| 1 | //===- SIMemoryLegalizer.cpp ----------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | /// \file |
| 10 | /// Memory legalizer - implements memory model. More information can be |
| 11 | /// found here: |
| 12 | /// http://llvm.org/docs/AMDGPUUsage.html#memory-model |
| 13 | // |
| 14 | //===----------------------------------------------------------------------===// |
| 15 | |
| 16 | #include "AMDGPU.h" |
| 17 | #include "AMDGPUMachineModuleInfo.h" |
| 18 | #include "GCNSubtarget.h" |
| 19 | #include "MCTargetDesc/AMDGPUMCTargetDesc.h" |
| 20 | #include "llvm/ADT/BitmaskEnum.h" |
| 21 | #include "llvm/ADT/StringExtras.h" |
| 22 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 23 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 24 | #include "llvm/CodeGen/MachinePassManager.h" |
| 25 | #include "llvm/IR/DiagnosticInfo.h" |
| 26 | #include "llvm/IR/MemoryModelRelaxationAnnotations.h" |
| 27 | #include "llvm/IR/PassManager.h" |
| 28 | #include "llvm/Support/AtomicOrdering.h" |
| 29 | #include "llvm/TargetParser/TargetParser.h" |
| 30 | |
| 31 | using namespace llvm; |
| 32 | using namespace llvm::AMDGPU; |
| 33 | |
| 34 | #define DEBUG_TYPE "si-memory-legalizer" |
| 35 | #define PASS_NAME "SI Memory Legalizer" |
| 36 | |
| 37 | static cl::opt<bool> AmdgcnSkipCacheInvalidations( |
| 38 | "amdgcn-skip-cache-invalidations" , cl::init(Val: false), cl::Hidden, |
| 39 | cl::desc("Use this to skip inserting cache invalidating instructions." )); |
| 40 | |
| 41 | namespace { |
| 42 | |
| 43 | LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE(); |
| 44 | |
| 45 | /// Memory operation flags. Can be ORed together. |
| 46 | enum class SIMemOp { |
| 47 | NONE = 0u, |
| 48 | LOAD = 1u << 0, |
| 49 | STORE = 1u << 1, |
| 50 | LLVM_MARK_AS_BITMASK_ENUM(/* LargestFlag = */ STORE) |
| 51 | }; |
| 52 | |
| 53 | /// Position to insert a new instruction relative to an existing |
| 54 | /// instruction. |
| 55 | enum class Position { |
| 56 | BEFORE, |
| 57 | AFTER |
| 58 | }; |
| 59 | |
| 60 | /// The atomic synchronization scopes supported by the AMDGPU target. |
| 61 | enum class SIAtomicScope { |
| 62 | NONE, |
| 63 | SINGLETHREAD, |
| 64 | WAVEFRONT, |
| 65 | WORKGROUP, |
| 66 | AGENT, |
| 67 | SYSTEM |
| 68 | }; |
| 69 | |
| 70 | /// The distinct address spaces supported by the AMDGPU target for |
| 71 | /// atomic memory operation. Can be ORed together. |
| 72 | enum class SIAtomicAddrSpace { |
| 73 | NONE = 0u, |
| 74 | GLOBAL = 1u << 0, |
| 75 | LDS = 1u << 1, |
| 76 | SCRATCH = 1u << 2, |
| 77 | GDS = 1u << 3, |
| 78 | OTHER = 1u << 4, |
| 79 | |
| 80 | /// The address spaces that can be accessed by a FLAT instruction. |
| 81 | FLAT = GLOBAL | LDS | SCRATCH, |
| 82 | |
| 83 | /// The address spaces that support atomic instructions. |
| 84 | ATOMIC = GLOBAL | LDS | SCRATCH | GDS, |
| 85 | |
| 86 | /// All address spaces. |
| 87 | ALL = GLOBAL | LDS | SCRATCH | GDS | OTHER, |
| 88 | |
| 89 | LLVM_MARK_AS_BITMASK_ENUM(/* LargestFlag = */ ALL) |
| 90 | }; |
| 91 | |
| 92 | class SIMemOpInfo final { |
| 93 | private: |
| 94 | |
| 95 | friend class SIMemOpAccess; |
| 96 | |
| 97 | AtomicOrdering Ordering = AtomicOrdering::NotAtomic; |
| 98 | AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; |
| 99 | SIAtomicScope Scope = SIAtomicScope::SYSTEM; |
| 100 | SIAtomicAddrSpace OrderingAddrSpace = SIAtomicAddrSpace::NONE; |
| 101 | SIAtomicAddrSpace InstrAddrSpace = SIAtomicAddrSpace::NONE; |
| 102 | bool IsCrossAddressSpaceOrdering = false; |
| 103 | bool IsVolatile = false; |
| 104 | bool IsNonTemporal = false; |
| 105 | bool IsLastUse = false; |
| 106 | |
| 107 | SIMemOpInfo( |
| 108 | AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent, |
| 109 | SIAtomicScope Scope = SIAtomicScope::SYSTEM, |
| 110 | SIAtomicAddrSpace OrderingAddrSpace = SIAtomicAddrSpace::ATOMIC, |
| 111 | SIAtomicAddrSpace InstrAddrSpace = SIAtomicAddrSpace::ALL, |
| 112 | bool IsCrossAddressSpaceOrdering = true, |
| 113 | AtomicOrdering FailureOrdering = AtomicOrdering::SequentiallyConsistent, |
| 114 | bool IsVolatile = false, bool IsNonTemporal = false, |
| 115 | bool IsLastUse = false) |
| 116 | : Ordering(Ordering), FailureOrdering(FailureOrdering), Scope(Scope), |
| 117 | OrderingAddrSpace(OrderingAddrSpace), InstrAddrSpace(InstrAddrSpace), |
| 118 | IsCrossAddressSpaceOrdering(IsCrossAddressSpaceOrdering), |
| 119 | IsVolatile(IsVolatile), IsNonTemporal(IsNonTemporal), |
| 120 | IsLastUse(IsLastUse) { |
| 121 | |
| 122 | if (Ordering == AtomicOrdering::NotAtomic) { |
| 123 | assert(Scope == SIAtomicScope::NONE && |
| 124 | OrderingAddrSpace == SIAtomicAddrSpace::NONE && |
| 125 | !IsCrossAddressSpaceOrdering && |
| 126 | FailureOrdering == AtomicOrdering::NotAtomic); |
| 127 | return; |
| 128 | } |
| 129 | |
| 130 | assert(Scope != SIAtomicScope::NONE && |
| 131 | (OrderingAddrSpace & SIAtomicAddrSpace::ATOMIC) != |
| 132 | SIAtomicAddrSpace::NONE && |
| 133 | (InstrAddrSpace & SIAtomicAddrSpace::ATOMIC) != |
| 134 | SIAtomicAddrSpace::NONE); |
| 135 | |
| 136 | // There is also no cross address space ordering if the ordering |
| 137 | // address space is the same as the instruction address space and |
| 138 | // only contains a single address space. |
| 139 | if ((OrderingAddrSpace == InstrAddrSpace) && |
| 140 | isPowerOf2_32(Value: uint32_t(InstrAddrSpace))) |
| 141 | this->IsCrossAddressSpaceOrdering = false; |
| 142 | |
| 143 | // Limit the scope to the maximum supported by the instruction's address |
| 144 | // spaces. |
| 145 | if ((InstrAddrSpace & ~SIAtomicAddrSpace::SCRATCH) == |
| 146 | SIAtomicAddrSpace::NONE) { |
| 147 | this->Scope = std::min(a: Scope, b: SIAtomicScope::SINGLETHREAD); |
| 148 | } else if ((InstrAddrSpace & |
| 149 | ~(SIAtomicAddrSpace::SCRATCH | SIAtomicAddrSpace::LDS)) == |
| 150 | SIAtomicAddrSpace::NONE) { |
| 151 | this->Scope = std::min(a: Scope, b: SIAtomicScope::WORKGROUP); |
| 152 | } else if ((InstrAddrSpace & |
| 153 | ~(SIAtomicAddrSpace::SCRATCH | SIAtomicAddrSpace::LDS | |
| 154 | SIAtomicAddrSpace::GDS)) == SIAtomicAddrSpace::NONE) { |
| 155 | this->Scope = std::min(a: Scope, b: SIAtomicScope::AGENT); |
| 156 | } |
| 157 | } |
| 158 | |
| 159 | public: |
| 160 | /// \returns Atomic synchronization scope of the machine instruction used to |
| 161 | /// create this SIMemOpInfo. |
| 162 | SIAtomicScope getScope() const { |
| 163 | return Scope; |
| 164 | } |
| 165 | |
| 166 | /// \returns Ordering constraint of the machine instruction used to |
| 167 | /// create this SIMemOpInfo. |
| 168 | AtomicOrdering getOrdering() const { |
| 169 | return Ordering; |
| 170 | } |
| 171 | |
| 172 | /// \returns Failure ordering constraint of the machine instruction used to |
| 173 | /// create this SIMemOpInfo. |
| 174 | AtomicOrdering getFailureOrdering() const { |
| 175 | return FailureOrdering; |
| 176 | } |
| 177 | |
| 178 | /// \returns The address spaces be accessed by the machine |
| 179 | /// instruction used to create this SIMemOpInfo. |
| 180 | SIAtomicAddrSpace getInstrAddrSpace() const { |
| 181 | return InstrAddrSpace; |
| 182 | } |
| 183 | |
| 184 | /// \returns The address spaces that must be ordered by the machine |
| 185 | /// instruction used to create this SIMemOpInfo. |
| 186 | SIAtomicAddrSpace getOrderingAddrSpace() const { |
| 187 | return OrderingAddrSpace; |
| 188 | } |
| 189 | |
| 190 | /// \returns Return true iff memory ordering of operations on |
| 191 | /// different address spaces is required. |
| 192 | bool getIsCrossAddressSpaceOrdering() const { |
| 193 | return IsCrossAddressSpaceOrdering; |
| 194 | } |
| 195 | |
| 196 | /// \returns True if memory access of the machine instruction used to |
| 197 | /// create this SIMemOpInfo is volatile, false otherwise. |
| 198 | bool isVolatile() const { |
| 199 | return IsVolatile; |
| 200 | } |
| 201 | |
| 202 | /// \returns True if memory access of the machine instruction used to |
| 203 | /// create this SIMemOpInfo is nontemporal, false otherwise. |
| 204 | bool isNonTemporal() const { |
| 205 | return IsNonTemporal; |
| 206 | } |
| 207 | |
| 208 | /// \returns True if memory access of the machine instruction used to |
| 209 | /// create this SIMemOpInfo is last use, false otherwise. |
| 210 | bool isLastUse() const { return IsLastUse; } |
| 211 | |
| 212 | /// \returns True if ordering constraint of the machine instruction used to |
| 213 | /// create this SIMemOpInfo is unordered or higher, false otherwise. |
| 214 | bool isAtomic() const { |
| 215 | return Ordering != AtomicOrdering::NotAtomic; |
| 216 | } |
| 217 | |
| 218 | }; |
| 219 | |
| 220 | class SIMemOpAccess final { |
| 221 | private: |
| 222 | const AMDGPUMachineModuleInfo *MMI = nullptr; |
| 223 | |
| 224 | /// Reports unsupported message \p Msg for \p MI to LLVM context. |
| 225 | void reportUnsupported(const MachineBasicBlock::iterator &MI, |
| 226 | const char *Msg) const; |
| 227 | |
| 228 | /// Inspects the target synchronization scope \p SSID and determines |
| 229 | /// the SI atomic scope it corresponds to, the address spaces it |
| 230 | /// covers, and whether the memory ordering applies between address |
| 231 | /// spaces. |
| 232 | std::optional<std::tuple<SIAtomicScope, SIAtomicAddrSpace, bool>> |
| 233 | toSIAtomicScope(SyncScope::ID SSID, SIAtomicAddrSpace InstrAddrSpace) const; |
| 234 | |
| 235 | /// \return Return a bit set of the address spaces accessed by \p AS. |
| 236 | SIAtomicAddrSpace toSIAtomicAddrSpace(unsigned AS) const; |
| 237 | |
| 238 | /// \returns Info constructed from \p MI, which has at least machine memory |
| 239 | /// operand. |
| 240 | std::optional<SIMemOpInfo> |
| 241 | constructFromMIWithMMO(const MachineBasicBlock::iterator &MI) const; |
| 242 | |
| 243 | public: |
| 244 | /// Construct class to support accessing the machine memory operands |
| 245 | /// of instructions in the machine function \p MF. |
| 246 | SIMemOpAccess(const AMDGPUMachineModuleInfo &MMI); |
| 247 | |
| 248 | /// \returns Load info if \p MI is a load operation, "std::nullopt" otherwise. |
| 249 | std::optional<SIMemOpInfo> |
| 250 | getLoadInfo(const MachineBasicBlock::iterator &MI) const; |
| 251 | |
| 252 | /// \returns Store info if \p MI is a store operation, "std::nullopt" |
| 253 | /// otherwise. |
| 254 | std::optional<SIMemOpInfo> |
| 255 | getStoreInfo(const MachineBasicBlock::iterator &MI) const; |
| 256 | |
| 257 | /// \returns Atomic fence info if \p MI is an atomic fence operation, |
| 258 | /// "std::nullopt" otherwise. |
| 259 | std::optional<SIMemOpInfo> |
| 260 | getAtomicFenceInfo(const MachineBasicBlock::iterator &MI) const; |
| 261 | |
| 262 | /// \returns Atomic cmpxchg/rmw info if \p MI is an atomic cmpxchg or |
| 263 | /// rmw operation, "std::nullopt" otherwise. |
| 264 | std::optional<SIMemOpInfo> |
| 265 | getAtomicCmpxchgOrRmwInfo(const MachineBasicBlock::iterator &MI) const; |
| 266 | }; |
| 267 | |
| 268 | class SICacheControl { |
| 269 | protected: |
| 270 | |
| 271 | /// AMDGPU subtarget info. |
| 272 | const GCNSubtarget &ST; |
| 273 | |
| 274 | /// Instruction info. |
| 275 | const SIInstrInfo *TII = nullptr; |
| 276 | |
| 277 | IsaVersion IV; |
| 278 | |
| 279 | /// Whether to insert cache invalidating instructions. |
| 280 | bool InsertCacheInv; |
| 281 | |
| 282 | SICacheControl(const GCNSubtarget &ST); |
| 283 | |
| 284 | /// Sets named bit \p BitName to "true" if present in instruction \p MI. |
| 285 | /// \returns Returns true if \p MI is modified, false otherwise. |
| 286 | bool enableNamedBit(const MachineBasicBlock::iterator MI, |
| 287 | AMDGPU::CPol::CPol Bit) const; |
| 288 | |
| 289 | public: |
| 290 | |
| 291 | /// Create a cache control for the subtarget \p ST. |
| 292 | static std::unique_ptr<SICacheControl> create(const GCNSubtarget &ST); |
| 293 | |
| 294 | /// Update \p MI memory load instruction to bypass any caches up to |
| 295 | /// the \p Scope memory scope for address spaces \p |
| 296 | /// AddrSpace. Return true iff the instruction was modified. |
| 297 | virtual bool enableLoadCacheBypass(const MachineBasicBlock::iterator &MI, |
| 298 | SIAtomicScope Scope, |
| 299 | SIAtomicAddrSpace AddrSpace) const = 0; |
| 300 | |
| 301 | /// Update \p MI memory store instruction to bypass any caches up to |
| 302 | /// the \p Scope memory scope for address spaces \p |
| 303 | /// AddrSpace. Return true iff the instruction was modified. |
| 304 | virtual bool enableStoreCacheBypass(const MachineBasicBlock::iterator &MI, |
| 305 | SIAtomicScope Scope, |
| 306 | SIAtomicAddrSpace AddrSpace) const = 0; |
| 307 | |
| 308 | /// Update \p MI memory read-modify-write instruction to bypass any caches up |
| 309 | /// to the \p Scope memory scope for address spaces \p AddrSpace. Return true |
| 310 | /// iff the instruction was modified. |
| 311 | virtual bool enableRMWCacheBypass(const MachineBasicBlock::iterator &MI, |
| 312 | SIAtomicScope Scope, |
| 313 | SIAtomicAddrSpace AddrSpace) const = 0; |
| 314 | |
| 315 | /// Update \p MI memory instruction of kind \p Op associated with address |
| 316 | /// spaces \p AddrSpace to indicate it is volatile and/or |
| 317 | /// nontemporal/last-use. Return true iff the instruction was modified. |
| 318 | virtual bool enableVolatileAndOrNonTemporal(MachineBasicBlock::iterator &MI, |
| 319 | SIAtomicAddrSpace AddrSpace, |
| 320 | SIMemOp Op, bool IsVolatile, |
| 321 | bool IsNonTemporal, |
| 322 | bool IsLastUse = false) const = 0; |
| 323 | |
| 324 | virtual bool expandSystemScopeStore(MachineBasicBlock::iterator &MI) const { |
| 325 | return false; |
| 326 | }; |
| 327 | |
| 328 | /// Inserts any necessary instructions at position \p Pos relative |
| 329 | /// to instruction \p MI to ensure memory instructions before \p Pos of kind |
| 330 | /// \p Op associated with address spaces \p AddrSpace have completed. Used |
| 331 | /// between memory instructions to enforce the order they become visible as |
| 332 | /// observed by other memory instructions executing in memory scope \p Scope. |
| 333 | /// \p IsCrossAddrSpaceOrdering indicates if the memory ordering is between |
| 334 | /// address spaces. Returns true iff any instructions inserted. |
| 335 | virtual bool insertWait(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, |
| 336 | SIAtomicAddrSpace AddrSpace, SIMemOp Op, |
| 337 | bool IsCrossAddrSpaceOrdering, Position Pos, |
| 338 | AtomicOrdering Order) const = 0; |
| 339 | |
| 340 | /// Inserts any necessary instructions at position \p Pos relative to |
| 341 | /// instruction \p MI to ensure any subsequent memory instructions of this |
| 342 | /// thread with address spaces \p AddrSpace will observe the previous memory |
| 343 | /// operations by any thread for memory scopes up to memory scope \p Scope . |
| 344 | /// Returns true iff any instructions inserted. |
| 345 | virtual bool insertAcquire(MachineBasicBlock::iterator &MI, |
| 346 | SIAtomicScope Scope, |
| 347 | SIAtomicAddrSpace AddrSpace, |
| 348 | Position Pos) const = 0; |
| 349 | |
| 350 | /// Inserts any necessary instructions at position \p Pos relative to |
| 351 | /// instruction \p MI to ensure previous memory instructions by this thread |
| 352 | /// with address spaces \p AddrSpace have completed and can be observed by |
| 353 | /// subsequent memory instructions by any thread executing in memory scope \p |
| 354 | /// Scope. \p IsCrossAddrSpaceOrdering indicates if the memory ordering is |
| 355 | /// between address spaces. Returns true iff any instructions inserted. |
