| 1 | //===- ARMTargetTransformInfo.cpp - ARM specific TTI ----------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "ARMTargetTransformInfo.h" |
| 10 | #include "ARMSubtarget.h" |
| 11 | #include "MCTargetDesc/ARMAddressingModes.h" |
| 12 | #include "llvm/ADT/APInt.h" |
| 13 | #include "llvm/ADT/SmallVector.h" |
| 14 | #include "llvm/Analysis/LoopInfo.h" |
| 15 | #include "llvm/CodeGen/CostTable.h" |
| 16 | #include "llvm/CodeGen/ISDOpcodes.h" |
| 17 | #include "llvm/CodeGen/ValueTypes.h" |
| 18 | #include "llvm/CodeGenTypes/MachineValueType.h" |
| 19 | #include "llvm/IR/BasicBlock.h" |
| 20 | #include "llvm/IR/DataLayout.h" |
| 21 | #include "llvm/IR/DerivedTypes.h" |
| 22 | #include "llvm/IR/Instruction.h" |
| 23 | #include "llvm/IR/Instructions.h" |
| 24 | #include "llvm/IR/IntrinsicInst.h" |
| 25 | #include "llvm/IR/Intrinsics.h" |
| 26 | #include "llvm/IR/IntrinsicsARM.h" |
| 27 | #include "llvm/IR/PatternMatch.h" |
| 28 | #include "llvm/IR/Type.h" |
| 29 | #include "llvm/Support/Casting.h" |
| 30 | #include "llvm/Support/KnownBits.h" |
| 31 | #include "llvm/Target/TargetMachine.h" |
| 32 | #include "llvm/TargetParser/SubtargetFeature.h" |
| 33 | #include "llvm/Transforms/InstCombine/InstCombiner.h" |
| 34 | #include "llvm/Transforms/Utils/Local.h" |
| 35 | #include "llvm/Transforms/Utils/LoopUtils.h" |
| 36 | #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" |
| 37 | #include <algorithm> |
| 38 | #include <cassert> |
| 39 | #include <cstdint> |
| 40 | #include <optional> |
| 41 | #include <utility> |
| 42 | |
| 43 | using namespace llvm; |
| 44 | |
| 45 | #define DEBUG_TYPE "armtti" |
| 46 | |
| 47 | static cl::opt<bool> EnableMaskedLoadStores( |
| 48 | "enable-arm-maskedldst" , cl::Hidden, cl::init(Val: true), |
| 49 | cl::desc("Enable the generation of masked loads and stores" )); |
| 50 | |
| 51 | static cl::opt<bool> DisableLowOverheadLoops( |
| 52 | "disable-arm-loloops" , cl::Hidden, cl::init(Val: false), |
| 53 | cl::desc("Disable the generation of low-overhead loops" )); |
| 54 | |
| 55 | static cl::opt<bool> |
| 56 | AllowWLSLoops("allow-arm-wlsloops" , cl::Hidden, cl::init(Val: true), |
| 57 | cl::desc("Enable the generation of WLS loops" )); |
| 58 | |
| 59 | static cl::opt<bool> UseWidenGlobalArrays( |
| 60 | "widen-global-strings" , cl::Hidden, cl::init(Val: true), |
| 61 | cl::desc("Enable the widening of global strings to alignment boundaries" )); |
| 62 | |
| 63 | extern cl::opt<TailPredication::Mode> EnableTailPredication; |
| 64 | |
| 65 | extern cl::opt<bool> EnableMaskedGatherScatters; |
| 66 | |
| 67 | extern cl::opt<unsigned> MVEMaxSupportedInterleaveFactor; |
| 68 | |
| 69 | /// Convert a vector load intrinsic into a simple llvm load instruction. |
| 70 | /// This is beneficial when the underlying object being addressed comes |
| 71 | /// from a constant, since we get constant-folding for free. |
| 72 | static Value *simplifyNeonVld1(const IntrinsicInst &II, unsigned MemAlign, |
| 73 | InstCombiner::BuilderTy &Builder) { |
| 74 | auto *IntrAlign = dyn_cast<ConstantInt>(Val: II.getArgOperand(i: 1)); |
| 75 | |
| 76 | if (!IntrAlign) |
| 77 | return nullptr; |
| 78 | |
| 79 | unsigned Alignment = IntrAlign->getLimitedValue() < MemAlign |
| 80 | ? MemAlign |
| 81 | : IntrAlign->getLimitedValue(); |
| 82 | |
| 83 | if (!isPowerOf2_32(Value: Alignment)) |
| 84 | return nullptr; |
| 85 | |
| 86 | return Builder.CreateAlignedLoad(Ty: II.getType(), Ptr: II.getArgOperand(i: 0), |
| 87 | Align: Align(Alignment)); |
| 88 | } |
| 89 | |
| 90 | bool ARMTTIImpl::areInlineCompatible(const Function *Caller, |
| 91 | const Function *Callee) const { |
| 92 | const TargetMachine &TM = getTLI()->getTargetMachine(); |
| 93 | const FeatureBitset &CallerBits = |
| 94 | TM.getSubtargetImpl(*Caller)->getFeatureBits(); |
| 95 | const FeatureBitset &CalleeBits = |
| 96 | TM.getSubtargetImpl(*Callee)->getFeatureBits(); |
| 97 | |
| 98 | // To inline a callee, all features not in the allowed list must match exactly. |
| 99 | bool MatchExact = (CallerBits & ~InlineFeaturesAllowed) == |
| 100 | (CalleeBits & ~InlineFeaturesAllowed); |
| 101 | // For features in the allowed list, the callee's features must be a subset of |
| 102 | // the callers'. |
| 103 | bool MatchSubset = ((CallerBits & CalleeBits) & InlineFeaturesAllowed) == |
| 104 | (CalleeBits & InlineFeaturesAllowed); |
| 105 | return MatchExact && MatchSubset; |
| 106 | } |
| 107 | |
| 108 | TTI::AddressingModeKind |
| 109 | ARMTTIImpl::getPreferredAddressingMode(const Loop *L, |
| 110 | ScalarEvolution *SE) const { |
| 111 | if (ST->hasMVEIntegerOps()) |
| 112 | return TTI::AMK_PostIndexed; |
| 113 | |
| 114 | if (L->getHeader()->getParent()->hasOptSize()) |
| 115 | return TTI::AMK_None; |
| 116 | |
| 117 | if (ST->isMClass() && ST->isThumb2() && |
| 118 | L->getNumBlocks() == 1) |
| 119 | return TTI::AMK_PreIndexed; |
| 120 | |
| 121 | return TTI::AMK_None; |
| 122 | } |
| 123 | |
| 124 | std::optional<Instruction *> |
| 125 | ARMTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const { |
| 126 | using namespace PatternMatch; |
| 127 | Intrinsic::ID IID = II.getIntrinsicID(); |
| 128 | switch (IID) { |
| 129 | default: |
| 130 | break; |
| 131 | case Intrinsic::arm_neon_vld1: { |
| 132 | Align MemAlign = |
| 133 | getKnownAlignment(V: II.getArgOperand(i: 0), DL: IC.getDataLayout(), CxtI: &II, |
| 134 | AC: &IC.getAssumptionCache(), DT: &IC.getDominatorTree()); |
| 135 | if (Value *V = simplifyNeonVld1(II, MemAlign: MemAlign.value(), Builder&: IC.Builder)) { |
| 136 | return IC.replaceInstUsesWith(I&: II, V); |
| 137 | } |
| 138 | break; |
| 139 | } |
| 140 | |
| 141 | case Intrinsic::arm_neon_vld2: |
| 142 | case Intrinsic::arm_neon_vld3: |
| 143 | case Intrinsic::arm_neon_vld4: |
| 144 | case Intrinsic::arm_neon_vld2lane: |
| 145 | case Intrinsic::arm_neon_vld3lane: |
| 146 | case Intrinsic::arm_neon_vld4lane: |
| 147 | case Intrinsic::arm_neon_vst1: |
| 148 | case Intrinsic::arm_neon_vst2: |
| 149 | case Intrinsic::arm_neon_vst3: |
| 150 | case Intrinsic::arm_neon_vst4: |
| 151 | case Intrinsic::arm_neon_vst2lane: |
| 152 | case Intrinsic::arm_neon_vst3lane: |
| 153 | case Intrinsic::arm_neon_vst4lane: { |
| 154 | Align MemAlign = |
| 155 | getKnownAlignment(V: II.getArgOperand(i: 0), DL: IC.getDataLayout(), CxtI: &II, |
| 156 | AC: &IC.getAssumptionCache(), DT: &IC.getDominatorTree()); |
| 157 | unsigned AlignArg = II.arg_size() - 1; |
| 158 | Value *AlignArgOp = II.getArgOperand(i: AlignArg); |
| 159 | MaybeAlign Align = cast<ConstantInt>(Val: AlignArgOp)->getMaybeAlignValue(); |
| 160 | if (Align && *Align < MemAlign) { |
| 161 | return IC.replaceOperand( |
| 162 | I&: II, OpNum: AlignArg, |
| 163 | V: ConstantInt::get(Ty: Type::getInt32Ty(C&: II.getContext()), V: MemAlign.value(), |
| 164 | IsSigned: false)); |
| 165 | } |
| 166 | break; |
| 167 | } |
| 168 | |
| 169 | case Intrinsic::arm_neon_vld1x2: |
| 170 | case Intrinsic::arm_neon_vld1x3: |
| 171 | case Intrinsic::arm_neon_vld1x4: |
| 172 | case Intrinsic::arm_neon_vst1x2: |
| 173 | case Intrinsic::arm_neon_vst1x3: |
| 174 | case Intrinsic::arm_neon_vst1x4: { |
| 175 | Align NewAlign = |
| 176 | getKnownAlignment(V: II.getArgOperand(i: 0), DL: IC.getDataLayout(), CxtI: &II, |
| 177 | AC: &IC.getAssumptionCache(), DT: &IC.getDominatorTree()); |
| 178 | Align OldAlign = II.getParamAlign(ArgNo: 0).valueOrOne(); |
| 179 | if (NewAlign > OldAlign) |
| 180 | II.addParamAttr(ArgNo: 0, |
| 181 | Attr: Attribute::getWithAlignment(Context&: II.getContext(), Alignment: NewAlign)); |
| 182 | break; |
| 183 | } |
| 184 | |
| 185 | case Intrinsic::arm_mve_pred_i2v: { |
| 186 | Value *Arg = II.getArgOperand(i: 0); |
| 187 | Value *ArgArg; |
| 188 | if (match(V: Arg, P: PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_v2i>( |
| 189 | Op0: PatternMatch::m_Value(V&: ArgArg))) && |
| 190 | II.getType() == ArgArg->getType()) { |
| 191 | return IC.replaceInstUsesWith(I&: II, V: ArgArg); |
| 192 | } |
| 193 | Constant *XorMask; |
| 194 | if (match(V: Arg, P: m_Xor(L: PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_v2i>( |
| 195 | Op0: PatternMatch::m_Value(V&: ArgArg)), |
| 196 | R: PatternMatch::m_Constant(C&: XorMask))) && |
| 197 | II.getType() == ArgArg->getType()) { |
| 198 | if (auto *CI = dyn_cast<ConstantInt>(Val: XorMask)) { |
| 199 | if (CI->getValue().trunc(width: 16).isAllOnes()) { |
| 200 | auto TrueVector = IC.Builder.CreateVectorSplat( |
| 201 | NumElts: cast<FixedVectorType>(Val: II.getType())->getNumElements(), |
| 202 | V: IC.Builder.getTrue()); |
| 203 | return BinaryOperator::Create(Op: Instruction::Xor, S1: ArgArg, S2: TrueVector); |
| 204 | } |
| 205 | } |
| 206 | } |
| 207 | KnownBits ScalarKnown(32); |
| 208 | if (IC.SimplifyDemandedBits(I: &II, OpNo: 0, DemandedMask: APInt::getLowBitsSet(numBits: 32, loBitsSet: 16), |
| 209 | Known&: ScalarKnown)) { |
| 210 | return &II; |
| 211 | } |
| 212 | break; |
| 213 | } |
| 214 | case Intrinsic::arm_mve_pred_v2i: { |
| 215 | Value *Arg = II.getArgOperand(i: 0); |
| 216 | Value *ArgArg; |
| 217 | if (match(V: Arg, P: PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_i2v>( |
| 218 | Op0: PatternMatch::m_Value(V&: ArgArg)))) { |
| 219 | return IC.replaceInstUsesWith(I&: II, V: ArgArg); |
| 220 | } |
| 221 | |
| 222 | if (II.getMetadata(KindID: LLVMContext::MD_range)) |
| 223 | break; |
| 224 | |
| 225 | ConstantRange Range(APInt(32, 0), APInt(32, 0x10000)); |
| 226 | |
| 227 | if (auto CurrentRange = II.getRange()) { |
| 228 | Range = Range.intersectWith(CR: *CurrentRange); |
| 229 | if (Range == CurrentRange) |
| 230 | break; |
| 231 | } |
| 232 | |
| 233 | II.addRangeRetAttr(CR: Range); |
| 234 | II.addRetAttr(Kind: Attribute::NoUndef); |
| 235 | return &II; |
| 236 | } |
| 237 | case Intrinsic::arm_mve_vadc: |
| 238 | case Intrinsic::arm_mve_vadc_predicated: { |
| 239 | unsigned CarryOp = |
| 240 | (II.getIntrinsicID() == Intrinsic::arm_mve_vadc_predicated) ? 3 : 2; |
| 241 | assert(II.getArgOperand(CarryOp)->getType()->getScalarSizeInBits() == 32 && |
| 242 | "Bad type for intrinsic!" ); |
| 243 | |
| 244 | KnownBits CarryKnown(32); |
| 245 | if (IC.SimplifyDemandedBits(I: &II, OpNo: CarryOp, DemandedMask: APInt::getOneBitSet(numBits: 32, BitNo: 29), |
| 246 | Known&: CarryKnown)) { |
| 247 | return &II; |
| 248 | } |
| 249 | break; |
| 250 | } |
| 251 | case Intrinsic::arm_mve_vmldava: { |
| 252 | Instruction *I = cast<Instruction>(Val: &II); |
| 253 | if (I->hasOneUse()) { |
| 254 | auto *User = cast<Instruction>(Val: *I->user_begin()); |
| 255 | Value *OpZ; |
| 256 | if (match(V: User, P: m_c_Add(L: m_Specific(V: I), R: m_Value(V&: OpZ))) && |
| 257 | match(V: I->getOperand(i: 3), P: m_Zero())) { |
| 258 | Value *OpX = I->getOperand(i: 4); |
| 259 | Value *OpY = I->getOperand(i: 5); |
| 260 | Type *OpTy = OpX->getType(); |
| 261 | |
| 262 | IC.Builder.SetInsertPoint(User); |
| 263 | Value *V = |
| 264 | IC.Builder.CreateIntrinsic(ID: Intrinsic::arm_mve_vmldava, Types: {OpTy}, |
| 265 | Args: {I->getOperand(i: 0), I->getOperand(i: 1), |
| 266 | I->getOperand(i: 2), OpZ, OpX, OpY}); |
| 267 | |
| 268 | IC.replaceInstUsesWith(I&: *User, V); |
| 269 | return IC.eraseInstFromFunction(I&: *User); |
| 270 | } |
| 271 | } |
| 272 | return std::nullopt; |
| 273 | } |
| 274 | } |
| 275 | return std::nullopt; |
| 276 | } |
| 277 | |
| 278 | std::optional<Value *> ARMTTIImpl::simplifyDemandedVectorEltsIntrinsic( |
| 279 | InstCombiner &IC, IntrinsicInst &II, APInt OrigDemandedElts, |
| 280 | APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, |
| 281 | std::function<void(Instruction *, unsigned, APInt, APInt &)> |
| 282 | SimplifyAndSetOp) const { |
| 283 | |
| 284 | // Compute the demanded bits for a narrowing MVE intrinsic. The TopOpc is the |
| 285 | // opcode specifying a Top/Bottom instruction, which can change between |
| 286 | // instructions. |
| 287 | auto SimplifyNarrowInstrTopBottom =[&](unsigned TopOpc) { |
| 288 | unsigned NumElts = cast<FixedVectorType>(Val: II.getType())->getNumElements(); |
| 289 | unsigned IsTop = cast<ConstantInt>(Val: II.getOperand(i_nocapture: TopOpc))->getZExtValue(); |
| 290 | |
| 291 | // The only odd/even lanes of operand 0 will only be demanded depending |
| 292 | // on whether this is a top/bottom instruction. |
| 293 | APInt DemandedElts = |
| 294 | APInt::getSplat(NewLen: NumElts, V: IsTop ? APInt::getLowBitsSet(numBits: 2, loBitsSet: 1) |
| 295 | : APInt::getHighBitsSet(numBits: 2, hiBitsSet: 1)); |
| 296 | SimplifyAndSetOp(&II, 0, OrigDemandedElts & DemandedElts, UndefElts); |
| 297 | // The other lanes will be defined from the inserted elements. |
| 298 | UndefElts &= APInt::getSplat(NewLen: NumElts, V: IsTop ? APInt::getLowBitsSet(numBits: 2, loBitsSet: 1) |
| 299 | : APInt::getHighBitsSet(numBits: 2, hiBitsSet: 1)); |
| 300 | return std::nullopt; |
| 301 | }; |
| 302 | |
| 303 | switch (II.getIntrinsicID()) { |
| 304 | default: |
| 305 | break; |
| 306 | case Intrinsic::arm_mve_vcvt_narrow: |
| 307 | SimplifyNarrowInstrTopBottom(2); |
| 308 | break; |
| 309 | case Intrinsic::arm_mve_vqmovn: |
| 310 | SimplifyNarrowInstrTopBottom(4); |
| 311 | break; |
| 312 | case Intrinsic::arm_mve_vshrn: |
| 313 | SimplifyNarrowInstrTopBottom(7); |
| 314 | break; |
| 315 | } |
| 316 | |
| 317 | return std::nullopt; |
| 318 | } |
| 319 | |
| 320 | InstructionCost ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty, |
| 321 | TTI::TargetCostKind CostKind) const { |
| 322 | assert(Ty->isIntegerTy()); |
| 323 | |
| 324 | unsigned Bits = Ty->getPrimitiveSizeInBits(); |
| 325 | if (Bits == 0 || Imm.getActiveBits() >= 64) |
| 326 | return 4; |
| 327 | |
| 328 | int64_t SImmVal = Imm.getSExtValue(); |
| 329 | uint64_t ZImmVal = Imm.getZExtValue(); |
| 330 | if (!ST->isThumb()) { |
| 331 | if ((SImmVal >= 0 && SImmVal < 65536) || |
| 332 | (ARM_AM::getSOImmVal(Arg: ZImmVal) != -1) || |
| 333 | (ARM_AM::getSOImmVal(Arg: ~ZImmVal) != -1)) |
| 334 | return 1; |
| 335 | return ST->hasV6T2Ops() ? 2 : 3; |
| 336 | } |
| 337 | if (ST->isThumb2()) { |
| 338 | if ((SImmVal >= 0 && SImmVal < 65536) || |
| 339 | (ARM_AM::getT2SOImmVal(Arg: ZImmVal) != -1) || |
| 340 | (ARM_AM::getT2SOImmVal(Arg: ~ZImmVal) != -1)) |
| 341 | return 1; |
| 342 | return ST->hasV6T2Ops() ? 2 : 3; |
| 343 | } |
| 344 | // Thumb1, any i8 imm cost 1. |
| 345 | if (Bits == 8 || (SImmVal >= 0 && SImmVal < 256)) |
| 346 | return 1; |
| 347 | if ((~SImmVal < 256) || ARM_AM::isThumbImmShiftedVal(V: ZImmVal)) |
| 348 | return 2; |
| 349 | // Load from constantpool. |
| 350 | return 3; |
| 351 | } |
| 352 | |
| 353 | // Constants smaller than 256 fit in the immediate field of |
| 354 | // Thumb1 instructions so we return a zero cost and 1 otherwise. |
| 355 | InstructionCost ARMTTIImpl::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, |
| 356 | const APInt &Imm, |
| 357 | Type *Ty) const { |
| 358 | if (Imm.isNonNegative() && Imm.getLimitedValue() < 256) |
| 359 | return 0; |
| 360 | |
| 361 | return 1; |
| 362 | } |
| 363 | |
| 364 | // Checks whether Inst is part of a min(max()) or max(min()) pattern |
| 365 | // that will match to an SSAT instruction. Returns the instruction being |
| 366 | // saturated, or null if no saturation pattern was found. |
| 367 | static Value *isSSATMinMaxPattern(Instruction *Inst, const APInt &Imm) { |
| 368 | Value *LHS, *RHS; |
| 369 | ConstantInt *C; |
| 370 | SelectPatternFlavor InstSPF = matchSelectPattern(V: Inst, LHS, RHS).Flavor; |
| 371 | |
| 372 | if (InstSPF == SPF_SMAX && |
| 373 | PatternMatch::match(V: RHS, P: PatternMatch::m_ConstantInt(CI&: C)) && |
| 374 | C->getValue() == Imm && Imm.isNegative() && Imm.isNegatedPowerOf2()) { |
| 375 | |
| 376 | auto isSSatMin = [&](Value *MinInst) { |
| 377 | if (isa<SelectInst>(Val: MinInst)) { |
| 378 | Value *MinLHS, *MinRHS; |
| 379 | ConstantInt *MinC; |
| 380 | SelectPatternFlavor MinSPF = |
| 381 | matchSelectPattern(V: MinInst, LHS&: MinLHS, RHS&: MinRHS).Flavor; |
| 382 | if (MinSPF == SPF_SMIN && |
| 383 | PatternMatch::match(V: MinRHS, P: PatternMatch::m_ConstantInt(CI&: MinC)) && |
| 384 | MinC->getValue() == ((-Imm) - 1)) |
| 385 | return true; |
| 386 | } |
| 387 | return false; |
| 388 | }; |
| 389 | |
| 390 | if (isSSatMin(Inst->getOperand(i: 1))) |
| 391 | return cast<Instruction>(Val: Inst->getOperand(i: 1))->getOperand(i: 1); |
| 392 | if (Inst->hasNUses(N: 2) && |
| 393 | (isSSatMin(*Inst->user_begin()) || isSSatMin(*(++Inst->user_begin())))) |
| 394 | return Inst->getOperand(i: 1); |
| 395 | } |
| 396 | return nullptr; |
| 397 | } |
| 398 | |
| 399 | // Look for a FP Saturation pattern, where the instruction can be simplified to |
| 400 | // a fptosi.sat. max(min(fptosi)). The constant in this case is always free. |
| 401 | static bool isFPSatMinMaxPattern(Instruction *Inst, const APInt &Imm) { |
| 402 | if (Imm.getBitWidth() != 64 || |
| 403 | Imm != APInt::getHighBitsSet(numBits: 64, hiBitsSet: 33)) // -2147483648 |
| 404 | return false; |
| 405 | Value *FP = isSSATMinMaxPattern(Inst, Imm); |
| 406 | if (!FP && isa<ICmpInst>(Val: Inst) && Inst->hasOneUse()) |
| 407 | FP = isSSATMinMaxPattern(Inst: cast<Instruction>(Val: *Inst->user_begin()), Imm); |
| 408 | if (!FP) |
| 409 | return false; |
| 410 | return isa<FPToSIInst>(Val: FP); |
| 411 | } |
| 412 | |
| 413 | InstructionCost ARMTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, |
| 414 | const APInt &Imm, Type *Ty, |
| 415 | TTI::TargetCostKind CostKind, |
| 416 | Instruction *Inst) const { |
