1 | //===- ARMTargetTransformInfo.cpp - ARM specific TTI ----------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "ARMTargetTransformInfo.h" |
10 | #include "ARMSubtarget.h" |
11 | #include "MCTargetDesc/ARMAddressingModes.h" |
12 | #include "llvm/ADT/APInt.h" |
13 | #include "llvm/ADT/SmallVector.h" |
14 | #include "llvm/Analysis/LoopInfo.h" |
15 | #include "llvm/CodeGen/CostTable.h" |
16 | #include "llvm/CodeGen/ISDOpcodes.h" |
17 | #include "llvm/CodeGen/ValueTypes.h" |
18 | #include "llvm/CodeGenTypes/MachineValueType.h" |
19 | #include "llvm/IR/BasicBlock.h" |
20 | #include "llvm/IR/DataLayout.h" |
21 | #include "llvm/IR/DerivedTypes.h" |
22 | #include "llvm/IR/Instruction.h" |
23 | #include "llvm/IR/Instructions.h" |
24 | #include "llvm/IR/IntrinsicInst.h" |
25 | #include "llvm/IR/Intrinsics.h" |
26 | #include "llvm/IR/IntrinsicsARM.h" |
27 | #include "llvm/IR/PatternMatch.h" |
28 | #include "llvm/IR/Type.h" |
29 | #include "llvm/Support/Casting.h" |
30 | #include "llvm/Support/KnownBits.h" |
31 | #include "llvm/Target/TargetMachine.h" |
32 | #include "llvm/TargetParser/SubtargetFeature.h" |
33 | #include "llvm/Transforms/InstCombine/InstCombiner.h" |
34 | #include "llvm/Transforms/Utils/Local.h" |
35 | #include "llvm/Transforms/Utils/LoopUtils.h" |
36 | #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" |
37 | #include <algorithm> |
38 | #include <cassert> |
39 | #include <cstdint> |
40 | #include <optional> |
41 | #include <utility> |
42 | |
43 | using namespace llvm; |
44 | |
45 | #define DEBUG_TYPE "armtti" |
46 | |
47 | static cl::opt<bool> EnableMaskedLoadStores( |
48 | "enable-arm-maskedldst" , cl::Hidden, cl::init(Val: true), |
49 | cl::desc("Enable the generation of masked loads and stores" )); |
50 | |
51 | static cl::opt<bool> DisableLowOverheadLoops( |
52 | "disable-arm-loloops" , cl::Hidden, cl::init(Val: false), |
53 | cl::desc("Disable the generation of low-overhead loops" )); |
54 | |
55 | static cl::opt<bool> |
56 | AllowWLSLoops("allow-arm-wlsloops" , cl::Hidden, cl::init(Val: true), |
57 | cl::desc("Enable the generation of WLS loops" )); |
58 | |
59 | static cl::opt<bool> UseWidenGlobalArrays( |
60 | "widen-global-strings" , cl::Hidden, cl::init(Val: true), |
61 | cl::desc("Enable the widening of global strings to alignment boundaries" )); |
62 | |
63 | extern cl::opt<TailPredication::Mode> EnableTailPredication; |
64 | |
65 | extern cl::opt<bool> EnableMaskedGatherScatters; |
66 | |
67 | extern cl::opt<unsigned> MVEMaxSupportedInterleaveFactor; |
68 | |
69 | /// Convert a vector load intrinsic into a simple llvm load instruction. |
70 | /// This is beneficial when the underlying object being addressed comes |
71 | /// from a constant, since we get constant-folding for free. |
72 | static Value *simplifyNeonVld1(const IntrinsicInst &II, unsigned MemAlign, |
73 | InstCombiner::BuilderTy &Builder) { |
74 | auto *IntrAlign = dyn_cast<ConstantInt>(Val: II.getArgOperand(i: 1)); |
75 | |
76 | if (!IntrAlign) |
77 | return nullptr; |
78 | |
79 | unsigned Alignment = IntrAlign->getLimitedValue() < MemAlign |
80 | ? MemAlign |
81 | : IntrAlign->getLimitedValue(); |
82 | |
83 | if (!isPowerOf2_32(Value: Alignment)) |
84 | return nullptr; |
85 | |
86 | return Builder.CreateAlignedLoad(Ty: II.getType(), Ptr: II.getArgOperand(i: 0), |
87 | Align: Align(Alignment)); |
88 | } |
89 | |
90 | bool ARMTTIImpl::areInlineCompatible(const Function *Caller, |
91 | const Function *Callee) const { |
92 | const TargetMachine &TM = getTLI()->getTargetMachine(); |
93 | const FeatureBitset &CallerBits = |
94 | TM.getSubtargetImpl(*Caller)->getFeatureBits(); |
95 | const FeatureBitset &CalleeBits = |
96 | TM.getSubtargetImpl(*Callee)->getFeatureBits(); |
97 | |
98 | // To inline a callee, all features not in the allowed list must match exactly. |
99 | bool MatchExact = (CallerBits & ~InlineFeaturesAllowed) == |
100 | (CalleeBits & ~InlineFeaturesAllowed); |
101 | // For features in the allowed list, the callee's features must be a subset of |
102 | // the callers'. |
103 | bool MatchSubset = ((CallerBits & CalleeBits) & InlineFeaturesAllowed) == |
104 | (CalleeBits & InlineFeaturesAllowed); |
105 | return MatchExact && MatchSubset; |
106 | } |
107 | |