| 356 | virtual bool insertRelease(MachineBasicBlock::iterator &MI, |
| 357 | SIAtomicScope Scope, |
| 358 | SIAtomicAddrSpace AddrSpace, |
| 359 | bool IsCrossAddrSpaceOrdering, |
| 360 | Position Pos) const = 0; |
| 361 | |
| 362 | /// Virtual destructor to allow derivations to be deleted. |
| 363 | virtual ~SICacheControl() = default; |
| 364 | }; |
| 365 | |
| 366 | class SIGfx6CacheControl : public SICacheControl { |
| 367 | protected: |
| 368 | |
| 369 | /// Sets GLC bit to "true" if present in \p MI. Returns true if \p MI |
| 370 | /// is modified, false otherwise. |
| 371 | bool enableGLCBit(const MachineBasicBlock::iterator &MI) const { |
| 372 | return enableNamedBit(MI, Bit: AMDGPU::CPol::GLC); |
| 373 | } |
| 374 | |
| 375 | /// Sets SLC bit to "true" if present in \p MI. Returns true if \p MI |
| 376 | /// is modified, false otherwise. |
| 377 | bool enableSLCBit(const MachineBasicBlock::iterator &MI) const { |
| 378 | return enableNamedBit(MI, Bit: AMDGPU::CPol::SLC); |
| 379 | } |
| 380 | |
| 381 | public: |
| 382 | |
| 383 | SIGfx6CacheControl(const GCNSubtarget &ST) : SICacheControl(ST) {} |
| 384 | |
| 385 | bool enableLoadCacheBypass(const MachineBasicBlock::iterator &MI, |
| 386 | SIAtomicScope Scope, |
| 387 | SIAtomicAddrSpace AddrSpace) const override; |
| 388 | |
| 389 | bool enableStoreCacheBypass(const MachineBasicBlock::iterator &MI, |
| 390 | SIAtomicScope Scope, |
| 391 | SIAtomicAddrSpace AddrSpace) const override; |
| 392 | |
| 393 | bool enableRMWCacheBypass(const MachineBasicBlock::iterator &MI, |
| 394 | SIAtomicScope Scope, |
| 395 | SIAtomicAddrSpace AddrSpace) const override; |
| 396 | |
| 397 | bool enableVolatileAndOrNonTemporal(MachineBasicBlock::iterator &MI, |
| 398 | SIAtomicAddrSpace AddrSpace, SIMemOp Op, |
| 399 | bool IsVolatile, bool IsNonTemporal, |
| 400 | bool IsLastUse) const override; |
| 401 | |
| 402 | bool insertWait(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, |
| 403 | SIAtomicAddrSpace AddrSpace, SIMemOp Op, |
| 404 | bool IsCrossAddrSpaceOrdering, Position Pos, |
| 405 | AtomicOrdering Order) const override; |
| 406 | |
| 407 | bool insertAcquire(MachineBasicBlock::iterator &MI, |
| 408 | SIAtomicScope Scope, |
| 409 | SIAtomicAddrSpace AddrSpace, |
| 410 | Position Pos) const override; |
| 411 | |
| 412 | bool insertRelease(MachineBasicBlock::iterator &MI, |
| 413 | SIAtomicScope Scope, |
| 414 | SIAtomicAddrSpace AddrSpace, |
| 415 | bool IsCrossAddrSpaceOrdering, |
| 416 | Position Pos) const override; |
| 417 | }; |
| 418 | |
| 419 | class SIGfx7CacheControl : public SIGfx6CacheControl { |
| 420 | public: |
| 421 | |
| 422 | SIGfx7CacheControl(const GCNSubtarget &ST) : SIGfx6CacheControl(ST) {} |
| 423 | |
| 424 | bool insertAcquire(MachineBasicBlock::iterator &MI, |
| 425 | SIAtomicScope Scope, |
| 426 | SIAtomicAddrSpace AddrSpace, |
| 427 | Position Pos) const override; |
| 428 | |
| 429 | }; |
| 430 | |
| 431 | class SIGfx90ACacheControl : public SIGfx7CacheControl { |
| 432 | public: |
| 433 | |
| 434 | SIGfx90ACacheControl(const GCNSubtarget &ST) : SIGfx7CacheControl(ST) {} |
| 435 | |
| 436 | bool enableLoadCacheBypass(const MachineBasicBlock::iterator &MI, |
| 437 | SIAtomicScope Scope, |
| 438 | SIAtomicAddrSpace AddrSpace) const override; |
| 439 | |
| 440 | bool enableStoreCacheBypass(const MachineBasicBlock::iterator &MI, |
| 441 | SIAtomicScope Scope, |
| 442 | SIAtomicAddrSpace AddrSpace) const override; |
| 443 | |
| 444 | bool enableRMWCacheBypass(const MachineBasicBlock::iterator &MI, |
| 445 | SIAtomicScope Scope, |
| 446 | SIAtomicAddrSpace AddrSpace) const override; |
| 447 | |
| 448 | bool enableVolatileAndOrNonTemporal(MachineBasicBlock::iterator &MI, |
| 449 | SIAtomicAddrSpace AddrSpace, SIMemOp Op, |
| 450 | bool IsVolatile, bool IsNonTemporal, |
| 451 | bool IsLastUse) const override; |
| 452 | |
| 453 | bool insertWait(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, |
| 454 | SIAtomicAddrSpace AddrSpace, SIMemOp Op, |
| 455 | bool IsCrossAddrSpaceOrdering, Position Pos, |
| 456 | AtomicOrdering Order) const override; |
| 457 | |
| 458 | bool insertAcquire(MachineBasicBlock::iterator &MI, |
| 459 | SIAtomicScope Scope, |
| 460 | SIAtomicAddrSpace AddrSpace, |
| 461 | Position Pos) const override; |
| 462 | |
| 463 | bool insertRelease(MachineBasicBlock::iterator &MI, |
| 464 | SIAtomicScope Scope, |
| 465 | SIAtomicAddrSpace AddrSpace, |
| 466 | bool IsCrossAddrSpaceOrdering, |
| 467 | Position Pos) const override; |
| 468 | }; |
| 469 | |
| 470 | class SIGfx940CacheControl : public SIGfx90ACacheControl { |
| 471 | protected: |
| 472 | |
| 473 | /// Sets SC0 bit to "true" if present in \p MI. Returns true if \p MI |
| 474 | /// is modified, false otherwise. |
| 475 | bool enableSC0Bit(const MachineBasicBlock::iterator &MI) const { |
| 476 | return enableNamedBit(MI, Bit: AMDGPU::CPol::SC0); |
| 477 | } |
| 478 | |
| 479 | /// Sets SC1 bit to "true" if present in \p MI. Returns true if \p MI |
| 480 | /// is modified, false otherwise. |
| 481 | bool enableSC1Bit(const MachineBasicBlock::iterator &MI) const { |
| 482 | return enableNamedBit(MI, Bit: AMDGPU::CPol::SC1); |
| 483 | } |
| 484 | |
| 485 | /// Sets NT bit to "true" if present in \p MI. Returns true if \p MI |
| 486 | /// is modified, false otherwise. |
| 487 | bool enableNTBit(const MachineBasicBlock::iterator &MI) const { |
| 488 | return enableNamedBit(MI, Bit: AMDGPU::CPol::NT); |
| 489 | } |
| 490 | |
| 491 | public: |
| 492 | SIGfx940CacheControl(const GCNSubtarget &ST) : SIGfx90ACacheControl(ST) {}; |
| 493 | |
| 494 | bool enableLoadCacheBypass(const MachineBasicBlock::iterator &MI, |
| 495 | SIAtomicScope Scope, |
| 496 | SIAtomicAddrSpace AddrSpace) const override; |
| 497 | |
| 498 | bool enableStoreCacheBypass(const MachineBasicBlock::iterator &MI, |
| 499 | SIAtomicScope Scope, |
| 500 | SIAtomicAddrSpace AddrSpace) const override; |
| 501 | |
| 502 | bool enableRMWCacheBypass(const MachineBasicBlock::iterator &MI, |
| 503 | SIAtomicScope Scope, |
| 504 | SIAtomicAddrSpace AddrSpace) const override; |
| 505 | |
| 506 | bool enableVolatileAndOrNonTemporal(MachineBasicBlock::iterator &MI, |
| 507 | SIAtomicAddrSpace AddrSpace, SIMemOp Op, |
| 508 | bool IsVolatile, bool IsNonTemporal, |
| 509 | bool IsLastUse) const override; |
| 510 | |
| 511 | bool insertAcquire(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, |
| 512 | SIAtomicAddrSpace AddrSpace, Position Pos) const override; |
| 513 | |
| 514 | bool insertRelease(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, |
| 515 | SIAtomicAddrSpace AddrSpace, bool IsCrossAddrSpaceOrdering, |
| 516 | Position Pos) const override; |
| 517 | }; |
| 518 | |
| 519 | class SIGfx10CacheControl : public SIGfx7CacheControl { |
| 520 | protected: |
| 521 | |
| 522 | /// Sets DLC bit to "true" if present in \p MI. Returns true if \p MI |
| 523 | /// is modified, false otherwise. |
| 524 | bool enableDLCBit(const MachineBasicBlock::iterator &MI) const { |
| 525 | return enableNamedBit(MI, Bit: AMDGPU::CPol::DLC); |
| 526 | } |
| 527 | |
| 528 | public: |
| 529 | |
| 530 | SIGfx10CacheControl(const GCNSubtarget &ST) : SIGfx7CacheControl(ST) {} |
| 531 | |
| 532 | bool enableLoadCacheBypass(const MachineBasicBlock::iterator &MI, |
| 533 | SIAtomicScope Scope, |
| 534 | SIAtomicAddrSpace AddrSpace) const override; |
| 535 | |
| 536 | bool enableVolatileAndOrNonTemporal(MachineBasicBlock::iterator &MI, |
| 537 | SIAtomicAddrSpace AddrSpace, SIMemOp Op, |
| 538 | bool IsVolatile, bool IsNonTemporal, |
| 539 | bool IsLastUse) const override; |
| 540 | |
| 541 | bool insertWait(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, |
| 542 | SIAtomicAddrSpace AddrSpace, SIMemOp Op, |
| 543 | bool IsCrossAddrSpaceOrdering, Position Pos, |
| 544 | AtomicOrdering Order) const override; |
| 545 | |
| 546 | bool insertAcquire(MachineBasicBlock::iterator &MI, |
| 547 | SIAtomicScope Scope, |
| 548 | SIAtomicAddrSpace AddrSpace, |
| 549 | Position Pos) const override; |
| 550 | }; |
| 551 | |
| 552 | class SIGfx11CacheControl : public SIGfx10CacheControl { |
| 553 | public: |
| 554 | SIGfx11CacheControl(const GCNSubtarget &ST) : SIGfx10CacheControl(ST) {} |
| 555 | |
| 556 | bool enableLoadCacheBypass(const MachineBasicBlock::iterator &MI, |
| 557 | SIAtomicScope Scope, |
| 558 | SIAtomicAddrSpace AddrSpace) const override; |
| 559 | |
| 560 | bool enableVolatileAndOrNonTemporal(MachineBasicBlock::iterator &MI, |
| 561 | SIAtomicAddrSpace AddrSpace, SIMemOp Op, |
| 562 | bool IsVolatile, bool IsNonTemporal, |
| 563 | bool IsLastUse) const override; |
| 564 | }; |
| 565 | |
| 566 | class SIGfx12CacheControl : public SIGfx11CacheControl { |
| 567 | protected: |
| 568 | // Sets TH policy to \p Value if CPol operand is present in instruction \p MI. |
| 569 | // \returns Returns true if \p MI is modified, false otherwise. |
| 570 | bool setTH(const MachineBasicBlock::iterator MI, |
| 571 | AMDGPU::CPol::CPol Value) const; |
| 572 | // Sets Scope policy to \p Value if CPol operand is present in instruction \p |
| 573 | // MI. \returns Returns true if \p MI is modified, false otherwise. |
| 574 | bool setScope(const MachineBasicBlock::iterator MI, |
| 575 | AMDGPU::CPol::CPol Value) const; |
| 576 | |
| 577 | // Stores with system scope (SCOPE_SYS) need to wait for: |
| 578 | // - loads or atomics(returning) - wait for {LOAD|SAMPLE|BVH|KM}CNT==0 |
| 579 | // - non-returning-atomics - wait for STORECNT==0 |
| 580 | // TODO: SIInsertWaitcnts will not always be able to remove STORECNT waits |
| 581 | // since it does not distinguish atomics-with-return from regular stores. |
| 582 | // There is no need to wait if memory is cached (mtype != UC). |
| 583 | bool |
| 584 | insertWaitsBeforeSystemScopeStore(const MachineBasicBlock::iterator MI) const; |
| 585 | |
| 586 | bool setAtomicScope(const MachineBasicBlock::iterator &MI, |
| 587 | SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace) const; |
| 588 | |
| 589 | public: |
| 590 | SIGfx12CacheControl(const GCNSubtarget &ST) : SIGfx11CacheControl(ST) {} |
| 591 | |
| 592 | bool insertWait(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, |
| 593 | SIAtomicAddrSpace AddrSpace, SIMemOp Op, |
| 594 | bool IsCrossAddrSpaceOrdering, Position Pos, |
| 595 | AtomicOrdering Order) const override; |
| 596 | |
| 597 | bool insertAcquire(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, |
| 598 | SIAtomicAddrSpace AddrSpace, Position Pos) const override; |
| 599 | |
| 600 | bool enableVolatileAndOrNonTemporal(MachineBasicBlock::iterator &MI, |
| 601 | SIAtomicAddrSpace AddrSpace, SIMemOp Op, |
| 602 | bool IsVolatile, bool IsNonTemporal, |
| 603 | bool IsLastUse) const override; |
| 604 | |
| 605 | bool expandSystemScopeStore(MachineBasicBlock::iterator &MI) const override; |
| 606 | |
| 607 | bool insertRelease(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, |
| 608 | SIAtomicAddrSpace AddrSpace, bool IsCrossAddrSpaceOrdering, |
| 609 | Position Pos) const override; |
| 610 | |
| 611 | bool enableLoadCacheBypass(const MachineBasicBlock::iterator &MI, |
| 612 | SIAtomicScope Scope, |
| 613 | SIAtomicAddrSpace AddrSpace) const override { |
| 614 | return setAtomicScope(MI, Scope, AddrSpace); |
| 615 | } |
| 616 | |
| 617 | bool enableStoreCacheBypass(const MachineBasicBlock::iterator &MI, |
| 618 | SIAtomicScope Scope, |
| 619 | SIAtomicAddrSpace AddrSpace) const override { |
| 620 | return setAtomicScope(MI, Scope, AddrSpace); |
| 621 | } |
| 622 | |
| 623 | bool enableRMWCacheBypass(const MachineBasicBlock::iterator &MI, |
| 624 | SIAtomicScope Scope, |
| 625 | SIAtomicAddrSpace AddrSpace) const override { |
| 626 | return setAtomicScope(MI, Scope, AddrSpace); |
| 627 | } |
| 628 | }; |
| 629 | |
| 630 | class SIMemoryLegalizer final { |
| 631 | private: |
| 632 | const MachineModuleInfo &MMI; |
| 633 | /// Cache Control. |
| 634 | std::unique_ptr<SICacheControl> CC = nullptr; |
| 635 | |
| 636 | /// List of atomic pseudo instructions. |
| 637 | std::list<MachineBasicBlock::iterator> AtomicPseudoMIs; |
| 638 | |
| 639 | /// Return true iff instruction \p MI is a atomic instruction that |
| 640 | /// returns a result. |
| 641 | bool isAtomicRet(const MachineInstr &MI) const { |
| 642 | return SIInstrInfo::isAtomicRet(MI); |
| 643 | } |
| 644 | |
| 645 | /// Removes all processed atomic pseudo instructions from the current |
| 646 | /// function. Returns true if current function is modified, false otherwise. |
| 647 | bool removeAtomicPseudoMIs(); |
| 648 | |
| 649 | /// Expands load operation \p MI. Returns true if instructions are |
| 650 | /// added/deleted or \p MI is modified, false otherwise. |
| 651 | bool expandLoad(const SIMemOpInfo &MOI, |
| 652 | MachineBasicBlock::iterator &MI); |
| 653 | /// Expands store operation \p MI. Returns true if instructions are |
| 654 | /// added/deleted or \p MI is modified, false otherwise. |
| 655 | bool expandStore(const SIMemOpInfo &MOI, |
| 656 | MachineBasicBlock::iterator &MI); |
| 657 | /// Expands atomic fence operation \p MI. Returns true if |
| 658 | /// instructions are added/deleted or \p MI is modified, false otherwise. |
| 659 | bool expandAtomicFence(const SIMemOpInfo &MOI, |
| 660 | MachineBasicBlock::iterator &MI); |
| 661 | /// Expands atomic cmpxchg or rmw operation \p MI. Returns true if |
| 662 | /// instructions are added/deleted or \p MI is modified, false otherwise. |
| 663 | bool expandAtomicCmpxchgOrRmw(const SIMemOpInfo &MOI, |
| 664 | MachineBasicBlock::iterator &MI); |
| 665 | |
| 666 | public: |
| 667 | SIMemoryLegalizer(const MachineModuleInfo &MMI) : MMI(MMI) {}; |
| 668 | bool run(MachineFunction &MF); |
| 669 | }; |
| 670 | |
| 671 | class SIMemoryLegalizerLegacy final : public MachineFunctionPass { |
| 672 | public: |
| 673 | static char ID; |
| 674 | |
| 675 | SIMemoryLegalizerLegacy() : MachineFunctionPass(ID) {} |
| 676 | |
| 677 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 678 | AU.setPreservesCFG(); |
| 679 | MachineFunctionPass::getAnalysisUsage(AU); |
| 680 | } |
| 681 | |
| 682 | StringRef getPassName() const override { |
| 683 | return PASS_NAME; |
| 684 | } |
| 685 | |
| 686 | bool runOnMachineFunction(MachineFunction &MF) override; |
| 687 | }; |
| 688 | |
| 689 | static const StringMap<SIAtomicAddrSpace> ASNames = {{ |
| 690 | {"global" , SIAtomicAddrSpace::GLOBAL}, |
| 691 | {"local" , SIAtomicAddrSpace::LDS}, |
| 692 | }}; |
| 693 | |
| 694 | void diagnoseUnknownMMRAASName(const MachineInstr &MI, StringRef AS) { |
| 695 | const MachineFunction *MF = MI.getMF(); |
| 696 | const Function &Fn = MF->getFunction(); |
| 697 | SmallString<128> Str; |
| 698 | raw_svector_ostream OS(Str); |
| 699 | OS << "unknown address space '" << AS << "'; expected one of " ; |
| 700 | ListSeparator LS; |
| 701 | for (const auto &[Name, Val] : ASNames) |
| 702 | OS << LS << '\'' << Name << '\''; |
| 703 | Fn.getContext().diagnose( |
| 704 | DI: DiagnosticInfoUnsupported(Fn, Str.str(), MI.getDebugLoc(), DS_Warning)); |
| 705 | } |
| 706 | |
| 707 | /// Reads \p MI's MMRAs to parse the "amdgpu-as" MMRA. |
| 708 | /// If this tag isn't present, or if it has no meaningful values, returns \p |
| 709 | /// Default. Otherwise returns all the address spaces concerned by the MMRA. |
| 710 | static SIAtomicAddrSpace getFenceAddrSpaceMMRA(const MachineInstr &MI, |
| 711 | SIAtomicAddrSpace Default) { |
| 712 | static constexpr StringLiteral FenceASPrefix = "amdgpu-as" ; |
