| 1 | //===-- AArch64AdvSIMDScalar.cpp - Replace dead defs w/ zero reg --===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // When profitable, replace GPR targeting i64 instructions with their |
| 9 | // AdvSIMD scalar equivalents. Generally speaking, "profitable" is defined |
| 10 | // as minimizing the number of cross-class register copies. |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | // TODO: Graph based predicate heuristics. |
| 15 | // Walking the instruction list linearly will get many, perhaps most, of |
| 16 | // the cases, but to do a truly thorough job of this, we need a more |
| 17 | // wholistic approach. |
| 18 | // |
| 19 | // This optimization is very similar in spirit to the register allocator's |
| 20 | // spill placement, only here we're determining where to place cross-class |
| 21 | // register copies rather than spills. As such, a similar approach is |
| 22 | // called for. |
| 23 | // |
| 24 | // We want to build up a set of graphs of all instructions which are candidates |
| 25 | // for transformation along with instructions which generate their inputs and |
| 26 | // consume their outputs. For each edge in the graph, we assign a weight |
| 27 | // based on whether there is a copy required there (weight zero if not) and |
| 28 | // the block frequency of the block containing the defining or using |
| 29 | // instruction, whichever is less. Our optimization is then a graph problem |
| 30 | // to minimize the total weight of all the graphs, then transform instructions |
| 31 | // and add or remove copy instructions as called for to implement the |
| 32 | // solution. |
| 33 | //===----------------------------------------------------------------------===// |
| 34 | |
| 35 | #include "AArch64.h" |
| 36 | #include "AArch64InstrInfo.h" |
| 37 | #include "AArch64RegisterInfo.h" |
| 38 | #include "llvm/ADT/Statistic.h" |
| 39 | #include "llvm/CodeGen/MachineFunction.h" |
| 40 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 41 | #include "llvm/CodeGen/MachineInstr.h" |
| 42 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 43 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 44 | #include "llvm/Support/CommandLine.h" |
| 45 | #include "llvm/Support/Debug.h" |
| 46 | #include "llvm/Support/raw_ostream.h" |
| 47 | using namespace llvm; |
| 48 | |
| 49 | #define DEBUG_TYPE "aarch64-simd-scalar" |
| 50 | |
| 51 | // Allow forcing all i64 operations with equivalent SIMD instructions to use |
| 52 | // them. For stress-testing the transformation function. |
| 53 | static cl::opt<bool> |
| 54 | TransformAll("aarch64-simd-scalar-force-all" , |
| 55 | cl::desc("Force use of AdvSIMD scalar instructions everywhere" ), |
| 56 | cl::init(Val: false), cl::Hidden); |
| 57 | |
| 58 | STATISTIC(NumScalarInsnsUsed, "Number of scalar instructions used" ); |
| 59 | STATISTIC(NumCopiesDeleted, "Number of cross-class copies deleted" ); |
| 60 | STATISTIC(NumCopiesInserted, "Number of cross-class copies inserted" ); |
| 61 | |
| 62 | #define AARCH64_ADVSIMD_NAME "AdvSIMD Scalar Operation Optimization" |
| 63 | |
| 64 | namespace { |
| 65 | class AArch64AdvSIMDScalar : public MachineFunctionPass { |
