Implementation |
| 1391 | //===----------------------------------------------------------------------===// |
| 1392 | |
| 1393 | void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal, |
| 1394 | Align Alignment, AtomicOrdering SuccessOrdering, |
| 1395 | AtomicOrdering FailureOrdering, |
| 1396 | SyncScope::ID SSID) { |
| 1397 | Op<0>() = Ptr; |
| 1398 | Op<1>() = Cmp; |
| 1399 | Op<2>() = NewVal; |
| 1400 | setSuccessOrdering(SuccessOrdering); |
| 1401 | setFailureOrdering(FailureOrdering); |
| 1402 | setSyncScopeID(SSID); |
| 1403 | setAlignment(Alignment); |
| 1404 | |
| 1405 | assert(getOperand(0) && getOperand(1) && getOperand(2) && |
| 1406 | "All operands must be non-null!" ); |
| 1407 | assert(getOperand(0)->getType()->isPointerTy() && |
| 1408 | "Ptr must have pointer type!" ); |
| 1409 | assert(getOperand(1)->getType() == getOperand(2)->getType() && |
| 1410 | "Cmp type and NewVal type must be same!" ); |
| 1411 | } |
| 1412 | |
| 1413 | AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, |
| 1414 | Align Alignment, |
| 1415 | AtomicOrdering SuccessOrdering, |
| 1416 | AtomicOrdering FailureOrdering, |
| 1417 | SyncScope::ID SSID, |
| 1418 | InsertPosition InsertBefore) |
| 1419 | : Instruction( |
| 1420 | StructType::get(elt1: Cmp->getType(), elts: Type::getInt1Ty(C&: Cmp->getContext())), |
| 1421 | AtomicCmpXchg, AllocMarker, InsertBefore) { |
| 1422 | Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID); |
| 1423 | } |
| 1424 | |
| 1425 | //===----------------------------------------------------------------------===// |
| 1426 | // AtomicRMWInst Implementation |
| 1427 | //===----------------------------------------------------------------------===// |
| 1428 | |
| 1429 | void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val, |
| 1430 | Align Alignment, AtomicOrdering Ordering, |
| 1431 | SyncScope::ID SSID) { |
| 1432 | assert(Ordering != AtomicOrdering::NotAtomic && |
| 1433 | "atomicrmw instructions can only be atomic." ); |
| 1434 | assert(Ordering != AtomicOrdering::Unordered && |
| 1435 | "atomicrmw instructions cannot be unordered." ); |
| 1436 | Op<0>() = Ptr; |
| 1437 | Op<1>() = Val; |
| 1438 | setOperation(Operation); |
| 1439 | setOrdering(Ordering); |
| 1440 | setSyncScopeID(SSID); |
| 1441 | setAlignment(Alignment); |
| 1442 | |
| 1443 | assert(getOperand(0) && getOperand(1) && "All operands must be non-null!" ); |
| 1444 | assert(getOperand(0)->getType()->isPointerTy() && |
| 1445 | "Ptr must have pointer type!" ); |
| 1446 | assert(Ordering != AtomicOrdering::NotAtomic && |
| 1447 | "AtomicRMW instructions must be atomic!" ); |
| 1448 | } |
| 1449 | |
| 1450 | AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, |
| 1451 | Align Alignment, AtomicOrdering Ordering, |
| 1452 | SyncScope::ID SSID, InsertPosition InsertBefore) |
| 1453 | : Instruction(Val->getType(), AtomicRMW, AllocMarker, InsertBefore) { |
| 1454 | Init(Operation, Ptr, Val, Alignment, Ordering, SSID); |
| 1455 | } |
| 1456 | |
| 1457 | StringRef AtomicRMWInst::getOperationName(BinOp Op) { |
| 1458 | switch (Op) { |
| 1459 | case AtomicRMWInst::Xchg: |
| 1460 | return "xchg" ; |
| 1461 | case AtomicRMWInst::Add: |
| 1462 | return "add" ; |
| 1463 | case AtomicRMWInst::Sub: |
| 1464 | return "sub" ; |
| 1465 | case AtomicRMWInst::And: |
| 1466 | return "and" ; |
| 1467 | case AtomicRMWInst::Nand: |
| 1468 | return "nand" ; |
| 1469 | case AtomicRMWInst::Or: |
| 1470 | return "or" ; |
| 1471 | case AtomicRMWInst::Xor: |
| 1472 | return "xor" ; |
| 1473 | case AtomicRMWInst::Max: |
| 1474 | return "max" ; |
| 1475 | case AtomicRMWInst::Min: |
| 1476 | return "min" ; |
| 1477 | case AtomicRMWInst::UMax: |
| 1478 | return "umax" ; |
| 1479 | case AtomicRMWInst::UMin: |
| 1480 | return "umin" ; |
| 1481 | case AtomicRMWInst::FAdd: |
| 1482 | return "fadd" ; |
| 1483 | case AtomicRMWInst::FSub: |
| 1484 | return "fsub" ; |
| 1485 | case AtomicRMWInst::FMax: |
| 1486 | return "fmax" ; |
| 1487 | case AtomicRMWInst::FMin: |
| 1488 | return "fmin" ; |
| 1489 | case AtomicRMWInst::FMaximum: |
| 1490 | return "fmaximum" ; |
| 1491 | case AtomicRMWInst::FMinimum: |
| 1492 | return "fminimum" ; |
| 1493 | case AtomicRMWInst::UIncWrap: |
| 1494 | return "uinc_wrap" ; |
| 1495 | case AtomicRMWInst::UDecWrap: |
| 1496 | return "udec_wrap" ; |
| 1497 | case AtomicRMWInst::USubCond: |
| 1498 | return "usub_cond" ; |
| 1499 | case AtomicRMWInst::USubSat: |
| 1500 | return "usub_sat" ; |
| 1501 | case AtomicRMWInst::BAD_BINOP: |
| 1502 | return "<invalid operation>" ; |
| 1503 | } |
| 1504 | |
| 1505 | llvm_unreachable("invalid atomicrmw operation" ); |
| 1506 | } |
| 1507 | |
| 1508 | //===----------------------------------------------------------------------===// |
| 1509 | // FenceInst Implementation |
| 1510 | //===----------------------------------------------------------------------===// |
| 1511 | |
| 1512 | FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, |
| 1513 | SyncScope::ID SSID, InsertPosition InsertBefore) |
| 1514 | : Instruction(Type::getVoidTy(C), Fence, AllocMarker, InsertBefore) { |
| 1515 | setOrdering(Ordering); |
| 1516 | setSyncScopeID(SSID); |
| 1517 | } |
| 1518 | |
| 1519 | //===----------------------------------------------------------------------===// |
| 1520 | // GetElementPtrInst Implementation |
| 1521 | //===----------------------------------------------------------------------===// |
| 1522 | |
| 1523 | void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList, |
| 1524 | const Twine &Name) { |
| 1525 | assert(getNumOperands() == 1 + IdxList.size() && |
| 1526 | "NumOperands not initialized?" ); |
| 1527 | Op<0>() = Ptr; |
| 1528 | llvm::copy(Range&: IdxList, Out: op_begin() + 1); |
| 1529 | setName(Name); |
| 1530 | } |
| 1531 | |
| 1532 | GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI, |
| 1533 | AllocInfo AllocInfo) |
| 1534 | : Instruction(GEPI.getType(), GetElementPtr, AllocInfo), |
| 1535 | SourceElementType(GEPI.SourceElementType), |
| 1536 | ResultElementType(GEPI.ResultElementType) { |
| 1537 | assert(getNumOperands() == GEPI.getNumOperands() && |
| 1538 | "Wrong number of operands allocated" ); |
| 1539 | std::copy(first: GEPI.op_begin(), last: GEPI.op_end(), result: op_begin()); |
| 1540 | SubclassOptionalData = GEPI.SubclassOptionalData; |
| 1541 | } |
| 1542 | |
| 1543 | Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, Value *Idx) { |
| 1544 | if (auto *Struct = dyn_cast<StructType>(Val: Ty)) { |
| 1545 | if (!Struct->indexValid(V: Idx)) |
| 1546 | return nullptr; |
| 1547 | return Struct->getTypeAtIndex(V: Idx); |
| 1548 | } |
| 1549 | if (!Idx->getType()->isIntOrIntVectorTy()) |
| 1550 | return nullptr; |
| 1551 | if (auto *Array = dyn_cast<ArrayType>(Val: Ty)) |
| 1552 | return Array->getElementType(); |
| 1553 | if (auto *Vector = dyn_cast<VectorType>(Val: Ty)) |
| 1554 | return Vector->getElementType(); |
| 1555 | return nullptr; |
| 1556 | } |
| 1557 | |
| 1558 | Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, uint64_t Idx) { |
| 1559 | if (auto *Struct = dyn_cast<StructType>(Val: Ty)) { |
| 1560 | if (Idx >= Struct->getNumElements()) |
| 1561 | return nullptr; |
| 1562 | return Struct->getElementType(N: Idx); |
| 1563 | } |
| 1564 | if (auto *Array = dyn_cast<ArrayType>(Val: Ty)) |
| 1565 | return Array->getElementType(); |
| 1566 | if (auto *Vector = dyn_cast<VectorType>(Val: Ty)) |
| 1567 | return Vector->getElementType(); |
| 1568 | return nullptr; |
| 1569 | } |
| 1570 | |
| 1571 | template <typename IndexTy> |
| 1572 | static Type *getIndexedTypeInternal(Type *Ty, ArrayRef<IndexTy> IdxList) { |
| 1573 | if (IdxList.empty()) |
| 1574 | return Ty; |
| 1575 | for (IndexTy V : IdxList.slice(1)) { |
| 1576 | Ty = GetElementPtrInst::getTypeAtIndex(Ty, V); |
| 1577 | if (!Ty) |
| 1578 | return Ty; |
| 1579 | } |
| 1580 | return Ty; |
| 1581 | } |
| 1582 | |
| 1583 | Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) { |
| 1584 | return getIndexedTypeInternal(Ty, IdxList); |
| 1585 | } |
| 1586 | |
| 1587 | Type *GetElementPtrInst::getIndexedType(Type *Ty, |
| 1588 | ArrayRef<Constant *> IdxList) { |
| 1589 | return getIndexedTypeInternal(Ty, IdxList); |
| 1590 | } |
| 1591 | |
| 1592 | Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) { |
| 1593 | return getIndexedTypeInternal(Ty, IdxList); |
| 1594 | } |
| 1595 | |
| 1596 | /// hasAllZeroIndices - Return true if all of the indices of this GEP are |
| 1597 | /// zeros. If so, the result pointer and the first operand have the same |
| 1598 | /// value, just potentially different types. |
| 1599 | bool GetElementPtrInst::hasAllZeroIndices() const { |
| 1600 | for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { |
| 1601 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: getOperand(i_nocapture: i))) { |
| 1602 | if (!CI->isZero()) return false; |
| 1603 | } else { |
| 1604 | return false; |
| 1605 | } |
| 1606 | } |
| 1607 | return true; |
| 1608 | } |
| 1609 | |
| 1610 | /// hasAllConstantIndices - Return true if all of the indices of this GEP are |
| 1611 | /// constant integers. If so, the result pointer and the first operand have |
| 1612 | /// a constant offset between them. |
| 1613 | bool GetElementPtrInst::hasAllConstantIndices() const { |
| 1614 | for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { |
| 1615 | if (!isa<ConstantInt>(Val: getOperand(i_nocapture: i))) |
| 1616 | return false; |
| 1617 | } |
| 1618 | return true; |
| 1619 | } |
| 1620 | |
| 1621 | void GetElementPtrInst::setNoWrapFlags(GEPNoWrapFlags NW) { |
| 1622 | SubclassOptionalData = NW.getRaw(); |
| 1623 | } |
| 1624 | |
| 1625 | void GetElementPtrInst::setIsInBounds(bool B) { |
| 1626 | GEPNoWrapFlags NW = cast<GEPOperator>(Val: this)->getNoWrapFlags(); |
| 1627 | if (B) |
| 1628 | NW |= GEPNoWrapFlags::inBounds(); |
| 1629 | else |
| 1630 | NW = NW.withoutInBounds(); |
| 1631 | setNoWrapFlags(NW); |
| 1632 | } |
| 1633 | |
| 1634 | GEPNoWrapFlags GetElementPtrInst::getNoWrapFlags() const { |
| 1635 | return cast<GEPOperator>(Val: this)->getNoWrapFlags(); |
| 1636 | } |
| 1637 | |
| 1638 | bool GetElementPtrInst::isInBounds() const { |
| 1639 | return cast<GEPOperator>(Val: this)->isInBounds(); |
| 1640 | } |
| 1641 | |
| 1642 | bool GetElementPtrInst::hasNoUnsignedSignedWrap() const { |
| 1643 | return cast<GEPOperator>(Val: this)->hasNoUnsignedSignedWrap(); |
| 1644 | } |
| 1645 | |
| 1646 | bool GetElementPtrInst::hasNoUnsignedWrap() const { |
| 1647 | return cast<GEPOperator>(Val: this)->hasNoUnsignedWrap(); |
| 1648 | } |
| 1649 | |
| 1650 | bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL, |
| 1651 | APInt &Offset) const { |
| 1652 | // Delegate to the generic GEPOperator implementation. |
| 1653 | return cast<GEPOperator>(Val: this)->accumulateConstantOffset(DL, Offset); |
| 1654 | } |
| 1655 | |
| 1656 | bool GetElementPtrInst::collectOffset( |
| 1657 | const DataLayout &DL, unsigned BitWidth, |
| 1658 | SmallMapVector<Value *, APInt, 4> &VariableOffsets, |
| 1659 | APInt &ConstantOffset) const { |
| 1660 | // Delegate to the generic GEPOperator implementation. |
| 1661 | return cast<GEPOperator>(Val: this)->collectOffset(DL, BitWidth, VariableOffsets, |
| 1662 | ConstantOffset); |
| 1663 | } |
| 1664 | |
| 1665 | //===----------------------------------------------------------------------===// |
| 1666 | // ExtractElementInst Implementation |
| 1667 | //===----------------------------------------------------------------------===// |
| 1668 | |
| 1669 | ExtractElementInst::(Value *Val, Value *Index, |
| 1670 | const Twine &Name, |
| 1671 | InsertPosition InsertBef) |
| 1672 | : Instruction(cast<VectorType>(Val: Val->getType())->getElementType(), |
| 1673 | ExtractElement, AllocMarker, InsertBef) { |
| 1674 | assert(isValidOperands(Val, Index) && |
| 1675 | "Invalid extractelement instruction operands!" ); |
| 1676 | Op<0>() = Val; |
| 1677 | Op<1>() = Index; |
| 1678 | setName(Name); |
| 1679 | } |
| 1680 | |
| 1681 | bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) { |
| 1682 | if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy()) |
| 1683 | return false; |
| 1684 | return true; |
| 1685 | } |
| 1686 | |
| 1687 | //===----------------------------------------------------------------------===// |
| 1688 | // InsertElementInst Implementation |
| 1689 | //===----------------------------------------------------------------------===// |
| 1690 | |
| 1691 | InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index, |
| 1692 | const Twine &Name, |
| 1693 | InsertPosition InsertBef) |
| 1694 | : Instruction(Vec->getType(), InsertElement, AllocMarker, InsertBef) { |
| 1695 | assert(isValidOperands(Vec, Elt, Index) && |
| 1696 | "Invalid insertelement instruction operands!" ); |
| 1697 | Op<0>() = Vec; |
| 1698 | Op<1>() = Elt; |
| 1699 | Op<2>() = Index; |
| 1700 | setName(Name); |
| 1701 | } |
| 1702 | |
| 1703 | bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt, |
| 1704 | const Value *Index) { |
| 1705 | if (!Vec->getType()->isVectorTy()) |
| 1706 | return false; // First operand of insertelement must be vector type. |
| 1707 | |
| 1708 | if (Elt->getType() != cast<VectorType>(Val: Vec->getType())->getElementType()) |
| 1709 | return false;// Second operand of insertelement must be vector element type. |
| 1710 | |
| 1711 | if (!Index->getType()->isIntegerTy()) |
| 1712 | return false; // Third operand of insertelement must be i32. |
| 1713 | return true; |
| 1714 | } |
| 1715 | |
| 1716 | //===----------------------------------------------------------------------===// |
| 1717 | // ShuffleVectorInst Implementation |
| 1718 | //===----------------------------------------------------------------------===// |
| 1719 | |
| 1720 | static Value *createPlaceholderForShuffleVector(Value *V) { |
| 1721 | assert(V && "Cannot create placeholder of nullptr V" ); |
| 1722 | return PoisonValue::get(T: V->getType()); |
| 1723 | } |
| 1724 | |
| 1725 | ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *Mask, const Twine &Name, |
| 1726 | InsertPosition InsertBefore) |
| 1727 | : ShuffleVectorInst(V1, createPlaceholderForShuffleVector(V: V1), Mask, Name, |
| 1728 | InsertBefore) {} |
| 1729 | |
| 1730 | ShuffleVectorInst::ShuffleVectorInst(Value *V1, ArrayRef<int> Mask, |
| 1731 | const Twine &Name, |
| 1732 | InsertPosition InsertBefore) |
| 1733 | : ShuffleVectorInst(V1, createPlaceholderForShuffleVector(V: V1), Mask, Name, |
| 1734 | InsertBefore) {} |
| 1735 | |
| 1736 | ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, |
| 1737 | const Twine &Name, |
| 1738 | InsertPosition InsertBefore) |
| 1739 | : Instruction( |
| 1740 | VectorType::get(ElementType: cast<VectorType>(Val: V1->getType())->getElementType(), |
| 1741 | EC: cast<VectorType>(Val: Mask->getType())->getElementCount()), |
| 1742 | ShuffleVector, AllocMarker, InsertBefore) { |
| 1743 | assert(isValidOperands(V1, V2, Mask) && |
| 1744 | "Invalid shuffle vector instruction operands!" ); |
| 1745 | |
| 1746 | Op<0>() = V1; |
| 1747 | Op<1>() = V2; |
| 1748 | SmallVector<int, 16> MaskArr; |
| 1749 | getShuffleMask(Mask: cast<Constant>(Val: Mask), Result&: MaskArr); |
| 1750 | setShuffleMask(MaskArr); |
| 1751 | setName(Name); |
| 1752 | } |
| 1753 | |
| 1754 | ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask, |
| 1755 | const Twine &Name, |
| 1756 | InsertPosition InsertBefore) |
| 1757 | : Instruction( |
| 1758 | VectorType::get(ElementType: cast<VectorType>(Val: V1->getType())->getElementType(), |
| 1759 | NumElements: Mask.size(), Scalable: isa<ScalableVectorType>(Val: V1->getType())), |
| 1760 | ShuffleVector, AllocMarker, InsertBefore) { |
| 1761 | assert(isValidOperands(V1, V2, Mask) && |
| 1762 | "Invalid shuffle vector instruction operands!" ); |
| 1763 | Op<0>() = V1; |
| 1764 | Op<1>() = V2; |
| 1765 | setShuffleMask(Mask); |
| 1766 | setName(Name); |
| 1767 | } |
| 1768 | |
| 1769 | void ShuffleVectorInst::commute() { |
| 1770 | int NumOpElts = cast<FixedVectorType>(Val: Op<0>()->getType())->getNumElements(); |
| 1771 | int NumMaskElts = ShuffleMask.size(); |
| 1772 | SmallVector<int, 16> NewMask(NumMaskElts); |
| 1773 | for (int i = 0; i != NumMaskElts; ++i) { |
| 1774 | int MaskElt = getMaskValue(Elt: i); |
| 1775 | if (MaskElt == PoisonMaskElem) { |
| 1776 | NewMask[i] = PoisonMaskElem; |
| 1777 | continue; |
| 1778 | } |
| 1779 | assert(MaskElt >= 0 && MaskElt < 2 * NumOpElts && "Out-of-range mask" ); |
| 1780 | MaskElt = (MaskElt < NumOpElts) ? MaskElt + NumOpElts : MaskElt - NumOpElts; |
| 1781 | NewMask[i] = MaskElt; |
| 1782 | } |
| 1783 | setShuffleMask(NewMask); |
| 1784 | Op<0>().swap(RHS&: Op<1>()); |
| 1785 | } |
| 1786 | |
| 1787 | bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2, |
| 1788 | ArrayRef<int> Mask) { |
| 1789 | // V1 and V2 must be vectors of the same type. |
| 1790 | if (!isa<VectorType>(Val: V1->getType()) || V1->getType() != V2->getType()) |
| 1791 | return false; |
| 1792 | |