| 713 | |
| 714 | auto MMRA = MMRAMetadata(MI.getMMRAMetadata()); |
| 715 | if (!MMRA) |
| 716 | return Default; |
| 717 | |
| 718 | SIAtomicAddrSpace Result = SIAtomicAddrSpace::NONE; |
| 719 | for (const auto &[Prefix, Suffix] : MMRA) { |
| 720 | if (Prefix != FenceASPrefix) |
| 721 | continue; |
| 722 | |
| 723 | if (auto It = ASNames.find(Key: Suffix); It != ASNames.end()) |
| 724 | Result |= It->second; |
| 725 | else |
| 726 | diagnoseUnknownMMRAASName(MI, AS: Suffix); |
| 727 | } |
| 728 | |
| 729 | return (Result != SIAtomicAddrSpace::NONE) ? Result : Default; |
| 730 | } |
| 731 | |
| 732 | } // end anonymous namespace |
| 733 | |
| 734 | void SIMemOpAccess::reportUnsupported(const MachineBasicBlock::iterator &MI, |
| 735 | const char *Msg) const { |
| 736 | const Function &Func = MI->getParent()->getParent()->getFunction(); |
| 737 | Func.getContext().diagnose( |
| 738 | DI: DiagnosticInfoUnsupported(Func, Msg, MI->getDebugLoc())); |
| 739 | } |
| 740 | |
| 741 | std::optional<std::tuple<SIAtomicScope, SIAtomicAddrSpace, bool>> |
| 742 | SIMemOpAccess::toSIAtomicScope(SyncScope::ID SSID, |
| 743 | SIAtomicAddrSpace InstrAddrSpace) const { |
| 744 | if (SSID == SyncScope::System) |
| 745 | return std::tuple(SIAtomicScope::SYSTEM, SIAtomicAddrSpace::ATOMIC, true); |
| 746 | if (SSID == MMI->getAgentSSID()) |
| 747 | return std::tuple(SIAtomicScope::AGENT, SIAtomicAddrSpace::ATOMIC, true); |
| 748 | if (SSID == MMI->getWorkgroupSSID()) |
| 749 | return std::tuple(SIAtomicScope::WORKGROUP, SIAtomicAddrSpace::ATOMIC, |
| 750 | true); |
| 751 | if (SSID == MMI->getWavefrontSSID()) |
| 752 | return std::tuple(SIAtomicScope::WAVEFRONT, SIAtomicAddrSpace::ATOMIC, |
| 753 | true); |
| 754 | if (SSID == SyncScope::SingleThread) |
| 755 | return std::tuple(SIAtomicScope::SINGLETHREAD, SIAtomicAddrSpace::ATOMIC, |
| 756 | true); |
| 757 | if (SSID == MMI->getSystemOneAddressSpaceSSID()) |
| 758 | return std::tuple(SIAtomicScope::SYSTEM, |
| 759 | SIAtomicAddrSpace::ATOMIC & InstrAddrSpace, false); |
| 760 | if (SSID == MMI->getAgentOneAddressSpaceSSID()) |
| 761 | return std::tuple(SIAtomicScope::AGENT, |
| 762 | SIAtomicAddrSpace::ATOMIC & InstrAddrSpace, false); |
| 763 | if (SSID == MMI->getWorkgroupOneAddressSpaceSSID()) |
| 764 | return std::tuple(SIAtomicScope::WORKGROUP, |
| 765 | SIAtomicAddrSpace::ATOMIC & InstrAddrSpace, false); |
| 766 | if (SSID == MMI->getWavefrontOneAddressSpaceSSID()) |
| 767 | return std::tuple(SIAtomicScope::WAVEFRONT, |
| 768 | SIAtomicAddrSpace::ATOMIC & InstrAddrSpace, false); |
| 769 | if (SSID == MMI->getSingleThreadOneAddressSpaceSSID()) |
| 770 | return std::tuple(SIAtomicScope::SINGLETHREAD, |
| 771 | SIAtomicAddrSpace::ATOMIC & InstrAddrSpace, false); |
| 772 | return std::nullopt; |
| 773 | } |
| 774 | |
| 775 | SIAtomicAddrSpace SIMemOpAccess::toSIAtomicAddrSpace(unsigned AS) const { |
| 776 | if (AS == AMDGPUAS::FLAT_ADDRESS) |
| 777 | return SIAtomicAddrSpace::FLAT; |
| 778 | if (AS == AMDGPUAS::GLOBAL_ADDRESS) |
| 779 | return SIAtomicAddrSpace::GLOBAL; |
| 780 | if (AS == AMDGPUAS::LOCAL_ADDRESS) |
| 781 | return SIAtomicAddrSpace::LDS; |
| 782 | if (AS == AMDGPUAS::PRIVATE_ADDRESS) |
| 783 | return SIAtomicAddrSpace::SCRATCH; |
| 784 | if (AS == AMDGPUAS::REGION_ADDRESS) |
| 785 | return SIAtomicAddrSpace::GDS; |
| 786 | |
| 787 | return SIAtomicAddrSpace::OTHER; |
| 788 | } |
| 789 | |
| 790 | SIMemOpAccess::SIMemOpAccess(const AMDGPUMachineModuleInfo &MMI_) |
| 791 | : MMI(&MMI_) {} |
| 792 | |
| 793 | std::optional<SIMemOpInfo> SIMemOpAccess::constructFromMIWithMMO( |
| 794 | const MachineBasicBlock::iterator &MI) const { |
| 795 | assert(MI->getNumMemOperands() > 0); |
| 796 | |
| 797 | SyncScope::ID SSID = SyncScope::SingleThread; |
| 798 | AtomicOrdering Ordering = AtomicOrdering::NotAtomic; |
| 799 | AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; |
| 800 | SIAtomicAddrSpace InstrAddrSpace = SIAtomicAddrSpace::NONE; |
| 801 | bool IsNonTemporal = true; |
| 802 | bool IsVolatile = false; |
| 803 | bool IsLastUse = false; |
| 804 | |
| 805 | // Validator should check whether or not MMOs cover the entire set of |
| 806 | // locations accessed by the memory instruction. |
| 807 | for (const auto &MMO : MI->memoperands()) { |
| 808 | IsNonTemporal &= MMO->isNonTemporal(); |
| 809 | IsVolatile |= MMO->isVolatile(); |
| 810 | IsLastUse |= MMO->getFlags() & MOLastUse; |
| 811 | InstrAddrSpace |= |
| 812 | toSIAtomicAddrSpace(AS: MMO->getPointerInfo().getAddrSpace()); |
| 813 | AtomicOrdering OpOrdering = MMO->getSuccessOrdering(); |
| 814 | if (OpOrdering != AtomicOrdering::NotAtomic) { |
| 815 | const auto &IsSyncScopeInclusion = |
| 816 | MMI->isSyncScopeInclusion(A: SSID, B: MMO->getSyncScopeID()); |
| 817 | if (!IsSyncScopeInclusion) { |
| 818 | reportUnsupported(MI, |
| 819 | Msg: "Unsupported non-inclusive atomic synchronization scope" ); |
| 820 | return std::nullopt; |
| 821 | } |
| 822 | |
| 823 | SSID = *IsSyncScopeInclusion ? SSID : MMO->getSyncScopeID(); |
| 824 | Ordering = getMergedAtomicOrdering(AO: Ordering, Other: OpOrdering); |
| 825 | assert(MMO->getFailureOrdering() != AtomicOrdering::Release && |
| 826 | MMO->getFailureOrdering() != AtomicOrdering::AcquireRelease); |
| 827 | FailureOrdering = |
| 828 | getMergedAtomicOrdering(AO: FailureOrdering, Other: MMO->getFailureOrdering()); |
| 829 | } |
| 830 | } |
| 831 | |
| 832 | SIAtomicScope Scope = SIAtomicScope::NONE; |
| 833 | SIAtomicAddrSpace OrderingAddrSpace = SIAtomicAddrSpace::NONE; |
| 834 | bool IsCrossAddressSpaceOrdering = false; |
| 835 | if (Ordering != AtomicOrdering::NotAtomic) { |
| 836 | auto ScopeOrNone = toSIAtomicScope(SSID, InstrAddrSpace); |
| 837 | if (!ScopeOrNone) { |
| 838 | reportUnsupported(MI, Msg: "Unsupported atomic synchronization scope" ); |
| 839 | return std::nullopt; |
| 840 | } |
| 841 | std::tie(args&: Scope, args&: OrderingAddrSpace, args&: IsCrossAddressSpaceOrdering) = |
| 842 | *ScopeOrNone; |
| 843 | if ((OrderingAddrSpace == SIAtomicAddrSpace::NONE) || |
| 844 | ((OrderingAddrSpace & SIAtomicAddrSpace::ATOMIC) != OrderingAddrSpace) || |
| 845 | ((InstrAddrSpace & SIAtomicAddrSpace::ATOMIC) == SIAtomicAddrSpace::NONE)) { |
| 846 | reportUnsupported(MI, Msg: "Unsupported atomic address space" ); |
| 847 | return std::nullopt; |
| 848 | } |
| 849 | } |
| 850 | return SIMemOpInfo(Ordering, Scope, OrderingAddrSpace, InstrAddrSpace, |
| 851 | IsCrossAddressSpaceOrdering, FailureOrdering, IsVolatile, |
| 852 | IsNonTemporal, IsLastUse); |
| 853 | } |
| 854 | |
| 855 | std::optional<SIMemOpInfo> |
| 856 | SIMemOpAccess::getLoadInfo(const MachineBasicBlock::iterator &MI) const { |
| 857 | assert(MI->getDesc().TSFlags & SIInstrFlags::maybeAtomic); |
| 858 | |
| 859 | if (!(MI->mayLoad() && !MI->mayStore())) |
| 860 | return std::nullopt; |
| 861 | |
| 862 | // Be conservative if there are no memory operands. |
| 863 | if (MI->getNumMemOperands() == 0) |
| 864 | return SIMemOpInfo(); |
| 865 | |
| 866 | return constructFromMIWithMMO(MI); |
| 867 | } |
| 868 | |
| 869 | std::optional<SIMemOpInfo> |
| 870 | SIMemOpAccess::getStoreInfo(const MachineBasicBlock::iterator &MI) const { |
| 871 | assert(MI->getDesc().TSFlags & SIInstrFlags::maybeAtomic); |
| 872 | |
| 873 | if (!(!MI->mayLoad() && MI->mayStore())) |
| 874 | return std::nullopt; |
| 875 | |
| 876 | // Be conservative if there are no memory operands. |
| 877 | if (MI->getNumMemOperands() == 0) |
| 878 | return SIMemOpInfo(); |
| 879 | |
| 880 | return constructFromMIWithMMO(MI); |
| 881 | } |
| 882 | |
| 883 | std::optional<SIMemOpInfo> |
| 884 | SIMemOpAccess::getAtomicFenceInfo(const MachineBasicBlock::iterator &MI) const { |
| 885 | assert(MI->getDesc().TSFlags & SIInstrFlags::maybeAtomic); |
| 886 | |
| 887 | if (MI->getOpcode() != AMDGPU::ATOMIC_FENCE) |
| 888 | return std::nullopt; |
| 889 | |
| 890 | AtomicOrdering Ordering = |
| 891 | static_cast<AtomicOrdering>(MI->getOperand(i: 0).getImm()); |
| 892 | |
| 893 | SyncScope::ID SSID = static_cast<SyncScope::ID>(MI->getOperand(i: 1).getImm()); |
| 894 | auto ScopeOrNone = toSIAtomicScope(SSID, InstrAddrSpace: SIAtomicAddrSpace::ATOMIC); |
| 895 | if (!ScopeOrNone) { |
| 896 | reportUnsupported(MI, Msg: "Unsupported atomic synchronization scope" ); |
| 897 | return std::nullopt; |
| 898 | } |
| 899 | |
| 900 | SIAtomicScope Scope = SIAtomicScope::NONE; |
| 901 | SIAtomicAddrSpace OrderingAddrSpace = SIAtomicAddrSpace::NONE; |
| 902 | bool IsCrossAddressSpaceOrdering = false; |
| 903 | std::tie(args&: Scope, args&: OrderingAddrSpace, args&: IsCrossAddressSpaceOrdering) = |
| 904 | *ScopeOrNone; |
| 905 | |
| 906 | if ((OrderingAddrSpace == SIAtomicAddrSpace::NONE) || |
| 907 | ((OrderingAddrSpace & SIAtomicAddrSpace::ATOMIC) != OrderingAddrSpace)) { |
| 908 | reportUnsupported(MI, Msg: "Unsupported atomic address space" ); |
| 909 | return std::nullopt; |
| 910 | } |
| 911 | |
| 912 | return SIMemOpInfo(Ordering, Scope, OrderingAddrSpace, SIAtomicAddrSpace::ATOMIC, |
| 913 | IsCrossAddressSpaceOrdering, AtomicOrdering::NotAtomic); |
| 914 | } |
| 915 | |
| 916 | std::optional<SIMemOpInfo> SIMemOpAccess::getAtomicCmpxchgOrRmwInfo( |
| 917 | const MachineBasicBlock::iterator &MI) const { |
| 918 | assert(MI->getDesc().TSFlags & SIInstrFlags::maybeAtomic); |
| 919 | |
| 920 | if (!(MI->mayLoad() && MI->mayStore())) |
| 921 | return std::nullopt; |
| 922 | |
| 923 | // Be conservative if there are no memory operands. |
| 924 | if (MI->getNumMemOperands() == 0) |
| 925 | return SIMemOpInfo(); |
| 926 | |
| 927 | return constructFromMIWithMMO(MI); |
| 928 | } |
| 929 | |
| 930 | SICacheControl::SICacheControl(const GCNSubtarget &ST) : ST(ST) { |
| 931 | TII = ST.getInstrInfo(); |
| 932 | IV = getIsaVersion(GPU: ST.getCPU()); |
| 933 | InsertCacheInv = !AmdgcnSkipCacheInvalidations; |
| 934 | } |
| 935 | |
| 936 | bool SICacheControl::enableNamedBit(const MachineBasicBlock::iterator MI, |
| 937 | AMDGPU::CPol::CPol Bit) const { |
| 938 | MachineOperand *CPol = TII->getNamedOperand(MI&: *MI, OperandName: AMDGPU::OpName::cpol); |
| 939 | if (!CPol) |
| 940 | return false; |
| 941 | |
| 942 | CPol->setImm(CPol->getImm() | Bit); |
| 943 | return true; |
| 944 | } |
| 945 | |
| 946 | /* static */ |
| 947 | std::unique_ptr<SICacheControl> SICacheControl::create(const GCNSubtarget &ST) { |
| 948 | GCNSubtarget::Generation Generation = ST.getGeneration(); |
| 949 | if (ST.hasGFX940Insts()) |
| 950 | return std::make_unique<SIGfx940CacheControl>(args: ST); |
| 951 | if (ST.hasGFX90AInsts()) |
| 952 | return std::make_unique<SIGfx90ACacheControl>(args: ST); |
| 953 | if (Generation <= AMDGPUSubtarget::SOUTHERN_ISLANDS) |
| 954 | return std::make_unique<SIGfx6CacheControl>(args: ST); |
| 955 | if (Generation < AMDGPUSubtarget::GFX10) |
| 956 | return std::make_unique<SIGfx7CacheControl>(args: ST); |
| 957 | if (Generation < AMDGPUSubtarget::GFX11) |
| 958 | return std::make_unique<SIGfx10CacheControl>(args: ST); |
| 959 | if (Generation < AMDGPUSubtarget::GFX12) |
| 960 | return std::make_unique<SIGfx11CacheControl>(args: ST); |
| 961 | return std::make_unique<SIGfx12CacheControl>(args: ST); |
| 962 | } |
| 963 | |
| 964 | bool SIGfx6CacheControl::enableLoadCacheBypass( |
| 965 | const MachineBasicBlock::iterator &MI, |
| 966 | SIAtomicScope Scope, |
| 967 | SIAtomicAddrSpace AddrSpace) const { |
| 968 | assert(MI->mayLoad() && !MI->mayStore()); |
| 969 | bool Changed = false; |
| 970 | |
| 971 | if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { |
| 972 | switch (Scope) { |
| 973 | case SIAtomicScope::SYSTEM: |
| 974 | case SIAtomicScope::AGENT: |
| 975 | // Set L1 cache policy to MISS_EVICT. |
| 976 | // Note: there is no L2 cache bypass policy at the ISA level. |
| 977 | Changed |= enableGLCBit(MI); |
| 978 | break; |
| 979 | case SIAtomicScope::WORKGROUP: |
| 980 | case SIAtomicScope::WAVEFRONT: |
| 981 | case SIAtomicScope::SINGLETHREAD: |
| 982 | // No cache to bypass. |
| 983 | break; |
| 984 | default: |
| 985 | llvm_unreachable("Unsupported synchronization scope" ); |
| 986 | } |
| 987 | } |
| 988 | |
| 989 | /// The scratch address space does not need the global memory caches |
| 990 | /// to be bypassed as all memory operations by the same thread are |
| 991 | /// sequentially consistent, and no other thread can access scratch |
| 992 | /// memory. |
| 993 | |
| 994 | /// Other address spaces do not have a cache. |
| 995 | |
| 996 | return Changed; |
| 997 | } |
| 998 | |
| 999 | bool SIGfx6CacheControl::enableStoreCacheBypass( |
| 1000 | const MachineBasicBlock::iterator &MI, |
| 1001 | SIAtomicScope Scope, |
| 1002 | SIAtomicAddrSpace AddrSpace) const { |
| 1003 | assert(!MI->mayLoad() && MI->mayStore()); |
| 1004 | bool Changed = false; |
| 1005 | |
| 1006 | /// The L1 cache is write through so does not need to be bypassed. There is no |
| 1007 | /// bypass control for the L2 cache at the isa level. |
| 1008 | |
| 1009 | return Changed; |
| 1010 | } |
| 1011 | |
| 1012 | bool SIGfx6CacheControl::enableRMWCacheBypass( |
| 1013 | const MachineBasicBlock::iterator &MI, |
| 1014 | SIAtomicScope Scope, |
| 1015 | SIAtomicAddrSpace AddrSpace) const { |
| 1016 | assert(MI->mayLoad() && MI->mayStore()); |
| 1017 | bool Changed = false; |
| 1018 | |
| 1019 | /// Do not set GLC for RMW atomic operations as L0/L1 cache is automatically |
| 1020 | /// bypassed, and the GLC bit is instead used to indicate if they are |
| 1021 | /// return or no-return. |
| 1022 | /// Note: there is no L2 cache coherent bypass control at the ISA level. |
| 1023 | |
| 1024 | return Changed; |
| 1025 | } |
| 1026 | |
| 1027 | bool SIGfx6CacheControl::enableVolatileAndOrNonTemporal( |
| 1028 | MachineBasicBlock::iterator &MI, SIAtomicAddrSpace AddrSpace, SIMemOp Op, |
| 1029 | bool IsVolatile, bool IsNonTemporal, bool IsLastUse = false) const { |
| 1030 | // Only handle load and store, not atomic read-modify-write insructions. The |
| 1031 | // latter use glc to indicate if the atomic returns a result and so must not |
| 1032 | // be used for cache control. |
| 1033 | assert(MI->mayLoad() ^ MI->mayStore()); |
| 1034 | |
| 1035 | // Only update load and store, not LLVM IR atomic read-modify-write |
| 1036 | // instructions. The latter are always marked as volatile so cannot sensibly |
| 1037 | // handle it as do not want to pessimize all atomics. Also they do not support |
| 1038 | // the nontemporal attribute. |
| 1039 | assert(Op == SIMemOp::LOAD || Op == SIMemOp::STORE); |
| 1040 | |
| 1041 | bool Changed = false; |
| 1042 | |
| 1043 | if (IsVolatile) { |
| 1044 | // Set L1 cache policy to be MISS_EVICT for load instructions |
| 1045 | // and MISS_LRU for store instructions. |
| 1046 | // Note: there is no L2 cache bypass policy at the ISA level. |
| 1047 | if (Op == SIMemOp::LOAD) |
| 1048 | Changed |= enableGLCBit(MI); |
| 1049 | |
| 1050 | // Ensure operation has completed at system scope to cause all volatile |
| 1051 | // operations to be visible outside the program in a global order. Do not |
| 1052 | // request cross address space as only the global address space can be |
| 1053 | // observable outside the program, so no need to cause a waitcnt for LDS |
| 1054 | // address space operations. |
| 1055 | Changed |= insertWait(MI, Scope: SIAtomicScope::SYSTEM, AddrSpace, Op, IsCrossAddrSpaceOrdering: false, |
| 1056 | Pos: Position::AFTER, Order: AtomicOrdering::Unordered); |
| 1057 | |
| 1058 | return Changed; |
| 1059 | } |
| 1060 | |