108 | TTI::AddressingModeKind |
109 | ARMTTIImpl::getPreferredAddressingMode(const Loop *L, |
110 | ScalarEvolution *SE) const { |
111 | if (ST->hasMVEIntegerOps()) |
112 | return TTI::AMK_PostIndexed; |
113 | |
114 | if (L->getHeader()->getParent()->hasOptSize()) |
115 | return TTI::AMK_None; |
116 | |
117 | if (ST->isMClass() && ST->isThumb2() && |
118 | L->getNumBlocks() == 1) |
119 | return TTI::AMK_PreIndexed; |
120 | |
121 | return TTI::AMK_None; |
122 | } |
123 | |
124 | std::optional<Instruction *> |
125 | ARMTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const { |
126 | using namespace PatternMatch; |
127 | Intrinsic::ID IID = II.getIntrinsicID(); |
128 | switch (IID) { |
129 | default: |
130 | break; |
131 | case Intrinsic::arm_neon_vld1: { |
132 | Align MemAlign = |
133 | getKnownAlignment(V: II.getArgOperand(i: 0), DL: IC.getDataLayout(), CxtI: &II, |
134 | AC: &IC.getAssumptionCache(), DT: &IC.getDominatorTree()); |
135 | if (Value *V = simplifyNeonVld1(II, MemAlign: MemAlign.value(), Builder&: IC.Builder)) { |
136 | return IC.replaceInstUsesWith(I&: II, V); |
137 | } |
138 | break; |
139 | } |
140 | |
141 | case Intrinsic::arm_neon_vld2: |
142 | case Intrinsic::arm_neon_vld3: |
143 | case Intrinsic::arm_neon_vld4: |
144 | case Intrinsic::arm_neon_vld2lane: |
145 | case Intrinsic::arm_neon_vld3lane: |
146 | case Intrinsic::arm_neon_vld4lane: |
147 | case Intrinsic::arm_neon_vst1: |
148 | case Intrinsic::arm_neon_vst2: |
149 | case Intrinsic::arm_neon_vst3: |
150 | case Intrinsic::arm_neon_vst4: |
151 | case Intrinsic::arm_neon_vst2lane: |
152 | case Intrinsic::arm_neon_vst3lane: |
153 | case Intrinsic::arm_neon_vst4lane: { |
154 | Align MemAlign = |
155 | getKnownAlignment(V: II.getArgOperand(i: 0), DL: IC.getDataLayout(), CxtI: &II, |
156 | AC: &IC.getAssumptionCache(), DT: &IC.getDominatorTree()); |
157 | unsigned AlignArg = II.arg_size() - 1; |
158 | Value *AlignArgOp = II.getArgOperand(i: AlignArg); |
159 | MaybeAlign Align = cast<ConstantInt>(Val: AlignArgOp)->getMaybeAlignValue(); |
160 | if (Align && *Align < MemAlign) { |
161 | return IC.replaceOperand( |
162 | I&: II, OpNum: AlignArg, |
163 | V: ConstantInt::get(Ty: Type::getInt32Ty(C&: II.getContext()), V: MemAlign.value(), |
164 | IsSigned: false)); |
165 | } |
166 | break; |
167 | } |
168 | |
169 | case Intrinsic::arm_neon_vld1x2: |
170 | case Intrinsic::arm_neon_vld1x3: |
171 | case Intrinsic::arm_neon_vld1x4: |
172 | case Intrinsic::arm_neon_vst1x2: |
173 | case Intrinsic::arm_neon_vst1x3: |
174 | case Intrinsic::arm_neon_vst1x4: { |
175 | Align NewAlign = |
176 | getKnownAlignment(V: II.getArgOperand(i: 0), DL: IC.getDataLayout(), CxtI: &II, |
177 | AC: &IC.getAssumptionCache(), DT: &IC.getDominatorTree()); |
178 | Align OldAlign = II.getParamAlign(ArgNo: 0).valueOrOne(); |
179 | if (NewAlign > OldAlign) |
180 | II.addParamAttr(ArgNo: 0, |
181 | Attr: Attribute::getWithAlignment(Context&: II.getContext(), Alignment: NewAlign)); |
182 | break; |
183 | } |
184 | |
185 | case Intrinsic::arm_mve_pred_i2v: { |
186 | Value *Arg = II.getArgOperand(i: 0); |
187 | Value *ArgArg; |
188 | if (match(V: Arg, P: PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_v2i>( |
189 | Op0: PatternMatch::m_Value(V&: ArgArg))) && |
190 | II.getType() == ArgArg->getType()) { |
191 | return IC.replaceInstUsesWith(I&: II, V: ArgArg); |
192 | } |
193 | Constant *XorMask; |
194 | if (match(V: Arg, P: m_Xor(L: PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_v2i>( |
195 | Op0: PatternMatch::m_Value(V&: ArgArg)), |
196 | R: PatternMatch::m_Constant(C&: XorMask))) && |
197 | II.getType() == ArgArg->getType()) { |
198 | if (auto *CI = dyn_cast<ConstantInt>(Val: XorMask)) { |
199 | if (CI->getValue().trunc(width: 16).isAllOnes()) { |
200 | auto TrueVector = IC.Builder.CreateVectorSplat( |
201 | NumElts: cast<FixedVectorType>(Val: II.getType())->getNumElements(), |
202 | V: IC.Builder.getTrue()); |
203 | return BinaryOperator::Create(Op: Instruction::Xor, S1: ArgArg, S2: TrueVector); |
204 | } |
205 | } |
206 | } |
207 | KnownBits ScalarKnown(32); |
208 | if (IC.SimplifyDemandedBits(I: &II, OpNo: 0, DemandedMask: APInt::getLowBitsSet(numBits: 32, loBitsSet: 16), |
209 | Known&: ScalarKnown)) { |
210 | return &II; |