| 66 | MachineRegisterInfo *MRI; |
| 67 | const TargetInstrInfo *TII; |
| 68 | |
| 69 | private: |
| 70 | // isProfitableToTransform - Predicate function to determine whether an |
| 71 | // instruction should be transformed to its equivalent AdvSIMD scalar |
| 72 | // instruction. "add Xd, Xn, Xm" ==> "add Dd, Da, Db", for example. |
| 73 | bool isProfitableToTransform(const MachineInstr &MI) const; |
| 74 | |
| 75 | // transformInstruction - Perform the transformation of an instruction |
| 76 | // to its equivalent AdvSIMD scalar instruction. Update inputs and outputs |
| 77 | // to be the correct register class, minimizing cross-class copies. |
| 78 | void transformInstruction(MachineInstr &MI); |
| 79 | |
| 80 | // processMachineBasicBlock - Main optimization loop. |
| 81 | bool processMachineBasicBlock(MachineBasicBlock *MBB); |
| 82 | |
| 83 | public: |
| 84 | static char ID; // Pass identification, replacement for typeid. |
| 85 | explicit AArch64AdvSIMDScalar() : MachineFunctionPass(ID) {} |
| 86 | |
| 87 | bool runOnMachineFunction(MachineFunction &F) override; |
| 88 | |
| 89 | StringRef getPassName() const override { return AARCH64_ADVSIMD_NAME; } |
| 90 | |
| 91 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 92 | AU.setPreservesCFG(); |
| 93 | MachineFunctionPass::getAnalysisUsage(AU); |
| 94 | } |
| 95 | }; |
| 96 | char AArch64AdvSIMDScalar::ID = 0; |
| 97 | } // end anonymous namespace |
| 98 | |
| 99 | INITIALIZE_PASS(AArch64AdvSIMDScalar, "aarch64-simd-scalar" , |
| 100 | AARCH64_ADVSIMD_NAME, false, false) |
| 101 | |
| 102 | static bool isGPR64(unsigned Reg, unsigned SubReg, |
| 103 | const MachineRegisterInfo *MRI) { |
| 104 | if (SubReg) |
| 105 | return false; |
| 106 | if (Register::isVirtualRegister(Reg)) |
| 107 | return MRI->getRegClass(Reg)->hasSuperClassEq(RC: &AArch64::GPR64RegClass); |
| 108 | return AArch64::GPR64RegClass.contains(Reg); |
| 109 | } |
| 110 | |
| 111 | static bool isFPR64(unsigned Reg, unsigned SubReg, |
| 112 | const MachineRegisterInfo *MRI) { |
| 113 | if (Register::isVirtualRegister(Reg)) |
| 114 | return (MRI->getRegClass(Reg)->hasSuperClassEq(RC: &AArch64::FPR64RegClass) && |
| 115 | SubReg == 0) || |
| 116 | (MRI->getRegClass(Reg)->hasSuperClassEq(RC: &AArch64::FPR128RegClass) && |
| 117 | SubReg == AArch64::dsub); |
| 118 | // Physical register references just check the register class directly. |
| 119 | return (AArch64::FPR64RegClass.contains(Reg) && SubReg == 0) || |
| 120 | (AArch64::FPR128RegClass.contains(Reg) && SubReg == AArch64::dsub); |
| 121 | } |
| 122 | |
| 123 | // getSrcFromCopy - Get the original source register for a GPR64 <--> FPR64 |
| 124 | // copy instruction. Return nullptr if the instruction is not a copy. |
| 125 | static MachineOperand *getSrcFromCopy(MachineInstr *MI, |
| 126 | const MachineRegisterInfo *MRI, |
| 127 | unsigned &SubReg) { |
| 128 | SubReg = 0; |
| 129 | // The "FMOV Xd, Dn" instruction is the typical form. |
| 130 | if (MI->getOpcode() == AArch64::FMOVDXr || |
| 131 | MI->getOpcode() == AArch64::FMOVXDr) |
| 132 | return &MI->getOperand(i: 1); |
| 133 | // A lane zero extract "UMOV.d Xd, Vn[0]" is equivalent. We shouldn't see |