| 1793 | // Make sure the mask elements make sense. |
| 1794 | int V1Size = |
| 1795 | cast<VectorType>(Val: V1->getType())->getElementCount().getKnownMinValue(); |
| 1796 | for (int Elem : Mask) |
| 1797 | if (Elem != PoisonMaskElem && Elem >= V1Size * 2) |
| 1798 | return false; |
| 1799 | |
| 1800 | if (isa<ScalableVectorType>(Val: V1->getType())) |
| 1801 | if ((Mask[0] != 0 && Mask[0] != PoisonMaskElem) || !all_equal(Range&: Mask)) |
| 1802 | return false; |
| 1803 | |
| 1804 | return true; |
| 1805 | } |
| 1806 | |
| 1807 | bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2, |
| 1808 | const Value *Mask) { |
| 1809 | // V1 and V2 must be vectors of the same type. |
| 1810 | if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType()) |
| 1811 | return false; |
| 1812 | |
| 1813 | // Mask must be vector of i32, and must be the same kind of vector as the |
| 1814 | // input vectors |
| 1815 | auto *MaskTy = dyn_cast<VectorType>(Val: Mask->getType()); |
| 1816 | if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(Bitwidth: 32) || |
| 1817 | isa<ScalableVectorType>(Val: MaskTy) != isa<ScalableVectorType>(Val: V1->getType())) |
| 1818 | return false; |
| 1819 | |
| 1820 | // Check to see if Mask is valid. |
| 1821 | if (isa<UndefValue>(Val: Mask) || isa<ConstantAggregateZero>(Val: Mask)) |
| 1822 | return true; |
| 1823 | |
| 1824 | // NOTE: Through vector ConstantInt we have the potential to support more |
| 1825 | // than just zero splat masks but that requires a LangRef change. |
| 1826 | if (isa<ScalableVectorType>(Val: MaskTy)) |
| 1827 | return false; |
| 1828 | |
| 1829 | unsigned V1Size = cast<FixedVectorType>(Val: V1->getType())->getNumElements(); |
| 1830 | |
| 1831 | if (const auto *CI = dyn_cast<ConstantInt>(Val: Mask)) |
| 1832 | return !CI->uge(Num: V1Size * 2); |
| 1833 | |
| 1834 | if (const auto *MV = dyn_cast<ConstantVector>(Val: Mask)) { |
| 1835 | for (Value *Op : MV->operands()) { |
| 1836 | if (auto *CI = dyn_cast<ConstantInt>(Val: Op)) { |
| 1837 | if (CI->uge(Num: V1Size*2)) |
| 1838 | return false; |
| 1839 | } else if (!isa<UndefValue>(Val: Op)) { |
| 1840 | return false; |
| 1841 | } |
| 1842 | } |
| 1843 | return true; |
| 1844 | } |
| 1845 | |
| 1846 | if (const auto *CDS = dyn_cast<ConstantDataSequential>(Val: Mask)) { |
| 1847 | for (unsigned i = 0, e = cast<FixedVectorType>(Val: MaskTy)->getNumElements(); |
| 1848 | i != e; ++i) |
| 1849 | if (CDS->getElementAsInteger(i) >= V1Size*2) |
| 1850 | return false; |
| 1851 | return true; |
| 1852 | } |
| 1853 | |
| 1854 | return false; |
| 1855 | } |
| 1856 | |
| 1857 | void ShuffleVectorInst::getShuffleMask(const Constant *Mask, |
| 1858 | SmallVectorImpl<int> &Result) { |
| 1859 | ElementCount EC = cast<VectorType>(Val: Mask->getType())->getElementCount(); |
| 1860 | |
| 1861 | if (isa<ConstantAggregateZero>(Val: Mask) || isa<UndefValue>(Val: Mask)) { |
| 1862 | int MaskVal = isa<UndefValue>(Val: Mask) ? -1 : 0; |
| 1863 | Result.append(NumInputs: EC.getKnownMinValue(), Elt: MaskVal); |
| 1864 | return; |
| 1865 | } |
| 1866 | |
| 1867 | assert(!EC.isScalable() && |
| 1868 | "Scalable vector shuffle mask must be undef or zeroinitializer" ); |
| 1869 | |
| 1870 | unsigned NumElts = EC.getFixedValue(); |
| 1871 | |
| 1872 | Result.reserve(N: NumElts); |
| 1873 | |
| 1874 | if (auto *CDS = dyn_cast<ConstantDataSequential>(Val: Mask)) { |
| 1875 | for (unsigned i = 0; i != NumElts; ++i) |
| 1876 | Result.push_back(Elt: CDS->getElementAsInteger(i)); |
| 1877 | return; |
| 1878 | } |
| 1879 | for (unsigned i = 0; i != NumElts; ++i) { |
| 1880 | Constant *C = Mask->getAggregateElement(Elt: i); |
| 1881 | Result.push_back(Elt: isa<UndefValue>(Val: C) ? -1 : |
| 1882 | cast<ConstantInt>(Val: C)->getZExtValue()); |
| 1883 | } |
| 1884 | } |
| 1885 | |
| 1886 | void ShuffleVectorInst::setShuffleMask(ArrayRef<int> Mask) { |
| 1887 | ShuffleMask.assign(in_start: Mask.begin(), in_end: Mask.end()); |
| 1888 | ShuffleMaskForBitcode = convertShuffleMaskForBitcode(Mask, ResultTy: getType()); |
| 1889 | } |
| 1890 | |
| 1891 | Constant *ShuffleVectorInst::convertShuffleMaskForBitcode(ArrayRef<int> Mask, |
| 1892 | Type *ResultTy) { |
| 1893 | Type *Int32Ty = Type::getInt32Ty(C&: ResultTy->getContext()); |
| 1894 | if (isa<ScalableVectorType>(Val: ResultTy)) { |
| 1895 | assert(all_equal(Mask) && "Unexpected shuffle" ); |
| 1896 | Type *VecTy = VectorType::get(ElementType: Int32Ty, NumElements: Mask.size(), Scalable: true); |
| 1897 | if (Mask[0] == 0) |
| 1898 | return Constant::getNullValue(Ty: VecTy); |
| 1899 | return PoisonValue::get(T: VecTy); |
| 1900 | } |
| 1901 | SmallVector<Constant *, 16> MaskConst; |
| 1902 | for (int Elem : Mask) { |
| 1903 | if (Elem == PoisonMaskElem) |
| 1904 | MaskConst.push_back(Elt: PoisonValue::get(T: Int32Ty)); |
| 1905 | else |
| 1906 | MaskConst.push_back(Elt: ConstantInt::get(Ty: Int32Ty, V: Elem)); |
| 1907 | } |
| 1908 | return ConstantVector::get(V: MaskConst); |
| 1909 | } |
| 1910 | |
| 1911 | static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) { |
| 1912 | assert(!Mask.empty() && "Shuffle mask must contain elements" ); |
| 1913 | bool UsesLHS = false; |
| 1914 | bool UsesRHS = false; |
| 1915 | for (int I : Mask) { |
| 1916 | if (I == -1) |
| 1917 | continue; |
| 1918 | assert(I >= 0 && I < (NumOpElts * 2) && |
| 1919 | "Out-of-bounds shuffle mask element" ); |
| 1920 | UsesLHS |= (I < NumOpElts); |
| 1921 | UsesRHS |= (I >= NumOpElts); |
| 1922 | if (UsesLHS && UsesRHS) |
| 1923 | return false; |
| 1924 | } |
| 1925 | // Allow for degenerate case: completely undef mask means neither source is used. |
| 1926 | return UsesLHS || UsesRHS; |
| 1927 | } |
| 1928 | |
| 1929 | bool ShuffleVectorInst::isSingleSourceMask(ArrayRef<int> Mask, int NumSrcElts) { |
| 1930 | // We don't have vector operand size information, so assume operands are the |
| 1931 | // same size as the mask. |
| 1932 | return isSingleSourceMaskImpl(Mask, NumOpElts: NumSrcElts); |
| 1933 | } |
| 1934 | |
| 1935 | static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) { |
| 1936 | if (!isSingleSourceMaskImpl(Mask, NumOpElts)) |
| 1937 | return false; |
| 1938 | for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) { |
| 1939 | if (Mask[i] == -1) |
| 1940 | continue; |
| 1941 | if (Mask[i] != i && Mask[i] != (NumOpElts + i)) |
| 1942 | return false; |
| 1943 | } |
| 1944 | return true; |
| 1945 | } |
| 1946 | |
| 1947 | bool ShuffleVectorInst::isIdentityMask(ArrayRef<int> Mask, int NumSrcElts) { |
| 1948 | if (Mask.size() != static_cast<unsigned>(NumSrcElts)) |
| 1949 | return false; |
| 1950 | // We don't have vector operand size information, so assume operands are the |
| 1951 | // same size as the mask. |
| 1952 | return isIdentityMaskImpl(Mask, NumOpElts: NumSrcElts); |
| 1953 | } |
| 1954 | |
| 1955 | bool ShuffleVectorInst::isReverseMask(ArrayRef<int> Mask, int NumSrcElts) { |
| 1956 | if (Mask.size() != static_cast<unsigned>(NumSrcElts)) |
| 1957 | return false; |
| 1958 | if (!isSingleSourceMask(Mask, NumSrcElts)) |
| 1959 | return false; |
| 1960 | |
| 1961 | // The number of elements in the mask must be at least 2. |
| 1962 | if (NumSrcElts < 2) |
| 1963 | return false; |
| 1964 | |
| 1965 | for (int I = 0, E = Mask.size(); I < E; ++I) { |
| 1966 | if (Mask[I] == -1) |
| 1967 | continue; |
| 1968 | if (Mask[I] != (NumSrcElts - 1 - I) && |
| 1969 | Mask[I] != (NumSrcElts + NumSrcElts - 1 - I)) |
| 1970 | return false; |
| 1971 | } |
| 1972 | return true; |
| 1973 | } |
| 1974 | |
| 1975 | bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef<int> Mask, int NumSrcElts) { |
| 1976 | if (Mask.size() != static_cast<unsigned>(NumSrcElts)) |
| 1977 | return false; |
| 1978 | if (!isSingleSourceMask(Mask, NumSrcElts)) |
| 1979 | return false; |
| 1980 | for (int I = 0, E = Mask.size(); I < E; ++I) { |
| 1981 | if (Mask[I] == -1) |
| 1982 | continue; |
| 1983 | if (Mask[I] != 0 && Mask[I] != NumSrcElts) |
| 1984 | return false; |
| 1985 | } |
| 1986 | return true; |
| 1987 | } |
| 1988 | |
| 1989 | bool ShuffleVectorInst::isSelectMask(ArrayRef<int> Mask, int NumSrcElts) { |
| 1990 | if (Mask.size() != static_cast<unsigned>(NumSrcElts)) |
| 1991 | return false; |
| 1992 | // Select is differentiated from identity. It requires using both sources. |
| 1993 | if (isSingleSourceMask(Mask, NumSrcElts)) |
| 1994 | return false; |
| 1995 | for (int I = 0, E = Mask.size(); I < E; ++I) { |
| 1996 | if (Mask[I] == -1) |
| 1997 | continue; |
| 1998 | if (Mask[I] != I && Mask[I] != (NumSrcElts + I)) |
| 1999 | return false; |
| 2000 | } |
| 2001 | return true; |
| 2002 | } |
| 2003 | |
| 2004 | bool ShuffleVectorInst::isTransposeMask(ArrayRef<int> Mask, int NumSrcElts) { |
| 2005 | // Example masks that will return true: |
| 2006 | // v1 = <a, b, c, d> |
| 2007 | // v2 = <e, f, g, h> |
| 2008 | // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g> |
| 2009 | // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h> |
| 2010 | |
| 2011 | if (Mask.size() != static_cast<unsigned>(NumSrcElts)) |
| 2012 | return false; |
| 2013 | // 1. The number of elements in the mask must be a power-of-2 and at least 2. |
| 2014 | int Sz = Mask.size(); |
| 2015 | if (Sz < 2 || !isPowerOf2_32(Value: Sz)) |
| 2016 | return false; |
| 2017 | |
| 2018 | // 2. The first element of the mask must be either a 0 or a 1. |
| 2019 | if (Mask[0] != 0 && Mask[0] != 1) |
| 2020 | return false; |
| 2021 | |
| 2022 | // 3. The difference between the first 2 elements must be equal to the |
| 2023 | // number of elements in the mask. |
| 2024 | if ((Mask[1] - Mask[0]) != NumSrcElts) |
| 2025 | return false; |
| 2026 | |
| 2027 | // 4. The difference between consecutive even-numbered and odd-numbered |
| 2028 | // elements must be equal to 2. |
| 2029 | for (int I = 2; I < Sz; ++I) { |
| 2030 | int MaskEltVal = Mask[I]; |
| 2031 | if (MaskEltVal == -1) |
| 2032 | return false; |
| 2033 | int MaskEltPrevVal = Mask[I - 2]; |
| 2034 | if (MaskEltVal - MaskEltPrevVal != 2) |
| 2035 | return false; |
| 2036 | } |
| 2037 | return true; |
| 2038 | } |
| 2039 | |
| 2040 | bool ShuffleVectorInst::isSpliceMask(ArrayRef<int> Mask, int NumSrcElts, |
| 2041 | int &Index) { |
| 2042 | if (Mask.size() != static_cast<unsigned>(NumSrcElts)) |
| 2043 | return false; |
| 2044 | // Example: shufflevector <4 x n> A, <4 x n> B, <1,2,3,4> |
| 2045 | int StartIndex = -1; |
| 2046 | for (int I = 0, E = Mask.size(); I != E; ++I) { |
| 2047 | int MaskEltVal = Mask[I]; |
| 2048 | if (MaskEltVal == -1) |
| 2049 | continue; |
| 2050 | |
| 2051 | if (StartIndex == -1) { |
| 2052 | // Don't support a StartIndex that begins in the second input, or if the |
| 2053 | // first non-undef index would access below the StartIndex. |
| 2054 | if (MaskEltVal < I || NumSrcElts <= (MaskEltVal - I)) |
| 2055 | return false; |
| 2056 | |
| 2057 | StartIndex = MaskEltVal - I; |
| 2058 | continue; |
| 2059 | } |
| 2060 | |
| 2061 | // Splice is sequential starting from StartIndex. |
| 2062 | if (MaskEltVal != (StartIndex + I)) |
| 2063 | return false; |
| 2064 | } |
| 2065 | |
| 2066 | if (StartIndex == -1) |
| 2067 | return false; |
| 2068 | |
| 2069 | // NOTE: This accepts StartIndex == 0 (COPY). |
| 2070 | Index = StartIndex; |
| 2071 | return true; |
| 2072 | } |
| 2073 | |
| 2074 | bool ShuffleVectorInst::(ArrayRef<int> Mask, |
| 2075 | int NumSrcElts, int &Index) { |
| 2076 | // Must extract from a single source. |
| 2077 | if (!isSingleSourceMaskImpl(Mask, NumOpElts: NumSrcElts)) |
| 2078 | return false; |
| 2079 | |
| 2080 | // Must be smaller (else this is an Identity shuffle). |
| 2081 | if (NumSrcElts <= (int)Mask.size()) |
| 2082 | return false; |
| 2083 | |
| 2084 | // Find start of extraction, accounting that we may start with an UNDEF. |
| 2085 | int SubIndex = -1; |
| 2086 | for (int i = 0, e = Mask.size(); i != e; ++i) { |
| 2087 | int M = Mask[i]; |
| 2088 | if (M < 0) |
| 2089 | continue; |
| 2090 | int Offset = (M % NumSrcElts) - i; |
| 2091 | if (0 <= SubIndex && SubIndex != Offset) |
| 2092 | return false; |
| 2093 | SubIndex = Offset; |
| 2094 | } |
| 2095 | |
| 2096 | if (0 <= SubIndex && SubIndex + (int)Mask.size() <= NumSrcElts) { |
| 2097 | Index = SubIndex; |
| 2098 | return true; |
| 2099 | } |
| 2100 | return false; |
| 2101 | } |
| 2102 | |
| 2103 | bool ShuffleVectorInst::isInsertSubvectorMask(ArrayRef<int> Mask, |
| 2104 | int NumSrcElts, int &NumSubElts, |
| 2105 | int &Index) { |
| 2106 | int NumMaskElts = Mask.size(); |
| 2107 | |
| 2108 | // Don't try to match if we're shuffling to a smaller size. |
| 2109 | if (NumMaskElts < NumSrcElts) |
| 2110 | return false; |
| 2111 | |
| 2112 | // TODO: We don't recognize self-insertion/widening. |
| 2113 | if (isSingleSourceMaskImpl(Mask, NumOpElts: NumSrcElts)) |
| 2114 | return false; |
| 2115 | |
| 2116 | // Determine which mask elements are attributed to which source. |
| 2117 | APInt UndefElts = APInt::getZero(numBits: NumMaskElts); |
| 2118 | APInt Src0Elts = APInt::getZero(numBits: NumMaskElts); |
| 2119 | APInt Src1Elts = APInt::getZero(numBits: NumMaskElts); |
| 2120 | bool Src0Identity = true; |
| 2121 | bool Src1Identity = true; |
| 2122 | |
| 2123 | for (int i = 0; i != NumMaskElts; ++i) { |
| 2124 | int M = Mask[i]; |
| 2125 | if (M < 0) { |
| 2126 | UndefElts.setBit(i); |
| 2127 | continue; |
| 2128 | } |
| 2129 | if (M < NumSrcElts) { |
| 2130 | Src0Elts.setBit(i); |
| 2131 | Src0Identity &= (M == i); |
| 2132 | continue; |
| 2133 | } |
| 2134 | Src1Elts.setBit(i); |
| 2135 | Src1Identity &= (M == (i + NumSrcElts)); |
| 2136 | } |
| 2137 | assert((Src0Elts | Src1Elts | UndefElts).isAllOnes() && |
| 2138 | "unknown shuffle elements" ); |
| 2139 | assert(!Src0Elts.isZero() && !Src1Elts.isZero() && |
| 2140 | "2-source shuffle not found" ); |
| 2141 | |
| 2142 | // Determine lo/hi span ranges. |
| 2143 | // TODO: How should we handle undefs at the start of subvector insertions? |
| 2144 | int Src0Lo = Src0Elts.countr_zero(); |
| 2145 | int Src1Lo = Src1Elts.countr_zero(); |
| 2146 | int Src0Hi = NumMaskElts - Src0Elts.countl_zero(); |
| 2147 | int Src1Hi = NumMaskElts - Src1Elts.countl_zero(); |
| 2148 | |
| 2149 | // If src0 is in place, see if the src1 elements is inplace within its own |
| 2150 | // span. |
| 2151 | if (Src0Identity) { |
| 2152 | int NumSub1Elts = Src1Hi - Src1Lo; |
| 2153 | ArrayRef<int> Sub1Mask = Mask.slice(N: Src1Lo, M: NumSub1Elts); |
| 2154 | if (isIdentityMaskImpl(Mask: Sub1Mask, NumOpElts: NumSrcElts)) { |
| 2155 | NumSubElts = NumSub1Elts; |
| 2156 | Index = Src1Lo; |
| 2157 | return true; |
| 2158 | } |
| 2159 | } |
| 2160 | |
| 2161 | // If src1 is in place, see if the src0 elements is inplace within its own |
| 2162 | // span. |
| 2163 | if (Src1Identity) { |
| 2164 | int NumSub0Elts = Src0Hi - Src0Lo; |
| 2165 | ArrayRef<int> Sub0Mask = Mask.slice(N: Src0Lo, M: NumSub0Elts); |
| 2166 | if (isIdentityMaskImpl(Mask: Sub0Mask, NumOpElts: NumSrcElts)) { |
| 2167 | NumSubElts = NumSub0Elts; |
| 2168 | Index = Src0Lo; |
| 2169 | return true; |
| 2170 | } |
| 2171 | } |
| 2172 | |
| 2173 | return false; |
| 2174 | } |
| 2175 | |
| 2176 | bool ShuffleVectorInst::isIdentityWithPadding() const { |
| 2177 | // FIXME: Not currently possible to express a shuffle mask for a scalable |
| 2178 | // vector for this case. |
| 2179 | if (isa<ScalableVectorType>(Val: getType())) |
| 2180 | return false; |
| 2181 | |
| 2182 | int NumOpElts = cast<FixedVectorType>(Val: Op<0>()->getType())->getNumElements(); |
| 2183 | int NumMaskElts = cast<FixedVectorType>(Val: getType())->getNumElements(); |
| 2184 | if (NumMaskElts <= NumOpElts) |
| 2185 | return false; |
| 2186 | |
| 2187 | // The first part of the mask must choose elements from exactly 1 source op. |
| 2188 | ArrayRef<int> Mask = getShuffleMask(); |
| 2189 | if (!isIdentityMaskImpl(Mask, NumOpElts)) |
| 2190 | return false; |
| 2191 | |
| 2192 | // All extending must be with undef elements. |
| 2193 | for (int i = NumOpElts; i < NumMaskElts; ++i) |
| 2194 | if (Mask[i] != -1) |
| 2195 | return false; |
| 2196 | |
| 2197 | return true; |
| 2198 | } |
| 2199 | |
| 2200 | bool ShuffleVectorInst::() const { |
| 2201 | // FIXME: Not currently possible to express a shuffle mask for a scalable |
| 2202 | // vector for this case. |
| 2203 | if (isa<ScalableVectorType>(Val: getType())) |
| 2204 | return false; |
| 2205 | |
| 2206 | int NumOpElts = cast<FixedVectorType>(Val: Op<0>()->getType())->getNumElements(); |
| 2207 | int NumMaskElts = cast<FixedVectorType>(Val: getType())->getNumElements(); |
| 2208 | if (NumMaskElts >= NumOpElts) |
| 2209 | return false; |
| 2210 | |
| 2211 | return isIdentityMaskImpl(Mask: getShuffleMask(), NumOpElts); |
| 2212 | } |
| 2213 | |
| 2214 | bool ShuffleVectorInst::isConcat() const { |
| 2215 | // Vector concatenation is differentiated from identity with padding. |
| 2216 | if (isa<UndefValue>(Val: Op<0>()) || isa<UndefValue>(Val: Op<1>())) |