211 | } |
212 | break; |
213 | } |
214 | case Intrinsic::arm_mve_pred_v2i: { |
215 | Value *Arg = II.getArgOperand(i: 0); |
216 | Value *ArgArg; |
217 | if (match(V: Arg, P: PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_i2v>( |
218 | Op0: PatternMatch::m_Value(V&: ArgArg)))) { |
219 | return IC.replaceInstUsesWith(I&: II, V: ArgArg); |
220 | } |
221 | |
222 | if (II.getMetadata(KindID: LLVMContext::MD_range)) |
223 | break; |
224 | |
225 | ConstantRange Range(APInt(32, 0), APInt(32, 0x10000)); |
226 | |
227 | if (auto CurrentRange = II.getRange()) { |
228 | Range = Range.intersectWith(CR: *CurrentRange); |
229 | if (Range == CurrentRange) |
230 | break; |
231 | } |
232 | |
233 | II.addRangeRetAttr(CR: Range); |
234 | II.addRetAttr(Kind: Attribute::NoUndef); |
235 | return &II; |
236 | } |
237 | case Intrinsic::arm_mve_vadc: |
238 | case Intrinsic::arm_mve_vadc_predicated: { |
239 | unsigned CarryOp = |
240 | (II.getIntrinsicID() == Intrinsic::arm_mve_vadc_predicated) ? 3 : 2; |
241 | assert(II.getArgOperand(CarryOp)->getType()->getScalarSizeInBits() == 32 && |
242 | "Bad type for intrinsic!" ); |
243 | |
244 | KnownBits CarryKnown(32); |
245 | if (IC.SimplifyDemandedBits(I: &II, OpNo: CarryOp, DemandedMask: APInt::getOneBitSet(numBits: 32, BitNo: 29), |
246 | Known&: CarryKnown)) { |
247 | return &II; |
248 | } |
249 | break; |
250 | } |
251 | case Intrinsic::arm_mve_vmldava: { |
252 | Instruction *I = cast<Instruction>(Val: &II); |
253 | if (I->hasOneUse()) { |
254 | auto *User = cast<Instruction>(Val: *I->user_begin()); |
255 | Value *OpZ; |
256 | if (match(V: User, P: m_c_Add(L: m_Specific(V: I), R: m_Value(V&: OpZ))) && |
257 | match(V: I->getOperand(i: 3), P: m_Zero())) { |
258 | Value *OpX = I->getOperand(i: 4); |
259 | Value *OpY = I->getOperand(i: 5); |
260 | Type *OpTy = OpX->getType(); |
261 | |
262 | IC.Builder.SetInsertPoint(User); |
263 | Value *V = |
264 | IC.Builder.CreateIntrinsic(ID: Intrinsic::arm_mve_vmldava, Types: {OpTy}, |
265 | Args: {I->getOperand(i: 0), I->getOperand(i: 1), |
266 | I->getOperand(i: 2), OpZ, OpX, OpY}); |
267 | |
268 | IC.replaceInstUsesWith(I&: *User, V); |
269 | return IC.eraseInstFromFunction(I&: *User); |
270 | } |
271 | } |
272 | return std::nullopt; |
273 | } |
274 | } |
275 | return std::nullopt; |
276 | } |
277 | |
278 | std::optional<Value *> ARMTTIImpl::simplifyDemandedVectorEltsIntrinsic( |
279 | InstCombiner &IC, IntrinsicInst &II, APInt OrigDemandedElts, |
280 | APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, |
281 | std::function<void(Instruction *, unsigned, APInt, APInt &)> |
282 | SimplifyAndSetOp) const { |
283 | |
284 | // Compute the demanded bits for a narrowing MVE intrinsic. The TopOpc is the |
285 | // opcode specifying a Top/Bottom instruction, which can change between |
286 | // instructions. |
287 | auto SimplifyNarrowInstrTopBottom =[&](unsigned TopOpc) { |
288 | unsigned NumElts = cast<FixedVectorType>(Val: II.getType())->getNumElements(); |
289 | unsigned IsTop = cast<ConstantInt>(Val: II.getOperand(i_nocapture: TopOpc))->getZExtValue(); |
290 | |
291 | // The only odd/even lanes of operand 0 will only be demanded depending |
292 | // on whether this is a top/bottom instruction. |
293 | APInt DemandedElts = |
294 | APInt::getSplat(NewLen: NumElts, V: IsTop ? APInt::getLowBitsSet(numBits: 2, loBitsSet: 1) |
295 | : APInt::getHighBitsSet(numBits: 2, hiBitsSet: 1)); |
296 | SimplifyAndSetOp(&II, 0, OrigDemandedElts & DemandedElts, UndefElts); |
297 | // The other lanes will be defined from the inserted elements. |
298 | UndefElts &= APInt::getSplat(NewLen: NumElts, V: IsTop ? APInt::getLowBitsSet(numBits: 2, loBitsSet: 1) |
299 | : APInt::getHighBitsSet(numBits: 2, hiBitsSet: 1)); |
300 | return std::nullopt; |
301 | }; |
302 | |
303 | switch (II.getIntrinsicID()) { |
304 | default: |
305 | break; |
306 | case Intrinsic::arm_mve_vcvt_narrow: |
307 | SimplifyNarrowInstrTopBottom(2); |
308 | break; |
309 | case Intrinsic::arm_mve_vqmovn: |
310 | SimplifyNarrowInstrTopBottom(4); |
311 | break; |
312 | case Intrinsic::arm_mve_vshrn: |
313 | SimplifyNarrowInstrTopBottom(7); |
314 | break; |
315 | } |
316 | |
317 | return std::nullopt; |
318 | } |
319 | |