| 134 | // these at this stage, but it's easy to check for. |
| 135 | if (MI->getOpcode() == AArch64::UMOVvi64 && MI->getOperand(i: 2).getImm() == 0) { |
| 136 | SubReg = AArch64::dsub; |
| 137 | return &MI->getOperand(i: 1); |
| 138 | } |
| 139 | // Or just a plain COPY instruction. This can be directly to/from FPR64, |
| 140 | // or it can be a dsub subreg reference to an FPR128. |
| 141 | if (MI->getOpcode() == AArch64::COPY) { |
| 142 | if (isFPR64(Reg: MI->getOperand(i: 0).getReg(), SubReg: MI->getOperand(i: 0).getSubReg(), |
| 143 | MRI) && |
| 144 | isGPR64(Reg: MI->getOperand(i: 1).getReg(), SubReg: MI->getOperand(i: 1).getSubReg(), MRI)) |
| 145 | return &MI->getOperand(i: 1); |
| 146 | if (isGPR64(Reg: MI->getOperand(i: 0).getReg(), SubReg: MI->getOperand(i: 0).getSubReg(), |
| 147 | MRI) && |
| 148 | isFPR64(Reg: MI->getOperand(i: 1).getReg(), SubReg: MI->getOperand(i: 1).getSubReg(), |
| 149 | MRI)) { |
| 150 | SubReg = MI->getOperand(i: 1).getSubReg(); |
| 151 | return &MI->getOperand(i: 1); |
| 152 | } |
| 153 | } |
| 154 | |
| 155 | // Otherwise, this is some other kind of instruction. |
| 156 | return nullptr; |
| 157 | } |
| 158 | |
| 159 | // getTransformOpcode - For any opcode for which there is an AdvSIMD equivalent |
| 160 | // that we're considering transforming to, return that AdvSIMD opcode. For all |
| 161 | // others, return the original opcode. |
| 162 | static unsigned getTransformOpcode(unsigned Opc) { |
| 163 | switch (Opc) { |
| 164 | default: |
| 165 | break; |
| 166 | // FIXME: Lots more possibilities. |
| 167 | case AArch64::ADDXrr: |
| 168 | return AArch64::ADDv1i64; |
| 169 | case AArch64::SUBXrr: |
| 170 | return AArch64::SUBv1i64; |
| 171 | case AArch64::ANDXrr: |
| 172 | return AArch64::ANDv8i8; |
| 173 | case AArch64::EORXrr: |
| 174 | return AArch64::EORv8i8; |
| 175 | case AArch64::ORRXrr: |
| 176 | return AArch64::ORRv8i8; |
| 177 | } |
| 178 | // No AdvSIMD equivalent, so just return the original opcode. |
| 179 | return Opc; |
| 180 | } |
| 181 | |
| 182 | static bool isTransformable(const MachineInstr &MI) { |
| 183 | unsigned Opc = MI.getOpcode(); |
| 184 | return Opc != getTransformOpcode(Opc); |
| 185 | } |
| 186 | |
| 187 | // isProfitableToTransform - Predicate function to determine whether an |
| 188 | // instruction should be transformed to its equivalent AdvSIMD scalar |
| 189 | // instruction. "add Xd, Xn, Xm" ==> "add Dd, Da, Db", for example. |
| 190 | bool AArch64AdvSIMDScalar::isProfitableToTransform( |
| 191 | const MachineInstr &MI) const { |
| 192 | // If this instruction isn't eligible to be transformed (no SIMD equivalent), |
| 193 | // early exit since that's the common case. |
| 194 | if (!isTransformable(MI)) |
| 195 | return false; |
| 196 | |
| 197 | // Count the number of copies we'll need to add and approximate the number |
| 198 | // of copies that a transform will enable us to remove. |
| 199 | unsigned NumNewCopies = 3; |
| 200 | unsigned NumRemovableCopies = 0; |
| 201 | |
| 202 | Register OrigSrc0 = MI.getOperand(i: 1).getReg(); |
| 203 | Register OrigSrc1 = MI.getOperand(i: 2).getReg(); |
| 204 | unsigned SubReg0; |
| 205 | unsigned SubReg1; |