| 417 | // Division by a constant can be turned into multiplication, but only if we |
| 418 | // know it's constant. So it's not so much that the immediate is cheap (it's |
| 419 | // not), but that the alternative is worse. |
| 420 | // FIXME: this is probably unneeded with GlobalISel. |
| 421 | if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv || |
| 422 | Opcode == Instruction::SRem || Opcode == Instruction::URem) && |
| 423 | Idx == 1) |
| 424 | return 0; |
| 425 | |
| 426 | // Leave any gep offsets for the CodeGenPrepare, which will do a better job at |
| 427 | // splitting any large offsets. |
| 428 | if (Opcode == Instruction::GetElementPtr && Idx != 0) |
| 429 | return 0; |
| 430 | |
| 431 | if (Opcode == Instruction::And) { |
| 432 | // UXTB/UXTH |
| 433 | if (Imm == 255 || Imm == 65535) |
| 434 | return 0; |
| 435 | // Conversion to BIC is free, and means we can use ~Imm instead. |
| 436 | return std::min(a: getIntImmCost(Imm, Ty, CostKind), |
| 437 | b: getIntImmCost(Imm: ~Imm, Ty, CostKind)); |
| 438 | } |
| 439 | |
| 440 | if (Opcode == Instruction::Add) |
| 441 | // Conversion to SUB is free, and means we can use -Imm instead. |
| 442 | return std::min(a: getIntImmCost(Imm, Ty, CostKind), |
| 443 | b: getIntImmCost(Imm: -Imm, Ty, CostKind)); |
| 444 | |
| 445 | if (Opcode == Instruction::ICmp && Imm.isNegative() && |
| 446 | Ty->getIntegerBitWidth() == 32) { |
| 447 | int64_t NegImm = -Imm.getSExtValue(); |
| 448 | if (ST->isThumb2() && NegImm < 1<<12) |
| 449 | // icmp X, #-C -> cmn X, #C |
| 450 | return 0; |
| 451 | if (ST->isThumb() && NegImm < 1<<8) |
| 452 | // icmp X, #-C -> adds X, #C |
| 453 | return 0; |
| 454 | } |
| 455 | |
| 456 | // xor a, -1 can always be folded to MVN |
| 457 | if (Opcode == Instruction::Xor && Imm.isAllOnes()) |
| 458 | return 0; |
| 459 | |
| 460 | // Ensures negative constant of min(max()) or max(min()) patterns that |
| 461 | // match to SSAT instructions don't get hoisted |
| 462 | if (Inst && ((ST->hasV6Ops() && !ST->isThumb()) || ST->isThumb2()) && |
| 463 | Ty->getIntegerBitWidth() <= 32) { |
| 464 | if (isSSATMinMaxPattern(Inst, Imm) || |
| 465 | (isa<ICmpInst>(Val: Inst) && Inst->hasOneUse() && |
| 466 | isSSATMinMaxPattern(Inst: cast<Instruction>(Val: *Inst->user_begin()), Imm))) |
| 467 | return 0; |
| 468 | } |
| 469 | |
| 470 | if (Inst && ST->hasVFP2Base() && isFPSatMinMaxPattern(Inst, Imm)) |
| 471 | return 0; |
| 472 | |
| 473 | // We can convert <= -1 to < 0, which is generally quite cheap. |
| 474 | if (Inst && Opcode == Instruction::ICmp && Idx == 1 && Imm.isAllOnes()) { |
| 475 | ICmpInst::Predicate Pred = cast<ICmpInst>(Val: Inst)->getPredicate(); |
| 476 | if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) |
| 477 | return std::min(a: getIntImmCost(Imm, Ty, CostKind), |
| 478 | b: getIntImmCost(Imm: Imm + 1, Ty, CostKind)); |
| 479 | } |
| 480 | |
| 481 | return getIntImmCost(Imm, Ty, CostKind); |
| 482 | } |
| 483 | |
| 484 | InstructionCost ARMTTIImpl::getCFInstrCost(unsigned Opcode, |
| 485 | TTI::TargetCostKind CostKind, |
| 486 | const Instruction *I) const { |
| 487 | if (CostKind == TTI::TCK_RecipThroughput && |
| 488 | (ST->hasNEON() || ST->hasMVEIntegerOps())) { |
| 489 | // FIXME: The vectorizer is highly sensistive to the cost of these |
| 490 | // instructions, which suggests that it may be using the costs incorrectly. |
| 491 | // But, for now, just make them free to avoid performance regressions for |
| 492 | // vector targets. |
| 493 | return 0; |
| 494 | } |
| 495 | return BaseT::getCFInstrCost(Opcode, CostKind, I); |
| 496 | } |
| 497 | |
| 498 | InstructionCost ARMTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, |
| 499 | Type *Src, |
| 500 | TTI::CastContextHint CCH, |
| 501 | TTI::TargetCostKind CostKind, |
| 502 | const Instruction *I) const { |
| 503 | int ISD = TLI->InstructionOpcodeToISD(Opcode); |
| 504 | assert(ISD && "Invalid opcode" ); |
| 505 | |
| 506 | // TODO: Allow non-throughput costs that aren't binary. |
| 507 | auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost { |
| 508 | if (CostKind != TTI::TCK_RecipThroughput) |
| 509 | return Cost == 0 ? 0 : 1; |
| 510 | return Cost; |
| 511 | }; |
| 512 | auto IsLegalFPType = [this](EVT VT) { |
| 513 | EVT EltVT = VT.getScalarType(); |
| 514 | return (EltVT == MVT::f32 && ST->hasVFP2Base()) || |
| 515 | (EltVT == MVT::f64 && ST->hasFP64()) || |
| 516 | (EltVT == MVT::f16 && ST->hasFullFP16()); |
| 517 | }; |
| 518 | |
| 519 | EVT SrcTy = TLI->getValueType(DL, Ty: Src); |
| 520 | EVT DstTy = TLI->getValueType(DL, Ty: Dst); |
| 521 | |
| 522 | if (!SrcTy.isSimple() || !DstTy.isSimple()) |
| 523 | return AdjustCost( |
| 524 | BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I)); |
| 525 | |
| 526 | // Extending masked load/Truncating masked stores is expensive because we |
| 527 | // currently don't split them. This means that we'll likely end up |
| 528 | // loading/storing each element individually (hence the high cost). |
| 529 | if ((ST->hasMVEIntegerOps() && |
| 530 | (Opcode == Instruction::Trunc || Opcode == Instruction::ZExt || |
| 531 | Opcode == Instruction::SExt)) || |
| 532 | (ST->hasMVEFloatOps() && |
| 533 | (Opcode == Instruction::FPExt || Opcode == Instruction::FPTrunc) && |
| 534 | IsLegalFPType(SrcTy) && IsLegalFPType(DstTy))) |
| 535 | if (CCH == TTI::CastContextHint::Masked && DstTy.getSizeInBits() > 128) |
| 536 | return 2 * DstTy.getVectorNumElements() * |
| 537 | ST->getMVEVectorCostFactor(CostKind); |
| 538 | |
| 539 | // The extend of other kinds of load is free |
| 540 | if (CCH == TTI::CastContextHint::Normal || |
| 541 | CCH == TTI::CastContextHint::Masked) { |
| 542 | static const TypeConversionCostTblEntry LoadConversionTbl[] = { |
| 543 | {.ISD: ISD::SIGN_EXTEND, .Dst: MVT::i32, .Src: MVT::i16, .Cost: 0}, |
| 544 | {.ISD: ISD::ZERO_EXTEND, .Dst: MVT::i32, .Src: MVT::i16, .Cost: 0}, |
| 545 | {.ISD: ISD::SIGN_EXTEND, .Dst: MVT::i32, .Src: MVT::i8, .Cost: 0}, |
| 546 | {.ISD: ISD::ZERO_EXTEND, .Dst: MVT::i32, .Src: MVT::i8, .Cost: 0}, |
| 547 | {.ISD: ISD::SIGN_EXTEND, .Dst: MVT::i16, .Src: MVT::i8, .Cost: 0}, |
| 548 | {.ISD: ISD::ZERO_EXTEND, .Dst: MVT::i16, .Src: MVT::i8, .Cost: 0}, |
| 549 | {.ISD: ISD::SIGN_EXTEND, .Dst: MVT::i64, .Src: MVT::i32, .Cost: 1}, |
| 550 | {.ISD: ISD::ZERO_EXTEND, .Dst: MVT::i64, .Src: MVT::i32, .Cost: 1}, |
| 551 | {.ISD: ISD::SIGN_EXTEND, .Dst: MVT::i64, .Src: MVT::i16, .Cost: 1}, |
| 552 | {.ISD: ISD::ZERO_EXTEND, .Dst: MVT::i64, .Src: MVT::i16, .Cost: 1}, |
| 553 | {.ISD: ISD::SIGN_EXTEND, .Dst: MVT::i64, .Src: MVT::i8, .Cost: 1}, |
| 554 | {.ISD: ISD::ZERO_EXTEND, .Dst: MVT::i64, .Src: MVT::i8, .Cost: 1}, |
| 555 | }; |
| 556 | if (const auto *Entry = ConvertCostTableLookup( |
| 557 | Table: LoadConversionTbl, ISD, Dst: DstTy.getSimpleVT(), Src: SrcTy.getSimpleVT())) |
| 558 | return AdjustCost(Entry->Cost); |
| 559 | |
| 560 | static const TypeConversionCostTblEntry MVELoadConversionTbl[] = { |
| 561 | {.ISD: ISD::SIGN_EXTEND, .Dst: MVT::v4i32, .Src: MVT::v4i16, .Cost: 0}, |
| 562 | {.ISD: ISD::ZERO_EXTEND, .Dst: MVT::v4i32, .Src: MVT::v4i16, .Cost: 0}, |
| 563 | {.ISD: ISD::SIGN_EXTEND, .Dst: MVT::v4i32, .Src: MVT::v4i8, .Cost: 0}, |
| 564 | {.ISD: ISD::ZERO_EXTEND, .Dst: MVT::v4i32, .Src: MVT::v4i8, .Cost: 0}, |
| 565 | {.ISD: ISD::SIGN_EXTEND, .Dst: MVT::v8i16, .Src: MVT::v8i8, .Cost: 0}, |
| 566 | {.ISD: ISD::ZERO_EXTEND, .Dst: MVT::v8i16, .Src: MVT::v8i8, .Cost: 0}, |
| 567 | // The following extend from a legal type to an illegal type, so need to |
| 568 | // split the load. This introduced an extra load operation, but the |
| 569 | // extend is still "free". |
| 570 | {.ISD: ISD::SIGN_EXTEND, .Dst: MVT::v8i32, .Src: MVT::v8i16, .Cost: 1}, |
| 571 | {.ISD: ISD::ZERO_EXTEND, .Dst: MVT::v8i32, .Src: MVT::v8i16, .Cost: 1}, |
| 572 | {.ISD: ISD::SIGN_EXTEND, .Dst: MVT::v16i32, .Src: MVT::v16i8, .Cost: 3}, |
| 573 | {.ISD: ISD::ZERO_EXTEND, .Dst: MVT::v16i32, .Src: MVT::v16i8, .Cost: 3}, |
| 574 | {.ISD: ISD::SIGN_EXTEND, .Dst: MVT::v16i16, .Src: MVT::v16i8, .Cost: 1}, |
| 575 | {.ISD: ISD::ZERO_EXTEND, .Dst: MVT::v16i16, .Src: MVT::v16i8, .Cost: 1}, |
| 576 | }; |
| 577 | if (SrcTy.isVector() && ST->hasMVEIntegerOps()) { |
| 578 | if (const auto *Entry = |
| 579 | ConvertCostTableLookup(Table: MVELoadConversionTbl, ISD, |
| 580 | Dst: DstTy.getSimpleVT(), Src: SrcTy.getSimpleVT())) |
| 581 | return Entry->Cost * ST->getMVEVectorCostFactor(CostKind); |
| 582 | } |
| 583 | |
| 584 | static const TypeConversionCostTblEntry MVEFLoadConversionTbl[] = { |
| 585 | // FPExtends are similar but also require the VCVT instructions. |
| 586 | {.ISD: ISD::FP_EXTEND, .Dst: MVT::v4f32, .Src: MVT::v4f16, .Cost: 1}, |
| 587 | {.ISD: ISD::FP_EXTEND, .Dst: MVT::v8f32, .Src: MVT::v8f16, .Cost: 3}, |
| 588 | }; |
| 589 | if (SrcTy.isVector() && ST->hasMVEFloatOps()) { |
| 590 | if (const auto *Entry = |
| 591 | ConvertCostTableLookup(Table: MVEFLoadConversionTbl, ISD, |
| 592 | Dst: DstTy.getSimpleVT(), Src: SrcTy.getSimpleVT())) |
| 593 | return Entry->Cost * ST->getMVEVectorCostFactor(CostKind); |
| 594 | } |
| 595 | |
| 596 | // The truncate of a store is free. This is the mirror of extends above. |
| 597 | static const TypeConversionCostTblEntry MVEStoreConversionTbl[] = { |
| 598 | {.ISD: ISD::TRUNCATE, .Dst: MVT::v4i32, .Src: MVT::v4i16, .Cost: 0}, |
| 599 | {.ISD: ISD::TRUNCATE, .Dst: MVT::v4i32, .Src: MVT::v4i8, .Cost: 0}, |
| 600 | {.ISD: ISD::TRUNCATE, .Dst: MVT::v8i16, .Src: MVT::v8i8, .Cost: 0}, |
| 601 | {.ISD: ISD::TRUNCATE, .Dst: MVT::v8i32, .Src: MVT::v8i16, .Cost: 1}, |
| 602 | {.ISD: ISD::TRUNCATE, .Dst: MVT::v8i32, .Src: MVT::v8i8, .Cost: 1}, |
| 603 | {.ISD: ISD::TRUNCATE, .Dst: MVT::v16i32, .Src: MVT::v16i8, .Cost: 3}, |
| 604 | {.ISD: ISD::TRUNCATE, .Dst: MVT::v16i16, .Src: MVT::v16i8, .Cost: 1}, |
| 605 | }; |
| 606 | if (SrcTy.isVector() && ST->hasMVEIntegerOps()) { |
| 607 | if (const auto *Entry = |
| 608 | ConvertCostTableLookup(Table: MVEStoreConversionTbl, ISD, |
| 609 | Dst: SrcTy.getSimpleVT(), Src: DstTy.getSimpleVT())) |
| 610 | return Entry->Cost * ST->getMVEVectorCostFactor(CostKind); |
| 611 | } |
| 612 | |
| 613 | static const TypeConversionCostTblEntry MVEFStoreConversionTbl[] = { |
| 614 | {.ISD: ISD::FP_ROUND, .Dst: MVT::v4f32, .Src: MVT::v4f16, .Cost: 1}, |
| 615 | {.ISD: ISD::FP_ROUND, .Dst: MVT::v8f32, .Src: MVT::v8f16, .Cost: 3}, |
| 616 | }; |
| 617 | if (SrcTy.isVector() && ST->hasMVEFloatOps()) { |
| 618 | if (const auto *Entry = |
| 619 | ConvertCostTableLookup(Table: MVEFStoreConversionTbl, ISD, |
| 620 | Dst: SrcTy.getSimpleVT(), Src: DstTy.getSimpleVT())) |
| 621 | return Entry->Cost * ST->getMVEVectorCostFactor(CostKind); |
| 622 | } |
| 623 | } |
| 624 | |
| 625 | // NEON vector operations that can extend their inputs. |
| 626 | if ((ISD == ISD::SIGN_EXTEND || ISD == ISD::ZERO_EXTEND) && |
| 627 | I && I->hasOneUse() && ST->hasNEON() && SrcTy.isVector()) { |
| 628 | static const TypeConversionCostTblEntry NEONDoubleWidthTbl[] = { |
| 629 | // vaddl |
| 630 | { .ISD: ISD::ADD, .Dst: MVT::v4i32, .Src: MVT::v4i16, .Cost: 0 }, |
| 631 | { .ISD: ISD::ADD, .Dst: MVT::v8i16, .Src: MVT::v8i8, .Cost: 0 }, |
| 632 | // vsubl |
| 633 | { .ISD: ISD::SUB, .Dst: MVT::v4i32, .Src: MVT::v4i16, .Cost: 0 }, |
| 634 | { .ISD: ISD::SUB, .Dst: MVT::v8i16, .Src: MVT::v8i8, .Cost: 0 }, |
| 635 | // vmull |
| 636 | { .ISD: ISD::MUL, .Dst: MVT::v4i32, .Src: MVT::v4i16, .Cost: 0 }, |
| 637 | { .ISD: ISD::MUL, .Dst: MVT::v8i16, .Src: MVT::v8i8, .Cost: 0 }, |
| 638 | // vshll |
| 639 | { .ISD: ISD::SHL, .Dst: MVT::v4i32, .Src: MVT::v4i16, .Cost: 0 }, |
| 640 | { .ISD: ISD::SHL, .Dst: MVT::v8i16, .Src: MVT::v8i8, .Cost: 0 }, |
| 641 | }; |
| 642 | |
| 643 | auto *User = cast<Instruction>(Val: *I->user_begin()); |
| 644 | int UserISD = TLI->InstructionOpcodeToISD(Opcode: User->getOpcode()); |
| 645 | if (auto *Entry = ConvertCostTableLookup(Table: NEONDoubleWidthTbl, ISD: UserISD, |
| 646 | Dst: DstTy.getSimpleVT(), |
| 647 | Src: SrcTy.getSimpleVT())) { |
| 648 | return AdjustCost(Entry->Cost); |
| 649 | } |
| 650 | } |
| 651 | |
| 652 | // Single to/from double precision conversions. |
| 653 | if (Src->isVectorTy() && ST->hasNEON() && |
| 654 | ((ISD == ISD::FP_ROUND && SrcTy.getScalarType() == MVT::f64 && |
| 655 | DstTy.getScalarType() == MVT::f32) || |
| 656 | (ISD == ISD::FP_EXTEND && SrcTy.getScalarType() == MVT::f32 && |
| 657 | DstTy.getScalarType() == MVT::f64))) { |
| 658 | static const CostTblEntry NEONFltDblTbl[] = { |
| 659 | // Vector fptrunc/fpext conversions. |
| 660 | {.ISD: ISD::FP_ROUND, .Type: MVT::v2f64, .Cost: 2}, |
| 661 | {.ISD: ISD::FP_EXTEND, .Type: MVT::v2f32, .Cost: 2}, |
| 662 | {.ISD: ISD::FP_EXTEND, .Type: MVT::v4f32, .Cost: 4}}; |
| 663 | |
| 664 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: Src); |
| 665 | if (const auto *Entry = CostTableLookup(Table: NEONFltDblTbl, ISD, Ty: LT.second)) |
| 666 | return AdjustCost(LT.first * Entry->Cost); |
| 667 | } |
| 668 | |
| 669 | // Some arithmetic, load and store operations have specific instructions |
| 670 | // to cast up/down their types automatically at no extra cost. |
| 671 | // TODO: Get these tables to know at least what the related operations are. |
| 672 | static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = { |
| 673 | { .ISD: ISD::SIGN_EXTEND, .Dst: MVT::v4i32, .Src: MVT::v4i16, .Cost: 1 }, |
| 674 | { .ISD: ISD::ZERO_EXTEND, .Dst: MVT::v4i32, .Src: MVT::v4i16, .Cost: 1 }, |
| 675 | { .ISD: ISD::SIGN_EXTEND, .Dst: MVT::v2i64, .Src: MVT::v2i32, .Cost: 1 }, |
| 676 | { .ISD: ISD::ZERO_EXTEND, .Dst: MVT::v2i64, .Src: MVT::v2i32, .Cost: 1 }, |
| 677 | { .ISD: ISD::TRUNCATE, .Dst: MVT::v4i32, .Src: MVT::v4i64, .Cost: 0 }, |
| 678 | { .ISD: ISD::TRUNCATE, .Dst: MVT::v4i16, .Src: MVT::v4i32, .Cost: 1 }, |
| 679 | |
| 680 | // The number of vmovl instructions for the extension. |
| 681 | { .ISD: ISD::SIGN_EXTEND, .Dst: MVT::v8i16, .Src: MVT::v8i8, .Cost: 1 }, |
| 682 | { .ISD: ISD::ZERO_EXTEND, .Dst: MVT::v8i16, .Src: MVT::v8i8, .Cost: 1 }, |
| 683 | { .ISD: ISD::SIGN_EXTEND, .Dst: MVT::v4i32, .Src: MVT::v4i8, .Cost: 2 }, |
| 684 | { .ISD: ISD::ZERO_EXTEND, .Dst: MVT::v4i32, .Src: MVT::v4i8, .Cost: 2 }, |
| 685 | { .ISD: ISD::SIGN_EXTEND, .Dst: MVT::v2i64, .Src: MVT::v2i8, .Cost: 3 }, |
| 686 | { .ISD: ISD::ZERO_EXTEND, .Dst: MVT::v2i64, .Src: MVT::v2i8, .Cost: 3 }, |
| 687 | { .ISD: ISD::SIGN_EXTEND, .Dst: MVT::v2i64, .Src: MVT::v2i16, .Cost: 2 }, |
| 688 | { .ISD: ISD::ZERO_EXTEND, .Dst: MVT::v2i64, .Src: MVT::v2i16, .Cost: 2 }, |
| 689 | { .ISD: ISD::SIGN_EXTEND, .Dst: MVT::v4i64, .Src: MVT::v4i16, .Cost: 3 }, |
| 690 | { .ISD: ISD::ZERO_EXTEND, .Dst: MVT::v4i64, .Src: MVT::v4i16, .Cost: 3 }, |
| 691 | { .ISD: ISD::SIGN_EXTEND, .Dst: MVT::v8i32, .Src: MVT::v8i8, .Cost: 3 }, |
| 692 | { .ISD: ISD::ZERO_EXTEND, .Dst: MVT::v8i32, .Src: MVT::v8i8, .Cost: 3 }, |
| 693 | { .ISD: ISD::SIGN_EXTEND, .Dst: MVT::v8i64, .Src: MVT::v8i8, .Cost: 7 }, |
| 694 | { .ISD: ISD::ZERO_EXTEND, .Dst: MVT::v8i64, .Src: MVT::v8i8, .Cost: 7 }, |
| 695 | { .ISD: ISD::SIGN_EXTEND, .Dst: MVT::v8i64, .Src: MVT::v8i16, .Cost: 6 }, |
| 696 | { .ISD: ISD::ZERO_EXTEND, .Dst: MVT::v8i64, .Src: MVT::v8i16, .Cost: 6 }, |
| 697 | { .ISD: ISD::SIGN_EXTEND, .Dst: MVT::v16i32, .Src: MVT::v16i8, .Cost: 6 }, |
| 698 | { .ISD: ISD::ZERO_EXTEND, .Dst: MVT::v16i32, .Src: MVT::v16i8, .Cost: 6 }, |
| 699 | |
| 700 | // Operations that we legalize using splitting. |
| 701 | { .ISD: ISD::TRUNCATE, .Dst: MVT::v16i8, .Src: MVT::v16i32, .Cost: 6 }, |
| 702 | { .ISD: ISD::TRUNCATE, .Dst: MVT::v8i8, .Src: MVT::v8i32, .Cost: 3 }, |
| 703 | |
| 704 | // Vector float <-> i32 conversions. |
| 705 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::v4f32, .Src: MVT::v4i32, .Cost: 1 }, |
| 706 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::v4f32, .Src: MVT::v4i32, .Cost: 1 }, |
| 707 | |
| 708 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::v2f32, .Src: MVT::v2i8, .Cost: 3 }, |
| 709 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::v2f32, .Src: MVT::v2i8, .Cost: 3 }, |
| 710 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::v2f32, .Src: MVT::v2i16, .Cost: 2 }, |
| 711 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::v2f32, .Src: MVT::v2i16, .Cost: 2 }, |
| 712 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::v2f32, .Src: MVT::v2i32, .Cost: 1 }, |
| 713 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::v2f32, .Src: MVT::v2i32, .Cost: 1 }, |
| 714 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::v4f32, .Src: MVT::v4i1, .Cost: 3 }, |
| 715 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::v4f32, .Src: MVT::v4i1, .Cost: 3 }, |
| 716 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::v4f32, .Src: MVT::v4i8, .Cost: 3 }, |
| 717 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::v4f32, .Src: MVT::v4i8, .Cost: 3 }, |
| 718 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::v4f32, .Src: MVT::v4i16, .Cost: 2 }, |
| 719 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::v4f32, .Src: MVT::v4i16, .Cost: 2 }, |
| 720 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::v8f32, .Src: MVT::v8i16, .Cost: 4 }, |
| 721 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::v8f32, .Src: MVT::v8i16, .Cost: 4 }, |
| 722 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::v8f32, .Src: MVT::v8i32, .Cost: 2 }, |
| 723 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::v8f32, .Src: MVT::v8i32, .Cost: 2 }, |