| 1061 | if (IsNonTemporal) { |
| 1062 | // Setting both GLC and SLC configures L1 cache policy to MISS_EVICT |
| 1063 | // for both loads and stores, and the L2 cache policy to STREAM. |
| 1064 | Changed |= enableGLCBit(MI); |
| 1065 | Changed |= enableSLCBit(MI); |
| 1066 | return Changed; |
| 1067 | } |
| 1068 | |
| 1069 | return Changed; |
| 1070 | } |
| 1071 | |
| 1072 | bool SIGfx6CacheControl::insertWait(MachineBasicBlock::iterator &MI, |
| 1073 | SIAtomicScope Scope, |
| 1074 | SIAtomicAddrSpace AddrSpace, SIMemOp Op, |
| 1075 | bool IsCrossAddrSpaceOrdering, Position Pos, |
| 1076 | AtomicOrdering Order) const { |
| 1077 | bool Changed = false; |
| 1078 | |
| 1079 | MachineBasicBlock &MBB = *MI->getParent(); |
| 1080 | DebugLoc DL = MI->getDebugLoc(); |
| 1081 | |
| 1082 | if (Pos == Position::AFTER) |
| 1083 | ++MI; |
| 1084 | |
| 1085 | bool VMCnt = false; |
| 1086 | bool LGKMCnt = false; |
| 1087 | |
| 1088 | if ((AddrSpace & (SIAtomicAddrSpace::GLOBAL | SIAtomicAddrSpace::SCRATCH)) != |
| 1089 | SIAtomicAddrSpace::NONE) { |
| 1090 | switch (Scope) { |
| 1091 | case SIAtomicScope::SYSTEM: |
| 1092 | case SIAtomicScope::AGENT: |
| 1093 | VMCnt |= true; |
| 1094 | break; |
| 1095 | case SIAtomicScope::WORKGROUP: |
| 1096 | case SIAtomicScope::WAVEFRONT: |
| 1097 | case SIAtomicScope::SINGLETHREAD: |
| 1098 | // The L1 cache keeps all memory operations in order for |
| 1099 | // wavefronts in the same work-group. |
| 1100 | break; |
| 1101 | default: |
| 1102 | llvm_unreachable("Unsupported synchronization scope" ); |
| 1103 | } |
| 1104 | } |
| 1105 | |
| 1106 | if ((AddrSpace & SIAtomicAddrSpace::LDS) != SIAtomicAddrSpace::NONE) { |
| 1107 | switch (Scope) { |
| 1108 | case SIAtomicScope::SYSTEM: |
| 1109 | case SIAtomicScope::AGENT: |
| 1110 | case SIAtomicScope::WORKGROUP: |
| 1111 | // If no cross address space ordering then an "S_WAITCNT lgkmcnt(0)" is |
| 1112 | // not needed as LDS operations for all waves are executed in a total |
| 1113 | // global ordering as observed by all waves. Required if also |
| 1114 | // synchronizing with global/GDS memory as LDS operations could be |
| 1115 | // reordered with respect to later global/GDS memory operations of the |
| 1116 | // same wave. |
| 1117 | LGKMCnt |= IsCrossAddrSpaceOrdering; |
| 1118 | break; |
| 1119 | case SIAtomicScope::WAVEFRONT: |
| 1120 | case SIAtomicScope::SINGLETHREAD: |
| 1121 | // The LDS keeps all memory operations in order for |
| 1122 | // the same wavefront. |
| 1123 | break; |
| 1124 | default: |
| 1125 | llvm_unreachable("Unsupported synchronization scope" ); |
| 1126 | } |
| 1127 | } |
| 1128 | |
| 1129 | if ((AddrSpace & SIAtomicAddrSpace::GDS) != SIAtomicAddrSpace::NONE) { |
| 1130 | switch (Scope) { |
| 1131 | case SIAtomicScope::SYSTEM: |
| 1132 | case SIAtomicScope::AGENT: |
| 1133 | // If no cross address space ordering then an GDS "S_WAITCNT lgkmcnt(0)" |
| 1134 | // is not needed as GDS operations for all waves are executed in a total |
| 1135 | // global ordering as observed by all waves. Required if also |
| 1136 | // synchronizing with global/LDS memory as GDS operations could be |
| 1137 | // reordered with respect to later global/LDS memory operations of the |
| 1138 | // same wave. |
| 1139 | LGKMCnt |= IsCrossAddrSpaceOrdering; |
| 1140 | break; |
| 1141 | case SIAtomicScope::WORKGROUP: |
| 1142 | case SIAtomicScope::WAVEFRONT: |
| 1143 | case SIAtomicScope::SINGLETHREAD: |
| 1144 | // The GDS keeps all memory operations in order for |
| 1145 | // the same work-group. |
| 1146 | break; |
| 1147 | default: |
| 1148 | llvm_unreachable("Unsupported synchronization scope" ); |
| 1149 | } |
| 1150 | } |
| 1151 | |
| 1152 | if (VMCnt || LGKMCnt) { |
| 1153 | unsigned WaitCntImmediate = |
| 1154 | AMDGPU::encodeWaitcnt(Version: IV, |
| 1155 | Vmcnt: VMCnt ? 0 : getVmcntBitMask(Version: IV), |
| 1156 | Expcnt: getExpcntBitMask(Version: IV), |
| 1157 | Lgkmcnt: LGKMCnt ? 0 : getLgkmcntBitMask(Version: IV)); |
| 1158 | BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: TII->get(Opcode: AMDGPU::S_WAITCNT_soft)) |
| 1159 | .addImm(Val: WaitCntImmediate); |
| 1160 | Changed = true; |
| 1161 | } |
| 1162 | |
| 1163 | if (Pos == Position::AFTER) |
| 1164 | --MI; |
| 1165 | |
| 1166 | return Changed; |
| 1167 | } |
| 1168 | |
| 1169 | bool SIGfx6CacheControl::insertAcquire(MachineBasicBlock::iterator &MI, |
| 1170 | SIAtomicScope Scope, |
| 1171 | SIAtomicAddrSpace AddrSpace, |
| 1172 | Position Pos) const { |
| 1173 | if (!InsertCacheInv) |
| 1174 | return false; |
| 1175 | |
| 1176 | bool Changed = false; |
| 1177 | |
| 1178 | MachineBasicBlock &MBB = *MI->getParent(); |
| 1179 | DebugLoc DL = MI->getDebugLoc(); |
| 1180 | |
| 1181 | if (Pos == Position::AFTER) |
| 1182 | ++MI; |
| 1183 | |
| 1184 | if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { |
| 1185 | switch (Scope) { |
| 1186 | case SIAtomicScope::SYSTEM: |
| 1187 | case SIAtomicScope::AGENT: |
| 1188 | BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: TII->get(Opcode: AMDGPU::BUFFER_WBINVL1)); |
| 1189 | Changed = true; |
| 1190 | break; |
| 1191 | case SIAtomicScope::WORKGROUP: |
| 1192 | case SIAtomicScope::WAVEFRONT: |
| 1193 | case SIAtomicScope::SINGLETHREAD: |
| 1194 | // No cache to invalidate. |
| 1195 | break; |
| 1196 | default: |
| 1197 | llvm_unreachable("Unsupported synchronization scope" ); |
| 1198 | } |
| 1199 | } |
| 1200 | |
| 1201 | /// The scratch address space does not need the global memory cache |
| 1202 | /// to be flushed as all memory operations by the same thread are |
| 1203 | /// sequentially consistent, and no other thread can access scratch |
| 1204 | /// memory. |
| 1205 | |
| 1206 | /// Other address spaces do not have a cache. |
| 1207 | |
| 1208 | if (Pos == Position::AFTER) |
| 1209 | --MI; |
| 1210 | |
| 1211 | return Changed; |
| 1212 | } |
| 1213 | |
| 1214 | bool SIGfx6CacheControl::insertRelease(MachineBasicBlock::iterator &MI, |
| 1215 | SIAtomicScope Scope, |
| 1216 | SIAtomicAddrSpace AddrSpace, |
| 1217 | bool IsCrossAddrSpaceOrdering, |
| 1218 | Position Pos) const { |
| 1219 | return insertWait(MI, Scope, AddrSpace, Op: SIMemOp::LOAD | SIMemOp::STORE, |
| 1220 | IsCrossAddrSpaceOrdering, Pos, Order: AtomicOrdering::Release); |
| 1221 | } |
| 1222 | |
| 1223 | bool SIGfx7CacheControl::insertAcquire(MachineBasicBlock::iterator &MI, |
| 1224 | SIAtomicScope Scope, |
| 1225 | SIAtomicAddrSpace AddrSpace, |
| 1226 | Position Pos) const { |
| 1227 | if (!InsertCacheInv) |
| 1228 | return false; |
| 1229 | |
| 1230 | bool Changed = false; |
| 1231 | |
| 1232 | MachineBasicBlock &MBB = *MI->getParent(); |
| 1233 | DebugLoc DL = MI->getDebugLoc(); |
| 1234 | |
| 1235 | const GCNSubtarget &STM = MBB.getParent()->getSubtarget<GCNSubtarget>(); |
| 1236 | |
| 1237 | const unsigned InvalidateL1 = STM.isAmdPalOS() || STM.isMesa3DOS() |
| 1238 | ? AMDGPU::BUFFER_WBINVL1 |
| 1239 | : AMDGPU::BUFFER_WBINVL1_VOL; |
| 1240 | |
| 1241 | if (Pos == Position::AFTER) |
| 1242 | ++MI; |
| 1243 | |
| 1244 | if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { |
| 1245 | switch (Scope) { |
| 1246 | case SIAtomicScope::SYSTEM: |
| 1247 | case SIAtomicScope::AGENT: |
| 1248 | BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: TII->get(Opcode: InvalidateL1)); |
| 1249 | Changed = true; |
| 1250 | break; |
| 1251 | case SIAtomicScope::WORKGROUP: |
| 1252 | case SIAtomicScope::WAVEFRONT: |
| 1253 | case SIAtomicScope::SINGLETHREAD: |
| 1254 | // No cache to invalidate. |
| 1255 | break; |
| 1256 | default: |
| 1257 | llvm_unreachable("Unsupported synchronization scope" ); |
| 1258 | } |
| 1259 | } |
| 1260 | |
| 1261 | /// The scratch address space does not need the global memory cache |
| 1262 | /// to be flushed as all memory operations by the same thread are |
| 1263 | /// sequentially consistent, and no other thread can access scratch |
| 1264 | /// memory. |
| 1265 | |
| 1266 | /// Other address spaces do not have a cache. |
| 1267 | |
| 1268 | if (Pos == Position::AFTER) |
| 1269 | --MI; |
| 1270 | |
| 1271 | return Changed; |
| 1272 | } |
| 1273 | |
| 1274 | bool SIGfx90ACacheControl::enableLoadCacheBypass( |
| 1275 | const MachineBasicBlock::iterator &MI, |
| 1276 | SIAtomicScope Scope, |
| 1277 | SIAtomicAddrSpace AddrSpace) const { |
| 1278 | assert(MI->mayLoad() && !MI->mayStore()); |
| 1279 | bool Changed = false; |
| 1280 | |
| 1281 | if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { |
| 1282 | switch (Scope) { |
| 1283 | case SIAtomicScope::SYSTEM: |
| 1284 | case SIAtomicScope::AGENT: |
| 1285 | // Set the L1 cache policy to MISS_LRU. |
| 1286 | // Note: there is no L2 cache bypass policy at the ISA level. |
| 1287 | Changed |= enableGLCBit(MI); |
| 1288 | break; |
| 1289 | case SIAtomicScope::WORKGROUP: |
| 1290 | // In threadgroup split mode the waves of a work-group can be executing on |
| 1291 | // different CUs. Therefore need to bypass the L1 which is per CU. |
| 1292 | // Otherwise in non-threadgroup split mode all waves of a work-group are |
| 1293 | // on the same CU, and so the L1 does not need to be bypassed. |
| 1294 | if (ST.isTgSplitEnabled()) |
| 1295 | Changed |= enableGLCBit(MI); |
| 1296 | break; |
| 1297 | case SIAtomicScope::WAVEFRONT: |
| 1298 | case SIAtomicScope::SINGLETHREAD: |
| 1299 | // No cache to bypass. |
| 1300 | break; |
| 1301 | default: |
| 1302 | llvm_unreachable("Unsupported synchronization scope" ); |
| 1303 | } |
| 1304 | } |
| 1305 | |
| 1306 | /// The scratch address space does not need the global memory caches |
| 1307 | /// to be bypassed as all memory operations by the same thread are |
| 1308 | /// sequentially consistent, and no other thread can access scratch |
| 1309 | /// memory. |
| 1310 | |
| 1311 | /// Other address spaces do not have a cache. |
| 1312 | |
| 1313 | return Changed; |
| 1314 | } |
| 1315 | |
| 1316 | bool SIGfx90ACacheControl::enableStoreCacheBypass( |
| 1317 | const MachineBasicBlock::iterator &MI, |
| 1318 | SIAtomicScope Scope, |
| 1319 | SIAtomicAddrSpace AddrSpace) const { |
| 1320 | assert(!MI->mayLoad() && MI->mayStore()); |
| 1321 | bool Changed = false; |
| 1322 | |
| 1323 | if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { |
| 1324 | switch (Scope) { |
| 1325 | case SIAtomicScope::SYSTEM: |
| 1326 | case SIAtomicScope::AGENT: |
| 1327 | /// Do not set glc for store atomic operations as they implicitly write |
| 1328 | /// through the L1 cache. |
| 1329 | break; |
| 1330 | case SIAtomicScope::WORKGROUP: |
| 1331 | case SIAtomicScope::WAVEFRONT: |
| 1332 | case SIAtomicScope::SINGLETHREAD: |
| 1333 | // No cache to bypass. Store atomics implicitly write through the L1 |
| 1334 | // cache. |
| 1335 | break; |
| 1336 | default: |
| 1337 | llvm_unreachable("Unsupported synchronization scope" ); |
| 1338 | } |
| 1339 | } |
| 1340 | |
| 1341 | /// The scratch address space does not need the global memory caches |
| 1342 | /// to be bypassed as all memory operations by the same thread are |
| 1343 | /// sequentially consistent, and no other thread can access scratch |
| 1344 | /// memory. |
| 1345 | |
| 1346 | /// Other address spaces do not have a cache. |
| 1347 | |
| 1348 | return Changed; |
| 1349 | } |
| 1350 | |
| 1351 | bool SIGfx90ACacheControl::enableRMWCacheBypass( |
| 1352 | const MachineBasicBlock::iterator &MI, |
| 1353 | SIAtomicScope Scope, |
| 1354 | SIAtomicAddrSpace AddrSpace) const { |
| 1355 | assert(MI->mayLoad() && MI->mayStore()); |
| 1356 | bool Changed = false; |
| 1357 | |
| 1358 | if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { |
| 1359 | switch (Scope) { |
| 1360 | case SIAtomicScope::SYSTEM: |
| 1361 | case SIAtomicScope::AGENT: |
| 1362 | /// Do not set glc for RMW atomic operations as they implicitly bypass |
| 1363 | /// the L1 cache, and the glc bit is instead used to indicate if they are |
| 1364 | /// return or no-return. |
| 1365 | break; |
| 1366 | case SIAtomicScope::WORKGROUP: |
| 1367 | case SIAtomicScope::WAVEFRONT: |
| 1368 | case SIAtomicScope::SINGLETHREAD: |
| 1369 | // No cache to bypass. RMW atomics implicitly bypass the L1 cache. |
| 1370 | break; |
| 1371 | default: |
| 1372 | llvm_unreachable("Unsupported synchronization scope" ); |
| 1373 | } |
| 1374 | } |
| 1375 | |
| 1376 | return Changed; |
| 1377 | } |
| 1378 | |
| 1379 | bool SIGfx90ACacheControl::enableVolatileAndOrNonTemporal( |
| 1380 | MachineBasicBlock::iterator &MI, SIAtomicAddrSpace AddrSpace, SIMemOp Op, |
| 1381 | bool IsVolatile, bool IsNonTemporal, bool IsLastUse = false) const { |
| 1382 | // Only handle load and store, not atomic read-modify-write insructions. The |
| 1383 | // latter use glc to indicate if the atomic returns a result and so must not |
| 1384 | // be used for cache control. |
| 1385 | assert(MI->mayLoad() ^ MI->mayStore()); |
| 1386 | |
| 1387 | // Only update load and store, not LLVM IR atomic read-modify-write |
| 1388 | // instructions. The latter are always marked as volatile so cannot sensibly |
| 1389 | // handle it as do not want to pessimize all atomics. Also they do not support |
| 1390 | // the nontemporal attribute. |
| 1391 | assert(Op == SIMemOp::LOAD || Op == SIMemOp::STORE); |
| 1392 | |
| 1393 | bool Changed = false; |
| 1394 | |
| 1395 | if (IsVolatile) { |
| 1396 | // Set L1 cache policy to be MISS_EVICT for load instructions |
| 1397 | // and MISS_LRU for store instructions. |
| 1398 | // Note: there is no L2 cache bypass policy at the ISA level. |
| 1399 | if (Op == SIMemOp::LOAD) |
| 1400 | Changed |= enableGLCBit(MI); |
| 1401 | |
| 1402 | // Ensure operation has completed at system scope to cause all volatile |
| 1403 | // operations to be visible outside the program in a global order. Do not |
| 1404 | // request cross address space as only the global address space can be |
| 1405 | // observable outside the program, so no need to cause a waitcnt for LDS |
| 1406 | // address space operations. |
| 1407 | Changed |= insertWait(MI, Scope: SIAtomicScope::SYSTEM, AddrSpace, Op, IsCrossAddrSpaceOrdering: false, |
| 1408 | Pos: Position::AFTER, Order: AtomicOrdering::Unordered); |
| 1409 | |
| 1410 | return Changed; |
| 1411 | } |
| 1412 | |
| 1413 | if (IsNonTemporal) { |
| 1414 | // Setting both GLC and SLC configures L1 cache policy to MISS_EVICT |
| 1415 | // for both loads and stores, and the L2 cache policy to STREAM. |
| 1416 | Changed |= enableGLCBit(MI); |
| 1417 | Changed |= enableSLCBit(MI); |
| 1418 | return Changed; |
| 1419 | } |
| 1420 | |
| 1421 | return Changed; |
| 1422 | } |
| 1423 | |
| 1424 | bool SIGfx90ACacheControl::insertWait(MachineBasicBlock::iterator &MI, |
| 1425 | SIAtomicScope Scope, |
| 1426 | SIAtomicAddrSpace AddrSpace, SIMemOp Op, |
| 1427 | bool IsCrossAddrSpaceOrdering, |
| 1428 | Position Pos, |
| 1429 | AtomicOrdering Order) const { |
| 1430 | if (ST.isTgSplitEnabled()) { |
| 1431 | // In threadgroup split mode the waves of a work-group can be executing on |
| 1432 | // different CUs. Therefore need to wait for global or GDS memory operations |
| 1433 | // to complete to ensure they are visible to waves in the other CUs. |
| 1434 | // Otherwise in non-threadgroup split mode all waves of a work-group are on |
| 1435 | // the same CU, so no need to wait for global memory as all waves in the |
| 1436 | // work-group access the same the L1, nor wait for GDS as access are ordered |
| 1437 | // on a CU. |
| 1438 | if (((AddrSpace & (SIAtomicAddrSpace::GLOBAL | SIAtomicAddrSpace::SCRATCH | |
