| 1 | // |
| 2 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 3 | // See https://llvm.org/LICENSE.txt for license information. |
| 4 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 5 | // |
| 6 | //===----------------------------------------------------------------------===// |
| 7 | // |
| 8 | // This file contains a pass that performs optimization on SIMD instructions |
| 9 | // with high latency by splitting them into more efficient series of |
| 10 | // instructions. |
| 11 | // |
| 12 | // 1. Rewrite certain SIMD instructions with vector element due to their |
| 13 | // inefficiency on some targets. |
| 14 | // |
| 15 | // For example: |
| 16 | // fmla v0.4s, v1.4s, v2.s[1] |
| 17 | // |
| 18 | // Is rewritten into: |
| 19 | // dup v3.4s, v2.s[1] |
| 20 | // fmla v0.4s, v1.4s, v3.4s |
| 21 | // |
| 22 | // 2. Rewrite interleaved memory access instructions due to their |
| 23 | // inefficiency on some targets. |
| 24 | // |
| 25 | // For example: |
| 26 | // st2 {v0.4s, v1.4s}, addr |
| 27 | // |
| 28 | // Is rewritten into: |
| 29 | // zip1 v2.4s, v0.4s, v1.4s |
| 30 | // zip2 v3.4s, v0.4s, v1.4s |
| 31 | // stp q2, q3, addr |
| 32 | // |
| 33 | //===----------------------------------------------------------------------===// |
| 34 | |
| 35 | #include "AArch64InstrInfo.h" |
| 36 | #include "llvm/ADT/SmallVector.h" |
| 37 | #include "llvm/ADT/Statistic.h" |
| 38 | #include "llvm/ADT/StringRef.h" |
| 39 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 40 | #include "llvm/CodeGen/MachineFunction.h" |
| 41 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 42 | #include "llvm/CodeGen/MachineInstr.h" |
| 43 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 44 | #include "llvm/CodeGen/MachineOperand.h" |
| 45 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 46 | #include "llvm/CodeGen/TargetInstrInfo.h" |
| 47 | #include "llvm/CodeGen/TargetSchedule.h" |
| 48 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 49 | #include "llvm/MC/MCInstrDesc.h" |
| 50 | #include "llvm/MC/MCSchedule.h" |
| 51 | #include "llvm/Pass.h" |
| 52 | #include <unordered_map> |
| 53 | #include <map> |
| 54 | |
| 55 | using namespace llvm; |
| 56 | |
| 57 | #define DEBUG_TYPE "aarch64-simdinstr-opt" |
| 58 | |
| 59 | STATISTIC(NumModifiedInstr, |
| 60 | "Number of SIMD instructions modified" ); |
| 61 | |
| 62 | #define AARCH64_VECTOR_BY_ELEMENT_OPT_NAME \ |
| 63 | "AArch64 SIMD instructions optimization pass" |
| 64 | |
| 65 | namespace { |
| 66 | |
| 67 | struct AArch64SIMDInstrOpt : public MachineFunctionPass { |
| 68 | static char ID; |
| 69 | |
| 70 | const TargetInstrInfo *TII; |
| 71 | MachineRegisterInfo *MRI; |
| 72 | TargetSchedModel SchedModel; |
| 73 | |
| 74 | // The two maps below are used to cache decisions instead of recomputing: |
| 75 | // This is used to cache instruction replacement decisions within function |
| 76 | // units and across function units. |
| 77 | std::map<std::pair<unsigned, std::string>, bool> SIMDInstrTable; |
| 78 | // This is used to cache the decision of whether to leave the interleaved |
| 79 | // store instructions replacement pass early or not for a particular target. |
| 80 | std::unordered_map<std::string, bool> InterlEarlyExit; |
| 81 | |
| 82 | typedef enum { |
| 83 | VectorElem, |
| 84 | Interleave |
| 85 | } Subpass; |
| 86 | |
| 87 | // Instruction represented by OrigOpc is replaced by instructions in ReplOpc. |
| 88 | struct InstReplInfo { |
| 89 | unsigned OrigOpc; |
| 90 | std::vector<unsigned> ReplOpc; |
| 91 | const TargetRegisterClass RC; |
| 92 | }; |
| 93 | |
| 94 | #define RuleST2(OpcOrg, OpcR0, OpcR1, OpcR2, RC) \ |
| 95 | {OpcOrg, {OpcR0, OpcR1, OpcR2}, RC} |
| 96 | #define RuleST4(OpcOrg, OpcR0, OpcR1, OpcR2, OpcR3, OpcR4, OpcR5, OpcR6, \ |
| 97 | OpcR7, OpcR8, OpcR9, RC) \ |
| 98 | {OpcOrg, \ |
| 99 | {OpcR0, OpcR1, OpcR2, OpcR3, OpcR4, OpcR5, OpcR6, OpcR7, OpcR8, OpcR9}, RC} |
| 100 | |
| 101 | // The Instruction Replacement Table: |
| 102 | std::vector<InstReplInfo> IRT = { |
| 103 | // ST2 instructions |
| 104 | RuleST2(AArch64::ST2Twov2d, AArch64::ZIP1v2i64, AArch64::ZIP2v2i64, |