| 724 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::v16f32, .Src: MVT::v16i16, .Cost: 8 }, |
| 725 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::v16f32, .Src: MVT::v16i16, .Cost: 8 }, |
| 726 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::v16f32, .Src: MVT::v16i32, .Cost: 4 }, |
| 727 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::v16f32, .Src: MVT::v16i32, .Cost: 4 }, |
| 728 | |
| 729 | { .ISD: ISD::FP_TO_SINT, .Dst: MVT::v4i32, .Src: MVT::v4f32, .Cost: 1 }, |
| 730 | { .ISD: ISD::FP_TO_UINT, .Dst: MVT::v4i32, .Src: MVT::v4f32, .Cost: 1 }, |
| 731 | { .ISD: ISD::FP_TO_SINT, .Dst: MVT::v4i8, .Src: MVT::v4f32, .Cost: 3 }, |
| 732 | { .ISD: ISD::FP_TO_UINT, .Dst: MVT::v4i8, .Src: MVT::v4f32, .Cost: 3 }, |
| 733 | { .ISD: ISD::FP_TO_SINT, .Dst: MVT::v4i16, .Src: MVT::v4f32, .Cost: 2 }, |
| 734 | { .ISD: ISD::FP_TO_UINT, .Dst: MVT::v4i16, .Src: MVT::v4f32, .Cost: 2 }, |
| 735 | |
| 736 | // Vector double <-> i32 conversions. |
| 737 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::v2f64, .Src: MVT::v2i32, .Cost: 2 }, |
| 738 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::v2f64, .Src: MVT::v2i32, .Cost: 2 }, |
| 739 | |
| 740 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::v2f64, .Src: MVT::v2i8, .Cost: 4 }, |
| 741 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::v2f64, .Src: MVT::v2i8, .Cost: 4 }, |
| 742 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::v2f64, .Src: MVT::v2i16, .Cost: 3 }, |
| 743 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::v2f64, .Src: MVT::v2i16, .Cost: 3 }, |
| 744 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::v2f64, .Src: MVT::v2i32, .Cost: 2 }, |
| 745 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::v2f64, .Src: MVT::v2i32, .Cost: 2 }, |
| 746 | |
| 747 | { .ISD: ISD::FP_TO_SINT, .Dst: MVT::v2i32, .Src: MVT::v2f64, .Cost: 2 }, |
| 748 | { .ISD: ISD::FP_TO_UINT, .Dst: MVT::v2i32, .Src: MVT::v2f64, .Cost: 2 }, |
| 749 | { .ISD: ISD::FP_TO_SINT, .Dst: MVT::v8i16, .Src: MVT::v8f32, .Cost: 4 }, |
| 750 | { .ISD: ISD::FP_TO_UINT, .Dst: MVT::v8i16, .Src: MVT::v8f32, .Cost: 4 }, |
| 751 | { .ISD: ISD::FP_TO_SINT, .Dst: MVT::v16i16, .Src: MVT::v16f32, .Cost: 8 }, |
| 752 | { .ISD: ISD::FP_TO_UINT, .Dst: MVT::v16i16, .Src: MVT::v16f32, .Cost: 8 } |
| 753 | }; |
| 754 | |
| 755 | if (SrcTy.isVector() && ST->hasNEON()) { |
| 756 | if (const auto *Entry = ConvertCostTableLookup(Table: NEONVectorConversionTbl, ISD, |
| 757 | Dst: DstTy.getSimpleVT(), |
| 758 | Src: SrcTy.getSimpleVT())) |
| 759 | return AdjustCost(Entry->Cost); |
| 760 | } |
| 761 | |
| 762 | // Scalar float to integer conversions. |
| 763 | static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = { |
| 764 | { .ISD: ISD::FP_TO_SINT, .Dst: MVT::i1, .Src: MVT::f32, .Cost: 2 }, |
| 765 | { .ISD: ISD::FP_TO_UINT, .Dst: MVT::i1, .Src: MVT::f32, .Cost: 2 }, |
| 766 | { .ISD: ISD::FP_TO_SINT, .Dst: MVT::i1, .Src: MVT::f64, .Cost: 2 }, |
| 767 | { .ISD: ISD::FP_TO_UINT, .Dst: MVT::i1, .Src: MVT::f64, .Cost: 2 }, |
| 768 | { .ISD: ISD::FP_TO_SINT, .Dst: MVT::i8, .Src: MVT::f32, .Cost: 2 }, |
| 769 | { .ISD: ISD::FP_TO_UINT, .Dst: MVT::i8, .Src: MVT::f32, .Cost: 2 }, |
| 770 | { .ISD: ISD::FP_TO_SINT, .Dst: MVT::i8, .Src: MVT::f64, .Cost: 2 }, |
| 771 | { .ISD: ISD::FP_TO_UINT, .Dst: MVT::i8, .Src: MVT::f64, .Cost: 2 }, |
| 772 | { .ISD: ISD::FP_TO_SINT, .Dst: MVT::i16, .Src: MVT::f32, .Cost: 2 }, |
| 773 | { .ISD: ISD::FP_TO_UINT, .Dst: MVT::i16, .Src: MVT::f32, .Cost: 2 }, |
| 774 | { .ISD: ISD::FP_TO_SINT, .Dst: MVT::i16, .Src: MVT::f64, .Cost: 2 }, |
| 775 | { .ISD: ISD::FP_TO_UINT, .Dst: MVT::i16, .Src: MVT::f64, .Cost: 2 }, |
| 776 | { .ISD: ISD::FP_TO_SINT, .Dst: MVT::i32, .Src: MVT::f32, .Cost: 2 }, |
| 777 | { .ISD: ISD::FP_TO_UINT, .Dst: MVT::i32, .Src: MVT::f32, .Cost: 2 }, |
| 778 | { .ISD: ISD::FP_TO_SINT, .Dst: MVT::i32, .Src: MVT::f64, .Cost: 2 }, |
| 779 | { .ISD: ISD::FP_TO_UINT, .Dst: MVT::i32, .Src: MVT::f64, .Cost: 2 }, |
| 780 | { .ISD: ISD::FP_TO_SINT, .Dst: MVT::i64, .Src: MVT::f32, .Cost: 10 }, |
| 781 | { .ISD: ISD::FP_TO_UINT, .Dst: MVT::i64, .Src: MVT::f32, .Cost: 10 }, |
| 782 | { .ISD: ISD::FP_TO_SINT, .Dst: MVT::i64, .Src: MVT::f64, .Cost: 10 }, |
| 783 | { .ISD: ISD::FP_TO_UINT, .Dst: MVT::i64, .Src: MVT::f64, .Cost: 10 } |
| 784 | }; |
| 785 | if (SrcTy.isFloatingPoint() && ST->hasNEON()) { |
| 786 | if (const auto *Entry = ConvertCostTableLookup(Table: NEONFloatConversionTbl, ISD, |
| 787 | Dst: DstTy.getSimpleVT(), |
| 788 | Src: SrcTy.getSimpleVT())) |
| 789 | return AdjustCost(Entry->Cost); |
| 790 | } |
| 791 | |
| 792 | // Scalar integer to float conversions. |
| 793 | static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = { |
| 794 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::f32, .Src: MVT::i1, .Cost: 2 }, |
| 795 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::f32, .Src: MVT::i1, .Cost: 2 }, |
| 796 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::f64, .Src: MVT::i1, .Cost: 2 }, |
| 797 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::f64, .Src: MVT::i1, .Cost: 2 }, |
| 798 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::f32, .Src: MVT::i8, .Cost: 2 }, |
| 799 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::f32, .Src: MVT::i8, .Cost: 2 }, |
| 800 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::f64, .Src: MVT::i8, .Cost: 2 }, |
| 801 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::f64, .Src: MVT::i8, .Cost: 2 }, |
| 802 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::f32, .Src: MVT::i16, .Cost: 2 }, |
| 803 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::f32, .Src: MVT::i16, .Cost: 2 }, |
| 804 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::f64, .Src: MVT::i16, .Cost: 2 }, |
| 805 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::f64, .Src: MVT::i16, .Cost: 2 }, |
| 806 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::f32, .Src: MVT::i32, .Cost: 2 }, |
| 807 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::f32, .Src: MVT::i32, .Cost: 2 }, |
| 808 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::f64, .Src: MVT::i32, .Cost: 2 }, |
| 809 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::f64, .Src: MVT::i32, .Cost: 2 }, |
| 810 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::f32, .Src: MVT::i64, .Cost: 10 }, |
| 811 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::f32, .Src: MVT::i64, .Cost: 10 }, |
| 812 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::f64, .Src: MVT::i64, .Cost: 10 }, |
| 813 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::f64, .Src: MVT::i64, .Cost: 10 } |
| 814 | }; |
| 815 | |
| 816 | if (SrcTy.isInteger() && ST->hasNEON()) { |
| 817 | if (const auto *Entry = ConvertCostTableLookup(Table: NEONIntegerConversionTbl, |
| 818 | ISD, Dst: DstTy.getSimpleVT(), |
| 819 | Src: SrcTy.getSimpleVT())) |
| 820 | return AdjustCost(Entry->Cost); |
| 821 | } |
| 822 | |
| 823 | // MVE extend costs, taken from codegen tests. i8->i16 or i16->i32 is one |
| 824 | // instruction, i8->i32 is two. i64 zexts are an VAND with a constant, sext |
| 825 | // are linearised so take more. |
| 826 | static const TypeConversionCostTblEntry MVEVectorConversionTbl[] = { |
| 827 | { .ISD: ISD::SIGN_EXTEND, .Dst: MVT::v8i16, .Src: MVT::v8i8, .Cost: 1 }, |
| 828 | { .ISD: ISD::ZERO_EXTEND, .Dst: MVT::v8i16, .Src: MVT::v8i8, .Cost: 1 }, |
| 829 | { .ISD: ISD::SIGN_EXTEND, .Dst: MVT::v4i32, .Src: MVT::v4i8, .Cost: 2 }, |
| 830 | { .ISD: ISD::ZERO_EXTEND, .Dst: MVT::v4i32, .Src: MVT::v4i8, .Cost: 2 }, |
| 831 | { .ISD: ISD::SIGN_EXTEND, .Dst: MVT::v2i64, .Src: MVT::v2i8, .Cost: 10 }, |
| 832 | { .ISD: ISD::ZERO_EXTEND, .Dst: MVT::v2i64, .Src: MVT::v2i8, .Cost: 2 }, |
| 833 | { .ISD: ISD::SIGN_EXTEND, .Dst: MVT::v4i32, .Src: MVT::v4i16, .Cost: 1 }, |
| 834 | { .ISD: ISD::ZERO_EXTEND, .Dst: MVT::v4i32, .Src: MVT::v4i16, .Cost: 1 }, |
| 835 | { .ISD: ISD::SIGN_EXTEND, .Dst: MVT::v2i64, .Src: MVT::v2i16, .Cost: 10 }, |
| 836 | { .ISD: ISD::ZERO_EXTEND, .Dst: MVT::v2i64, .Src: MVT::v2i16, .Cost: 2 }, |
| 837 | { .ISD: ISD::SIGN_EXTEND, .Dst: MVT::v2i64, .Src: MVT::v2i32, .Cost: 8 }, |
| 838 | { .ISD: ISD::ZERO_EXTEND, .Dst: MVT::v2i64, .Src: MVT::v2i32, .Cost: 2 }, |
| 839 | }; |
| 840 | |
| 841 | if (SrcTy.isVector() && ST->hasMVEIntegerOps()) { |
| 842 | if (const auto *Entry = ConvertCostTableLookup(Table: MVEVectorConversionTbl, |
| 843 | ISD, Dst: DstTy.getSimpleVT(), |
| 844 | Src: SrcTy.getSimpleVT())) |
| 845 | return Entry->Cost * ST->getMVEVectorCostFactor(CostKind); |
| 846 | } |
| 847 | |
| 848 | if (ISD == ISD::FP_ROUND || ISD == ISD::FP_EXTEND) { |
| 849 | // As general rule, fp converts that were not matched above are scalarized |
| 850 | // and cost 1 vcvt for each lane, so long as the instruction is available. |
| 851 | // If not it will become a series of function calls. |
| 852 | const InstructionCost CallCost = |
| 853 | getCallInstrCost(F: nullptr, RetTy: Dst, Tys: {Src}, CostKind); |
| 854 | int Lanes = 1; |
| 855 | if (SrcTy.isFixedLengthVector()) |
| 856 | Lanes = SrcTy.getVectorNumElements(); |
| 857 | |
| 858 | if (IsLegalFPType(SrcTy) && IsLegalFPType(DstTy)) |
| 859 | return Lanes; |
| 860 | else |
| 861 | return Lanes * CallCost; |
| 862 | } |
| 863 | |
| 864 | if (ISD == ISD::TRUNCATE && ST->hasMVEIntegerOps() && |
| 865 | SrcTy.isFixedLengthVector()) { |
| 866 | // Treat a truncate with larger than legal source (128bits for MVE) as |
| 867 | // expensive, 2 instructions per lane. |
| 868 | if ((SrcTy.getScalarType() == MVT::i8 || |
| 869 | SrcTy.getScalarType() == MVT::i16 || |
| 870 | SrcTy.getScalarType() == MVT::i32) && |
| 871 | SrcTy.getSizeInBits() > 128 && |
| 872 | SrcTy.getSizeInBits() > DstTy.getSizeInBits()) |
| 873 | return SrcTy.getVectorNumElements() * 2; |
| 874 | } |
| 875 | |
| 876 | // Scalar integer conversion costs. |
| 877 | static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = { |
| 878 | // i16 -> i64 requires two dependent operations. |
| 879 | { .ISD: ISD::SIGN_EXTEND, .Dst: MVT::i64, .Src: MVT::i16, .Cost: 2 }, |
| 880 | |
| 881 | // Truncates on i64 are assumed to be free. |
| 882 | { .ISD: ISD::TRUNCATE, .Dst: MVT::i32, .Src: MVT::i64, .Cost: 0 }, |
| 883 | { .ISD: ISD::TRUNCATE, .Dst: MVT::i16, .Src: MVT::i64, .Cost: 0 }, |
| 884 | { .ISD: ISD::TRUNCATE, .Dst: MVT::i8, .Src: MVT::i64, .Cost: 0 }, |
| 885 | { .ISD: ISD::TRUNCATE, .Dst: MVT::i1, .Src: MVT::i64, .Cost: 0 } |
| 886 | }; |
| 887 | |
| 888 | if (SrcTy.isInteger()) { |
| 889 | if (const auto *Entry = ConvertCostTableLookup(Table: ARMIntegerConversionTbl, ISD, |
| 890 | Dst: DstTy.getSimpleVT(), |
| 891 | Src: SrcTy.getSimpleVT())) |
| 892 | return AdjustCost(Entry->Cost); |
| 893 | } |
| 894 | |
| 895 | int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy() |
| 896 | ? ST->getMVEVectorCostFactor(CostKind) |
| 897 | : 1; |
| 898 | return AdjustCost( |
| 899 | BaseCost * BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I)); |
| 900 | } |
| 901 | |
| 902 | InstructionCost ARMTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, |
| 903 | TTI::TargetCostKind CostKind, |
| 904 | unsigned Index, const Value *Op0, |
| 905 | const Value *Op1) const { |
| 906 | // Penalize inserting into an D-subregister. We end up with a three times |
| 907 | // lower estimated throughput on swift. |
| 908 | if (ST->hasSlowLoadDSubregister() && Opcode == Instruction::InsertElement && |
| 909 | ValTy->isVectorTy() && ValTy->getScalarSizeInBits() <= 32) |
| 910 | return 3; |
| 911 | |
| 912 | if (ST->hasNEON() && (Opcode == Instruction::InsertElement || |
| 913 | Opcode == Instruction::ExtractElement)) { |
| 914 | // Cross-class copies are expensive on many microarchitectures, |
| 915 | // so assume they are expensive by default. |
| 916 | if (cast<VectorType>(Val: ValTy)->getElementType()->isIntegerTy()) |
| 917 | return 3; |
| 918 | |
| 919 | // Even if it's not a cross class copy, this likely leads to mixing |
| 920 | // of NEON and VFP code and should be therefore penalized. |
| 921 | if (ValTy->isVectorTy() && |
| 922 | ValTy->getScalarSizeInBits() <= 32) |
| 923 | return std::max<InstructionCost>( |
| 924 | a: BaseT::getVectorInstrCost(Opcode, Val: ValTy, CostKind, Index, Op0, Op1), |
| 925 | b: 2U); |
| 926 | } |
| 927 | |
| 928 | if (ST->hasMVEIntegerOps() && (Opcode == Instruction::InsertElement || |
| 929 | Opcode == Instruction::ExtractElement)) { |
| 930 | // Integer cross-lane moves are more expensive than float, which can |
| 931 | // sometimes just be vmovs. Integer involve being passes to GPR registers, |
| 932 | // causing more of a delay. |
| 933 | std::pair<InstructionCost, MVT> LT = |
| 934 | getTypeLegalizationCost(Ty: ValTy->getScalarType()); |
| 935 | return LT.first * (ValTy->getScalarType()->isIntegerTy() ? 4 : 1); |
| 936 | } |
| 937 | |
| 938 | return BaseT::getVectorInstrCost(Opcode, Val: ValTy, CostKind, Index, Op0, Op1); |
| 939 | } |
| 940 | |
| 941 | InstructionCost ARMTTIImpl::getCmpSelInstrCost( |
| 942 | unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred, |
| 943 | TTI::TargetCostKind CostKind, TTI::OperandValueInfo Op1Info, |
| 944 | TTI::OperandValueInfo Op2Info, const Instruction *I) const { |
| 945 | int ISD = TLI->InstructionOpcodeToISD(Opcode); |
| 946 | |
| 947 | // Thumb scalar code size cost for select. |
| 948 | if (CostKind == TTI::TCK_CodeSize && ISD == ISD::SELECT && |
| 949 | ST->isThumb() && !ValTy->isVectorTy()) { |
| 950 | // Assume expensive structs. |
| 951 | if (TLI->getValueType(DL, Ty: ValTy, AllowUnknown: true) == MVT::Other) |
| 952 | return TTI::TCC_Expensive; |
| 953 | |
| 954 | // Select costs can vary because they: |
| 955 | // - may require one or more conditional mov (including an IT), |
| 956 | // - can't operate directly on immediates, |
| 957 | // - require live flags, which we can't copy around easily. |
| 958 | InstructionCost Cost = getTypeLegalizationCost(Ty: ValTy).first; |
| 959 | |
| 960 | // Possible IT instruction for Thumb2, or more for Thumb1. |
| 961 | ++Cost; |
| 962 | |
| 963 | // i1 values may need rematerialising by using mov immediates and/or |
| 964 | // flag setting instructions. |
| 965 | if (ValTy->isIntegerTy(Bitwidth: 1)) |
| 966 | ++Cost; |
| 967 | |
| 968 | return Cost; |
| 969 | } |
| 970 | |
| 971 | // If this is a vector min/max/abs, use the cost of that intrinsic directly |
| 972 | // instead. Hopefully when min/max intrinsics are more prevalent this code |
| 973 | // will not be needed. |
| 974 | const Instruction *Sel = I; |
| 975 | if ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && Sel && |
| 976 | Sel->hasOneUse()) |
| 977 | Sel = cast<Instruction>(Val: Sel->user_back()); |
| 978 | if (Sel && ValTy->isVectorTy() && |
| 979 | (ValTy->isIntOrIntVectorTy() || ValTy->isFPOrFPVectorTy())) { |
| 980 | const Value *LHS, *RHS; |
| 981 | SelectPatternFlavor SPF = matchSelectPattern(V: Sel, LHS, RHS).Flavor; |
| 982 | unsigned IID = 0; |
| 983 | switch (SPF) { |
| 984 | case SPF_ABS: |
| 985 | IID = Intrinsic::abs; |
| 986 | break; |
| 987 | case SPF_SMIN: |
| 988 | IID = Intrinsic::smin; |
| 989 | break; |
| 990 | case SPF_SMAX: |
| 991 | IID = Intrinsic::smax; |
| 992 | break; |
| 993 | case SPF_UMIN: |
| 994 | IID = Intrinsic::umin; |
| 995 | break; |
| 996 | case SPF_UMAX: |
| 997 | IID = Intrinsic::umax; |
| 998 | break; |
| 999 | case SPF_FMINNUM: |
| 1000 | IID = Intrinsic::minnum; |
| 1001 | break; |
| 1002 | case SPF_FMAXNUM: |
| 1003 | IID = Intrinsic::maxnum; |
| 1004 | break; |
| 1005 | default: |
| 1006 | break; |
| 1007 | } |
| 1008 | if (IID) { |
| 1009 | // The ICmp is free, the select gets the cost of the min/max/etc |
| 1010 | if (Sel != I) |
| 1011 | return 0; |
| 1012 | IntrinsicCostAttributes CostAttrs(IID, ValTy, {ValTy, ValTy}); |
| 1013 | return getIntrinsicInstrCost(ICA: CostAttrs, CostKind); |
| 1014 | } |
| 1015 | } |
| 1016 | |
| 1017 | // On NEON a vector select gets lowered to vbsl. |
| 1018 | if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT && CondTy) { |
| 1019 | // Lowering of some vector selects is currently far from perfect. |
| 1020 | static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = { |
| 1021 | { .ISD: ISD::SELECT, .Dst: MVT::v4i1, .Src: MVT::v4i64, .Cost: 4*4 + 1*2 + 1 }, |
| 1022 | { .ISD: ISD::SELECT, .Dst: MVT::v8i1, .Src: MVT::v8i64, .Cost: 50 }, |
| 1023 | { .ISD: ISD::SELECT, .Dst: MVT::v16i1, .Src: MVT::v16i64, .Cost: 100 } |
| 1024 | }; |
| 1025 | |
| 1026 | EVT SelCondTy = TLI->getValueType(DL, Ty: CondTy); |
| 1027 | EVT SelValTy = TLI->getValueType(DL, Ty: ValTy); |
| 1028 | if (SelCondTy.isSimple() && SelValTy.isSimple()) { |
| 1029 | if (const auto *Entry = ConvertCostTableLookup(Table: NEONVectorSelectTbl, ISD, |
| 1030 | Dst: SelCondTy.getSimpleVT(), |
| 1031 | Src: SelValTy.getSimpleVT())) |
| 1032 | return Entry->Cost; |
| 1033 | } |
| 1034 | |
| 1035 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: ValTy); |
| 1036 | return LT.first; |
| 1037 | } |
| 1038 | |
| 1039 | if (ST->hasMVEIntegerOps() && ValTy->isVectorTy() && |
| 1040 | (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && |
| 1041 | cast<FixedVectorType>(Val: ValTy)->getNumElements() > 1) { |
| 1042 | FixedVectorType *VecValTy = cast<FixedVectorType>(Val: ValTy); |
| 1043 | FixedVectorType *VecCondTy = dyn_cast_or_null<FixedVectorType>(Val: CondTy); |
| 1044 | if (!VecCondTy) |
| 1045 | VecCondTy = cast<FixedVectorType>(Val: CmpInst::makeCmpResultType(opnd_type: VecValTy)); |
| 1046 | |