| 1439 | SIAtomicAddrSpace::GDS)) != SIAtomicAddrSpace::NONE) && |
| 1440 | (Scope == SIAtomicScope::WORKGROUP)) { |
| 1441 | // Same as GFX7 using agent scope. |
| 1442 | Scope = SIAtomicScope::AGENT; |
| 1443 | } |
| 1444 | // In threadgroup split mode LDS cannot be allocated so no need to wait for |
| 1445 | // LDS memory operations. |
| 1446 | AddrSpace &= ~SIAtomicAddrSpace::LDS; |
| 1447 | } |
| 1448 | return SIGfx7CacheControl::insertWait(MI, Scope, AddrSpace, Op, |
| 1449 | IsCrossAddrSpaceOrdering, Pos, Order); |
| 1450 | } |
| 1451 | |
| 1452 | bool SIGfx90ACacheControl::insertAcquire(MachineBasicBlock::iterator &MI, |
| 1453 | SIAtomicScope Scope, |
| 1454 | SIAtomicAddrSpace AddrSpace, |
| 1455 | Position Pos) const { |
| 1456 | if (!InsertCacheInv) |
| 1457 | return false; |
| 1458 | |
| 1459 | bool Changed = false; |
| 1460 | |
| 1461 | MachineBasicBlock &MBB = *MI->getParent(); |
| 1462 | DebugLoc DL = MI->getDebugLoc(); |
| 1463 | |
| 1464 | if (Pos == Position::AFTER) |
| 1465 | ++MI; |
| 1466 | |
| 1467 | if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { |
| 1468 | switch (Scope) { |
| 1469 | case SIAtomicScope::SYSTEM: |
| 1470 | // Ensures that following loads will not see stale remote VMEM data or |
| 1471 | // stale local VMEM data with MTYPE NC. Local VMEM data with MTYPE RW and |
| 1472 | // CC will never be stale due to the local memory probes. |
| 1473 | BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: TII->get(Opcode: AMDGPU::BUFFER_INVL2)); |
| 1474 | // Inserting a "S_WAITCNT vmcnt(0)" after is not required because the |
| 1475 | // hardware does not reorder memory operations by the same wave with |
| 1476 | // respect to a preceding "BUFFER_INVL2". The invalidate is guaranteed to |
| 1477 | // remove any cache lines of earlier writes by the same wave and ensures |
| 1478 | // later reads by the same wave will refetch the cache lines. |
| 1479 | Changed = true; |
| 1480 | break; |
| 1481 | case SIAtomicScope::AGENT: |
| 1482 | // Same as GFX7. |
| 1483 | break; |
| 1484 | case SIAtomicScope::WORKGROUP: |
| 1485 | // In threadgroup split mode the waves of a work-group can be executing on |
| 1486 | // different CUs. Therefore need to invalidate the L1 which is per CU. |
| 1487 | // Otherwise in non-threadgroup split mode all waves of a work-group are |
| 1488 | // on the same CU, and so the L1 does not need to be invalidated. |
| 1489 | if (ST.isTgSplitEnabled()) { |
| 1490 | // Same as GFX7 using agent scope. |
| 1491 | Scope = SIAtomicScope::AGENT; |
| 1492 | } |
| 1493 | break; |
| 1494 | case SIAtomicScope::WAVEFRONT: |
| 1495 | case SIAtomicScope::SINGLETHREAD: |
| 1496 | // Same as GFX7. |
| 1497 | break; |
| 1498 | default: |
| 1499 | llvm_unreachable("Unsupported synchronization scope" ); |
| 1500 | } |
| 1501 | } |
| 1502 | |
| 1503 | /// The scratch address space does not need the global memory cache |
| 1504 | /// to be flushed as all memory operations by the same thread are |
| 1505 | /// sequentially consistent, and no other thread can access scratch |
| 1506 | /// memory. |
| 1507 | |
| 1508 | /// Other address spaces do not have a cache. |
| 1509 | |
| 1510 | if (Pos == Position::AFTER) |
| 1511 | --MI; |
| 1512 | |
| 1513 | Changed |= SIGfx7CacheControl::insertAcquire(MI, Scope, AddrSpace, Pos); |
| 1514 | |
| 1515 | return Changed; |
| 1516 | } |
| 1517 | |
| 1518 | bool SIGfx90ACacheControl::insertRelease(MachineBasicBlock::iterator &MI, |
| 1519 | SIAtomicScope Scope, |
| 1520 | SIAtomicAddrSpace AddrSpace, |
| 1521 | bool IsCrossAddrSpaceOrdering, |
| 1522 | Position Pos) const { |
| 1523 | bool Changed = false; |
| 1524 | |
| 1525 | MachineBasicBlock &MBB = *MI->getParent(); |
| 1526 | const DebugLoc &DL = MI->getDebugLoc(); |
| 1527 | |
| 1528 | if (Pos == Position::AFTER) |
| 1529 | ++MI; |
| 1530 | |
| 1531 | if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { |
| 1532 | switch (Scope) { |
| 1533 | case SIAtomicScope::SYSTEM: |
| 1534 | // Inserting a "S_WAITCNT vmcnt(0)" before is not required because the |
| 1535 | // hardware does not reorder memory operations by the same wave with |
| 1536 | // respect to a following "BUFFER_WBL2". The "BUFFER_WBL2" is guaranteed |
| 1537 | // to initiate writeback of any dirty cache lines of earlier writes by the |
| 1538 | // same wave. A "S_WAITCNT vmcnt(0)" is needed after to ensure the |
| 1539 | // writeback has completed. |
| 1540 | BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: TII->get(Opcode: AMDGPU::BUFFER_WBL2)) |
| 1541 | // Set SC bits to indicate system scope. |
| 1542 | .addImm(Val: AMDGPU::CPol::SC0 | AMDGPU::CPol::SC1); |
| 1543 | // Followed by same as GFX7, which will ensure the necessary "S_WAITCNT |
| 1544 | // vmcnt(0)" needed by the "BUFFER_WBL2". |
| 1545 | Changed = true; |
| 1546 | break; |
| 1547 | case SIAtomicScope::AGENT: |
| 1548 | case SIAtomicScope::WORKGROUP: |
| 1549 | case SIAtomicScope::WAVEFRONT: |
| 1550 | case SIAtomicScope::SINGLETHREAD: |
| 1551 | // Same as GFX7. |
| 1552 | break; |
| 1553 | default: |
| 1554 | llvm_unreachable("Unsupported synchronization scope" ); |
| 1555 | } |
| 1556 | } |
| 1557 | |
| 1558 | if (Pos == Position::AFTER) |
| 1559 | --MI; |
| 1560 | |
| 1561 | Changed |= |
| 1562 | SIGfx7CacheControl::insertRelease(MI, Scope, AddrSpace, |
| 1563 | IsCrossAddrSpaceOrdering, Pos); |
| 1564 | |
| 1565 | return Changed; |
| 1566 | } |
| 1567 | |
| 1568 | bool SIGfx940CacheControl::enableLoadCacheBypass( |
| 1569 | const MachineBasicBlock::iterator &MI, SIAtomicScope Scope, |
| 1570 | SIAtomicAddrSpace AddrSpace) const { |
| 1571 | assert(MI->mayLoad() && !MI->mayStore()); |
| 1572 | bool Changed = false; |
| 1573 | |
| 1574 | if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { |
| 1575 | switch (Scope) { |
| 1576 | case SIAtomicScope::SYSTEM: |
| 1577 | // Set SC bits to indicate system scope. |
| 1578 | Changed |= enableSC0Bit(MI); |
| 1579 | Changed |= enableSC1Bit(MI); |
| 1580 | break; |
| 1581 | case SIAtomicScope::AGENT: |
| 1582 | // Set SC bits to indicate agent scope. |
| 1583 | Changed |= enableSC1Bit(MI); |
| 1584 | break; |
| 1585 | case SIAtomicScope::WORKGROUP: |
| 1586 | // In threadgroup split mode the waves of a work-group can be executing on |
| 1587 | // different CUs. Therefore need to bypass the L1 which is per CU. |
| 1588 | // Otherwise in non-threadgroup split mode all waves of a work-group are |
| 1589 | // on the same CU, and so the L1 does not need to be bypassed. Setting SC |
| 1590 | // bits to indicate work-group scope will do this automatically. |
| 1591 | Changed |= enableSC0Bit(MI); |
| 1592 | break; |
| 1593 | case SIAtomicScope::WAVEFRONT: |
| 1594 | case SIAtomicScope::SINGLETHREAD: |
| 1595 | // Leave SC bits unset to indicate wavefront scope. |
| 1596 | break; |
| 1597 | default: |
| 1598 | llvm_unreachable("Unsupported synchronization scope" ); |
| 1599 | } |
| 1600 | } |
| 1601 | |
| 1602 | /// The scratch address space does not need the global memory caches |
| 1603 | /// to be bypassed as all memory operations by the same thread are |
| 1604 | /// sequentially consistent, and no other thread can access scratch |
| 1605 | /// memory. |
| 1606 | |
| 1607 | /// Other address spaces do not have a cache. |
| 1608 | |
| 1609 | return Changed; |
| 1610 | } |
| 1611 | |
| 1612 | bool SIGfx940CacheControl::enableStoreCacheBypass( |
| 1613 | const MachineBasicBlock::iterator &MI, |
| 1614 | SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace) const { |
| 1615 | assert(!MI->mayLoad() && MI->mayStore()); |
| 1616 | bool Changed = false; |
| 1617 | |
| 1618 | if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { |
| 1619 | switch (Scope) { |
| 1620 | case SIAtomicScope::SYSTEM: |
| 1621 | // Set SC bits to indicate system scope. |
| 1622 | Changed |= enableSC0Bit(MI); |
| 1623 | Changed |= enableSC1Bit(MI); |
| 1624 | break; |
| 1625 | case SIAtomicScope::AGENT: |
| 1626 | // Set SC bits to indicate agent scope. |
| 1627 | Changed |= enableSC1Bit(MI); |
| 1628 | break; |
| 1629 | case SIAtomicScope::WORKGROUP: |
| 1630 | // Set SC bits to indicate workgroup scope. |
| 1631 | Changed |= enableSC0Bit(MI); |
| 1632 | break; |
| 1633 | case SIAtomicScope::WAVEFRONT: |
| 1634 | case SIAtomicScope::SINGLETHREAD: |
| 1635 | // Leave SC bits unset to indicate wavefront scope. |
| 1636 | break; |
| 1637 | default: |
| 1638 | llvm_unreachable("Unsupported synchronization scope" ); |
| 1639 | } |
| 1640 | } |
| 1641 | |
| 1642 | /// The scratch address space does not need the global memory caches |
| 1643 | /// to be bypassed as all memory operations by the same thread are |
| 1644 | /// sequentially consistent, and no other thread can access scratch |
| 1645 | /// memory. |
| 1646 | |
| 1647 | /// Other address spaces do not have a cache. |
| 1648 | |
| 1649 | return Changed; |
| 1650 | } |
| 1651 | |
| 1652 | bool SIGfx940CacheControl::enableRMWCacheBypass( |
| 1653 | const MachineBasicBlock::iterator &MI, SIAtomicScope Scope, |
| 1654 | SIAtomicAddrSpace AddrSpace) const { |
| 1655 | assert(MI->mayLoad() && MI->mayStore()); |
| 1656 | bool Changed = false; |
| 1657 | |
| 1658 | if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { |
| 1659 | switch (Scope) { |
| 1660 | case SIAtomicScope::SYSTEM: |
| 1661 | // Set SC1 bit to indicate system scope. |
| 1662 | Changed |= enableSC1Bit(MI); |
| 1663 | break; |
| 1664 | case SIAtomicScope::AGENT: |
| 1665 | case SIAtomicScope::WORKGROUP: |
| 1666 | case SIAtomicScope::WAVEFRONT: |
| 1667 | case SIAtomicScope::SINGLETHREAD: |
| 1668 | // RMW atomic operations implicitly bypass the L1 cache and only use SC1 |
| 1669 | // to indicate system or agent scope. The SC0 bit is used to indicate if |
| 1670 | // they are return or no-return. Leave SC1 bit unset to indicate agent |
| 1671 | // scope. |
| 1672 | break; |
| 1673 | default: |
| 1674 | llvm_unreachable("Unsupported synchronization scope" ); |
| 1675 | } |
| 1676 | } |
| 1677 | |
| 1678 | return Changed; |
| 1679 | } |
| 1680 | |
| 1681 | bool SIGfx940CacheControl::enableVolatileAndOrNonTemporal( |
| 1682 | MachineBasicBlock::iterator &MI, SIAtomicAddrSpace AddrSpace, SIMemOp Op, |
| 1683 | bool IsVolatile, bool IsNonTemporal, bool IsLastUse = false) const { |
| 1684 | // Only handle load and store, not atomic read-modify-write insructions. The |
| 1685 | // latter use glc to indicate if the atomic returns a result and so must not |
| 1686 | // be used for cache control. |
| 1687 | assert(MI->mayLoad() ^ MI->mayStore()); |
| 1688 | |
| 1689 | // Only update load and store, not LLVM IR atomic read-modify-write |
| 1690 | // instructions. The latter are always marked as volatile so cannot sensibly |
| 1691 | // handle it as do not want to pessimize all atomics. Also they do not support |
| 1692 | // the nontemporal attribute. |
| 1693 | assert(Op == SIMemOp::LOAD || Op == SIMemOp::STORE); |
| 1694 | |
| 1695 | bool Changed = false; |
| 1696 | |
| 1697 | if (IsVolatile) { |
| 1698 | // Set SC bits to indicate system scope. |
| 1699 | Changed |= enableSC0Bit(MI); |
| 1700 | Changed |= enableSC1Bit(MI); |
| 1701 | |
| 1702 | // Ensure operation has completed at system scope to cause all volatile |
| 1703 | // operations to be visible outside the program in a global order. Do not |
| 1704 | // request cross address space as only the global address space can be |
| 1705 | // observable outside the program, so no need to cause a waitcnt for LDS |
| 1706 | // address space operations. |
| 1707 | Changed |= insertWait(MI, Scope: SIAtomicScope::SYSTEM, AddrSpace, Op, IsCrossAddrSpaceOrdering: false, |
| 1708 | Pos: Position::AFTER, Order: AtomicOrdering::Unordered); |
| 1709 | |
| 1710 | return Changed; |
| 1711 | } |
| 1712 | |
| 1713 | if (IsNonTemporal) { |
| 1714 | Changed |= enableNTBit(MI); |
| 1715 | return Changed; |
| 1716 | } |
| 1717 | |
| 1718 | return Changed; |
| 1719 | } |
| 1720 | |
| 1721 | bool SIGfx940CacheControl::insertAcquire(MachineBasicBlock::iterator &MI, |
| 1722 | SIAtomicScope Scope, |
| 1723 | SIAtomicAddrSpace AddrSpace, |
| 1724 | Position Pos) const { |
| 1725 | if (!InsertCacheInv) |
| 1726 | return false; |
| 1727 | |
| 1728 | bool Changed = false; |
| 1729 | |
| 1730 | MachineBasicBlock &MBB = *MI->getParent(); |
| 1731 | DebugLoc DL = MI->getDebugLoc(); |
| 1732 | |
| 1733 | if (Pos == Position::AFTER) |
| 1734 | ++MI; |
| 1735 | |
| 1736 | if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { |
| 1737 | switch (Scope) { |
| 1738 | case SIAtomicScope::SYSTEM: |
| 1739 | // Ensures that following loads will not see stale remote VMEM data or |
| 1740 | // stale local VMEM data with MTYPE NC. Local VMEM data with MTYPE RW and |
| 1741 | // CC will never be stale due to the local memory probes. |
| 1742 | BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: TII->get(Opcode: AMDGPU::BUFFER_INV)) |
| 1743 | // Set SC bits to indicate system scope. |
| 1744 | .addImm(Val: AMDGPU::CPol::SC0 | AMDGPU::CPol::SC1); |
| 1745 | // Inserting a "S_WAITCNT vmcnt(0)" after is not required because the |
| 1746 | // hardware does not reorder memory operations by the same wave with |
| 1747 | // respect to a preceding "BUFFER_INV". The invalidate is guaranteed to |
| 1748 | // remove any cache lines of earlier writes by the same wave and ensures |
| 1749 | // later reads by the same wave will refetch the cache lines. |
| 1750 | Changed = true; |
| 1751 | break; |
| 1752 | case SIAtomicScope::AGENT: |
| 1753 | // Ensures that following loads will not see stale remote date or local |
| 1754 | // MTYPE NC global data. Local MTYPE RW and CC memory will never be stale |
| 1755 | // due to the memory probes. |
| 1756 | BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: TII->get(Opcode: AMDGPU::BUFFER_INV)) |
| 1757 | // Set SC bits to indicate agent scope. |
| 1758 | .addImm(Val: AMDGPU::CPol::SC1); |
| 1759 | // Inserting "S_WAITCNT vmcnt(0)" is not required because the hardware |
| 1760 | // does not reorder memory operations with respect to preceeding buffer |
| 1761 | // invalidate. The invalidate is guaranteed to remove any cache lines of |
| 1762 | // earlier writes and ensures later writes will refetch the cache lines. |
| 1763 | Changed = true; |
| 1764 | break; |
| 1765 | case SIAtomicScope::WORKGROUP: |
| 1766 | // In threadgroup split mode the waves of a work-group can be executing on |
| 1767 | // different CUs. Therefore need to invalidate the L1 which is per CU. |
| 1768 | // Otherwise in non-threadgroup split mode all waves of a work-group are |
| 1769 | // on the same CU, and so the L1 does not need to be invalidated. |
| 1770 | if (ST.isTgSplitEnabled()) { |
| 1771 | // Ensures L1 is invalidated if in threadgroup split mode. In |
| 1772 | // non-threadgroup split mode it is a NOP, but no point generating it in |
| 1773 | // that case if know not in that mode. |
| 1774 | BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: TII->get(Opcode: AMDGPU::BUFFER_INV)) |
| 1775 | // Set SC bits to indicate work-group scope. |
| 1776 | .addImm(Val: AMDGPU::CPol::SC0); |
| 1777 | // Inserting "S_WAITCNT vmcnt(0)" is not required because the hardware |
| 1778 | // does not reorder memory operations with respect to preceeding buffer |
| 1779 | // invalidate. The invalidate is guaranteed to remove any cache lines of |
| 1780 | // earlier writes and ensures later writes will refetch the cache lines. |
| 1781 | Changed = true; |
| 1782 | } |
| 1783 | break; |
| 1784 | case SIAtomicScope::WAVEFRONT: |