| 105 | AArch64::STPQi, AArch64::FPR128RegClass), |
| 106 | RuleST2(AArch64::ST2Twov4s, AArch64::ZIP1v4i32, AArch64::ZIP2v4i32, |
| 107 | AArch64::STPQi, AArch64::FPR128RegClass), |
| 108 | RuleST2(AArch64::ST2Twov2s, AArch64::ZIP1v2i32, AArch64::ZIP2v2i32, |
| 109 | AArch64::STPDi, AArch64::FPR64RegClass), |
| 110 | RuleST2(AArch64::ST2Twov8h, AArch64::ZIP1v8i16, AArch64::ZIP2v8i16, |
| 111 | AArch64::STPQi, AArch64::FPR128RegClass), |
| 112 | RuleST2(AArch64::ST2Twov4h, AArch64::ZIP1v4i16, AArch64::ZIP2v4i16, |
| 113 | AArch64::STPDi, AArch64::FPR64RegClass), |
| 114 | RuleST2(AArch64::ST2Twov16b, AArch64::ZIP1v16i8, AArch64::ZIP2v16i8, |
| 115 | AArch64::STPQi, AArch64::FPR128RegClass), |
| 116 | RuleST2(AArch64::ST2Twov8b, AArch64::ZIP1v8i8, AArch64::ZIP2v8i8, |
| 117 | AArch64::STPDi, AArch64::FPR64RegClass), |
| 118 | // ST4 instructions |
| 119 | RuleST4(AArch64::ST4Fourv2d, AArch64::ZIP1v2i64, AArch64::ZIP2v2i64, |
| 120 | AArch64::ZIP1v2i64, AArch64::ZIP2v2i64, AArch64::ZIP1v2i64, |
| 121 | AArch64::ZIP2v2i64, AArch64::ZIP1v2i64, AArch64::ZIP2v2i64, |
| 122 | AArch64::STPQi, AArch64::STPQi, AArch64::FPR128RegClass), |
| 123 | RuleST4(AArch64::ST4Fourv4s, AArch64::ZIP1v4i32, AArch64::ZIP2v4i32, |
| 124 | AArch64::ZIP1v4i32, AArch64::ZIP2v4i32, AArch64::ZIP1v4i32, |
| 125 | AArch64::ZIP2v4i32, AArch64::ZIP1v4i32, AArch64::ZIP2v4i32, |
| 126 | AArch64::STPQi, AArch64::STPQi, AArch64::FPR128RegClass), |
| 127 | RuleST4(AArch64::ST4Fourv2s, AArch64::ZIP1v2i32, AArch64::ZIP2v2i32, |
| 128 | AArch64::ZIP1v2i32, AArch64::ZIP2v2i32, AArch64::ZIP1v2i32, |
| 129 | AArch64::ZIP2v2i32, AArch64::ZIP1v2i32, AArch64::ZIP2v2i32, |
| 130 | AArch64::STPDi, AArch64::STPDi, AArch64::FPR64RegClass), |
| 131 | RuleST4(AArch64::ST4Fourv8h, AArch64::ZIP1v8i16, AArch64::ZIP2v8i16, |
| 132 | AArch64::ZIP1v8i16, AArch64::ZIP2v8i16, AArch64::ZIP1v8i16, |
| 133 | AArch64::ZIP2v8i16, AArch64::ZIP1v8i16, AArch64::ZIP2v8i16, |
| 134 | AArch64::STPQi, AArch64::STPQi, AArch64::FPR128RegClass), |
| 135 | RuleST4(AArch64::ST4Fourv4h, AArch64::ZIP1v4i16, AArch64::ZIP2v4i16, |
| 136 | AArch64::ZIP1v4i16, AArch64::ZIP2v4i16, AArch64::ZIP1v4i16, |
| 137 | AArch64::ZIP2v4i16, AArch64::ZIP1v4i16, AArch64::ZIP2v4i16, |
| 138 | AArch64::STPDi, AArch64::STPDi, AArch64::FPR64RegClass), |
| 139 | RuleST4(AArch64::ST4Fourv16b, AArch64::ZIP1v16i8, AArch64::ZIP2v16i8, |
| 140 | AArch64::ZIP1v16i8, AArch64::ZIP2v16i8, AArch64::ZIP1v16i8, |
| 141 | AArch64::ZIP2v16i8, AArch64::ZIP1v16i8, AArch64::ZIP2v16i8, |
| 142 | AArch64::STPQi, AArch64::STPQi, AArch64::FPR128RegClass), |
| 143 | RuleST4(AArch64::ST4Fourv8b, AArch64::ZIP1v8i8, AArch64::ZIP2v8i8, |
| 144 | AArch64::ZIP1v8i8, AArch64::ZIP2v8i8, AArch64::ZIP1v8i8, |
| 145 | AArch64::ZIP2v8i8, AArch64::ZIP1v8i8, AArch64::ZIP2v8i8, |
| 146 | AArch64::STPDi, AArch64::STPDi, AArch64::FPR64RegClass) |
| 147 | }; |
| 148 | |
| 149 | // A costly instruction is replaced in this work by N efficient instructions |
| 150 | // The maximum of N is currently 10 and it is for ST4 case. |
| 151 | static const unsigned MaxNumRepl = 10; |
| 152 | |
| 153 | AArch64SIMDInstrOpt() : MachineFunctionPass(ID) {} |
| 154 | |
| 155 | /// Based only on latency of instructions, determine if it is cost efficient |
| 156 | /// to replace the instruction InstDesc by the instructions stored in the |
| 157 | /// array InstDescRepl. |
| 158 | /// Return true if replacement is expected to be faster. |
| 159 | bool shouldReplaceInst(MachineFunction *MF, const MCInstrDesc *InstDesc, |
| 160 | SmallVectorImpl<const MCInstrDesc*> &ReplInstrMCID); |
| 161 | |
| 162 | /// Determine if we need to exit the instruction replacement optimization |
| 163 | /// passes early. This makes sure that no compile time is spent in this pass |
| 164 | /// for targets with no need for any of these optimizations. |
| 165 | /// Return true if early exit of the pass is recommended. |
| 166 | bool shouldExitEarly(MachineFunction *MF, Subpass SP); |
| 167 | |
| 168 | /// Check whether an equivalent DUP instruction has already been |
| 169 | /// created or not. |