| 2217 | return false; |
| 2218 | |
| 2219 | // FIXME: Not currently possible to express a shuffle mask for a scalable |
| 2220 | // vector for this case. |
| 2221 | if (isa<ScalableVectorType>(Val: getType())) |
| 2222 | return false; |
| 2223 | |
| 2224 | int NumOpElts = cast<FixedVectorType>(Val: Op<0>()->getType())->getNumElements(); |
| 2225 | int NumMaskElts = cast<FixedVectorType>(Val: getType())->getNumElements(); |
| 2226 | if (NumMaskElts != NumOpElts * 2) |
| 2227 | return false; |
| 2228 | |
| 2229 | // Use the mask length rather than the operands' vector lengths here. We |
| 2230 | // already know that the shuffle returns a vector twice as long as the inputs, |
| 2231 | // and neither of the inputs are undef vectors. If the mask picks consecutive |
| 2232 | // elements from both inputs, then this is a concatenation of the inputs. |
| 2233 | return isIdentityMaskImpl(Mask: getShuffleMask(), NumOpElts: NumMaskElts); |
| 2234 | } |
| 2235 | |
| 2236 | static bool isReplicationMaskWithParams(ArrayRef<int> Mask, |
| 2237 | int ReplicationFactor, int VF) { |
| 2238 | assert(Mask.size() == (unsigned)ReplicationFactor * VF && |
| 2239 | "Unexpected mask size." ); |
| 2240 | |
| 2241 | for (int CurrElt : seq(Size: VF)) { |
| 2242 | ArrayRef<int> CurrSubMask = Mask.take_front(N: ReplicationFactor); |
| 2243 | assert(CurrSubMask.size() == (unsigned)ReplicationFactor && |
| 2244 | "Run out of mask?" ); |
| 2245 | Mask = Mask.drop_front(N: ReplicationFactor); |
| 2246 | if (!all_of(Range&: CurrSubMask, P: [CurrElt](int MaskElt) { |
| 2247 | return MaskElt == PoisonMaskElem || MaskElt == CurrElt; |
| 2248 | })) |
| 2249 | return false; |
| 2250 | } |
| 2251 | assert(Mask.empty() && "Did not consume the whole mask?" ); |
| 2252 | |
| 2253 | return true; |
| 2254 | } |
| 2255 | |
| 2256 | bool ShuffleVectorInst::isReplicationMask(ArrayRef<int> Mask, |
| 2257 | int &ReplicationFactor, int &VF) { |
| 2258 | // undef-less case is trivial. |
| 2259 | if (!llvm::is_contained(Range&: Mask, Element: PoisonMaskElem)) { |
| 2260 | ReplicationFactor = |
| 2261 | Mask.take_while(Pred: [](int MaskElt) { return MaskElt == 0; }).size(); |
| 2262 | if (ReplicationFactor == 0 || Mask.size() % ReplicationFactor != 0) |
| 2263 | return false; |
| 2264 | VF = Mask.size() / ReplicationFactor; |
| 2265 | return isReplicationMaskWithParams(Mask, ReplicationFactor, VF); |
| 2266 | } |
| 2267 | |
| 2268 | // However, if the mask contains undef's, we have to enumerate possible tuples |
| 2269 | // and pick one. There are bounds on replication factor: [1, mask size] |
| 2270 | // (where RF=1 is an identity shuffle, RF=mask size is a broadcast shuffle) |
| 2271 | // Additionally, mask size is a replication factor multiplied by vector size, |
| 2272 | // which further significantly reduces the search space. |
| 2273 | |
| 2274 | // Before doing that, let's perform basic correctness checking first. |
| 2275 | int Largest = -1; |
| 2276 | for (int MaskElt : Mask) { |
| 2277 | if (MaskElt == PoisonMaskElem) |
| 2278 | continue; |
| 2279 | // Elements must be in non-decreasing order. |
| 2280 | if (MaskElt < Largest) |
| 2281 | return false; |
| 2282 | Largest = std::max(a: Largest, b: MaskElt); |
| 2283 | } |
| 2284 | |
| 2285 | // Prefer larger replication factor if all else equal. |
| 2286 | for (int PossibleReplicationFactor : |
| 2287 | reverse(C: seq_inclusive<unsigned>(Begin: 1, End: Mask.size()))) { |
| 2288 | if (Mask.size() % PossibleReplicationFactor != 0) |
| 2289 | continue; |
| 2290 | int PossibleVF = Mask.size() / PossibleReplicationFactor; |
| 2291 | if (!isReplicationMaskWithParams(Mask, ReplicationFactor: PossibleReplicationFactor, |
| 2292 | VF: PossibleVF)) |
| 2293 | continue; |
| 2294 | ReplicationFactor = PossibleReplicationFactor; |
| 2295 | VF = PossibleVF; |
| 2296 | return true; |
| 2297 | } |
| 2298 | |
| 2299 | return false; |
| 2300 | } |
| 2301 | |
| 2302 | bool ShuffleVectorInst::isReplicationMask(int &ReplicationFactor, |
| 2303 | int &VF) const { |
| 2304 | // Not possible to express a shuffle mask for a scalable vector for this |
| 2305 | // case. |
| 2306 | if (isa<ScalableVectorType>(Val: getType())) |
| 2307 | return false; |
| 2308 | |
| 2309 | VF = cast<FixedVectorType>(Val: Op<0>()->getType())->getNumElements(); |
| 2310 | if (ShuffleMask.size() % VF != 0) |
| 2311 | return false; |
| 2312 | ReplicationFactor = ShuffleMask.size() / VF; |
| 2313 | |
| 2314 | return isReplicationMaskWithParams(Mask: ShuffleMask, ReplicationFactor, VF); |
| 2315 | } |
| 2316 | |
| 2317 | bool ShuffleVectorInst::isOneUseSingleSourceMask(ArrayRef<int> Mask, int VF) { |
| 2318 | if (VF <= 0 || Mask.size() < static_cast<unsigned>(VF) || |
| 2319 | Mask.size() % VF != 0) |
| 2320 | return false; |
| 2321 | for (unsigned K = 0, Sz = Mask.size(); K < Sz; K += VF) { |
| 2322 | ArrayRef<int> SubMask = Mask.slice(N: K, M: VF); |
| 2323 | if (all_of(Range&: SubMask, P: [](int Idx) { return Idx == PoisonMaskElem; })) |
| 2324 | continue; |
| 2325 | SmallBitVector Used(VF, false); |
| 2326 | for (int Idx : SubMask) { |
| 2327 | if (Idx != PoisonMaskElem && Idx < VF) |
| 2328 | Used.set(Idx); |
| 2329 | } |
| 2330 | if (!Used.all()) |
| 2331 | return false; |
| 2332 | } |
| 2333 | return true; |
| 2334 | } |
| 2335 | |
| 2336 | /// Return true if this shuffle mask is a replication mask. |
| 2337 | bool ShuffleVectorInst::isOneUseSingleSourceMask(int VF) const { |
| 2338 | // Not possible to express a shuffle mask for a scalable vector for this |
| 2339 | // case. |
| 2340 | if (isa<ScalableVectorType>(Val: getType())) |
| 2341 | return false; |
| 2342 | if (!isSingleSourceMask(Mask: ShuffleMask, NumSrcElts: VF)) |
| 2343 | return false; |
| 2344 | |
| 2345 | return isOneUseSingleSourceMask(Mask: ShuffleMask, VF); |
| 2346 | } |
| 2347 | |
| 2348 | bool ShuffleVectorInst::isInterleave(unsigned Factor) { |
| 2349 | FixedVectorType *OpTy = dyn_cast<FixedVectorType>(Val: getOperand(i_nocapture: 0)->getType()); |
| 2350 | // shuffle_vector can only interleave fixed length vectors - for scalable |
| 2351 | // vectors, see the @llvm.vector.interleave2 intrinsic |
| 2352 | if (!OpTy) |
| 2353 | return false; |
| 2354 | unsigned OpNumElts = OpTy->getNumElements(); |
| 2355 | |
| 2356 | return isInterleaveMask(Mask: ShuffleMask, Factor, NumInputElts: OpNumElts * 2); |
| 2357 | } |
| 2358 | |
| 2359 | bool ShuffleVectorInst::isInterleaveMask( |
| 2360 | ArrayRef<int> Mask, unsigned Factor, unsigned NumInputElts, |
| 2361 | SmallVectorImpl<unsigned> &StartIndexes) { |
| 2362 | unsigned NumElts = Mask.size(); |
| 2363 | if (NumElts % Factor) |
| 2364 | return false; |
| 2365 | |
| 2366 | unsigned LaneLen = NumElts / Factor; |
| 2367 | if (!isPowerOf2_32(Value: LaneLen)) |
| 2368 | return false; |
| 2369 | |
| 2370 | StartIndexes.resize(N: Factor); |
| 2371 | |
| 2372 | // Check whether each element matches the general interleaved rule. |
| 2373 | // Ignore undef elements, as long as the defined elements match the rule. |
| 2374 | // Outer loop processes all factors (x, y, z in the above example) |
| 2375 | unsigned I = 0, J; |
| 2376 | for (; I < Factor; I++) { |
| 2377 | unsigned SavedLaneValue; |
| 2378 | unsigned SavedNoUndefs = 0; |
| 2379 | |
| 2380 | // Inner loop processes consecutive accesses (x, x+1... in the example) |
| 2381 | for (J = 0; J < LaneLen - 1; J++) { |
| 2382 | // Lane computes x's position in the Mask |
| 2383 | unsigned Lane = J * Factor + I; |
| 2384 | unsigned NextLane = Lane + Factor; |
| 2385 | int LaneValue = Mask[Lane]; |
| 2386 | int NextLaneValue = Mask[NextLane]; |
| 2387 | |
| 2388 | // If both are defined, values must be sequential |
| 2389 | if (LaneValue >= 0 && NextLaneValue >= 0 && |
| 2390 | LaneValue + 1 != NextLaneValue) |
| 2391 | break; |
| 2392 | |
| 2393 | // If the next value is undef, save the current one as reference |
| 2394 | if (LaneValue >= 0 && NextLaneValue < 0) { |
| 2395 | SavedLaneValue = LaneValue; |
| 2396 | SavedNoUndefs = 1; |
| 2397 | } |
| 2398 | |
| 2399 | // Undefs are allowed, but defined elements must still be consecutive: |
| 2400 | // i.e.: x,..., undef,..., x + 2,..., undef,..., undef,..., x + 5, .... |
| 2401 | // Verify this by storing the last non-undef followed by an undef |
| 2402 | // Check that following non-undef masks are incremented with the |
| 2403 | // corresponding distance. |
| 2404 | if (SavedNoUndefs > 0 && LaneValue < 0) { |
| 2405 | SavedNoUndefs++; |
| 2406 | if (NextLaneValue >= 0 && |
| 2407 | SavedLaneValue + SavedNoUndefs != (unsigned)NextLaneValue) |
| 2408 | break; |
| 2409 | } |
| 2410 | } |
| 2411 | |
| 2412 | if (J < LaneLen - 1) |
| 2413 | return false; |
| 2414 | |
| 2415 | int StartMask = 0; |
| 2416 | if (Mask[I] >= 0) { |
| 2417 | // Check that the start of the I range (J=0) is greater than 0 |
| 2418 | StartMask = Mask[I]; |
| 2419 | } else if (Mask[(LaneLen - 1) * Factor + I] >= 0) { |
| 2420 | // StartMask defined by the last value in lane |
| 2421 | StartMask = Mask[(LaneLen - 1) * Factor + I] - J; |
| 2422 | } else if (SavedNoUndefs > 0) { |
| 2423 | // StartMask defined by some non-zero value in the j loop |
| 2424 | StartMask = SavedLaneValue - (LaneLen - 1 - SavedNoUndefs); |
| 2425 | } |
| 2426 | // else StartMask remains set to 0, i.e. all elements are undefs |
| 2427 | |
| 2428 | if (StartMask < 0) |
| 2429 | return false; |
| 2430 | // We must stay within the vectors; This case can happen with undefs. |
| 2431 | if (StartMask + LaneLen > NumInputElts) |
| 2432 | return false; |
| 2433 | |
| 2434 | StartIndexes[I] = StartMask; |
| 2435 | } |
| 2436 | |
| 2437 | return true; |
| 2438 | } |
| 2439 | |
| 2440 | /// Check if the mask is a DE-interleave mask of the given factor |
| 2441 | /// \p Factor like: |
| 2442 | /// <Index, Index+Factor, ..., Index+(NumElts-1)*Factor> |
| 2443 | bool ShuffleVectorInst::isDeInterleaveMaskOfFactor(ArrayRef<int> Mask, |
| 2444 | unsigned Factor, |
| 2445 | unsigned &Index) { |
| 2446 | // Check all potential start indices from 0 to (Factor - 1). |
| 2447 | for (unsigned Idx = 0; Idx < Factor; Idx++) { |
| 2448 | unsigned I = 0; |
| 2449 | |
| 2450 | // Check that elements are in ascending order by Factor. Ignore undef |
| 2451 | // elements. |
| 2452 | for (; I < Mask.size(); I++) |
| 2453 | if (Mask[I] >= 0 && static_cast<unsigned>(Mask[I]) != Idx + I * Factor) |
| 2454 | break; |
| 2455 | |
| 2456 | if (I == Mask.size()) { |
| 2457 | Index = Idx; |
| 2458 | return true; |
| 2459 | } |
| 2460 | } |
| 2461 | |
| 2462 | return false; |
| 2463 | } |
| 2464 | |
| 2465 | /// Try to lower a vector shuffle as a bit rotation. |
| 2466 | /// |
| 2467 | /// Look for a repeated rotation pattern in each sub group. |
| 2468 | /// Returns an element-wise left bit rotation amount or -1 if failed. |
| 2469 | static int matchShuffleAsBitRotate(ArrayRef<int> Mask, int NumSubElts) { |
| 2470 | int NumElts = Mask.size(); |
| 2471 | assert((NumElts % NumSubElts) == 0 && "Illegal shuffle mask" ); |
| 2472 | |
| 2473 | int RotateAmt = -1; |
| 2474 | for (int i = 0; i != NumElts; i += NumSubElts) { |
| 2475 | for (int j = 0; j != NumSubElts; ++j) { |
| 2476 | int M = Mask[i + j]; |
| 2477 | if (M < 0) |
| 2478 | continue; |
| 2479 | if (M < i || M >= i + NumSubElts) |
| 2480 | return -1; |
| 2481 | int Offset = (NumSubElts - (M - (i + j))) % NumSubElts; |
| 2482 | if (0 <= RotateAmt && Offset != RotateAmt) |
| 2483 | return -1; |
| 2484 | RotateAmt = Offset; |
| 2485 | } |
| 2486 | } |
| 2487 | return RotateAmt; |
| 2488 | } |
| 2489 | |
| 2490 | bool ShuffleVectorInst::isBitRotateMask( |
| 2491 | ArrayRef<int> Mask, unsigned EltSizeInBits, unsigned MinSubElts, |
| 2492 | unsigned MaxSubElts, unsigned &NumSubElts, unsigned &RotateAmt) { |
| 2493 | for (NumSubElts = MinSubElts; NumSubElts <= MaxSubElts; NumSubElts *= 2) { |
| 2494 | int EltRotateAmt = matchShuffleAsBitRotate(Mask, NumSubElts); |
| 2495 | if (EltRotateAmt < 0) |
| 2496 | continue; |
| 2497 | RotateAmt = EltRotateAmt * EltSizeInBits; |
| 2498 | return true; |
| 2499 | } |
| 2500 | |
| 2501 | return false; |
| 2502 | } |
| 2503 | |
| 2504 | //===----------------------------------------------------------------------===// |
| 2505 | // InsertValueInst Class |
| 2506 | //===----------------------------------------------------------------------===// |
| 2507 | |
| 2508 | void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, |
| 2509 | const Twine &Name) { |
| 2510 | assert(getNumOperands() == 2 && "NumOperands not initialized?" ); |
| 2511 | |
| 2512 | // There's no fundamental reason why we require at least one index |
| 2513 | // (other than weirdness with &*IdxBegin being invalid; see |
| 2514 | // getelementptr's init routine for example). But there's no |
| 2515 | // present need to support it. |
| 2516 | assert(!Idxs.empty() && "InsertValueInst must have at least one index" ); |
| 2517 | |
| 2518 | assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) == |
| 2519 | Val->getType() && "Inserted value must match indexed type!" ); |
| 2520 | Op<0>() = Agg; |
| 2521 | Op<1>() = Val; |
| 2522 | |
| 2523 | Indices.append(in_start: Idxs.begin(), in_end: Idxs.end()); |
| 2524 | setName(Name); |
| 2525 | } |
| 2526 | |
| 2527 | InsertValueInst::InsertValueInst(const InsertValueInst &IVI) |
| 2528 | : Instruction(IVI.getType(), InsertValue, AllocMarker), |
| 2529 | Indices(IVI.Indices) { |
| 2530 | Op<0>() = IVI.getOperand(i_nocapture: 0); |
| 2531 | Op<1>() = IVI.getOperand(i_nocapture: 1); |
| 2532 | SubclassOptionalData = IVI.SubclassOptionalData; |
| 2533 | } |
| 2534 | |
| 2535 | //===----------------------------------------------------------------------===// |
| 2536 | // ExtractValueInst Class |
| 2537 | //===----------------------------------------------------------------------===// |
| 2538 | |
| 2539 | void ExtractValueInst::(ArrayRef<unsigned> Idxs, const Twine &Name) { |
| 2540 | assert(getNumOperands() == 1 && "NumOperands not initialized?" ); |
| 2541 | |
| 2542 | // There's no fundamental reason why we require at least one index. |
| 2543 | // But there's no present need to support it. |
| 2544 | assert(!Idxs.empty() && "ExtractValueInst must have at least one index" ); |
| 2545 | |
| 2546 | Indices.append(in_start: Idxs.begin(), in_end: Idxs.end()); |
| 2547 | setName(Name); |
| 2548 | } |
| 2549 | |
| 2550 | ExtractValueInst::(const ExtractValueInst &EVI) |
| 2551 | : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(i_nocapture: 0), |
| 2552 | (BasicBlock *)nullptr), |
| 2553 | Indices(EVI.Indices) { |
| 2554 | SubclassOptionalData = EVI.SubclassOptionalData; |
| 2555 | } |
| 2556 | |
| 2557 | // getIndexedType - Returns the type of the element that would be extracted |
| 2558 | // with an extractvalue instruction with the specified parameters. |
| 2559 | // |
| 2560 | // A null type is returned if the indices are invalid for the specified |
| 2561 | // pointer type. |
| 2562 | // |
| 2563 | Type *ExtractValueInst::(Type *Agg, |
| 2564 | ArrayRef<unsigned> Idxs) { |
| 2565 | for (unsigned Index : Idxs) { |
| 2566 | // We can't use CompositeType::indexValid(Index) here. |
| 2567 | // indexValid() always returns true for arrays because getelementptr allows |
| 2568 | // out-of-bounds indices. Since we don't allow those for extractvalue and |
| 2569 | // insertvalue we need to check array indexing manually. |
| 2570 | // Since the only other types we can index into are struct types it's just |
| 2571 | // as easy to check those manually as well. |
| 2572 | if (ArrayType *AT = dyn_cast<ArrayType>(Val: Agg)) { |
| 2573 | if (Index >= AT->getNumElements()) |
| 2574 | return nullptr; |
| 2575 | Agg = AT->getElementType(); |
| 2576 | } else if (StructType *ST = dyn_cast<StructType>(Val: Agg)) { |
| 2577 | if (Index >= ST->getNumElements()) |
| 2578 | return nullptr; |
| 2579 | Agg = ST->getElementType(N: Index); |
| 2580 | } else { |
| 2581 | // Not a valid type to index into. |
| 2582 | return nullptr; |
| 2583 | } |
| 2584 | } |
| 2585 | return Agg; |
| 2586 | } |
| 2587 | |
| 2588 | //===----------------------------------------------------------------------===// |
| 2589 | // UnaryOperator Class |
| 2590 | //===----------------------------------------------------------------------===// |
| 2591 | |
| 2592 | UnaryOperator::UnaryOperator(UnaryOps iType, Value *S, Type *Ty, |
| 2593 | const Twine &Name, InsertPosition InsertBefore) |
| 2594 | : UnaryInstruction(Ty, iType, S, InsertBefore) { |
| 2595 | Op<0>() = S; |
| 2596 | setName(Name); |
| 2597 | AssertOK(); |
| 2598 | } |
| 2599 | |
| 2600 | UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S, const Twine &Name, |
| 2601 | InsertPosition InsertBefore) { |
| 2602 | return new UnaryOperator(Op, S, S->getType(), Name, InsertBefore); |
| 2603 | } |
| 2604 | |
| 2605 | void UnaryOperator::AssertOK() { |
| 2606 | Value *LHS = getOperand(i_nocapture: 0); |
| 2607 | (void)LHS; // Silence warnings. |
| 2608 | #ifndef NDEBUG |
