1 | //===-- Value.cpp - Implement the Value class -----------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the Value, ValueHandle, and User classes. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "llvm/IR/Value.h" |
14 | #include "LLVMContextImpl.h" |
15 | #include "llvm/ADT/DenseMap.h" |
16 | #include "llvm/ADT/SmallString.h" |
17 | #include "llvm/IR/Constant.h" |
18 | #include "llvm/IR/Constants.h" |
19 | #include "llvm/IR/DataLayout.h" |
20 | #include "llvm/IR/DebugInfo.h" |
21 | #include "llvm/IR/DerivedTypes.h" |
22 | #include "llvm/IR/DerivedUser.h" |
23 | #include "llvm/IR/GetElementPtrTypeIterator.h" |
24 | #include "llvm/IR/InstrTypes.h" |
25 | #include "llvm/IR/Instructions.h" |
26 | #include "llvm/IR/IntrinsicInst.h" |
27 | #include "llvm/IR/Module.h" |
28 | #include "llvm/IR/Operator.h" |
29 | #include "llvm/IR/TypedPointerType.h" |
30 | #include "llvm/IR/ValueHandle.h" |
31 | #include "llvm/IR/ValueSymbolTable.h" |
32 | #include "llvm/Support/CommandLine.h" |
33 | #include "llvm/Support/ErrorHandling.h" |
34 | #include "llvm/Support/raw_ostream.h" |
35 | #include <algorithm> |
36 | |
37 | using namespace llvm; |
38 | |
39 | cl::opt<bool> UseDerefAtPointSemantics( |
40 | "use-dereferenceable-at-point-semantics" , cl::Hidden, cl::init(Val: false), |
41 | cl::desc("Deref attributes and metadata infer facts at definition only" )); |
42 | |
43 | //===----------------------------------------------------------------------===// |
44 | // Value Class |
45 | //===----------------------------------------------------------------------===// |
46 | static inline Type *checkType(Type *Ty) { |
47 | assert(Ty && "Value defined with a null type: Error!" ); |
48 | assert(!isa<TypedPointerType>(Ty->getScalarType()) && |
49 | "Cannot have values with typed pointer types" ); |
50 | return Ty; |
51 | } |
52 | |
53 | Value::Value(Type *ty, unsigned scid) |
54 | : SubclassID(scid), HasValueHandle(0), SubclassOptionalData(0), |
55 | SubclassData(0), NumUserOperands(0), IsUsedByMD(false), HasName(false), |
56 | HasMetadata(false), VTy(checkType(Ty: ty)) { |
57 | static_assert(ConstantFirstVal == 0, "!(SubclassID < ConstantFirstVal)" ); |
58 | // FIXME: Why isn't this in the subclass gunk?? |
59 | // Note, we cannot call isa<CallInst> before the CallInst has been |
60 | // constructed. |
61 | unsigned OpCode = 0; |
62 | if (SubclassID >= InstructionVal) |
63 | OpCode = SubclassID - InstructionVal; |
64 | if (OpCode == Instruction::Call || OpCode == Instruction::Invoke || |
65 | OpCode == Instruction::CallBr) |
66 | assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) && |
67 | "invalid CallBase type!" ); |
68 | else if (SubclassID != BasicBlockVal && |
69 | (/*SubclassID < ConstantFirstVal ||*/ SubclassID > ConstantLastVal)) |
70 | assert((VTy->isFirstClassType() || VTy->isVoidTy()) && |
71 | "Cannot create non-first-class values except for constants!" ); |
72 | static_assert(sizeof(Value) == 2 * sizeof(void *) + 2 * sizeof(unsigned), |
73 | "Value too big" ); |
74 | } |
75 | |
76 | Value::~Value() { |
77 | // Notify all ValueHandles (if present) that this value is going away. |
78 | if (HasValueHandle) |
79 | ValueHandleBase::ValueIsDeleted(V: this); |
80 | if (isUsedByMetadata()) |
81 | ValueAsMetadata::handleDeletion(V: this); |
82 | |
83 | // Remove associated metadata from context. |
84 | if (HasMetadata) |
85 | clearMetadata(); |
86 | |
87 | #ifndef NDEBUG // Only in -g mode... |
88 | // Check to make sure that there are no uses of this value that are still |
89 | // around when the value is destroyed. If there are, then we have a dangling |
90 | // reference and something is wrong. This code is here to print out where |
91 | // the value is still being referenced. |
92 | // |
93 | // Note that use_empty() cannot be called here, as it eventually downcasts |
94 | // 'this' to GlobalValue (derived class of Value), but GlobalValue has already |
95 | // been destructed, so accessing it is UB. |
96 | // |
97 | if (!materialized_use_empty()) { |
98 | dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n" ; |
99 | for (auto *U : users()) |
100 | dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n" ; |
101 | |
102 | llvm_unreachable("Uses remain when a value is destroyed!" ); |
103 | } |
104 | #endif |
105 | |
106 | // If this value is named, destroy the name. This should not be in a symtab |
107 | // at this point. |
108 | destroyValueName(); |
109 | } |
110 | |
111 | void Value::deleteValue() { |
112 | switch (getValueID()) { |
113 | #define HANDLE_VALUE(Name) \ |
114 | case Value::Name##Val: \ |
115 | delete static_cast<Name *>(this); \ |
116 | break; |
117 | #define HANDLE_MEMORY_VALUE(Name) \ |
118 | case Value::Name##Val: \ |
119 | static_cast<DerivedUser *>(this)->DeleteValue( \ |
120 | static_cast<DerivedUser *>(this)); \ |
121 | break; |
122 | #define HANDLE_CONSTANT(Name) \ |
123 | case Value::Name##Val: \ |
124 | llvm_unreachable("constants should be destroyed with destroyConstant"); \ |
125 | break; |
126 | #define HANDLE_INSTRUCTION(Name) /* nothing */ |
127 | #include "llvm/IR/Value.def" |
128 | |
129 | #define HANDLE_INST(N, OPC, CLASS) \ |
130 | case Value::InstructionVal + Instruction::OPC: \ |
131 | delete static_cast<CLASS *>(this); \ |
132 | break; |
133 | #define HANDLE_USER_INST(N, OPC, CLASS) |
134 | #include "llvm/IR/Instruction.def" |
135 | |
136 | default: |
137 | llvm_unreachable("attempting to delete unknown value kind" ); |
138 | } |
139 | } |
140 | |
141 | void Value::destroyValueName() { |
142 | ValueName *Name = getValueName(); |
143 | if (Name) { |
144 | MallocAllocator Allocator; |
145 | Name->Destroy(allocator&: Allocator); |
146 | } |
147 | setValueName(nullptr); |
148 | } |
149 | |
150 | bool Value::hasNUses(unsigned N) const { |
151 | if (!UseList) |
152 | return N == 0; |
153 | |
154 | // TODO: Disallow for ConstantData and remove !UseList check? |
155 | return hasNItems(Begin: use_begin(), End: use_end(), N); |
156 | } |
157 | |
158 | bool Value::hasNUsesOrMore(unsigned N) const { |
159 | // TODO: Disallow for ConstantData and remove !UseList check? |
160 | if (!UseList) |
161 | return N == 0; |
162 | |
163 | return hasNItemsOrMore(Begin: use_begin(), End: use_end(), N); |
164 | } |
165 | |
166 | bool Value::hasOneUser() const { |
167 | if (use_empty()) |
168 | return false; |
169 | if (hasOneUse()) |
170 | return true; |
171 | return std::equal(first1: ++user_begin(), last1: user_end(), first2: user_begin()); |
172 | } |
173 | |
174 | static bool isUnDroppableUser(const User *U) { return !U->isDroppable(); } |
175 | |
176 | Use *Value::getSingleUndroppableUse() { |
177 | Use *Result = nullptr; |