| 170 | /// Return true when the DUP instruction already exists. In this case, |
| 171 | /// DestReg will point to the destination of the already created DUP. |
| 172 | bool reuseDUP(MachineInstr &MI, unsigned DupOpcode, unsigned SrcReg, |
| 173 | unsigned LaneNumber, unsigned *DestReg) const; |
| 174 | |
| 175 | /// Certain SIMD instructions with vector element operand are not efficient. |
| 176 | /// Rewrite them into SIMD instructions with vector operands. This rewrite |
| 177 | /// is driven by the latency of the instructions. |
| 178 | /// Return true if the SIMD instruction is modified. |
| 179 | bool optimizeVectElement(MachineInstr &MI); |
| 180 | |
| 181 | /// Process The REG_SEQUENCE instruction, and extract the source |
| 182 | /// operands of the ST2/4 instruction from it. |
| 183 | /// Example of such instructions. |
| 184 | /// %dest = REG_SEQUENCE %st2_src1, dsub0, %st2_src2, dsub1; |
| 185 | /// Return true when the instruction is processed successfully. |
| 186 | bool processSeqRegInst(MachineInstr *DefiningMI, unsigned* StReg, |
| 187 | unsigned* StRegKill, unsigned NumArg) const; |
| 188 | |
| 189 | /// Load/Store Interleaving instructions are not always beneficial. |
| 190 | /// Replace them by ZIP instructionand classical load/store. |
| 191 | /// Return true if the SIMD instruction is modified. |
| 192 | bool optimizeLdStInterleave(MachineInstr &MI); |
| 193 | |
| 194 | /// Return the number of useful source registers for this |
| 195 | /// instruction (2 for ST2 and 4 for ST4). |
| 196 | unsigned determineSrcReg(MachineInstr &MI) const; |
| 197 | |
| 198 | bool runOnMachineFunction(MachineFunction &Fn) override; |
| 199 | |
| 200 | StringRef getPassName() const override { |
| 201 | return AARCH64_VECTOR_BY_ELEMENT_OPT_NAME; |
| 202 | } |
| 203 | }; |
| 204 | |
| 205 | char AArch64SIMDInstrOpt::ID = 0; |
| 206 | |
| 207 | } // end anonymous namespace |
| 208 | |
| 209 | INITIALIZE_PASS(AArch64SIMDInstrOpt, "aarch64-simdinstr-opt" , |
| 210 | AARCH64_VECTOR_BY_ELEMENT_OPT_NAME, false, false) |
| 211 | |
| 212 | /// Based only on latency of instructions, determine if it is cost efficient |
| 213 | /// to replace the instruction InstDesc by the instructions stored in the |
| 214 | /// array InstDescRepl. |
| 215 | /// Return true if replacement is expected to be faster. |
| 216 | bool AArch64SIMDInstrOpt:: |
| 217 | shouldReplaceInst(MachineFunction *MF, const MCInstrDesc *InstDesc, |
| 218 | SmallVectorImpl<const MCInstrDesc*> &InstDescRepl) { |
| 219 | // Check if replacement decision is already available in the cached table. |
| 220 | // if so, return it. |
| 221 | std::string Subtarget = std::string(SchedModel.getSubtargetInfo()->getCPU()); |
| 222 | auto InstID = std::make_pair(x: InstDesc->getOpcode(), y&: Subtarget); |
| 223 | auto It = SIMDInstrTable.find(x: InstID); |
| 224 | if (It != SIMDInstrTable.end()) |
| 225 | return It->second; |
| 226 | |
| 227 | unsigned SCIdx = InstDesc->getSchedClass(); |
| 228 | const MCSchedClassDesc *SCDesc = |
| 229 | SchedModel.getMCSchedModel()->getSchedClassDesc(SchedClassIdx: SCIdx); |
| 230 | |
| 231 | // If a target does not define resources for the instructions |
| 232 | // of interest, then return false for no replacement. |
| 233 | const MCSchedClassDesc *SCDescRepl; |
| 234 | if (!SCDesc->isValid() || SCDesc->isVariant()) |
| 235 | { |
| 236 | SIMDInstrTable[InstID] = false; |
| 237 | return false; |
| 238 | } |
| 239 | for (const auto *IDesc : InstDescRepl) |
| 240 | { |
| 241 | SCDescRepl = SchedModel.getMCSchedModel()->getSchedClassDesc( |
| 242 | SchedClassIdx: IDesc->getSchedClass()); |
| 243 | if (!SCDescRepl->isValid() || SCDescRepl->isVariant()) |
| 244 | { |
| 245 | SIMDInstrTable[InstID] = false; |
| 246 | return false; |
| 247 | } |
| 248 | } |
| 249 | |
| 250 | // Replacement cost. |
| 251 | unsigned ReplCost = 0; |
| 252 | for (const auto *IDesc :InstDescRepl) |
| 253 | ReplCost += SchedModel.computeInstrLatency(Opcode: IDesc->getOpcode()); |
| 254 | |
| 255 | if (SchedModel.computeInstrLatency(Opcode: InstDesc->getOpcode()) > ReplCost) |
| 256 | { |