320 | InstructionCost ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty, |
321 | TTI::TargetCostKind CostKind) const { |
322 | assert(Ty->isIntegerTy()); |
323 | |
324 | unsigned Bits = Ty->getPrimitiveSizeInBits(); |
325 | if (Bits == 0 || Imm.getActiveBits() >= 64) |
326 | return 4; |
327 | |
328 | int64_t SImmVal = Imm.getSExtValue(); |
329 | uint64_t ZImmVal = Imm.getZExtValue(); |
330 | if (!ST->isThumb()) { |
331 | if ((SImmVal >= 0 && SImmVal < 65536) || |
332 | (ARM_AM::getSOImmVal(Arg: ZImmVal) != -1) || |
333 | (ARM_AM::getSOImmVal(Arg: ~ZImmVal) != -1)) |
334 | return 1; |
335 | return ST->hasV6T2Ops() ? 2 : 3; |
336 | } |
337 | if (ST->isThumb2()) { |
338 | if ((SImmVal >= 0 && SImmVal < 65536) || |
339 | (ARM_AM::getT2SOImmVal(Arg: ZImmVal) != -1) || |
340 | (ARM_AM::getT2SOImmVal(Arg: ~ZImmVal) != -1)) |
341 | return 1; |
342 | return ST->hasV6T2Ops() ? 2 : 3; |
343 | } |
344 | // Thumb1, any i8 imm cost 1. |
345 | if (Bits == 8 || (SImmVal >= 0 && SImmVal < 256)) |
346 | return 1; |
347 | if ((~SImmVal < 256) || ARM_AM::isThumbImmShiftedVal(V: ZImmVal)) |
348 | return 2; |
349 | // Load from constantpool. |
350 | return 3; |
351 | } |
352 | |
353 | // Constants smaller than 256 fit in the immediate field of |
354 | // Thumb1 instructions so we return a zero cost and 1 otherwise. |
355 | InstructionCost ARMTTIImpl::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, |
356 | const APInt &Imm, |
357 | Type *Ty) const { |
358 | if (Imm.isNonNegative() && Imm.getLimitedValue() < 256) |
359 | return 0; |
360 | |
361 | return 1; |
362 | } |
363 | |
364 | // Checks whether Inst is part of a min(max()) or max(min()) pattern |
365 | // that will match to an SSAT instruction. Returns the instruction being |
366 | // saturated, or null if no saturation pattern was found. |
367 | static Value *isSSATMinMaxPattern(Instruction *Inst, const APInt &Imm) { |
368 | Value *LHS, *RHS; |
369 | ConstantInt *C; |
370 | SelectPatternFlavor InstSPF = matchSelectPattern(V: Inst, LHS, RHS).Flavor; |
371 | |
372 | if (InstSPF == SPF_SMAX && |
373 | PatternMatch::match(V: RHS, P: PatternMatch::m_ConstantInt(CI&: C)) && |
374 | C->getValue() == Imm && Imm.isNegative() && Imm.isNegatedPowerOf2()) { |
375 | |
376 | auto isSSatMin = [&](Value *MinInst) { |
377 | if (isa<SelectInst>(Val: MinInst)) { |
378 | Value *MinLHS, *MinRHS; |
379 | ConstantInt *MinC; |
380 | SelectPatternFlavor MinSPF = |
381 | matchSelectPattern(V: MinInst, LHS&: MinLHS, RHS&: MinRHS).Flavor; |
382 | if (MinSPF == SPF_SMIN && |
383 | PatternMatch::match(V: MinRHS, P: PatternMatch::m_ConstantInt(CI&: MinC)) && |
384 | MinC->getValue() == ((-Imm) - 1)) |
385 | return true; |
386 | } |
387 | return false; |
388 | }; |
389 | |
390 | if (isSSatMin(Inst->getOperand(i: 1))) |
391 | return cast<Instruction>(Val: Inst->getOperand(i: 1))->getOperand(i: 1); |
392 | if (Inst->hasNUses(N: 2) && |
393 | (isSSatMin(*Inst->user_begin()) || isSSatMin(*(++Inst->user_begin())))) |
394 | return Inst->getOperand(i: 1); |
395 | } |
396 | return nullptr; |
397 | } |
398 | |
399 | // Look for a FP Saturation pattern, where the instruction can be simplified to |
400 | // a fptosi.sat. max(min(fptosi)). The constant in this case is always free. |
401 | static bool isFPSatMinMaxPattern(Instruction *Inst, const APInt &Imm) { |
402 | if (Imm.getBitWidth() != 64 || |
403 | Imm != APInt::getHighBitsSet(numBits: 64, hiBitsSet: 33)) // -2147483648 |
404 | return false; |
405 | Value *FP = isSSATMinMaxPattern(Inst, Imm); |
406 | if (!FP && isa<ICmpInst>(Val: Inst) && Inst->hasOneUse()) |
407 | FP = isSSATMinMaxPattern(Inst: cast<Instruction>(Val: *Inst->user_begin()), Imm); |
408 | if (!FP) |
409 | return false; |
410 | return isa<FPToSIInst>(Val: FP); |
411 | } |
412 | |
413 | InstructionCost ARMTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, |
414 | const APInt &Imm, Type *Ty, |
415 | TTI::TargetCostKind CostKind, |
416 | Instruction *Inst) const { |
417 | // Division by a constant can be turned into multiplication, but only if we |
418 | // know it's constant. So it's not so much that the immediate is cheap (it's |
419 | // not), but that the alternative is worse. |
420 | // FIXME: this is probably unneeded with GlobalISel. |