| 206 | if (!MRI->def_empty(RegNo: OrigSrc0)) { |
| 207 | MachineRegisterInfo::def_instr_iterator Def = |
| 208 | MRI->def_instr_begin(RegNo: OrigSrc0); |
| 209 | assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!" ); |
| 210 | MachineOperand *MOSrc0 = getSrcFromCopy(MI: &*Def, MRI, SubReg&: SubReg0); |
| 211 | // If the source was from a copy, we don't need to insert a new copy. |
| 212 | if (MOSrc0) |
| 213 | --NumNewCopies; |
| 214 | // If there are no other users of the original source, we can delete |
| 215 | // that instruction. |
| 216 | if (MOSrc0 && MRI->hasOneNonDBGUse(RegNo: OrigSrc0)) |
| 217 | ++NumRemovableCopies; |
| 218 | } |
| 219 | if (!MRI->def_empty(RegNo: OrigSrc1)) { |
| 220 | MachineRegisterInfo::def_instr_iterator Def = |
| 221 | MRI->def_instr_begin(RegNo: OrigSrc1); |
| 222 | assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!" ); |
| 223 | MachineOperand *MOSrc1 = getSrcFromCopy(MI: &*Def, MRI, SubReg&: SubReg1); |
| 224 | if (MOSrc1) |
| 225 | --NumNewCopies; |
| 226 | // If there are no other users of the original source, we can delete |
| 227 | // that instruction. |
| 228 | if (MOSrc1 && MRI->hasOneNonDBGUse(RegNo: OrigSrc1)) |
| 229 | ++NumRemovableCopies; |
| 230 | } |
| 231 | |
| 232 | // If any of the uses of the original instructions is a cross class copy, |
| 233 | // that's a copy that will be removable if we transform. Likewise, if |
| 234 | // any of the uses is a transformable instruction, it's likely the transforms |
| 235 | // will chain, enabling us to save a copy there, too. This is an aggressive |
| 236 | // heuristic that approximates the graph based cost analysis described above. |
| 237 | Register Dst = MI.getOperand(i: 0).getReg(); |
| 238 | bool AllUsesAreCopies = true; |
| 239 | for (MachineRegisterInfo::use_instr_nodbg_iterator |
| 240 | Use = MRI->use_instr_nodbg_begin(RegNo: Dst), |
| 241 | E = MRI->use_instr_nodbg_end(); |
| 242 | Use != E; ++Use) { |
| 243 | unsigned SubReg; |
| 244 | if (getSrcFromCopy(MI: &*Use, MRI, SubReg) || isTransformable(MI: *Use)) |
| 245 | ++NumRemovableCopies; |
| 246 | // If the use is an INSERT_SUBREG, that's still something that can |
| 247 | // directly use the FPR64, so we don't invalidate AllUsesAreCopies. It's |
| 248 | // preferable to have it use the FPR64 in most cases, as if the source |
| 249 | // vector is an IMPLICIT_DEF, the INSERT_SUBREG just goes away entirely. |
| 250 | // Ditto for a lane insert. |
| 251 | else if (Use->getOpcode() == AArch64::INSERT_SUBREG || |
| 252 | Use->getOpcode() == AArch64::INSvi64gpr) |
| 253 | ; |
| 254 | else |
| 255 | AllUsesAreCopies = false; |
| 256 | } |
| 257 | // If all of the uses of the original destination register are copies to |
| 258 | // FPR64, then we won't end up having a new copy back to GPR64 either. |
| 259 | if (AllUsesAreCopies) |
| 260 | --NumNewCopies; |
| 261 | |
| 262 | // If a transform will not increase the number of cross-class copies required, |
| 263 | // return true. |
| 264 | if (NumNewCopies <= NumRemovableCopies) |
| 265 | return true; |
| 266 | |
| 267 | // Finally, even if we otherwise wouldn't transform, check if we're forcing |
| 268 | // transformation of everything. |