| 257 | SIMDInstrTable[InstID] = true; |
| 258 | return true; |
| 259 | } |
| 260 | else |
| 261 | { |
| 262 | SIMDInstrTable[InstID] = false; |
| 263 | return false; |
| 264 | } |
| 265 | } |
| 266 | |
| 267 | /// Determine if we need to exit this pass for a kind of instruction replacement |
| 268 | /// early. This makes sure that no compile time is spent in this pass for |
| 269 | /// targets with no need for any of these optimizations beyond performing this |
| 270 | /// check. |
| 271 | /// Return true if early exit of this pass for a kind of instruction |
| 272 | /// replacement is recommended for a target. |
| 273 | bool AArch64SIMDInstrOpt::shouldExitEarly(MachineFunction *MF, Subpass SP) { |
| 274 | const MCInstrDesc* OriginalMCID; |
| 275 | SmallVector<const MCInstrDesc*, MaxNumRepl> ReplInstrMCID; |
| 276 | |
| 277 | switch (SP) { |
| 278 | // For this optimization, check by comparing the latency of a representative |
| 279 | // instruction to that of the replacement instructions. |
| 280 | // TODO: check for all concerned instructions. |
| 281 | case VectorElem: |
| 282 | OriginalMCID = &TII->get(Opcode: AArch64::FMLAv4i32_indexed); |
| 283 | ReplInstrMCID.push_back(Elt: &TII->get(Opcode: AArch64::DUPv4i32lane)); |
| 284 | ReplInstrMCID.push_back(Elt: &TII->get(Opcode: AArch64::FMLAv4f32)); |
| 285 | if (shouldReplaceInst(MF, InstDesc: OriginalMCID, InstDescRepl&: ReplInstrMCID)) |
| 286 | return false; |
| 287 | break; |
| 288 | |
| 289 | // For this optimization, check for all concerned instructions. |
| 290 | case Interleave: |
| 291 | std::string Subtarget = |
| 292 | std::string(SchedModel.getSubtargetInfo()->getCPU()); |
| 293 | auto It = InterlEarlyExit.find(x: Subtarget); |
| 294 | if (It != InterlEarlyExit.end()) |
| 295 | return It->second; |
| 296 | |
| 297 | for (auto &I : IRT) { |
| 298 | OriginalMCID = &TII->get(Opcode: I.OrigOpc); |
| 299 | for (auto &Repl : I.ReplOpc) |
| 300 | ReplInstrMCID.push_back(Elt: &TII->get(Opcode: Repl)); |
| 301 | if (shouldReplaceInst(MF, InstDesc: OriginalMCID, InstDescRepl&: ReplInstrMCID)) { |
| 302 | InterlEarlyExit[Subtarget] = false; |
| 303 | return false; |
| 304 | } |
| 305 | ReplInstrMCID.clear(); |
| 306 | } |
| 307 | InterlEarlyExit[Subtarget] = true; |
| 308 | break; |
| 309 | } |
| 310 | |
| 311 | return true; |
| 312 | } |
| 313 | |
| 314 | /// Check whether an equivalent DUP instruction has already been |
| 315 | /// created or not. |
| 316 | /// Return true when the DUP instruction already exists. In this case, |
| 317 | /// DestReg will point to the destination of the already created DUP. |
| 318 | bool AArch64SIMDInstrOpt::reuseDUP(MachineInstr &MI, unsigned DupOpcode, |
| 319 | unsigned SrcReg, unsigned LaneNumber, |
| 320 | unsigned *DestReg) const { |
| 321 | for (MachineBasicBlock::iterator MII = MI, MIE = MI.getParent()->begin(); |
| 322 | MII != MIE;) { |
| 323 | MII--; |
| 324 | MachineInstr *CurrentMI = &*MII; |
| 325 | |
| 326 | if (CurrentMI->getOpcode() == DupOpcode && |
| 327 | CurrentMI->getNumOperands() == 3 && |
| 328 | CurrentMI->getOperand(i: 1).getReg() == SrcReg && |
| 329 | CurrentMI->getOperand(i: 2).getImm() == LaneNumber) { |
| 330 | *DestReg = CurrentMI->getOperand(i: 0).getReg(); |
| 331 | return true; |
| 332 | } |
| 333 | } |
| 334 | |
| 335 | return false; |
| 336 | } |
| 337 | |
| 338 | /// Certain SIMD instructions with vector element operand are not efficient. |
| 339 | /// Rewrite them into SIMD instructions with vector operands. This rewrite |
| 340 | /// is driven by the latency of the instructions. |
| 341 | /// The instruction of concerns are for the time being FMLA, FMLS, FMUL, |
| 342 | /// and FMULX and hence they are hardcoded. |
| 343 | /// |
| 344 | /// For example: |
| 345 | /// fmla v0.4s, v1.4s, v2.s[1] |
| 346 | /// |
| 347 | /// Is rewritten into |
| 348 | /// dup v3.4s, v2.s[1] // DUP not necessary if redundant |
| 349 | /// fmla v0.4s, v1.4s, v3.4s |
| 350 | /// |
| 351 | /// Return true if the SIMD instruction is modified. |
| 352 | bool AArch64SIMDInstrOpt::optimizeVectElement(MachineInstr &MI) { |
