1 | //===----- R600Packetizer.cpp - VLIW packetizer ---------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | /// \file |
10 | /// This pass implements instructions packetization for R600. It unsets isLast |
11 | /// bit of instructions inside a bundle and substitutes src register with |
12 | /// PreviousVector when applicable. |
13 | // |
14 | //===----------------------------------------------------------------------===// |
15 | |
16 | #include "MCTargetDesc/R600MCTargetDesc.h" |
17 | #include "R600.h" |
18 | #include "R600Subtarget.h" |
19 | #include "llvm/CodeGen/DFAPacketizer.h" |
20 | #include "llvm/CodeGen/MachineDominators.h" |
21 | #include "llvm/CodeGen/MachineLoopInfo.h" |
22 | #include "llvm/CodeGen/ScheduleDAG.h" |
23 | |
24 | using namespace llvm; |
25 | |
26 | #define DEBUG_TYPE "packets" |
27 | |
28 | namespace { |
29 | |
30 | class R600Packetizer : public MachineFunctionPass { |
31 | |
32 | public: |
33 | static char ID; |
34 | R600Packetizer() : MachineFunctionPass(ID) {} |
35 | |
36 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
37 | AU.setPreservesCFG(); |
38 | AU.addRequired<MachineDominatorTreeWrapperPass>(); |
39 | AU.addPreserved<MachineDominatorTreeWrapperPass>(); |
40 | AU.addRequired<MachineLoopInfoWrapperPass>(); |
41 | AU.addPreserved<MachineLoopInfoWrapperPass>(); |
42 | MachineFunctionPass::getAnalysisUsage(AU); |
43 | } |
44 | |
45 | StringRef getPassName() const override { return "R600 Packetizer" ; } |
46 | |
47 | bool runOnMachineFunction(MachineFunction &Fn) override; |
48 | }; |
49 | |
50 | class R600PacketizerList : public VLIWPacketizerList { |
51 | private: |
52 | const R600InstrInfo *TII; |
53 | const R600RegisterInfo &TRI; |
54 | bool VLIW5; |
55 | bool ConsideredInstUsesAlreadyWrittenVectorElement; |
56 | |
57 | unsigned getSlot(const MachineInstr &MI) const { |
58 | return TRI.getHWRegChan(reg: MI.getOperand(i: 0).getReg()); |
59 | } |
60 | |
61 | /// \returns register to PV chan mapping for bundle/single instructions that |
62 | /// immediately precedes I. |
63 | DenseMap<unsigned, unsigned> getPreviousVector(MachineBasicBlock::iterator I) |
64 | const { |
65 | DenseMap<unsigned, unsigned> Result; |
66 | I--; |
67 | if (!TII->isALUInstr(Opcode: I->getOpcode()) && !I->isBundle()) |
68 | return Result; |
69 | MachineBasicBlock::instr_iterator BI = I.getInstrIterator(); |
70 | if (I->isBundle()) |
71 | BI++; |
72 | int LastDstChan = -1; |
73 | do { |
74 | bool isTrans = false; |
75 | int BISlot = getSlot(MI: *BI); |
76 | if (LastDstChan >= BISlot) |
77 | isTrans = true; |
78 | LastDstChan = BISlot; |
79 | if (TII->isPredicated(MI: *BI)) |
80 | continue; |
81 | int OperandIdx = TII->getOperandIdx(Opcode: BI->getOpcode(), Op: R600::OpName::write); |
82 | if (OperandIdx > -1 && BI->getOperand(i: OperandIdx).getImm() == 0) |
83 | continue; |
84 | int DstIdx = TII->getOperandIdx(Opcode: BI->getOpcode(), Op: R600::OpName::dst); |
85 | if (DstIdx == -1) { |
86 | continue; |
87 | } |
88 | Register Dst = BI->getOperand(i: DstIdx).getReg(); |
89 | if (isTrans || TII->isTransOnly(MI: *BI)) { |
90 | Result[Dst] = R600::PS; |
91 | continue; |
92 | } |
93 | if (BI->getOpcode() == R600::DOT4_r600 || |
94 | BI->getOpcode() == R600::DOT4_eg) { |
95 | Result[Dst] = R600::PV_X; |
96 | continue; |
97 | } |
98 | if (Dst == R600::OQAP) { |
99 | continue; |
100 | } |
101 | unsigned PVReg = 0; |
102 | switch (TRI.getHWRegChan(reg: Dst)) { |
103 | case 0: |
104 | PVReg = R600::PV_X; |
105 | break; |
106 | case 1: |
107 | PVReg = R600::PV_Y; |
108 | break; |
109 | case 2: |
110 | PVReg = R600::PV_Z; |
111 | break; |
112 | case 3: |