178 | for (Use &U : uses()) { |
179 | if (!U.getUser()->isDroppable()) { |
180 | if (Result) |
181 | return nullptr; |
182 | Result = &U; |
183 | } |
184 | } |
185 | return Result; |
186 | } |
187 | |
188 | User *Value::getUniqueUndroppableUser() { |
189 | User *Result = nullptr; |
190 | for (auto *U : users()) { |
191 | if (!U->isDroppable()) { |
192 | if (Result && Result != U) |
193 | return nullptr; |
194 | Result = U; |
195 | } |
196 | } |
197 | return Result; |
198 | } |
199 | |
200 | bool Value::hasNUndroppableUses(unsigned int N) const { |
201 | return hasNItems(Begin: user_begin(), End: user_end(), N, ShouldBeCounted&: isUnDroppableUser); |
202 | } |
203 | |
204 | bool Value::hasNUndroppableUsesOrMore(unsigned int N) const { |
205 | return hasNItemsOrMore(Begin: user_begin(), End: user_end(), N, ShouldBeCounted&: isUnDroppableUser); |
206 | } |
207 | |
208 | void Value::dropDroppableUses( |
209 | llvm::function_ref<bool(const Use *)> ShouldDrop) { |
210 | SmallVector<Use *, 8> ToBeEdited; |
211 | for (Use &U : uses()) |
212 | if (U.getUser()->isDroppable() && ShouldDrop(&U)) |
213 | ToBeEdited.push_back(Elt: &U); |
214 | for (Use *U : ToBeEdited) |
215 | dropDroppableUse(U&: *U); |
216 | } |
217 | |
218 | void Value::dropDroppableUsesIn(User &Usr) { |
219 | assert(Usr.isDroppable() && "Expected a droppable user!" ); |
220 | for (Use &UsrOp : Usr.operands()) { |
221 | if (UsrOp.get() == this) |
222 | dropDroppableUse(U&: UsrOp); |
223 | } |
224 | } |
225 | |
226 | void Value::dropDroppableUse(Use &U) { |
227 | if (auto *Assume = dyn_cast<AssumeInst>(Val: U.getUser())) { |
228 | unsigned OpNo = U.getOperandNo(); |
229 | if (OpNo == 0) |
230 | U.set(ConstantInt::getTrue(Context&: Assume->getContext())); |
231 | else { |
232 | U.set(PoisonValue::get(T: U.get()->getType())); |
233 | CallInst::BundleOpInfo &BOI = Assume->getBundleOpInfoForOperand(OpIdx: OpNo); |
234 | BOI.Tag = Assume->getContext().pImpl->getOrInsertBundleTag(Tag: "ignore" ); |
235 | } |
236 | return; |
237 | } |
238 | |
239 | llvm_unreachable("unknown droppable use" ); |
240 | } |
241 | |
242 | bool Value::isUsedInBasicBlock(const BasicBlock *BB) const { |
243 | assert(hasUseList() && "ConstantData has no use-list" ); |
244 | |
245 | // This can be computed either by scanning the instructions in BB, or by |
246 | // scanning the use list of this Value. Both lists can be very long, but |
247 | // usually one is quite short. |
248 | // |
249 | // Scan both lists simultaneously until one is exhausted. This limits the |
250 | // search to the shorter list. |
251 | BasicBlock::const_iterator BI = BB->begin(), BE = BB->end(); |
252 | const_user_iterator UI = user_begin(), UE = user_end(); |
253 | for (; BI != BE && UI != UE; ++BI, ++UI) { |
254 | // Scan basic block: Check if this Value is used by the instruction at BI. |
255 | if (is_contained(Range: BI->operands(), Element: this)) |
256 | return true; |
257 | // Scan use list: Check if the use at UI is in BB. |
258 | const auto *User = dyn_cast<Instruction>(Val: *UI); |
259 | if (User && User->getParent() == BB) |
260 | return true; |
261 | } |
262 | return false; |
263 | } |
264 | |
265 | unsigned Value::getNumUses() const { |
266 | // TODO: Disallow for ConstantData and remove !UseList check? |
267 | if (!UseList) |
268 | return 0; |
269 | return (unsigned)std::distance(first: use_begin(), last: use_end()); |
270 | } |
271 | |
272 | static bool getSymTab(Value *V, ValueSymbolTable *&ST) { |
273 | ST = nullptr; |
274 | if (Instruction *I = dyn_cast<Instruction>(Val: V)) { |
275 | if (BasicBlock *P = I->getParent()) |
276 | if (Function *PP = P->getParent()) |
277 | ST = PP->getValueSymbolTable(); |
278 | } else if (BasicBlock *BB = dyn_cast<BasicBlock>(Val: V)) { |
279 | if (Function *P = BB->getParent()) |
280 | ST = P->getValueSymbolTable(); |
281 | } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Val: V)) { |
282 | if (Module *P = GV->getParent()) |
283 | ST = &P->getValueSymbolTable(); |
284 | } else if (Argument *A = dyn_cast<Argument>(Val: V)) { |
285 | if (Function *P = A->getParent()) |
286 | ST = P->getValueSymbolTable(); |
287 | } else { |
288 | assert(isa<Constant>(V) && "Unknown value type!" ); |
289 | return true; // no name is setable for this. |
290 | } |
291 | return false; |
292 | } |
293 | |
294 | ValueName *Value::getValueName() const { |
295 | if (!HasName) return nullptr; |
296 | |
297 | LLVMContext &Ctx = getContext(); |
298 | auto I = Ctx.pImpl->ValueNames.find(Val: this); |
299 | assert(I != Ctx.pImpl->ValueNames.end() && |
300 | "No name entry found!" ); |
301 | |
302 | return I->second; |
303 | } |
304 | |
305 | void Value::setValueName(ValueName *VN) { |
306 | LLVMContext &Ctx = getContext(); |
307 | |
308 | assert(HasName == Ctx.pImpl->ValueNames.count(this) && |
309 | "HasName bit out of sync!" ); |
310 | |
311 | if (!VN) { |
312 | if (HasName) |
313 | Ctx.pImpl->ValueNames.erase(Val: this); |
314 | HasName = false; |
315 | return; |
316 | } |
317 | |
318 | HasName = true; |
319 | Ctx.pImpl->ValueNames[this] = VN; |
320 | } |
321 | |
322 | StringRef Value::getName() const { |
323 | // Make sure the empty string is still a C string. For historical reasons, |
324 | // some clients want to call .data() on the result and expect it to be null |
325 | // terminated. |
326 | if (!hasName()) |
327 | return StringRef("" , 0); |
328 | return getValueName()->getKey(); |
329 | } |
330 | |
331 | void Value::setNameImpl(const Twine &NewName) { |
332 | bool NeedNewName = |
333 | !getContext().shouldDiscardValueNames() || isa<GlobalValue>(Val: this); |
334 | |
335 | // Fast-path: LLVMContext can be set to strip out non-GlobalValue names |
336 | // and there is no need to delete the old name. |
337 | if (!NeedNewName && !hasName()) |
338 | return; |
339 | |
340 | // Fast path for common IRBuilder case of setName("") when there is no name. |
341 | if (NewName.isTriviallyEmpty() && !hasName()) |
342 | return; |
343 | |
344 | SmallString<256> NameData; |
345 | StringRef NameRef = NeedNewName ? NewName.toStringRef(Out&: NameData) : "" ; |
346 | assert(!NameRef.contains(0) && "Null bytes are not allowed in names" ); |
347 | |
348 | // Name isn't changing? |
349 | if (getName() == NameRef) |
350 | return; |
351 | |
352 | assert(!getType()->isVoidTy() && "Cannot assign a name to void values!" ); |
353 | |
354 | // Get the symbol table to update for this object. |
355 | ValueSymbolTable *ST; |
356 | if (getSymTab(V: this, ST)) |
357 | return; // Cannot set a name on this value (e.g. constant). |
358 | |
359 | if (!ST) { // No symbol table to update? Just do the change. |