| 353 | const MCInstrDesc *MulMCID, *DupMCID; |
| 354 | const TargetRegisterClass *RC = &AArch64::FPR128RegClass; |
| 355 | |
| 356 | switch (MI.getOpcode()) { |
| 357 | default: |
| 358 | return false; |
| 359 | |
| 360 | // 4X32 instructions |
| 361 | case AArch64::FMLAv4i32_indexed: |
| 362 | DupMCID = &TII->get(Opcode: AArch64::DUPv4i32lane); |
| 363 | MulMCID = &TII->get(Opcode: AArch64::FMLAv4f32); |
| 364 | break; |
| 365 | case AArch64::FMLSv4i32_indexed: |
| 366 | DupMCID = &TII->get(Opcode: AArch64::DUPv4i32lane); |
| 367 | MulMCID = &TII->get(Opcode: AArch64::FMLSv4f32); |
| 368 | break; |
| 369 | case AArch64::FMULXv4i32_indexed: |
| 370 | DupMCID = &TII->get(Opcode: AArch64::DUPv4i32lane); |
| 371 | MulMCID = &TII->get(Opcode: AArch64::FMULXv4f32); |
| 372 | break; |
| 373 | case AArch64::FMULv4i32_indexed: |
| 374 | DupMCID = &TII->get(Opcode: AArch64::DUPv4i32lane); |
| 375 | MulMCID = &TII->get(Opcode: AArch64::FMULv4f32); |
| 376 | break; |
| 377 | |
| 378 | // 2X64 instructions |
| 379 | case AArch64::FMLAv2i64_indexed: |
| 380 | DupMCID = &TII->get(Opcode: AArch64::DUPv2i64lane); |
| 381 | MulMCID = &TII->get(Opcode: AArch64::FMLAv2f64); |
| 382 | break; |
| 383 | case AArch64::FMLSv2i64_indexed: |
| 384 | DupMCID = &TII->get(Opcode: AArch64::DUPv2i64lane); |
| 385 | MulMCID = &TII->get(Opcode: AArch64::FMLSv2f64); |
| 386 | break; |
| 387 | case AArch64::FMULXv2i64_indexed: |
| 388 | DupMCID = &TII->get(Opcode: AArch64::DUPv2i64lane); |
| 389 | MulMCID = &TII->get(Opcode: AArch64::FMULXv2f64); |
| 390 | break; |
| 391 | case AArch64::FMULv2i64_indexed: |
| 392 | DupMCID = &TII->get(Opcode: AArch64::DUPv2i64lane); |
| 393 | MulMCID = &TII->get(Opcode: AArch64::FMULv2f64); |
| 394 | break; |
| 395 | |
| 396 | // 2X32 instructions |
| 397 | case AArch64::FMLAv2i32_indexed: |
| 398 | RC = &AArch64::FPR64RegClass; |
| 399 | DupMCID = &TII->get(Opcode: AArch64::DUPv2i32lane); |
| 400 | MulMCID = &TII->get(Opcode: AArch64::FMLAv2f32); |
| 401 | break; |
| 402 | case AArch64::FMLSv2i32_indexed: |
| 403 | RC = &AArch64::FPR64RegClass; |
| 404 | DupMCID = &TII->get(Opcode: AArch64::DUPv2i32lane); |
| 405 | MulMCID = &TII->get(Opcode: AArch64::FMLSv2f32); |
| 406 | break; |
| 407 | case AArch64::FMULXv2i32_indexed: |
| 408 | RC = &AArch64::FPR64RegClass; |
| 409 | DupMCID = &TII->get(Opcode: AArch64::DUPv2i32lane); |
| 410 | MulMCID = &TII->get(Opcode: AArch64::FMULXv2f32); |
| 411 | break; |
| 412 | case AArch64::FMULv2i32_indexed: |
| 413 | RC = &AArch64::FPR64RegClass; |
| 414 | DupMCID = &TII->get(Opcode: AArch64::DUPv2i32lane); |
| 415 | MulMCID = &TII->get(Opcode: AArch64::FMULv2f32); |
| 416 | break; |
| 417 | } |
| 418 | |
| 419 | SmallVector<const MCInstrDesc*, 2> ReplInstrMCID; |
| 420 | ReplInstrMCID.push_back(Elt: DupMCID); |
| 421 | ReplInstrMCID.push_back(Elt: MulMCID); |
| 422 | if (!shouldReplaceInst(MF: MI.getParent()->getParent(), InstDesc: &TII->get(Opcode: MI.getOpcode()), |
| 423 | InstDescRepl&: ReplInstrMCID)) |
| 424 | return false; |
| 425 | |
| 426 | const DebugLoc &DL = MI.getDebugLoc(); |
| 427 | MachineBasicBlock &MBB = *MI.getParent(); |
| 428 | MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); |
| 429 | |
| 430 | // Get the operands of the current SIMD arithmetic instruction. |
| 431 | Register MulDest = MI.getOperand(i: 0).getReg(); |
| 432 | Register SrcReg0 = MI.getOperand(i: 1).getReg(); |
| 433 | unsigned Src0IsKill = getKillRegState(B: MI.getOperand(i: 1).isKill()); |
| 434 | Register SrcReg1 = MI.getOperand(i: 2).getReg(); |
| 435 | unsigned Src1IsKill = getKillRegState(B: MI.getOperand(i: 2).isKill()); |
| 436 | unsigned DupDest; |
| 437 | |
| 438 | // Instructions of interest have either 4 or 5 operands. |
| 439 | if (MI.getNumOperands() == 5) { |
| 440 | Register SrcReg2 = MI.getOperand(i: 3).getReg(); |
| 441 | unsigned Src2IsKill = getKillRegState(B: MI.getOperand(i: 3).isKill()); |
| 442 | unsigned LaneNumber = MI.getOperand(i: 4).getImm(); |
| 443 | // Create a new DUP instruction. Note that if an equivalent DUP instruction |
| 444 | // has already been created before, then use that one instead of creating |