| 269 | return TransformAll; |
| 270 | } |
| 271 | |
| 272 | static MachineInstr *insertCopy(const TargetInstrInfo *TII, MachineInstr &MI, |
| 273 | unsigned Dst, unsigned Src, bool IsKill) { |
| 274 | MachineInstrBuilder MIB = BuildMI(BB&: *MI.getParent(), I&: MI, MIMD: MI.getDebugLoc(), |
| 275 | MCID: TII->get(Opcode: AArch64::COPY), DestReg: Dst) |
| 276 | .addReg(RegNo: Src, flags: getKillRegState(B: IsKill)); |
| 277 | LLVM_DEBUG(dbgs() << " adding copy: " << *MIB); |
| 278 | ++NumCopiesInserted; |
| 279 | return MIB; |
| 280 | } |
| 281 | |
| 282 | // transformInstruction - Perform the transformation of an instruction |
| 283 | // to its equivalent AdvSIMD scalar instruction. Update inputs and outputs |
| 284 | // to be the correct register class, minimizing cross-class copies. |
| 285 | void AArch64AdvSIMDScalar::transformInstruction(MachineInstr &MI) { |
| 286 | LLVM_DEBUG(dbgs() << "Scalar transform: " << MI); |
| 287 | |
| 288 | MachineBasicBlock *MBB = MI.getParent(); |
| 289 | unsigned OldOpc = MI.getOpcode(); |
| 290 | unsigned NewOpc = getTransformOpcode(Opc: OldOpc); |
| 291 | assert(OldOpc != NewOpc && "transform an instruction to itself?!" ); |
| 292 | |
| 293 | // Check if we need a copy for the source registers. |
| 294 | Register OrigSrc0 = MI.getOperand(i: 1).getReg(); |
| 295 | Register OrigSrc1 = MI.getOperand(i: 2).getReg(); |
| 296 | unsigned Src0 = 0, SubReg0; |
| 297 | unsigned Src1 = 0, SubReg1; |
| 298 | bool KillSrc0 = false, KillSrc1 = false; |
| 299 | if (!MRI->def_empty(RegNo: OrigSrc0)) { |
| 300 | MachineRegisterInfo::def_instr_iterator Def = |
| 301 | MRI->def_instr_begin(RegNo: OrigSrc0); |
| 302 | assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!" ); |
| 303 | MachineOperand *MOSrc0 = getSrcFromCopy(MI: &*Def, MRI, SubReg&: SubReg0); |
| 304 | // If there are no other users of the original source, we can delete |
| 305 | // that instruction. |
| 306 | if (MOSrc0) { |
| 307 | Src0 = MOSrc0->getReg(); |
| 308 | KillSrc0 = MOSrc0->isKill(); |
| 309 | // Src0 is going to be reused, thus, it cannot be killed anymore. |
| 310 | MOSrc0->setIsKill(false); |
| 311 | if (MRI->hasOneNonDBGUse(RegNo: OrigSrc0)) { |
| 312 | assert(MOSrc0 && "Can't delete copy w/o a valid original source!" ); |
| 313 | Def->eraseFromParent(); |
| 314 | ++NumCopiesDeleted; |
| 315 | } |
| 316 | } |
| 317 | } |
| 318 | if (!MRI->def_empty(RegNo: OrigSrc1)) { |
| 319 | MachineRegisterInfo::def_instr_iterator Def = |
| 320 | MRI->def_instr_begin(RegNo: OrigSrc1); |
| 321 | assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!" ); |
| 322 | MachineOperand *MOSrc1 = getSrcFromCopy(MI: &*Def, MRI, SubReg&: SubReg1); |
| 323 | // If there are no other users of the original source, we can delete |
| 324 | // that instruction. |
| 325 | if (MOSrc1) { |
| 326 | Src1 = MOSrc1->getReg(); |
| 327 | KillSrc1 = MOSrc1->isKill(); |
| 328 | // Src0 is going to be reused, thus, it cannot be killed anymore. |
| 329 | MOSrc1->setIsKill(false); |
| 330 | if (MRI->hasOneNonDBGUse(RegNo: OrigSrc1)) { |
| 331 | assert(MOSrc1 && "Can't delete copy w/o a valid original source!" ); |
| 332 | Def->eraseFromParent(); |