360 | // NOTE: Could optimize for the case the name is shrinking to not deallocate |
361 | // then reallocated. |
362 | destroyValueName(); |
363 | |
364 | if (!NameRef.empty()) { |
365 | // Create the new name. |
366 | assert(NeedNewName); |
367 | MallocAllocator Allocator; |
368 | setValueName(ValueName::create(key: NameRef, allocator&: Allocator)); |
369 | getValueName()->setValue(this); |
370 | } |
371 | return; |
372 | } |
373 | |
374 | // NOTE: Could optimize for the case the name is shrinking to not deallocate |
375 | // then reallocated. |
376 | if (hasName()) { |
377 | // Remove old name. |
378 | ST->removeValueName(V: getValueName()); |
379 | destroyValueName(); |
380 | |
381 | if (NameRef.empty()) |
382 | return; |
383 | } |
384 | |
385 | // Name is changing to something new. |
386 | assert(NeedNewName); |
387 | setValueName(ST->createValueName(Name: NameRef, V: this)); |
388 | } |
389 | |
390 | void Value::setName(const Twine &NewName) { |
391 | setNameImpl(NewName); |
392 | if (Function *F = dyn_cast<Function>(Val: this)) |
393 | F->updateAfterNameChange(); |
394 | } |
395 | |
396 | void Value::takeName(Value *V) { |
397 | assert(V != this && "Illegal call to this->takeName(this)!" ); |
398 | ValueSymbolTable *ST = nullptr; |
399 | // If this value has a name, drop it. |
400 | if (hasName()) { |
401 | // Get the symtab this is in. |
402 | if (getSymTab(V: this, ST)) { |
403 | // We can't set a name on this value, but we need to clear V's name if |
404 | // it has one. |
405 | if (V->hasName()) V->setName("" ); |
406 | return; // Cannot set a name on this value (e.g. constant). |
407 | } |
408 | |
409 | // Remove old name. |
410 | if (ST) |
411 | ST->removeValueName(V: getValueName()); |
412 | destroyValueName(); |
413 | } |
414 | |
415 | // Now we know that this has no name. |
416 | |
417 | // If V has no name either, we're done. |
418 | if (!V->hasName()) return; |
419 | |
420 | // Get this's symtab if we didn't before. |
421 | if (!ST) { |
422 | if (getSymTab(V: this, ST)) { |
423 | // Clear V's name. |
424 | V->setName("" ); |
425 | return; // Cannot set a name on this value (e.g. constant). |
426 | } |
427 | } |
428 | |
429 | // Get V's ST, this should always succeed, because V has a name. |
430 | ValueSymbolTable *VST; |
431 | bool Failure = getSymTab(V, ST&: VST); |
432 | assert(!Failure && "V has a name, so it should have a ST!" ); (void)Failure; |
433 | |
434 | // If these values are both in the same symtab, we can do this very fast. |
435 | // This works even if both values have no symtab yet. |
436 | if (ST == VST) { |
437 | // Take the name! |
438 | setValueName(V->getValueName()); |
439 | V->setValueName(nullptr); |
440 | getValueName()->setValue(this); |
441 | return; |
442 | } |
443 | |
444 | // Otherwise, things are slightly more complex. Remove V's name from VST and |
445 | // then reinsert it into ST. |
446 | |
447 | if (VST) |
448 | VST->removeValueName(V: V->getValueName()); |
449 | setValueName(V->getValueName()); |
450 | V->setValueName(nullptr); |
451 | getValueName()->setValue(this); |
452 | |
453 | if (ST) |
454 | ST->reinsertValue(V: this); |
455 | } |
456 | |
457 | std::string Value::getNameOrAsOperand() const { |
458 | if (!getName().empty()) |
459 | return std::string(getName()); |
460 | |
461 | std::string BBName; |
462 | raw_string_ostream OS(BBName); |
463 | printAsOperand(O&: OS, PrintType: false); |
464 | return OS.str(); |
465 | } |
466 | |
467 | void Value::assertModuleIsMaterializedImpl() const { |
468 | #ifndef NDEBUG |
469 | const GlobalValue *GV = dyn_cast<GlobalValue>(this); |
470 | if (!GV) |
471 | return; |
472 | const Module *M = GV->getParent(); |
473 | if (!M) |
474 | return; |
475 | assert(M->isMaterialized()); |
476 | #endif |
477 | } |
478 | |
479 | #ifndef NDEBUG |
480 | static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr, |
481 | Constant *C) { |
482 | if (!Cache.insert(Expr).second) |
483 | return false; |
484 | |
485 | for (auto &O : Expr->operands()) { |
486 | if (O == C) |
487 | return true; |
488 | auto *CE = dyn_cast<ConstantExpr>(O); |
489 | if (!CE) |
490 | continue; |
491 | if (contains(Cache, CE, C)) |
492 | return true; |
493 | } |
494 | return false; |
495 | } |
496 | |
497 | static bool contains(Value *Expr, Value *V) { |
498 | if (Expr == V) |
499 | return true; |
500 | |
501 | auto *C = dyn_cast<Constant>(V); |
502 | if (!C) |
503 | return false; |
504 | |
505 | auto *CE = dyn_cast<ConstantExpr>(Expr); |
506 | if (!CE) |
507 | return false; |
508 | |
509 | SmallPtrSet<ConstantExpr *, 4> Cache; |
510 | return contains(Cache, CE, C); |
511 | } |
512 | #endif // NDEBUG |
513 | |
514 | void Value::doRAUW(Value *New, ReplaceMetadataUses ReplaceMetaUses) { |
515 | assert(hasUseList() && "Cannot replace constant data" ); |
516 | assert(New && "Value::replaceAllUsesWith(<null>) is invalid!" ); |
517 | assert(!contains(New, this) && |
518 | "this->replaceAllUsesWith(expr(this)) is NOT valid!" ); |
519 | assert(New->getType() == getType() && |
520 | "replaceAllUses of value with new value of different type!" ); |
521 | |
522 | // Notify all ValueHandles (if present) that this value is going away. |
523 | if (HasValueHandle) |
524 | ValueHandleBase::ValueIsRAUWd(Old: this, New); |
525 | if (ReplaceMetaUses == ReplaceMetadataUses::Yes && isUsedByMetadata()) |
526 | ValueAsMetadata::handleRAUW(From: this, To: New); |
527 | |
528 | while (!materialized_use_empty()) { |
529 | Use &U = *UseList; |
530 | // Must handle Constants specially, we cannot call replaceUsesOfWith on a |
531 | // constant because they are uniqued. |
532 | if (auto *C = dyn_cast<Constant>(Val: U.getUser())) { |
533 | if (!isa<GlobalValue>(Val: C)) { |
534 | C->handleOperandChange(this, New); |
535 | continue; |
536 | } |
537 | } |
538 | |
539 | U.set(New); |
540 | } |
541 | |
542 | if (BasicBlock *BB = dyn_cast<BasicBlock>(Val: this)) |
543 | BB->replaceSuccessorsPhiUsesWith(New: cast<BasicBlock>(Val: New)); |
544 | } |
545 | |
546 | void Value::replaceAllUsesWith(Value *New) { |
547 | doRAUW(New, ReplaceMetaUses: ReplaceMetadataUses::Yes); |
548 | } |
549 | |
550 | void Value::replaceNonMetadataUsesWith(Value *New) { |
551 | doRAUW(New, ReplaceMetaUses: ReplaceMetadataUses::No); |
552 | } |
553 | |
554 | void Value::replaceUsesWithIf(Value *New, |
555 | llvm::function_ref<bool(Use &U)> ShouldReplace) { |
556 | assert(New && "Value::replaceUsesWithIf(<null>) is invalid!" ); |
557 | assert(New->getType() == getType() && |
558 | "replaceUses of value with new value of different type!" ); |
559 | |
560 | SmallVector<TrackingVH<Constant>, 8> Consts; |
561 | SmallPtrSet<Constant *, 8> Visited; |
562 | |