421 | if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv || |
422 | Opcode == Instruction::SRem || Opcode == Instruction::URem) && |
423 | Idx == 1) |
424 | return 0; |
425 | |
426 | // Leave any gep offsets for the CodeGenPrepare, which will do a better job at |
427 | // splitting any large offsets. |
428 | if (Opcode == Instruction::GetElementPtr && Idx != 0) |
429 | return 0; |
430 | |
431 | if (Opcode == Instruction::And) { |
432 | // UXTB/UXTH |
433 | if (Imm == 255 || Imm == 65535) |
434 | return 0; |
435 | // Conversion to BIC is free, and means we can use ~Imm instead. |
436 | return std::min(a: getIntImmCost(Imm, Ty, CostKind), |
437 | b: getIntImmCost(Imm: ~Imm, Ty, CostKind)); |
438 | } |
439 | |
440 | if (Opcode == Instruction::Add) |
441 | // Conversion to SUB is free, and means we can use -Imm instead. |
442 | return std::min(a: getIntImmCost(Imm, Ty, CostKind), |
443 | b: getIntImmCost(Imm: -Imm, Ty, CostKind)); |
444 | |
445 | if (Opcode == Instruction::ICmp && Imm.isNegative() && |
446 | Ty->getIntegerBitWidth() == 32) { |
447 | int64_t NegImm = -Imm.getSExtValue(); |
448 | if (ST->isThumb2() && NegImm < 1<<12) |
449 | // icmp X, #-C -> cmn X, #C |
450 | return 0; |
451 | if (ST->isThumb() && NegImm < 1<<8) |
452 | // icmp X, #-C -> adds X, #C |
453 | return 0; |
454 | } |
455 | |
456 | // xor a, -1 can always be folded to MVN |
457 | if (Opcode == Instruction::Xor && Imm.isAllOnes()) |
458 | return 0; |
459 | |
460 | // Ensures negative constant of min(max()) or max(min()) patterns that |
461 | // match to SSAT instructions don't get hoisted |
462 | if (Inst && ((ST->hasV6Ops() && !ST->isThumb()) || ST->isThumb2()) && |
463 | Ty->getIntegerBitWidth() <= 32) { |
464 | if (isSSATMinMaxPattern(Inst, Imm) || |
465 | (isa<ICmpInst>(Val: Inst) && Inst->hasOneUse() && |
466 | isSSATMinMaxPattern(Inst: cast<Instruction>(Val: *Inst->user_begin()), Imm))) |
467 | return 0; |
468 | } |
469 | |
470 | if (Inst && ST->hasVFP2Base() && isFPSatMinMaxPattern(Inst, Imm)) |
471 | return 0; |
472 | |
473 | // We can convert <= -1 to < 0, which is generally quite cheap. |
474 | if (Inst && Opcode == Instruction::ICmp && Idx == 1 && Imm.isAllOnes()) { |
475 | ICmpInst::Predicate Pred = cast<ICmpInst>(Val: Inst)->getPredicate(); |
476 | if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) |
477 | return std::min(a: getIntImmCost(Imm, Ty, CostKind), |
478 | b: getIntImmCost(Imm: Imm + 1, Ty, CostKind)); |
479 | } |
480 | |
481 | return getIntImmCost(Imm, Ty, CostKind); |
482 | } |
483 | |
484 | InstructionCost ARMTTIImpl::getCFInstrCost(unsigned Opcode, |
485 | TTI::TargetCostKind CostKind, |
486 | const Instruction *I) const { |
487 | if (CostKind == TTI::TCK_RecipThroughput && |
488 | (ST->hasNEON() || ST->hasMVEIntegerOps())) { |
489 | // FIXME: The vectorizer is highly sensistive to the cost of these |
490 | // instructions, which suggests that it may be using the costs incorrectly. |
491 | // But, for now, just make them free to avoid performance regressions for |
492 | // vector targets. |
493 | return 0; |
494 | } |
495 | return BaseT::getCFInstrCost(Opcode, CostKind, I); |
496 | } |
497 | |
498 | InstructionCost ARMTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, |
499 | Type *Src, |
500 | TTI::CastContextHint CCH, |
501 | TTI::TargetCostKind CostKind, |
502 | const Instruction *I) const { |
503 | int ISD = TLI->InstructionOpcodeToISD(Opcode); |
504 | assert(ISD && "Invalid opcode" ); |
505 | |
506 | // TODO: Allow non-throughput costs that aren't binary. |
507 | auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost { |
508 | if (CostKind != TTI::TCK_RecipThroughput) |
509 | return Cost == 0 ? 0 : 1; |
510 | return Cost; |
511 | }; |
512 | auto IsLegalFPType = [this](EVT VT) { |
513 | EVT EltVT = VT.getScalarType(); |
514 | return (EltVT == MVT::f32 && ST->hasVFP2Base()) || |
515 | (EltVT == MVT::f64 && ST->hasFP64()) || |
516 | (EltVT == MVT::f16 && ST->hasFullFP16()); |
517 | }; |
518 | |
519 | EVT SrcTy = TLI->getValueType(DL, Ty: Src); |
520 | EVT DstTy = TLI->getValueType(DL, Ty: Dst); |
521 | |
522 | if (!SrcTy.isSimple() || !DstTy.isSimple()) |
523 | return AdjustCost( |
524 | BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I)); |
525 | |