| 1785 | case SIAtomicScope::SINGLETHREAD: |
| 1786 | // Could generate "BUFFER_INV" but it would do nothing as there are no |
| 1787 | // caches to invalidate. |
| 1788 | break; |
| 1789 | default: |
| 1790 | llvm_unreachable("Unsupported synchronization scope" ); |
| 1791 | } |
| 1792 | } |
| 1793 | |
| 1794 | /// The scratch address space does not need the global memory cache |
| 1795 | /// to be flushed as all memory operations by the same thread are |
| 1796 | /// sequentially consistent, and no other thread can access scratch |
| 1797 | /// memory. |
| 1798 | |
| 1799 | /// Other address spaces do not have a cache. |
| 1800 | |
| 1801 | if (Pos == Position::AFTER) |
| 1802 | --MI; |
| 1803 | |
| 1804 | return Changed; |
| 1805 | } |
| 1806 | |
| 1807 | bool SIGfx940CacheControl::insertRelease(MachineBasicBlock::iterator &MI, |
| 1808 | SIAtomicScope Scope, |
| 1809 | SIAtomicAddrSpace AddrSpace, |
| 1810 | bool IsCrossAddrSpaceOrdering, |
| 1811 | Position Pos) const { |
| 1812 | bool Changed = false; |
| 1813 | |
| 1814 | MachineBasicBlock &MBB = *MI->getParent(); |
| 1815 | DebugLoc DL = MI->getDebugLoc(); |
| 1816 | |
| 1817 | if (Pos == Position::AFTER) |
| 1818 | ++MI; |
| 1819 | |
| 1820 | if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { |
| 1821 | switch (Scope) { |
| 1822 | case SIAtomicScope::SYSTEM: |
| 1823 | // Inserting a "S_WAITCNT vmcnt(0)" before is not required because the |
| 1824 | // hardware does not reorder memory operations by the same wave with |
| 1825 | // respect to a following "BUFFER_WBL2". The "BUFFER_WBL2" is guaranteed |
| 1826 | // to initiate writeback of any dirty cache lines of earlier writes by the |
| 1827 | // same wave. A "S_WAITCNT vmcnt(0)" is needed after to ensure the |
| 1828 | // writeback has completed. |
| 1829 | BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: TII->get(Opcode: AMDGPU::BUFFER_WBL2)) |
| 1830 | // Set SC bits to indicate system scope. |
| 1831 | .addImm(Val: AMDGPU::CPol::SC0 | AMDGPU::CPol::SC1); |
| 1832 | // Since AddrSpace contains SIAtomicAddrSpace::GLOBAL and Scope is |
| 1833 | // SIAtomicScope::SYSTEM, the following insertWait will generate the |
| 1834 | // required "S_WAITCNT vmcnt(0)" needed by the "BUFFER_WBL2". |
| 1835 | Changed = true; |
| 1836 | break; |
| 1837 | case SIAtomicScope::AGENT: |
| 1838 | BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: TII->get(Opcode: AMDGPU::BUFFER_WBL2)) |
| 1839 | // Set SC bits to indicate agent scope. |
| 1840 | .addImm(Val: AMDGPU::CPol::SC1); |
| 1841 | |
| 1842 | // Since AddrSpace contains SIAtomicAddrSpace::GLOBAL and Scope is |
| 1843 | // SIAtomicScope::AGENT, the following insertWait will generate the |
| 1844 | // required "S_WAITCNT vmcnt(0)". |
| 1845 | Changed = true; |
| 1846 | break; |
| 1847 | case SIAtomicScope::WORKGROUP: |
| 1848 | case SIAtomicScope::WAVEFRONT: |
| 1849 | case SIAtomicScope::SINGLETHREAD: |
| 1850 | // Do not generate "BUFFER_WBL2" as there are no caches it would |
| 1851 | // writeback, and would require an otherwise unnecessary |
| 1852 | // "S_WAITCNT vmcnt(0)". |
| 1853 | break; |
| 1854 | default: |
| 1855 | llvm_unreachable("Unsupported synchronization scope" ); |
| 1856 | } |
| 1857 | } |
| 1858 | |
| 1859 | if (Pos == Position::AFTER) |
| 1860 | --MI; |
| 1861 | |
| 1862 | // Ensure the necessary S_WAITCNT needed by any "BUFFER_WBL2" as well as other |
| 1863 | // S_WAITCNT needed. |
| 1864 | Changed |= insertWait(MI, Scope, AddrSpace, Op: SIMemOp::LOAD | SIMemOp::STORE, |
| 1865 | IsCrossAddrSpaceOrdering, Pos, Order: AtomicOrdering::Release); |
| 1866 | |
| 1867 | return Changed; |
| 1868 | } |
| 1869 | |
| 1870 | bool SIGfx10CacheControl::enableLoadCacheBypass( |
| 1871 | const MachineBasicBlock::iterator &MI, |
| 1872 | SIAtomicScope Scope, |
| 1873 | SIAtomicAddrSpace AddrSpace) const { |
| 1874 | assert(MI->mayLoad() && !MI->mayStore()); |
| 1875 | bool Changed = false; |
| 1876 | |
| 1877 | if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { |
| 1878 | switch (Scope) { |
| 1879 | case SIAtomicScope::SYSTEM: |
| 1880 | case SIAtomicScope::AGENT: |
| 1881 | // Set the L0 and L1 cache policies to MISS_EVICT. |
| 1882 | // Note: there is no L2 cache coherent bypass control at the ISA level. |
| 1883 | Changed |= enableGLCBit(MI); |
| 1884 | Changed |= enableDLCBit(MI); |
| 1885 | break; |
| 1886 | case SIAtomicScope::WORKGROUP: |
| 1887 | // In WGP mode the waves of a work-group can be executing on either CU of |
| 1888 | // the WGP. Therefore need to bypass the L0 which is per CU. Otherwise in |
| 1889 | // CU mode all waves of a work-group are on the same CU, and so the L0 |
| 1890 | // does not need to be bypassed. |
| 1891 | if (!ST.isCuModeEnabled()) |
| 1892 | Changed |= enableGLCBit(MI); |
| 1893 | break; |
| 1894 | case SIAtomicScope::WAVEFRONT: |
| 1895 | case SIAtomicScope::SINGLETHREAD: |
| 1896 | // No cache to bypass. |
| 1897 | break; |
| 1898 | default: |
| 1899 | llvm_unreachable("Unsupported synchronization scope" ); |
| 1900 | } |
| 1901 | } |
| 1902 | |
| 1903 | /// The scratch address space does not need the global memory caches |
| 1904 | /// to be bypassed as all memory operations by the same thread are |
| 1905 | /// sequentially consistent, and no other thread can access scratch |
| 1906 | /// memory. |
| 1907 | |
| 1908 | /// Other address spaces do not have a cache. |
| 1909 | |
| 1910 | return Changed; |
| 1911 | } |
| 1912 | |
| 1913 | bool SIGfx10CacheControl::enableVolatileAndOrNonTemporal( |
| 1914 | MachineBasicBlock::iterator &MI, SIAtomicAddrSpace AddrSpace, SIMemOp Op, |
| 1915 | bool IsVolatile, bool IsNonTemporal, bool IsLastUse = false) const { |
| 1916 | |
| 1917 | // Only handle load and store, not atomic read-modify-write insructions. The |
| 1918 | // latter use glc to indicate if the atomic returns a result and so must not |
| 1919 | // be used for cache control. |
| 1920 | assert(MI->mayLoad() ^ MI->mayStore()); |
| 1921 | |
| 1922 | // Only update load and store, not LLVM IR atomic read-modify-write |
| 1923 | // instructions. The latter are always marked as volatile so cannot sensibly |
| 1924 | // handle it as do not want to pessimize all atomics. Also they do not support |
| 1925 | // the nontemporal attribute. |
| 1926 | assert(Op == SIMemOp::LOAD || Op == SIMemOp::STORE); |
| 1927 | |
| 1928 | bool Changed = false; |
| 1929 | |
| 1930 | if (IsVolatile) { |
| 1931 | // Set L0 and L1 cache policy to be MISS_EVICT for load instructions |
| 1932 | // and MISS_LRU for store instructions. |
| 1933 | // Note: there is no L2 cache coherent bypass control at the ISA level. |
| 1934 | if (Op == SIMemOp::LOAD) { |
| 1935 | Changed |= enableGLCBit(MI); |
| 1936 | Changed |= enableDLCBit(MI); |
| 1937 | } |
| 1938 | |
| 1939 | // Ensure operation has completed at system scope to cause all volatile |
| 1940 | // operations to be visible outside the program in a global order. Do not |
| 1941 | // request cross address space as only the global address space can be |
| 1942 | // observable outside the program, so no need to cause a waitcnt for LDS |
| 1943 | // address space operations. |
| 1944 | Changed |= insertWait(MI, Scope: SIAtomicScope::SYSTEM, AddrSpace, Op, IsCrossAddrSpaceOrdering: false, |
| 1945 | Pos: Position::AFTER, Order: AtomicOrdering::Unordered); |
| 1946 | return Changed; |
| 1947 | } |
| 1948 | |
| 1949 | if (IsNonTemporal) { |
| 1950 | // For loads setting SLC configures L0 and L1 cache policy to HIT_EVICT |
| 1951 | // and L2 cache policy to STREAM. |
| 1952 | // For stores setting both GLC and SLC configures L0 and L1 cache policy |
| 1953 | // to MISS_EVICT and the L2 cache policy to STREAM. |
| 1954 | if (Op == SIMemOp::STORE) |
| 1955 | Changed |= enableGLCBit(MI); |
| 1956 | Changed |= enableSLCBit(MI); |
| 1957 | |
| 1958 | return Changed; |
| 1959 | } |
| 1960 | |
| 1961 | return Changed; |
| 1962 | } |
| 1963 | |
| 1964 | bool SIGfx10CacheControl::insertWait(MachineBasicBlock::iterator &MI, |
| 1965 | SIAtomicScope Scope, |
| 1966 | SIAtomicAddrSpace AddrSpace, SIMemOp Op, |
| 1967 | bool IsCrossAddrSpaceOrdering, |
| 1968 | Position Pos, AtomicOrdering Order) const { |
| 1969 | bool Changed = false; |
| 1970 | |
| 1971 | MachineBasicBlock &MBB = *MI->getParent(); |
| 1972 | DebugLoc DL = MI->getDebugLoc(); |
| 1973 | |
| 1974 | if (Pos == Position::AFTER) |
| 1975 | ++MI; |
| 1976 | |
| 1977 | bool VMCnt = false; |
| 1978 | bool VSCnt = false; |
| 1979 | bool LGKMCnt = false; |
| 1980 | |
| 1981 | if ((AddrSpace & (SIAtomicAddrSpace::GLOBAL | SIAtomicAddrSpace::SCRATCH)) != |
| 1982 | SIAtomicAddrSpace::NONE) { |
| 1983 | switch (Scope) { |
| 1984 | case SIAtomicScope::SYSTEM: |
| 1985 | case SIAtomicScope::AGENT: |
| 1986 | if ((Op & SIMemOp::LOAD) != SIMemOp::NONE) |
| 1987 | VMCnt |= true; |
| 1988 | if ((Op & SIMemOp::STORE) != SIMemOp::NONE) |
| 1989 | VSCnt |= true; |
| 1990 | break; |
| 1991 | case SIAtomicScope::WORKGROUP: |
| 1992 | // In WGP mode the waves of a work-group can be executing on either CU of |
| 1993 | // the WGP. Therefore need to wait for operations to complete to ensure |
| 1994 | // they are visible to waves in the other CU as the L0 is per CU. |
| 1995 | // Otherwise in CU mode and all waves of a work-group are on the same CU |
| 1996 | // which shares the same L0. |
| 1997 | if (!ST.isCuModeEnabled()) { |
| 1998 | if ((Op & SIMemOp::LOAD) != SIMemOp::NONE) |
| 1999 | VMCnt |= true; |
| 2000 | if ((Op & SIMemOp::STORE) != SIMemOp::NONE) |
| 2001 | VSCnt |= true; |
| 2002 | } |
| 2003 | break; |
| 2004 | case SIAtomicScope::WAVEFRONT: |
| 2005 | case SIAtomicScope::SINGLETHREAD: |
| 2006 | // The L0 cache keeps all memory operations in order for |
| 2007 | // work-items in the same wavefront. |
| 2008 | break; |
| 2009 | default: |
| 2010 | llvm_unreachable("Unsupported synchronization scope" ); |
| 2011 | } |
| 2012 | } |
| 2013 | |
| 2014 | if ((AddrSpace & SIAtomicAddrSpace::LDS) != SIAtomicAddrSpace::NONE) { |
| 2015 | switch (Scope) { |
| 2016 | case SIAtomicScope::SYSTEM: |
| 2017 | case SIAtomicScope::AGENT: |
| 2018 | case SIAtomicScope::WORKGROUP: |
| 2019 | // If no cross address space ordering then an "S_WAITCNT lgkmcnt(0)" is |
| 2020 | // not needed as LDS operations for all waves are executed in a total |
| 2021 | // global ordering as observed by all waves. Required if also |
| 2022 | // synchronizing with global/GDS memory as LDS operations could be |
| 2023 | // reordered with respect to later global/GDS memory operations of the |
| 2024 | // same wave. |
| 2025 | LGKMCnt |= IsCrossAddrSpaceOrdering; |
| 2026 | break; |
| 2027 | case SIAtomicScope::WAVEFRONT: |
| 2028 | case SIAtomicScope::SINGLETHREAD: |
| 2029 | // The LDS keeps all memory operations in order for |
| 2030 | // the same wavefront. |
| 2031 | break; |
| 2032 | default: |
| 2033 | llvm_unreachable("Unsupported synchronization scope" ); |
| 2034 | } |
| 2035 | } |
| 2036 | |
| 2037 | if ((AddrSpace & SIAtomicAddrSpace::GDS) != SIAtomicAddrSpace::NONE) { |
| 2038 | switch (Scope) { |
| 2039 | case SIAtomicScope::SYSTEM: |
| 2040 | case SIAtomicScope::AGENT: |
| 2041 | // If no cross address space ordering then an GDS "S_WAITCNT lgkmcnt(0)" |
| 2042 | // is not needed as GDS operations for all waves are executed in a total |
| 2043 | // global ordering as observed by all waves. Required if also |
| 2044 | // synchronizing with global/LDS memory as GDS operations could be |
| 2045 | // reordered with respect to later global/LDS memory operations of the |
| 2046 | // same wave. |
| 2047 | LGKMCnt |= IsCrossAddrSpaceOrdering; |
| 2048 | break; |
| 2049 | case SIAtomicScope::WORKGROUP: |
| 2050 | case SIAtomicScope::WAVEFRONT: |
| 2051 | case SIAtomicScope::SINGLETHREAD: |
| 2052 | // The GDS keeps all memory operations in order for |
| 2053 | // the same work-group. |
| 2054 | break; |
| 2055 | default: |
| 2056 | llvm_unreachable("Unsupported synchronization scope" ); |
| 2057 | } |
| 2058 | } |
| 2059 | |
| 2060 | if (VMCnt || LGKMCnt) { |
| 2061 | unsigned WaitCntImmediate = |
| 2062 | AMDGPU::encodeWaitcnt(Version: IV, |
| 2063 | Vmcnt: VMCnt ? 0 : getVmcntBitMask(Version: IV), |
| 2064 | Expcnt: getExpcntBitMask(Version: IV), |
| 2065 | Lgkmcnt: LGKMCnt ? 0 : getLgkmcntBitMask(Version: IV)); |
| 2066 | BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: TII->get(Opcode: AMDGPU::S_WAITCNT_soft)) |
| 2067 | .addImm(Val: WaitCntImmediate); |
| 2068 | Changed = true; |
| 2069 | } |
| 2070 | |
| 2071 | if (VSCnt) { |
| 2072 | BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: TII->get(Opcode: AMDGPU::S_WAITCNT_VSCNT_soft)) |
| 2073 | .addReg(RegNo: AMDGPU::SGPR_NULL, flags: RegState::Undef) |
| 2074 | .addImm(Val: 0); |
| 2075 | Changed = true; |
| 2076 | } |
| 2077 | |
| 2078 | if (Pos == Position::AFTER) |
| 2079 | --MI; |
| 2080 | |
| 2081 | return Changed; |
| 2082 | } |
| 2083 | |
| 2084 | bool SIGfx10CacheControl::insertAcquire(MachineBasicBlock::iterator &MI, |
| 2085 | SIAtomicScope Scope, |
| 2086 | SIAtomicAddrSpace AddrSpace, |
| 2087 | Position Pos) const { |
| 2088 | if (!InsertCacheInv) |
| 2089 | return false; |
| 2090 | |
| 2091 | bool Changed = false; |
| 2092 | |
| 2093 | MachineBasicBlock &MBB = *MI->getParent(); |
| 2094 | DebugLoc DL = MI->getDebugLoc(); |
| 2095 | |
| 2096 | if (Pos == Position::AFTER) |
| 2097 | ++MI; |
| 2098 | |
| 2099 | if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { |
| 2100 | switch (Scope) { |
| 2101 | case SIAtomicScope::SYSTEM: |
| 2102 | case SIAtomicScope::AGENT: |
| 2103 | // The order of invalidates matter here. We must invalidate "outer in" |
| 2104 | // so L1 -> L0 to avoid L0 pulling in stale data from L1 when it is |
| 2105 | // invalidated. |
| 2106 | BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: TII->get(Opcode: AMDGPU::BUFFER_GL1_INV)); |
| 2107 | BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: TII->get(Opcode: AMDGPU::BUFFER_GL0_INV)); |
| 2108 | Changed = true; |
| 2109 | break; |
| 2110 | case SIAtomicScope::WORKGROUP: |
| 2111 | // In WGP mode the waves of a work-group can be executing on either CU of |
| 2112 | // the WGP. Therefore need to invalidate the L0 which is per CU. Otherwise |
| 2113 | // in CU mode and all waves of a work-group are on the same CU, and so the |
| 2114 | // L0 does not need to be invalidated. |
| 2115 | if (!ST.isCuModeEnabled()) { |
| 2116 | BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: TII->get(Opcode: AMDGPU::BUFFER_GL0_INV)); |
| 2117 | Changed = true; |
| 2118 | } |
| 2119 | break; |
| 2120 | case SIAtomicScope::WAVEFRONT: |
| 2121 | case SIAtomicScope::SINGLETHREAD: |
| 2122 | // No cache to invalidate. |
| 2123 | break; |
| 2124 | default: |
| 2125 | llvm_unreachable("Unsupported synchronization scope" ); |
| 2126 | } |
| 2127 | } |
| 2128 | |
| 2129 | /// The scratch address space does not need the global memory cache |
| 2130 | /// to be flushed as all memory operations by the same thread are |
| 2131 | /// sequentially consistent, and no other thread can access scratch |
| 2132 | /// memory. |
| 2133 | |
| 2134 | /// Other address spaces do not have a cache. |
| 2135 | |
| 2136 | if (Pos == Position::AFTER) |
| 2137 | --MI; |
| 2138 | |
| 2139 | return Changed; |
| 2140 | } |
| 2141 | |
| 2142 | bool SIGfx11CacheControl::enableLoadCacheBypass( |
| 2143 | const MachineBasicBlock::iterator &MI, SIAtomicScope Scope, |
| 2144 | SIAtomicAddrSpace AddrSpace) const { |
| 2145 | assert(MI->mayLoad() && !MI->mayStore()); |
