1 | //===-- R600EmitClauseMarkers.cpp - Emit CF_ALU ---------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | /// \file |
10 | /// Add CF_ALU. R600 Alu instructions are grouped in clause which can hold |
11 | /// 128 Alu instructions ; these instructions can access up to 4 prefetched |
12 | /// 4 lines of 16 registers from constant buffers. Such ALU clauses are |
13 | /// initiated by CF_ALU instructions. |
14 | //===----------------------------------------------------------------------===// |
15 | |
16 | #include "MCTargetDesc/R600MCTargetDesc.h" |
17 | #include "R600.h" |
18 | #include "R600Defines.h" |
19 | #include "R600Subtarget.h" |
20 | #include "llvm/CodeGen/MachineFunctionPass.h" |
21 | |
22 | using namespace llvm; |
23 | |
24 | namespace { |
25 | |
26 | class R600EmitClauseMarkers : public MachineFunctionPass { |
27 | private: |
28 | const R600InstrInfo *TII = nullptr; |
29 | int Address = 0; |
30 | |
31 | unsigned OccupiedDwords(MachineInstr &MI) const { |
32 | switch (MI.getOpcode()) { |
33 | case R600::INTERP_PAIR_XY: |
34 | case R600::INTERP_PAIR_ZW: |
35 | case R600::INTERP_VEC_LOAD: |
36 | case R600::DOT_4: |
37 | return 4; |
38 | case R600::KILL: |
39 | return 0; |
40 | default: |
41 | break; |
42 | } |
43 | |
44 | // These will be expanded to two ALU instructions in the |
45 | // ExpandSpecialInstructions pass. |
46 | if (TII->isLDSRetInstr(Opcode: MI.getOpcode())) |
47 | return 2; |
48 | |
49 | if (TII->isVector(MI) || TII->isCubeOp(opcode: MI.getOpcode()) || |
50 | TII->isReductionOp(opcode: MI.getOpcode())) |
51 | return 4; |
52 | |
53 | unsigned NumLiteral = 0; |
54 | for (MachineInstr::mop_iterator It = MI.operands_begin(), |
55 | E = MI.operands_end(); |
56 | It != E; ++It) { |
57 | MachineOperand &MO = *It; |
58 | if (MO.isReg() && MO.getReg() == R600::ALU_LITERAL_X) |
59 | ++NumLiteral; |
60 | } |
61 | return 1 + NumLiteral; |
62 | } |
63 | |
64 | bool isALU(const MachineInstr &MI) const { |
65 | if (TII->isALUInstr(Opcode: MI.getOpcode())) |
66 | return true; |
67 | if (TII->isVector(MI) || TII->isCubeOp(opcode: MI.getOpcode())) |
68 | return true; |
69 | switch (MI.getOpcode()) { |
70 | case R600::PRED_X: |
71 | case R600::INTERP_PAIR_XY: |
72 | case R600::INTERP_PAIR_ZW: |
73 | case R600::INTERP_VEC_LOAD: |
74 | case R600::COPY: |
75 | case R600::DOT_4: |
76 | return true; |
77 | default: |
78 | return false; |
79 | } |
80 | } |
81 | |
82 | bool IsTrivialInst(MachineInstr &MI) const { |
83 | switch (MI.getOpcode()) { |
84 | case R600::KILL: |
85 | case R600::RETURN: |
86 | case R600::IMPLICIT_DEF: |
87 | return true; |
88 | default: |
89 | return false; |
90 | } |
91 | } |
92 | |
93 | std::pair<unsigned, unsigned> getAccessedBankLine(unsigned Sel) const { |
94 | // Sel is (512 + (kc_bank << 12) + ConstIndex) << 2 |
95 | // (See also R600ISelLowering.cpp) |
96 | // ConstIndex value is in [0, 4095]; |
97 | return std::pair<unsigned, unsigned>( |
98 | ((Sel >> 2) - 512) >> 12, // KC_BANK |
99 | // Line Number of ConstIndex |
100 | // A line contains 16 constant registers however KCX bank can lock |
101 | // two line at the same time ; thus we want to get an even line number. |
102 | // Line number can be retrieved with (>>4), using (>>5) <<1 generates |
103 | // an even number. |
104 | ((((Sel >> 2) - 512) & 4095) >> 5) << 1); |
105 | } |
106 | |
107 | bool |
108 | SubstituteKCacheBank(MachineInstr &MI, |
109 | std::vector<std::pair<unsigned, unsigned>> &CachedConsts, |
110 | bool UpdateInstr = true) const { |
111 | std::vector<std::pair<unsigned, unsigned>> UsedKCache; |
112 | |
113 | if (!TII->isALUInstr(Opcode: MI.getOpcode()) && MI.getOpcode() != R600::DOT_4) |
114 | return true; |
115 | |
116 | const SmallVectorImpl<std::pair<MachineOperand *, int64_t>> &Consts = |
117 | TII->getSrcs(MI); |
118 | assert( |
119 | (TII->isALUInstr(MI.getOpcode()) || MI.getOpcode() == R600::DOT_4) && |
120 | "Can't assign Const" ); |
121 | for (auto &[Op, Sel] : Consts) { |
122 | if (Op->getReg() != R600::ALU_CONST) |