| 445 | // a new one. |
| 446 | if (!reuseDUP(MI, DupOpcode: DupMCID->getOpcode(), SrcReg: SrcReg2, LaneNumber, DestReg: &DupDest)) { |
| 447 | DupDest = MRI.createVirtualRegister(RegClass: RC); |
| 448 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: *DupMCID, DestReg: DupDest) |
| 449 | .addReg(RegNo: SrcReg2, flags: Src2IsKill) |
| 450 | .addImm(Val: LaneNumber); |
| 451 | } |
| 452 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: *MulMCID, DestReg: MulDest) |
| 453 | .addReg(RegNo: SrcReg0, flags: Src0IsKill) |
| 454 | .addReg(RegNo: SrcReg1, flags: Src1IsKill) |
| 455 | .addReg(RegNo: DupDest, flags: Src2IsKill); |
| 456 | } else if (MI.getNumOperands() == 4) { |
| 457 | unsigned LaneNumber = MI.getOperand(i: 3).getImm(); |
| 458 | if (!reuseDUP(MI, DupOpcode: DupMCID->getOpcode(), SrcReg: SrcReg1, LaneNumber, DestReg: &DupDest)) { |
| 459 | DupDest = MRI.createVirtualRegister(RegClass: RC); |
| 460 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: *DupMCID, DestReg: DupDest) |
| 461 | .addReg(RegNo: SrcReg1, flags: Src1IsKill) |
| 462 | .addImm(Val: LaneNumber); |
| 463 | } |
| 464 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: *MulMCID, DestReg: MulDest) |
| 465 | .addReg(RegNo: SrcReg0, flags: Src0IsKill) |
| 466 | .addReg(RegNo: DupDest, flags: Src1IsKill); |
| 467 | } else { |
| 468 | return false; |
| 469 | } |
| 470 | |
| 471 | ++NumModifiedInstr; |
| 472 | return true; |
| 473 | } |
| 474 | |
| 475 | /// Load/Store Interleaving instructions are not always beneficial. |
| 476 | /// Replace them by ZIP instructions and classical load/store. |
| 477 | /// |
| 478 | /// For example: |
| 479 | /// st2 {v0.4s, v1.4s}, addr |
| 480 | /// |
| 481 | /// Is rewritten into: |
| 482 | /// zip1 v2.4s, v0.4s, v1.4s |
| 483 | /// zip2 v3.4s, v0.4s, v1.4s |
| 484 | /// stp q2, q3, addr |
| 485 | // |
| 486 | /// For example: |
| 487 | /// st4 {v0.4s, v1.4s, v2.4s, v3.4s}, addr |
| 488 | /// |
| 489 | /// Is rewritten into: |
| 490 | /// zip1 v4.4s, v0.4s, v2.4s |
| 491 | /// zip2 v5.4s, v0.4s, v2.4s |
| 492 | /// zip1 v6.4s, v1.4s, v3.4s |
| 493 | /// zip2 v7.4s, v1.4s, v3.4s |
| 494 | /// zip1 v8.4s, v4.4s, v6.4s |
| 495 | /// zip2 v9.4s, v4.4s, v6.4s |
| 496 | /// zip1 v10.4s, v5.4s, v7.4s |
| 497 | /// zip2 v11.4s, v5.4s, v7.4s |
| 498 | /// stp q8, q9, addr |
| 499 | /// stp q10, q11, addr+32 |
| 500 | /// |
| 501 | /// Currently only instructions related to ST2 and ST4 are considered. |
| 502 | /// Other may be added later. |
| 503 | /// Return true if the SIMD instruction is modified. |
| 504 | bool AArch64SIMDInstrOpt::optimizeLdStInterleave(MachineInstr &MI) { |
| 505 | |
| 506 | unsigned SeqReg, AddrReg; |
| 507 | unsigned StReg[4], StRegKill[4]; |
| 508 | MachineInstr *DefiningMI; |
| 509 | const DebugLoc &DL = MI.getDebugLoc(); |
| 510 | MachineBasicBlock &MBB = *MI.getParent(); |
| 511 | SmallVector<unsigned, MaxNumRepl> ZipDest; |
| 512 | SmallVector<const MCInstrDesc*, MaxNumRepl> ReplInstrMCID; |
| 513 | |
| 514 | // If current instruction matches any of the rewriting rules, then |
| 515 | // gather information about parameters of the new instructions. |
| 516 | bool Match = false; |
| 517 | for (auto &I : IRT) { |
| 518 | if (MI.getOpcode() == I.OrigOpc) { |
| 519 | SeqReg = MI.getOperand(i: 0).getReg(); |
| 520 | AddrReg = MI.getOperand(i: 1).getReg(); |
| 521 | DefiningMI = MRI->getUniqueVRegDef(Reg: SeqReg); |
| 522 | unsigned NumReg = determineSrcReg(MI); |
| 523 | if (!processSeqRegInst(DefiningMI, StReg, StRegKill, NumArg: NumReg)) |
| 524 | return false; |
| 525 | |
| 526 | for (auto &Repl : I.ReplOpc) { |
| 527 | ReplInstrMCID.push_back(Elt: &TII->get(Opcode: Repl)); |
| 528 | // Generate destination registers but only for non-store instruction. |
| 529 | if (Repl != AArch64::STPQi && Repl != AArch64::STPDi) |
| 530 | ZipDest.push_back(Elt: MRI->createVirtualRegister(RegClass: &I.RC)); |
| 531 | } |
| 532 | Match = true; |
| 533 | break; |
| 534 | } |
| 535 | } |
| 536 | |
| 537 | if (!Match) |
| 538 | return false; |
| 539 | |