| 2146 | bool Changed = false; |
| 2147 | |
| 2148 | if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { |
| 2149 | switch (Scope) { |
| 2150 | case SIAtomicScope::SYSTEM: |
| 2151 | case SIAtomicScope::AGENT: |
| 2152 | // Set the L0 and L1 cache policies to MISS_EVICT. |
| 2153 | // Note: there is no L2 cache coherent bypass control at the ISA level. |
| 2154 | Changed |= enableGLCBit(MI); |
| 2155 | break; |
| 2156 | case SIAtomicScope::WORKGROUP: |
| 2157 | // In WGP mode the waves of a work-group can be executing on either CU of |
| 2158 | // the WGP. Therefore need to bypass the L0 which is per CU. Otherwise in |
| 2159 | // CU mode all waves of a work-group are on the same CU, and so the L0 |
| 2160 | // does not need to be bypassed. |
| 2161 | if (!ST.isCuModeEnabled()) |
| 2162 | Changed |= enableGLCBit(MI); |
| 2163 | break; |
| 2164 | case SIAtomicScope::WAVEFRONT: |
| 2165 | case SIAtomicScope::SINGLETHREAD: |
| 2166 | // No cache to bypass. |
| 2167 | break; |
| 2168 | default: |
| 2169 | llvm_unreachable("Unsupported synchronization scope" ); |
| 2170 | } |
| 2171 | } |
| 2172 | |
| 2173 | /// The scratch address space does not need the global memory caches |
| 2174 | /// to be bypassed as all memory operations by the same thread are |
| 2175 | /// sequentially consistent, and no other thread can access scratch |
| 2176 | /// memory. |
| 2177 | |
| 2178 | /// Other address spaces do not have a cache. |
| 2179 | |
| 2180 | return Changed; |
| 2181 | } |
| 2182 | |
| 2183 | bool SIGfx11CacheControl::enableVolatileAndOrNonTemporal( |
| 2184 | MachineBasicBlock::iterator &MI, SIAtomicAddrSpace AddrSpace, SIMemOp Op, |
| 2185 | bool IsVolatile, bool IsNonTemporal, bool IsLastUse = false) const { |
| 2186 | |
| 2187 | // Only handle load and store, not atomic read-modify-write insructions. The |
| 2188 | // latter use glc to indicate if the atomic returns a result and so must not |
| 2189 | // be used for cache control. |
| 2190 | assert(MI->mayLoad() ^ MI->mayStore()); |
| 2191 | |
| 2192 | // Only update load and store, not LLVM IR atomic read-modify-write |
| 2193 | // instructions. The latter are always marked as volatile so cannot sensibly |
| 2194 | // handle it as do not want to pessimize all atomics. Also they do not support |
| 2195 | // the nontemporal attribute. |
| 2196 | assert(Op == SIMemOp::LOAD || Op == SIMemOp::STORE); |
| 2197 | |
| 2198 | bool Changed = false; |
| 2199 | |
| 2200 | if (IsVolatile) { |
| 2201 | // Set L0 and L1 cache policy to be MISS_EVICT for load instructions |
| 2202 | // and MISS_LRU for store instructions. |
| 2203 | // Note: there is no L2 cache coherent bypass control at the ISA level. |
| 2204 | if (Op == SIMemOp::LOAD) |
| 2205 | Changed |= enableGLCBit(MI); |
| 2206 | |
| 2207 | // Set MALL NOALLOC for load and store instructions. |
| 2208 | Changed |= enableDLCBit(MI); |
| 2209 | |
| 2210 | // Ensure operation has completed at system scope to cause all volatile |
| 2211 | // operations to be visible outside the program in a global order. Do not |
| 2212 | // request cross address space as only the global address space can be |
| 2213 | // observable outside the program, so no need to cause a waitcnt for LDS |
| 2214 | // address space operations. |
| 2215 | Changed |= insertWait(MI, Scope: SIAtomicScope::SYSTEM, AddrSpace, Op, IsCrossAddrSpaceOrdering: false, |
| 2216 | Pos: Position::AFTER, Order: AtomicOrdering::Unordered); |
| 2217 | return Changed; |
| 2218 | } |
| 2219 | |
| 2220 | if (IsNonTemporal) { |
| 2221 | // For loads setting SLC configures L0 and L1 cache policy to HIT_EVICT |
| 2222 | // and L2 cache policy to STREAM. |
| 2223 | // For stores setting both GLC and SLC configures L0 and L1 cache policy |
| 2224 | // to MISS_EVICT and the L2 cache policy to STREAM. |
| 2225 | if (Op == SIMemOp::STORE) |
| 2226 | Changed |= enableGLCBit(MI); |
| 2227 | Changed |= enableSLCBit(MI); |
| 2228 | |
| 2229 | // Set MALL NOALLOC for load and store instructions. |
| 2230 | Changed |= enableDLCBit(MI); |
| 2231 | return Changed; |
| 2232 | } |
| 2233 | |
| 2234 | return Changed; |
| 2235 | } |
| 2236 | |
| 2237 | bool SIGfx12CacheControl::setTH(const MachineBasicBlock::iterator MI, |
| 2238 | AMDGPU::CPol::CPol Value) const { |
| 2239 | MachineOperand *CPol = TII->getNamedOperand(MI&: *MI, OperandName: OpName::cpol); |
| 2240 | if (!CPol) |
| 2241 | return false; |
| 2242 | |
| 2243 | uint64_t NewTH = Value & AMDGPU::CPol::TH; |
| 2244 | if ((CPol->getImm() & AMDGPU::CPol::TH) != NewTH) { |
| 2245 | CPol->setImm((CPol->getImm() & ~AMDGPU::CPol::TH) | NewTH); |
| 2246 | return true; |
| 2247 | } |
| 2248 | |
| 2249 | return false; |
| 2250 | } |
| 2251 | |
| 2252 | bool SIGfx12CacheControl::setScope(const MachineBasicBlock::iterator MI, |
| 2253 | AMDGPU::CPol::CPol Value) const { |
| 2254 | MachineOperand *CPol = TII->getNamedOperand(MI&: *MI, OperandName: OpName::cpol); |
| 2255 | if (!CPol) |
| 2256 | return false; |
| 2257 | |
| 2258 | uint64_t NewScope = Value & AMDGPU::CPol::SCOPE; |
| 2259 | if ((CPol->getImm() & AMDGPU::CPol::SCOPE) != NewScope) { |
| 2260 | CPol->setImm((CPol->getImm() & ~AMDGPU::CPol::SCOPE) | NewScope); |
| 2261 | return true; |
| 2262 | } |
| 2263 | |
| 2264 | return false; |
| 2265 | } |
| 2266 | |
| 2267 | bool SIGfx12CacheControl::insertWaitsBeforeSystemScopeStore( |
| 2268 | const MachineBasicBlock::iterator MI) const { |
| 2269 | // TODO: implement flag for frontend to give us a hint not to insert waits. |
| 2270 | |
| 2271 | MachineBasicBlock &MBB = *MI->getParent(); |
| 2272 | const DebugLoc &DL = MI->getDebugLoc(); |
| 2273 | |
| 2274 | BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: TII->get(Opcode: S_WAIT_LOADCNT_soft)).addImm(Val: 0); |
| 2275 | if (ST.hasImageInsts()) { |
| 2276 | BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: TII->get(Opcode: S_WAIT_SAMPLECNT_soft)).addImm(Val: 0); |
| 2277 | BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: TII->get(Opcode: S_WAIT_BVHCNT_soft)).addImm(Val: 0); |
| 2278 | } |
| 2279 | BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: TII->get(Opcode: S_WAIT_KMCNT_soft)).addImm(Val: 0); |
| 2280 | BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: TII->get(Opcode: S_WAIT_STORECNT_soft)).addImm(Val: 0); |
| 2281 | |
| 2282 | return true; |
| 2283 | } |
| 2284 | |
| 2285 | bool SIGfx12CacheControl::insertWait(MachineBasicBlock::iterator &MI, |
| 2286 | SIAtomicScope Scope, |
| 2287 | SIAtomicAddrSpace AddrSpace, SIMemOp Op, |
| 2288 | bool IsCrossAddrSpaceOrdering, |
| 2289 | Position Pos, AtomicOrdering Order) const { |
| 2290 | bool Changed = false; |
| 2291 | |
| 2292 | MachineBasicBlock &MBB = *MI->getParent(); |
| 2293 | DebugLoc DL = MI->getDebugLoc(); |
| 2294 | |
| 2295 | bool LOADCnt = false; |
| 2296 | bool DSCnt = false; |
| 2297 | bool STORECnt = false; |
| 2298 | |
| 2299 | if (Pos == Position::AFTER) |
| 2300 | ++MI; |
| 2301 | |
| 2302 | if ((AddrSpace & (SIAtomicAddrSpace::GLOBAL | SIAtomicAddrSpace::SCRATCH)) != |
| 2303 | SIAtomicAddrSpace::NONE) { |
| 2304 | switch (Scope) { |
| 2305 | case SIAtomicScope::SYSTEM: |
| 2306 | case SIAtomicScope::AGENT: |
| 2307 | if ((Op & SIMemOp::LOAD) != SIMemOp::NONE) |
| 2308 | LOADCnt |= true; |
| 2309 | if ((Op & SIMemOp::STORE) != SIMemOp::NONE) |
| 2310 | STORECnt |= true; |
| 2311 | break; |
| 2312 | case SIAtomicScope::WORKGROUP: |
| 2313 | // In WGP mode the waves of a work-group can be executing on either CU of |
| 2314 | // the WGP. Therefore need to wait for operations to complete to ensure |
| 2315 | // they are visible to waves in the other CU as the L0 is per CU. |
| 2316 | // Otherwise in CU mode and all waves of a work-group are on the same CU |
| 2317 | // which shares the same L0. |
| 2318 | if (!ST.isCuModeEnabled()) { |
| 2319 | if ((Op & SIMemOp::LOAD) != SIMemOp::NONE) |
| 2320 | LOADCnt |= true; |
| 2321 | if ((Op & SIMemOp::STORE) != SIMemOp::NONE) |
| 2322 | STORECnt |= true; |
| 2323 | } |
| 2324 | break; |
| 2325 | case SIAtomicScope::WAVEFRONT: |
| 2326 | case SIAtomicScope::SINGLETHREAD: |
| 2327 | // The L0 cache keeps all memory operations in order for |
| 2328 | // work-items in the same wavefront. |
| 2329 | break; |
| 2330 | default: |
| 2331 | llvm_unreachable("Unsupported synchronization scope" ); |
| 2332 | } |
| 2333 | } |
| 2334 | |
| 2335 | if ((AddrSpace & SIAtomicAddrSpace::LDS) != SIAtomicAddrSpace::NONE) { |
| 2336 | switch (Scope) { |
| 2337 | case SIAtomicScope::SYSTEM: |
| 2338 | case SIAtomicScope::AGENT: |
| 2339 | case SIAtomicScope::WORKGROUP: |
| 2340 | // If no cross address space ordering then an "S_WAITCNT lgkmcnt(0)" is |
| 2341 | // not needed as LDS operations for all waves are executed in a total |
| 2342 | // global ordering as observed by all waves. Required if also |
| 2343 | // synchronizing with global/GDS memory as LDS operations could be |
| 2344 | // reordered with respect to later global/GDS memory operations of the |
| 2345 | // same wave. |
| 2346 | DSCnt |= IsCrossAddrSpaceOrdering; |
| 2347 | break; |
| 2348 | case SIAtomicScope::WAVEFRONT: |
| 2349 | case SIAtomicScope::SINGLETHREAD: |
| 2350 | // The LDS keeps all memory operations in order for |
| 2351 | // the same wavefront. |
| 2352 | break; |
| 2353 | default: |
| 2354 | llvm_unreachable("Unsupported synchronization scope" ); |
| 2355 | } |
| 2356 | } |
| 2357 | |
| 2358 | if (LOADCnt) { |
| 2359 | // Acquire sequences only need to wait on the previous atomic operation. |
| 2360 | // e.g. a typical sequence looks like |
| 2361 | // atomic load |
| 2362 | // (wait) |
| 2363 | // global_inv |
| 2364 | // |
| 2365 | // We do not have BVH or SAMPLE atomics, so the atomic load is always going |
| 2366 | // to be tracked using loadcnt. |
| 2367 | // |
| 2368 | // This also applies to fences. Fences cannot pair with an instruction |
| 2369 | // tracked with bvh/samplecnt as we don't have any atomics that do that. |
| 2370 | if (Order != AtomicOrdering::Acquire) { |
| 2371 | BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: TII->get(Opcode: AMDGPU::S_WAIT_BVHCNT_soft)).addImm(Val: 0); |
| 2372 | BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: TII->get(Opcode: AMDGPU::S_WAIT_SAMPLECNT_soft)).addImm(Val: 0); |
| 2373 | } |
| 2374 | BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: TII->get(Opcode: AMDGPU::S_WAIT_LOADCNT_soft)).addImm(Val: 0); |
| 2375 | Changed = true; |
| 2376 | } |
| 2377 | |
| 2378 | if (STORECnt) { |
| 2379 | BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: TII->get(Opcode: AMDGPU::S_WAIT_STORECNT_soft)).addImm(Val: 0); |
| 2380 | Changed = true; |
| 2381 | } |
| 2382 | |
| 2383 | if (DSCnt) { |
| 2384 | BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: TII->get(Opcode: AMDGPU::S_WAIT_DSCNT_soft)).addImm(Val: 0); |
| 2385 | Changed = true; |
| 2386 | } |
| 2387 | |
| 2388 | if (Pos == Position::AFTER) |
| 2389 | --MI; |
| 2390 | |
| 2391 | return Changed; |
| 2392 | } |
| 2393 | |
| 2394 | bool SIGfx12CacheControl::insertAcquire(MachineBasicBlock::iterator &MI, |
| 2395 | SIAtomicScope Scope, |
| 2396 | SIAtomicAddrSpace AddrSpace, |
| 2397 | Position Pos) const { |
| 2398 | if (!InsertCacheInv) |
| 2399 | return false; |
| 2400 | |
| 2401 | MachineBasicBlock &MBB = *MI->getParent(); |
| 2402 | DebugLoc DL = MI->getDebugLoc(); |
| 2403 | |
| 2404 | /// The scratch address space does not need the global memory cache |
| 2405 | /// to be flushed as all memory operations by the same thread are |
| 2406 | /// sequentially consistent, and no other thread can access scratch |
| 2407 | /// memory. |
| 2408 | |
| 2409 | /// Other address spaces do not have a cache. |
| 2410 | if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) == SIAtomicAddrSpace::NONE) |
| 2411 | return false; |
| 2412 | |
| 2413 | AMDGPU::CPol::CPol ScopeImm = AMDGPU::CPol::SCOPE_DEV; |
| 2414 | switch (Scope) { |
| 2415 | case SIAtomicScope::SYSTEM: |
| 2416 | ScopeImm = AMDGPU::CPol::SCOPE_SYS; |
| 2417 | break; |
| 2418 | case SIAtomicScope::AGENT: |
| 2419 | ScopeImm = AMDGPU::CPol::SCOPE_DEV; |
| 2420 | break; |
| 2421 | case SIAtomicScope::WORKGROUP: |
| 2422 | // In WGP mode the waves of a work-group can be executing on either CU of |
| 2423 | // the WGP. Therefore we need to invalidate the L0 which is per CU. |
| 2424 | // Otherwise in CU mode all waves of a work-group are on the same CU, and so |
| 2425 | // the L0 does not need to be invalidated. |
| 2426 | if (ST.isCuModeEnabled()) |
| 2427 | return false; |
| 2428 | |
| 2429 | ScopeImm = AMDGPU::CPol::SCOPE_SE; |
| 2430 | break; |
| 2431 | case SIAtomicScope::WAVEFRONT: |
| 2432 | case SIAtomicScope::SINGLETHREAD: |
| 2433 | // No cache to invalidate. |
| 2434 | return false; |
| 2435 | default: |
| 2436 | llvm_unreachable("Unsupported synchronization scope" ); |
| 2437 | } |
| 2438 | |
| 2439 | if (Pos == Position::AFTER) |
| 2440 | ++MI; |
| 2441 | |
| 2442 | BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: TII->get(Opcode: AMDGPU::GLOBAL_INV)).addImm(Val: ScopeImm); |
| 2443 | |
| 2444 | if (Pos == Position::AFTER) |
| 2445 | --MI; |
| 2446 | |
| 2447 | return true; |
| 2448 | } |
| 2449 | |
| 2450 | bool SIGfx12CacheControl::insertRelease(MachineBasicBlock::iterator &MI, |
| 2451 | SIAtomicScope Scope, |
| 2452 | SIAtomicAddrSpace AddrSpace, |
| 2453 | bool IsCrossAddrSpaceOrdering, |
| 2454 | Position Pos) const { |
| 2455 | MachineBasicBlock &MBB = *MI->getParent(); |
| 2456 | DebugLoc DL = MI->getDebugLoc(); |
| 2457 | |
| 2458 | // The scratch address space does not need the global memory cache |
| 2459 | // writeback as all memory operations by the same thread are |
| 2460 | // sequentially consistent, and no other thread can access scratch |
| 2461 | // memory. |
| 2462 | |
| 2463 | // Other address spaces do not have a cache. |
| 2464 | if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) == SIAtomicAddrSpace::NONE) |
| 2465 | return false; |
| 2466 | |
| 2467 | if (Pos == Position::AFTER) |
| 2468 | ++MI; |
| 2469 | |
| 2470 | // global_wb is only necessary at system scope for gfx120x targets. |
| 2471 | // |
| 2472 | // Emitting it for lower scopes is a slow no-op, so we omit it |
| 2473 | // for performance. |
| 2474 | switch (Scope) { |
| 2475 | case SIAtomicScope::SYSTEM: |
| 2476 | BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: TII->get(Opcode: AMDGPU::GLOBAL_WB)) |
| 2477 | .addImm(Val: AMDGPU::CPol::SCOPE_SYS); |
| 2478 | break; |
| 2479 | case SIAtomicScope::AGENT: |
| 2480 | case SIAtomicScope::WORKGROUP: |
| 2481 | // No WB necessary, but we still have to wait. |
| 2482 | break; |
| 2483 | case SIAtomicScope::WAVEFRONT: |
| 2484 | case SIAtomicScope::SINGLETHREAD: |
| 2485 | // No WB or wait necessary here. |
| 2486 | return false; |
| 2487 | default: |
| 2488 | llvm_unreachable("Unsupported synchronization scope" ); |
| 2489 | } |
| 2490 | |
| 2491 | if (Pos == Position::AFTER) |
| 2492 | --MI; |
| 2493 | |
| 2494 | // We always have to wait for previous memory operations (load/store) to |
| 2495 | // complete, whether we inserted a WB or not. If we inserted a WB (storecnt), |
| 2496 | // we of course need to wait for that as well. |
| 2497 | insertWait(MI, Scope, AddrSpace, Op: SIMemOp::LOAD | SIMemOp::STORE, |
| 2498 | IsCrossAddrSpaceOrdering, Pos, Order: AtomicOrdering::Release); |
| 2499 | |
| 2500 | return true; |
| 2501 | } |
| 2502 | |
| 2503 | bool SIGfx12CacheControl::enableVolatileAndOrNonTemporal( |