123 | continue; |
124 | unsigned Chan = Sel & 3, Index = ((Sel >> 2) - 512) & 31; |
125 | unsigned KCacheIndex = Index * 4 + Chan; |
126 | const std::pair<unsigned, unsigned> &BankLine = getAccessedBankLine(Sel); |
127 | if (CachedConsts.empty()) { |
128 | CachedConsts.push_back(x: BankLine); |
129 | UsedKCache.emplace_back(args: 0, args&: KCacheIndex); |
130 | continue; |
131 | } |
132 | if (CachedConsts[0] == BankLine) { |
133 | UsedKCache.emplace_back(args: 0, args&: KCacheIndex); |
134 | continue; |
135 | } |
136 | if (CachedConsts.size() == 1) { |
137 | CachedConsts.push_back(x: BankLine); |
138 | UsedKCache.emplace_back(args: 1, args&: KCacheIndex); |
139 | continue; |
140 | } |
141 | if (CachedConsts[1] == BankLine) { |
142 | UsedKCache.emplace_back(args: 1, args&: KCacheIndex); |
143 | continue; |
144 | } |
145 | return false; |
146 | } |
147 | |
148 | if (!UpdateInstr) |
149 | return true; |
150 | |
151 | unsigned j = 0; |
152 | for (auto &[Op, Sel] : Consts) { |
153 | if (Op->getReg() != R600::ALU_CONST) |
154 | continue; |
155 | switch (UsedKCache[j].first) { |
156 | case 0: |
157 | Op->setReg(R600::R600_KC0RegClass.getRegister(i: UsedKCache[j].second)); |
158 | break; |
159 | case 1: |
160 | Op->setReg(R600::R600_KC1RegClass.getRegister(i: UsedKCache[j].second)); |
161 | break; |
162 | default: |
163 | llvm_unreachable("Wrong Cache Line" ); |
164 | } |
165 | j++; |
166 | } |
167 | return true; |
168 | } |
169 | |
170 | bool canClauseLocalKillFitInClause( |
171 | unsigned AluInstCount, |
172 | std::vector<std::pair<unsigned, unsigned>> KCacheBanks, |
173 | MachineBasicBlock::iterator Def, |
174 | MachineBasicBlock::iterator BBEnd) { |
175 | const R600RegisterInfo &TRI = TII->getRegisterInfo(); |
176 | //TODO: change this to defs? |
177 | for (MachineOperand &MO : Def->all_defs()) { |
178 | if (TRI.isPhysRegLiveAcrossClauses(Reg: MO.getReg())) |
179 | continue; |
180 | |
181 | // Def defines a clause local register, so check that its use will fit |
182 | // in the clause. |
183 | unsigned LastUseCount = 0; |
184 | for (MachineBasicBlock::iterator UseI = Def; UseI != BBEnd; ++UseI) { |
185 | AluInstCount += OccupiedDwords(MI&: *UseI); |
186 | // Make sure we won't need to end the clause due to KCache limitations. |
187 | if (!SubstituteKCacheBank(MI&: *UseI, CachedConsts&: KCacheBanks, UpdateInstr: false)) |
188 | return false; |
189 | |
190 | // We have reached the maximum instruction limit before finding the |
191 | // use that kills this register, so we cannot use this def in the |
192 | // current clause. |
193 | if (AluInstCount >= TII->getMaxAlusPerClause()) |
194 | return false; |
195 | |
196 | // TODO: Is this true? kill flag appears to work OK below |
197 | // Register kill flags have been cleared by the time we get to this |
198 | // pass, but it is safe to assume that all uses of this register |
199 | // occur in the same basic block as its definition, because |
200 | // it is illegal for the scheduler to schedule them in |
201 | // different blocks. |
202 | if (UseI->readsRegister(Reg: MO.getReg(), TRI: &TRI)) |
203 | LastUseCount = AluInstCount; |
204 | |
205 | // Exit early if the current use kills the register |
206 | if (UseI != Def && UseI->killsRegister(Reg: MO.getReg(), TRI: &TRI)) |
207 | break; |
208 | } |
209 | if (LastUseCount) |
210 | return LastUseCount <= TII->getMaxAlusPerClause(); |
211 | llvm_unreachable("Clause local register live at end of clause." ); |
212 | } |
213 | return true; |
214 | } |
215 | |
216 | MachineBasicBlock::iterator |
217 | MakeALUClause(MachineBasicBlock &MBB, MachineBasicBlock::iterator I) { |
218 | MachineBasicBlock::iterator ClauseHead = I; |
219 | std::vector<std::pair<unsigned, unsigned>> KCacheBanks; |
220 | bool PushBeforeModifier = false; |
221 | unsigned AluInstCount = 0; |
222 | for (MachineBasicBlock::iterator E = MBB.end(); I != E; ++I) { |
223 | if (IsTrivialInst(MI&: *I)) |
224 | continue; |
225 | if (!isALU(MI: *I)) |
226 | break; |