| 1047 | // If we don't have mve.fp any fp operations will need to be scalarized. |
| 1048 | if (Opcode == Instruction::FCmp && !ST->hasMVEFloatOps()) { |
| 1049 | // One scalaization insert, one scalarization extract and the cost of the |
| 1050 | // fcmps. |
| 1051 | return BaseT::getScalarizationOverhead(InTy: VecValTy, /*Insert*/ false, |
| 1052 | /*Extract*/ true, CostKind) + |
| 1053 | BaseT::getScalarizationOverhead(InTy: VecCondTy, /*Insert*/ true, |
| 1054 | /*Extract*/ false, CostKind) + |
| 1055 | VecValTy->getNumElements() * |
| 1056 | getCmpSelInstrCost(Opcode, ValTy: ValTy->getScalarType(), |
| 1057 | CondTy: VecCondTy->getScalarType(), VecPred, |
| 1058 | CostKind, Op1Info, Op2Info, I); |
| 1059 | } |
| 1060 | |
| 1061 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: ValTy); |
| 1062 | int BaseCost = ST->getMVEVectorCostFactor(CostKind); |
| 1063 | // There are two types - the input that specifies the type of the compare |
| 1064 | // and the output vXi1 type. Because we don't know how the output will be |
| 1065 | // split, we may need an expensive shuffle to get two in sync. This has the |
| 1066 | // effect of making larger than legal compares (v8i32 for example) |
| 1067 | // expensive. |
| 1068 | if (LT.second.isVector() && LT.second.getVectorNumElements() > 2) { |
| 1069 | if (LT.first > 1) |
| 1070 | return LT.first * BaseCost + |
| 1071 | BaseT::getScalarizationOverhead(InTy: VecCondTy, /*Insert*/ true, |
| 1072 | /*Extract*/ false, CostKind); |
| 1073 | return BaseCost; |
| 1074 | } |
| 1075 | } |
| 1076 | |
| 1077 | // Default to cheap (throughput/size of 1 instruction) but adjust throughput |
| 1078 | // for "multiple beats" potentially needed by MVE instructions. |
| 1079 | int BaseCost = 1; |
| 1080 | if (ST->hasMVEIntegerOps() && ValTy->isVectorTy()) |
| 1081 | BaseCost = ST->getMVEVectorCostFactor(CostKind); |
| 1082 | |
| 1083 | return BaseCost * BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, |
| 1084 | CostKind, Op1Info, Op2Info, I); |
| 1085 | } |
| 1086 | |
| 1087 | InstructionCost ARMTTIImpl::getAddressComputationCost(Type *Ty, |
| 1088 | ScalarEvolution *SE, |
| 1089 | const SCEV *Ptr) const { |
| 1090 | // Address computations in vectorized code with non-consecutive addresses will |
| 1091 | // likely result in more instructions compared to scalar code where the |
| 1092 | // computation can more often be merged into the index mode. The resulting |
| 1093 | // extra micro-ops can significantly decrease throughput. |
| 1094 | unsigned NumVectorInstToHideOverhead = 10; |
| 1095 | int MaxMergeDistance = 64; |
| 1096 | |
| 1097 | if (ST->hasNEON()) { |
| 1098 | if (Ty->isVectorTy() && SE && |
| 1099 | !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MergeDistance: MaxMergeDistance + 1)) |
| 1100 | return NumVectorInstToHideOverhead; |
| 1101 | |
| 1102 | // In many cases the address computation is not merged into the instruction |
| 1103 | // addressing mode. |
| 1104 | return 1; |
| 1105 | } |
| 1106 | return BaseT::getAddressComputationCost(Ty, SE, Ptr); |
| 1107 | } |
| 1108 | |
| 1109 | bool ARMTTIImpl::isProfitableLSRChainElement(Instruction *I) const { |
| 1110 | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: I)) { |
| 1111 | // If a VCTP is part of a chain, it's already profitable and shouldn't be |
| 1112 | // optimized, else LSR may block tail-predication. |
| 1113 | switch (II->getIntrinsicID()) { |
| 1114 | case Intrinsic::arm_mve_vctp8: |
| 1115 | case Intrinsic::arm_mve_vctp16: |
| 1116 | case Intrinsic::arm_mve_vctp32: |
| 1117 | case Intrinsic::arm_mve_vctp64: |
| 1118 | return true; |
| 1119 | default: |
| 1120 | break; |
| 1121 | } |
| 1122 | } |
| 1123 | return false; |
| 1124 | } |
| 1125 | |
| 1126 | bool ARMTTIImpl::isLegalMaskedLoad(Type *DataTy, Align Alignment, |
| 1127 | unsigned /*AddressSpace*/) const { |
| 1128 | if (!EnableMaskedLoadStores || !ST->hasMVEIntegerOps()) |
| 1129 | return false; |
| 1130 | |
| 1131 | if (auto *VecTy = dyn_cast<FixedVectorType>(Val: DataTy)) { |
| 1132 | // Don't support v2i1 yet. |
| 1133 | if (VecTy->getNumElements() == 2) |
| 1134 | return false; |
| 1135 | |
| 1136 | // We don't support extending fp types. |
| 1137 | unsigned VecWidth = DataTy->getPrimitiveSizeInBits(); |
| 1138 | if (VecWidth != 128 && VecTy->getElementType()->isFloatingPointTy()) |
| 1139 | return false; |
| 1140 | } |
| 1141 | |
| 1142 | unsigned EltWidth = DataTy->getScalarSizeInBits(); |
| 1143 | return (EltWidth == 32 && Alignment >= 4) || |
| 1144 | (EltWidth == 16 && Alignment >= 2) || (EltWidth == 8); |
| 1145 | } |
| 1146 | |
| 1147 | bool ARMTTIImpl::isLegalMaskedGather(Type *Ty, Align Alignment) const { |
| 1148 | if (!EnableMaskedGatherScatters || !ST->hasMVEIntegerOps()) |
| 1149 | return false; |
| 1150 | |
| 1151 | unsigned EltWidth = Ty->getScalarSizeInBits(); |
| 1152 | return ((EltWidth == 32 && Alignment >= 4) || |
| 1153 | (EltWidth == 16 && Alignment >= 2) || EltWidth == 8); |
| 1154 | } |
| 1155 | |
| 1156 | /// Given a memcpy/memset/memmove instruction, return the number of memory |
| 1157 | /// operations performed, via querying findOptimalMemOpLowering. Returns -1 if a |
| 1158 | /// call is used. |
| 1159 | int ARMTTIImpl::getNumMemOps(const IntrinsicInst *I) const { |
| 1160 | MemOp MOp; |
| 1161 | unsigned DstAddrSpace = ~0u; |
| 1162 | unsigned SrcAddrSpace = ~0u; |
| 1163 | const Function *F = I->getParent()->getParent(); |
| 1164 | |
| 1165 | if (const auto *MC = dyn_cast<MemTransferInst>(Val: I)) { |
| 1166 | ConstantInt *C = dyn_cast<ConstantInt>(Val: MC->getLength()); |
| 1167 | // If 'size' is not a constant, a library call will be generated. |
| 1168 | if (!C) |
| 1169 | return -1; |
| 1170 | |
| 1171 | const unsigned Size = C->getValue().getZExtValue(); |
| 1172 | const Align DstAlign = MC->getDestAlign().valueOrOne(); |
| 1173 | const Align SrcAlign = MC->getSourceAlign().valueOrOne(); |
| 1174 | |
| 1175 | MOp = MemOp::Copy(Size, /*DstAlignCanChange*/ false, DstAlign, SrcAlign, |
| 1176 | /*IsVolatile*/ false); |
| 1177 | DstAddrSpace = MC->getDestAddressSpace(); |
| 1178 | SrcAddrSpace = MC->getSourceAddressSpace(); |
| 1179 | } |
| 1180 | else if (const auto *MS = dyn_cast<MemSetInst>(Val: I)) { |
| 1181 | ConstantInt *C = dyn_cast<ConstantInt>(Val: MS->getLength()); |
| 1182 | // If 'size' is not a constant, a library call will be generated. |
| 1183 | if (!C) |
| 1184 | return -1; |
| 1185 | |
| 1186 | const unsigned Size = C->getValue().getZExtValue(); |
| 1187 | const Align DstAlign = MS->getDestAlign().valueOrOne(); |
| 1188 | |
| 1189 | MOp = MemOp::Set(Size, /*DstAlignCanChange*/ false, DstAlign, |
| 1190 | /*IsZeroMemset*/ false, /*IsVolatile*/ false); |
| 1191 | DstAddrSpace = MS->getDestAddressSpace(); |
| 1192 | } |
| 1193 | else |
| 1194 | llvm_unreachable("Expected a memcpy/move or memset!" ); |
| 1195 | |
| 1196 | unsigned Limit, Factor = 2; |
| 1197 | switch(I->getIntrinsicID()) { |
| 1198 | case Intrinsic::memcpy: |
| 1199 | Limit = TLI->getMaxStoresPerMemcpy(OptSize: F->hasMinSize()); |
| 1200 | break; |
| 1201 | case Intrinsic::memmove: |
| 1202 | Limit = TLI->getMaxStoresPerMemmove(OptSize: F->hasMinSize()); |
| 1203 | break; |
| 1204 | case Intrinsic::memset: |
| 1205 | Limit = TLI->getMaxStoresPerMemset(OptSize: F->hasMinSize()); |
| 1206 | Factor = 1; |
| 1207 | break; |
| 1208 | default: |
| 1209 | llvm_unreachable("Expected a memcpy/move or memset!" ); |
| 1210 | } |
| 1211 | |
| 1212 | // MemOps will be poplulated with a list of data types that needs to be |
| 1213 | // loaded and stored. That's why we multiply the number of elements by 2 to |
| 1214 | // get the cost for this memcpy. |
| 1215 | std::vector<EVT> MemOps; |
| 1216 | if (getTLI()->findOptimalMemOpLowering( |
| 1217 | MemOps, Limit, Op: MOp, DstAS: DstAddrSpace, |
| 1218 | SrcAS: SrcAddrSpace, FuncAttributes: F->getAttributes())) |
| 1219 | return MemOps.size() * Factor; |
| 1220 | |
| 1221 | // If we can't find an optimal memop lowering, return the default cost |
| 1222 | return -1; |
| 1223 | } |
| 1224 | |
| 1225 | InstructionCost ARMTTIImpl::getMemcpyCost(const Instruction *I) const { |
| 1226 | int NumOps = getNumMemOps(I: cast<IntrinsicInst>(Val: I)); |
| 1227 | |
| 1228 | // To model the cost of a library call, we assume 1 for the call, and |
| 1229 | // 3 for the argument setup. |
| 1230 | if (NumOps == -1) |
| 1231 | return 4; |
| 1232 | return NumOps; |
| 1233 | } |
| 1234 | |
| 1235 | InstructionCost ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, |
| 1236 | VectorType *DstTy, VectorType *SrcTy, |
| 1237 | ArrayRef<int> Mask, |
| 1238 | TTI::TargetCostKind CostKind, |
| 1239 | int Index, VectorType *SubTp, |
| 1240 | ArrayRef<const Value *> Args, |
| 1241 | const Instruction *CxtI) const { |
| 1242 | assert((Mask.empty() || DstTy->isScalableTy() || |
| 1243 | Mask.size() == DstTy->getElementCount().getKnownMinValue()) && |
| 1244 | "Expected the Mask to match the return size if given" ); |
| 1245 | assert(SrcTy->getScalarType() == DstTy->getScalarType() && |
| 1246 | "Expected the same scalar types" ); |
| 1247 | |
| 1248 | Kind = improveShuffleKindFromMask(Kind, Mask, SrcTy, Index, SubTy&: SubTp); |
| 1249 | // Treat extractsubvector as single op permutation. |
| 1250 | bool = Kind == TTI::SK_ExtractSubvector; |
| 1251 | if (IsExtractSubvector) |
| 1252 | Kind = TTI::SK_PermuteSingleSrc; |
| 1253 | if (ST->hasNEON()) { |
| 1254 | if (Kind == TTI::SK_Broadcast) { |
| 1255 | static const CostTblEntry NEONDupTbl[] = { |
| 1256 | // VDUP handles these cases. |
| 1257 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v2i32, .Cost: 1}, |
| 1258 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v2f32, .Cost: 1}, |
| 1259 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v2i64, .Cost: 1}, |
| 1260 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v2f64, .Cost: 1}, |
| 1261 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v4i16, .Cost: 1}, |
| 1262 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v8i8, .Cost: 1}, |
| 1263 | |
| 1264 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v4i32, .Cost: 1}, |
| 1265 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v4f32, .Cost: 1}, |
| 1266 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v8i16, .Cost: 1}, |
| 1267 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v16i8, .Cost: 1}}; |
| 1268 | |
| 1269 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: SrcTy); |
| 1270 | if (const auto *Entry = |
| 1271 | CostTableLookup(Table: NEONDupTbl, ISD: ISD::VECTOR_SHUFFLE, Ty: LT.second)) |
| 1272 | return LT.first * Entry->Cost; |
| 1273 | } |
| 1274 | if (Kind == TTI::SK_Reverse) { |
| 1275 | static const CostTblEntry NEONShuffleTbl[] = { |
| 1276 | // Reverse shuffle cost one instruction if we are shuffling within a |
| 1277 | // double word (vrev) or two if we shuffle a quad word (vrev, vext). |
| 1278 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v2i32, .Cost: 1}, |
| 1279 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v2f32, .Cost: 1}, |
| 1280 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v2i64, .Cost: 1}, |
| 1281 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v2f64, .Cost: 1}, |
| 1282 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v4i16, .Cost: 1}, |
| 1283 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v8i8, .Cost: 1}, |
| 1284 | |
| 1285 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v4i32, .Cost: 2}, |
| 1286 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v4f32, .Cost: 2}, |
| 1287 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v8i16, .Cost: 2}, |
| 1288 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v16i8, .Cost: 2}}; |
| 1289 | |
| 1290 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: SrcTy); |
| 1291 | if (const auto *Entry = |
| 1292 | CostTableLookup(Table: NEONShuffleTbl, ISD: ISD::VECTOR_SHUFFLE, Ty: LT.second)) |
| 1293 | return LT.first * Entry->Cost; |
| 1294 | } |
| 1295 | if (Kind == TTI::SK_Select) { |
| 1296 | static const CostTblEntry NEONSelShuffleTbl[] = { |
| 1297 | // Select shuffle cost table for ARM. Cost is the number of |
| 1298 | // instructions |
| 1299 | // required to create the shuffled vector. |
| 1300 | |
| 1301 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v2f32, .Cost: 1}, |
| 1302 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v2i64, .Cost: 1}, |
| 1303 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v2f64, .Cost: 1}, |
| 1304 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v2i32, .Cost: 1}, |
| 1305 | |
| 1306 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v4i32, .Cost: 2}, |
| 1307 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v4f32, .Cost: 2}, |
| 1308 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v4i16, .Cost: 2}, |
| 1309 | |
| 1310 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v8i16, .Cost: 16}, |
| 1311 | |
| 1312 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v16i8, .Cost: 32}}; |
| 1313 | |
| 1314 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: SrcTy); |
| 1315 | if (const auto *Entry = CostTableLookup(Table: NEONSelShuffleTbl, |
| 1316 | ISD: ISD::VECTOR_SHUFFLE, Ty: LT.second)) |
| 1317 | return LT.first * Entry->Cost; |
| 1318 | } |
| 1319 | } |
| 1320 | if (ST->hasMVEIntegerOps()) { |
| 1321 | if (Kind == TTI::SK_Broadcast) { |
| 1322 | static const CostTblEntry MVEDupTbl[] = { |
| 1323 | // VDUP handles these cases. |
| 1324 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v4i32, .Cost: 1}, |
| 1325 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v8i16, .Cost: 1}, |
| 1326 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v16i8, .Cost: 1}, |
| 1327 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v4f32, .Cost: 1}, |
| 1328 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v8f16, .Cost: 1}}; |
| 1329 | |
| 1330 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: SrcTy); |
| 1331 | if (const auto *Entry = CostTableLookup(Table: MVEDupTbl, ISD: ISD::VECTOR_SHUFFLE, |
| 1332 | Ty: LT.second)) |
| 1333 | return LT.first * Entry->Cost * |
| 1334 | ST->getMVEVectorCostFactor(CostKind: TTI::TCK_RecipThroughput); |
| 1335 | } |
| 1336 | |
| 1337 | if (!Mask.empty()) { |
| 1338 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: SrcTy); |
| 1339 | if (LT.second.isVector() && |
| 1340 | Mask.size() <= LT.second.getVectorNumElements() && |
| 1341 | (isVREVMask(M: Mask, VT: LT.second, BlockSize: 16) || isVREVMask(M: Mask, VT: LT.second, BlockSize: 32) || |
| 1342 | isVREVMask(M: Mask, VT: LT.second, BlockSize: 64))) |
| 1343 | return ST->getMVEVectorCostFactor(CostKind: TTI::TCK_RecipThroughput) * LT.first; |
| 1344 | } |
| 1345 | } |
| 1346 | |
| 1347 | // Restore optimal kind. |
| 1348 | if (IsExtractSubvector) |
| 1349 | Kind = TTI::SK_ExtractSubvector; |
| 1350 | int BaseCost = ST->hasMVEIntegerOps() && SrcTy->isVectorTy() |
| 1351 | ? ST->getMVEVectorCostFactor(CostKind: TTI::TCK_RecipThroughput) |
| 1352 | : 1; |
| 1353 | return BaseCost * BaseT::getShuffleCost(Kind, DstTy, SrcTy, Mask, CostKind, |
| 1354 | Index, SubTp); |
| 1355 | } |
| 1356 | |
| 1357 | InstructionCost ARMTTIImpl::getArithmeticInstrCost( |
| 1358 | unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, |
| 1359 | TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info, |
| 1360 | ArrayRef<const Value *> Args, const Instruction *CxtI) const { |
| 1361 | int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode); |
| 1362 | if (ST->isThumb() && CostKind == TTI::TCK_CodeSize && Ty->isIntegerTy(Bitwidth: 1)) { |
| 1363 | // Make operations on i1 relatively expensive as this often involves |
| 1364 | // combining predicates. AND and XOR should be easier to handle with IT |
| 1365 | // blocks. |
| 1366 | switch (ISDOpcode) { |
| 1367 | default: |
| 1368 | break; |
| 1369 | case ISD::AND: |
| 1370 | case ISD::XOR: |
| 1371 | return 2; |
| 1372 | case ISD::OR: |
| 1373 | return 3; |
| 1374 | } |
| 1375 | } |
| 1376 | |
| 1377 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty); |
| 1378 | |
| 1379 | if (ST->hasNEON()) { |
| 1380 | const unsigned FunctionCallDivCost = 20; |
| 1381 | const unsigned ReciprocalDivCost = 10; |
| 1382 | static const CostTblEntry CostTbl[] = { |
| 1383 | // Division. |
| 1384 | // These costs are somewhat random. Choose a cost of 20 to indicate that |
| 1385 | // vectorizing devision (added function call) is going to be very expensive. |
| 1386 | // Double registers types. |
| 1387 | { .ISD: ISD::SDIV, .Type: MVT::v1i64, .Cost: 1 * FunctionCallDivCost}, |
| 1388 | { .ISD: ISD::UDIV, .Type: MVT::v1i64, .Cost: 1 * FunctionCallDivCost}, |
| 1389 | { .ISD: ISD::SREM, .Type: MVT::v1i64, .Cost: 1 * FunctionCallDivCost}, |
| 1390 | { .ISD: ISD::UREM, .Type: MVT::v1i64, .Cost: 1 * FunctionCallDivCost}, |
| 1391 | { .ISD: ISD::SDIV, .Type: MVT::v2i32, .Cost: 2 * FunctionCallDivCost}, |
| 1392 | { .ISD: ISD::UDIV, .Type: MVT::v2i32, .Cost: 2 * FunctionCallDivCost}, |
| 1393 | { .ISD: ISD::SREM, .Type: MVT::v2i32, .Cost: 2 * FunctionCallDivCost}, |
| 1394 | { .ISD: ISD::UREM, .Type: MVT::v2i32, .Cost: 2 * FunctionCallDivCost}, |
| 1395 | { .ISD: ISD::SDIV, .Type: MVT::v4i16, .Cost: ReciprocalDivCost}, |
| 1396 | { .ISD: ISD::UDIV, .Type: MVT::v4i16, .Cost: ReciprocalDivCost}, |
| 1397 | { .ISD: ISD::SREM, .Type: MVT::v4i16, .Cost: 4 * FunctionCallDivCost}, |
| 1398 | { .ISD: ISD::UREM, .Type: MVT::v4i16, .Cost: 4 * FunctionCallDivCost}, |
