| 1 | //=== AArch64PostSelectOptimize.cpp ---------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This pass does post-instruction-selection optimizations in the GlobalISel |
| 10 | // pipeline, before the rest of codegen runs. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "AArch64.h" |
| 15 | #include "AArch64TargetMachine.h" |
| 16 | #include "MCTargetDesc/AArch64MCTargetDesc.h" |
| 17 | #include "llvm/ADT/STLExtras.h" |
| 18 | #include "llvm/CodeGen/GlobalISel/Utils.h" |
| 19 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 20 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 21 | #include "llvm/CodeGen/MachineInstr.h" |
| 22 | #include "llvm/CodeGen/MachineOperand.h" |
| 23 | #include "llvm/CodeGen/TargetPassConfig.h" |
| 24 | #include "llvm/Support/Debug.h" |
| 25 | #include "llvm/Support/ErrorHandling.h" |
| 26 | |
| 27 | #define DEBUG_TYPE "aarch64-post-select-optimize" |
| 28 | |
| 29 | using namespace llvm; |
| 30 | |
| 31 | namespace { |
| 32 | class AArch64PostSelectOptimize : public MachineFunctionPass { |
| 33 | public: |
| 34 | static char ID; |
| 35 | |
| 36 | AArch64PostSelectOptimize() : MachineFunctionPass(ID) {} |
| 37 | |
| 38 | StringRef getPassName() const override { |
| 39 | return "AArch64 Post Select Optimizer" ; |
| 40 | } |
| 41 | |
| 42 | bool runOnMachineFunction(MachineFunction &MF) override; |
| 43 | |
| 44 | void getAnalysisUsage(AnalysisUsage &AU) const override; |
| 45 | |
| 46 | private: |
| 47 | bool optimizeNZCVDefs(MachineBasicBlock &MBB); |
| 48 | bool doPeepholeOpts(MachineBasicBlock &MBB); |
| 49 | /// Look for cross regclass copies that can be trivially eliminated. |
| 50 | bool foldSimpleCrossClassCopies(MachineInstr &MI); |
| 51 | bool foldCopyDup(MachineInstr &MI); |
| 52 | }; |
| 53 | } // end anonymous namespace |
| 54 | |
| 55 | void AArch64PostSelectOptimize::getAnalysisUsage(AnalysisUsage &AU) const { |
| 56 | AU.addRequired<TargetPassConfig>(); |
| 57 | AU.setPreservesCFG(); |
| 58 | getSelectionDAGFallbackAnalysisUsage(AU); |
| 59 | MachineFunctionPass::getAnalysisUsage(AU); |
| 60 | } |
| 61 | |
| 62 | unsigned getNonFlagSettingVariant(unsigned Opc) { |
| 63 | switch (Opc) { |
| 64 | default: |
| 65 | return 0; |
| 66 | case AArch64::SUBSXrr: |
| 67 | return AArch64::SUBXrr; |
| 68 | case AArch64::SUBSWrr: |
| 69 | return AArch64::SUBWrr; |
| 70 | case AArch64::SUBSXrs: |
| 71 | return AArch64::SUBXrs; |
| 72 | case AArch64::SUBSWrs: |
| 73 | return AArch64::SUBWrs; |
| 74 | case AArch64::SUBSXri: |
| 75 | return AArch64::SUBXri; |
| 76 | case AArch64::SUBSWri: |
| 77 | return AArch64::SUBWri; |
| 78 | case AArch64::ADDSXrr: |
| 79 | return AArch64::ADDXrr; |
| 80 | case AArch64::ADDSWrr: |
| 81 | return AArch64::ADDWrr; |
| 82 | case AArch64::ADDSXrs: |
| 83 | return AArch64::ADDXrs; |
| 84 | case AArch64::ADDSWrs: |
| 85 | return AArch64::ADDWrs; |
| 86 | case AArch64::ADDSXri: |
| 87 | return AArch64::ADDXri; |
| 88 | case AArch64::ADDSWri: |
| 89 | return AArch64::ADDWri; |
| 90 | case AArch64::SBCSXr: |
| 91 | return AArch64::SBCXr; |
| 92 | case AArch64::SBCSWr: |
| 93 | return AArch64::SBCWr; |
| 94 | case AArch64::ADCSXr: |
| 95 | return AArch64::ADCXr; |
| 96 | case AArch64::ADCSWr: |