113 | PVReg = R600::PV_W; |
114 | break; |
115 | default: |
116 | llvm_unreachable("Invalid Chan" ); |
117 | } |
118 | Result[Dst] = PVReg; |
119 | } while ((++BI)->isBundledWithPred()); |
120 | return Result; |
121 | } |
122 | |
123 | void substitutePV(MachineInstr &MI, const DenseMap<unsigned, unsigned> &PVs) |
124 | const { |
125 | const R600::OpName Ops[] = {R600::OpName::src0, R600::OpName::src1, |
126 | R600::OpName::src2}; |
127 | for (R600::OpName Op : Ops) { |
128 | int OperandIdx = TII->getOperandIdx(Opcode: MI.getOpcode(), Op); |
129 | if (OperandIdx < 0) |
130 | continue; |
131 | Register Src = MI.getOperand(i: OperandIdx).getReg(); |
132 | const DenseMap<unsigned, unsigned>::const_iterator It = PVs.find(Val: Src); |
133 | if (It != PVs.end()) |
134 | MI.getOperand(i: OperandIdx).setReg(It->second); |
135 | } |
136 | } |
137 | public: |
138 | // Ctor. |
139 | R600PacketizerList(MachineFunction &MF, const R600Subtarget &ST, |
140 | MachineLoopInfo &MLI) |
141 | : VLIWPacketizerList(MF, MLI, nullptr), |
142 | TII(ST.getInstrInfo()), |
143 | TRI(TII->getRegisterInfo()) { |
144 | VLIW5 = !ST.hasCaymanISA(); |
145 | } |
146 | |
147 | // initPacketizerState - initialize some internal flags. |
148 | void initPacketizerState() override { |
149 | ConsideredInstUsesAlreadyWrittenVectorElement = false; |
150 | } |
151 | |
152 | // ignorePseudoInstruction - Ignore bundling of pseudo instructions. |
153 | bool ignorePseudoInstruction(const MachineInstr &MI, |
154 | const MachineBasicBlock *MBB) override { |
155 | return false; |
156 | } |
157 | |
158 | // isSoloInstruction - return true if instruction MI can not be packetized |
159 | // with any other instruction, which means that MI itself is a packet. |
160 | bool isSoloInstruction(const MachineInstr &MI) override { |
161 | if (TII->isVector(MI)) |
162 | return true; |
163 | if (!TII->isALUInstr(Opcode: MI.getOpcode())) |
164 | return true; |
165 | if (MI.getOpcode() == R600::GROUP_BARRIER) |
166 | return true; |
167 | // XXX: This can be removed once the packetizer properly handles all the |
168 | // LDS instruction group restrictions. |
169 | return TII->isLDSInstr(Opcode: MI.getOpcode()); |
170 | } |
171 | |
172 | // isLegalToPacketizeTogether - Is it legal to packetize SUI and SUJ |
173 | // together. |
174 | bool isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) override { |
175 | MachineInstr *MII = SUI->getInstr(), *MIJ = SUJ->getInstr(); |
176 | if (getSlot(MI: *MII) == getSlot(MI: *MIJ)) |
177 | ConsideredInstUsesAlreadyWrittenVectorElement = true; |
178 | // Does MII and MIJ share the same pred_sel ? |
179 | int OpI = TII->getOperandIdx(Opcode: MII->getOpcode(), Op: R600::OpName::pred_sel), |
180 | OpJ = TII->getOperandIdx(Opcode: MIJ->getOpcode(), Op: R600::OpName::pred_sel); |
181 | Register PredI = (OpI > -1)?MII->getOperand(i: OpI).getReg() : Register(), |
182 | PredJ = (OpJ > -1)?MIJ->getOperand(i: OpJ).getReg() : Register(); |
183 | if (PredI != PredJ) |
184 | return false; |
185 | if (SUJ->isSucc(N: SUI)) { |
186 | for (const SDep &Dep : SUJ->Succs) { |
187 | if (Dep.getSUnit() != SUI) |
188 | continue; |
189 | if (Dep.getKind() == SDep::Anti) |
190 | continue; |
191 | if (Dep.getKind() == SDep::Output) |
192 | if (MII->getOperand(i: 0).getReg() != MIJ->getOperand(i: 0).getReg()) |
193 | continue; |
194 | return false; |
195 | } |
196 | } |
197 | |
198 | bool ARDef = |
199 | TII->definesAddressRegister(MI&: *MII) || TII->definesAddressRegister(MI&: *MIJ); |
200 | bool ARUse = |
201 | TII->usesAddressRegister(MI&: *MII) || TII->usesAddressRegister(MI&: *MIJ); |
202 | |
203 | return !ARDef || !ARUse; |