| 2504 | MachineBasicBlock::iterator &MI, SIAtomicAddrSpace AddrSpace, SIMemOp Op, |
| 2505 | bool IsVolatile, bool IsNonTemporal, bool IsLastUse = false) const { |
| 2506 | |
| 2507 | // Only handle load and store, not atomic read-modify-write instructions. |
| 2508 | assert(MI->mayLoad() ^ MI->mayStore()); |
| 2509 | |
| 2510 | // Only update load and store, not LLVM IR atomic read-modify-write |
| 2511 | // instructions. The latter are always marked as volatile so cannot sensibly |
| 2512 | // handle it as do not want to pessimize all atomics. Also they do not support |
| 2513 | // the nontemporal attribute. |
| 2514 | assert(Op == SIMemOp::LOAD || Op == SIMemOp::STORE); |
| 2515 | |
| 2516 | bool Changed = false; |
| 2517 | |
| 2518 | if (IsLastUse) { |
| 2519 | // Set last-use hint. |
| 2520 | Changed |= setTH(MI, Value: AMDGPU::CPol::TH_LU); |
| 2521 | } else if (IsNonTemporal) { |
| 2522 | // Set non-temporal hint for all cache levels. |
| 2523 | Changed |= setTH(MI, Value: AMDGPU::CPol::TH_NT); |
| 2524 | } |
| 2525 | |
| 2526 | if (IsVolatile) { |
| 2527 | Changed |= setScope(MI, Value: AMDGPU::CPol::SCOPE_SYS); |
| 2528 | |
| 2529 | if (Op == SIMemOp::STORE) |
| 2530 | Changed |= insertWaitsBeforeSystemScopeStore(MI); |
| 2531 | |
| 2532 | // Ensure operation has completed at system scope to cause all volatile |
| 2533 | // operations to be visible outside the program in a global order. Do not |
| 2534 | // request cross address space as only the global address space can be |
| 2535 | // observable outside the program, so no need to cause a waitcnt for LDS |
| 2536 | // address space operations. |
| 2537 | Changed |= insertWait(MI, Scope: SIAtomicScope::SYSTEM, AddrSpace, Op, IsCrossAddrSpaceOrdering: false, |
| 2538 | Pos: Position::AFTER, Order: AtomicOrdering::Unordered); |
| 2539 | } |
| 2540 | |
| 2541 | return Changed; |
| 2542 | } |
| 2543 | |
| 2544 | bool SIGfx12CacheControl::expandSystemScopeStore( |
| 2545 | MachineBasicBlock::iterator &MI) const { |
| 2546 | MachineOperand *CPol = TII->getNamedOperand(MI&: *MI, OperandName: OpName::cpol); |
| 2547 | if (CPol && ((CPol->getImm() & CPol::SCOPE) == CPol::SCOPE_SYS)) |
| 2548 | return insertWaitsBeforeSystemScopeStore(MI); |
| 2549 | |
| 2550 | return false; |
| 2551 | } |
| 2552 | |
| 2553 | bool SIGfx12CacheControl::setAtomicScope(const MachineBasicBlock::iterator &MI, |
| 2554 | SIAtomicScope Scope, |
| 2555 | SIAtomicAddrSpace AddrSpace) const { |
| 2556 | bool Changed = false; |
| 2557 | |
| 2558 | if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { |
| 2559 | switch (Scope) { |
| 2560 | case SIAtomicScope::SYSTEM: |
| 2561 | Changed |= setScope(MI, Value: AMDGPU::CPol::SCOPE_SYS); |
| 2562 | break; |
| 2563 | case SIAtomicScope::AGENT: |
| 2564 | Changed |= setScope(MI, Value: AMDGPU::CPol::SCOPE_DEV); |
| 2565 | break; |
| 2566 | case SIAtomicScope::WORKGROUP: |
| 2567 | // In workgroup mode, SCOPE_SE is needed as waves can executes on |
| 2568 | // different CUs that access different L0s. |
| 2569 | if (!ST.isCuModeEnabled()) |
| 2570 | Changed |= setScope(MI, Value: AMDGPU::CPol::SCOPE_SE); |
| 2571 | break; |
| 2572 | case SIAtomicScope::WAVEFRONT: |
| 2573 | case SIAtomicScope::SINGLETHREAD: |
| 2574 | // No cache to bypass. |
| 2575 | break; |
| 2576 | default: |
| 2577 | llvm_unreachable("Unsupported synchronization scope" ); |
| 2578 | } |
| 2579 | } |
| 2580 | |
| 2581 | // The scratch address space does not need the global memory caches |
| 2582 | // to be bypassed as all memory operations by the same thread are |
| 2583 | // sequentially consistent, and no other thread can access scratch |
| 2584 | // memory. |
| 2585 | |
| 2586 | // Other address spaces do not have a cache. |
| 2587 | |
| 2588 | return Changed; |
| 2589 | } |
| 2590 | |
| 2591 | bool SIMemoryLegalizer::removeAtomicPseudoMIs() { |
| 2592 | if (AtomicPseudoMIs.empty()) |
| 2593 | return false; |
| 2594 | |
| 2595 | for (auto &MI : AtomicPseudoMIs) |
| 2596 | MI->eraseFromParent(); |
| 2597 | |
| 2598 | AtomicPseudoMIs.clear(); |
| 2599 | return true; |
| 2600 | } |
| 2601 | |
| 2602 | bool SIMemoryLegalizer::expandLoad(const SIMemOpInfo &MOI, |
| 2603 | MachineBasicBlock::iterator &MI) { |
| 2604 | assert(MI->mayLoad() && !MI->mayStore()); |
| 2605 | |
| 2606 | bool Changed = false; |
| 2607 | |
| 2608 | if (MOI.isAtomic()) { |
| 2609 | const AtomicOrdering Order = MOI.getOrdering(); |
| 2610 | if (Order == AtomicOrdering::Monotonic || |
| 2611 | Order == AtomicOrdering::Acquire || |
| 2612 | Order == AtomicOrdering::SequentiallyConsistent) { |
| 2613 | Changed |= CC->enableLoadCacheBypass(MI, Scope: MOI.getScope(), |
| 2614 | AddrSpace: MOI.getOrderingAddrSpace()); |
| 2615 | } |
| 2616 | |
| 2617 | if (Order == AtomicOrdering::SequentiallyConsistent) |
| 2618 | Changed |= CC->insertWait(MI, Scope: MOI.getScope(), AddrSpace: MOI.getOrderingAddrSpace(), |
| 2619 | Op: SIMemOp::LOAD | SIMemOp::STORE, |
| 2620 | IsCrossAddrSpaceOrdering: MOI.getIsCrossAddressSpaceOrdering(), |
| 2621 | Pos: Position::BEFORE, Order); |
| 2622 | |
| 2623 | if (Order == AtomicOrdering::Acquire || |
| 2624 | Order == AtomicOrdering::SequentiallyConsistent) { |
| 2625 | Changed |= CC->insertWait( |
| 2626 | MI, Scope: MOI.getScope(), AddrSpace: MOI.getInstrAddrSpace(), Op: SIMemOp::LOAD, |
| 2627 | IsCrossAddrSpaceOrdering: MOI.getIsCrossAddressSpaceOrdering(), Pos: Position::AFTER, Order); |
| 2628 | Changed |= CC->insertAcquire(MI, Scope: MOI.getScope(), |
| 2629 | AddrSpace: MOI.getOrderingAddrSpace(), |
| 2630 | Pos: Position::AFTER); |
| 2631 | } |
| 2632 | |
| 2633 | return Changed; |
| 2634 | } |
| 2635 | |
| 2636 | // Atomic instructions already bypass caches to the scope specified by the |
| 2637 | // SyncScope operand. Only non-atomic volatile and nontemporal/last-use |
| 2638 | // instructions need additional treatment. |
| 2639 | Changed |= CC->enableVolatileAndOrNonTemporal( |
| 2640 | MI, AddrSpace: MOI.getInstrAddrSpace(), Op: SIMemOp::LOAD, IsVolatile: MOI.isVolatile(), |
| 2641 | IsNonTemporal: MOI.isNonTemporal(), IsLastUse: MOI.isLastUse()); |
| 2642 | |
| 2643 | return Changed; |
| 2644 | } |
| 2645 | |
| 2646 | bool SIMemoryLegalizer::expandStore(const SIMemOpInfo &MOI, |
| 2647 | MachineBasicBlock::iterator &MI) { |
| 2648 | assert(!MI->mayLoad() && MI->mayStore()); |
| 2649 | |
| 2650 | bool Changed = false; |
| 2651 | |
| 2652 | if (MOI.isAtomic()) { |
| 2653 | if (MOI.getOrdering() == AtomicOrdering::Monotonic || |
| 2654 | MOI.getOrdering() == AtomicOrdering::Release || |
| 2655 | MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) { |
| 2656 | Changed |= CC->enableStoreCacheBypass(MI, Scope: MOI.getScope(), |
| 2657 | AddrSpace: MOI.getOrderingAddrSpace()); |
| 2658 | } |
| 2659 | |
| 2660 | if (MOI.getOrdering() == AtomicOrdering::Release || |
| 2661 | MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) |
| 2662 | Changed |= CC->insertRelease(MI, Scope: MOI.getScope(), |
| 2663 | AddrSpace: MOI.getOrderingAddrSpace(), |
| 2664 | IsCrossAddrSpaceOrdering: MOI.getIsCrossAddressSpaceOrdering(), |
| 2665 | Pos: Position::BEFORE); |
| 2666 | |
| 2667 | return Changed; |
| 2668 | } |
| 2669 | |
| 2670 | // Atomic instructions already bypass caches to the scope specified by the |
| 2671 | // SyncScope operand. Only non-atomic volatile and nontemporal instructions |
| 2672 | // need additional treatment. |
| 2673 | Changed |= CC->enableVolatileAndOrNonTemporal( |
| 2674 | MI, AddrSpace: MOI.getInstrAddrSpace(), Op: SIMemOp::STORE, IsVolatile: MOI.isVolatile(), |
| 2675 | IsNonTemporal: MOI.isNonTemporal()); |
| 2676 | |
| 2677 | // GFX12 specific, scope(desired coherence domain in cache hierarchy) is |
| 2678 | // instruction field, do not confuse it with atomic scope. |
| 2679 | Changed |= CC->expandSystemScopeStore(MI); |
| 2680 | return Changed; |
| 2681 | } |
| 2682 | |
| 2683 | bool SIMemoryLegalizer::expandAtomicFence(const SIMemOpInfo &MOI, |
| 2684 | MachineBasicBlock::iterator &MI) { |
| 2685 | assert(MI->getOpcode() == AMDGPU::ATOMIC_FENCE); |
| 2686 | |
| 2687 | AtomicPseudoMIs.push_back(x: MI); |
| 2688 | bool Changed = false; |
| 2689 | |
| 2690 | // Refine fenced address space based on MMRAs. |
| 2691 | // |
| 2692 | // TODO: Should we support this MMRA on other atomic operations? |
| 2693 | auto OrderingAddrSpace = |
| 2694 | getFenceAddrSpaceMMRA(MI: *MI, Default: MOI.getOrderingAddrSpace()); |
| 2695 | |
| 2696 | if (MOI.isAtomic()) { |
| 2697 | const AtomicOrdering Order = MOI.getOrdering(); |
| 2698 | if (Order == AtomicOrdering::Acquire) { |
| 2699 | Changed |= CC->insertWait( |
| 2700 | MI, Scope: MOI.getScope(), AddrSpace: OrderingAddrSpace, Op: SIMemOp::LOAD | SIMemOp::STORE, |
| 2701 | IsCrossAddrSpaceOrdering: MOI.getIsCrossAddressSpaceOrdering(), Pos: Position::BEFORE, Order); |
| 2702 | } |
| 2703 | |
| 2704 | if (Order == AtomicOrdering::Release || |
| 2705 | Order == AtomicOrdering::AcquireRelease || |
| 2706 | Order == AtomicOrdering::SequentiallyConsistent) |
| 2707 | /// TODO: This relies on a barrier always generating a waitcnt |
| 2708 | /// for LDS to ensure it is not reordered with the completion of |
| 2709 | /// the proceeding LDS operations. If barrier had a memory |
| 2710 | /// ordering and memory scope, then library does not need to |
| 2711 | /// generate a fence. Could add support in this file for |
| 2712 | /// barrier. SIInsertWaitcnt.cpp could then stop unconditionally |
| 2713 | /// adding S_WAITCNT before a S_BARRIER. |
| 2714 | Changed |= CC->insertRelease(MI, Scope: MOI.getScope(), AddrSpace: OrderingAddrSpace, |
| 2715 | IsCrossAddrSpaceOrdering: MOI.getIsCrossAddressSpaceOrdering(), |
| 2716 | Pos: Position::BEFORE); |
| 2717 | |
| 2718 | // TODO: If both release and invalidate are happening they could be combined |
| 2719 | // to use the single "BUFFER_WBINV*" instruction. This could be done by |
| 2720 | // reorganizing this code or as part of optimizing SIInsertWaitcnt pass to |
| 2721 | // track cache invalidate and write back instructions. |
| 2722 | |
| 2723 | if (Order == AtomicOrdering::Acquire || |
| 2724 | Order == AtomicOrdering::AcquireRelease || |
| 2725 | Order == AtomicOrdering::SequentiallyConsistent) |
| 2726 | Changed |= CC->insertAcquire(MI, Scope: MOI.getScope(), AddrSpace: OrderingAddrSpace, |
| 2727 | Pos: Position::BEFORE); |
| 2728 | |
| 2729 | return Changed; |
| 2730 | } |
| 2731 | |
| 2732 | return Changed; |
| 2733 | } |
| 2734 | |
| 2735 | bool SIMemoryLegalizer::expandAtomicCmpxchgOrRmw(const SIMemOpInfo &MOI, |
| 2736 | MachineBasicBlock::iterator &MI) { |
| 2737 | assert(MI->mayLoad() && MI->mayStore()); |
| 2738 | |
| 2739 | bool Changed = false; |
| 2740 | |
| 2741 | if (MOI.isAtomic()) { |
| 2742 | const AtomicOrdering Order = MOI.getOrdering(); |
| 2743 | if (Order == AtomicOrdering::Monotonic || |
| 2744 | Order == AtomicOrdering::Acquire || Order == AtomicOrdering::Release || |
| 2745 | Order == AtomicOrdering::AcquireRelease || |
| 2746 | Order == AtomicOrdering::SequentiallyConsistent) { |
| 2747 | Changed |= CC->enableRMWCacheBypass(MI, Scope: MOI.getScope(), |
| 2748 | AddrSpace: MOI.getInstrAddrSpace()); |
| 2749 | } |
| 2750 | |
| 2751 | if (Order == AtomicOrdering::Release || |
| 2752 | Order == AtomicOrdering::AcquireRelease || |
| 2753 | Order == AtomicOrdering::SequentiallyConsistent || |
| 2754 | MOI.getFailureOrdering() == AtomicOrdering::SequentiallyConsistent) |
| 2755 | Changed |= CC->insertRelease(MI, Scope: MOI.getScope(), |
| 2756 | AddrSpace: MOI.getOrderingAddrSpace(), |
| 2757 | IsCrossAddrSpaceOrdering: MOI.getIsCrossAddressSpaceOrdering(), |
| 2758 | Pos: Position::BEFORE); |
| 2759 | |
| 2760 | if (Order == AtomicOrdering::Acquire || |
| 2761 | Order == AtomicOrdering::AcquireRelease || |
| 2762 | Order == AtomicOrdering::SequentiallyConsistent || |
| 2763 | MOI.getFailureOrdering() == AtomicOrdering::Acquire || |
| 2764 | MOI.getFailureOrdering() == AtomicOrdering::SequentiallyConsistent) { |
| 2765 | Changed |= CC->insertWait( |
| 2766 | MI, Scope: MOI.getScope(), AddrSpace: MOI.getInstrAddrSpace(), |
| 2767 | Op: isAtomicRet(MI: *MI) ? SIMemOp::LOAD : SIMemOp::STORE, |
| 2768 | IsCrossAddrSpaceOrdering: MOI.getIsCrossAddressSpaceOrdering(), Pos: Position::AFTER, Order); |
| 2769 | Changed |= CC->insertAcquire(MI, Scope: MOI.getScope(), |
| 2770 | AddrSpace: MOI.getOrderingAddrSpace(), |
| 2771 | Pos: Position::AFTER); |
| 2772 | } |
| 2773 | |
| 2774 | return Changed; |
| 2775 | } |
| 2776 | |
| 2777 | return Changed; |
| 2778 | } |
| 2779 | |
| 2780 | bool SIMemoryLegalizerLegacy::runOnMachineFunction(MachineFunction &MF) { |
| 2781 | const MachineModuleInfo &MMI = |
| 2782 | getAnalysis<MachineModuleInfoWrapperPass>().getMMI(); |
| 2783 | return SIMemoryLegalizer(MMI).run(MF); |
| 2784 | } |
| 2785 | |
| 2786 | PreservedAnalyses |
| 2787 | SIMemoryLegalizerPass::run(MachineFunction &MF, |
| 2788 | MachineFunctionAnalysisManager &MFAM) { |
| 2789 | auto *MMI = MFAM.getResult<ModuleAnalysisManagerMachineFunctionProxy>(IR&: MF) |
| 2790 | .getCachedResult<MachineModuleAnalysis>( |
| 2791 | IR&: *MF.getFunction().getParent()); |
| 2792 | assert(MMI && "MachineModuleAnalysis must be available" ); |
| 2793 | if (!SIMemoryLegalizer(MMI->getMMI()).run(MF)) |
| 2794 | return PreservedAnalyses::all(); |
| 2795 | return getMachineFunctionPassPreservedAnalyses().preserveSet<CFGAnalyses>(); |
| 2796 | } |
| 2797 | |
| 2798 | bool SIMemoryLegalizer::run(MachineFunction &MF) { |
| 2799 | bool Changed = false; |
| 2800 | |
| 2801 | SIMemOpAccess MOA(MMI.getObjFileInfo<AMDGPUMachineModuleInfo>()); |
| 2802 | CC = SICacheControl::create(ST: MF.getSubtarget<GCNSubtarget>()); |
| 2803 | |
| 2804 | for (auto &MBB : MF) { |
| 2805 | for (auto MI = MBB.begin(); MI != MBB.end(); ++MI) { |
| 2806 | |
| 2807 | // Unbundle instructions after the post-RA scheduler. |
| 2808 | if (MI->isBundle() && MI->mayLoadOrStore()) { |
| 2809 | MachineBasicBlock::instr_iterator II(MI->getIterator()); |
| 2810 | for (MachineBasicBlock::instr_iterator I = ++II, E = MBB.instr_end(); |
| 2811 | I != E && I->isBundledWithPred(); ++I) { |
| 2812 | I->unbundleFromPred(); |
| 2813 | for (MachineOperand &MO : I->operands()) |
| 2814 | if (MO.isReg()) |
| 2815 | MO.setIsInternalRead(false); |
| 2816 | } |
| 2817 | |
| 2818 | MI->eraseFromParent(); |
| 2819 | MI = II->getIterator(); |
| 2820 | } |
| 2821 | |
| 2822 | if (!(MI->getDesc().TSFlags & SIInstrFlags::maybeAtomic)) |
| 2823 | continue; |
| 2824 | |
| 2825 | if (const auto &MOI = MOA.getLoadInfo(MI)) |
| 2826 | Changed |= expandLoad(MOI: *MOI, MI); |
| 2827 | else if (const auto &MOI = MOA.getStoreInfo(MI)) { |
| 2828 | Changed |= expandStore(MOI: *MOI, MI); |
| 2829 | } else if (const auto &MOI = MOA.getAtomicFenceInfo(MI)) |
| 2830 | Changed |= expandAtomicFence(MOI: *MOI, MI); |
| 2831 | else if (const auto &MOI = MOA.getAtomicCmpxchgOrRmwInfo(MI)) |
| 2832 | Changed |= expandAtomicCmpxchgOrRmw(MOI: *MOI, MI); |
| 2833 | } |
| 2834 | } |
| 2835 | |
| 2836 | Changed |= removeAtomicPseudoMIs(); |
| 2837 | return Changed; |
| 2838 | } |
| 2839 | |
| 2840 | INITIALIZE_PASS(SIMemoryLegalizerLegacy, DEBUG_TYPE, PASS_NAME, false, false) |
| 2841 | |
| 2842 | char SIMemoryLegalizerLegacy::ID = 0; |
| 2843 | char &llvm::SIMemoryLegalizerID = SIMemoryLegalizerLegacy::ID; |
| 2844 | |
| 2845 | FunctionPass *llvm::createSIMemoryLegalizerPass() { |
| 2846 | return new SIMemoryLegalizerLegacy(); |
| 2847 | } |
| 2848 | |