| 97 | return AArch64::ADCWr; |
| 98 | } |
| 99 | } |
| 100 | |
| 101 | bool AArch64PostSelectOptimize::doPeepholeOpts(MachineBasicBlock &MBB) { |
| 102 | bool Changed = false; |
| 103 | for (auto &MI : make_early_inc_range(Range&: MBB)) { |
| 104 | bool CurrentIterChanged = foldSimpleCrossClassCopies(MI); |
| 105 | if (!CurrentIterChanged) |
| 106 | CurrentIterChanged |= foldCopyDup(MI); |
| 107 | Changed |= CurrentIterChanged; |
| 108 | } |
| 109 | return Changed; |
| 110 | } |
| 111 | |
| 112 | bool AArch64PostSelectOptimize::foldSimpleCrossClassCopies(MachineInstr &MI) { |
| 113 | auto *MF = MI.getMF(); |
| 114 | auto &MRI = MF->getRegInfo(); |
| 115 | |
| 116 | if (!MI.isCopy()) |
| 117 | return false; |
| 118 | |
| 119 | if (MI.getOperand(i: 1).getSubReg()) |
| 120 | return false; // Don't deal with subreg copies |
| 121 | |
| 122 | Register Src = MI.getOperand(i: 1).getReg(); |
| 123 | Register Dst = MI.getOperand(i: 0).getReg(); |
| 124 | |
| 125 | if (Src.isPhysical() || Dst.isPhysical()) |
| 126 | return false; |
| 127 | |
| 128 | const TargetRegisterClass *SrcRC = MRI.getRegClass(Reg: Src); |
| 129 | const TargetRegisterClass *DstRC = MRI.getRegClass(Reg: Dst); |
| 130 | |
| 131 | if (SrcRC == DstRC) |
| 132 | return false; |
| 133 | |
| 134 | |
| 135 | if (SrcRC->hasSubClass(RC: DstRC)) { |
| 136 | // This is the case where the source class is a superclass of the dest, so |
| 137 | // if the copy is the only user of the source, we can just constrain the |
| 138 | // source reg to the dest class. |
| 139 | |
| 140 | if (!MRI.hasOneNonDBGUse(RegNo: Src)) |
| 141 | return false; // Only constrain single uses of the source. |
| 142 | |
| 143 | // Constrain to dst reg class as long as it's not a weird class that only |
| 144 | // has a few registers. |
| 145 | if (!MRI.constrainRegClass(Reg: Src, RC: DstRC, /* MinNumRegs */ 25)) |
| 146 | return false; |
| 147 | } else if (DstRC->hasSubClass(RC: SrcRC)) { |
| 148 | // This is the inverse case, where the destination class is a superclass of |
| 149 | // the source. Here, if the copy is the only user, we can just constrain |
| 150 | // the user of the copy to use the smaller class of the source. |
| 151 | } else { |
| 152 | return false; |
| 153 | } |
| 154 | |
| 155 | MRI.replaceRegWith(FromReg: Dst, ToReg: Src); |
| 156 | MI.eraseFromParent(); |
| 157 | return true; |
| 158 | } |
| 159 | |
| 160 | bool AArch64PostSelectOptimize::foldCopyDup(MachineInstr &MI) { |
| 161 | if (!MI.isCopy()) |
| 162 | return false; |
| 163 | |
| 164 | auto *MF = MI.getMF(); |
| 165 | auto &MRI = MF->getRegInfo(); |
| 166 | auto *TII = MF->getSubtarget().getInstrInfo(); |
| 167 | |
| 168 | // Optimize COPY(y:GPR, DUP(x:FPR, i)) -> UMOV(y:GPR, x:FPR, i). |
| 169 | // Here Dst is y and Src is the result of DUP. |
| 170 | Register Dst = MI.getOperand(i: 0).getReg(); |
| 171 | Register Src = MI.getOperand(i: 1).getReg(); |
| 172 | |
| 173 | if (!Dst.isVirtual() || !Src.isVirtual()) |
| 174 | return false; |
| 175 | |
| 176 | auto TryMatchDUP = [&](const TargetRegisterClass *GPRRegClass, |
| 177 | const TargetRegisterClass *FPRRegClass, unsigned DUP, |
| 178 | unsigned UMOV) { |
| 179 | if (MRI.getRegClassOrNull(Reg: Dst) != GPRRegClass || |
