| 1 | //=== ARMCallingConv.cpp - ARM Custom CC Routines ---------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file contains the custom routines for the ARM Calling Convention that |
| 10 | // aren't done by tablegen, and includes the table generated implementations. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "ARMCallingConv.h" |
| 15 | #include "ARM.h" |
| 16 | #include "ARMSubtarget.h" |
| 17 | using namespace llvm; |
| 18 | |
| 19 | // APCS f64 is in register pairs, possibly split to stack |
| 20 | static bool f64AssignAPCS(unsigned ValNo, MVT ValVT, MVT LocVT, |
| 21 | CCValAssign::LocInfo LocInfo, |
| 22 | CCState &State, bool CanFail) { |
| 23 | static const MCPhysReg RegList[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 }; |
| 24 | |
| 25 | // Try to get the first register. |
| 26 | if (MCRegister Reg = State.AllocateReg(Regs: RegList)) |
| 27 | State.addLoc(V: CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, HTP: LocInfo)); |
| 28 | else { |
| 29 | // For the 2nd half of a v2f64, do not fail. |
| 30 | if (CanFail) |
| 31 | return false; |
| 32 | |
| 33 | // Put the whole thing on the stack. |
| 34 | State.addLoc(V: CCValAssign::getCustomMem( |
| 35 | ValNo, ValVT, Offset: State.AllocateStack(Size: 8, Alignment: Align(4)), LocVT, HTP: LocInfo)); |
| 36 | return true; |
| 37 | } |
| 38 | |
| 39 | // Try to get the second register. |
| 40 | if (MCRegister Reg = State.AllocateReg(Regs: RegList)) |
| 41 | State.addLoc(V: CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, HTP: LocInfo)); |
| 42 | else |
| 43 | State.addLoc(V: CCValAssign::getCustomMem( |
| 44 | ValNo, ValVT, Offset: State.AllocateStack(Size: 4, Alignment: Align(4)), LocVT, HTP: LocInfo)); |
| 45 | return true; |
| 46 | } |
| 47 | |
| 48 | static bool CC_ARM_APCS_Custom_f64(unsigned ValNo, MVT ValVT, MVT LocVT, |
| 49 | CCValAssign::LocInfo LocInfo, |
| 50 | ISD::ArgFlagsTy ArgFlags, |
| 51 | CCState &State) { |
| 52 | if (!f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, CanFail: true)) |
| 53 | return false; |
| 54 | if (LocVT == MVT::v2f64 && |
| 55 | !f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, CanFail: false)) |
| 56 | return false; |
| 57 | return true; // we handled it |
| 58 | } |
| 59 | |
| 60 | // AAPCS f64 is in aligned register pairs |
| 61 | static bool f64AssignAAPCS(unsigned ValNo, MVT ValVT, MVT LocVT, |
| 62 | CCValAssign::LocInfo LocInfo, |
| 63 | CCState &State, bool CanFail) { |
| 64 | static const MCPhysReg HiRegList[] = { ARM::R0, ARM::R2 }; |
| 65 | static const MCPhysReg LoRegList[] = { ARM::R1, ARM::R3 }; |
| 66 | static const MCPhysReg ShadowRegList[] = { ARM::R0, ARM::R1 }; |
| 67 | static const MCPhysReg GPRArgRegs[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 }; |
| 68 | |
| 69 | MCRegister Reg = State.AllocateReg(Regs: HiRegList, ShadowRegs: ShadowRegList); |
| 70 | if (!Reg) { |
| 71 | |
| 72 | // If we had R3 unallocated only, now we still must to waste it. |
| 73 | Reg = State.AllocateReg(Regs: GPRArgRegs); |
| 74 | assert((!Reg || Reg == ARM::R3) && "Wrong GPRs usage for f64" ); |
| 75 | |
| 76 | // For the 2nd half of a v2f64, do not just fail. |
| 77 | if (CanFail) |
| 78 | return false; |
| 79 | |
| 80 | // Put the whole thing on the stack. |
| 81 | State.addLoc(V: CCValAssign::getCustomMem( |
| 82 | ValNo, ValVT, Offset: State.AllocateStack(Size: 8, Alignment: Align(8)), LocVT, HTP: LocInfo)); |
| 83 | return true; |
| 84 | } |
| 85 | |
| 86 | unsigned i; |
| 87 | for (i = 0; i < 2; ++i) |
| 88 | if (HiRegList[i] == Reg) |