| 2609 | switch (getOpcode()) { |
| 2610 | case FNeg: |
| 2611 | assert(getType() == LHS->getType() && |
| 2612 | "Unary operation should return same type as operand!" ); |
| 2613 | assert(getType()->isFPOrFPVectorTy() && |
| 2614 | "Tried to create a floating-point operation on a " |
| 2615 | "non-floating-point type!" ); |
| 2616 | break; |
| 2617 | default: llvm_unreachable("Invalid opcode provided" ); |
| 2618 | } |
| 2619 | #endif |
| 2620 | } |
| 2621 | |
| 2622 | //===----------------------------------------------------------------------===// |
| 2623 | // BinaryOperator Class |
| 2624 | //===----------------------------------------------------------------------===// |
| 2625 | |
| 2626 | BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, Type *Ty, |
| 2627 | const Twine &Name, InsertPosition InsertBefore) |
| 2628 | : Instruction(Ty, iType, AllocMarker, InsertBefore) { |
| 2629 | Op<0>() = S1; |
| 2630 | Op<1>() = S2; |
| 2631 | setName(Name); |
| 2632 | AssertOK(); |
| 2633 | } |
| 2634 | |
| 2635 | void BinaryOperator::AssertOK() { |
| 2636 | Value *LHS = getOperand(i_nocapture: 0), *RHS = getOperand(i_nocapture: 1); |
| 2637 | (void)LHS; (void)RHS; // Silence warnings. |
| 2638 | assert(LHS->getType() == RHS->getType() && |
| 2639 | "Binary operator operand types must match!" ); |
| 2640 | #ifndef NDEBUG |
| 2641 | switch (getOpcode()) { |
| 2642 | case Add: case Sub: |
| 2643 | case Mul: |
| 2644 | assert(getType() == LHS->getType() && |
| 2645 | "Arithmetic operation should return same type as operands!" ); |
| 2646 | assert(getType()->isIntOrIntVectorTy() && |
| 2647 | "Tried to create an integer operation on a non-integer type!" ); |
| 2648 | break; |
| 2649 | case FAdd: case FSub: |
| 2650 | case FMul: |
| 2651 | assert(getType() == LHS->getType() && |
| 2652 | "Arithmetic operation should return same type as operands!" ); |
| 2653 | assert(getType()->isFPOrFPVectorTy() && |
| 2654 | "Tried to create a floating-point operation on a " |
| 2655 | "non-floating-point type!" ); |
| 2656 | break; |
| 2657 | case UDiv: |
| 2658 | case SDiv: |
| 2659 | assert(getType() == LHS->getType() && |
| 2660 | "Arithmetic operation should return same type as operands!" ); |
| 2661 | assert(getType()->isIntOrIntVectorTy() && |
| 2662 | "Incorrect operand type (not integer) for S/UDIV" ); |
| 2663 | break; |
| 2664 | case FDiv: |
| 2665 | assert(getType() == LHS->getType() && |
| 2666 | "Arithmetic operation should return same type as operands!" ); |
| 2667 | assert(getType()->isFPOrFPVectorTy() && |
| 2668 | "Incorrect operand type (not floating point) for FDIV" ); |
| 2669 | break; |
| 2670 | case URem: |
| 2671 | case SRem: |
| 2672 | assert(getType() == LHS->getType() && |
| 2673 | "Arithmetic operation should return same type as operands!" ); |
| 2674 | assert(getType()->isIntOrIntVectorTy() && |
| 2675 | "Incorrect operand type (not integer) for S/UREM" ); |
| 2676 | break; |
| 2677 | case FRem: |
| 2678 | assert(getType() == LHS->getType() && |
| 2679 | "Arithmetic operation should return same type as operands!" ); |
| 2680 | assert(getType()->isFPOrFPVectorTy() && |
| 2681 | "Incorrect operand type (not floating point) for FREM" ); |
| 2682 | break; |
| 2683 | case Shl: |
| 2684 | case LShr: |
| 2685 | case AShr: |
| 2686 | assert(getType() == LHS->getType() && |
| 2687 | "Shift operation should return same type as operands!" ); |
| 2688 | assert(getType()->isIntOrIntVectorTy() && |
| 2689 | "Tried to create a shift operation on a non-integral type!" ); |
| 2690 | break; |
| 2691 | case And: case Or: |
| 2692 | case Xor: |
| 2693 | assert(getType() == LHS->getType() && |
| 2694 | "Logical operation should return same type as operands!" ); |
| 2695 | assert(getType()->isIntOrIntVectorTy() && |
| 2696 | "Tried to create a logical operation on a non-integral type!" ); |
| 2697 | break; |
| 2698 | default: llvm_unreachable("Invalid opcode provided" ); |
| 2699 | } |
| 2700 | #endif |
| 2701 | } |
| 2702 | |
| 2703 | BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2, |
| 2704 | const Twine &Name, |
| 2705 | InsertPosition InsertBefore) { |
| 2706 | assert(S1->getType() == S2->getType() && |
| 2707 | "Cannot create binary operator with two operands of differing type!" ); |
| 2708 | return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore); |
| 2709 | } |
| 2710 | |
| 2711 | BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name, |
| 2712 | InsertPosition InsertBefore) { |
| 2713 | Value *Zero = ConstantInt::get(Ty: Op->getType(), V: 0); |
| 2714 | return new BinaryOperator(Instruction::Sub, Zero, Op, Op->getType(), Name, |
| 2715 | InsertBefore); |
| 2716 | } |
| 2717 | |
| 2718 | BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name, |
| 2719 | InsertPosition InsertBefore) { |
| 2720 | Value *Zero = ConstantInt::get(Ty: Op->getType(), V: 0); |
| 2721 | return BinaryOperator::CreateNSWSub(V1: Zero, V2: Op, Name, InsertBefore); |
| 2722 | } |
| 2723 | |
| 2724 | BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name, |
| 2725 | InsertPosition InsertBefore) { |
| 2726 | Constant *C = Constant::getAllOnesValue(Ty: Op->getType()); |
| 2727 | return new BinaryOperator(Instruction::Xor, Op, C, |
| 2728 | Op->getType(), Name, InsertBefore); |
| 2729 | } |
| 2730 | |
| 2731 | // Exchange the two operands to this instruction. This instruction is safe to |
| 2732 | // use on any binary instruction and does not modify the semantics of the |
| 2733 | // instruction. |
| 2734 | bool BinaryOperator::swapOperands() { |
| 2735 | if (!isCommutative()) |
| 2736 | return true; // Can't commute operands |
| 2737 | Op<0>().swap(RHS&: Op<1>()); |
| 2738 | return false; |
| 2739 | } |
| 2740 | |
| 2741 | //===----------------------------------------------------------------------===// |
| 2742 | // FPMathOperator Class |
| 2743 | //===----------------------------------------------------------------------===// |
| 2744 | |
| 2745 | float FPMathOperator::getFPAccuracy() const { |
| 2746 | const MDNode *MD = |
| 2747 | cast<Instruction>(Val: this)->getMetadata(KindID: LLVMContext::MD_fpmath); |
| 2748 | if (!MD) |
| 2749 | return 0.0; |
| 2750 | ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD: MD->getOperand(I: 0)); |
| 2751 | return Accuracy->getValueAPF().convertToFloat(); |
| 2752 | } |
| 2753 | |
| 2754 | //===----------------------------------------------------------------------===// |
| 2755 | // CastInst Class |
| 2756 | //===----------------------------------------------------------------------===// |
| 2757 | |
| 2758 | // Just determine if this cast only deals with integral->integral conversion. |
| 2759 | bool CastInst::isIntegerCast() const { |
| 2760 | switch (getOpcode()) { |
| 2761 | default: return false; |
| 2762 | case Instruction::ZExt: |
| 2763 | case Instruction::SExt: |
| 2764 | case Instruction::Trunc: |
| 2765 | return true; |
| 2766 | case Instruction::BitCast: |
| 2767 | return getOperand(i_nocapture: 0)->getType()->isIntegerTy() && |
| 2768 | getType()->isIntegerTy(); |
| 2769 | } |
| 2770 | } |
| 2771 | |
| 2772 | /// This function determines if the CastInst does not require any bits to be |
| 2773 | /// changed in order to effect the cast. Essentially, it identifies cases where |
| 2774 | /// no code gen is necessary for the cast, hence the name no-op cast. For |
| 2775 | /// example, the following are all no-op casts: |
| 2776 | /// # bitcast i32* %x to i8* |
| 2777 | /// # bitcast <2 x i32> %x to <4 x i16> |
| 2778 | /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only |
| 2779 | /// Determine if the described cast is a no-op. |
| 2780 | bool CastInst::isNoopCast(Instruction::CastOps Opcode, |
| 2781 | Type *SrcTy, |
| 2782 | Type *DestTy, |
| 2783 | const DataLayout &DL) { |
| 2784 | assert(castIsValid(Opcode, SrcTy, DestTy) && "method precondition" ); |
| 2785 | switch (Opcode) { |
| 2786 | default: llvm_unreachable("Invalid CastOp" ); |
| 2787 | case Instruction::Trunc: |
| 2788 | case Instruction::ZExt: |
| 2789 | case Instruction::SExt: |
| 2790 | case Instruction::FPTrunc: |
| 2791 | case Instruction::FPExt: |
| 2792 | case Instruction::UIToFP: |
| 2793 | case Instruction::SIToFP: |
| 2794 | case Instruction::FPToUI: |
| 2795 | case Instruction::FPToSI: |
| 2796 | case Instruction::AddrSpaceCast: |
| 2797 | // TODO: Target informations may give a more accurate answer here. |
| 2798 | return false; |
| 2799 | case Instruction::BitCast: |
| 2800 | return true; // BitCast never modifies bits. |
| 2801 | case Instruction::PtrToInt: |
| 2802 | return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() == |
| 2803 | DestTy->getScalarSizeInBits(); |
| 2804 | case Instruction::IntToPtr: |
| 2805 | return DL.getIntPtrType(DestTy)->getScalarSizeInBits() == |
| 2806 | SrcTy->getScalarSizeInBits(); |
| 2807 | } |
| 2808 | } |
| 2809 | |
| 2810 | bool CastInst::isNoopCast(const DataLayout &DL) const { |
| 2811 | return isNoopCast(Opcode: getOpcode(), SrcTy: getOperand(i_nocapture: 0)->getType(), DestTy: getType(), DL); |
| 2812 | } |
| 2813 | |
| 2814 | /// This function determines if a pair of casts can be eliminated and what |
| 2815 | /// opcode should be used in the elimination. This assumes that there are two |
| 2816 | /// instructions like this: |
| 2817 | /// * %F = firstOpcode SrcTy %x to MidTy |
| 2818 | /// * %S = secondOpcode MidTy %F to DstTy |
| 2819 | /// The function returns a resultOpcode so these two casts can be replaced with: |
| 2820 | /// * %Replacement = resultOpcode %SrcTy %x to DstTy |
| 2821 | /// If no such cast is permitted, the function returns 0. |
| 2822 | unsigned CastInst::isEliminableCastPair( |
| 2823 | Instruction::CastOps firstOp, Instruction::CastOps secondOp, |
| 2824 | Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy, |
| 2825 | Type *DstIntPtrTy) { |
| 2826 | // Define the 144 possibilities for these two cast instructions. The values |
| 2827 | // in this matrix determine what to do in a given situation and select the |
| 2828 | // case in the switch below. The rows correspond to firstOp, the columns |
| 2829 | // correspond to secondOp. In looking at the table below, keep in mind |
| 2830 | // the following cast properties: |
| 2831 | // |
| 2832 | // Size Compare Source Destination |
| 2833 | // Operator Src ? Size Type Sign Type Sign |
| 2834 | // -------- ------------ ------------------- --------------------- |
| 2835 | // TRUNC > Integer Any Integral Any |
| 2836 | // ZEXT < Integral Unsigned Integer Any |
| 2837 | // SEXT < Integral Signed Integer Any |
| 2838 | // FPTOUI n/a FloatPt n/a Integral Unsigned |
| 2839 | // FPTOSI n/a FloatPt n/a Integral Signed |
| 2840 | // UITOFP n/a Integral Unsigned FloatPt n/a |
| 2841 | // SITOFP n/a Integral Signed FloatPt n/a |
| 2842 | // FPTRUNC > FloatPt n/a FloatPt n/a |
| 2843 | // FPEXT < FloatPt n/a FloatPt n/a |
| 2844 | // PTRTOINT n/a Pointer n/a Integral Unsigned |
| 2845 | // INTTOPTR n/a Integral Unsigned Pointer n/a |
| 2846 | // BITCAST = FirstClass n/a FirstClass n/a |
| 2847 | // ADDRSPCST n/a Pointer n/a Pointer n/a |
| 2848 | // |
| 2849 | // NOTE: some transforms are safe, but we consider them to be non-profitable. |
| 2850 | // For example, we could merge "fptoui double to i32" + "zext i32 to i64", |
| 2851 | // into "fptoui double to i64", but this loses information about the range |
| 2852 | // of the produced value (we no longer know the top-part is all zeros). |
| 2853 | // Further this conversion is often much more expensive for typical hardware, |
| 2854 | // and causes issues when building libgcc. We disallow fptosi+sext for the |
| 2855 | // same reason. |
| 2856 | const unsigned numCastOps = |
| 2857 | Instruction::CastOpsEnd - Instruction::CastOpsBegin; |
| 2858 | static const uint8_t CastResults[numCastOps][numCastOps] = { |
| 2859 | // T F F U S F F P I B A -+ |
| 2860 | // R Z S P P I I T P 2 N T S | |
| 2861 | // U E E 2 2 2 2 R E I T C C +- secondOp |
| 2862 | // N X X U S F F N X N 2 V V | |
| 2863 | // C T T I I P P C T T P T T -+ |
| 2864 | { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc -+ |
| 2865 | { 8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt | |
| 2866 | { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt | |
| 2867 | { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI | |
| 2868 | { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI | |
| 2869 | { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP +- firstOp |
| 2870 | { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP | |
| 2871 | { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc | |
| 2872 | { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt | |
| 2873 | { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt | |
| 2874 | { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr | |
| 2875 | { 5, 5, 5, 0, 0, 5, 5, 0, 0,16, 5, 1,14}, // BitCast | |
| 2876 | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+ |
| 2877 | }; |
| 2878 | |
| 2879 | // TODO: This logic could be encoded into the table above and handled in the |
| 2880 | // switch below. |
| 2881 | // If either of the casts are a bitcast from scalar to vector, disallow the |
| 2882 | // merging. However, any pair of bitcasts are allowed. |
| 2883 | bool IsFirstBitcast = (firstOp == Instruction::BitCast); |
| 2884 | bool IsSecondBitcast = (secondOp == Instruction::BitCast); |
| 2885 | bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast; |
| 2886 | |
| 2887 | // Check if any of the casts convert scalars <-> vectors. |
| 2888 | if ((IsFirstBitcast && isa<VectorType>(Val: SrcTy) != isa<VectorType>(Val: MidTy)) || |
| 2889 | (IsSecondBitcast && isa<VectorType>(Val: MidTy) != isa<VectorType>(Val: DstTy))) |
| 2890 | if (!AreBothBitcasts) |
| 2891 | return 0; |
| 2892 | |
| 2893 | int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin] |
| 2894 | [secondOp-Instruction::CastOpsBegin]; |
| 2895 | switch (ElimCase) { |
| 2896 | case 0: |
| 2897 | // Categorically disallowed. |
| 2898 | return 0; |
| 2899 | case 1: |
| 2900 | // Allowed, use first cast's opcode. |
| 2901 | return firstOp; |
| 2902 | case 2: |
| 2903 | // Allowed, use second cast's opcode. |
| 2904 | return secondOp; |
| 2905 | case 3: |
| 2906 | // No-op cast in second op implies firstOp as long as the DestTy |
| 2907 | // is integer and we are not converting between a vector and a |
| 2908 | // non-vector type. |
| 2909 | if (!SrcTy->isVectorTy() && DstTy->isIntegerTy()) |
| 2910 | return firstOp; |
| 2911 | return 0; |
| 2912 | case 4: |
| 2913 | // No-op cast in second op implies firstOp as long as the DestTy |
| 2914 | // matches MidTy. |
| 2915 | if (DstTy == MidTy) |
| 2916 | return firstOp; |
| 2917 | return 0; |
| 2918 | case 5: |
| 2919 | // No-op cast in first op implies secondOp as long as the SrcTy |
| 2920 | // is an integer. |
| 2921 | if (SrcTy->isIntegerTy()) |
| 2922 | return secondOp; |
| 2923 | return 0; |
| 2924 | case 7: { |
| 2925 | // Disable inttoptr/ptrtoint optimization if enabled. |
| 2926 | if (DisableI2pP2iOpt) |
| 2927 | return 0; |
| 2928 | |
| 2929 | // Cannot simplify if address spaces are different! |
| 2930 | if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) |
| 2931 | return 0; |
| 2932 | |
| 2933 | unsigned MidSize = MidTy->getScalarSizeInBits(); |
| 2934 | // We can still fold this without knowing the actual sizes as long we |
| 2935 | // know that the intermediate pointer is the largest possible |
| 2936 | // pointer size. |
| 2937 | // FIXME: Is this always true? |
| 2938 | if (MidSize == 64) |
| 2939 | return Instruction::BitCast; |
| 2940 | |
| 2941 | // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size. |
| 2942 | if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy) |
| 2943 | return 0; |
| 2944 | unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits(); |
| 2945 | if (MidSize >= PtrSize) |
| 2946 | return Instruction::BitCast; |
| 2947 | return 0; |
| 2948 | } |
| 2949 | case 8: { |
| 2950 | // ext, trunc -> bitcast, if the SrcTy and DstTy are the same |
| 2951 | // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy) |
| 2952 | // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy) |
| 2953 | unsigned SrcSize = SrcTy->getScalarSizeInBits(); |
| 2954 | unsigned DstSize = DstTy->getScalarSizeInBits(); |
| 2955 | if (SrcTy == DstTy) |
| 2956 | return Instruction::BitCast; |
| 2957 | if (SrcSize < DstSize) |
| 2958 | return firstOp; |
| 2959 | if (SrcSize > DstSize) |
| 2960 | return secondOp; |
| 2961 | return 0; |
| 2962 | } |
| 2963 | case 9: |
| 2964 | // zext, sext -> zext, because sext can't sign extend after zext |
| 2965 | return Instruction::ZExt; |
| 2966 | case 11: { |
| 2967 | // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize |
| 2968 | if (!MidIntPtrTy) |
| 2969 | return 0; |
| 2970 | unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits(); |
| 2971 | unsigned SrcSize = SrcTy->getScalarSizeInBits(); |
| 2972 | unsigned DstSize = DstTy->getScalarSizeInBits(); |