526 | // Extending masked load/Truncating masked stores is expensive because we |
527 | // currently don't split them. This means that we'll likely end up |
528 | // loading/storing each element individually (hence the high cost). |
529 | if ((ST->hasMVEIntegerOps() && |
530 | (Opcode == Instruction::Trunc || Opcode == Instruction::ZExt || |
531 | Opcode == Instruction::SExt)) || |
532 | (ST->hasMVEFloatOps() && |
533 | (Opcode == Instruction::FPExt || Opcode == Instruction::FPTrunc) && |
534 | IsLegalFPType(SrcTy) && IsLegalFPType(DstTy))) |
535 | if (CCH == TTI::CastContextHint::Masked && DstTy.getSizeInBits() > 128) |
536 | return 2 * DstTy.getVectorNumElements() * |
537 | ST->getMVEVectorCostFactor(CostKind); |
538 | |
539 | // The extend of other kinds of load is free |
540 | if (CCH == TTI::CastContextHint::Normal || |
541 | CCH == TTI::CastContextHint::Masked) { |
542 | static const TypeConversionCostTblEntry LoadConversionTbl[] = { |
543 | {.ISD: ISD::SIGN_EXTEND, .Dst: MVT::i32, .Src: MVT::i16, .Cost: 0}, |
544 | {.ISD: ISD::ZERO_EXTEND, .Dst: MVT::i32, .Src: MVT::i16, .Cost: 0}, |
545 | {.ISD: ISD::SIGN_EXTEND, .Dst: MVT::i32, .Src: MVT::i8, .Cost: 0}, |
546 | {.ISD: ISD::ZERO_EXTEND, .Dst: MVT::i32, .Src: MVT::i8, .Cost: 0}, |
547 | {.ISD: ISD::SIGN_EXTEND, .Dst: MVT::i16, .Src: MVT::i8, .Cost: 0}, |
548 | {.ISD: ISD::ZERO_EXTEND, .Dst: MVT::i16, .Src: MVT::i8, .Cost: 0}, |
549 | {.ISD: ISD::SIGN_EXTEND, .Dst: MVT::i64, .Src: MVT::i32, .Cost: 1}, |
550 | {.ISD: ISD::ZERO_EXTEND, .Dst: MVT::i64, .Src: MVT::i32, .Cost: 1}, |
551 | {.ISD: ISD::SIGN_EXTEND, .Dst: MVT::i64, .Src: MVT::i16, .Cost: 1}, |
552 | {.ISD: ISD::ZERO_EXTEND, .Dst: MVT::i64, .Src: MVT::i16, .Cost: 1}, |
553 | {.ISD: ISD::SIGN_EXTEND, .Dst: MVT::i64, .Src: MVT::i8, .Cost: 1}, |
554 | {.ISD: ISD::ZERO_EXTEND, .Dst: MVT::i64, .Src: MVT::i8, .Cost: 1}, |
555 | }; |
556 | if (const auto *Entry = ConvertCostTableLookup( |
557 | Table: LoadConversionTbl, ISD, Dst: DstTy.getSimpleVT(), Src: SrcTy.getSimpleVT())) |
558 | return AdjustCost(Entry->Cost); |
559 | |
560 | static const TypeConversionCostTblEntry MVELoadConversionTbl[] = { |
561 | {.ISD: ISD::SIGN_EXTEND, .Dst: MVT::v4i32, .Src: MVT::v4i16, .Cost: 0}, |
562 | {.ISD: ISD::ZERO_EXTEND, .Dst: MVT::v4i32, .Src: MVT::v4i16, .Cost: 0}, |
563 | {.ISD: ISD::SIGN_EXTEND, .Dst: MVT::v4i32, .Src: MVT::v4i8, .Cost: 0}, |
564 | {.ISD: ISD::ZERO_EXTEND, .Dst: MVT::v4i32, .Src: MVT::v4i8, .Cost: 0}, |
565 | {.ISD: ISD::SIGN_EXTEND, .Dst: MVT::v8i16, .Src: MVT::v8i8, .Cost: 0}, |
566 | {.ISD: ISD::ZERO_EXTEND, .Dst: MVT::v8i16, .Src: MVT::v8i8, .Cost: 0}, |
567 | // The following extend from a legal type to an illegal type, so need to |
568 | // split the load. This introduced an extra load operation, but the |
569 | // extend is still "free". |
570 | {.ISD: ISD::SIGN_EXTEND, .Dst: MVT::v8i32, .Src: MVT::v8i16, .Cost: 1}, |
571 | {.ISD: ISD::ZERO_EXTEND, .Dst: MVT::v8i32, .Src: MVT::v8i16, .Cost: 1}, |
572 | {.ISD: ISD::SIGN_EXTEND, .Dst: MVT::v16i32, .Src: MVT::v16i8, .Cost: 3}, |
573 | {.ISD: ISD::ZERO_EXTEND, .Dst: MVT::v16i32, .Src: MVT::v16i8, .Cost: 3}, |
574 | {.ISD: ISD::SIGN_EXTEND, .Dst: MVT::v16i16, .Src: MVT::v16i8, .Cost: 1}, |
575 | {.ISD: ISD::ZERO_EXTEND, .Dst: MVT::v16i16, .Src: MVT::v16i8, .Cost: 1}, |
576 | }; |
577 | if (SrcTy.isVector() && ST->hasMVEIntegerOps()) { |
578 | if (const auto *Entry = |
579 | ConvertCostTableLookup(Table: MVELoadConversionTbl, ISD, |
580 | Dst: DstTy.getSimpleVT(), Src: SrcTy.getSimpleVT())) |
581 | return Entry->Cost * ST->getMVEVectorCostFactor(CostKind); |
582 | } |
583 | |
584 | static const TypeConversionCostTblEntry MVEFLoadConversionTbl[] = { |
585 | // FPExtends are similar but also require the VCVT instructions. |
586 | {.ISD: ISD::FP_EXTEND, .Dst: MVT::v4f32, .Src: MVT::v4f16, .Cost: 1}, |
587 | {.ISD: ISD::FP_EXTEND, .Dst: MVT::v8f32, .Src: MVT::v8f16, .Cost: 3}, |
588 | }; |
589 | if (SrcTy.isVector() && ST->hasMVEFloatOps()) { |
590 | if (const auto *Entry = |
591 | ConvertCostTableLookup(Table: MVEFLoadConversionTbl, ISD, |
592 | Dst: DstTy.getSimpleVT(), Src: SrcTy.getSimpleVT())) |
593 | return Entry->Cost * ST->getMVEVectorCostFactor(CostKind); |
594 | } |
595 | |