| 540 | // Determine if it is profitable to replace MI by the series of instructions |
| 541 | // represented in ReplInstrMCID. |
| 542 | if (!shouldReplaceInst(MF: MI.getParent()->getParent(), InstDesc: &TII->get(Opcode: MI.getOpcode()), |
| 543 | InstDescRepl&: ReplInstrMCID)) |
| 544 | return false; |
| 545 | |
| 546 | // Generate the replacement instructions composed of ZIP1, ZIP2, and STP (at |
| 547 | // this point, the code generation is hardcoded and does not rely on the IRT |
| 548 | // table used above given that code generation for ST2 replacement is somewhat |
| 549 | // different than for ST4 replacement. We could have added more info into the |
| 550 | // table related to how we build new instructions but we may be adding more |
| 551 | // complexity with that). |
| 552 | switch (MI.getOpcode()) { |
| 553 | default: |
| 554 | return false; |
| 555 | |
| 556 | case AArch64::ST2Twov16b: |
| 557 | case AArch64::ST2Twov8b: |
| 558 | case AArch64::ST2Twov8h: |
| 559 | case AArch64::ST2Twov4h: |
| 560 | case AArch64::ST2Twov4s: |
| 561 | case AArch64::ST2Twov2s: |
| 562 | case AArch64::ST2Twov2d: |
| 563 | // ZIP instructions |
| 564 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: *ReplInstrMCID[0], DestReg: ZipDest[0]) |
| 565 | .addReg(RegNo: StReg[0]) |
| 566 | .addReg(RegNo: StReg[1]); |
| 567 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: *ReplInstrMCID[1], DestReg: ZipDest[1]) |
| 568 | .addReg(RegNo: StReg[0], flags: StRegKill[0]) |
| 569 | .addReg(RegNo: StReg[1], flags: StRegKill[1]); |
| 570 | // STP instructions |
| 571 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: *ReplInstrMCID[2]) |
| 572 | .addReg(RegNo: ZipDest[0]) |
| 573 | .addReg(RegNo: ZipDest[1]) |
| 574 | .addReg(RegNo: AddrReg) |
| 575 | .addImm(Val: 0); |
| 576 | break; |
| 577 | |
| 578 | case AArch64::ST4Fourv16b: |
| 579 | case AArch64::ST4Fourv8b: |
| 580 | case AArch64::ST4Fourv8h: |
| 581 | case AArch64::ST4Fourv4h: |
| 582 | case AArch64::ST4Fourv4s: |
| 583 | case AArch64::ST4Fourv2s: |
| 584 | case AArch64::ST4Fourv2d: |
| 585 | // ZIP instructions |
| 586 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: *ReplInstrMCID[0], DestReg: ZipDest[0]) |
| 587 | .addReg(RegNo: StReg[0]) |
| 588 | .addReg(RegNo: StReg[2]); |
| 589 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: *ReplInstrMCID[1], DestReg: ZipDest[1]) |
| 590 | .addReg(RegNo: StReg[0], flags: StRegKill[0]) |
| 591 | .addReg(RegNo: StReg[2], flags: StRegKill[2]); |
| 592 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: *ReplInstrMCID[2], DestReg: ZipDest[2]) |
| 593 | .addReg(RegNo: StReg[1]) |
| 594 | .addReg(RegNo: StReg[3]); |
| 595 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: *ReplInstrMCID[3], DestReg: ZipDest[3]) |
| 596 | .addReg(RegNo: StReg[1], flags: StRegKill[1]) |
| 597 | .addReg(RegNo: StReg[3], flags: StRegKill[3]); |
| 598 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: *ReplInstrMCID[4], DestReg: ZipDest[4]) |
| 599 | .addReg(RegNo: ZipDest[0]) |
| 600 | .addReg(RegNo: ZipDest[2]); |
| 601 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: *ReplInstrMCID[5], DestReg: ZipDest[5]) |
| 602 | .addReg(RegNo: ZipDest[0]) |
| 603 | .addReg(RegNo: ZipDest[2]); |
| 604 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: *ReplInstrMCID[6], DestReg: ZipDest[6]) |
| 605 | .addReg(RegNo: ZipDest[1]) |
| 606 | .addReg(RegNo: ZipDest[3]); |
| 607 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: *ReplInstrMCID[7], DestReg: ZipDest[7]) |
| 608 | .addReg(RegNo: ZipDest[1]) |
| 609 | .addReg(RegNo: ZipDest[3]); |
| 610 | // stp instructions |
| 611 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: *ReplInstrMCID[8]) |
| 612 | .addReg(RegNo: ZipDest[4]) |
| 613 | .addReg(RegNo: ZipDest[5]) |
| 614 | .addReg(RegNo: AddrReg) |
| 615 | .addImm(Val: 0); |
| 616 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: *ReplInstrMCID[9]) |
| 617 | .addReg(RegNo: ZipDest[6]) |
| 618 | .addReg(RegNo: ZipDest[7]) |
| 619 | .addReg(RegNo: AddrReg) |
| 620 | .addImm(Val: 2); |
| 621 | break; |
| 622 | } |
| 623 | |
| 624 | ++NumModifiedInstr; |
| 625 | return true; |