| 2973 | if (SrcSize <= PtrSize && SrcSize == DstSize) |
| 2974 | return Instruction::BitCast; |
| 2975 | return 0; |
| 2976 | } |
| 2977 | case 12: |
| 2978 | // addrspacecast, addrspacecast -> bitcast, if SrcAS == DstAS |
| 2979 | // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS |
| 2980 | if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) |
| 2981 | return Instruction::AddrSpaceCast; |
| 2982 | return Instruction::BitCast; |
| 2983 | case 13: |
| 2984 | // FIXME: this state can be merged with (1), but the following assert |
| 2985 | // is useful to check the correcteness of the sequence due to semantic |
| 2986 | // change of bitcast. |
| 2987 | assert( |
| 2988 | SrcTy->isPtrOrPtrVectorTy() && |
| 2989 | MidTy->isPtrOrPtrVectorTy() && |
| 2990 | DstTy->isPtrOrPtrVectorTy() && |
| 2991 | SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() && |
| 2992 | MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() && |
| 2993 | "Illegal addrspacecast, bitcast sequence!" ); |
| 2994 | // Allowed, use first cast's opcode |
| 2995 | return firstOp; |
| 2996 | case 14: |
| 2997 | // bitcast, addrspacecast -> addrspacecast |
| 2998 | return Instruction::AddrSpaceCast; |
| 2999 | case 15: |
| 3000 | // FIXME: this state can be merged with (1), but the following assert |
| 3001 | // is useful to check the correcteness of the sequence due to semantic |
| 3002 | // change of bitcast. |
| 3003 | assert( |
| 3004 | SrcTy->isIntOrIntVectorTy() && |
| 3005 | MidTy->isPtrOrPtrVectorTy() && |
| 3006 | DstTy->isPtrOrPtrVectorTy() && |
| 3007 | MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() && |
| 3008 | "Illegal inttoptr, bitcast sequence!" ); |
| 3009 | // Allowed, use first cast's opcode |
| 3010 | return firstOp; |
| 3011 | case 16: |
| 3012 | // FIXME: this state can be merged with (2), but the following assert |
| 3013 | // is useful to check the correcteness of the sequence due to semantic |
| 3014 | // change of bitcast. |
| 3015 | assert( |
| 3016 | SrcTy->isPtrOrPtrVectorTy() && |
| 3017 | MidTy->isPtrOrPtrVectorTy() && |
| 3018 | DstTy->isIntOrIntVectorTy() && |
| 3019 | SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() && |
| 3020 | "Illegal bitcast, ptrtoint sequence!" ); |
| 3021 | // Allowed, use second cast's opcode |
| 3022 | return secondOp; |
| 3023 | case 17: |
| 3024 | // (sitofp (zext x)) -> (uitofp x) |
| 3025 | return Instruction::UIToFP; |
| 3026 | case 99: |
| 3027 | // Cast combination can't happen (error in input). This is for all cases |
| 3028 | // where the MidTy is not the same for the two cast instructions. |
| 3029 | llvm_unreachable("Invalid Cast Combination" ); |
| 3030 | default: |
| 3031 | llvm_unreachable("Error in CastResults table!!!" ); |
| 3032 | } |
| 3033 | } |
| 3034 | |
| 3035 | CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty, |
| 3036 | const Twine &Name, InsertPosition InsertBefore) { |
| 3037 | assert(castIsValid(op, S, Ty) && "Invalid cast!" ); |
| 3038 | // Construct and return the appropriate CastInst subclass |
| 3039 | switch (op) { |
| 3040 | case Trunc: return new TruncInst (S, Ty, Name, InsertBefore); |
| 3041 | case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore); |
| 3042 | case SExt: return new SExtInst (S, Ty, Name, InsertBefore); |
| 3043 | case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore); |
| 3044 | case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore); |
| 3045 | case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore); |
| 3046 | case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore); |
| 3047 | case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore); |
| 3048 | case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore); |
| 3049 | case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore); |
| 3050 | case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore); |
| 3051 | case BitCast: |
| 3052 | return new BitCastInst(S, Ty, Name, InsertBefore); |
| 3053 | case AddrSpaceCast: |
| 3054 | return new AddrSpaceCastInst(S, Ty, Name, InsertBefore); |
| 3055 | default: |
| 3056 | llvm_unreachable("Invalid opcode provided" ); |
| 3057 | } |
| 3058 | } |
| 3059 | |
| 3060 | CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, const Twine &Name, |
| 3061 | InsertPosition InsertBefore) { |
| 3062 | if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) |
| 3063 | return Create(op: Instruction::BitCast, S, Ty, Name, InsertBefore); |
| 3064 | return Create(op: Instruction::ZExt, S, Ty, Name, InsertBefore); |
| 3065 | } |
| 3066 | |
| 3067 | CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, const Twine &Name, |
| 3068 | InsertPosition InsertBefore) { |
| 3069 | if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) |
| 3070 | return Create(op: Instruction::BitCast, S, Ty, Name, InsertBefore); |
| 3071 | return Create(op: Instruction::SExt, S, Ty, Name, InsertBefore); |
| 3072 | } |
| 3073 | |
| 3074 | CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty, const Twine &Name, |
| 3075 | InsertPosition InsertBefore) { |
| 3076 | if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) |
| 3077 | return Create(op: Instruction::BitCast, S, Ty, Name, InsertBefore); |
| 3078 | return Create(op: Instruction::Trunc, S, Ty, Name, InsertBefore); |
| 3079 | } |
| 3080 | |
| 3081 | /// Create a BitCast or a PtrToInt cast instruction |
| 3082 | CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty, const Twine &Name, |
| 3083 | InsertPosition InsertBefore) { |
| 3084 | assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast" ); |
| 3085 | assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && |
| 3086 | "Invalid cast" ); |
| 3087 | assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast" ); |
| 3088 | assert((!Ty->isVectorTy() || |
| 3089 | cast<VectorType>(Ty)->getElementCount() == |
| 3090 | cast<VectorType>(S->getType())->getElementCount()) && |
| 3091 | "Invalid cast" ); |
| 3092 | |
| 3093 | if (Ty->isIntOrIntVectorTy()) |
| 3094 | return Create(op: Instruction::PtrToInt, S, Ty, Name, InsertBefore); |
| 3095 | |
| 3096 | return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore); |
| 3097 | } |
| 3098 | |
| 3099 | CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast( |
| 3100 | Value *S, Type *Ty, const Twine &Name, InsertPosition InsertBefore) { |
| 3101 | assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast" ); |
| 3102 | assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast" ); |
| 3103 | |
| 3104 | if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace()) |
| 3105 | return Create(op: Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore); |
| 3106 | |
| 3107 | return Create(op: Instruction::BitCast, S, Ty, Name, InsertBefore); |
| 3108 | } |
| 3109 | |
| 3110 | CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty, |
| 3111 | const Twine &Name, |
| 3112 | InsertPosition InsertBefore) { |
| 3113 | if (S->getType()->isPointerTy() && Ty->isIntegerTy()) |
| 3114 | return Create(op: Instruction::PtrToInt, S, Ty, Name, InsertBefore); |
| 3115 | if (S->getType()->isIntegerTy() && Ty->isPointerTy()) |
| 3116 | return Create(op: Instruction::IntToPtr, S, Ty, Name, InsertBefore); |
| 3117 | |
| 3118 | return Create(op: Instruction::BitCast, S, Ty, Name, InsertBefore); |
| 3119 | } |
| 3120 | |
| 3121 | CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, bool isSigned, |
| 3122 | const Twine &Name, |
| 3123 | InsertPosition InsertBefore) { |
| 3124 | assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && |
| 3125 | "Invalid integer cast" ); |
| 3126 | unsigned SrcBits = C->getType()->getScalarSizeInBits(); |
| 3127 | unsigned DstBits = Ty->getScalarSizeInBits(); |
| 3128 | Instruction::CastOps opcode = |
| 3129 | (SrcBits == DstBits ? Instruction::BitCast : |
| 3130 | (SrcBits > DstBits ? Instruction::Trunc : |
| 3131 | (isSigned ? Instruction::SExt : Instruction::ZExt))); |
| 3132 | return Create(op: opcode, S: C, Ty, Name, InsertBefore); |
| 3133 | } |
| 3134 | |
| 3135 | CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, const Twine &Name, |
| 3136 | InsertPosition InsertBefore) { |
| 3137 | assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && |
| 3138 | "Invalid cast" ); |
| 3139 | unsigned SrcBits = C->getType()->getScalarSizeInBits(); |
| 3140 | unsigned DstBits = Ty->getScalarSizeInBits(); |
| 3141 | assert((C->getType() == Ty || SrcBits != DstBits) && "Invalid cast" ); |
| 3142 | Instruction::CastOps opcode = |
| 3143 | (SrcBits == DstBits ? Instruction::BitCast : |
| 3144 | (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt)); |
| 3145 | return Create(op: opcode, S: C, Ty, Name, InsertBefore); |
| 3146 | } |
| 3147 | |
| 3148 | bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) { |
| 3149 | if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType()) |
| 3150 | return false; |
| 3151 | |
| 3152 | if (SrcTy == DestTy) |
| 3153 | return true; |
| 3154 | |
| 3155 | if (VectorType *SrcVecTy = dyn_cast<VectorType>(Val: SrcTy)) { |
| 3156 | if (VectorType *DestVecTy = dyn_cast<VectorType>(Val: DestTy)) { |
| 3157 | if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) { |
| 3158 | // An element by element cast. Valid if casting the elements is valid. |
| 3159 | SrcTy = SrcVecTy->getElementType(); |
| 3160 | DestTy = DestVecTy->getElementType(); |
| 3161 | } |
| 3162 | } |
| 3163 | } |
| 3164 | |
| 3165 | if (PointerType *DestPtrTy = dyn_cast<PointerType>(Val: DestTy)) { |
| 3166 | if (PointerType *SrcPtrTy = dyn_cast<PointerType>(Val: SrcTy)) { |
| 3167 | return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace(); |
| 3168 | } |
| 3169 | } |
| 3170 | |
| 3171 | TypeSize SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr |
| 3172 | TypeSize DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr |
| 3173 | |
| 3174 | // Could still have vectors of pointers if the number of elements doesn't |
| 3175 | // match |
| 3176 | if (SrcBits.getKnownMinValue() == 0 || DestBits.getKnownMinValue() == 0) |
| 3177 | return false; |
| 3178 | |
| 3179 | if (SrcBits != DestBits) |
| 3180 | return false; |
| 3181 | |
| 3182 | return true; |
| 3183 | } |
| 3184 | |
| 3185 | bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, |
| 3186 | const DataLayout &DL) { |
| 3187 | // ptrtoint and inttoptr are not allowed on non-integral pointers |
| 3188 | if (auto *PtrTy = dyn_cast<PointerType>(Val: SrcTy)) |
| 3189 | if (auto *IntTy = dyn_cast<IntegerType>(Val: DestTy)) |
| 3190 | return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) && |
| 3191 | !DL.isNonIntegralPointerType(PT: PtrTy)); |
| 3192 | if (auto *PtrTy = dyn_cast<PointerType>(Val: DestTy)) |
| 3193 | if (auto *IntTy = dyn_cast<IntegerType>(Val: SrcTy)) |
| 3194 | return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) && |
| 3195 | !DL.isNonIntegralPointerType(PT: PtrTy)); |
| 3196 | |
| 3197 | return isBitCastable(SrcTy, DestTy); |
| 3198 | } |
| 3199 | |
| 3200 | // Provide a way to get a "cast" where the cast opcode is inferred from the |
| 3201 | // types and size of the operand. This, basically, is a parallel of the |
| 3202 | // logic in the castIsValid function below. This axiom should hold: |
| 3203 | // castIsValid( getCastOpcode(Val, Ty), Val, Ty) |
| 3204 | // should not assert in castIsValid. In other words, this produces a "correct" |
| 3205 | // casting opcode for the arguments passed to it. |
| 3206 | Instruction::CastOps |
| 3207 | CastInst::getCastOpcode( |
| 3208 | const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) { |
| 3209 | Type *SrcTy = Src->getType(); |
| 3210 | |
| 3211 | assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() && |
| 3212 | "Only first class types are castable!" ); |
| 3213 | |
| 3214 | if (SrcTy == DestTy) |
| 3215 | return BitCast; |
| 3216 | |
| 3217 | // FIXME: Check address space sizes here |
| 3218 | if (VectorType *SrcVecTy = dyn_cast<VectorType>(Val: SrcTy)) |
| 3219 | if (VectorType *DestVecTy = dyn_cast<VectorType>(Val: DestTy)) |
| 3220 | if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) { |
| 3221 | // An element by element cast. Find the appropriate opcode based on the |
| 3222 | // element types. |
| 3223 | SrcTy = SrcVecTy->getElementType(); |
| 3224 | DestTy = DestVecTy->getElementType(); |
| 3225 | } |
| 3226 | |
| 3227 | // Get the bit sizes, we'll need these |
| 3228 | unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr |
| 3229 | unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr |
| 3230 | |
| 3231 | // Run through the possibilities ... |
| 3232 | if (DestTy->isIntegerTy()) { // Casting to integral |
| 3233 | if (SrcTy->isIntegerTy()) { // Casting from integral |
| 3234 | if (DestBits < SrcBits) |
| 3235 | return Trunc; // int -> smaller int |
| 3236 | else if (DestBits > SrcBits) { // its an extension |
| 3237 | if (SrcIsSigned) |
| 3238 | return SExt; // signed -> SEXT |
| 3239 | else |
| 3240 | return ZExt; // unsigned -> ZEXT |
| 3241 | } else { |
| 3242 | return BitCast; // Same size, No-op cast |
| 3243 | } |
| 3244 | } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt |
| 3245 | if (DestIsSigned) |
| 3246 | return FPToSI; // FP -> sint |
| 3247 | else |
| 3248 | return FPToUI; // FP -> uint |
| 3249 | } else if (SrcTy->isVectorTy()) { |
| 3250 | assert(DestBits == SrcBits && |
| 3251 | "Casting vector to integer of different width" ); |
| 3252 | return BitCast; // Same size, no-op cast |
| 3253 | } else { |
| 3254 | assert(SrcTy->isPointerTy() && |
| 3255 | "Casting from a value that is not first-class type" ); |
| 3256 | return PtrToInt; // ptr -> int |
| 3257 | } |
| 3258 | } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt |
| 3259 | if (SrcTy->isIntegerTy()) { // Casting from integral |
| 3260 | if (SrcIsSigned) |
| 3261 | return SIToFP; // sint -> FP |
| 3262 | else |
| 3263 | return UIToFP; // uint -> FP |
| 3264 | } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt |
| 3265 | if (DestBits < SrcBits) { |
| 3266 | return FPTrunc; // FP -> smaller FP |
| 3267 | } else if (DestBits > SrcBits) { |
| 3268 | return FPExt; // FP -> larger FP |
| 3269 | } else { |
| 3270 | return BitCast; // same size, no-op cast |
| 3271 | } |
| 3272 | } else if (SrcTy->isVectorTy()) { |
| 3273 | assert(DestBits == SrcBits && |
| 3274 | "Casting vector to floating point of different width" ); |
| 3275 | return BitCast; // same size, no-op cast |
| 3276 | } |
| 3277 | llvm_unreachable("Casting pointer or non-first class to float" ); |
| 3278 | } else if (DestTy->isVectorTy()) { |
| 3279 | assert(DestBits == SrcBits && |
| 3280 | "Illegal cast to vector (wrong type or size)" ); |
| 3281 | return BitCast; |
| 3282 | } else if (DestTy->isPointerTy()) { |
| 3283 | if (SrcTy->isPointerTy()) { |
| 3284 | if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace()) |
| 3285 | return AddrSpaceCast; |
| 3286 | return BitCast; // ptr -> ptr |
| 3287 | } else if (SrcTy->isIntegerTy()) { |
| 3288 | return IntToPtr; // int -> ptr |
| 3289 | } |
| 3290 | llvm_unreachable("Casting pointer to other than pointer or int" ); |
| 3291 | } |
| 3292 | llvm_unreachable("Casting to type that is not first-class" ); |
| 3293 | } |
| 3294 | |
| 3295 | //===----------------------------------------------------------------------===// |
| 3296 | // CastInst SubClass Constructors |
| 3297 | //===----------------------------------------------------------------------===// |
| 3298 | |
| 3299 | /// Check that the construction parameters for a CastInst are correct. This |
| 3300 | /// could be broken out into the separate constructors but it is useful to have |
| 3301 | /// it in one place and to eliminate the redundant code for getting the sizes |
| 3302 | /// of the types involved. |
| 3303 | bool |
| 3304 | CastInst::castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy) { |
| 3305 | if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() || |
| 3306 | SrcTy->isAggregateType() || DstTy->isAggregateType()) |
| 3307 | return false; |
| 3308 | |
| 3309 | // Get the size of the types in bits, and whether we are dealing |
| 3310 | // with vector types, we'll need this later. |
| 3311 | bool SrcIsVec = isa<VectorType>(Val: SrcTy); |
| 3312 | bool DstIsVec = isa<VectorType>(Val: DstTy); |
| 3313 | unsigned SrcScalarBitSize = SrcTy->getScalarSizeInBits(); |
| 3314 | unsigned DstScalarBitSize = DstTy->getScalarSizeInBits(); |
| 3315 | |
| 3316 | // If these are vector types, get the lengths of the vectors (using zero for |
| 3317 | // scalar types means that checking that vector lengths match also checks that |
| 3318 | // scalars are not being converted to vectors or vectors to scalars). |
| 3319 | ElementCount SrcEC = SrcIsVec ? cast<VectorType>(Val: SrcTy)->getElementCount() |
| 3320 | : ElementCount::getFixed(MinVal: 0); |
| 3321 | ElementCount DstEC = DstIsVec ? cast<VectorType>(Val: DstTy)->getElementCount() |
| 3322 | : ElementCount::getFixed(MinVal: 0); |
| 3323 | |
| 3324 | // Switch on the opcode provided |