596 | // The truncate of a store is free. This is the mirror of extends above. |
597 | static const TypeConversionCostTblEntry MVEStoreConversionTbl[] = { |
598 | {.ISD: ISD::TRUNCATE, .Dst: MVT::v4i32, .Src: MVT::v4i16, .Cost: 0}, |
599 | {.ISD: ISD::TRUNCATE, .Dst: MVT::v4i32, .Src: MVT::v4i8, .Cost: 0}, |
600 | {.ISD: ISD::TRUNCATE, .Dst: MVT::v8i16, .Src: MVT::v8i8, .Cost: 0}, |
601 | {.ISD: ISD::TRUNCATE, .Dst: MVT::v8i32, .Src: MVT::v8i16, .Cost: 1}, |
602 | {.ISD: ISD::TRUNCATE, .Dst: MVT::v8i32, .Src: MVT::v8i8, .Cost: 1}, |
603 | {.ISD: ISD::TRUNCATE, .Dst: MVT::v16i32, .Src: MVT::v16i8, .Cost: 3}, |
604 | {.ISD: ISD::TRUNCATE, .Dst: MVT::v16i16, .Src: MVT::v16i8, .Cost: 1}, |
605 | }; |
606 | if (SrcTy.isVector() && ST->hasMVEIntegerOps()) { |
607 | if (const auto *Entry = |
608 | ConvertCostTableLookup(Table: MVEStoreConversionTbl, ISD, |
609 | Dst: SrcTy.getSimpleVT(), Src: DstTy.getSimpleVT())) |
610 | return Entry->Cost * ST->getMVEVectorCostFactor(CostKind); |
611 | } |
612 | |
613 | static const TypeConversionCostTblEntry MVEFStoreConversionTbl[] = { |
614 | {.ISD: ISD::FP_ROUND, .Dst: MVT::v4f32, .Src: MVT::v4f16, .Cost: 1}, |
615 | {.ISD: ISD::FP_ROUND, .Dst: MVT::v8f32, .Src: MVT::v8f16, .Cost: 3}, |
616 | }; |
617 | if (SrcTy.isVector() && ST->hasMVEFloatOps()) { |
618 | if (const auto *Entry = |
619 | ConvertCostTableLookup(Table: MVEFStoreConversionTbl, ISD, |
620 | Dst: SrcTy.getSimpleVT(), Src: DstTy.getSimpleVT())) |
621 | return Entry->Cost * ST->getMVEVectorCostFactor(CostKind); |
622 | } |
623 | } |
624 | |
625 | // NEON vector operations that can extend their inputs. |
626 | if ((ISD == ISD::SIGN_EXTEND || ISD == ISD::ZERO_EXTEND) && |
627 | I && I->hasOneUse() && ST->hasNEON() && SrcTy.isVector()) { |
628 | static const TypeConversionCostTblEntry NEONDoubleWidthTbl[] = { |
629 | // vaddl |
630 | { .ISD: ISD::ADD, .Dst: MVT::v4i32, .Src: MVT::v4i16, .Cost: 0 }, |
631 | { .ISD: ISD::ADD, .Dst: MVT::v8i16, .Src: MVT::v8i8, .Cost: 0 }, |
632 | // vsubl |
633 | { .ISD: ISD::SUB, .Dst: MVT::v4i32, .Src: MVT::v4i16, .Cost: 0 }, |
634 | { .ISD: ISD::SUB, .Dst: MVT::v8i16, .Src: MVT::v8i8, .Cost: 0 }, |
635 | // vmull |
636 | { .ISD: ISD::MUL, .Dst: MVT::v4i32, .Src: MVT::v4i16, .Cost: 0 }, |
637 | { .ISD: ISD::MUL, .Dst: MVT::v8i16, .Src: MVT::v8i8, .Cost: 0 }, |
638 | // vshll |
639 | { .ISD: ISD::SHL, .Dst: MVT::v4i32, .Src: MVT::v4i16, .Cost: 0 }, |
640 | { .ISD: ISD::SHL, .Dst: MVT::v8i16, .Src: MVT::v8i8, .Cost: 0 }, |
641 | }; |
642 | |
643 | auto *User = cast<Instruction>(Val: *I->user_begin()); |
644 | int UserISD = TLI->InstructionOpcodeToISD(Opcode: User->getOpcode()); |
645 | if (auto *Entry = ConvertCostTableLookup(Table: NEONDoubleWidthTbl, ISD: UserISD, |
646 | Dst: DstTy.getSimpleVT(), |
647 | Src: SrcTy.getSimpleVT())) { |
648 | return AdjustCost(Entry->Cost); |
649 | } |
650 | } |
651 | |
652 | // Single to/from double precision conversions. |
653 | if (Src->isVectorTy() && ST->hasNEON() && |
654 | ((ISD == ISD::FP_ROUND && SrcTy.getScalarType() == MVT::f64 && |
655 | DstTy.getScalarType() == MVT::f32) || |
656 | (ISD == ISD::FP_EXTEND && SrcTy.getScalarType() == MVT::f32 && |
657 | DstTy.getScalarType() == MVT::f64))) { |
658 | static const CostTblEntry NEONFltDblTbl[] = { |
659 | // Vector fptrunc/fpext conversions. |
660 | {.ISD: ISD::FP_ROUND, .Type: MVT::v2f64, .Cost: 2}, |
661 | {.ISD: ISD::FP_EXTEND, .Type: MVT::v2f32, .Cost: 2}, |
662 | {.ISD: ISD::FP_EXTEND, .Type: MVT::v4f32, .Cost: 4}}; |
663 | |
664 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: Src); |
665 | if (const auto *Entry = CostTableLookup(Table: NEONFltDblTbl, ISD, Ty: LT.second)) |
666 | return AdjustCost(LT.first * Entry->Cost); |
667 | } |
668 | |
669 | // Some arithmetic, load and store operations have specific instructions |
670 | // to cast up/down their types automatically at no extra cost. |
671 | // TODO: Get these tables to know at least what the related operations are. |
672 | static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = { |
673 | { .ISD: ISD::SIGN_EXTEND, .Dst: MVT::v4i32, .Src: MVT::v4i16, .Cost: 1 }, |
674 | { .ISD: ISD::ZERO_EXTEND, .Dst: MVT::v4i32, .Src: MVT::v4i16, .Cost: 1 }, |
675 | { .ISD: ISD::SIGN_EXTEND, .Dst: MVT::v2i64, .Src: MVT::v2i32, .Cost: 1 }, |