| 626 | } |
| 627 | |
| 628 | /// Process The REG_SEQUENCE instruction, and extract the source |
| 629 | /// operands of the ST2/4 instruction from it. |
| 630 | /// Example of such instruction. |
| 631 | /// %dest = REG_SEQUENCE %st2_src1, dsub0, %st2_src2, dsub1; |
| 632 | /// Return true when the instruction is processed successfully. |
| 633 | bool AArch64SIMDInstrOpt::processSeqRegInst(MachineInstr *DefiningMI, |
| 634 | unsigned* StReg, unsigned* StRegKill, unsigned NumArg) const { |
| 635 | assert(DefiningMI != nullptr); |
| 636 | if (DefiningMI->getOpcode() != AArch64::REG_SEQUENCE) |
| 637 | return false; |
| 638 | |
| 639 | for (unsigned i=0; i<NumArg; i++) { |
| 640 | StReg[i] = DefiningMI->getOperand(i: 2*i+1).getReg(); |
| 641 | StRegKill[i] = getKillRegState(B: DefiningMI->getOperand(i: 2*i+1).isKill()); |
| 642 | |
| 643 | // Validation check for the other arguments. |
| 644 | if (DefiningMI->getOperand(i: 2*i+2).isImm()) { |
| 645 | switch (DefiningMI->getOperand(i: 2*i+2).getImm()) { |
| 646 | default: |
| 647 | return false; |
| 648 | |
| 649 | case AArch64::dsub0: |
| 650 | case AArch64::dsub1: |
| 651 | case AArch64::dsub2: |
| 652 | case AArch64::dsub3: |
| 653 | case AArch64::qsub0: |
| 654 | case AArch64::qsub1: |
| 655 | case AArch64::qsub2: |
| 656 | case AArch64::qsub3: |
| 657 | break; |
| 658 | } |
| 659 | } |
| 660 | else |
| 661 | return false; |
| 662 | } |
| 663 | return true; |
| 664 | } |
| 665 | |
| 666 | /// Return the number of useful source registers for this instruction |
| 667 | /// (2 for ST2 and 4 for ST4). |
| 668 | unsigned AArch64SIMDInstrOpt::determineSrcReg(MachineInstr &MI) const { |
| 669 | switch (MI.getOpcode()) { |
| 670 | default: |
| 671 | llvm_unreachable("Unsupported instruction for this pass" ); |
| 672 | |
| 673 | case AArch64::ST2Twov16b: |
| 674 | case AArch64::ST2Twov8b: |
| 675 | case AArch64::ST2Twov8h: |
| 676 | case AArch64::ST2Twov4h: |
| 677 | case AArch64::ST2Twov4s: |
| 678 | case AArch64::ST2Twov2s: |
| 679 | case AArch64::ST2Twov2d: |
| 680 | return 2; |
| 681 | |
| 682 | case AArch64::ST4Fourv16b: |
| 683 | case AArch64::ST4Fourv8b: |
| 684 | case AArch64::ST4Fourv8h: |
| 685 | case AArch64::ST4Fourv4h: |
| 686 | case AArch64::ST4Fourv4s: |
| 687 | case AArch64::ST4Fourv2s: |
| 688 | case AArch64::ST4Fourv2d: |
| 689 | return 4; |
| 690 | } |
| 691 | } |
| 692 | |
| 693 | bool AArch64SIMDInstrOpt::runOnMachineFunction(MachineFunction &MF) { |
| 694 | if (skipFunction(F: MF.getFunction())) |
| 695 | return false; |
| 696 | |
| 697 | TII = MF.getSubtarget().getInstrInfo(); |
| 698 | MRI = &MF.getRegInfo(); |
| 699 | const TargetSubtargetInfo &ST = MF.getSubtarget(); |
| 700 | const AArch64InstrInfo *AAII = |
| 701 | static_cast<const AArch64InstrInfo *>(ST.getInstrInfo()); |
| 702 | if (!AAII) |
| 703 | return false; |
| 704 | SchedModel.init(TSInfo: &ST); |
| 705 | if (!SchedModel.hasInstrSchedModel()) |
| 706 | return false; |
| 707 | |
| 708 | bool Changed = false; |
| 709 | for (auto OptimizationKind : {VectorElem, Interleave}) { |
| 710 | if (!shouldExitEarly(MF: &MF, SP: OptimizationKind)) { |
| 711 | SmallVector<MachineInstr *, 8> RemoveMIs; |
| 712 | for (MachineBasicBlock &MBB : MF) { |
| 713 | for (MachineInstr &MI : MBB) { |
| 714 | bool InstRewrite; |
| 715 | if (OptimizationKind == VectorElem) |
| 716 | InstRewrite = optimizeVectElement(MI) ; |
| 717 | else |
| 718 | InstRewrite = optimizeLdStInterleave(MI); |
| 719 | if (InstRewrite) { |
| 720 | // Add MI to the list of instructions to be removed given that it |
| 721 | // has been replaced. |
| 722 | RemoveMIs.push_back(Elt: &MI); |
| 723 | Changed = true; |
| 724 | } |
| 725 | } |
| 726 | } |
| 727 | for (MachineInstr *MI : RemoveMIs) |
| 728 | MI->eraseFromParent(); |
| 729 | } |
| 730 | } |
| 731 | |
| 732 | return Changed; |
| 733 | } |
| 734 | |
| 735 | /// Returns an instance of the high cost ASIMD instruction replacement |
| 736 | /// optimization pass. |
| 737 | FunctionPass *llvm::createAArch64SIMDInstrOptPass() { |
| 738 | return new AArch64SIMDInstrOpt(); |
| 739 | } |
| 740 | |