| 89 | break; |
| 90 | |
| 91 | MCRegister T = State.AllocateReg(Reg: LoRegList[i]); |
| 92 | (void)T; |
| 93 | assert(T == LoRegList[i] && "Could not allocate register" ); |
| 94 | |
| 95 | State.addLoc(V: CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, HTP: LocInfo)); |
| 96 | State.addLoc(V: CCValAssign::getCustomReg(ValNo, ValVT, Reg: LoRegList[i], |
| 97 | LocVT, HTP: LocInfo)); |
| 98 | return true; |
| 99 | } |
| 100 | |
| 101 | static bool CC_ARM_AAPCS_Custom_f64(unsigned ValNo, MVT ValVT, MVT LocVT, |
| 102 | CCValAssign::LocInfo LocInfo, |
| 103 | ISD::ArgFlagsTy ArgFlags, |
| 104 | CCState &State) { |
| 105 | if (!f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, CanFail: true)) |
| 106 | return false; |
| 107 | if (LocVT == MVT::v2f64 && |
| 108 | !f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, CanFail: false)) |
| 109 | return false; |
| 110 | return true; // we handled it |
| 111 | } |
| 112 | |
| 113 | static bool f64RetAssign(unsigned ValNo, MVT ValVT, MVT LocVT, |
| 114 | CCValAssign::LocInfo LocInfo, CCState &State) { |
| 115 | static const MCPhysReg HiRegList[] = { ARM::R0, ARM::R2 }; |
| 116 | static const MCPhysReg LoRegList[] = { ARM::R1, ARM::R3 }; |
| 117 | |
| 118 | MCRegister Reg = State.AllocateReg(Regs: HiRegList, ShadowRegs: LoRegList); |
| 119 | if (!Reg) |
| 120 | return false; // we didn't handle it |
| 121 | |
| 122 | unsigned i; |
| 123 | for (i = 0; i < 2; ++i) |
| 124 | if (HiRegList[i] == Reg) |
| 125 | break; |
| 126 | |
| 127 | State.addLoc(V: CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, HTP: LocInfo)); |
| 128 | State.addLoc(V: CCValAssign::getCustomReg(ValNo, ValVT, Reg: LoRegList[i], |
| 129 | LocVT, HTP: LocInfo)); |
| 130 | return true; |
| 131 | } |
| 132 | |
| 133 | static bool RetCC_ARM_APCS_Custom_f64(unsigned ValNo, MVT ValVT, MVT LocVT, |
| 134 | CCValAssign::LocInfo LocInfo, |
| 135 | ISD::ArgFlagsTy ArgFlags, |
| 136 | CCState &State) { |
| 137 | if (!f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State)) |
| 138 | return false; |
| 139 | if (LocVT == MVT::v2f64 && !f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State)) |
| 140 | return false; |
| 141 | return true; // we handled it |
| 142 | } |
| 143 | |
| 144 | static bool RetCC_ARM_AAPCS_Custom_f64(unsigned ValNo, MVT ValVT, MVT LocVT, |
| 145 | CCValAssign::LocInfo LocInfo, |
| 146 | ISD::ArgFlagsTy ArgFlags, |
| 147 | CCState &State) { |
| 148 | return RetCC_ARM_APCS_Custom_f64(ValNo, ValVT, LocVT, LocInfo, ArgFlags, |
| 149 | State); |
| 150 | } |
| 151 | |
| 152 | static const MCPhysReg RRegList[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 }; |
| 153 | |
| 154 | static const MCPhysReg SRegList[] = { ARM::S0, ARM::S1, ARM::S2, ARM::S3, |
| 155 | ARM::S4, ARM::S5, ARM::S6, ARM::S7, |
| 156 | ARM::S8, ARM::S9, ARM::S10, ARM::S11, |
| 157 | ARM::S12, ARM::S13, ARM::S14, ARM::S15 }; |
| 158 | static const MCPhysReg DRegList[] = { ARM::D0, ARM::D1, ARM::D2, ARM::D3, |
| 159 | ARM::D4, ARM::D5, ARM::D6, ARM::D7 }; |
| 160 | static const MCPhysReg QRegList[] = { ARM::Q0, ARM::Q1, ARM::Q2, ARM::Q3 }; |
| 161 | |
| 162 | |
| 163 | // Allocate part of an AAPCS HFA or HVA. We assume that each member of the HA |
| 164 | // has InConsecutiveRegs set, and that the last member also has |
| 165 | // InConsecutiveRegsLast set. We must process all members of the HA before |
| 166 | // we can allocate it, as we need to know the total number of registers that |
| 167 | // will be needed in order to (attempt to) allocate a contiguous block. |