563 | for (Use &U : llvm::make_early_inc_range(Range: uses())) { |
564 | if (!ShouldReplace(U)) |
565 | continue; |
566 | // Must handle Constants specially, we cannot call replaceUsesOfWith on a |
567 | // constant because they are uniqued. |
568 | if (auto *C = dyn_cast<Constant>(Val: U.getUser())) { |
569 | if (!isa<GlobalValue>(Val: C)) { |
570 | if (Visited.insert(Ptr: C).second) |
571 | Consts.push_back(Elt: TrackingVH<Constant>(C)); |
572 | continue; |
573 | } |
574 | } |
575 | U.set(New); |
576 | } |
577 | |
578 | while (!Consts.empty()) { |
579 | // FIXME: handleOperandChange() updates all the uses in a given Constant, |
580 | // not just the one passed to ShouldReplace |
581 | Consts.pop_back_val()->handleOperandChange(this, New); |
582 | } |
583 | } |
584 | |
585 | /// Replace llvm.dbg.* uses of MetadataAsValue(ValueAsMetadata(V)) outside BB |
586 | /// with New. |
587 | static void replaceDbgUsesOutsideBlock(Value *V, Value *New, BasicBlock *BB) { |
588 | SmallVector<DbgVariableIntrinsic *> DbgUsers; |
589 | SmallVector<DbgVariableRecord *> DPUsers; |
590 | findDbgUsers(DbgInsts&: DbgUsers, V, DbgVariableRecords: &DPUsers); |
591 | for (auto *DVI : DbgUsers) { |
592 | if (DVI->getParent() != BB) |
593 | DVI->replaceVariableLocationOp(OldValue: V, NewValue: New); |
594 | } |
595 | for (auto *DVR : DPUsers) { |
596 | DbgMarker *Marker = DVR->getMarker(); |
597 | if (Marker->getParent() != BB) |
598 | DVR->replaceVariableLocationOp(OldValue: V, NewValue: New); |
599 | } |
600 | } |
601 | |
602 | // Like replaceAllUsesWith except it does not handle constants or basic blocks. |
603 | // This routine leaves uses within BB. |
604 | void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) { |
605 | assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!" ); |
606 | assert(!contains(New, this) && |
607 | "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!" ); |
608 | assert(New->getType() == getType() && |
609 | "replaceUses of value with new value of different type!" ); |
610 | assert(BB && "Basic block that may contain a use of 'New' must be defined\n" ); |
611 | |
612 | replaceDbgUsesOutsideBlock(V: this, New, BB); |
613 | replaceUsesWithIf(New, ShouldReplace: [BB](Use &U) { |
614 | auto *I = dyn_cast<Instruction>(Val: U.getUser()); |
615 | // Don't replace if it's an instruction in the BB basic block. |
616 | return !I || I->getParent() != BB; |
617 | }); |
618 | } |
619 | |
620 | namespace { |
621 | // Various metrics for how much to strip off of pointers. |
622 | enum PointerStripKind { |
623 | PSK_ZeroIndices, |
624 | PSK_ZeroIndicesAndAliases, |
625 | PSK_ZeroIndicesSameRepresentation, |
626 | PSK_ForAliasAnalysis, |
627 | PSK_InBoundsConstantIndices, |
628 | PSK_InBounds |
629 | }; |
630 | |
631 | template <PointerStripKind StripKind> static void NoopCallback(const Value *) {} |
632 | |
633 | template <PointerStripKind StripKind> |
634 | static const Value *stripPointerCastsAndOffsets( |
635 | const Value *V, |
636 | function_ref<void(const Value *)> Func = NoopCallback<StripKind>) { |
637 | if (!V->getType()->isPointerTy()) |
638 | return V; |
639 | |
640 | // Even though we don't look through PHI nodes, we could be called on an |
641 | // instruction in an unreachable block, which may be on a cycle. |
642 | SmallPtrSet<const Value *, 4> Visited; |
643 | |
644 | Visited.insert(Ptr: V); |
645 | do { |
646 | Func(V); |
647 | if (auto *GEP = dyn_cast<GEPOperator>(Val: V)) { |
648 | switch (StripKind) { |
649 | case PSK_ZeroIndices: |
650 | case PSK_ZeroIndicesAndAliases: |
651 | case PSK_ZeroIndicesSameRepresentation: |
652 | case PSK_ForAliasAnalysis: |
653 | if (!GEP->hasAllZeroIndices()) |
654 | return V; |
655 | break; |
656 | case PSK_InBoundsConstantIndices: |
657 | if (!GEP->hasAllConstantIndices()) |
658 | return V; |
659 | [[fallthrough]]; |
660 | case PSK_InBounds: |
661 | if (!GEP->isInBounds()) |
662 | return V; |
663 | break; |
664 | } |
665 | V = GEP->getPointerOperand(); |
666 | } else if (Operator::getOpcode(V) == Instruction::BitCast) { |
667 | Value *NewV = cast<Operator>(Val: V)->getOperand(i: 0); |
668 | if (!NewV->getType()->isPointerTy()) |
669 | return V; |
670 | V = NewV; |
671 | } else if (StripKind != PSK_ZeroIndicesSameRepresentation && |
672 | Operator::getOpcode(V) == Instruction::AddrSpaceCast) { |
673 | // TODO: If we know an address space cast will not change the |
674 | // representation we could look through it here as well. |
675 | V = cast<Operator>(Val: V)->getOperand(i: 0); |
676 | } else if (StripKind == PSK_ZeroIndicesAndAliases && isa<GlobalAlias>(Val: V)) { |
677 | V = cast<GlobalAlias>(Val: V)->getAliasee(); |
678 | } else if (StripKind == PSK_ForAliasAnalysis && isa<PHINode>(Val: V) && |
679 | cast<PHINode>(Val: V)->getNumIncomingValues() == 1) { |
680 | V = cast<PHINode>(Val: V)->getIncomingValue(i: 0); |
681 | } else { |
682 | if (const auto *Call = dyn_cast<CallBase>(Val: V)) { |
683 | if (const Value *RV = Call->getReturnedArgOperand()) { |
684 | V = RV; |
685 | continue; |
686 | } |
687 | // The result of launder.invariant.group must alias it's argument, |
688 | // but it can't be marked with returned attribute, that's why it needs |
689 | // special case. |
690 | if (StripKind == PSK_ForAliasAnalysis && |
691 | (Call->getIntrinsicID() == Intrinsic::launder_invariant_group || |
692 | Call->getIntrinsicID() == Intrinsic::strip_invariant_group)) { |
693 | V = Call->getArgOperand(i: 0); |
694 | continue; |
695 | } |
696 | } |
697 | return V; |
698 | } |
699 | assert(V->getType()->isPointerTy() && "Unexpected operand type!" ); |
700 | } while (Visited.insert(Ptr: V).second); |
701 | |
702 | return V; |
703 | } |
704 | } // end anonymous namespace |
705 | |
706 | const Value *Value::stripPointerCasts() const { |
707 | return stripPointerCastsAndOffsets<PSK_ZeroIndices>(V: this); |
708 | } |
709 | |
710 | const Value *Value::stripPointerCastsAndAliases() const { |
711 | return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(V: this); |
712 | } |
713 | |
714 | const Value *Value::stripPointerCastsSameRepresentation() const { |
715 | return stripPointerCastsAndOffsets<PSK_ZeroIndicesSameRepresentation>(V: this); |
716 | } |
717 | |
718 | const Value *Value::stripInBoundsConstantOffsets() const { |
719 | return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(V: this); |
720 | } |
721 | |
722 | const Value *Value::stripPointerCastsForAliasAnalysis() const { |
723 | return stripPointerCastsAndOffsets<PSK_ForAliasAnalysis>(V: this); |
724 | } |
725 | |
726 | const Value *Value::stripAndAccumulateConstantOffsets( |
727 | const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, |