204 | } |
205 | |
206 | // isLegalToPruneDependencies - Is it legal to prune dependency between SUI |
207 | // and SUJ. |
208 | bool isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) override { |
209 | return false; |
210 | } |
211 | |
212 | void setIsLastBit(MachineInstr *MI, unsigned Bit) const { |
213 | unsigned LastOp = TII->getOperandIdx(Opcode: MI->getOpcode(), Op: R600::OpName::last); |
214 | MI->getOperand(i: LastOp).setImm(Bit); |
215 | } |
216 | |
217 | bool isBundlableWithCurrentPMI(MachineInstr &MI, |
218 | const DenseMap<unsigned, unsigned> &PV, |
219 | std::vector<R600InstrInfo::BankSwizzle> &BS, |
220 | bool &isTransSlot) { |
221 | isTransSlot = TII->isTransOnly(MI); |
222 | assert (!isTransSlot || VLIW5); |
223 | |
224 | // Is the dst reg sequence legal ? |
225 | if (!isTransSlot && !CurrentPacketMIs.empty()) { |
226 | if (getSlot(MI) <= getSlot(MI: *CurrentPacketMIs.back())) { |
227 | if (ConsideredInstUsesAlreadyWrittenVectorElement && |
228 | !TII->isVectorOnly(MI) && VLIW5) { |
229 | isTransSlot = true; |
230 | LLVM_DEBUG({ |
231 | dbgs() << "Considering as Trans Inst :" ; |
232 | MI.dump(); |
233 | }); |
234 | } |
235 | else |
236 | return false; |
237 | } |
238 | } |
239 | |
240 | // Are the Constants limitations met ? |
241 | CurrentPacketMIs.push_back(x: &MI); |
242 | if (!TII->fitsConstReadLimitations(CurrentPacketMIs)) { |
243 | LLVM_DEBUG({ |
244 | dbgs() << "Couldn't pack :\n" ; |
245 | MI.dump(); |
246 | dbgs() << "with the following packets :\n" ; |
247 | for (unsigned i = 0, e = CurrentPacketMIs.size() - 1; i < e; i++) { |
248 | CurrentPacketMIs[i]->dump(); |
249 | dbgs() << "\n" ; |
250 | } |
251 | dbgs() << "because of Consts read limitations\n" ; |
252 | }); |
253 | CurrentPacketMIs.pop_back(); |
254 | return false; |
255 | } |
256 | |
257 | // Is there a BankSwizzle set that meet Read Port limitations ? |
258 | if (!TII->fitsReadPortLimitations(MIs: CurrentPacketMIs, |
259 | PV, BS, isLastAluTrans: isTransSlot)) { |
260 | LLVM_DEBUG({ |
261 | dbgs() << "Couldn't pack :\n" ; |
262 | MI.dump(); |
263 | dbgs() << "with the following packets :\n" ; |
264 | for (unsigned i = 0, e = CurrentPacketMIs.size() - 1; i < e; i++) { |
265 | CurrentPacketMIs[i]->dump(); |
266 | dbgs() << "\n" ; |
267 | } |
268 | dbgs() << "because of Read port limitations\n" ; |
269 | }); |
270 | CurrentPacketMIs.pop_back(); |
271 | return false; |
272 | } |
273 | |
274 | // We cannot read LDS source registers from the Trans slot. |
275 | if (isTransSlot && TII->readsLDSSrcReg(MI)) |
276 | return false; |
277 | |
278 | CurrentPacketMIs.pop_back(); |
279 | return true; |
280 | } |
281 | |
282 | MachineBasicBlock::iterator addToPacket(MachineInstr &MI) override { |
283 | MachineBasicBlock::iterator FirstInBundle = |
284 | CurrentPacketMIs.empty() ? &MI : CurrentPacketMIs.front(); |
285 | const DenseMap<unsigned, unsigned> &PV = |
286 | getPreviousVector(I: FirstInBundle); |
287 | std::vector<R600InstrInfo::BankSwizzle> BS; |
288 | bool isTransSlot; |
289 | |
290 | if (isBundlableWithCurrentPMI(MI, PV, BS, isTransSlot)) { |
291 | for (unsigned i = 0, e = CurrentPacketMIs.size(); i < e; i++) { |
292 | MachineInstr *MI = CurrentPacketMIs[i]; |
293 | unsigned Op = TII->getOperandIdx(Opcode: MI->getOpcode(), |
294 | Op: R600::OpName::bank_swizzle); |
295 | MI->getOperand(i: Op).setImm(BS[i]); |
296 | } |
297 | unsigned Op = |
298 | TII->getOperandIdx(Opcode: MI.getOpcode(), Op: R600::OpName::bank_swizzle); |
299 | MI.getOperand(i: Op).setImm(BS.back()); |
300 | if (!CurrentPacketMIs.empty()) |
301 | setIsLastBit(MI: CurrentPacketMIs.back(), Bit: 0); |