| 180 | MRI.getRegClassOrNull(Reg: Src) != FPRRegClass) |
| 181 | return false; |
| 182 | |
| 183 | // There is a special case when one of the uses is COPY(z:FPR, y:GPR). |
| 184 | // In this case, we get COPY(z:FPR, COPY(y:GPR, DUP(x:FPR, i))), which can |
| 185 | // be folded by peephole-opt into just DUP(z:FPR, i), so this transform is |
| 186 | // not worthwhile in that case. |
| 187 | for (auto &Use : MRI.use_nodbg_instructions(Reg: Dst)) { |
| 188 | if (!Use.isCopy()) |
| 189 | continue; |
| 190 | |
| 191 | Register UseOp0 = Use.getOperand(i: 0).getReg(); |
| 192 | Register UseOp1 = Use.getOperand(i: 1).getReg(); |
| 193 | if (UseOp0.isPhysical() || UseOp1.isPhysical()) |
| 194 | return false; |
| 195 | |
| 196 | if (MRI.getRegClassOrNull(Reg: UseOp0) == FPRRegClass && |
| 197 | MRI.getRegClassOrNull(Reg: UseOp1) == GPRRegClass) |
| 198 | return false; |
| 199 | } |
| 200 | |
| 201 | MachineInstr *SrcMI = MRI.getUniqueVRegDef(Reg: Src); |
| 202 | if (!SrcMI || SrcMI->getOpcode() != DUP || !MRI.hasOneNonDBGUse(RegNo: Src)) |
| 203 | return false; |
| 204 | |
| 205 | Register DupSrc = SrcMI->getOperand(i: 1).getReg(); |
| 206 | int64_t DupImm = SrcMI->getOperand(i: 2).getImm(); |
| 207 | |
| 208 | BuildMI(BB&: *MI.getParent(), I&: MI, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: UMOV), DestReg: Dst) |
| 209 | .addReg(RegNo: DupSrc) |
| 210 | .addImm(Val: DupImm); |
| 211 | SrcMI->eraseFromParent(); |
| 212 | MI.eraseFromParent(); |
| 213 | return true; |
| 214 | }; |
| 215 | |
| 216 | return TryMatchDUP(&AArch64::GPR32RegClass, &AArch64::FPR32RegClass, |
| 217 | AArch64::DUPi32, AArch64::UMOVvi32) || |
| 218 | TryMatchDUP(&AArch64::GPR64RegClass, &AArch64::FPR64RegClass, |
| 219 | AArch64::DUPi64, AArch64::UMOVvi64); |
| 220 | } |
| 221 | |
| 222 | bool AArch64PostSelectOptimize::optimizeNZCVDefs(MachineBasicBlock &MBB) { |
| 223 | // If we find a dead NZCV implicit-def, we |
| 224 | // - try to convert the operation to a non-flag-setting equivalent |
| 225 | // - or mark the def as dead to aid later peephole optimizations. |
| 226 | |
| 227 | // Use cases: |
| 228 | // 1) |
| 229 | // Consider the following code: |
| 230 | // FCMPSrr %0, %1, implicit-def $nzcv |
| 231 | // %sel1:gpr32 = CSELWr %_, %_, 12, implicit $nzcv |
| 232 | // %sub:gpr32 = SUBSWrr %_, %_, implicit-def $nzcv |
| 233 | // FCMPSrr %0, %1, implicit-def $nzcv |
| 234 | // %sel2:gpr32 = CSELWr %_, %_, 12, implicit $nzcv |
| 235 | // This kind of code where we have 2 FCMPs each feeding a CSEL can happen |
| 236 | // when we have a single IR fcmp being used by two selects. During selection, |
| 237 | // to ensure that there can be no clobbering of nzcv between the fcmp and the |
| 238 | // csel, we have to generate an fcmp immediately before each csel is |
| 239 | // selected. |
| 240 | // However, often we can essentially CSE these together later in MachineCSE. |
| 241 | // This doesn't work though if there are unrelated flag-setting instructions |
| 242 | // in between the two FCMPs. In this case, the SUBS defines NZCV |
| 243 | // but it doesn't have any users, being overwritten by the second FCMP. |
| 244 | // |
| 245 | // 2) |
| 246 | // The instruction selector always emits the flag-setting variant of ADC/SBC |