728 | bool AllowInvariantGroup, |
729 | function_ref<bool(Value &, APInt &)> ExternalAnalysis, |
730 | bool LookThroughIntToPtr) const { |
731 | if (!getType()->isPtrOrPtrVectorTy()) |
732 | return this; |
733 | |
734 | unsigned BitWidth = Offset.getBitWidth(); |
735 | assert(BitWidth == DL.getIndexTypeSizeInBits(getType()) && |
736 | "The offset bit width does not match the DL specification." ); |
737 | |
738 | // Even though we don't look through PHI nodes, we could be called on an |
739 | // instruction in an unreachable block, which may be on a cycle. |
740 | SmallPtrSet<const Value *, 4> Visited; |
741 | Visited.insert(Ptr: this); |
742 | const Value *V = this; |
743 | do { |
744 | if (auto *GEP = dyn_cast<GEPOperator>(Val: V)) { |
745 | // If in-bounds was requested, we do not strip non-in-bounds GEPs. |
746 | if (!AllowNonInbounds && !GEP->isInBounds()) |
747 | return V; |
748 | |
749 | // If one of the values we have visited is an addrspacecast, then |
750 | // the pointer type of this GEP may be different from the type |
751 | // of the Ptr parameter which was passed to this function. This |
752 | // means when we construct GEPOffset, we need to use the size |
753 | // of GEP's pointer type rather than the size of the original |
754 | // pointer type. |
755 | APInt GEPOffset(DL.getIndexTypeSizeInBits(Ty: V->getType()), 0); |
756 | if (!GEP->accumulateConstantOffset(DL, Offset&: GEPOffset, ExternalAnalysis)) |
757 | return V; |
758 | |
759 | // Stop traversal if the pointer offset wouldn't fit in the bit-width |
760 | // provided by the Offset argument. This can happen due to AddrSpaceCast |
761 | // stripping. |
762 | if (GEPOffset.getSignificantBits() > BitWidth) |
763 | return V; |
764 | |
765 | // External Analysis can return a result higher/lower than the value |
766 | // represents. We need to detect overflow/underflow. |
767 | APInt GEPOffsetST = GEPOffset.sextOrTrunc(width: BitWidth); |
768 | if (!ExternalAnalysis) { |
769 | Offset += GEPOffsetST; |
770 | } else { |
771 | bool Overflow = false; |
772 | APInt OldOffset = Offset; |
773 | Offset = Offset.sadd_ov(RHS: GEPOffsetST, Overflow); |
774 | if (Overflow) { |
775 | Offset = OldOffset; |
776 | return V; |
777 | } |
778 | } |
779 | V = GEP->getPointerOperand(); |
780 | } else if (Operator::getOpcode(V) == Instruction::BitCast || |
781 | Operator::getOpcode(V) == Instruction::AddrSpaceCast) { |
782 | V = cast<Operator>(Val: V)->getOperand(i: 0); |
783 | } else if (auto *GA = dyn_cast<GlobalAlias>(Val: V)) { |
784 | if (!GA->isInterposable()) |
785 | V = GA->getAliasee(); |
786 | } else if (const auto *Call = dyn_cast<CallBase>(Val: V)) { |
787 | if (const Value *RV = Call->getReturnedArgOperand()) |
788 | V = RV; |
789 | if (AllowInvariantGroup && Call->isLaunderOrStripInvariantGroup()) |
790 | V = Call->getArgOperand(i: 0); |
791 | } else if (auto *Int2Ptr = dyn_cast<Operator>(Val: V)) { |
792 | // Try to accumulate across (inttoptr (add (ptrtoint p), off)). |
793 | if (!AllowNonInbounds || !LookThroughIntToPtr || !Int2Ptr || |
794 | Int2Ptr->getOpcode() != Instruction::IntToPtr || |
795 | Int2Ptr->getOperand(i: 0)->getType()->getScalarSizeInBits() != BitWidth) |
796 | return V; |
797 | |
798 | auto *Add = dyn_cast<AddOperator>(Val: Int2Ptr->getOperand(i: 0)); |
799 | if (!Add) |
800 | return V; |
801 | |
802 | auto *Ptr2Int = dyn_cast<PtrToIntOperator>(Val: Add->getOperand(i_nocapture: 0)); |
803 | auto *CI = dyn_cast<ConstantInt>(Val: Add->getOperand(i_nocapture: 1)); |
804 | if (!Ptr2Int || !CI) |
805 | return V; |
806 | |
807 | Offset += CI->getValue(); |
808 | V = Ptr2Int->getOperand(i_nocapture: 0); |
809 | } |
810 | assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!" ); |
811 | } while (Visited.insert(Ptr: V).second); |
812 | |
813 | return V; |
814 | } |
815 | |
816 | const Value * |
817 | Value::stripInBoundsOffsets(function_ref<void(const Value *)> Func) const { |
818 | return stripPointerCastsAndOffsets<PSK_InBounds>(V: this, Func); |
819 | } |
820 | |
821 | bool Value::canBeFreed() const { |
822 | assert(getType()->isPointerTy()); |
823 | |
824 | // Cases that can simply never be deallocated |
825 | // *) Constants aren't allocated per se, thus not deallocated either. |
826 | if (isa<Constant>(Val: this)) |
827 | return false; |
828 | |
829 | // Handle byval/byref/sret/inalloca/preallocated arguments. The storage |
830 | // lifetime is guaranteed to be longer than the callee's lifetime. |
831 | if (auto *A = dyn_cast<Argument>(Val: this)) { |
832 | if (A->hasPointeeInMemoryValueAttr()) |
833 | return false; |
834 | // A pointer to an object in a function which neither frees, nor can arrange |
835 | // for another thread to free on its behalf, can not be freed in the scope |
836 | // of the function. Note that this logic is restricted to memory |
837 | // allocations in existance before the call; a nofree function *is* allowed |
838 | // to free memory it allocated. |
839 | const Function *F = A->getParent(); |
840 | if (F->doesNotFreeMemory() && F->hasNoSync()) |
841 | return false; |
842 | } |
843 | |
844 | const Function *F = nullptr; |
845 | if (auto *I = dyn_cast<Instruction>(Val: this)) |
846 | F = I->getFunction(); |
847 | if (auto *A = dyn_cast<Argument>(Val: this)) |
848 | F = A->getParent(); |
849 | |
850 | if (!F) |
851 | return true; |
852 | |
853 | // With garbage collection, deallocation typically occurs solely at or after |
854 | // safepoints. If we're compiling for a collector which uses the |
855 | // gc.statepoint infrastructure, safepoints aren't explicitly present |
856 | // in the IR until after lowering from abstract to physical machine model. |
857 | // The collector could chose to mix explicit deallocation and gc'd objects |
858 | // which is why we need the explicit opt in on a per collector basis. |
859 | if (!F->hasGC()) |
860 | return true; |
861 | |
862 | const auto &GCName = F->getGC(); |
863 | if (GCName == "statepoint-example" ) { |
864 | auto *PT = cast<PointerType>(Val: this->getType()); |
865 | if (PT->getAddressSpace() != 1) |
866 | // For the sake of this example GC, we arbitrarily pick addrspace(1) as |
867 | // our GC managed heap. This must match the same check in |
868 | // RewriteStatepointsForGC (and probably needs better factored.) |
869 | return true; |
870 | |
871 | // It is cheaper to scan for a declaration than to scan for a use in this |
872 | // function. Note that gc.statepoint is a type overloaded function so the |
873 | // usual trick of requesting declaration of the intrinsic from the module |
874 | // doesn't work. |
875 | for (auto &Fn : *F->getParent()) |