| 1399 | { .ISD: ISD::SDIV, .Type: MVT::v8i8, .Cost: ReciprocalDivCost}, |
| 1400 | { .ISD: ISD::UDIV, .Type: MVT::v8i8, .Cost: ReciprocalDivCost}, |
| 1401 | { .ISD: ISD::SREM, .Type: MVT::v8i8, .Cost: 8 * FunctionCallDivCost}, |
| 1402 | { .ISD: ISD::UREM, .Type: MVT::v8i8, .Cost: 8 * FunctionCallDivCost}, |
| 1403 | // Quad register types. |
| 1404 | { .ISD: ISD::SDIV, .Type: MVT::v2i64, .Cost: 2 * FunctionCallDivCost}, |
| 1405 | { .ISD: ISD::UDIV, .Type: MVT::v2i64, .Cost: 2 * FunctionCallDivCost}, |
| 1406 | { .ISD: ISD::SREM, .Type: MVT::v2i64, .Cost: 2 * FunctionCallDivCost}, |
| 1407 | { .ISD: ISD::UREM, .Type: MVT::v2i64, .Cost: 2 * FunctionCallDivCost}, |
| 1408 | { .ISD: ISD::SDIV, .Type: MVT::v4i32, .Cost: 4 * FunctionCallDivCost}, |
| 1409 | { .ISD: ISD::UDIV, .Type: MVT::v4i32, .Cost: 4 * FunctionCallDivCost}, |
| 1410 | { .ISD: ISD::SREM, .Type: MVT::v4i32, .Cost: 4 * FunctionCallDivCost}, |
| 1411 | { .ISD: ISD::UREM, .Type: MVT::v4i32, .Cost: 4 * FunctionCallDivCost}, |
| 1412 | { .ISD: ISD::SDIV, .Type: MVT::v8i16, .Cost: 8 * FunctionCallDivCost}, |
| 1413 | { .ISD: ISD::UDIV, .Type: MVT::v8i16, .Cost: 8 * FunctionCallDivCost}, |
| 1414 | { .ISD: ISD::SREM, .Type: MVT::v8i16, .Cost: 8 * FunctionCallDivCost}, |
| 1415 | { .ISD: ISD::UREM, .Type: MVT::v8i16, .Cost: 8 * FunctionCallDivCost}, |
| 1416 | { .ISD: ISD::SDIV, .Type: MVT::v16i8, .Cost: 16 * FunctionCallDivCost}, |
| 1417 | { .ISD: ISD::UDIV, .Type: MVT::v16i8, .Cost: 16 * FunctionCallDivCost}, |
| 1418 | { .ISD: ISD::SREM, .Type: MVT::v16i8, .Cost: 16 * FunctionCallDivCost}, |
| 1419 | { .ISD: ISD::UREM, .Type: MVT::v16i8, .Cost: 16 * FunctionCallDivCost}, |
| 1420 | // Multiplication. |
| 1421 | }; |
| 1422 | |
| 1423 | if (const auto *Entry = CostTableLookup(Table: CostTbl, ISD: ISDOpcode, Ty: LT.second)) |
| 1424 | return LT.first * Entry->Cost; |
| 1425 | |
| 1426 | InstructionCost Cost = BaseT::getArithmeticInstrCost( |
| 1427 | Opcode, Ty, CostKind, Opd1Info: Op1Info, Opd2Info: Op2Info); |
| 1428 | |
| 1429 | // This is somewhat of a hack. The problem that we are facing is that SROA |
| 1430 | // creates a sequence of shift, and, or instructions to construct values. |
| 1431 | // These sequences are recognized by the ISel and have zero-cost. Not so for |
| 1432 | // the vectorized code. Because we have support for v2i64 but not i64 those |
| 1433 | // sequences look particularly beneficial to vectorize. |
| 1434 | // To work around this we increase the cost of v2i64 operations to make them |
| 1435 | // seem less beneficial. |
| 1436 | if (LT.second == MVT::v2i64 && Op2Info.isUniform() && Op2Info.isConstant()) |
| 1437 | Cost += 4; |
| 1438 | |
| 1439 | return Cost; |
| 1440 | } |
| 1441 | |
| 1442 | // If this operation is a shift on arm/thumb2, it might well be folded into |
| 1443 | // the following instruction, hence having a cost of 0. |
| 1444 | auto LooksLikeAFreeShift = [&]() { |
| 1445 | if (ST->isThumb1Only() || Ty->isVectorTy()) |
| 1446 | return false; |
| 1447 | |
| 1448 | if (!CxtI || !CxtI->hasOneUse() || !CxtI->isShift()) |
| 1449 | return false; |
| 1450 | if (!Op2Info.isUniform() || !Op2Info.isConstant()) |
| 1451 | return false; |
| 1452 | |
| 1453 | // Folded into a ADC/ADD/AND/BIC/CMP/EOR/MVN/ORR/ORN/RSB/SBC/SUB |
| 1454 | switch (cast<Instruction>(Val: CxtI->user_back())->getOpcode()) { |
| 1455 | case Instruction::Add: |
| 1456 | case Instruction::Sub: |
| 1457 | case Instruction::And: |
| 1458 | case Instruction::Xor: |
| 1459 | case Instruction::Or: |
| 1460 | case Instruction::ICmp: |
| 1461 | return true; |
| 1462 | default: |
| 1463 | return false; |
| 1464 | } |
| 1465 | }; |
| 1466 | if (LooksLikeAFreeShift()) |
| 1467 | return 0; |
| 1468 | |
| 1469 | // When targets have both DSP and MVE we find that the |
| 1470 | // the compiler will attempt to vectorize as well as using |
| 1471 | // scalar (S/U)MLAL operations. This is in cases where we have |
| 1472 | // the pattern ext(mul(ext(i16), ext(i16))) we find |
| 1473 | // that codegen performs better when only using (S/U)MLAL scalar |
| 1474 | // ops instead of trying to mix vector ops with (S/U)MLAL ops. We therefore |
| 1475 | // check if a mul instruction is used in a (U/S)MLAL pattern. |
| 1476 | auto MulInDSPMLALPattern = [&](const Instruction *I, unsigned Opcode, |
| 1477 | Type *Ty) -> bool { |
| 1478 | if (!ST->hasDSP()) |
| 1479 | return false; |
| 1480 | |
| 1481 | if (!I) |
| 1482 | return false; |
| 1483 | |
| 1484 | if (Opcode != Instruction::Mul) |
| 1485 | return false; |
| 1486 | |
| 1487 | if (Ty->isVectorTy()) |
| 1488 | return false; |
| 1489 | |
| 1490 | auto ValueOpcodesEqual = [](const Value *LHS, const Value *RHS) -> bool { |
| 1491 | return cast<Instruction>(Val: LHS)->getOpcode() == |
| 1492 | cast<Instruction>(Val: RHS)->getOpcode(); |
| 1493 | }; |
| 1494 | auto IsExtInst = [](const Value *V) -> bool { |
| 1495 | return isa<ZExtInst>(Val: V) || isa<SExtInst>(Val: V); |
| 1496 | }; |
| 1497 | auto IsExtensionFromHalf = [](const Value *V) -> bool { |
| 1498 | return cast<Instruction>(Val: V)->getOperand(i: 0)->getType()->isIntegerTy(Bitwidth: 16); |
| 1499 | }; |
| 1500 | |
| 1501 | // We check the arguments of the instruction to see if they're extends |
| 1502 | auto *BinOp = dyn_cast<BinaryOperator>(Val: I); |
| 1503 | if (!BinOp) |
| 1504 | return false; |
| 1505 | Value *Op0 = BinOp->getOperand(i_nocapture: 0); |
| 1506 | Value *Op1 = BinOp->getOperand(i_nocapture: 1); |
| 1507 | if (IsExtInst(Op0) && IsExtInst(Op1) && ValueOpcodesEqual(Op0, Op1)) { |
| 1508 | // We're interested in an ext of an i16 |
| 1509 | if (!I->getType()->isIntegerTy(Bitwidth: 32) || !IsExtensionFromHalf(Op0) || |
| 1510 | !IsExtensionFromHalf(Op1)) |
| 1511 | return false; |
| 1512 | // We need to check if this result will be further extended to i64 |
| 1513 | // and that all these uses are SExt |
| 1514 | for (auto *U : I->users()) |
| 1515 | if (!IsExtInst(U)) |
| 1516 | return false; |
| 1517 | return true; |
| 1518 | } |
| 1519 | |
| 1520 | return false; |
| 1521 | }; |
| 1522 | |
| 1523 | if (MulInDSPMLALPattern(CxtI, Opcode, Ty)) |
| 1524 | return 0; |
| 1525 | |
| 1526 | // Default to cheap (throughput/size of 1 instruction) but adjust throughput |
| 1527 | // for "multiple beats" potentially needed by MVE instructions. |
| 1528 | int BaseCost = 1; |
| 1529 | if (ST->hasMVEIntegerOps() && Ty->isVectorTy()) |
| 1530 | BaseCost = ST->getMVEVectorCostFactor(CostKind); |
| 1531 | |
| 1532 | // The rest of this mostly follows what is done in |
| 1533 | // BaseT::getArithmeticInstrCost, without treating floats as more expensive |
| 1534 | // that scalars or increasing the costs for custom operations. The results is |
| 1535 | // also multiplied by the MVEVectorCostFactor where appropriate. |
| 1536 | if (TLI->isOperationLegalOrCustomOrPromote(Op: ISDOpcode, VT: LT.second)) |
| 1537 | return LT.first * BaseCost; |
| 1538 | |
| 1539 | // Else this is expand, assume that we need to scalarize this op. |
| 1540 | if (auto *VTy = dyn_cast<FixedVectorType>(Val: Ty)) { |
| 1541 | unsigned Num = VTy->getNumElements(); |
| 1542 | InstructionCost Cost = |
| 1543 | getArithmeticInstrCost(Opcode, Ty: Ty->getScalarType(), CostKind); |
| 1544 | // Return the cost of multiple scalar invocation plus the cost of |
| 1545 | // inserting and extracting the values. |
| 1546 | SmallVector<Type *> Tys(Args.size(), Ty); |
| 1547 | return BaseT::getScalarizationOverhead(RetTy: VTy, Args, Tys, CostKind) + |
| 1548 | Num * Cost; |
| 1549 | } |
| 1550 | |
| 1551 | return BaseCost; |
| 1552 | } |
| 1553 | |
| 1554 | InstructionCost ARMTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, |
| 1555 | Align Alignment, |
| 1556 | unsigned AddressSpace, |
| 1557 | TTI::TargetCostKind CostKind, |
| 1558 | TTI::OperandValueInfo OpInfo, |
| 1559 | const Instruction *I) const { |
| 1560 | // TODO: Handle other cost kinds. |
| 1561 | if (CostKind != TTI::TCK_RecipThroughput) |
| 1562 | return 1; |
| 1563 | |
| 1564 | // Type legalization can't handle structs |
| 1565 | if (TLI->getValueType(DL, Ty: Src, AllowUnknown: true) == MVT::Other) |
| 1566 | return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, |
| 1567 | CostKind); |
| 1568 | |
| 1569 | if (ST->hasNEON() && Src->isVectorTy() && Alignment != Align(16) && |
| 1570 | cast<VectorType>(Val: Src)->getElementType()->isDoubleTy()) { |
| 1571 | // Unaligned loads/stores are extremely inefficient. |
| 1572 | // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr. |
| 1573 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: Src); |
| 1574 | return LT.first * 4; |
| 1575 | } |
| 1576 | |
| 1577 | // MVE can optimize a fpext(load(4xhalf)) using an extending integer load. |
| 1578 | // Same for stores. |
| 1579 | if (ST->hasMVEFloatOps() && isa<FixedVectorType>(Val: Src) && I && |
| 1580 | ((Opcode == Instruction::Load && I->hasOneUse() && |
| 1581 | isa<FPExtInst>(Val: *I->user_begin())) || |
| 1582 | (Opcode == Instruction::Store && isa<FPTruncInst>(Val: I->getOperand(i: 0))))) { |
| 1583 | FixedVectorType *SrcVTy = cast<FixedVectorType>(Val: Src); |
| 1584 | Type *DstTy = |
| 1585 | Opcode == Instruction::Load |
| 1586 | ? (*I->user_begin())->getType() |
| 1587 | : cast<Instruction>(Val: I->getOperand(i: 0))->getOperand(i: 0)->getType(); |
| 1588 | if (SrcVTy->getNumElements() == 4 && SrcVTy->getScalarType()->isHalfTy() && |
| 1589 | DstTy->getScalarType()->isFloatTy()) |
| 1590 | return ST->getMVEVectorCostFactor(CostKind); |
| 1591 | } |
| 1592 | |
| 1593 | int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy() |
| 1594 | ? ST->getMVEVectorCostFactor(CostKind) |
| 1595 | : 1; |
| 1596 | return BaseCost * BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, |
| 1597 | CostKind, OpInfo, I); |
| 1598 | } |
| 1599 | |
| 1600 | InstructionCost |
| 1601 | ARMTTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, |
| 1602 | unsigned AddressSpace, |
| 1603 | TTI::TargetCostKind CostKind) const { |
| 1604 | if (ST->hasMVEIntegerOps()) { |
| 1605 | if (Opcode == Instruction::Load && |
| 1606 | isLegalMaskedLoad(DataTy: Src, Alignment, AddressSpace)) |
| 1607 | return ST->getMVEVectorCostFactor(CostKind); |
| 1608 | if (Opcode == Instruction::Store && |
| 1609 | isLegalMaskedStore(DataTy: Src, Alignment, AddressSpace)) |
| 1610 | return ST->getMVEVectorCostFactor(CostKind); |
| 1611 | } |
| 1612 | if (!isa<FixedVectorType>(Val: Src)) |
| 1613 | return BaseT::getMaskedMemoryOpCost(Opcode, DataTy: Src, Alignment, AddressSpace, |
| 1614 | CostKind); |
| 1615 | // Scalar cost, which is currently very high due to the efficiency of the |
| 1616 | // generated code. |
| 1617 | return cast<FixedVectorType>(Val: Src)->getNumElements() * 8; |
| 1618 | } |
| 1619 | |
| 1620 | InstructionCost ARMTTIImpl::getInterleavedMemoryOpCost( |
| 1621 | unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, |
| 1622 | Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, |
| 1623 | bool UseMaskForCond, bool UseMaskForGaps) const { |
| 1624 | assert(Factor >= 2 && "Invalid interleave factor" ); |
| 1625 | assert(isa<VectorType>(VecTy) && "Expect a vector type" ); |
| 1626 | |
| 1627 | // vldN/vstN doesn't support vector types of i64/f64 element. |
| 1628 | bool EltIs64Bits = DL.getTypeSizeInBits(Ty: VecTy->getScalarType()) == 64; |
| 1629 | |
| 1630 | if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits && |
| 1631 | !UseMaskForCond && !UseMaskForGaps) { |
| 1632 | unsigned NumElts = cast<FixedVectorType>(Val: VecTy)->getNumElements(); |
| 1633 | auto *SubVecTy = |
| 1634 | FixedVectorType::get(ElementType: VecTy->getScalarType(), NumElts: NumElts / Factor); |
| 1635 | |
| 1636 | // vldN/vstN only support legal vector types of size 64 or 128 in bits. |
| 1637 | // Accesses having vector types that are a multiple of 128 bits can be |
| 1638 | // matched to more than one vldN/vstN instruction. |
| 1639 | int BaseCost = |
| 1640 | ST->hasMVEIntegerOps() ? ST->getMVEVectorCostFactor(CostKind) : 1; |
| 1641 | if (NumElts % Factor == 0 && |
| 1642 | TLI->isLegalInterleavedAccessType(Factor, VecTy: SubVecTy, Alignment, DL)) |
| 1643 | return Factor * BaseCost * TLI->getNumInterleavedAccesses(VecTy: SubVecTy, DL); |
| 1644 | |
| 1645 | // Some smaller than legal interleaved patterns are cheap as we can make |
| 1646 | // use of the vmovn or vrev patterns to interleave a standard load. This is |
| 1647 | // true for v4i8, v8i8 and v4i16 at least (but not for v4f16 as it is |
| 1648 | // promoted differently). The cost of 2 here is then a load and vrev or |
| 1649 | // vmovn. |
| 1650 | if (ST->hasMVEIntegerOps() && Factor == 2 && NumElts / Factor > 2 && |
| 1651 | VecTy->isIntOrIntVectorTy() && |
| 1652 | DL.getTypeSizeInBits(Ty: SubVecTy).getFixedValue() <= 64) |
| 1653 | return 2 * BaseCost; |
| 1654 | } |
| 1655 | |
| 1656 | return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, |
| 1657 | Alignment, AddressSpace, CostKind, |
| 1658 | UseMaskForCond, UseMaskForGaps); |
| 1659 | } |
| 1660 | |
| 1661 | InstructionCost ARMTTIImpl::getGatherScatterOpCost( |
| 1662 | unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, |
| 1663 | Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) const { |
| 1664 | using namespace PatternMatch; |
| 1665 | if (!ST->hasMVEIntegerOps() || !EnableMaskedGatherScatters) |
| 1666 | return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, |
| 1667 | Alignment, CostKind, I); |
| 1668 | |
| 1669 | assert(DataTy->isVectorTy() && "Can't do gather/scatters on scalar!" ); |
| 1670 | auto *VTy = cast<FixedVectorType>(Val: DataTy); |
| 1671 | |
| 1672 | // TODO: Splitting, once we do that. |
| 1673 | |
| 1674 | unsigned NumElems = VTy->getNumElements(); |
| 1675 | unsigned EltSize = VTy->getScalarSizeInBits(); |
| 1676 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: DataTy); |
| 1677 | |
| 1678 | // For now, it is assumed that for the MVE gather instructions the loads are |
| 1679 | // all effectively serialised. This means the cost is the scalar cost |
| 1680 | // multiplied by the number of elements being loaded. This is possibly very |
| 1681 | // conservative, but even so we still end up vectorising loops because the |
| 1682 | // cost per iteration for many loops is lower than for scalar loops. |
| 1683 | InstructionCost VectorCost = |
| 1684 | NumElems * LT.first * ST->getMVEVectorCostFactor(CostKind); |
| 1685 | // The scalarization cost should be a lot higher. We use the number of vector |
| 1686 | // elements plus the scalarization overhead. If masking is required then a lot |
| 1687 | // of little blocks will be needed and potentially a scalarized p0 mask, |
| 1688 | // greatly increasing the cost. |
| 1689 | InstructionCost ScalarCost = |
| 1690 | NumElems * LT.first + (VariableMask ? NumElems * 5 : 0) + |
| 1691 | BaseT::getScalarizationOverhead(InTy: VTy, /*Insert*/ true, /*Extract*/ false, |
| 1692 | CostKind) + |
| 1693 | BaseT::getScalarizationOverhead(InTy: VTy, /*Insert*/ false, /*Extract*/ true, |
| 1694 | CostKind); |
| 1695 | |
| 1696 | if (EltSize < 8 || Alignment < EltSize / 8) |
| 1697 | return ScalarCost; |
| 1698 | |
| 1699 | unsigned ExtSize = EltSize; |
| 1700 | // Check whether there's a single user that asks for an extended type |
| 1701 | if (I != nullptr) { |
| 1702 | // Dependent of the caller of this function, a gather instruction will |
| 1703 | // either have opcode Instruction::Load or be a call to the masked_gather |
| 1704 | // intrinsic |
| 1705 | if ((I->getOpcode() == Instruction::Load || |
| 1706 | match(V: I, P: m_Intrinsic<Intrinsic::masked_gather>())) && |
| 1707 | I->hasOneUse()) { |
| 1708 | const User *Us = *I->users().begin(); |
| 1709 | if (isa<ZExtInst>(Val: Us) || isa<SExtInst>(Val: Us)) { |
| 1710 | // only allow valid type combinations |
| 1711 | unsigned TypeSize = |
| 1712 | cast<Instruction>(Val: Us)->getType()->getScalarSizeInBits(); |
| 1713 | if (((TypeSize == 32 && (EltSize == 8 || EltSize == 16)) || |
| 1714 | (TypeSize == 16 && EltSize == 8)) && |
| 1715 | TypeSize * NumElems == 128) { |
| 1716 | ExtSize = TypeSize; |
| 1717 | } |
| 1718 | } |
| 1719 | } |
| 1720 | // Check whether the input data needs to be truncated |
| 1721 | TruncInst *T; |
| 1722 | if ((I->getOpcode() == Instruction::Store || |
| 1723 | match(V: I, P: m_Intrinsic<Intrinsic::masked_scatter>())) && |
| 1724 | (T = dyn_cast<TruncInst>(Val: I->getOperand(i: 0)))) { |
| 1725 | // Only allow valid type combinations |
| 1726 | unsigned TypeSize = T->getOperand(i_nocapture: 0)->getType()->getScalarSizeInBits(); |
| 1727 | if (((EltSize == 16 && TypeSize == 32) || |
| 1728 | (EltSize == 8 && (TypeSize == 32 || TypeSize == 16))) && |
| 1729 | TypeSize * NumElems == 128) |
| 1730 | ExtSize = TypeSize; |
| 1731 | } |
| 1732 | } |
| 1733 | |
| 1734 | if (ExtSize * NumElems != 128 || NumElems < 4) |
| 1735 | return ScalarCost; |
| 1736 | |
| 1737 | // Any (aligned) i32 gather will not need to be scalarised. |
| 1738 | if (ExtSize == 32) |
| 1739 | return VectorCost; |
| 1740 | // For smaller types, we need to ensure that the gep's inputs are correctly |
| 1741 | // extended from a small enough value. Other sizes (including i64) are |
| 1742 | // scalarized for now. |
| 1743 | if (ExtSize != 8 && ExtSize != 16) |
| 1744 | return ScalarCost; |
| 1745 | |
| 1746 | if (const auto *BC = dyn_cast<BitCastInst>(Val: Ptr)) |
| 1747 | Ptr = BC->getOperand(i_nocapture: 0); |
| 1748 | if (const auto *GEP = dyn_cast<GetElementPtrInst>(Val: Ptr)) { |