| 333 | ++NumCopiesDeleted; |
| 334 | } |
| 335 | } |
| 336 | } |
| 337 | // If we weren't able to reference the original source directly, create a |
| 338 | // copy. |
| 339 | if (!Src0) { |
| 340 | SubReg0 = 0; |
| 341 | Src0 = MRI->createVirtualRegister(RegClass: &AArch64::FPR64RegClass); |
| 342 | insertCopy(TII, MI, Dst: Src0, Src: OrigSrc0, IsKill: KillSrc0); |
| 343 | KillSrc0 = true; |
| 344 | } |
| 345 | if (!Src1) { |
| 346 | SubReg1 = 0; |
| 347 | Src1 = MRI->createVirtualRegister(RegClass: &AArch64::FPR64RegClass); |
| 348 | insertCopy(TII, MI, Dst: Src1, Src: OrigSrc1, IsKill: KillSrc1); |
| 349 | KillSrc1 = true; |
| 350 | } |
| 351 | |
| 352 | // Create a vreg for the destination. |
| 353 | // FIXME: No need to do this if the ultimate user expects an FPR64. |
| 354 | // Check for that and avoid the copy if possible. |
| 355 | Register Dst = MRI->createVirtualRegister(RegClass: &AArch64::FPR64RegClass); |
| 356 | |
| 357 | // For now, all of the new instructions have the same simple three-register |
| 358 | // form, so no need to special case based on what instruction we're |
| 359 | // building. |
| 360 | BuildMI(BB&: *MBB, I&: MI, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: NewOpc), DestReg: Dst) |
| 361 | .addReg(RegNo: Src0, flags: getKillRegState(B: KillSrc0), SubReg: SubReg0) |
| 362 | .addReg(RegNo: Src1, flags: getKillRegState(B: KillSrc1), SubReg: SubReg1); |
| 363 | |
| 364 | // Now copy the result back out to a GPR. |
| 365 | // FIXME: Try to avoid this if all uses could actually just use the FPR64 |
| 366 | // directly. |
| 367 | insertCopy(TII, MI, Dst: MI.getOperand(i: 0).getReg(), Src: Dst, IsKill: true); |
| 368 | |
| 369 | // Erase the old instruction. |
| 370 | MI.eraseFromParent(); |
| 371 | |
| 372 | ++NumScalarInsnsUsed; |
| 373 | } |
| 374 | |
| 375 | // processMachineBasicBlock - Main optimization loop. |
| 376 | bool AArch64AdvSIMDScalar::processMachineBasicBlock(MachineBasicBlock *MBB) { |
| 377 | bool Changed = false; |
| 378 | for (MachineInstr &MI : llvm::make_early_inc_range(Range&: *MBB)) { |
| 379 | if (isProfitableToTransform(MI)) { |
| 380 | transformInstruction(MI); |
| 381 | Changed = true; |
| 382 | } |
| 383 | } |
| 384 | return Changed; |
| 385 | } |
| 386 | |
| 387 | // runOnMachineFunction - Pass entry point from PassManager. |
| 388 | bool AArch64AdvSIMDScalar::runOnMachineFunction(MachineFunction &mf) { |
| 389 | bool Changed = false; |
| 390 | LLVM_DEBUG(dbgs() << "***** AArch64AdvSIMDScalar *****\n" ); |
| 391 | |
| 392 | if (skipFunction(F: mf.getFunction())) |
| 393 | return false; |
| 394 | |
| 395 | MRI = &mf.getRegInfo(); |
| 396 | TII = mf.getSubtarget().getInstrInfo(); |
| 397 | |
| 398 | // Just check things on a one-block-at-a-time basis. |
| 399 | for (MachineBasicBlock &MBB : mf) |
| 400 | if (processMachineBasicBlock(MBB: &MBB)) |
| 401 | Changed = true; |
| 402 | return Changed; |
| 403 | } |
| 404 | |
| 405 | // createAArch64AdvSIMDScalar - Factory function used by AArch64TargetMachine |
| 406 | // to add the pass to the PassManager. |
| 407 | FunctionPass *llvm::createAArch64AdvSIMDScalar() { |
| 408 | return new AArch64AdvSIMDScalar(); |
| 409 | } |
| 410 | |