| 247 | // while selecting G_UADDE/G_SADDE/G_USUBE/G_SSUBE. If the carry-out of these |
| 248 | // instructions is never used, we can switch to the non-flag-setting variant. |
| 249 | |
| 250 | bool Changed = false; |
| 251 | auto &MF = *MBB.getParent(); |
| 252 | auto &Subtarget = MF.getSubtarget(); |
| 253 | const auto &TII = Subtarget.getInstrInfo(); |
| 254 | auto TRI = Subtarget.getRegisterInfo(); |
| 255 | auto RBI = Subtarget.getRegBankInfo(); |
| 256 | auto &MRI = MF.getRegInfo(); |
| 257 | |
| 258 | LiveRegUnits LRU(*MBB.getParent()->getSubtarget().getRegisterInfo()); |
| 259 | LRU.addLiveOuts(MBB); |
| 260 | |
| 261 | for (auto &II : instructionsWithoutDebug(It: MBB.rbegin(), End: MBB.rend())) { |
| 262 | bool NZCVDead = LRU.available(Reg: AArch64::NZCV); |
| 263 | if (NZCVDead && II.definesRegister(Reg: AArch64::NZCV, /*TRI=*/nullptr)) { |
| 264 | // The instruction defines NZCV, but NZCV is dead. |
| 265 | unsigned NewOpc = getNonFlagSettingVariant(Opc: II.getOpcode()); |
| 266 | int DeadNZCVIdx = |
| 267 | II.findRegisterDefOperandIdx(Reg: AArch64::NZCV, /*TRI=*/nullptr); |
| 268 | if (DeadNZCVIdx != -1) { |
| 269 | if (NewOpc) { |
| 270 | // If there is an equivalent non-flag-setting op, we convert. |
| 271 | LLVM_DEBUG(dbgs() << "Post-select optimizer: converting flag-setting " |
| 272 | "op: " |
| 273 | << II); |
| 274 | II.setDesc(TII->get(Opcode: NewOpc)); |
| 275 | II.removeOperand(OpNo: DeadNZCVIdx); |
| 276 | // Changing the opcode can result in differing regclass requirements, |
| 277 | // e.g. SUBSWri uses gpr32 for the dest, whereas SUBWri uses gpr32sp. |
| 278 | // Constrain the regclasses, possibly introducing a copy. |
| 279 | constrainOperandRegClass(MF, TRI: *TRI, MRI, TII: *TII, RBI: *RBI, InsertPt&: II, II: II.getDesc(), |
| 280 | RegMO&: II.getOperand(i: 0), OpIdx: 0); |
| 281 | Changed |= true; |
| 282 | } else { |
| 283 | // Otherwise, we just set the nzcv imp-def operand to be dead, so the |
| 284 | // peephole optimizations can optimize them further. |
| 285 | II.getOperand(i: DeadNZCVIdx).setIsDead(); |
| 286 | } |
| 287 | } |
| 288 | } |
| 289 | LRU.stepBackward(MI: II); |
| 290 | } |
| 291 | return Changed; |
| 292 | } |
| 293 | |
| 294 | bool AArch64PostSelectOptimize::runOnMachineFunction(MachineFunction &MF) { |
| 295 | if (MF.getProperties().hasFailedISel()) |
| 296 | return false; |
| 297 | assert(MF.getProperties().hasSelected() && "Expected a selected MF" ); |
| 298 | |
| 299 | bool Changed = false; |
| 300 | for (auto &BB : MF) { |
| 301 | Changed |= optimizeNZCVDefs(MBB&: BB); |
| 302 | Changed |= doPeepholeOpts(MBB&: BB); |
| 303 | } |
| 304 | return Changed; |
| 305 | } |
| 306 | |
| 307 | char AArch64PostSelectOptimize::ID = 0; |
| 308 | INITIALIZE_PASS_BEGIN(AArch64PostSelectOptimize, DEBUG_TYPE, |
| 309 | "Optimize AArch64 selected instructions" , |
| 310 | false, false) |
| 311 | INITIALIZE_PASS_END(AArch64PostSelectOptimize, DEBUG_TYPE, |
| 312 | "Optimize AArch64 selected instructions" , false, |
| 313 | false) |
| 314 | |
| 315 | namespace llvm { |
| 316 | FunctionPass *createAArch64PostSelectOptimize() { |
| 317 | return new AArch64PostSelectOptimize(); |
| 318 | } |
| 319 | } // end namespace llvm |
| 320 | |