876 | if (Fn.getIntrinsicID() == Intrinsic::experimental_gc_statepoint) |
877 | return true; |
878 | return false; |
879 | } |
880 | return true; |
881 | } |
882 | |
883 | uint64_t Value::getPointerDereferenceableBytes(const DataLayout &DL, |
884 | bool &CanBeNull, |
885 | bool &CanBeFreed) const { |
886 | assert(getType()->isPointerTy() && "must be pointer" ); |
887 | |
888 | uint64_t DerefBytes = 0; |
889 | CanBeNull = false; |
890 | CanBeFreed = UseDerefAtPointSemantics && canBeFreed(); |
891 | if (const Argument *A = dyn_cast<Argument>(Val: this)) { |
892 | DerefBytes = A->getDereferenceableBytes(); |
893 | if (DerefBytes == 0) { |
894 | // Handle byval/byref/inalloca/preallocated arguments |
895 | if (Type *ArgMemTy = A->getPointeeInMemoryValueType()) { |
896 | if (ArgMemTy->isSized()) { |
897 | // FIXME: Why isn't this the type alloc size? |
898 | DerefBytes = DL.getTypeStoreSize(Ty: ArgMemTy).getKnownMinValue(); |
899 | } |
900 | } |
901 | } |
902 | |
903 | if (DerefBytes == 0) { |
904 | DerefBytes = A->getDereferenceableOrNullBytes(); |
905 | CanBeNull = true; |
906 | } |
907 | } else if (const auto *Call = dyn_cast<CallBase>(Val: this)) { |
908 | DerefBytes = Call->getRetDereferenceableBytes(); |
909 | if (DerefBytes == 0) { |
910 | DerefBytes = Call->getRetDereferenceableOrNullBytes(); |
911 | CanBeNull = true; |
912 | } |
913 | } else if (const LoadInst *LI = dyn_cast<LoadInst>(Val: this)) { |
914 | if (MDNode *MD = LI->getMetadata(KindID: LLVMContext::MD_dereferenceable)) { |
915 | ConstantInt *CI = mdconst::extract<ConstantInt>(MD: MD->getOperand(I: 0)); |
916 | DerefBytes = CI->getLimitedValue(); |
917 | } |
918 | if (DerefBytes == 0) { |
919 | if (MDNode *MD = |
920 | LI->getMetadata(KindID: LLVMContext::MD_dereferenceable_or_null)) { |
921 | ConstantInt *CI = mdconst::extract<ConstantInt>(MD: MD->getOperand(I: 0)); |
922 | DerefBytes = CI->getLimitedValue(); |
923 | } |
924 | CanBeNull = true; |
925 | } |
926 | } else if (auto *IP = dyn_cast<IntToPtrInst>(Val: this)) { |
927 | if (MDNode *MD = IP->getMetadata(KindID: LLVMContext::MD_dereferenceable)) { |
928 | ConstantInt *CI = mdconst::extract<ConstantInt>(MD: MD->getOperand(I: 0)); |
929 | DerefBytes = CI->getLimitedValue(); |
930 | } |
931 | if (DerefBytes == 0) { |
932 | if (MDNode *MD = |
933 | IP->getMetadata(KindID: LLVMContext::MD_dereferenceable_or_null)) { |
934 | ConstantInt *CI = mdconst::extract<ConstantInt>(MD: MD->getOperand(I: 0)); |
935 | DerefBytes = CI->getLimitedValue(); |
936 | } |
937 | CanBeNull = true; |
938 | } |
939 | } else if (auto *AI = dyn_cast<AllocaInst>(Val: this)) { |
940 | if (!AI->isArrayAllocation()) { |
941 | DerefBytes = |
942 | DL.getTypeStoreSize(Ty: AI->getAllocatedType()).getKnownMinValue(); |
943 | CanBeNull = false; |
944 | CanBeFreed = false; |
945 | } |
946 | } else if (auto *GV = dyn_cast<GlobalVariable>(Val: this)) { |
947 | if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) { |
948 | // TODO: Don't outright reject hasExternalWeakLinkage but set the |
949 | // CanBeNull flag. |
950 | DerefBytes = DL.getTypeStoreSize(Ty: GV->getValueType()).getFixedValue(); |
951 | CanBeNull = false; |
952 | CanBeFreed = false; |
953 | } |
954 | } |
955 | return DerefBytes; |
956 | } |
957 | |
958 | Align Value::getPointerAlignment(const DataLayout &DL) const { |
959 | assert(getType()->isPointerTy() && "must be pointer" ); |
960 | if (const Function *F = dyn_cast<Function>(Val: this)) { |
961 | Align FunctionPtrAlign = DL.getFunctionPtrAlign().valueOrOne(); |
962 | switch (DL.getFunctionPtrAlignType()) { |
963 | case DataLayout::FunctionPtrAlignType::Independent: |
964 | return FunctionPtrAlign; |
965 | case DataLayout::FunctionPtrAlignType::MultipleOfFunctionAlign: |
966 | return std::max(a: FunctionPtrAlign, b: F->getAlign().valueOrOne()); |
967 | } |
968 | llvm_unreachable("Unhandled FunctionPtrAlignType" ); |
969 | } else if (auto *GVar = dyn_cast<GlobalVariable>(Val: this)) { |
970 | const MaybeAlign Alignment(GVar->getAlign()); |
971 | if (!Alignment) { |
972 | Type *ObjectType = GVar->getValueType(); |
973 | if (ObjectType->isSized()) { |
974 | // If the object is defined in the current Module, we'll be giving |
975 | // it the preferred alignment. Otherwise, we have to assume that it |
976 | // may only have the minimum ABI alignment. |
977 | if (GVar->isStrongDefinitionForLinker()) |
978 | return DL.getPreferredAlign(GV: GVar); |
979 | else |
980 | return DL.getABITypeAlign(Ty: ObjectType); |
981 | } |
982 | } |
983 | return Alignment.valueOrOne(); |
984 | } else if (const Argument *A = dyn_cast<Argument>(Val: this)) { |
985 | const MaybeAlign Alignment = A->getParamAlign(); |
986 | if (!Alignment && A->hasStructRetAttr()) { |
987 | // An sret parameter has at least the ABI alignment of the return type. |
988 | Type *EltTy = A->getParamStructRetType(); |
989 | if (EltTy->isSized()) |
990 | return DL.getABITypeAlign(Ty: EltTy); |
991 | } |
992 | return Alignment.valueOrOne(); |
993 | } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(Val: this)) { |
994 | return AI->getAlign(); |
995 | } else if (const auto *Call = dyn_cast<CallBase>(Val: this)) { |
996 | MaybeAlign Alignment = Call->getRetAlign(); |
997 | if (!Alignment && Call->getCalledFunction()) |
998 | Alignment = Call->getCalledFunction()->getAttributes().getRetAlignment(); |
999 | return Alignment.valueOrOne(); |
1000 | } else if (const LoadInst *LI = dyn_cast<LoadInst>(Val: this)) { |
1001 | if (MDNode *MD = LI->getMetadata(KindID: LLVMContext::MD_align)) { |
1002 | ConstantInt *CI = mdconst::extract<ConstantInt>(MD: MD->getOperand(I: 0)); |
1003 | return Align(CI->getLimitedValue()); |
1004 | } |
1005 | } else if (auto *CstPtr = dyn_cast<Constant>(Val: this)) { |
1006 | // Strip pointer casts to avoid creating unnecessary ptrtoint expression |
1007 | // if the only "reduction" is combining a bitcast + ptrtoint. |
1008 | CstPtr = CstPtr->stripPointerCasts(); |
1009 | if (auto *CstInt = dyn_cast_or_null<ConstantInt>(Val: ConstantExpr::getPtrToInt( |
1010 | C: const_cast<Constant *>(CstPtr), Ty: DL.getIntPtrType(getType()), |
1011 | /*OnlyIfReduced=*/true))) { |
1012 | size_t TrailingZeros = CstInt->getValue().countr_zero(); |
1013 | // While the actual alignment may be large, elsewhere we have |
1014 | // an arbitrary upper alignmet limit, so let's clamp to it. |
1015 | return Align(TrailingZeros < Value::MaxAlignmentExponent |
1016 | ? uint64_t(1) << TrailingZeros |
1017 | : Value::MaximumAlignment); |
1018 | } |
1019 | } |
1020 | return Align(1); |
1021 | } |
1022 | |
1023 | static std::optional<int64_t> |
1024 | getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { |
1025 | // Skip over the first indices. |
1026 | gep_type_iterator GTI = gep_type_begin(GEP); |
1027 | for (unsigned i = 1; i != Idx; ++i, ++GTI) |
1028 | /*skip along*/; |
1029 | |
1030 | // Compute the offset implied by the rest of the indices. |
1031 | int64_t Offset = 0; |
1032 | for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { |
1033 | ConstantInt *OpC = dyn_cast<ConstantInt>(Val: GEP->getOperand(i_nocapture: i)); |
1034 | if (!OpC) |
1035 | return std::nullopt; |
1036 | if (OpC->isZero()) |
1037 | continue; // No offset. |
1038 | |
1039 | // Handle struct indices, which add their field offset to the pointer. |
1040 | if (StructType *STy = GTI.getStructTypeOrNull()) { |
1041 | Offset += DL.getStructLayout(Ty: STy)->getElementOffset(Idx: OpC->getZExtValue()); |
1042 | continue; |
1043 | } |
1044 | |
1045 | // Otherwise, we have a sequential type like an array or fixed-length |
1046 | // vector. Multiply the index by the ElementSize. |
1047 | TypeSize Size = GTI.getSequentialElementStride(DL); |
1048 | if (Size.isScalable()) |
1049 | return std::nullopt; |
1050 | Offset += Size.getFixedValue() * OpC->getSExtValue(); |
1051 | } |
1052 | |
1053 | return Offset; |
1054 | } |
1055 | |
1056 | std::optional<int64_t> Value::getPointerOffsetFrom(const Value *Other, |
1057 | const DataLayout &DL) const { |
1058 | const Value *Ptr1 = Other; |
1059 | const Value *Ptr2 = this; |
1060 | APInt Offset1(DL.getIndexTypeSizeInBits(Ty: Ptr1->getType()), 0); |
1061 | APInt Offset2(DL.getIndexTypeSizeInBits(Ty: Ptr2->getType()), 0); |
1062 | Ptr1 = Ptr1->stripAndAccumulateConstantOffsets(DL, Offset&: Offset1, AllowNonInbounds: true); |
1063 | Ptr2 = Ptr2->stripAndAccumulateConstantOffsets(DL, Offset&: Offset2, AllowNonInbounds: true); |
1064 | |
1065 | // Handle the trivial case first. |
1066 | if (Ptr1 == Ptr2) |
1067 | return Offset2.getSExtValue() - Offset1.getSExtValue(); |
1068 | |
1069 | const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Val: Ptr1); |
1070 | const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Val: Ptr2); |
1071 | |
1072 | // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical |
1073 | // base. After that base, they may have some number of common (and |
1074 | // potentially variable) indices. After that they handle some constant |
1075 | // offset, which determines their offset from each other. At this point, we |
1076 | // handle no other case. |
1077 | if (!GEP1 || !GEP2 || GEP1->getOperand(i_nocapture: 0) != GEP2->getOperand(i_nocapture: 0) || |
1078 | GEP1->getSourceElementType() != GEP2->getSourceElementType()) |
1079 | return std::nullopt; |
1080 | |
1081 | // Skip any common indices and track the GEP types. |
1082 | unsigned Idx = 1; |
1083 | for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) |
1084 | if (GEP1->getOperand(i_nocapture: Idx) != GEP2->getOperand(i_nocapture: Idx)) |
1085 | break; |
1086 | |
1087 | auto IOffset1 = getOffsetFromIndex(GEP: GEP1, Idx, DL); |
1088 | auto IOffset2 = getOffsetFromIndex(GEP: GEP2, Idx, DL); |
1089 | if (!IOffset1 || !IOffset2) |
1090 | return std::nullopt; |
1091 | return *IOffset2 - *IOffset1 + Offset2.getSExtValue() - |
1092 | Offset1.getSExtValue(); |
1093 | } |
1094 | |
1095 | const Value *Value::DoPHITranslation(const BasicBlock *CurBB, |
1096 | const BasicBlock *PredBB) const { |
1097 | auto *PN = dyn_cast<PHINode>(Val: this); |
1098 | if (PN && PN->getParent() == CurBB) |
1099 | return PN->getIncomingValueForBlock(BB: PredBB); |
1100 | return this; |
1101 | } |
1102 | |
1103 | LLVMContext &Value::getContext() const { return VTy->getContext(); } |
1104 | |
1105 | void Value::reverseUseList() { |
1106 | if (!UseList || !UseList->Next) |
1107 | // No need to reverse 0 or 1 uses. |
1108 | return; |
1109 | |
1110 | Use *Head = UseList; |
1111 | Use *Current = UseList->Next; |
1112 | Head->Next = nullptr; |
1113 | while (Current) { |
1114 | Use *Next = Current->Next; |
1115 | Current->Next = Head; |
1116 | Head->Prev = &Current->Next; |
1117 | Head = Current; |
1118 | Current = Next; |
1119 | } |
1120 | UseList = Head; |
1121 | Head->Prev = &UseList; |
1122 | } |
1123 | |
1124 | bool Value::isSwiftError() const { |
1125 | auto *Arg = dyn_cast<Argument>(Val: this); |
1126 | if (Arg) |
1127 | return Arg->hasSwiftErrorAttr(); |
1128 | auto *Alloca = dyn_cast<AllocaInst>(Val: this); |
1129 | if (!Alloca) |
1130 | return false; |
1131 | return Alloca->isSwiftError(); |
1132 | } |
1133 | |
1134 | //===----------------------------------------------------------------------===// |
1135 | // ValueHandleBase Class |
1136 | //===----------------------------------------------------------------------===// |
1137 | |
1138 | void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) { |
1139 | assert(List && "Handle list is null?" ); |
1140 | |
1141 | // Splice ourselves into the list. |
1142 | Next = *List; |
1143 | *List = this; |
1144 | setPrevPtr(List); |
1145 | if (Next) { |
1146 | Next->setPrevPtr(&Next); |
1147 | assert(getValPtr() == Next->getValPtr() && "Added to wrong list?" ); |
1148 | } |
1149 | } |
1150 | |
1151 | void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) { |
1152 | assert(List && "Must insert after existing node" ); |
1153 | |
1154 | Next = List->Next; |
1155 | setPrevPtr(&List->Next); |
1156 | List->Next = this; |
1157 | if (Next) |
1158 | Next->setPrevPtr(&Next); |
1159 | } |
1160 | |
1161 | void ValueHandleBase::AddToUseList() { |
1162 | assert(getValPtr() && "Null pointer doesn't have a use list!" ); |
1163 | |
1164 | LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl; |
1165 | |
1166 | if (getValPtr()->HasValueHandle) { |
1167 | // If this value already has a ValueHandle, then it must be in the |
1168 | // ValueHandles map already. |
1169 | ValueHandleBase *&Entry = pImpl->ValueHandles[getValPtr()]; |
1170 | assert(Entry && "Value doesn't have any handles?" ); |
1171 | AddToExistingUseList(List: &Entry); |
1172 | return; |
1173 | } |
1174 | |
1175 | // Ok, it doesn't have any handles yet, so we must insert it into the |
1176 | // DenseMap. However, doing this insertion could cause the DenseMap to |
1177 | // reallocate itself, which would invalidate all of the PrevP pointers that |
1178 | // point into the old table. Handle this by checking for reallocation and |
1179 | // updating the stale pointers only if needed. |
1180 | DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; |
1181 | const void *OldBucketPtr = Handles.getPointerIntoBucketsArray(); |
1182 | |
1183 | ValueHandleBase *&Entry = Handles[getValPtr()]; |
1184 | assert(!Entry && "Value really did already have handles?" ); |
1185 | AddToExistingUseList(List: &Entry); |