302 | substitutePV(MI, PVs: PV); |
303 | MachineBasicBlock::iterator It = VLIWPacketizerList::addToPacket(MI); |
304 | if (isTransSlot) { |
305 | endPacket(MBB: std::next(x: It)->getParent(), MI: std::next(x: It)); |
306 | } |
307 | return It; |
308 | } |
309 | endPacket(MBB: MI.getParent(), MI); |
310 | if (TII->isTransOnly(MI)) |
311 | return MI; |
312 | return VLIWPacketizerList::addToPacket(MI); |
313 | } |
314 | }; |
315 | |
316 | bool R600Packetizer::runOnMachineFunction(MachineFunction &Fn) { |
317 | const R600Subtarget &ST = Fn.getSubtarget<R600Subtarget>(); |
318 | const R600InstrInfo *TII = ST.getInstrInfo(); |
319 | |
320 | MachineLoopInfo &MLI = getAnalysis<MachineLoopInfoWrapperPass>().getLI(); |
321 | |
322 | // Instantiate the packetizer. |
323 | R600PacketizerList Packetizer(Fn, ST, MLI); |
324 | |
325 | // DFA state table should not be empty. |
326 | assert(Packetizer.getResourceTracker() && "Empty DFA table!" ); |
327 | assert(Packetizer.getResourceTracker()->getInstrItins()); |
328 | |
329 | if (Packetizer.getResourceTracker()->getInstrItins()->isEmpty()) |
330 | return false; |
331 | |
332 | // |
333 | // Loop over all basic blocks and remove KILL pseudo-instructions |
334 | // These instructions confuse the dependence analysis. Consider: |
335 | // D0 = ... (Insn 0) |
336 | // R0 = KILL R0, D0 (Insn 1) |
337 | // R0 = ... (Insn 2) |
338 | // Here, Insn 1 will result in the dependence graph not emitting an output |
339 | // dependence between Insn 0 and Insn 2. This can lead to incorrect |
340 | // packetization |
341 | // |
342 | for (MachineBasicBlock &MBB : Fn) { |
343 | for (MachineInstr &MI : llvm::make_early_inc_range(Range&: MBB)) { |
344 | if (MI.isKill() || MI.getOpcode() == R600::IMPLICIT_DEF || |
345 | (MI.getOpcode() == R600::CF_ALU && !MI.getOperand(i: 8).getImm())) |
346 | MBB.erase(I: MI); |
347 | } |
348 | } |
349 | |
350 | // Loop over all of the basic blocks. |
351 | for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end(); |
352 | MBB != MBBe; ++MBB) { |
353 | // Find scheduling regions and schedule / packetize each region. |
354 | unsigned RemainingCount = MBB->size(); |
355 | for(MachineBasicBlock::iterator RegionEnd = MBB->end(); |
356 | RegionEnd != MBB->begin();) { |
357 | // The next region starts above the previous region. Look backward in the |
358 | // instruction stream until we find the nearest boundary. |
359 | MachineBasicBlock::iterator I = RegionEnd; |
360 | for(;I != MBB->begin(); --I, --RemainingCount) { |
361 | if (TII->isSchedulingBoundary(MI: *std::prev(x: I), MBB: &*MBB, MF: Fn)) |
362 | break; |
363 | } |
364 | I = MBB->begin(); |
365 | |
366 | // Skip empty scheduling regions. |
367 | if (I == RegionEnd) { |
368 | RegionEnd = std::prev(x: RegionEnd); |
369 | --RemainingCount; |
370 | continue; |
371 | } |
372 | // Skip regions with one instruction. |
373 | if (I == std::prev(x: RegionEnd)) { |
374 | RegionEnd = std::prev(x: RegionEnd); |
375 | continue; |
376 | } |
377 | |
378 | Packetizer.PacketizeMIs(MBB: &*MBB, BeginItr: &*I, EndItr: RegionEnd); |
379 | RegionEnd = I; |
380 | } |
381 | } |
382 | |
383 | return true; |
384 | |
385 | } |
386 | |
387 | } // end anonymous namespace |
388 | |
389 | INITIALIZE_PASS_BEGIN(R600Packetizer, DEBUG_TYPE, |
390 | "R600 Packetizer" , false, false) |
391 | INITIALIZE_PASS_END(R600Packetizer, DEBUG_TYPE, |
392 | "R600 Packetizer" , false, false) |
393 | |
394 | char R600Packetizer::ID = 0; |
395 | |
396 | char &llvm::R600PacketizerID = R600Packetizer::ID; |
397 | |
398 | llvm::FunctionPass *llvm::createR600Packetizer() { |
399 | return new R600Packetizer(); |
400 | } |
401 | |