227 | if (AluInstCount > TII->getMaxAlusPerClause()) |
228 | break; |
229 | if (I->getOpcode() == R600::PRED_X) { |
230 | // We put PRED_X in its own clause to ensure that ifcvt won't create |
231 | // clauses with more than 128 insts. |
232 | // IfCvt is indeed checking that "then" and "else" branches of an if |
233 | // statement have less than ~60 insts thus converted clauses can't be |
234 | // bigger than ~121 insts (predicate setter needs to be in the same |
235 | // clause as predicated alus). |
236 | if (AluInstCount > 0) |
237 | break; |
238 | if (TII->getFlagOp(MI&: *I).getImm() & MO_FLAG_PUSH) |
239 | PushBeforeModifier = true; |
240 | AluInstCount ++; |
241 | continue; |
242 | } |
243 | // XXX: GROUP_BARRIER instructions cannot be in the same ALU clause as: |
244 | // |
245 | // * KILL or INTERP instructions |
246 | // * Any instruction that sets UPDATE_EXEC_MASK or UPDATE_PRED bits |
247 | // * Uses waterfalling (i.e. INDEX_MODE = AR.X) |
248 | // |
249 | // XXX: These checks have not been implemented yet. |
250 | if (TII->mustBeLastInClause(Opcode: I->getOpcode())) { |
251 | I++; |
252 | break; |
253 | } |
254 | |
255 | // If this instruction defines a clause local register, make sure |
256 | // its use can fit in this clause. |
257 | if (!canClauseLocalKillFitInClause(AluInstCount, KCacheBanks, Def: I, BBEnd: E)) |
258 | break; |
259 | |
260 | if (!SubstituteKCacheBank(MI&: *I, CachedConsts&: KCacheBanks)) |
261 | break; |
262 | AluInstCount += OccupiedDwords(MI&: *I); |
263 | } |
264 | unsigned Opcode = PushBeforeModifier ? |
265 | R600::CF_ALU_PUSH_BEFORE : R600::CF_ALU; |
266 | BuildMI(BB&: MBB, I: ClauseHead, MIMD: MBB.findDebugLoc(MBBI: ClauseHead), MCID: TII->get(Opcode)) |
267 | // We don't use the ADDR field until R600ControlFlowFinalizer pass, where |
268 | // it is safe to assume it is 0. However if we always put 0 here, the ifcvt |
269 | // pass may assume that identical ALU clause starter at the beginning of a |
270 | // true and false branch can be factorized which is not the case. |
271 | .addImm(Val: Address++) // ADDR |
272 | .addImm(Val: KCacheBanks.empty()?0:KCacheBanks[0].first) // KB0 |
273 | .addImm(Val: (KCacheBanks.size() < 2)?0:KCacheBanks[1].first) // KB1 |
274 | .addImm(Val: KCacheBanks.empty()?0:2) // KM0 |
275 | .addImm(Val: (KCacheBanks.size() < 2)?0:2) // KM1 |
276 | .addImm(Val: KCacheBanks.empty()?0:KCacheBanks[0].second) // KLINE0 |
277 | .addImm(Val: (KCacheBanks.size() < 2)?0:KCacheBanks[1].second) // KLINE1 |
278 | .addImm(Val: AluInstCount) // COUNT |
279 | .addImm(Val: 1); // Enabled |
280 | return I; |
281 | } |
282 | |
283 | public: |
284 | static char ID; |
285 | |
286 | R600EmitClauseMarkers() : MachineFunctionPass(ID) {} |
287 | |
288 | bool runOnMachineFunction(MachineFunction &MF) override { |
289 | const R600Subtarget &ST = MF.getSubtarget<R600Subtarget>(); |
290 | TII = ST.getInstrInfo(); |
291 | |
292 | for (MachineBasicBlock &MBB : MF) { |
293 | MachineBasicBlock::iterator I = MBB.begin(); |
294 | if (I != MBB.end() && I->getOpcode() == R600::CF_ALU) |
295 | continue; // BB was already parsed |
296 | for (MachineBasicBlock::iterator E = MBB.end(); I != E;) { |
297 | if (isALU(MI: *I)) { |
298 | auto next = MakeALUClause(MBB, I); |
299 | assert(next != I); |
300 | I = next; |
301 | } else |
302 | ++I; |
303 | } |
304 | } |
305 | return false; |
306 | } |
307 | |
308 | StringRef getPassName() const override { |
309 | return "R600 Emit Clause Markers Pass" ; |
310 | } |
311 | }; |
312 | |
313 | char R600EmitClauseMarkers::ID = 0; |
314 | |
315 | } // end anonymous namespace |
316 | |
317 | INITIALIZE_PASS_BEGIN(R600EmitClauseMarkers, "emitclausemarkers" , |
318 | "R600 Emit Clause Markers" , false, false) |
319 | INITIALIZE_PASS_END(R600EmitClauseMarkers, "emitclausemarkers" , |
320 | "R600 Emit Clause Markers" , false, false) |
321 | |
322 | FunctionPass *llvm::createR600EmitClauseMarkers() { |
323 | return new R600EmitClauseMarkers(); |
324 | } |
325 | |