| 3325 | switch (op) { |
| 3326 | default: return false; // This is an input error |
| 3327 | case Instruction::Trunc: |
| 3328 | return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && |
| 3329 | SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize; |
| 3330 | case Instruction::ZExt: |
| 3331 | return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && |
| 3332 | SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize; |
| 3333 | case Instruction::SExt: |
| 3334 | return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && |
| 3335 | SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize; |
| 3336 | case Instruction::FPTrunc: |
| 3337 | return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() && |
| 3338 | SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize; |
| 3339 | case Instruction::FPExt: |
| 3340 | return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() && |
| 3341 | SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize; |
| 3342 | case Instruction::UIToFP: |
| 3343 | case Instruction::SIToFP: |
| 3344 | return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() && |
| 3345 | SrcEC == DstEC; |
| 3346 | case Instruction::FPToUI: |
| 3347 | case Instruction::FPToSI: |
| 3348 | return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() && |
| 3349 | SrcEC == DstEC; |
| 3350 | case Instruction::PtrToInt: |
| 3351 | if (SrcEC != DstEC) |
| 3352 | return false; |
| 3353 | return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy(); |
| 3354 | case Instruction::IntToPtr: |
| 3355 | if (SrcEC != DstEC) |
| 3356 | return false; |
| 3357 | return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy(); |
| 3358 | case Instruction::BitCast: { |
| 3359 | PointerType *SrcPtrTy = dyn_cast<PointerType>(Val: SrcTy->getScalarType()); |
| 3360 | PointerType *DstPtrTy = dyn_cast<PointerType>(Val: DstTy->getScalarType()); |
| 3361 | |
| 3362 | // BitCast implies a no-op cast of type only. No bits change. |
| 3363 | // However, you can't cast pointers to anything but pointers. |
| 3364 | if (!SrcPtrTy != !DstPtrTy) |
| 3365 | return false; |
| 3366 | |
| 3367 | // For non-pointer cases, the cast is okay if the source and destination bit |
| 3368 | // widths are identical. |
| 3369 | if (!SrcPtrTy) |
| 3370 | return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits(); |
| 3371 | |
| 3372 | // If both are pointers then the address spaces must match. |
| 3373 | if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) |
| 3374 | return false; |
| 3375 | |
| 3376 | // A vector of pointers must have the same number of elements. |
| 3377 | if (SrcIsVec && DstIsVec) |
| 3378 | return SrcEC == DstEC; |
| 3379 | if (SrcIsVec) |
| 3380 | return SrcEC == ElementCount::getFixed(MinVal: 1); |
| 3381 | if (DstIsVec) |
| 3382 | return DstEC == ElementCount::getFixed(MinVal: 1); |
| 3383 | |
| 3384 | return true; |
| 3385 | } |
| 3386 | case Instruction::AddrSpaceCast: { |
| 3387 | PointerType *SrcPtrTy = dyn_cast<PointerType>(Val: SrcTy->getScalarType()); |
| 3388 | if (!SrcPtrTy) |
| 3389 | return false; |
| 3390 | |
| 3391 | PointerType *DstPtrTy = dyn_cast<PointerType>(Val: DstTy->getScalarType()); |
| 3392 | if (!DstPtrTy) |
| 3393 | return false; |
| 3394 | |
| 3395 | if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace()) |
| 3396 | return false; |
| 3397 | |
| 3398 | return SrcEC == DstEC; |
| 3399 | } |
| 3400 | } |
| 3401 | } |
| 3402 | |
| 3403 | TruncInst::TruncInst(Value *S, Type *Ty, const Twine &Name, |
| 3404 | InsertPosition InsertBefore) |
| 3405 | : CastInst(Ty, Trunc, S, Name, InsertBefore) { |
| 3406 | assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc" ); |
| 3407 | } |
| 3408 | |
| 3409 | ZExtInst::ZExtInst(Value *S, Type *Ty, const Twine &Name, |
| 3410 | InsertPosition InsertBefore) |
| 3411 | : CastInst(Ty, ZExt, S, Name, InsertBefore) { |
| 3412 | assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt" ); |
| 3413 | } |
| 3414 | |
| 3415 | SExtInst::SExtInst(Value *S, Type *Ty, const Twine &Name, |
| 3416 | InsertPosition InsertBefore) |
| 3417 | : CastInst(Ty, SExt, S, Name, InsertBefore) { |
| 3418 | assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt" ); |
| 3419 | } |
| 3420 | |
| 3421 | FPTruncInst::FPTruncInst(Value *S, Type *Ty, const Twine &Name, |
| 3422 | InsertPosition InsertBefore) |
| 3423 | : CastInst(Ty, FPTrunc, S, Name, InsertBefore) { |
| 3424 | assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc" ); |
| 3425 | } |
| 3426 | |
| 3427 | FPExtInst::FPExtInst(Value *S, Type *Ty, const Twine &Name, |
| 3428 | InsertPosition InsertBefore) |
| 3429 | : CastInst(Ty, FPExt, S, Name, InsertBefore) { |
| 3430 | assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt" ); |
| 3431 | } |
| 3432 | |
| 3433 | UIToFPInst::UIToFPInst(Value *S, Type *Ty, const Twine &Name, |
| 3434 | InsertPosition InsertBefore) |
| 3435 | : CastInst(Ty, UIToFP, S, Name, InsertBefore) { |
| 3436 | assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP" ); |
| 3437 | } |
| 3438 | |
| 3439 | SIToFPInst::SIToFPInst(Value *S, Type *Ty, const Twine &Name, |
| 3440 | InsertPosition InsertBefore) |
| 3441 | : CastInst(Ty, SIToFP, S, Name, InsertBefore) { |
| 3442 | assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP" ); |
| 3443 | } |
| 3444 | |
| 3445 | FPToUIInst::FPToUIInst(Value *S, Type *Ty, const Twine &Name, |
| 3446 | InsertPosition InsertBefore) |
| 3447 | : CastInst(Ty, FPToUI, S, Name, InsertBefore) { |
| 3448 | assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI" ); |
| 3449 | } |
| 3450 | |
| 3451 | FPToSIInst::FPToSIInst(Value *S, Type *Ty, const Twine &Name, |
| 3452 | InsertPosition InsertBefore) |
| 3453 | : CastInst(Ty, FPToSI, S, Name, InsertBefore) { |
| 3454 | assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI" ); |
| 3455 | } |
| 3456 | |
| 3457 | PtrToIntInst::PtrToIntInst(Value *S, Type *Ty, const Twine &Name, |
| 3458 | InsertPosition InsertBefore) |
| 3459 | : CastInst(Ty, PtrToInt, S, Name, InsertBefore) { |
| 3460 | assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt" ); |
| 3461 | } |
| 3462 | |
| 3463 | IntToPtrInst::IntToPtrInst(Value *S, Type *Ty, const Twine &Name, |
| 3464 | InsertPosition InsertBefore) |
| 3465 | : CastInst(Ty, IntToPtr, S, Name, InsertBefore) { |
| 3466 | assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr" ); |
| 3467 | } |
| 3468 | |
| 3469 | BitCastInst::BitCastInst(Value *S, Type *Ty, const Twine &Name, |
| 3470 | InsertPosition InsertBefore) |
| 3471 | : CastInst(Ty, BitCast, S, Name, InsertBefore) { |
| 3472 | assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast" ); |
| 3473 | } |
| 3474 | |
| 3475 | AddrSpaceCastInst::AddrSpaceCastInst(Value *S, Type *Ty, const Twine &Name, |
| 3476 | InsertPosition InsertBefore) |
| 3477 | : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) { |
| 3478 | assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast" ); |
| 3479 | } |
| 3480 | |
| 3481 | //===----------------------------------------------------------------------===// |
| 3482 | // CmpInst Classes |
| 3483 | //===----------------------------------------------------------------------===// |
| 3484 | |
| 3485 | CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS, |
| 3486 | Value *RHS, const Twine &Name, InsertPosition InsertBefore, |
| 3487 | Instruction *FlagsSource) |
| 3488 | : Instruction(ty, op, AllocMarker, InsertBefore) { |
| 3489 | Op<0>() = LHS; |
| 3490 | Op<1>() = RHS; |
| 3491 | setPredicate((Predicate)predicate); |
| 3492 | setName(Name); |
| 3493 | if (FlagsSource) |
| 3494 | copyIRFlags(V: FlagsSource); |
| 3495 | } |
| 3496 | |
| 3497 | CmpInst *CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2, |
| 3498 | const Twine &Name, InsertPosition InsertBefore) { |
| 3499 | if (Op == Instruction::ICmp) { |
| 3500 | if (InsertBefore.isValid()) |
| 3501 | return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate), |
| 3502 | S1, S2, Name); |
| 3503 | else |
| 3504 | return new ICmpInst(CmpInst::Predicate(predicate), |
| 3505 | S1, S2, Name); |
| 3506 | } |
| 3507 | |
| 3508 | if (InsertBefore.isValid()) |
| 3509 | return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate), |
| 3510 | S1, S2, Name); |
| 3511 | else |
| 3512 | return new FCmpInst(CmpInst::Predicate(predicate), |
| 3513 | S1, S2, Name); |
| 3514 | } |
| 3515 | |
| 3516 | CmpInst *CmpInst::CreateWithCopiedFlags(OtherOps Op, Predicate Pred, Value *S1, |
| 3517 | Value *S2, |
| 3518 | const Instruction *FlagsSource, |
| 3519 | const Twine &Name, |
| 3520 | InsertPosition InsertBefore) { |
| 3521 | CmpInst *Inst = Create(Op, predicate: Pred, S1, S2, Name, InsertBefore); |
| 3522 | Inst->copyIRFlags(V: FlagsSource); |
| 3523 | return Inst; |
| 3524 | } |
| 3525 | |
| 3526 | void CmpInst::swapOperands() { |
| 3527 | if (ICmpInst *IC = dyn_cast<ICmpInst>(Val: this)) |
| 3528 | IC->swapOperands(); |
| 3529 | else |
| 3530 | cast<FCmpInst>(Val: this)->swapOperands(); |
| 3531 | } |
| 3532 | |
| 3533 | bool CmpInst::isCommutative() const { |
| 3534 | if (const ICmpInst *IC = dyn_cast<ICmpInst>(Val: this)) |
| 3535 | return IC->isCommutative(); |
| 3536 | return cast<FCmpInst>(Val: this)->isCommutative(); |
| 3537 | } |
| 3538 | |
| 3539 | bool CmpInst::isEquality(Predicate P) { |
| 3540 | if (ICmpInst::isIntPredicate(P)) |
| 3541 | return ICmpInst::isEquality(P); |
| 3542 | if (FCmpInst::isFPPredicate(P)) |
| 3543 | return FCmpInst::isEquality(Pred: P); |
| 3544 | llvm_unreachable("Unsupported predicate kind" ); |
| 3545 | } |
| 3546 | |
| 3547 | // Returns true if either operand of CmpInst is a provably non-zero |
| 3548 | // floating-point constant. |
| 3549 | static bool hasNonZeroFPOperands(const CmpInst *Cmp) { |
| 3550 | auto *LHS = dyn_cast<Constant>(Val: Cmp->getOperand(i_nocapture: 0)); |
| 3551 | auto *RHS = dyn_cast<Constant>(Val: Cmp->getOperand(i_nocapture: 1)); |
| 3552 | if (auto *Const = LHS ? LHS : RHS) { |
| 3553 | using namespace llvm::PatternMatch; |
| 3554 | return match(V: Const, P: m_NonZeroNotDenormalFP()); |
| 3555 | } |
| 3556 | return false; |
| 3557 | } |
| 3558 | |
| 3559 | // Floating-point equality is not an equivalence when comparing +0.0 with |
| 3560 | // -0.0, when comparing NaN with another value, or when flushing |
| 3561 | // denormals-to-zero. |
| 3562 | bool CmpInst::isEquivalence(bool Invert) const { |
| 3563 | switch (Invert ? getInversePredicate() : getPredicate()) { |
| 3564 | case CmpInst::Predicate::ICMP_EQ: |
| 3565 | return true; |
| 3566 | case CmpInst::Predicate::FCMP_UEQ: |
| 3567 | if (!hasNoNaNs()) |
| 3568 | return false; |
| 3569 | [[fallthrough]]; |
| 3570 | case CmpInst::Predicate::FCMP_OEQ: |
| 3571 | return hasNonZeroFPOperands(Cmp: this); |
| 3572 | default: |
| 3573 | return false; |
| 3574 | } |
| 3575 | } |
| 3576 | |
| 3577 | CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) { |
| 3578 | switch (pred) { |
| 3579 | default: llvm_unreachable("Unknown cmp predicate!" ); |
| 3580 | case ICMP_EQ: return ICMP_NE; |
| 3581 | case ICMP_NE: return ICMP_EQ; |
| 3582 | case ICMP_UGT: return ICMP_ULE; |
| 3583 | case ICMP_ULT: return ICMP_UGE; |
| 3584 | case ICMP_UGE: return ICMP_ULT; |
| 3585 | case ICMP_ULE: return ICMP_UGT; |
| 3586 | case ICMP_SGT: return ICMP_SLE; |
| 3587 | case ICMP_SLT: return ICMP_SGE; |
| 3588 | case ICMP_SGE: return ICMP_SLT; |
| 3589 | case ICMP_SLE: return ICMP_SGT; |
| 3590 | |
| 3591 | case FCMP_OEQ: return FCMP_UNE; |
| 3592 | case FCMP_ONE: return FCMP_UEQ; |
| 3593 | case FCMP_OGT: return FCMP_ULE; |
| 3594 | case FCMP_OLT: return FCMP_UGE; |
| 3595 | case FCMP_OGE: return FCMP_ULT; |
| 3596 | case FCMP_OLE: return FCMP_UGT; |
| 3597 | case FCMP_UEQ: return FCMP_ONE; |
| 3598 | case FCMP_UNE: return FCMP_OEQ; |
| 3599 | case FCMP_UGT: return FCMP_OLE; |
| 3600 | case FCMP_ULT: return FCMP_OGE; |
| 3601 | case FCMP_UGE: return FCMP_OLT; |
| 3602 | case FCMP_ULE: return FCMP_OGT; |
| 3603 | case FCMP_ORD: return FCMP_UNO; |
| 3604 | case FCMP_UNO: return FCMP_ORD; |
| 3605 | case FCMP_TRUE: return FCMP_FALSE; |
| 3606 | case FCMP_FALSE: return FCMP_TRUE; |
| 3607 | } |
| 3608 | } |
| 3609 | |
| 3610 | StringRef CmpInst::getPredicateName(Predicate Pred) { |
| 3611 | switch (Pred) { |
| 3612 | default: return "unknown" ; |
| 3613 | case FCmpInst::FCMP_FALSE: return "false" ; |
| 3614 | case FCmpInst::FCMP_OEQ: return "oeq" ; |
| 3615 | case FCmpInst::FCMP_OGT: return "ogt" ; |
| 3616 | case FCmpInst::FCMP_OGE: return "oge" ; |
| 3617 | case FCmpInst::FCMP_OLT: return "olt" ; |
| 3618 | case FCmpInst::FCMP_OLE: return "ole" ; |
| 3619 | case FCmpInst::FCMP_ONE: return "one" ; |
| 3620 | case FCmpInst::FCMP_ORD: return "ord" ; |
| 3621 | case FCmpInst::FCMP_UNO: return "uno" ; |
| 3622 | case FCmpInst::FCMP_UEQ: return "ueq" ; |
| 3623 | case FCmpInst::FCMP_UGT: return "ugt" ; |
| 3624 | case FCmpInst::FCMP_UGE: return "uge" ; |
| 3625 | case FCmpInst::FCMP_ULT: return "ult" ; |
| 3626 | case FCmpInst::FCMP_ULE: return "ule" ; |
| 3627 | case FCmpInst::FCMP_UNE: return "une" ; |
| 3628 | case FCmpInst::FCMP_TRUE: return "true" ; |
| 3629 | case ICmpInst::ICMP_EQ: return "eq" ; |
| 3630 | case ICmpInst::ICMP_NE: return "ne" ; |
| 3631 | case ICmpInst::ICMP_SGT: return "sgt" ; |
| 3632 | case ICmpInst::ICMP_SGE: return "sge" ; |
| 3633 | case ICmpInst::ICMP_SLT: return "slt" ; |
| 3634 | case ICmpInst::ICMP_SLE: return "sle" ; |
| 3635 | case ICmpInst::ICMP_UGT: return "ugt" ; |
| 3636 | case ICmpInst::ICMP_UGE: return "uge" ; |
| 3637 | case ICmpInst::ICMP_ULT: return "ult" ; |
| 3638 | case ICmpInst::ICMP_ULE: return "ule" ; |
| 3639 | } |
| 3640 | } |
| 3641 | |
| 3642 | raw_ostream &llvm::operator<<(raw_ostream &OS, CmpInst::Predicate Pred) { |
| 3643 | OS << CmpInst::getPredicateName(Pred); |
| 3644 | return OS; |
| 3645 | } |
| 3646 | |
| 3647 | ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) { |
| 3648 | switch (pred) { |
| 3649 | default: llvm_unreachable("Unknown icmp predicate!" ); |
| 3650 | case ICMP_EQ: case ICMP_NE: |
| 3651 | case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE: |
| 3652 | return pred; |
| 3653 | case ICMP_UGT: return ICMP_SGT; |
| 3654 | case ICMP_ULT: return ICMP_SLT; |
| 3655 | case ICMP_UGE: return ICMP_SGE; |
| 3656 | case ICMP_ULE: return ICMP_SLE; |
| 3657 | } |
| 3658 | } |
| 3659 | |
| 3660 | ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) { |
| 3661 | switch (pred) { |
| 3662 | default: llvm_unreachable("Unknown icmp predicate!" ); |
| 3663 | case ICMP_EQ: case ICMP_NE: |
| 3664 | case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE: |
| 3665 | return pred; |
| 3666 | case ICMP_SGT: return ICMP_UGT; |
| 3667 | case ICMP_SLT: return ICMP_ULT; |
| 3668 | case ICMP_SGE: return ICMP_UGE; |
| 3669 | case ICMP_SLE: return ICMP_ULE; |
| 3670 | } |
| 3671 | } |
| 3672 | |
| 3673 | CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) { |
| 3674 | switch (pred) { |
| 3675 | default: llvm_unreachable("Unknown cmp predicate!" ); |
| 3676 | case ICMP_EQ: case ICMP_NE: |
| 3677 | return pred; |
| 3678 | case ICMP_SGT: return ICMP_SLT; |
| 3679 | case ICMP_SLT: return ICMP_SGT; |
| 3680 | case ICMP_SGE: return ICMP_SLE; |
| 3681 | case ICMP_SLE: return ICMP_SGE; |
| 3682 | case ICMP_UGT: return ICMP_ULT; |
| 3683 | case ICMP_ULT: return ICMP_UGT; |
| 3684 | case ICMP_UGE: return ICMP_ULE; |
| 3685 | case ICMP_ULE: return ICMP_UGE; |
| 3686 | |
| 3687 | case FCMP_FALSE: case FCMP_TRUE: |
| 3688 | case FCMP_OEQ: case FCMP_ONE: |
| 3689 | case FCMP_UEQ: case FCMP_UNE: |
| 3690 | case FCMP_ORD: case FCMP_UNO: |
| 3691 | return pred; |
| 3692 | case FCMP_OGT: return FCMP_OLT; |
| 3693 | case FCMP_OLT: return FCMP_OGT; |
| 3694 | case FCMP_OGE: return FCMP_OLE; |
| 3695 | case FCMP_OLE: return FCMP_OGE; |
| 3696 | case FCMP_UGT: return FCMP_ULT; |
| 3697 | case FCMP_ULT: return FCMP_UGT; |
| 3698 | case FCMP_UGE: return FCMP_ULE; |
| 3699 | case FCMP_ULE: return FCMP_UGE; |
| 3700 | } |
| 3701 | } |
| 3702 | |
| 3703 | bool CmpInst::isNonStrictPredicate(Predicate pred) { |
| 3704 | switch (pred) { |
| 3705 | case ICMP_SGE: |
| 3706 | case ICMP_SLE: |
| 3707 | case ICMP_UGE: |
| 3708 | case ICMP_ULE: |
| 3709 | case FCMP_OGE: |
| 3710 | case FCMP_OLE: |
| 3711 | case FCMP_UGE: |
| 3712 | case FCMP_ULE: |
| 3713 | return true; |
| 3714 | default: |
| 3715 | return false; |
| 3716 | } |
| 3717 | } |
| 3718 | |
| 3719 | bool CmpInst::isStrictPredicate(Predicate pred) { |
| 3720 | switch (pred) { |
| 3721 | case ICMP_SGT: |
| 3722 | case ICMP_SLT: |
| 3723 | case ICMP_UGT: |
| 3724 | case ICMP_ULT: |
| 3725 | case FCMP_OGT: |
| 3726 | case FCMP_OLT: |
| 3727 | case FCMP_UGT: |
| 3728 | case FCMP_ULT: |
| 3729 | return true; |
| 3730 | default: |
| 3731 | return false; |
| 3732 | } |
| 3733 | } |
| 3734 | |
| 3735 | CmpInst::Predicate CmpInst::getStrictPredicate(Predicate pred) { |
| 3736 | switch (pred) { |
| 3737 | case ICMP_SGE: |
| 3738 | return ICMP_SGT; |