| 168 | static bool CC_ARM_AAPCS_Custom_Aggregate(unsigned ValNo, MVT ValVT, |
| 169 | MVT LocVT, |
| 170 | CCValAssign::LocInfo LocInfo, |
| 171 | ISD::ArgFlagsTy ArgFlags, |
| 172 | CCState &State) { |
| 173 | SmallVectorImpl<CCValAssign> &PendingMembers = State.getPendingLocs(); |
| 174 | |
| 175 | // AAPCS HFAs must have 1-4 elements, all of the same type |
| 176 | if (PendingMembers.size() > 0) |
| 177 | assert(PendingMembers[0].getLocVT() == LocVT); |
| 178 | |
| 179 | // Add the argument to the list to be allocated once we know the size of the |
| 180 | // aggregate. Store the type's required alignment as extra info for later: in |
| 181 | // the [N x i64] case all trace has been removed by the time we actually get |
| 182 | // to do allocation. |
| 183 | PendingMembers.push_back(Elt: CCValAssign::getPending( |
| 184 | ValNo, ValVT, LocVT, HTP: LocInfo, ExtraInfo: ArgFlags.getNonZeroOrigAlign().value())); |
| 185 | |
| 186 | if (!ArgFlags.isInConsecutiveRegsLast()) |
| 187 | return true; |
| 188 | |
| 189 | // Try to allocate a contiguous block of registers, each of the correct |
| 190 | // size to hold one member. |
| 191 | auto &DL = State.getMachineFunction().getDataLayout(); |
| 192 | const MaybeAlign StackAlign = DL.getStackAlignment(); |
| 193 | assert(StackAlign && "data layout string is missing stack alignment" ); |
| 194 | const Align FirstMemberAlign(PendingMembers[0].getExtraInfo()); |
| 195 | Align Alignment = std::min(a: FirstMemberAlign, b: *StackAlign); |
| 196 | |
| 197 | ArrayRef<MCPhysReg> RegList; |
| 198 | switch (LocVT.SimpleTy) { |
| 199 | case MVT::i32: { |
| 200 | RegList = RRegList; |
| 201 | unsigned RegIdx = State.getFirstUnallocated(Regs: RegList); |
| 202 | |
| 203 | // First consume all registers that would give an unaligned object. Whether |
| 204 | // we go on stack or in regs, no-one will be using them in future. |
| 205 | unsigned RegAlign = alignTo(Value: Alignment.value(), Align: 4) / 4; |
| 206 | while (RegIdx % RegAlign != 0 && RegIdx < RegList.size()) |
| 207 | State.AllocateReg(Reg: RegList[RegIdx++]); |
| 208 | |
| 209 | break; |
| 210 | } |
| 211 | case MVT::f16: |
| 212 | case MVT::bf16: |
| 213 | case MVT::f32: |
| 214 | RegList = SRegList; |
| 215 | break; |
| 216 | case MVT::v4f16: |
| 217 | case MVT::v4bf16: |
| 218 | case MVT::f64: |
| 219 | RegList = DRegList; |
| 220 | break; |
| 221 | case MVT::v8f16: |
| 222 | case MVT::v8bf16: |
| 223 | case MVT::v2f64: |
| 224 | RegList = QRegList; |
| 225 | break; |
| 226 | default: |
| 227 | llvm_unreachable("Unexpected member type for block aggregate" ); |
| 228 | break; |
| 229 | } |
| 230 | |
| 231 | ArrayRef<MCPhysReg> RegResult = |
| 232 | State.AllocateRegBlock(Regs: RegList, RegsRequired: PendingMembers.size()); |
| 233 | if (!RegResult.empty()) { |
| 234 | for (const auto &[PendingMember, Reg] : zip(t&: PendingMembers, u&: RegResult)) { |
| 235 | PendingMember.convertToReg(Reg); |
| 236 | State.addLoc(V: PendingMember); |
| 237 | } |
| 238 | PendingMembers.clear(); |
| 239 | return true; |
| 240 | } |
| 241 | |
| 242 | // Register allocation failed, we'll be needing the stack |
| 243 | unsigned Size = LocVT.getSizeInBits() / 8; |
| 244 | if (LocVT == MVT::i32 && State.getStackSize() == 0) { |
| 245 | // If nothing else has used the stack until this point, a non-HFA aggregate |
| 246 | // can be split between regs and stack. |
| 247 | unsigned RegIdx = State.getFirstUnallocated(Regs: RegList); |
| 248 | for (auto &It : PendingMembers) { |
| 249 | if (RegIdx >= RegList.size()) |