| 1749 | if (GEP->getNumOperands() != 2) |
| 1750 | return ScalarCost; |
| 1751 | unsigned Scale = DL.getTypeAllocSize(Ty: GEP->getResultElementType()); |
| 1752 | // Scale needs to be correct (which is only relevant for i16s). |
| 1753 | if (Scale != 1 && Scale * 8 != ExtSize) |
| 1754 | return ScalarCost; |
| 1755 | // And we need to zext (not sext) the indexes from a small enough type. |
| 1756 | if (const auto *ZExt = dyn_cast<ZExtInst>(Val: GEP->getOperand(i_nocapture: 1))) { |
| 1757 | if (ZExt->getOperand(i_nocapture: 0)->getType()->getScalarSizeInBits() <= ExtSize) |
| 1758 | return VectorCost; |
| 1759 | } |
| 1760 | return ScalarCost; |
| 1761 | } |
| 1762 | return ScalarCost; |
| 1763 | } |
| 1764 | |
| 1765 | InstructionCost |
| 1766 | ARMTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy, |
| 1767 | std::optional<FastMathFlags> FMF, |
| 1768 | TTI::TargetCostKind CostKind) const { |
| 1769 | |
| 1770 | EVT ValVT = TLI->getValueType(DL, Ty: ValTy); |
| 1771 | int ISD = TLI->InstructionOpcodeToISD(Opcode); |
| 1772 | unsigned EltSize = ValVT.getScalarSizeInBits(); |
| 1773 | |
| 1774 | // In general floating point reductions are a series of elementwise |
| 1775 | // operations, with free extracts on each step. These are either in-order or |
| 1776 | // treewise depending on whether that is allowed by the fast math flags. |
| 1777 | if ((ISD == ISD::FADD || ISD == ISD::FMUL) && |
| 1778 | ((EltSize == 32 && ST->hasVFP2Base()) || |
| 1779 | (EltSize == 64 && ST->hasFP64()) || |
| 1780 | (EltSize == 16 && ST->hasFullFP16()))) { |
| 1781 | unsigned NumElts = cast<FixedVectorType>(Val: ValTy)->getNumElements(); |
| 1782 | unsigned VecLimit = ST->hasMVEFloatOps() ? 128 : (ST->hasNEON() ? 64 : -1); |
| 1783 | InstructionCost VecCost = 0; |
| 1784 | while (!TTI::requiresOrderedReduction(FMF) && isPowerOf2_32(Value: NumElts) && |
| 1785 | NumElts * EltSize > VecLimit) { |
| 1786 | Type *VecTy = FixedVectorType::get(ElementType: ValTy->getElementType(), NumElts: NumElts / 2); |
| 1787 | VecCost += getArithmeticInstrCost(Opcode, Ty: VecTy, CostKind); |
| 1788 | NumElts /= 2; |
| 1789 | } |
| 1790 | |
| 1791 | // For fp16 we need to extract the upper lane elements. MVE can add a |
| 1792 | // VREV+FMIN/MAX to perform another vector step instead. |
| 1793 | InstructionCost = 0; |
| 1794 | if (!TTI::requiresOrderedReduction(FMF) && ST->hasMVEFloatOps() && |
| 1795 | ValVT.getVectorElementType() == MVT::f16 && NumElts == 8) { |
| 1796 | VecCost += ST->getMVEVectorCostFactor(CostKind) * 2; |
| 1797 | NumElts /= 2; |
| 1798 | } else if (ValVT.getVectorElementType() == MVT::f16) |
| 1799 | ExtractCost = NumElts / 2; |
| 1800 | |
| 1801 | return VecCost + ExtractCost + |
| 1802 | NumElts * |
| 1803 | getArithmeticInstrCost(Opcode, Ty: ValTy->getElementType(), CostKind); |
| 1804 | } |
| 1805 | |
| 1806 | if ((ISD == ISD::AND || ISD == ISD::OR || ISD == ISD::XOR) && |
| 1807 | (EltSize == 64 || EltSize == 32 || EltSize == 16 || EltSize == 8)) { |
| 1808 | unsigned NumElts = cast<FixedVectorType>(Val: ValTy)->getNumElements(); |
| 1809 | unsigned VecLimit = |
| 1810 | ST->hasMVEIntegerOps() ? 128 : (ST->hasNEON() ? 64 : -1); |
| 1811 | InstructionCost VecCost = 0; |
| 1812 | while (isPowerOf2_32(Value: NumElts) && NumElts * EltSize > VecLimit) { |
| 1813 | Type *VecTy = FixedVectorType::get(ElementType: ValTy->getElementType(), NumElts: NumElts / 2); |
| 1814 | VecCost += getArithmeticInstrCost(Opcode, Ty: VecTy, CostKind); |
| 1815 | NumElts /= 2; |
| 1816 | } |
| 1817 | // For i16/i8, MVE will perform a VREV + VORR/VAND/VEOR for the 64bit vector |
| 1818 | // step. |
| 1819 | if (ST->hasMVEIntegerOps() && ValVT.getScalarSizeInBits() <= 16 && |
| 1820 | NumElts * EltSize == 64) { |
| 1821 | Type *VecTy = FixedVectorType::get(ElementType: ValTy->getElementType(), NumElts); |
| 1822 | VecCost += ST->getMVEVectorCostFactor(CostKind) + |
| 1823 | getArithmeticInstrCost(Opcode, Ty: VecTy, CostKind); |
| 1824 | NumElts /= 2; |
| 1825 | } |
| 1826 | |
| 1827 | // From here we extract the elements and perform the and/or/xor. |
| 1828 | InstructionCost = NumElts; |
| 1829 | return VecCost + ExtractCost + |
| 1830 | (NumElts - 1) * getArithmeticInstrCost( |
| 1831 | Opcode, Ty: ValTy->getElementType(), CostKind); |
| 1832 | } |
| 1833 | |
| 1834 | if (!ST->hasMVEIntegerOps() || !ValVT.isSimple() || ISD != ISD::ADD || |
| 1835 | TTI::requiresOrderedReduction(FMF)) |
| 1836 | return BaseT::getArithmeticReductionCost(Opcode, Ty: ValTy, FMF, CostKind); |
| 1837 | |
| 1838 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: ValTy); |
| 1839 | |
| 1840 | static const CostTblEntry CostTblAdd[]{ |
| 1841 | {.ISD: ISD::ADD, .Type: MVT::v16i8, .Cost: 1}, |
| 1842 | {.ISD: ISD::ADD, .Type: MVT::v8i16, .Cost: 1}, |
| 1843 | {.ISD: ISD::ADD, .Type: MVT::v4i32, .Cost: 1}, |
| 1844 | }; |
| 1845 | if (const auto *Entry = CostTableLookup(Table: CostTblAdd, ISD, Ty: LT.second)) |
| 1846 | return Entry->Cost * ST->getMVEVectorCostFactor(CostKind) * LT.first; |
| 1847 | |
| 1848 | return BaseT::getArithmeticReductionCost(Opcode, Ty: ValTy, FMF, CostKind); |
| 1849 | } |
| 1850 | |
| 1851 | InstructionCost ARMTTIImpl::getExtendedReductionCost( |
| 1852 | unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *ValTy, |
| 1853 | std::optional<FastMathFlags> FMF, TTI::TargetCostKind CostKind) const { |
| 1854 | EVT ValVT = TLI->getValueType(DL, Ty: ValTy); |
| 1855 | EVT ResVT = TLI->getValueType(DL, Ty: ResTy); |
| 1856 | |
| 1857 | int ISD = TLI->InstructionOpcodeToISD(Opcode); |
| 1858 | |
| 1859 | switch (ISD) { |
| 1860 | case ISD::ADD: |
| 1861 | if (ST->hasMVEIntegerOps() && ValVT.isSimple() && ResVT.isSimple()) { |
| 1862 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: ValTy); |
| 1863 | |
| 1864 | // The legal cases are: |
| 1865 | // VADDV u/s 8/16/32 |
| 1866 | // VADDLV u/s 32 |
| 1867 | // Codegen currently cannot always handle larger than legal vectors very |
| 1868 | // well, especially for predicated reductions where the mask needs to be |
| 1869 | // split, so restrict to 128bit or smaller input types. |
| 1870 | unsigned RevVTSize = ResVT.getSizeInBits(); |
| 1871 | if (ValVT.getSizeInBits() <= 128 && |
| 1872 | ((LT.second == MVT::v16i8 && RevVTSize <= 32) || |
| 1873 | (LT.second == MVT::v8i16 && RevVTSize <= 32) || |
| 1874 | (LT.second == MVT::v4i32 && RevVTSize <= 64))) |
| 1875 | return ST->getMVEVectorCostFactor(CostKind) * LT.first; |
| 1876 | } |
| 1877 | break; |
| 1878 | default: |
| 1879 | break; |
| 1880 | } |
| 1881 | return BaseT::getExtendedReductionCost(Opcode, IsUnsigned, ResTy, Ty: ValTy, FMF, |
| 1882 | CostKind); |
| 1883 | } |
| 1884 | |
| 1885 | InstructionCost |
| 1886 | ARMTTIImpl::getMulAccReductionCost(bool IsUnsigned, Type *ResTy, |
| 1887 | VectorType *ValTy, |
| 1888 | TTI::TargetCostKind CostKind) const { |
| 1889 | EVT ValVT = TLI->getValueType(DL, Ty: ValTy); |
| 1890 | EVT ResVT = TLI->getValueType(DL, Ty: ResTy); |
| 1891 | |
| 1892 | if (ST->hasMVEIntegerOps() && ValVT.isSimple() && ResVT.isSimple()) { |
| 1893 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: ValTy); |
| 1894 | |
| 1895 | // The legal cases are: |
| 1896 | // VMLAV u/s 8/16/32 |
| 1897 | // VMLALV u/s 16/32 |
| 1898 | // Codegen currently cannot always handle larger than legal vectors very |
| 1899 | // well, especially for predicated reductions where the mask needs to be |
| 1900 | // split, so restrict to 128bit or smaller input types. |
| 1901 | unsigned RevVTSize = ResVT.getSizeInBits(); |
| 1902 | if (ValVT.getSizeInBits() <= 128 && |
| 1903 | ((LT.second == MVT::v16i8 && RevVTSize <= 32) || |
| 1904 | (LT.second == MVT::v8i16 && RevVTSize <= 64) || |
| 1905 | (LT.second == MVT::v4i32 && RevVTSize <= 64))) |
| 1906 | return ST->getMVEVectorCostFactor(CostKind) * LT.first; |
| 1907 | } |
| 1908 | |
| 1909 | return BaseT::getMulAccReductionCost(IsUnsigned, ResTy, Ty: ValTy, CostKind); |
| 1910 | } |
| 1911 | |
| 1912 | InstructionCost |
| 1913 | ARMTTIImpl::getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, |
| 1914 | FastMathFlags FMF, |
| 1915 | TTI::TargetCostKind CostKind) const { |
| 1916 | EVT ValVT = TLI->getValueType(DL, Ty); |
| 1917 | |
| 1918 | // In general floating point reductions are a series of elementwise |
| 1919 | // operations, with free extracts on each step. These are either in-order or |
| 1920 | // treewise depending on whether that is allowed by the fast math flags. |
| 1921 | if ((IID == Intrinsic::minnum || IID == Intrinsic::maxnum) && |
| 1922 | ((ValVT.getVectorElementType() == MVT::f32 && ST->hasVFP2Base()) || |
| 1923 | (ValVT.getVectorElementType() == MVT::f64 && ST->hasFP64()) || |
| 1924 | (ValVT.getVectorElementType() == MVT::f16 && ST->hasFullFP16()))) { |
| 1925 | unsigned NumElts = cast<FixedVectorType>(Val: Ty)->getNumElements(); |
| 1926 | unsigned EltSize = ValVT.getScalarSizeInBits(); |
| 1927 | unsigned VecLimit = ST->hasMVEFloatOps() ? 128 : (ST->hasNEON() ? 64 : -1); |
| 1928 | InstructionCost VecCost; |
| 1929 | while (isPowerOf2_32(Value: NumElts) && NumElts * EltSize > VecLimit) { |
| 1930 | Type *VecTy = FixedVectorType::get(ElementType: Ty->getElementType(), NumElts: NumElts/2); |
| 1931 | IntrinsicCostAttributes ICA(IID, VecTy, {VecTy, VecTy}, FMF); |
| 1932 | VecCost += getIntrinsicInstrCost(ICA, CostKind); |
| 1933 | NumElts /= 2; |
| 1934 | } |
| 1935 | |
| 1936 | // For fp16 we need to extract the upper lane elements. MVE can add a |
| 1937 | // VREV+FMIN/MAX to perform another vector step instead. |
| 1938 | InstructionCost = 0; |
| 1939 | if (ST->hasMVEFloatOps() && ValVT.getVectorElementType() == MVT::f16 && |
| 1940 | NumElts == 8) { |
| 1941 | VecCost += ST->getMVEVectorCostFactor(CostKind) * 2; |
| 1942 | NumElts /= 2; |
| 1943 | } else if (ValVT.getVectorElementType() == MVT::f16) |
| 1944 | ExtractCost = cast<FixedVectorType>(Val: Ty)->getNumElements() / 2; |
| 1945 | |
| 1946 | IntrinsicCostAttributes ICA(IID, Ty->getElementType(), |
| 1947 | {Ty->getElementType(), Ty->getElementType()}, |
| 1948 | FMF); |
| 1949 | return VecCost + ExtractCost + |
| 1950 | (NumElts - 1) * getIntrinsicInstrCost(ICA, CostKind); |
| 1951 | } |
| 1952 | |
| 1953 | if (IID == Intrinsic::smin || IID == Intrinsic::smax || |
| 1954 | IID == Intrinsic::umin || IID == Intrinsic::umax) { |
| 1955 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty); |
| 1956 | |
| 1957 | // All costs are the same for u/s min/max. These lower to vminv, which are |
| 1958 | // given a slightly higher cost as they tend to take multiple cycles for |
| 1959 | // smaller type sizes. |
| 1960 | static const CostTblEntry CostTblAdd[]{ |
| 1961 | {.ISD: ISD::SMIN, .Type: MVT::v16i8, .Cost: 4}, |
| 1962 | {.ISD: ISD::SMIN, .Type: MVT::v8i16, .Cost: 3}, |
| 1963 | {.ISD: ISD::SMIN, .Type: MVT::v4i32, .Cost: 2}, |
| 1964 | }; |
| 1965 | if (const auto *Entry = CostTableLookup(Table: CostTblAdd, ISD: ISD::SMIN, Ty: LT.second)) |
| 1966 | return Entry->Cost * ST->getMVEVectorCostFactor(CostKind) * LT.first; |
| 1967 | } |
| 1968 | |
| 1969 | return BaseT::getMinMaxReductionCost(IID, Ty, FMF, CostKind); |
| 1970 | } |
| 1971 | |
| 1972 | InstructionCost |
| 1973 | ARMTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, |
| 1974 | TTI::TargetCostKind CostKind) const { |
| 1975 | unsigned Opc = ICA.getID(); |
| 1976 | switch (Opc) { |
| 1977 | case Intrinsic::get_active_lane_mask: |
| 1978 | // Currently we make a somewhat optimistic assumption that |
| 1979 | // active_lane_mask's are always free. In reality it may be freely folded |
| 1980 | // into a tail predicated loop, expanded into a VCPT or expanded into a lot |
| 1981 | // of add/icmp code. We may need to improve this in the future, but being |
| 1982 | // able to detect if it is free or not involves looking at a lot of other |
| 1983 | // code. We currently assume that the vectorizer inserted these, and knew |
| 1984 | // what it was doing in adding one. |
| 1985 | if (ST->hasMVEIntegerOps()) |
| 1986 | return 0; |
| 1987 | break; |
| 1988 | case Intrinsic::sadd_sat: |
| 1989 | case Intrinsic::ssub_sat: |
| 1990 | case Intrinsic::uadd_sat: |
| 1991 | case Intrinsic::usub_sat: { |
| 1992 | bool IsAdd = (Opc == Intrinsic::sadd_sat || Opc == Intrinsic::ssub_sat); |
| 1993 | bool IsSigned = (Opc == Intrinsic::sadd_sat || Opc == Intrinsic::ssub_sat); |
| 1994 | Type *RetTy = ICA.getReturnType(); |
| 1995 | |
| 1996 | if (auto *ITy = dyn_cast<IntegerType>(Val: RetTy)) { |
| 1997 | if (IsSigned && ST->hasDSP() && ITy->getBitWidth() == 32) |
| 1998 | return 1; // qadd / qsub |
| 1999 | if (ST->hasDSP() && (ITy->getBitWidth() == 8 || ITy->getBitWidth() == 16)) |
| 2000 | return 2; // uqadd16 / qadd16 / uqsub16 / qsub16 + possible extend. |
| 2001 | // Otherwise return the cost of expanding the node. Generally an add + |
| 2002 | // icmp + sel. |
| 2003 | CmpInst::Predicate Pred = CmpInst::ICMP_SGT; |
| 2004 | Type *CondTy = RetTy->getWithNewBitWidth(NewBitWidth: 1); |
| 2005 | return getArithmeticInstrCost(Opcode: IsAdd ? Instruction::Add : Instruction::Sub, |
| 2006 | Ty: RetTy, CostKind) + |
| 2007 | 2 * getCmpSelInstrCost(Opcode: BinaryOperator::ICmp, ValTy: RetTy, CondTy, VecPred: Pred, |
| 2008 | CostKind) + |
| 2009 | 2 * getCmpSelInstrCost(Opcode: BinaryOperator::Select, ValTy: RetTy, CondTy, VecPred: Pred, |
| 2010 | CostKind); |
| 2011 | } |
| 2012 | |
| 2013 | if (!ST->hasMVEIntegerOps()) |
| 2014 | break; |
| 2015 | |
| 2016 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: RetTy); |
| 2017 | if (LT.second == MVT::v4i32 || LT.second == MVT::v8i16 || |
| 2018 | LT.second == MVT::v16i8) { |
| 2019 | // This is a base cost of 1 for the vqadd, plus 3 extract shifts if we |
| 2020 | // need to extend the type, as it uses shr(qadd(shl, shl)). |
| 2021 | unsigned Instrs = |
| 2022 | LT.second.getScalarSizeInBits() == RetTy->getScalarSizeInBits() ? 1 |
| 2023 | : 4; |
| 2024 | return LT.first * ST->getMVEVectorCostFactor(CostKind) * Instrs; |
| 2025 | } |
| 2026 | break; |
| 2027 | } |
| 2028 | case Intrinsic::abs: |
| 2029 | case Intrinsic::smin: |
| 2030 | case Intrinsic::smax: |
| 2031 | case Intrinsic::umin: |
| 2032 | case Intrinsic::umax: { |
| 2033 | if (!ST->hasMVEIntegerOps()) |
| 2034 | break; |
| 2035 | Type *VT = ICA.getReturnType(); |
| 2036 | |
| 2037 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: VT); |
| 2038 | if (LT.second == MVT::v4i32 || LT.second == MVT::v8i16 || |
| 2039 | LT.second == MVT::v16i8) |
| 2040 | return LT.first * ST->getMVEVectorCostFactor(CostKind); |
| 2041 | break; |
| 2042 | } |
| 2043 | case Intrinsic::minnum: |
| 2044 | case Intrinsic::maxnum: { |
| 2045 | if (!ST->hasMVEFloatOps()) |
| 2046 | break; |
| 2047 | Type *VT = ICA.getReturnType(); |
| 2048 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: VT); |
| 2049 | if (LT.second == MVT::v4f32 || LT.second == MVT::v8f16) |
| 2050 | return LT.first * ST->getMVEVectorCostFactor(CostKind); |
| 2051 | break; |
| 2052 | } |
| 2053 | case Intrinsic::fptosi_sat: |
| 2054 | case Intrinsic::fptoui_sat: { |
| 2055 | if (ICA.getArgTypes().empty()) |
| 2056 | break; |
| 2057 | bool IsSigned = Opc == Intrinsic::fptosi_sat; |
| 2058 | auto LT = getTypeLegalizationCost(Ty: ICA.getArgTypes()[0]); |
| 2059 | EVT MTy = TLI->getValueType(DL, Ty: ICA.getReturnType()); |
| 2060 | // Check for the legal types, with the corect subtarget features. |
| 2061 | if ((ST->hasVFP2Base() && LT.second == MVT::f32 && MTy == MVT::i32) || |
| 2062 | (ST->hasFP64() && LT.second == MVT::f64 && MTy == MVT::i32) || |
| 2063 | (ST->hasFullFP16() && LT.second == MVT::f16 && MTy == MVT::i32)) |
| 2064 | return LT.first; |
| 2065 | |
| 2066 | // Equally for MVE vector types |
| 2067 | if (ST->hasMVEFloatOps() && |
| 2068 | (LT.second == MVT::v4f32 || LT.second == MVT::v8f16) && |
| 2069 | LT.second.getScalarSizeInBits() == MTy.getScalarSizeInBits()) |
| 2070 | return LT.first * ST->getMVEVectorCostFactor(CostKind); |
| 2071 | |
| 2072 | // If we can we use a legal convert followed by a min+max |
| 2073 | if (((ST->hasVFP2Base() && LT.second == MVT::f32) || |
| 2074 | (ST->hasFP64() && LT.second == MVT::f64) || |
| 2075 | (ST->hasFullFP16() && LT.second == MVT::f16) || |
| 2076 | (ST->hasMVEFloatOps() && |
| 2077 | (LT.second == MVT::v4f32 || LT.second == MVT::v8f16))) && |
| 2078 | LT.second.getScalarSizeInBits() >= MTy.getScalarSizeInBits()) { |
| 2079 | Type *LegalTy = Type::getIntNTy(C&: ICA.getReturnType()->getContext(), |
| 2080 | N: LT.second.getScalarSizeInBits()); |
| 2081 | InstructionCost Cost = |
| 2082 | LT.second.isVector() ? ST->getMVEVectorCostFactor(CostKind) : 1; |
| 2083 | IntrinsicCostAttributes Attrs1(IsSigned ? Intrinsic::smin |
| 2084 | : Intrinsic::umin, |
| 2085 | LegalTy, {LegalTy, LegalTy}); |
| 2086 | Cost += getIntrinsicInstrCost(ICA: Attrs1, CostKind); |
| 2087 | IntrinsicCostAttributes Attrs2(IsSigned ? Intrinsic::smax |
| 2088 | : Intrinsic::umax, |
| 2089 | LegalTy, {LegalTy, LegalTy}); |
| 2090 | Cost += getIntrinsicInstrCost(ICA: Attrs2, CostKind); |
| 2091 | return LT.first * Cost; |
| 2092 | } |
| 2093 | // Otherwise we need to follow the default expansion that clamps the value |
| 2094 | // using a float min/max with a fcmp+sel for nan handling when signed. |
| 2095 | Type *FPTy = ICA.getArgTypes()[0]; |
| 2096 | Type *RetTy = ICA.getReturnType(); |
| 2097 | IntrinsicCostAttributes Attrs1(Intrinsic::minnum, FPTy, {FPTy, FPTy}); |
| 2098 | InstructionCost Cost = getIntrinsicInstrCost(ICA: Attrs1, CostKind); |