| 3739 | case ICMP_SLE: |
| 3740 | return ICMP_SLT; |
| 3741 | case ICMP_UGE: |
| 3742 | return ICMP_UGT; |
| 3743 | case ICMP_ULE: |
| 3744 | return ICMP_ULT; |
| 3745 | case FCMP_OGE: |
| 3746 | return FCMP_OGT; |
| 3747 | case FCMP_OLE: |
| 3748 | return FCMP_OLT; |
| 3749 | case FCMP_UGE: |
| 3750 | return FCMP_UGT; |
| 3751 | case FCMP_ULE: |
| 3752 | return FCMP_ULT; |
| 3753 | default: |
| 3754 | return pred; |
| 3755 | } |
| 3756 | } |
| 3757 | |
| 3758 | CmpInst::Predicate CmpInst::getNonStrictPredicate(Predicate pred) { |
| 3759 | switch (pred) { |
| 3760 | case ICMP_SGT: |
| 3761 | return ICMP_SGE; |
| 3762 | case ICMP_SLT: |
| 3763 | return ICMP_SLE; |
| 3764 | case ICMP_UGT: |
| 3765 | return ICMP_UGE; |
| 3766 | case ICMP_ULT: |
| 3767 | return ICMP_ULE; |
| 3768 | case FCMP_OGT: |
| 3769 | return FCMP_OGE; |
| 3770 | case FCMP_OLT: |
| 3771 | return FCMP_OLE; |
| 3772 | case FCMP_UGT: |
| 3773 | return FCMP_UGE; |
| 3774 | case FCMP_ULT: |
| 3775 | return FCMP_ULE; |
| 3776 | default: |
| 3777 | return pred; |
| 3778 | } |
| 3779 | } |
| 3780 | |
| 3781 | CmpInst::Predicate CmpInst::getFlippedStrictnessPredicate(Predicate pred) { |
| 3782 | assert(CmpInst::isRelational(pred) && "Call only with relational predicate!" ); |
| 3783 | |
| 3784 | if (isStrictPredicate(pred)) |
| 3785 | return getNonStrictPredicate(pred); |
| 3786 | if (isNonStrictPredicate(pred)) |
| 3787 | return getStrictPredicate(pred); |
| 3788 | |
| 3789 | llvm_unreachable("Unknown predicate!" ); |
| 3790 | } |
| 3791 | |
| 3792 | bool CmpInst::isUnsigned(Predicate predicate) { |
| 3793 | switch (predicate) { |
| 3794 | default: return false; |
| 3795 | case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT: |
| 3796 | case ICmpInst::ICMP_UGE: return true; |
| 3797 | } |
| 3798 | } |
| 3799 | |
| 3800 | bool CmpInst::isSigned(Predicate predicate) { |
| 3801 | switch (predicate) { |
| 3802 | default: return false; |
| 3803 | case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT: |
| 3804 | case ICmpInst::ICMP_SGE: return true; |
| 3805 | } |
| 3806 | } |
| 3807 | |
| 3808 | bool ICmpInst::compare(const APInt &LHS, const APInt &RHS, |
| 3809 | ICmpInst::Predicate Pred) { |
| 3810 | assert(ICmpInst::isIntPredicate(Pred) && "Only for integer predicates!" ); |
| 3811 | switch (Pred) { |
| 3812 | case ICmpInst::Predicate::ICMP_EQ: |
| 3813 | return LHS.eq(RHS); |
| 3814 | case ICmpInst::Predicate::ICMP_NE: |
| 3815 | return LHS.ne(RHS); |
| 3816 | case ICmpInst::Predicate::ICMP_UGT: |
| 3817 | return LHS.ugt(RHS); |
| 3818 | case ICmpInst::Predicate::ICMP_UGE: |
| 3819 | return LHS.uge(RHS); |
| 3820 | case ICmpInst::Predicate::ICMP_ULT: |
| 3821 | return LHS.ult(RHS); |
| 3822 | case ICmpInst::Predicate::ICMP_ULE: |
| 3823 | return LHS.ule(RHS); |
| 3824 | case ICmpInst::Predicate::ICMP_SGT: |
| 3825 | return LHS.sgt(RHS); |
| 3826 | case ICmpInst::Predicate::ICMP_SGE: |
| 3827 | return LHS.sge(RHS); |
| 3828 | case ICmpInst::Predicate::ICMP_SLT: |
| 3829 | return LHS.slt(RHS); |
| 3830 | case ICmpInst::Predicate::ICMP_SLE: |
| 3831 | return LHS.sle(RHS); |
| 3832 | default: |
| 3833 | llvm_unreachable("Unexpected non-integer predicate." ); |
| 3834 | }; |
| 3835 | } |
| 3836 | |
| 3837 | bool FCmpInst::compare(const APFloat &LHS, const APFloat &RHS, |
| 3838 | FCmpInst::Predicate Pred) { |
| 3839 | APFloat::cmpResult R = LHS.compare(RHS); |
| 3840 | switch (Pred) { |
| 3841 | default: |
| 3842 | llvm_unreachable("Invalid FCmp Predicate" ); |
| 3843 | case FCmpInst::FCMP_FALSE: |
| 3844 | return false; |
| 3845 | case FCmpInst::FCMP_TRUE: |
| 3846 | return true; |
| 3847 | case FCmpInst::FCMP_UNO: |
| 3848 | return R == APFloat::cmpUnordered; |
| 3849 | case FCmpInst::FCMP_ORD: |
| 3850 | return R != APFloat::cmpUnordered; |
| 3851 | case FCmpInst::FCMP_UEQ: |
| 3852 | return R == APFloat::cmpUnordered || R == APFloat::cmpEqual; |
| 3853 | case FCmpInst::FCMP_OEQ: |
| 3854 | return R == APFloat::cmpEqual; |
| 3855 | case FCmpInst::FCMP_UNE: |
| 3856 | return R != APFloat::cmpEqual; |
| 3857 | case FCmpInst::FCMP_ONE: |
| 3858 | return R == APFloat::cmpLessThan || R == APFloat::cmpGreaterThan; |
| 3859 | case FCmpInst::FCMP_ULT: |
| 3860 | return R == APFloat::cmpUnordered || R == APFloat::cmpLessThan; |
| 3861 | case FCmpInst::FCMP_OLT: |
| 3862 | return R == APFloat::cmpLessThan; |
| 3863 | case FCmpInst::FCMP_UGT: |
| 3864 | return R == APFloat::cmpUnordered || R == APFloat::cmpGreaterThan; |
| 3865 | case FCmpInst::FCMP_OGT: |
| 3866 | return R == APFloat::cmpGreaterThan; |
| 3867 | case FCmpInst::FCMP_ULE: |
| 3868 | return R != APFloat::cmpGreaterThan; |
| 3869 | case FCmpInst::FCMP_OLE: |
| 3870 | return R == APFloat::cmpLessThan || R == APFloat::cmpEqual; |
| 3871 | case FCmpInst::FCMP_UGE: |
| 3872 | return R != APFloat::cmpLessThan; |
| 3873 | case FCmpInst::FCMP_OGE: |
| 3874 | return R == APFloat::cmpGreaterThan || R == APFloat::cmpEqual; |
| 3875 | } |
| 3876 | } |
| 3877 | |
| 3878 | std::optional<bool> ICmpInst::compare(const KnownBits &LHS, |
| 3879 | const KnownBits &RHS, |
| 3880 | ICmpInst::Predicate Pred) { |
| 3881 | switch (Pred) { |
| 3882 | case ICmpInst::ICMP_EQ: |
| 3883 | return KnownBits::eq(LHS, RHS); |
| 3884 | case ICmpInst::ICMP_NE: |
| 3885 | return KnownBits::ne(LHS, RHS); |
| 3886 | case ICmpInst::ICMP_UGE: |
| 3887 | return KnownBits::uge(LHS, RHS); |
| 3888 | case ICmpInst::ICMP_UGT: |
| 3889 | return KnownBits::ugt(LHS, RHS); |
| 3890 | case ICmpInst::ICMP_ULE: |
| 3891 | return KnownBits::ule(LHS, RHS); |
| 3892 | case ICmpInst::ICMP_ULT: |
| 3893 | return KnownBits::ult(LHS, RHS); |
| 3894 | case ICmpInst::ICMP_SGE: |
| 3895 | return KnownBits::sge(LHS, RHS); |
| 3896 | case ICmpInst::ICMP_SGT: |
| 3897 | return KnownBits::sgt(LHS, RHS); |
| 3898 | case ICmpInst::ICMP_SLE: |
| 3899 | return KnownBits::sle(LHS, RHS); |
| 3900 | case ICmpInst::ICMP_SLT: |
| 3901 | return KnownBits::slt(LHS, RHS); |
| 3902 | default: |
| 3903 | llvm_unreachable("Unexpected non-integer predicate." ); |
| 3904 | } |
| 3905 | } |
| 3906 | |
| 3907 | CmpInst::Predicate ICmpInst::getFlippedSignednessPredicate(Predicate pred) { |
| 3908 | if (CmpInst::isEquality(P: pred)) |
| 3909 | return pred; |
| 3910 | if (isSigned(predicate: pred)) |
| 3911 | return getUnsignedPredicate(pred); |
| 3912 | if (isUnsigned(predicate: pred)) |
| 3913 | return getSignedPredicate(pred); |
| 3914 | |
| 3915 | llvm_unreachable("Unknown predicate!" ); |
| 3916 | } |
| 3917 | |
| 3918 | bool CmpInst::isOrdered(Predicate predicate) { |
| 3919 | switch (predicate) { |
| 3920 | default: return false; |
| 3921 | case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT: |
| 3922 | case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE: |
| 3923 | case FCmpInst::FCMP_ORD: return true; |
| 3924 | } |
| 3925 | } |
| 3926 | |
| 3927 | bool CmpInst::isUnordered(Predicate predicate) { |
| 3928 | switch (predicate) { |
| 3929 | default: return false; |
| 3930 | case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT: |
| 3931 | case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE: |
| 3932 | case FCmpInst::FCMP_UNO: return true; |
| 3933 | } |
| 3934 | } |
| 3935 | |
| 3936 | bool CmpInst::isTrueWhenEqual(Predicate predicate) { |
| 3937 | switch(predicate) { |
| 3938 | default: return false; |
| 3939 | case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE: |
| 3940 | case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true; |
| 3941 | } |
| 3942 | } |
| 3943 | |
| 3944 | bool CmpInst::isFalseWhenEqual(Predicate predicate) { |
| 3945 | switch(predicate) { |
| 3946 | case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT: |
| 3947 | case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true; |
| 3948 | default: return false; |
| 3949 | } |
| 3950 | } |
| 3951 | |
| 3952 | static bool isImpliedTrueByMatchingCmp(CmpPredicate Pred1, CmpPredicate Pred2) { |
| 3953 | // If the predicates match, then we know the first condition implies the |
| 3954 | // second is true. |
| 3955 | if (CmpPredicate::getMatching(A: Pred1, B: Pred2)) |
| 3956 | return true; |
| 3957 | |
| 3958 | if (Pred1.hasSameSign() && CmpInst::isSigned(predicate: Pred2)) |
| 3959 | Pred1 = ICmpInst::getFlippedSignednessPredicate(pred: Pred1); |
| 3960 | else if (Pred2.hasSameSign() && CmpInst::isSigned(predicate: Pred1)) |
| 3961 | Pred2 = ICmpInst::getFlippedSignednessPredicate(pred: Pred2); |
| 3962 | |
| 3963 | switch (Pred1) { |
| 3964 | default: |
| 3965 | break; |
| 3966 | case CmpInst::ICMP_EQ: |
| 3967 | // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true. |
| 3968 | return Pred2 == CmpInst::ICMP_UGE || Pred2 == CmpInst::ICMP_ULE || |
| 3969 | Pred2 == CmpInst::ICMP_SGE || Pred2 == CmpInst::ICMP_SLE; |
| 3970 | case CmpInst::ICMP_UGT: // A >u B implies A != B and A >=u B are true. |
| 3971 | return Pred2 == CmpInst::ICMP_NE || Pred2 == CmpInst::ICMP_UGE; |
| 3972 | case CmpInst::ICMP_ULT: // A <u B implies A != B and A <=u B are true. |
| 3973 | return Pred2 == CmpInst::ICMP_NE || Pred2 == CmpInst::ICMP_ULE; |
| 3974 | case CmpInst::ICMP_SGT: // A >s B implies A != B and A >=s B are true. |
| 3975 | return Pred2 == CmpInst::ICMP_NE || Pred2 == CmpInst::ICMP_SGE; |
| 3976 | case CmpInst::ICMP_SLT: // A <s B implies A != B and A <=s B are true. |
| 3977 | return Pred2 == CmpInst::ICMP_NE || Pred2 == CmpInst::ICMP_SLE; |
| 3978 | } |
| 3979 | return false; |
| 3980 | } |
| 3981 | |
| 3982 | static bool isImpliedFalseByMatchingCmp(CmpPredicate Pred1, |
| 3983 | CmpPredicate Pred2) { |
| 3984 | return isImpliedTrueByMatchingCmp(Pred1, |
| 3985 | Pred2: ICmpInst::getInverseCmpPredicate(Pred: Pred2)); |
| 3986 | } |
| 3987 | |
| 3988 | std::optional<bool> ICmpInst::isImpliedByMatchingCmp(CmpPredicate Pred1, |
| 3989 | CmpPredicate Pred2) { |
| 3990 | if (isImpliedTrueByMatchingCmp(Pred1, Pred2)) |
| 3991 | return true; |
| 3992 | if (isImpliedFalseByMatchingCmp(Pred1, Pred2)) |
| 3993 | return false; |
| 3994 | return std::nullopt; |
| 3995 | } |
| 3996 | |
| 3997 | //===----------------------------------------------------------------------===// |
| 3998 | // CmpPredicate Implementation |
| 3999 | //===----------------------------------------------------------------------===// |
| 4000 | |
| 4001 | std::optional<CmpPredicate> CmpPredicate::getMatching(CmpPredicate A, |
| 4002 | CmpPredicate B) { |
| 4003 | if (A.Pred == B.Pred) |
| 4004 | return A.HasSameSign == B.HasSameSign ? A : CmpPredicate(A.Pred); |
| 4005 | if (CmpInst::isFPPredicate(P: A) || CmpInst::isFPPredicate(P: B)) |
| 4006 | return {}; |
| 4007 | if (A.HasSameSign && |
| 4008 | A.Pred == ICmpInst::getFlippedSignednessPredicate(pred: B.Pred)) |
| 4009 | return B.Pred; |
| 4010 | if (B.HasSameSign && |
| 4011 | B.Pred == ICmpInst::getFlippedSignednessPredicate(pred: A.Pred)) |
| 4012 | return A.Pred; |
| 4013 | return {}; |
| 4014 | } |
| 4015 | |
| 4016 | CmpInst::Predicate CmpPredicate::getPreferredSignedPredicate() const { |
| 4017 | return HasSameSign ? ICmpInst::getSignedPredicate(pred: Pred) : Pred; |
| 4018 | } |
| 4019 | |
| 4020 | CmpPredicate CmpPredicate::get(const CmpInst *Cmp) { |
| 4021 | if (auto *ICI = dyn_cast<ICmpInst>(Val: Cmp)) |
| 4022 | return ICI->getCmpPredicate(); |
| 4023 | return Cmp->getPredicate(); |
| 4024 | } |
| 4025 | |
| 4026 | CmpPredicate CmpPredicate::getSwapped(CmpPredicate P) { |
| 4027 | return {CmpInst::getSwappedPredicate(pred: P), P.hasSameSign()}; |
| 4028 | } |
| 4029 | |
| 4030 | CmpPredicate CmpPredicate::getSwapped(const CmpInst *Cmp) { |
| 4031 | return getSwapped(P: get(Cmp)); |
| 4032 | } |
| 4033 | |
| 4034 | //===----------------------------------------------------------------------===// |
| 4035 | // SwitchInst Implementation |
| 4036 | //===----------------------------------------------------------------------===// |
| 4037 | |
| 4038 | void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) { |
| 4039 | assert(Value && Default && NumReserved); |
| 4040 | ReservedSpace = NumReserved; |
| 4041 | setNumHungOffUseOperands(2); |
| 4042 | allocHungoffUses(N: ReservedSpace); |
| 4043 | |
| 4044 | Op<0>() = Value; |
| 4045 | Op<1>() = Default; |
| 4046 | } |
| 4047 | |
| 4048 | /// SwitchInst ctor - Create a new switch instruction, specifying a value to |
| 4049 | /// switch on and a default destination. The number of additional cases can |
| 4050 | /// be specified here to make memory allocation more efficient. This |
| 4051 | /// constructor can also autoinsert before another instruction. |
| 4052 | SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, |
| 4053 | InsertPosition InsertBefore) |
| 4054 | : Instruction(Type::getVoidTy(C&: Value->getContext()), Instruction::Switch, |
| 4055 | AllocMarker, InsertBefore) { |
| 4056 | init(Value, Default, NumReserved: 2+NumCases*2); |
| 4057 | } |
| 4058 | |
| 4059 | SwitchInst::SwitchInst(const SwitchInst &SI) |
| 4060 | : Instruction(SI.getType(), Instruction::Switch, AllocMarker) { |
| 4061 | init(Value: SI.getCondition(), Default: SI.getDefaultDest(), NumReserved: SI.getNumOperands()); |
| 4062 | setNumHungOffUseOperands(SI.getNumOperands()); |
| 4063 | Use *OL = getOperandList(); |
| 4064 | const Use *InOL = SI.getOperandList(); |
| 4065 | for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) { |
| 4066 | OL[i] = InOL[i]; |
| 4067 | OL[i+1] = InOL[i+1]; |
| 4068 | } |
| 4069 | SubclassOptionalData = SI.SubclassOptionalData; |
| 4070 | } |
| 4071 | |
| 4072 | /// addCase - Add an entry to the switch instruction... |
| 4073 | /// |
| 4074 | void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) { |
| 4075 | unsigned NewCaseIdx = getNumCases(); |
| 4076 | unsigned OpNo = getNumOperands(); |
| 4077 | if (OpNo+2 > ReservedSpace) |
| 4078 | growOperands(); // Get more space! |
| 4079 | // Initialize some new operands. |
| 4080 | assert(OpNo+1 < ReservedSpace && "Growing didn't work!" ); |
| 4081 | setNumHungOffUseOperands(OpNo+2); |
| 4082 | CaseHandle Case(this, NewCaseIdx); |
| 4083 | Case.setValue(OnVal); |
| 4084 | Case.setSuccessor(Dest); |
| 4085 | } |
| 4086 | |
| 4087 | /// removeCase - This method removes the specified case and its successor |
| 4088 | /// from the switch instruction. |
| 4089 | SwitchInst::CaseIt SwitchInst::removeCase(CaseIt I) { |
| 4090 | unsigned idx = I->getCaseIndex(); |
| 4091 | |
| 4092 | assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!" ); |
| 4093 | |
| 4094 | unsigned NumOps = getNumOperands(); |
| 4095 | Use *OL = getOperandList(); |
| 4096 | |
| 4097 | // Overwrite this case with the end of the list. |
| 4098 | if (2 + (idx + 1) * 2 != NumOps) { |
| 4099 | OL[2 + idx * 2] = OL[NumOps - 2]; |
| 4100 | OL[2 + idx * 2 + 1] = OL[NumOps - 1]; |
| 4101 | } |
| 4102 | |
| 4103 | // Nuke the last value. |
| 4104 | OL[NumOps-2].set(nullptr); |
| 4105 | OL[NumOps-2+1].set(nullptr); |
| 4106 | setNumHungOffUseOperands(NumOps-2); |
| 4107 | |
| 4108 | return CaseIt(this, idx); |
| 4109 | } |
| 4110 | |
| 4111 | /// growOperands - grow operands - This grows the operand list in response |
| 4112 | /// to a push_back style of operation. This grows the number of ops by 3 times. |
| 4113 | /// |
| 4114 | void SwitchInst::growOperands() { |
| 4115 | unsigned e = getNumOperands(); |
| 4116 | unsigned NumOps = e*3; |
| 4117 | |
| 4118 | ReservedSpace = NumOps; |
| 4119 | growHungoffUses(N: ReservedSpace); |
| 4120 | } |
| 4121 | |
| 4122 | MDNode *SwitchInstProfUpdateWrapper::buildProfBranchWeightsMD() { |
| 4123 | assert(Changed && "called only if metadata has changed" ); |
| 4124 | |
| 4125 | if (!Weights) |
| 4126 | return nullptr; |
| 4127 | |
| 4128 | assert(SI.getNumSuccessors() == Weights->size() && |
| 4129 | "num of prof branch_weights must accord with num of successors" ); |
| 4130 | |
| 4131 | bool AllZeroes = all_of(Range&: *Weights, P: [](uint32_t W) { return W == 0; }); |
| 4132 | |
| 4133 | if (AllZeroes || Weights->size() < 2) |
| 4134 | return nullptr; |
| 4135 | |
| 4136 | return MDBuilder(SI.getParent()->getContext()).createBranchWeights(Weights: *Weights); |
| 4137 | } |
| 4138 | |
| 4139 | void SwitchInstProfUpdateWrapper::init() { |
| 4140 | MDNode *ProfileData = getBranchWeightMDNode(I: SI); |
| 4141 | if (!ProfileData) |
| 4142 | return; |
| 4143 | |
| 4144 | if (getNumBranchWeights(ProfileData: *ProfileData) != SI.getNumSuccessors()) { |
| 4145 | llvm_unreachable("number of prof branch_weights metadata operands does " |
| 4146 | "not correspond to number of succesors" ); |
| 4147 | } |
| 4148 | |
| 4149 | SmallVector<uint32_t, 8> Weights; |
| 4150 | if (!extractBranchWeights(ProfileData, Weights)) |
| 4151 | return; |
| 4152 | this->Weights = std::move(Weights); |
| 4153 | } |
| 4154 | |
| 4155 | SwitchInst::CaseIt |
| 4156 | SwitchInstProfUpdateWrapper::removeCase(SwitchInst::CaseIt I) { |
| 4157 | if (Weights) { |
| 4158 | assert(SI.getNumSuccessors() == Weights->size() && |
| 4159 | "num of prof branch_weights must accord with num of successors" ); |