| 250 | It.convertToMem(Offset: State.AllocateStack(Size, Alignment: Align(Size))); |
| 251 | else |
| 252 | It.convertToReg(Reg: State.AllocateReg(Reg: RegList[RegIdx++])); |
| 253 | |
| 254 | State.addLoc(V: It); |
| 255 | } |
| 256 | PendingMembers.clear(); |
| 257 | return true; |
| 258 | } |
| 259 | |
| 260 | if (LocVT != MVT::i32) |
| 261 | RegList = SRegList; |
| 262 | |
| 263 | // Mark all regs as unavailable (AAPCS rule C.2.vfp for VFP, C.6 for core) |
| 264 | for (auto Reg : RegList) |
| 265 | State.AllocateReg(Reg); |
| 266 | |
| 267 | // Clamp the alignment between 4 and 8. |
| 268 | if (State.getMachineFunction().getSubtarget<ARMSubtarget>().isTargetAEABI()) |
| 269 | Alignment = ArgFlags.getNonZeroMemAlign() <= 4 ? Align(4) : Align(8); |
| 270 | |
| 271 | // After the first item has been allocated, the rest are packed as tightly as |
| 272 | // possible. (E.g. an incoming i64 would have starting Align of 8, but we'll |
| 273 | // be allocating a bunch of i32 slots). |
| 274 | for (auto &It : PendingMembers) { |
| 275 | It.convertToMem(Offset: State.AllocateStack(Size, Alignment)); |
| 276 | State.addLoc(V: It); |
| 277 | Alignment = Align(1); |
| 278 | } |
| 279 | |
| 280 | // All pending members have now been allocated |
| 281 | PendingMembers.clear(); |
| 282 | |
| 283 | // This will be allocated by the last member of the aggregate |
| 284 | return true; |
| 285 | } |
| 286 | |
| 287 | static bool CustomAssignInRegList(unsigned ValNo, MVT ValVT, MVT LocVT, |
| 288 | CCValAssign::LocInfo LocInfo, CCState &State, |
| 289 | ArrayRef<MCPhysReg> RegList) { |
| 290 | MCRegister Reg = State.AllocateReg(Regs: RegList); |
| 291 | if (Reg) { |
| 292 | State.addLoc(V: CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, HTP: LocInfo)); |
| 293 | return true; |
| 294 | } |
| 295 | return false; |
| 296 | } |
| 297 | |
| 298 | static bool CC_ARM_AAPCS_Custom_f16(unsigned ValNo, MVT ValVT, MVT LocVT, |
| 299 | CCValAssign::LocInfo LocInfo, |
| 300 | ISD::ArgFlagsTy ArgFlags, CCState &State) { |
| 301 | // f16 and bf16 arguments are extended to i32 and assigned to a register in |
| 302 | // [r0, r3]. |
| 303 | return CustomAssignInRegList(ValNo, ValVT, LocVT: MVT::i32, LocInfo, State, |
| 304 | RegList: RRegList); |
| 305 | } |
| 306 | |
| 307 | static bool CC_ARM_AAPCS_VFP_Custom_f16(unsigned ValNo, MVT ValVT, MVT LocVT, |
| 308 | CCValAssign::LocInfo LocInfo, |
| 309 | ISD::ArgFlagsTy ArgFlags, |
| 310 | CCState &State) { |
| 311 | // f16 and bf16 arguments are extended to f32 and assigned to a register in |
| 312 | // [s0, s15]. |
| 313 | return CustomAssignInRegList(ValNo, ValVT, LocVT: MVT::f32, LocInfo, State, |
| 314 | RegList: SRegList); |
| 315 | } |
| 316 | |
| 317 | static bool CC_ARM_AAPCS_Common_Custom_f16_Stack(unsigned ValNo, MVT ValVT, |
| 318 | MVT LocVT, |
| 319 | CCValAssign::LocInfo LocInfo, |
| 320 | ISD::ArgFlagsTy ArgFlags, |
| 321 | CCState &State) { |
| 322 | // f16 and bf16 (if not passed in a register) are assigned to a 32-bit stack |
| 323 | // slot, with the most-significant 16 bits unspecified. The 32-bit slot is |
| 324 | // important to make sure that the byte ordering is correct for big endian |
| 325 | // targets. |
| 326 | State.addLoc(V: CCValAssign::getCustomMem( |
| 327 | ValNo, ValVT, Offset: State.AllocateStack(Size: 4, Alignment: Align(4)), LocVT: MVT::i32, HTP: LocInfo)); |
| 328 | return true; |
| 329 | } |
| 330 | |
| 331 | // Include the table generated calling convention implementations. |
| 332 | #include "ARMGenCallingConv.inc" |
| 333 | |