| 2099 | IntrinsicCostAttributes Attrs2(Intrinsic::maxnum, FPTy, {FPTy, FPTy}); |
| 2100 | Cost += getIntrinsicInstrCost(ICA: Attrs2, CostKind); |
| 2101 | Cost += |
| 2102 | getCastInstrCost(Opcode: IsSigned ? Instruction::FPToSI : Instruction::FPToUI, |
| 2103 | Dst: RetTy, Src: FPTy, CCH: TTI::CastContextHint::None, CostKind); |
| 2104 | if (IsSigned) { |
| 2105 | Type *CondTy = RetTy->getWithNewBitWidth(NewBitWidth: 1); |
| 2106 | Cost += getCmpSelInstrCost(Opcode: BinaryOperator::FCmp, ValTy: FPTy, CondTy, |
| 2107 | VecPred: CmpInst::FCMP_UNO, CostKind); |
| 2108 | Cost += getCmpSelInstrCost(Opcode: BinaryOperator::Select, ValTy: RetTy, CondTy, |
| 2109 | VecPred: CmpInst::FCMP_UNO, CostKind); |
| 2110 | } |
| 2111 | return Cost; |
| 2112 | } |
| 2113 | } |
| 2114 | |
| 2115 | return BaseT::getIntrinsicInstrCost(ICA, CostKind); |
| 2116 | } |
| 2117 | |
| 2118 | bool ARMTTIImpl::isLoweredToCall(const Function *F) const { |
| 2119 | if (!F->isIntrinsic()) |
| 2120 | return BaseT::isLoweredToCall(F); |
| 2121 | |
| 2122 | // Assume all Arm-specific intrinsics map to an instruction. |
| 2123 | if (F->getName().starts_with(Prefix: "llvm.arm" )) |
| 2124 | return false; |
| 2125 | |
| 2126 | switch (F->getIntrinsicID()) { |
| 2127 | default: break; |
| 2128 | case Intrinsic::powi: |
| 2129 | case Intrinsic::sin: |
| 2130 | case Intrinsic::cos: |
| 2131 | case Intrinsic::sincos: |
| 2132 | case Intrinsic::pow: |
| 2133 | case Intrinsic::log: |
| 2134 | case Intrinsic::log10: |
| 2135 | case Intrinsic::log2: |
| 2136 | case Intrinsic::exp: |
| 2137 | case Intrinsic::exp2: |
| 2138 | return true; |
| 2139 | case Intrinsic::sqrt: |
| 2140 | case Intrinsic::fabs: |
| 2141 | case Intrinsic::copysign: |
| 2142 | case Intrinsic::floor: |
| 2143 | case Intrinsic::ceil: |
| 2144 | case Intrinsic::trunc: |
| 2145 | case Intrinsic::rint: |
| 2146 | case Intrinsic::nearbyint: |
| 2147 | case Intrinsic::round: |
| 2148 | case Intrinsic::canonicalize: |
| 2149 | case Intrinsic::lround: |
| 2150 | case Intrinsic::llround: |
| 2151 | case Intrinsic::lrint: |
| 2152 | case Intrinsic::llrint: |
| 2153 | if (F->getReturnType()->isDoubleTy() && !ST->hasFP64()) |
| 2154 | return true; |
| 2155 | if (F->getReturnType()->isHalfTy() && !ST->hasFullFP16()) |
| 2156 | return true; |
| 2157 | // Some operations can be handled by vector instructions and assume |
| 2158 | // unsupported vectors will be expanded into supported scalar ones. |
| 2159 | // TODO Handle scalar operations properly. |
| 2160 | return !ST->hasFPARMv8Base() && !ST->hasVFP2Base(); |
| 2161 | case Intrinsic::masked_store: |
| 2162 | case Intrinsic::masked_load: |
| 2163 | case Intrinsic::masked_gather: |
| 2164 | case Intrinsic::masked_scatter: |
| 2165 | return !ST->hasMVEIntegerOps(); |
| 2166 | case Intrinsic::sadd_with_overflow: |
| 2167 | case Intrinsic::uadd_with_overflow: |
| 2168 | case Intrinsic::ssub_with_overflow: |
| 2169 | case Intrinsic::usub_with_overflow: |
| 2170 | case Intrinsic::sadd_sat: |
| 2171 | case Intrinsic::uadd_sat: |
| 2172 | case Intrinsic::ssub_sat: |
| 2173 | case Intrinsic::usub_sat: |
| 2174 | return false; |
| 2175 | } |
| 2176 | |
| 2177 | return BaseT::isLoweredToCall(F); |
| 2178 | } |
| 2179 | |
| 2180 | bool ARMTTIImpl::maybeLoweredToCall(Instruction &I) const { |
| 2181 | unsigned ISD = TLI->InstructionOpcodeToISD(Opcode: I.getOpcode()); |
| 2182 | EVT VT = TLI->getValueType(DL, Ty: I.getType(), AllowUnknown: true); |
| 2183 | if (TLI->getOperationAction(Op: ISD, VT) == TargetLowering::LibCall) |
| 2184 | return true; |
| 2185 | |
| 2186 | // Check if an intrinsic will be lowered to a call and assume that any |
| 2187 | // other CallInst will generate a bl. |
| 2188 | if (auto *Call = dyn_cast<CallInst>(Val: &I)) { |
| 2189 | if (auto *II = dyn_cast<IntrinsicInst>(Val: Call)) { |
| 2190 | switch(II->getIntrinsicID()) { |
| 2191 | case Intrinsic::memcpy: |
| 2192 | case Intrinsic::memset: |
| 2193 | case Intrinsic::memmove: |
| 2194 | return getNumMemOps(I: II) == -1; |
| 2195 | default: |
| 2196 | if (const Function *F = Call->getCalledFunction()) |
| 2197 | return isLoweredToCall(F); |
| 2198 | } |
| 2199 | } |
| 2200 | return true; |
| 2201 | } |
| 2202 | |
| 2203 | // FPv5 provides conversions between integer, double-precision, |
| 2204 | // single-precision, and half-precision formats. |
| 2205 | switch (I.getOpcode()) { |
| 2206 | default: |
| 2207 | break; |
| 2208 | case Instruction::FPToSI: |
| 2209 | case Instruction::FPToUI: |
| 2210 | case Instruction::SIToFP: |
| 2211 | case Instruction::UIToFP: |
| 2212 | case Instruction::FPTrunc: |
| 2213 | case Instruction::FPExt: |
| 2214 | return !ST->hasFPARMv8Base(); |
| 2215 | } |
| 2216 | |
| 2217 | // FIXME: Unfortunately the approach of checking the Operation Action does |
| 2218 | // not catch all cases of Legalization that use library calls. Our |
| 2219 | // Legalization step categorizes some transformations into library calls as |
| 2220 | // Custom, Expand or even Legal when doing type legalization. So for now |
| 2221 | // we have to special case for instance the SDIV of 64bit integers and the |
| 2222 | // use of floating point emulation. |
| 2223 | if (VT.isInteger() && VT.getSizeInBits() >= 64) { |
| 2224 | switch (ISD) { |
| 2225 | default: |
| 2226 | break; |
| 2227 | case ISD::SDIV: |
| 2228 | case ISD::UDIV: |
| 2229 | case ISD::SREM: |
| 2230 | case ISD::UREM: |
| 2231 | case ISD::SDIVREM: |
| 2232 | case ISD::UDIVREM: |
| 2233 | return true; |
| 2234 | } |
| 2235 | } |
| 2236 | |
| 2237 | // Assume all other non-float operations are supported. |
| 2238 | if (!VT.isFloatingPoint()) |
| 2239 | return false; |
| 2240 | |
| 2241 | // We'll need a library call to handle most floats when using soft. |
| 2242 | if (TLI->useSoftFloat()) { |
| 2243 | switch (I.getOpcode()) { |
| 2244 | default: |
| 2245 | return true; |
| 2246 | case Instruction::Alloca: |
| 2247 | case Instruction::Load: |
| 2248 | case Instruction::Store: |
| 2249 | case Instruction::Select: |
| 2250 | case Instruction::PHI: |
| 2251 | return false; |
| 2252 | } |
| 2253 | } |
| 2254 | |
| 2255 | // We'll need a libcall to perform double precision operations on a single |
| 2256 | // precision only FPU. |
| 2257 | if (I.getType()->isDoubleTy() && !ST->hasFP64()) |
| 2258 | return true; |
| 2259 | |
| 2260 | // Likewise for half precision arithmetic. |
| 2261 | if (I.getType()->isHalfTy() && !ST->hasFullFP16()) |
| 2262 | return true; |
| 2263 | |
| 2264 | return false; |
| 2265 | } |
| 2266 | |
| 2267 | bool ARMTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, |
| 2268 | AssumptionCache &AC, |
| 2269 | TargetLibraryInfo *LibInfo, |
| 2270 | HardwareLoopInfo &HWLoopInfo) const { |
| 2271 | // Low-overhead branches are only supported in the 'low-overhead branch' |
| 2272 | // extension of v8.1-m. |
| 2273 | if (!ST->hasLOB() || DisableLowOverheadLoops) { |
| 2274 | LLVM_DEBUG(dbgs() << "ARMHWLoops: Disabled\n" ); |
| 2275 | return false; |
| 2276 | } |
| 2277 | |
| 2278 | if (!SE.hasLoopInvariantBackedgeTakenCount(L)) { |
| 2279 | LLVM_DEBUG(dbgs() << "ARMHWLoops: No BETC\n" ); |
| 2280 | return false; |
| 2281 | } |
| 2282 | |
| 2283 | const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); |
| 2284 | if (isa<SCEVCouldNotCompute>(Val: BackedgeTakenCount)) { |
| 2285 | LLVM_DEBUG(dbgs() << "ARMHWLoops: Uncomputable BETC\n" ); |
| 2286 | return false; |
| 2287 | } |
| 2288 | |
| 2289 | const SCEV *TripCountSCEV = |
| 2290 | SE.getAddExpr(LHS: BackedgeTakenCount, |
| 2291 | RHS: SE.getOne(Ty: BackedgeTakenCount->getType())); |
| 2292 | |
| 2293 | // We need to store the trip count in LR, a 32-bit register. |
| 2294 | if (SE.getUnsignedRangeMax(S: TripCountSCEV).getBitWidth() > 32) { |
| 2295 | LLVM_DEBUG(dbgs() << "ARMHWLoops: Trip count does not fit into 32bits\n" ); |
| 2296 | return false; |
| 2297 | } |
| 2298 | |
| 2299 | // Making a call will trash LR and clear LO_BRANCH_INFO, so there's little |
| 2300 | // point in generating a hardware loop if that's going to happen. |
| 2301 | |
| 2302 | auto IsHardwareLoopIntrinsic = [](Instruction &I) { |
| 2303 | if (auto *Call = dyn_cast<IntrinsicInst>(Val: &I)) { |
| 2304 | switch (Call->getIntrinsicID()) { |
| 2305 | default: |
| 2306 | break; |
| 2307 | case Intrinsic::start_loop_iterations: |
| 2308 | case Intrinsic::test_start_loop_iterations: |
| 2309 | case Intrinsic::loop_decrement: |
| 2310 | case Intrinsic::loop_decrement_reg: |
| 2311 | return true; |
| 2312 | } |
| 2313 | } |
| 2314 | return false; |
| 2315 | }; |
| 2316 | |
| 2317 | // Scan the instructions to see if there's any that we know will turn into a |
| 2318 | // call or if this loop is already a low-overhead loop or will become a tail |
| 2319 | // predicated loop. |
| 2320 | bool IsTailPredLoop = false; |
| 2321 | auto ScanLoop = [&](Loop *L) { |
| 2322 | for (auto *BB : L->getBlocks()) { |
| 2323 | for (auto &I : *BB) { |
| 2324 | if (maybeLoweredToCall(I) || IsHardwareLoopIntrinsic(I) || |
| 2325 | isa<InlineAsm>(Val: I)) { |
| 2326 | LLVM_DEBUG(dbgs() << "ARMHWLoops: Bad instruction: " << I << "\n" ); |
| 2327 | return false; |
| 2328 | } |
| 2329 | if (auto *II = dyn_cast<IntrinsicInst>(Val: &I)) |
| 2330 | IsTailPredLoop |= |
| 2331 | II->getIntrinsicID() == Intrinsic::get_active_lane_mask || |
| 2332 | II->getIntrinsicID() == Intrinsic::arm_mve_vctp8 || |
| 2333 | II->getIntrinsicID() == Intrinsic::arm_mve_vctp16 || |
| 2334 | II->getIntrinsicID() == Intrinsic::arm_mve_vctp32 || |
| 2335 | II->getIntrinsicID() == Intrinsic::arm_mve_vctp64; |
| 2336 | } |
| 2337 | } |
| 2338 | return true; |
| 2339 | }; |
| 2340 | |
| 2341 | // Visit inner loops. |
| 2342 | for (auto *Inner : *L) |
| 2343 | if (!ScanLoop(Inner)) |
| 2344 | return false; |
| 2345 | |
| 2346 | if (!ScanLoop(L)) |
| 2347 | return false; |
| 2348 | |
| 2349 | // TODO: Check whether the trip count calculation is expensive. If L is the |
| 2350 | // inner loop but we know it has a low trip count, calculating that trip |
| 2351 | // count (in the parent loop) may be detrimental. |
| 2352 | |
| 2353 | LLVMContext &C = L->getHeader()->getContext(); |
| 2354 | HWLoopInfo.CounterInReg = true; |
| 2355 | HWLoopInfo.IsNestingLegal = false; |
| 2356 | HWLoopInfo.PerformEntryTest = AllowWLSLoops && !IsTailPredLoop; |
| 2357 | HWLoopInfo.CountType = Type::getInt32Ty(C); |
| 2358 | HWLoopInfo.LoopDecrement = ConstantInt::get(Ty: HWLoopInfo.CountType, V: 1); |
| 2359 | return true; |
| 2360 | } |
| 2361 | |
| 2362 | static bool canTailPredicateInstruction(Instruction &I, int &ICmpCount) { |
| 2363 | // We don't allow icmp's, and because we only look at single block loops, |
| 2364 | // we simply count the icmps, i.e. there should only be 1 for the backedge. |
| 2365 | if (isa<ICmpInst>(Val: &I) && ++ICmpCount > 1) |
| 2366 | return false; |
| 2367 | // FIXME: This is a workaround for poor cost modelling. Min/Max intrinsics are |
| 2368 | // not currently canonical, but soon will be. Code without them uses icmp, and |
| 2369 | // so is not tail predicated as per the condition above. In order to get the |
| 2370 | // same performance we treat min and max the same as an icmp for tailpred |
| 2371 | // purposes for the moment (we often rely on non-tailpred and higher VF's to |
| 2372 | // pick more optimial instructions like VQDMULH. They need to be recognized |
| 2373 | // directly by the vectorizer). |
| 2374 | if (auto *II = dyn_cast<IntrinsicInst>(Val: &I)) |
| 2375 | if ((II->getIntrinsicID() == Intrinsic::smin || |
| 2376 | II->getIntrinsicID() == Intrinsic::smax || |
| 2377 | II->getIntrinsicID() == Intrinsic::umin || |
| 2378 | II->getIntrinsicID() == Intrinsic::umax) && |
| 2379 | ++ICmpCount > 1) |
| 2380 | return false; |
| 2381 | |
| 2382 | if (isa<FCmpInst>(Val: &I)) |
| 2383 | return false; |
| 2384 | |
| 2385 | // We could allow extending/narrowing FP loads/stores, but codegen is |
| 2386 | // too inefficient so reject this for now. |
| 2387 | if (isa<FPExtInst>(Val: &I) || isa<FPTruncInst>(Val: &I)) |
| 2388 | return false; |
| 2389 | |
| 2390 | // Extends have to be extending-loads |
| 2391 | if (isa<SExtInst>(Val: &I) || isa<ZExtInst>(Val: &I) ) |
| 2392 | if (!I.getOperand(i: 0)->hasOneUse() || !isa<LoadInst>(Val: I.getOperand(i: 0))) |
| 2393 | return false; |
| 2394 | |
| 2395 | // Truncs have to be narrowing-stores |
| 2396 | if (isa<TruncInst>(Val: &I) ) |
| 2397 | if (!I.hasOneUse() || !isa<StoreInst>(Val: *I.user_begin())) |
| 2398 | return false; |
| 2399 | |
| 2400 | return true; |
| 2401 | } |
| 2402 | |
| 2403 | // To set up a tail-predicated loop, we need to know the total number of |
| 2404 | // elements processed by that loop. Thus, we need to determine the element |
| 2405 | // size and: |
| 2406 | // 1) it should be uniform for all operations in the vector loop, so we |
| 2407 | // e.g. don't want any widening/narrowing operations. |
| 2408 | // 2) it should be smaller than i64s because we don't have vector operations |
| 2409 | // that work on i64s. |
| 2410 | // 3) we don't want elements to be reversed or shuffled, to make sure the |
| 2411 | // tail-predication masks/predicates the right lanes. |
| 2412 | // |
| 2413 | static bool canTailPredicateLoop(Loop *L, LoopInfo *LI, ScalarEvolution &SE, |
| 2414 | const DataLayout &DL, |
| 2415 | const LoopAccessInfo *LAI) { |
| 2416 | LLVM_DEBUG(dbgs() << "Tail-predication: checking allowed instructions\n" ); |
| 2417 | |
| 2418 | // If there are live-out values, it is probably a reduction. We can predicate |
| 2419 | // most reduction operations freely under MVE using a combination of |
| 2420 | // prefer-predicated-reduction-select and inloop reductions. We limit this to |
| 2421 | // floating point and integer reductions, but don't check for operators |
| 2422 | // specifically here. If the value ends up not being a reduction (and so the |
| 2423 | // vectorizer cannot tailfold the loop), we should fall back to standard |
| 2424 | // vectorization automatically. |
| 2425 | SmallVector< Instruction *, 8 > LiveOuts; |
| 2426 | LiveOuts = llvm::findDefsUsedOutsideOfLoop(L); |
| 2427 | bool ReductionsDisabled = |
| 2428 | EnableTailPredication == TailPredication::EnabledNoReductions || |
| 2429 | EnableTailPredication == TailPredication::ForceEnabledNoReductions; |
| 2430 | |
| 2431 | for (auto *I : LiveOuts) { |
| 2432 | if (!I->getType()->isIntegerTy() && !I->getType()->isFloatTy() && |
| 2433 | !I->getType()->isHalfTy()) { |
| 2434 | LLVM_DEBUG(dbgs() << "Don't tail-predicate loop with non-integer/float " |
| 2435 | "live-out value\n" ); |
| 2436 | return false; |
| 2437 | } |
| 2438 | if (ReductionsDisabled) { |
| 2439 | LLVM_DEBUG(dbgs() << "Reductions not enabled\n" ); |
| 2440 | return false; |
| 2441 | } |
| 2442 | } |
| 2443 | |
| 2444 | // Next, check that all instructions can be tail-predicated. |
| 2445 | PredicatedScalarEvolution PSE = LAI->getPSE(); |
| 2446 | int ICmpCount = 0; |
| 2447 | |
| 2448 | for (BasicBlock *BB : L->blocks()) { |
| 2449 | for (Instruction &I : BB->instructionsWithoutDebug()) { |
| 2450 | if (isa<PHINode>(Val: &I)) |
| 2451 | continue; |
| 2452 | if (!canTailPredicateInstruction(I, ICmpCount)) { |
| 2453 | LLVM_DEBUG(dbgs() << "Instruction not allowed: " ; I.dump()); |
| 2454 | return false; |
| 2455 | } |
| 2456 | |
| 2457 | Type *T = I.getType(); |
| 2458 | if (T->getScalarSizeInBits() > 32) { |
| 2459 | LLVM_DEBUG(dbgs() << "Unsupported Type: " ; T->dump()); |
| 2460 | return false; |
| 2461 | } |
| 2462 | if (isa<StoreInst>(Val: I) || isa<LoadInst>(Val: I)) { |
| 2463 | Value *Ptr = getLoadStorePointerOperand(V: &I); |
| 2464 | Type *AccessTy = getLoadStoreType(I: &I); |
| 2465 | int64_t NextStride = getPtrStride(PSE, AccessTy, Ptr, Lp: L).value_or(u: 0); |
| 2466 | if (NextStride == 1) { |
| 2467 | // TODO: for now only allow consecutive strides of 1. We could support |
| 2468 | // other strides as long as it is uniform, but let's keep it simple |
| 2469 | // for now. |
| 2470 | continue; |
| 2471 | } else if (NextStride == -1 || |
| 2472 | (NextStride == 2 && MVEMaxSupportedInterleaveFactor >= 2) || |
| 2473 | (NextStride == 4 && MVEMaxSupportedInterleaveFactor >= 4)) { |
| 2474 | LLVM_DEBUG(dbgs() |
| 2475 | << "Consecutive strides of 2 found, vld2/vstr2 can't " |
| 2476 | "be tail-predicated\n." ); |
| 2477 | return false; |
| 2478 | // TODO: don't tail predicate if there is a reversed load? |
| 2479 | } else if (EnableMaskedGatherScatters) { |
| 2480 | // Gather/scatters do allow loading from arbitrary strides, at |
| 2481 | // least if they are loop invariant. |
| 2482 | // TODO: Loop variant strides should in theory work, too, but |
| 2483 | // this requires further testing. |
| 2484 | const SCEV *PtrScev = PSE.getSE()->getSCEV(V: Ptr); |
| 2485 | if (auto AR = dyn_cast<SCEVAddRecExpr>(Val: PtrScev)) { |
| 2486 | const SCEV *Step = AR->getStepRecurrence(SE&: *PSE.getSE()); |
| 2487 | if (PSE.getSE()->isLoopInvariant(S: Step, L)) |
| 2488 | continue; |
| 2489 | } |
| 2490 | } |
| 2491 | LLVM_DEBUG(dbgs() << "Bad stride found, can't " |
| 2492 | "tail-predicate\n." ); |
| 2493 | return false; |
| 2494 | } |
| 2495 | } |
| 2496 | } |
| 2497 | |
| 2498 | LLVM_DEBUG(dbgs() << "tail-predication: all instructions allowed!\n" ); |
| 2499 | return true; |
| 2500 | } |
| 2501 | |
| 2502 | bool ARMTTIImpl::preferPredicateOverEpilogue(TailFoldingInfo *TFI) const { |
| 2503 | if (!EnableTailPredication) { |