1186 | getValPtr()->HasValueHandle = true; |
1187 | |
1188 | // If reallocation didn't happen or if this was the first insertion, don't |
1189 | // walk the table. |
1190 | if (Handles.isPointerIntoBucketsArray(Ptr: OldBucketPtr) || |
1191 | Handles.size() == 1) { |
1192 | return; |
1193 | } |
1194 | |
1195 | // Okay, reallocation did happen. Fix the Prev Pointers. |
1196 | for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(), |
1197 | E = Handles.end(); I != E; ++I) { |
1198 | assert(I->second && I->first == I->second->getValPtr() && |
1199 | "List invariant broken!" ); |
1200 | I->second->setPrevPtr(&I->second); |
1201 | } |
1202 | } |
1203 | |
1204 | void ValueHandleBase::RemoveFromUseList() { |
1205 | assert(getValPtr() && getValPtr()->HasValueHandle && |
1206 | "Pointer doesn't have a use list!" ); |
1207 | |
1208 | // Unlink this from its use list. |
1209 | ValueHandleBase **PrevPtr = getPrevPtr(); |
1210 | assert(*PrevPtr == this && "List invariant broken" ); |
1211 | |
1212 | *PrevPtr = Next; |
1213 | if (Next) { |
1214 | assert(Next->getPrevPtr() == &Next && "List invariant broken" ); |
1215 | Next->setPrevPtr(PrevPtr); |
1216 | return; |
1217 | } |
1218 | |
1219 | // If the Next pointer was null, then it is possible that this was the last |
1220 | // ValueHandle watching VP. If so, delete its entry from the ValueHandles |
1221 | // map. |
1222 | LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl; |
1223 | DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; |
1224 | if (Handles.isPointerIntoBucketsArray(Ptr: PrevPtr)) { |
1225 | Handles.erase(Val: getValPtr()); |
1226 | getValPtr()->HasValueHandle = false; |
1227 | } |
1228 | } |
1229 | |
1230 | void ValueHandleBase::ValueIsDeleted(Value *V) { |
1231 | assert(V->HasValueHandle && "Should only be called if ValueHandles present" ); |
1232 | |
1233 | // Get the linked list base, which is guaranteed to exist since the |
1234 | // HasValueHandle flag is set. |
1235 | LLVMContextImpl *pImpl = V->getContext().pImpl; |
1236 | ValueHandleBase *Entry = pImpl->ValueHandles[V]; |
1237 | assert(Entry && "Value bit set but no entries exist" ); |
1238 | |
1239 | // We use a local ValueHandleBase as an iterator so that ValueHandles can add |
1240 | // and remove themselves from the list without breaking our iteration. This |
1241 | // is not really an AssertingVH; we just have to give ValueHandleBase a kind. |
1242 | // Note that we deliberately do not the support the case when dropping a value |
1243 | // handle results in a new value handle being permanently added to the list |
1244 | // (as might occur in theory for CallbackVH's): the new value handle will not |
1245 | // be processed and the checking code will mete out righteous punishment if |
1246 | // the handle is still present once we have finished processing all the other |
1247 | // value handles (it is fine to momentarily add then remove a value handle). |
1248 | for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { |
1249 | Iterator.RemoveFromUseList(); |
1250 | Iterator.AddToExistingUseListAfter(List: Entry); |
1251 | assert(Entry->Next == &Iterator && "Loop invariant broken." ); |
1252 | |
1253 | switch (Entry->getKind()) { |
1254 | case Assert: |
1255 | break; |
1256 | case Weak: |
1257 | case WeakTracking: |
1258 | // WeakTracking and Weak just go to null, which unlinks them |
1259 | // from the list. |
1260 | Entry->operator=(RHS: nullptr); |
1261 | break; |
1262 | case Callback: |
1263 | // Forward to the subclass's implementation. |
1264 | static_cast<CallbackVH*>(Entry)->deleted(); |
1265 | break; |
1266 | } |
1267 | } |
1268 | |
1269 | // All callbacks, weak references, and assertingVHs should be dropped by now. |
1270 | if (V->HasValueHandle) { |
1271 | #ifndef NDEBUG // Only in +Asserts mode... |
1272 | dbgs() << "While deleting: " << *V->getType() << " %" << V->getName() |
1273 | << "\n" ; |
1274 | if (pImpl->ValueHandles[V]->getKind() == Assert) |
1275 | llvm_unreachable("An asserting value handle still pointed to this" |
1276 | " value!" ); |
1277 | |
1278 | #endif |
1279 | llvm_unreachable("All references to V were not removed?" ); |
1280 | } |
1281 | } |
1282 | |
1283 | void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) { |
1284 | assert(Old->HasValueHandle &&"Should only be called if ValueHandles present" ); |
1285 | assert(Old != New && "Changing value into itself!" ); |
1286 | assert(Old->getType() == New->getType() && |
1287 | "replaceAllUses of value with new value of different type!" ); |
1288 | |
1289 | // Get the linked list base, which is guaranteed to exist since the |
1290 | // HasValueHandle flag is set. |
1291 | LLVMContextImpl *pImpl = Old->getContext().pImpl; |
1292 | ValueHandleBase *Entry = pImpl->ValueHandles[Old]; |
1293 | |
1294 | assert(Entry && "Value bit set but no entries exist" ); |
1295 | |
1296 | // We use a local ValueHandleBase as an iterator so that |
1297 | // ValueHandles can add and remove themselves from the list without |
1298 | // breaking our iteration. This is not really an AssertingVH; we |
1299 | // just have to give ValueHandleBase some kind. |
1300 | for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { |
1301 | Iterator.RemoveFromUseList(); |
1302 | Iterator.AddToExistingUseListAfter(List: Entry); |
1303 | assert(Entry->Next == &Iterator && "Loop invariant broken." ); |
1304 | |
1305 | switch (Entry->getKind()) { |
1306 | case Assert: |
1307 | case Weak: |
1308 | // Asserting and Weak handles do not follow RAUW implicitly. |
1309 | break; |
1310 | case WeakTracking: |
1311 | // Weak goes to the new value, which will unlink it from Old's list. |
1312 | Entry->operator=(RHS: New); |
1313 | break; |
1314 | case Callback: |
1315 | // Forward to the subclass's implementation. |
1316 | static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New); |
1317 | break; |
1318 | } |
1319 | } |
1320 | |
1321 | #ifndef NDEBUG |
1322 | // If any new weak value handles were added while processing the |
1323 | // list, then complain about it now. |
1324 | if (Old->HasValueHandle) |
1325 | for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next) |
1326 | switch (Entry->getKind()) { |
1327 | case WeakTracking: |
1328 | dbgs() << "After RAUW from " << *Old->getType() << " %" |
1329 | << Old->getName() << " to " << *New->getType() << " %" |
1330 | << New->getName() << "\n" ; |
1331 | llvm_unreachable( |
1332 | "A weak tracking value handle still pointed to the old value!\n" ); |
1333 | default: |
1334 | break; |
1335 | } |
1336 | #endif |
1337 | } |
1338 | |
1339 | // Pin the vtable to this file. |
1340 | void CallbackVH::anchor() {} |
1341 | |