| 4160 | Changed = true; |
| 4161 | // Copy the last case to the place of the removed one and shrink. |
| 4162 | // This is tightly coupled with the way SwitchInst::removeCase() removes |
| 4163 | // the cases in SwitchInst::removeCase(CaseIt). |
| 4164 | (*Weights)[I->getCaseIndex() + 1] = Weights->back(); |
| 4165 | Weights->pop_back(); |
| 4166 | } |
| 4167 | return SI.removeCase(I); |
| 4168 | } |
| 4169 | |
| 4170 | void SwitchInstProfUpdateWrapper::addCase( |
| 4171 | ConstantInt *OnVal, BasicBlock *Dest, |
| 4172 | SwitchInstProfUpdateWrapper::CaseWeightOpt W) { |
| 4173 | SI.addCase(OnVal, Dest); |
| 4174 | |
| 4175 | if (!Weights && W && *W) { |
| 4176 | Changed = true; |
| 4177 | Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0); |
| 4178 | (*Weights)[SI.getNumSuccessors() - 1] = *W; |
| 4179 | } else if (Weights) { |
| 4180 | Changed = true; |
| 4181 | Weights->push_back(Elt: W.value_or(u: 0)); |
| 4182 | } |
| 4183 | if (Weights) |
| 4184 | assert(SI.getNumSuccessors() == Weights->size() && |
| 4185 | "num of prof branch_weights must accord with num of successors" ); |
| 4186 | } |
| 4187 | |
| 4188 | Instruction::InstListType::iterator |
| 4189 | SwitchInstProfUpdateWrapper::eraseFromParent() { |
| 4190 | // Instruction is erased. Mark as unchanged to not touch it in the destructor. |
| 4191 | Changed = false; |
| 4192 | if (Weights) |
| 4193 | Weights->resize(N: 0); |
| 4194 | return SI.eraseFromParent(); |
| 4195 | } |
| 4196 | |
| 4197 | SwitchInstProfUpdateWrapper::CaseWeightOpt |
| 4198 | SwitchInstProfUpdateWrapper::getSuccessorWeight(unsigned idx) { |
| 4199 | if (!Weights) |
| 4200 | return std::nullopt; |
| 4201 | return (*Weights)[idx]; |
| 4202 | } |
| 4203 | |
| 4204 | void SwitchInstProfUpdateWrapper::setSuccessorWeight( |
| 4205 | unsigned idx, SwitchInstProfUpdateWrapper::CaseWeightOpt W) { |
| 4206 | if (!W) |
| 4207 | return; |
| 4208 | |
| 4209 | if (!Weights && *W) |
| 4210 | Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0); |
| 4211 | |
| 4212 | if (Weights) { |
| 4213 | auto &OldW = (*Weights)[idx]; |
| 4214 | if (*W != OldW) { |
| 4215 | Changed = true; |
| 4216 | OldW = *W; |
| 4217 | } |
| 4218 | } |
| 4219 | } |
| 4220 | |
| 4221 | SwitchInstProfUpdateWrapper::CaseWeightOpt |
| 4222 | SwitchInstProfUpdateWrapper::getSuccessorWeight(const SwitchInst &SI, |
| 4223 | unsigned idx) { |
| 4224 | if (MDNode *ProfileData = getBranchWeightMDNode(I: SI)) |
| 4225 | if (ProfileData->getNumOperands() == SI.getNumSuccessors() + 1) |
| 4226 | return mdconst::extract<ConstantInt>(MD: ProfileData->getOperand(I: idx + 1)) |
| 4227 | ->getValue() |
| 4228 | .getZExtValue(); |
| 4229 | |
| 4230 | return std::nullopt; |
| 4231 | } |
| 4232 | |
| 4233 | //===----------------------------------------------------------------------===// |
| 4234 | // IndirectBrInst Implementation |
| 4235 | //===----------------------------------------------------------------------===// |
| 4236 | |
| 4237 | void IndirectBrInst::init(Value *Address, unsigned NumDests) { |
| 4238 | assert(Address && Address->getType()->isPointerTy() && |
| 4239 | "Address of indirectbr must be a pointer" ); |
| 4240 | ReservedSpace = 1+NumDests; |
| 4241 | setNumHungOffUseOperands(1); |
| 4242 | allocHungoffUses(N: ReservedSpace); |
| 4243 | |
| 4244 | Op<0>() = Address; |
| 4245 | } |
| 4246 | |
| 4247 | |
| 4248 | /// growOperands - grow operands - This grows the operand list in response |
| 4249 | /// to a push_back style of operation. This grows the number of ops by 2 times. |
| 4250 | /// |
| 4251 | void IndirectBrInst::growOperands() { |
| 4252 | unsigned e = getNumOperands(); |
| 4253 | unsigned NumOps = e*2; |
| 4254 | |
| 4255 | ReservedSpace = NumOps; |
| 4256 | growHungoffUses(N: ReservedSpace); |
| 4257 | } |
| 4258 | |
| 4259 | IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases, |
| 4260 | InsertPosition InsertBefore) |
| 4261 | : Instruction(Type::getVoidTy(C&: Address->getContext()), |
| 4262 | Instruction::IndirectBr, AllocMarker, InsertBefore) { |
| 4263 | init(Address, NumDests: NumCases); |
| 4264 | } |
| 4265 | |
| 4266 | IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI) |
| 4267 | : Instruction(Type::getVoidTy(C&: IBI.getContext()), Instruction::IndirectBr, |
| 4268 | AllocMarker) { |
| 4269 | NumUserOperands = IBI.NumUserOperands; |
| 4270 | allocHungoffUses(N: IBI.getNumOperands()); |
| 4271 | Use *OL = getOperandList(); |
| 4272 | const Use *InOL = IBI.getOperandList(); |
| 4273 | for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i) |
| 4274 | OL[i] = InOL[i]; |
| 4275 | SubclassOptionalData = IBI.SubclassOptionalData; |
| 4276 | } |
| 4277 | |
| 4278 | /// addDestination - Add a destination. |
| 4279 | /// |
| 4280 | void IndirectBrInst::addDestination(BasicBlock *DestBB) { |
| 4281 | unsigned OpNo = getNumOperands(); |
| 4282 | if (OpNo+1 > ReservedSpace) |
| 4283 | growOperands(); // Get more space! |
| 4284 | // Initialize some new operands. |
| 4285 | assert(OpNo < ReservedSpace && "Growing didn't work!" ); |
| 4286 | setNumHungOffUseOperands(OpNo+1); |
| 4287 | getOperandList()[OpNo] = DestBB; |
| 4288 | } |
| 4289 | |
| 4290 | /// removeDestination - This method removes the specified successor from the |
| 4291 | /// indirectbr instruction. |
| 4292 | void IndirectBrInst::removeDestination(unsigned idx) { |
| 4293 | assert(idx < getNumOperands()-1 && "Successor index out of range!" ); |
| 4294 | |
| 4295 | unsigned NumOps = getNumOperands(); |
| 4296 | Use *OL = getOperandList(); |
| 4297 | |
| 4298 | // Replace this value with the last one. |
| 4299 | OL[idx+1] = OL[NumOps-1]; |
| 4300 | |
| 4301 | // Nuke the last value. |
| 4302 | OL[NumOps-1].set(nullptr); |
| 4303 | setNumHungOffUseOperands(NumOps-1); |
| 4304 | } |
| 4305 | |
| 4306 | //===----------------------------------------------------------------------===// |
| 4307 | // FreezeInst Implementation |
| 4308 | //===----------------------------------------------------------------------===// |
| 4309 | |
| 4310 | FreezeInst::FreezeInst(Value *S, const Twine &Name, InsertPosition InsertBefore) |
| 4311 | : UnaryInstruction(S->getType(), Freeze, S, InsertBefore) { |
| 4312 | setName(Name); |
| 4313 | } |
| 4314 | |
| 4315 | //===----------------------------------------------------------------------===// |
| 4316 | // cloneImpl() implementations |
| 4317 | //===----------------------------------------------------------------------===// |
| 4318 | |
| 4319 | // Define these methods here so vtables don't get emitted into every translation |
| 4320 | // unit that uses these classes. |
| 4321 | |
| 4322 | GetElementPtrInst *GetElementPtrInst::cloneImpl() const { |
| 4323 | IntrusiveOperandsAllocMarker AllocMarker{.NumOps: getNumOperands()}; |
| 4324 | return new (AllocMarker) GetElementPtrInst(*this, AllocMarker); |
| 4325 | } |
| 4326 | |
| 4327 | UnaryOperator *UnaryOperator::cloneImpl() const { |
| 4328 | return Create(Op: getOpcode(), S: Op<0>()); |
| 4329 | } |
| 4330 | |
| 4331 | BinaryOperator *BinaryOperator::cloneImpl() const { |
| 4332 | return Create(Op: getOpcode(), S1: Op<0>(), S2: Op<1>()); |
| 4333 | } |
| 4334 | |
| 4335 | FCmpInst *FCmpInst::cloneImpl() const { |
| 4336 | return new FCmpInst(getPredicate(), Op<0>(), Op<1>()); |
| 4337 | } |
| 4338 | |
| 4339 | ICmpInst *ICmpInst::cloneImpl() const { |
| 4340 | return new ICmpInst(getPredicate(), Op<0>(), Op<1>()); |
| 4341 | } |
| 4342 | |
| 4343 | ExtractValueInst *ExtractValueInst::() const { |
| 4344 | return new ExtractValueInst(*this); |
| 4345 | } |
| 4346 | |
| 4347 | InsertValueInst *InsertValueInst::cloneImpl() const { |
| 4348 | return new InsertValueInst(*this); |
| 4349 | } |
| 4350 | |
| 4351 | AllocaInst *AllocaInst::cloneImpl() const { |
| 4352 | AllocaInst *Result = new AllocaInst(getAllocatedType(), getAddressSpace(), |
| 4353 | getOperand(i_nocapture: 0), getAlign()); |
| 4354 | Result->setUsedWithInAlloca(isUsedWithInAlloca()); |
| 4355 | Result->setSwiftError(isSwiftError()); |
| 4356 | return Result; |
| 4357 | } |
| 4358 | |
| 4359 | LoadInst *LoadInst::cloneImpl() const { |
| 4360 | return new LoadInst(getType(), getOperand(i_nocapture: 0), Twine(), isVolatile(), |
| 4361 | getAlign(), getOrdering(), getSyncScopeID()); |
| 4362 | } |
| 4363 | |
| 4364 | StoreInst *StoreInst::cloneImpl() const { |
| 4365 | return new StoreInst(getOperand(i_nocapture: 0), getOperand(i_nocapture: 1), isVolatile(), getAlign(), |
| 4366 | getOrdering(), getSyncScopeID()); |
| 4367 | } |
| 4368 | |
| 4369 | AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const { |
| 4370 | AtomicCmpXchgInst *Result = new AtomicCmpXchgInst( |
| 4371 | getOperand(i_nocapture: 0), getOperand(i_nocapture: 1), getOperand(i_nocapture: 2), getAlign(), |
| 4372 | getSuccessOrdering(), getFailureOrdering(), getSyncScopeID()); |
| 4373 | Result->setVolatile(isVolatile()); |
| 4374 | Result->setWeak(isWeak()); |
| 4375 | return Result; |
| 4376 | } |
| 4377 | |
| 4378 | AtomicRMWInst *AtomicRMWInst::cloneImpl() const { |
| 4379 | AtomicRMWInst *Result = |
| 4380 | new AtomicRMWInst(getOperation(), getOperand(i_nocapture: 0), getOperand(i_nocapture: 1), |
| 4381 | getAlign(), getOrdering(), getSyncScopeID()); |
| 4382 | Result->setVolatile(isVolatile()); |
| 4383 | return Result; |
| 4384 | } |
| 4385 | |
| 4386 | FenceInst *FenceInst::cloneImpl() const { |
| 4387 | return new FenceInst(getContext(), getOrdering(), getSyncScopeID()); |
| 4388 | } |
| 4389 | |
| 4390 | TruncInst *TruncInst::cloneImpl() const { |
| 4391 | return new TruncInst(getOperand(i_nocapture: 0), getType()); |
| 4392 | } |
| 4393 | |
| 4394 | ZExtInst *ZExtInst::cloneImpl() const { |
| 4395 | return new ZExtInst(getOperand(i_nocapture: 0), getType()); |
| 4396 | } |
| 4397 | |
| 4398 | SExtInst *SExtInst::cloneImpl() const { |
| 4399 | return new SExtInst(getOperand(i_nocapture: 0), getType()); |
| 4400 | } |
| 4401 | |
| 4402 | FPTruncInst *FPTruncInst::cloneImpl() const { |
| 4403 | return new FPTruncInst(getOperand(i_nocapture: 0), getType()); |
| 4404 | } |
| 4405 | |
| 4406 | FPExtInst *FPExtInst::cloneImpl() const { |
| 4407 | return new FPExtInst(getOperand(i_nocapture: 0), getType()); |
| 4408 | } |
| 4409 | |
| 4410 | UIToFPInst *UIToFPInst::cloneImpl() const { |
| 4411 | return new UIToFPInst(getOperand(i_nocapture: 0), getType()); |
| 4412 | } |
| 4413 | |
| 4414 | SIToFPInst *SIToFPInst::cloneImpl() const { |
| 4415 | return new SIToFPInst(getOperand(i_nocapture: 0), getType()); |
| 4416 | } |
| 4417 | |
| 4418 | FPToUIInst *FPToUIInst::cloneImpl() const { |
| 4419 | return new FPToUIInst(getOperand(i_nocapture: 0), getType()); |
| 4420 | } |
| 4421 | |
| 4422 | FPToSIInst *FPToSIInst::cloneImpl() const { |
| 4423 | return new FPToSIInst(getOperand(i_nocapture: 0), getType()); |
| 4424 | } |
| 4425 | |
| 4426 | PtrToIntInst *PtrToIntInst::cloneImpl() const { |
| 4427 | return new PtrToIntInst(getOperand(i_nocapture: 0), getType()); |
| 4428 | } |
| 4429 | |
| 4430 | IntToPtrInst *IntToPtrInst::cloneImpl() const { |
| 4431 | return new IntToPtrInst(getOperand(i_nocapture: 0), getType()); |
| 4432 | } |
| 4433 | |
| 4434 | BitCastInst *BitCastInst::cloneImpl() const { |
| 4435 | return new BitCastInst(getOperand(i_nocapture: 0), getType()); |
| 4436 | } |
| 4437 | |
| 4438 | AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const { |
| 4439 | return new AddrSpaceCastInst(getOperand(i_nocapture: 0), getType()); |
| 4440 | } |
| 4441 | |
| 4442 | CallInst *CallInst::cloneImpl() const { |
| 4443 | if (hasOperandBundles()) { |
| 4444 | IntrusiveOperandsAndDescriptorAllocMarker AllocMarker{ |
| 4445 | .NumOps: getNumOperands(), |
| 4446 | .DescBytes: getNumOperandBundles() * unsigned(sizeof(BundleOpInfo))}; |
| 4447 | return new (AllocMarker) CallInst(*this, AllocMarker); |
| 4448 | } |
| 4449 | IntrusiveOperandsAllocMarker AllocMarker{.NumOps: getNumOperands()}; |
| 4450 | return new (AllocMarker) CallInst(*this, AllocMarker); |
| 4451 | } |
| 4452 | |
| 4453 | SelectInst *SelectInst::cloneImpl() const { |
| 4454 | return SelectInst::Create(C: getOperand(i_nocapture: 0), S1: getOperand(i_nocapture: 1), S2: getOperand(i_nocapture: 2)); |
| 4455 | } |
| 4456 | |
| 4457 | VAArgInst *VAArgInst::cloneImpl() const { |
| 4458 | return new VAArgInst(getOperand(i_nocapture: 0), getType()); |
| 4459 | } |
| 4460 | |
| 4461 | ExtractElementInst *ExtractElementInst::() const { |
| 4462 | return ExtractElementInst::Create(Vec: getOperand(i_nocapture: 0), Idx: getOperand(i_nocapture: 1)); |
| 4463 | } |
| 4464 | |
| 4465 | InsertElementInst *InsertElementInst::cloneImpl() const { |
| 4466 | return InsertElementInst::Create(Vec: getOperand(i_nocapture: 0), NewElt: getOperand(i_nocapture: 1), Idx: getOperand(i_nocapture: 2)); |
| 4467 | } |
| 4468 | |
| 4469 | ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const { |
| 4470 | return new ShuffleVectorInst(getOperand(i_nocapture: 0), getOperand(i_nocapture: 1), getShuffleMask()); |
| 4471 | } |
| 4472 | |
| 4473 | PHINode *PHINode::cloneImpl() const { return new (AllocMarker) PHINode(*this); } |
| 4474 | |
| 4475 | LandingPadInst *LandingPadInst::cloneImpl() const { |
| 4476 | return new LandingPadInst(*this); |
| 4477 | } |
| 4478 | |
| 4479 | ReturnInst *ReturnInst::cloneImpl() const { |
| 4480 | IntrusiveOperandsAllocMarker AllocMarker{.NumOps: getNumOperands()}; |
| 4481 | return new (AllocMarker) ReturnInst(*this, AllocMarker); |
| 4482 | } |
| 4483 | |
| 4484 | BranchInst *BranchInst::cloneImpl() const { |
| 4485 | IntrusiveOperandsAllocMarker AllocMarker{.NumOps: getNumOperands()}; |
| 4486 | return new (AllocMarker) BranchInst(*this, AllocMarker); |
| 4487 | } |
| 4488 | |
| 4489 | SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); } |
| 4490 | |
| 4491 | IndirectBrInst *IndirectBrInst::cloneImpl() const { |
| 4492 | return new IndirectBrInst(*this); |
| 4493 | } |
| 4494 | |
| 4495 | InvokeInst *InvokeInst::cloneImpl() const { |
| 4496 | if (hasOperandBundles()) { |
| 4497 | IntrusiveOperandsAndDescriptorAllocMarker AllocMarker{ |
| 4498 | .NumOps: getNumOperands(), |
| 4499 | .DescBytes: getNumOperandBundles() * unsigned(sizeof(BundleOpInfo))}; |
| 4500 | return new (AllocMarker) InvokeInst(*this, AllocMarker); |
| 4501 | } |
| 4502 | IntrusiveOperandsAllocMarker AllocMarker{.NumOps: getNumOperands()}; |
| 4503 | return new (AllocMarker) InvokeInst(*this, AllocMarker); |
| 4504 | } |
| 4505 | |
| 4506 | CallBrInst *CallBrInst::cloneImpl() const { |
| 4507 | if (hasOperandBundles()) { |
| 4508 | IntrusiveOperandsAndDescriptorAllocMarker AllocMarker{ |
| 4509 | .NumOps: getNumOperands(), |
| 4510 | .DescBytes: getNumOperandBundles() * unsigned(sizeof(BundleOpInfo))}; |
| 4511 | return new (AllocMarker) CallBrInst(*this, AllocMarker); |
| 4512 | } |
| 4513 | IntrusiveOperandsAllocMarker AllocMarker{.NumOps: getNumOperands()}; |
| 4514 | return new (AllocMarker) CallBrInst(*this, AllocMarker); |
| 4515 | } |
| 4516 | |
| 4517 | ResumeInst *ResumeInst::cloneImpl() const { |
| 4518 | return new (AllocMarker) ResumeInst(*this); |
| 4519 | } |
| 4520 | |
| 4521 | CleanupReturnInst *CleanupReturnInst::cloneImpl() const { |
| 4522 | IntrusiveOperandsAllocMarker AllocMarker{.NumOps: getNumOperands()}; |
| 4523 | return new (AllocMarker) CleanupReturnInst(*this, AllocMarker); |
| 4524 | } |
| 4525 | |
| 4526 | CatchReturnInst *CatchReturnInst::cloneImpl() const { |
| 4527 | return new (AllocMarker) CatchReturnInst(*this); |
| 4528 | } |
| 4529 | |
| 4530 | CatchSwitchInst *CatchSwitchInst::cloneImpl() const { |
| 4531 | return new CatchSwitchInst(*this); |
| 4532 | } |
| 4533 | |
| 4534 | FuncletPadInst *FuncletPadInst::cloneImpl() const { |
| 4535 | IntrusiveOperandsAllocMarker AllocMarker{.NumOps: getNumOperands()}; |
| 4536 | return new (AllocMarker) FuncletPadInst(*this, AllocMarker); |
| 4537 | } |
| 4538 | |
| 4539 | UnreachableInst *UnreachableInst::cloneImpl() const { |
| 4540 | LLVMContext &Context = getContext(); |
| 4541 | return new UnreachableInst(Context); |
| 4542 | } |
| 4543 | |
| 4544 | bool UnreachableInst::shouldLowerToTrap(bool TrapUnreachable, |
| 4545 | bool NoTrapAfterNoreturn) const { |
| 4546 | if (!TrapUnreachable) |
| 4547 | return false; |
| 4548 | |
| 4549 | // We may be able to ignore unreachable behind a noreturn call. |
| 4550 | if (const CallInst *Call = dyn_cast_or_null<CallInst>(Val: getPrevNode()); |
| 4551 | Call && Call->doesNotReturn()) { |
| 4552 | if (NoTrapAfterNoreturn) |
| 4553 | return false; |
| 4554 | // Do not emit an additional trap instruction. |
| 4555 | if (Call->isNonContinuableTrap()) |
| 4556 | return false; |
| 4557 | } |
| 4558 | |
| 4559 | if (getFunction()->hasFnAttribute(Kind: Attribute::Naked)) |
| 4560 | return false; |
| 4561 | |
| 4562 | return true; |
| 4563 | } |
| 4564 | |
| 4565 | FreezeInst *FreezeInst::cloneImpl() const { |
| 4566 | return new FreezeInst(getOperand(i_nocapture: 0)); |
| 4567 | } |
| 4568 | |