| 2504 | LLVM_DEBUG(dbgs() << "Tail-predication not enabled.\n" ); |
| 2505 | return false; |
| 2506 | } |
| 2507 | |
| 2508 | // Creating a predicated vector loop is the first step for generating a |
| 2509 | // tail-predicated hardware loop, for which we need the MVE masked |
| 2510 | // load/stores instructions: |
| 2511 | if (!ST->hasMVEIntegerOps()) |
| 2512 | return false; |
| 2513 | |
| 2514 | LoopVectorizationLegality *LVL = TFI->LVL; |
| 2515 | Loop *L = LVL->getLoop(); |
| 2516 | |
| 2517 | // For now, restrict this to single block loops. |
| 2518 | if (L->getNumBlocks() > 1) { |
| 2519 | LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: not a single block " |
| 2520 | "loop.\n" ); |
| 2521 | return false; |
| 2522 | } |
| 2523 | |
| 2524 | assert(L->isInnermost() && "preferPredicateOverEpilogue: inner-loop expected" ); |
| 2525 | |
| 2526 | LoopInfo *LI = LVL->getLoopInfo(); |
| 2527 | HardwareLoopInfo HWLoopInfo(L); |
| 2528 | if (!HWLoopInfo.canAnalyze(LI&: *LI)) { |
| 2529 | LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not " |
| 2530 | "analyzable.\n" ); |
| 2531 | return false; |
| 2532 | } |
| 2533 | |
| 2534 | AssumptionCache *AC = LVL->getAssumptionCache(); |
| 2535 | ScalarEvolution *SE = LVL->getScalarEvolution(); |
| 2536 | |
| 2537 | // This checks if we have the low-overhead branch architecture |
| 2538 | // extension, and if we will create a hardware-loop: |
| 2539 | if (!isHardwareLoopProfitable(L, SE&: *SE, AC&: *AC, LibInfo: TFI->TLI, HWLoopInfo)) { |
| 2540 | LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not " |
| 2541 | "profitable.\n" ); |
| 2542 | return false; |
| 2543 | } |
| 2544 | |
| 2545 | DominatorTree *DT = LVL->getDominatorTree(); |
| 2546 | if (!HWLoopInfo.isHardwareLoopCandidate(SE&: *SE, LI&: *LI, DT&: *DT)) { |
| 2547 | LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not " |
| 2548 | "a candidate.\n" ); |
| 2549 | return false; |
| 2550 | } |
| 2551 | |
| 2552 | return canTailPredicateLoop(L, LI, SE&: *SE, DL, LAI: LVL->getLAI()); |
| 2553 | } |
| 2554 | |
| 2555 | TailFoldingStyle |
| 2556 | ARMTTIImpl::getPreferredTailFoldingStyle(bool IVUpdateMayOverflow) const { |
| 2557 | if (!ST->hasMVEIntegerOps() || !EnableTailPredication) |
| 2558 | return TailFoldingStyle::DataWithoutLaneMask; |
| 2559 | |
| 2560 | // Intrinsic @llvm.get.active.lane.mask is supported. |
| 2561 | // It is used in the MVETailPredication pass, which requires the number of |
| 2562 | // elements processed by this vector loop to setup the tail-predicated |
| 2563 | // loop. |
| 2564 | return TailFoldingStyle::Data; |
| 2565 | } |
| 2566 | void ARMTTIImpl::(Loop *L, ScalarEvolution &SE, |
| 2567 | TTI::UnrollingPreferences &UP, |
| 2568 | OptimizationRemarkEmitter *ORE) const { |
| 2569 | // Enable Upper bound unrolling universally, providing that we do not see an |
| 2570 | // active lane mask, which will be better kept as a loop to become tail |
| 2571 | // predicated than to be conditionally unrolled. |
| 2572 | UP.UpperBound = |
| 2573 | !ST->hasMVEIntegerOps() || !any_of(Range&: *L->getHeader(), P: [](Instruction &I) { |
| 2574 | return isa<IntrinsicInst>(Val: I) && |
| 2575 | cast<IntrinsicInst>(Val&: I).getIntrinsicID() == |
| 2576 | Intrinsic::get_active_lane_mask; |
| 2577 | }); |
| 2578 | |
| 2579 | // Only currently enable these preferences for M-Class cores. |
| 2580 | if (!ST->isMClass()) |
| 2581 | return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP, ORE); |
| 2582 | |
| 2583 | // Disable loop unrolling for Oz and Os. |
| 2584 | UP.OptSizeThreshold = 0; |
| 2585 | UP.PartialOptSizeThreshold = 0; |
| 2586 | if (L->getHeader()->getParent()->hasOptSize()) |
| 2587 | return; |
| 2588 | |
| 2589 | SmallVector<BasicBlock*, 4> ExitingBlocks; |
| 2590 | L->getExitingBlocks(ExitingBlocks); |
| 2591 | LLVM_DEBUG(dbgs() << "Loop has:\n" |
| 2592 | << "Blocks: " << L->getNumBlocks() << "\n" |
| 2593 | << "Exit blocks: " << ExitingBlocks.size() << "\n" ); |
| 2594 | |
| 2595 | // Only allow another exit other than the latch. This acts as an early exit |
| 2596 | // as it mirrors the profitability calculation of the runtime unroller. |
| 2597 | if (ExitingBlocks.size() > 2) |
| 2598 | return; |
| 2599 | |
| 2600 | // Limit the CFG of the loop body for targets with a branch predictor. |
| 2601 | // Allowing 4 blocks permits if-then-else diamonds in the body. |
| 2602 | if (ST->hasBranchPredictor() && L->getNumBlocks() > 4) |
| 2603 | return; |
| 2604 | |
| 2605 | // Don't unroll vectorized loops, including the remainder loop |
| 2606 | if (getBooleanLoopAttribute(TheLoop: L, Name: "llvm.loop.isvectorized" )) |
| 2607 | return; |
| 2608 | |
| 2609 | // Scan the loop: don't unroll loops with calls as this could prevent |
| 2610 | // inlining. |
| 2611 | InstructionCost Cost = 0; |
| 2612 | for (auto *BB : L->getBlocks()) { |
| 2613 | for (auto &I : *BB) { |
| 2614 | // Don't unroll vectorised loop. MVE does not benefit from it as much as |
| 2615 | // scalar code. |
| 2616 | if (I.getType()->isVectorTy()) |
| 2617 | return; |
| 2618 | |
| 2619 | if (isa<CallInst>(Val: I) || isa<InvokeInst>(Val: I)) { |
| 2620 | if (const Function *F = cast<CallBase>(Val&: I).getCalledFunction()) { |
| 2621 | if (!isLoweredToCall(F)) |
| 2622 | continue; |
| 2623 | } |
| 2624 | return; |
| 2625 | } |
| 2626 | |
| 2627 | SmallVector<const Value*, 4> Operands(I.operand_values()); |
| 2628 | Cost += getInstructionCost(U: &I, Operands, |
| 2629 | CostKind: TargetTransformInfo::TCK_SizeAndLatency); |
| 2630 | } |
| 2631 | } |
| 2632 | |
| 2633 | // On v6m cores, there are very few registers available. We can easily end up |
| 2634 | // spilling and reloading more registers in an unrolled loop. Look at the |
| 2635 | // number of LCSSA phis as a rough measure of how many registers will need to |
| 2636 | // be live out of the loop, reducing the default unroll count if more than 1 |
| 2637 | // value is needed. In the long run, all of this should be being learnt by a |
| 2638 | // machine. |
| 2639 | unsigned UnrollCount = 4; |
| 2640 | if (ST->isThumb1Only()) { |
| 2641 | unsigned ExitingValues = 0; |
| 2642 | SmallVector<BasicBlock *, 4> ExitBlocks; |
| 2643 | L->getExitBlocks(ExitBlocks); |
| 2644 | for (auto *Exit : ExitBlocks) { |
| 2645 | // Count the number of LCSSA phis. Exclude values coming from GEP's as |
| 2646 | // only the last is expected to be needed for address operands. |
| 2647 | unsigned LiveOuts = count_if(Range: Exit->phis(), P: [](auto &PH) { |
| 2648 | return PH.getNumOperands() != 1 || |
| 2649 | !isa<GetElementPtrInst>(PH.getOperand(0)); |
| 2650 | }); |
| 2651 | ExitingValues = ExitingValues < LiveOuts ? LiveOuts : ExitingValues; |
| 2652 | } |
| 2653 | if (ExitingValues) |
| 2654 | UnrollCount /= ExitingValues; |
| 2655 | if (UnrollCount <= 1) |
| 2656 | return; |
| 2657 | } |
| 2658 | |
| 2659 | // For processors with low overhead branching (LOB), runtime unrolling the |
| 2660 | // innermost loop is often detrimental to performance. In these cases the loop |
| 2661 | // remainder gets unrolled into a series of compare-and-jump blocks, which in |
| 2662 | // deeply nested loops get executed multiple times, negating the benefits of |
| 2663 | // LOB. This is particularly noticable when the loop trip count of the |
| 2664 | // innermost loop varies within the outer loop, such as in the case of |
| 2665 | // triangular matrix decompositions. In these cases we will prefer to not |
| 2666 | // unroll the innermost loop, with the intention for it to be executed as a |
| 2667 | // low overhead loop. |
| 2668 | bool Runtime = true; |
| 2669 | if (ST->hasLOB()) { |
| 2670 | if (SE.hasLoopInvariantBackedgeTakenCount(L)) { |
| 2671 | const auto *BETC = SE.getBackedgeTakenCount(L); |
| 2672 | auto *Outer = L->getOutermostLoop(); |
| 2673 | if ((L != Outer && Outer != L->getParentLoop()) || |
| 2674 | (L != Outer && BETC && !SE.isLoopInvariant(S: BETC, L: Outer))) { |
| 2675 | Runtime = false; |
| 2676 | } |
| 2677 | } |
| 2678 | } |
| 2679 | |
| 2680 | LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost << "\n" ); |
| 2681 | LLVM_DEBUG(dbgs() << "Default Runtime Unroll Count: " << UnrollCount << "\n" ); |
| 2682 | |
| 2683 | UP.Partial = true; |
| 2684 | UP.Runtime = Runtime; |
| 2685 | UP.UnrollRemainder = true; |
| 2686 | UP.DefaultUnrollRuntimeCount = UnrollCount; |
| 2687 | UP.UnrollAndJam = true; |
| 2688 | UP.UnrollAndJamInnerLoopThreshold = 60; |
| 2689 | |
| 2690 | // Force unrolling small loops can be very useful because of the branch |
| 2691 | // taken cost of the backedge. |
| 2692 | if (Cost < 12) |
| 2693 | UP.Force = true; |
| 2694 | } |
| 2695 | |
| 2696 | void ARMTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, |
| 2697 | TTI::PeelingPreferences &PP) const { |
| 2698 | BaseT::getPeelingPreferences(L, SE, PP); |
| 2699 | } |
| 2700 | |
| 2701 | bool ARMTTIImpl::preferInLoopReduction(RecurKind Kind, Type *Ty) const { |
| 2702 | if (!ST->hasMVEIntegerOps()) |
| 2703 | return false; |
| 2704 | |
| 2705 | unsigned ScalarBits = Ty->getScalarSizeInBits(); |
| 2706 | switch (Kind) { |
| 2707 | case RecurKind::Add: |
| 2708 | return ScalarBits <= 64; |
| 2709 | default: |
| 2710 | return false; |
| 2711 | } |
| 2712 | } |
| 2713 | |
| 2714 | bool ARMTTIImpl::preferPredicatedReductionSelect() const { |
| 2715 | if (!ST->hasMVEIntegerOps()) |
| 2716 | return false; |
| 2717 | return true; |
| 2718 | } |
| 2719 | |
| 2720 | InstructionCost ARMTTIImpl::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, |
| 2721 | StackOffset BaseOffset, |
| 2722 | bool HasBaseReg, int64_t Scale, |
| 2723 | unsigned AddrSpace) const { |
| 2724 | TargetLoweringBase::AddrMode AM; |
| 2725 | AM.BaseGV = BaseGV; |
| 2726 | AM.BaseOffs = BaseOffset.getFixed(); |
| 2727 | AM.HasBaseReg = HasBaseReg; |
| 2728 | AM.Scale = Scale; |
| 2729 | AM.ScalableOffset = BaseOffset.getScalable(); |
| 2730 | if (getTLI()->isLegalAddressingMode(DL, AM, Ty, AS: AddrSpace)) { |
| 2731 | if (ST->hasFPAO()) |
| 2732 | return AM.Scale < 0 ? 1 : 0; // positive offsets execute faster |
| 2733 | return 0; |
| 2734 | } |
| 2735 | return InstructionCost::getInvalid(); |
| 2736 | } |
| 2737 | |
| 2738 | bool ARMTTIImpl::hasArmWideBranch(bool Thumb) const { |
| 2739 | if (Thumb) { |
| 2740 | // B.W is available in any Thumb2-supporting target, and also in every |
| 2741 | // version of Armv8-M, even Baseline which does not include the rest of |
| 2742 | // Thumb2. |
| 2743 | return ST->isThumb2() || ST->hasV8MBaselineOps(); |
| 2744 | } else { |
| 2745 | // B is available in all versions of the Arm ISA, so the only question is |
| 2746 | // whether that ISA is available at all. |
| 2747 | return ST->hasARMOps(); |
| 2748 | } |
| 2749 | } |
| 2750 | |
| 2751 | /// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth |
| 2752 | /// of the vector elements. |
| 2753 | static bool (Value *Ext1, Value *Ext2) { |
| 2754 | using namespace PatternMatch; |
| 2755 | |
| 2756 | auto areExtDoubled = [](Instruction *Ext) { |
| 2757 | return Ext->getType()->getScalarSizeInBits() == |
| 2758 | 2 * Ext->getOperand(i: 0)->getType()->getScalarSizeInBits(); |
| 2759 | }; |
| 2760 | |
| 2761 | if (!match(V: Ext1, P: m_ZExtOrSExt(Op: m_Value())) || |
| 2762 | !match(V: Ext2, P: m_ZExtOrSExt(Op: m_Value())) || |
| 2763 | !areExtDoubled(cast<Instruction>(Val: Ext1)) || |
| 2764 | !areExtDoubled(cast<Instruction>(Val: Ext2))) |
| 2765 | return false; |
| 2766 | |
| 2767 | return true; |
| 2768 | } |
| 2769 | |
| 2770 | /// Check if sinking \p I's operands to I's basic block is profitable, because |
| 2771 | /// the operands can be folded into a target instruction, e.g. |
| 2772 | /// sext/zext can be folded into vsubl. |
| 2773 | bool ARMTTIImpl::isProfitableToSinkOperands(Instruction *I, |
| 2774 | SmallVectorImpl<Use *> &Ops) const { |
| 2775 | using namespace PatternMatch; |
| 2776 | |
| 2777 | if (!I->getType()->isVectorTy()) |
| 2778 | return false; |
| 2779 | |
| 2780 | if (ST->hasNEON()) { |
| 2781 | switch (I->getOpcode()) { |
| 2782 | case Instruction::Sub: |
| 2783 | case Instruction::Add: { |
| 2784 | if (!areExtractExts(Ext1: I->getOperand(i: 0), Ext2: I->getOperand(i: 1))) |
| 2785 | return false; |
| 2786 | Ops.push_back(Elt: &I->getOperandUse(i: 0)); |
| 2787 | Ops.push_back(Elt: &I->getOperandUse(i: 1)); |
| 2788 | return true; |
| 2789 | } |
| 2790 | default: |
| 2791 | return false; |
| 2792 | } |
| 2793 | } |
| 2794 | |
| 2795 | if (!ST->hasMVEIntegerOps()) |
| 2796 | return false; |
| 2797 | |
| 2798 | auto IsFMSMul = [&](Instruction *I) { |
| 2799 | if (!I->hasOneUse()) |
| 2800 | return false; |
| 2801 | auto *Sub = cast<Instruction>(Val: *I->users().begin()); |
| 2802 | return Sub->getOpcode() == Instruction::FSub && Sub->getOperand(i: 1) == I; |
| 2803 | }; |
| 2804 | auto IsFMS = [&](Instruction *I) { |
| 2805 | if (match(V: I->getOperand(i: 0), P: m_FNeg(X: m_Value())) || |
| 2806 | match(V: I->getOperand(i: 1), P: m_FNeg(X: m_Value()))) |
| 2807 | return true; |
| 2808 | return false; |
| 2809 | }; |
| 2810 | |
| 2811 | auto IsSinker = [&](Instruction *I, int Operand) { |
| 2812 | switch (I->getOpcode()) { |
| 2813 | case Instruction::Add: |
| 2814 | case Instruction::Mul: |
| 2815 | case Instruction::FAdd: |
| 2816 | case Instruction::ICmp: |
| 2817 | case Instruction::FCmp: |
| 2818 | return true; |
| 2819 | case Instruction::FMul: |
| 2820 | return !IsFMSMul(I); |
| 2821 | case Instruction::Sub: |
| 2822 | case Instruction::FSub: |
| 2823 | case Instruction::Shl: |
| 2824 | case Instruction::LShr: |
| 2825 | case Instruction::AShr: |
| 2826 | return Operand == 1; |
| 2827 | case Instruction::Call: |
| 2828 | if (auto *II = dyn_cast<IntrinsicInst>(Val: I)) { |
| 2829 | switch (II->getIntrinsicID()) { |
| 2830 | case Intrinsic::fma: |
| 2831 | return !IsFMS(I); |
| 2832 | case Intrinsic::sadd_sat: |
| 2833 | case Intrinsic::uadd_sat: |
| 2834 | case Intrinsic::arm_mve_add_predicated: |
| 2835 | case Intrinsic::arm_mve_mul_predicated: |
| 2836 | case Intrinsic::arm_mve_qadd_predicated: |
| 2837 | case Intrinsic::arm_mve_vhadd: |
| 2838 | case Intrinsic::arm_mve_hadd_predicated: |
| 2839 | case Intrinsic::arm_mve_vqdmull: |
| 2840 | case Intrinsic::arm_mve_vqdmull_predicated: |
| 2841 | case Intrinsic::arm_mve_vqdmulh: |
| 2842 | case Intrinsic::arm_mve_qdmulh_predicated: |
| 2843 | case Intrinsic::arm_mve_vqrdmulh: |
| 2844 | case Intrinsic::arm_mve_qrdmulh_predicated: |
| 2845 | case Intrinsic::arm_mve_fma_predicated: |
| 2846 | return true; |
| 2847 | case Intrinsic::ssub_sat: |
| 2848 | case Intrinsic::usub_sat: |
| 2849 | case Intrinsic::arm_mve_sub_predicated: |
| 2850 | case Intrinsic::arm_mve_qsub_predicated: |
| 2851 | case Intrinsic::arm_mve_hsub_predicated: |
| 2852 | case Intrinsic::arm_mve_vhsub: |
| 2853 | return Operand == 1; |
| 2854 | default: |
| 2855 | return false; |
| 2856 | } |
| 2857 | } |
| 2858 | return false; |
| 2859 | default: |
| 2860 | return false; |
| 2861 | } |
| 2862 | }; |
| 2863 | |
| 2864 | for (auto OpIdx : enumerate(First: I->operands())) { |
| 2865 | Instruction *Op = dyn_cast<Instruction>(Val: OpIdx.value().get()); |
| 2866 | // Make sure we are not already sinking this operand |
| 2867 | if (!Op || any_of(Range&: Ops, P: [&](Use *U) { return U->get() == Op; })) |
| 2868 | continue; |
| 2869 | |
| 2870 | Instruction *Shuffle = Op; |
| 2871 | if (Shuffle->getOpcode() == Instruction::BitCast) |
| 2872 | Shuffle = dyn_cast<Instruction>(Val: Shuffle->getOperand(i: 0)); |
| 2873 | // We are looking for a splat that can be sunk. |
| 2874 | if (!Shuffle || !match(V: Shuffle, P: m_Shuffle(v1: m_InsertElt(Val: m_Undef(), Elt: m_Value(), |
| 2875 | Idx: m_ZeroInt()), |
| 2876 | v2: m_Undef(), mask: m_ZeroMask()))) |
| 2877 | continue; |
| 2878 | if (!IsSinker(I, OpIdx.index())) |
| 2879 | continue; |
| 2880 | |
| 2881 | // All uses of the shuffle should be sunk to avoid duplicating it across gpr |
| 2882 | // and vector registers |
| 2883 | for (Use &U : Op->uses()) { |
| 2884 | Instruction *Insn = cast<Instruction>(Val: U.getUser()); |
| 2885 | if (!IsSinker(Insn, U.getOperandNo())) |
| 2886 | return false; |
| 2887 | } |
| 2888 | |
| 2889 | Ops.push_back(Elt: &Shuffle->getOperandUse(i: 0)); |
| 2890 | if (Shuffle != Op) |
| 2891 | Ops.push_back(Elt: &Op->getOperandUse(i: 0)); |
| 2892 | Ops.push_back(Elt: &OpIdx.value()); |
| 2893 | } |
| 2894 | return true; |
| 2895 | } |
| 2896 | |
| 2897 | unsigned ARMTTIImpl::getNumBytesToPadGlobalArray(unsigned Size, |
| 2898 | Type *ArrayType) const { |
| 2899 | if (!UseWidenGlobalArrays) { |
| 2900 | LLVM_DEBUG(dbgs() << "Padding global arrays disabled\n" ); |
| 2901 | return false; |
| 2902 | } |
| 2903 | |
| 2904 | // Don't modify none integer array types |
| 2905 | if (!ArrayType || !ArrayType->isArrayTy() || |
| 2906 | !ArrayType->getArrayElementType()->isIntegerTy()) |
| 2907 | return 0; |
| 2908 | |
| 2909 | // We pad to 4 byte boundaries |
| 2910 | if (Size % 4 == 0) |
| 2911 | return 0; |
| 2912 | |
| 2913 | unsigned NumBytesToPad = 4 - (Size % 4); |
| 2914 | unsigned NewSize = Size + NumBytesToPad; |
| 2915 | |
| 2916 | // Max number of bytes that memcpy allows for lowering to load/stores before |
| 2917 | // it uses library function (__aeabi_memcpy). |
| 2918 | unsigned MaxMemIntrinsicSize = getMaxMemIntrinsicInlineSizeThreshold(); |
| 2919 | |
| 2920 | if (NewSize > MaxMemIntrinsicSize) |
| 2921 | return 0; |
| 2922 | |
| 2923 | return NumBytesToPad; |
| 2924 | } |
| 2925 | |