676 | { .ISD: ISD::ZERO_EXTEND, .Dst: MVT::v2i64, .Src: MVT::v2i32, .Cost: 1 }, |
677 | { .ISD: ISD::TRUNCATE, .Dst: MVT::v4i32, .Src: MVT::v4i64, .Cost: 0 }, |
678 | { .ISD: ISD::TRUNCATE, .Dst: MVT::v4i16, .Src: MVT::v4i32, .Cost: 1 }, |
679 | |
680 | // The number of vmovl instructions for the extension. |
681 | { .ISD: ISD::SIGN_EXTEND, .Dst: MVT::v8i16, .Src: MVT::v8i8, .Cost: 1 }, |
682 | { .ISD: ISD::ZERO_EXTEND, .Dst: MVT::v8i16, .Src: MVT::v8i8, .Cost: 1 }, |
683 | { .ISD: ISD::SIGN_EXTEND, .Dst: MVT::v4i32, .Src: MVT::v4i8, .Cost: 2 }, |
684 | { .ISD: ISD::ZERO_EXTEND, .Dst: MVT::v4i32, .Src: MVT::v4i8, .Cost: 2 }, |
685 | { .ISD: ISD::SIGN_EXTEND, .Dst: MVT::v2i64, .Src: MVT::v2i8, .Cost: 3 }, |
686 | { .ISD: ISD::ZERO_EXTEND, .Dst: MVT::v2i64, .Src: MVT::v2i8, .Cost: 3 }, |
687 | { .ISD: ISD::SIGN_EXTEND, .Dst: MVT::v2i64, .Src: MVT::v2i16, .Cost: 2 }, |
688 | { .ISD: ISD::ZERO_EXTEND, .Dst: MVT::v2i64, .Src: MVT::v2i16, .Cost: 2 }, |
689 | { .ISD: ISD::SIGN_EXTEND, .Dst: MVT::v4i64, .Src: MVT::v4i16, .Cost: 3 }, |
690 | { .ISD: ISD::ZERO_EXTEND, .Dst: MVT::v4i64, .Src: MVT::v4i16, .Cost: 3 }, |
691 | { .ISD: ISD::SIGN_EXTEND, .Dst: MVT::v8i32, .Src: MVT::v8i8, .Cost: 3 }, |
692 | { .ISD: ISD::ZERO_EXTEND, .Dst: MVT::v8i32, .Src: MVT::v8i8, .Cost: 3 }, |
693 | { .ISD: ISD::SIGN_EXTEND, .Dst: MVT::v8i64, .Src: MVT::v8i8, .Cost: 7 }, |
694 | { .ISD: ISD::ZERO_EXTEND, .Dst: MVT::v8i64, .Src: MVT::v8i8, .Cost: 7 }, |
695 | { .ISD: ISD::SIGN_EXTEND, .Dst: MVT::v8i64, .Src: MVT::v8i16, .Cost: 6 }, |
696 | { .ISD: ISD::ZERO_EXTEND, .Dst: MVT::v8i64, .Src: MVT::v8i16, .Cost: 6 }, |
697 | { .ISD: ISD::SIGN_EXTEND, .Dst: MVT::v16i32, .Src: MVT::v16i8, .Cost: 6 }, |
698 | { .ISD: ISD::ZERO_EXTEND, .Dst: MVT::v16i32, .Src: MVT::v16i8, .Cost: 6 }, |
699 | |
700 | // Operations that we legalize using splitting. |
701 | { .ISD: ISD::TRUNCATE, .Dst: MVT::v16i8, .Src: MVT::v16i32, .Cost: 6 }, |
702 | { .ISD: ISD::TRUNCATE, .Dst: MVT::v8i8, .Src: MVT::v8i32, .Cost: 3 }, |
703 | |
704 | // Vector float <-> i32 conversions. |
705 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::v4f32, .Src: MVT::v4i32, .Cost: 1 }, |
706 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::v4f32, .Src: MVT::v4i32, .Cost: 1 }, |
707 | |
708 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::v2f32, .Src: MVT::v2i8, .Cost: 3 }, |
709 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::v2f32, .Src: MVT::v2i8, .Cost: 3 }, |
710 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::v2f32, .Src: MVT::v2i16, .Cost: 2 }, |
711 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::v2f32, .Src: MVT::v2i16, .Cost: 2 }, |
712 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::v2f32, .Src: MVT::v2i32, .Cost: 1 }, |
713 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::v2f32, .Src: MVT::v2i32, .Cost: 1 }, |
714 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::v4f32, .Src: MVT::v4i1, .Cost: 3 }, |
715 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::v4f32, .Src: MVT::v4i1, .Cost: 3 }, |
716 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::v4f32, .Src: MVT::v4i8, .Cost: 3 }, |
717 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::v4f32, .Src: MVT::v4i8, .Cost: 3 }, |
718 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::v4f32, .Src: MVT::v4i16, .Cost: 2 }, |
719 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::v4f32, .Src: MVT::v4i16, .Cost: 2 }, |
720 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::v8f32, .Src: MVT::v8i16, .Cost: 4 }, |
721 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::v8f32, .Src: MVT::v8i16, .Cost: 4 }, |
722 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::v8f32, .Src: MVT::v8i32, .Cost: 2 }, |
723 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::v8f32, .Src: MVT::v8i32, .Cost: 2 }, |
724 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::v16f32, .Src: MVT::v16i16, .Cost: 8 }, |
725 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::v16f32, .Src: MVT::v16i16, .Cost: 8 }, |
726 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::v16f32, .Src: MVT::v16i32, .Cost: 4 }, |
727 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::v16f32, .Src: MVT::v16i32, .Cost: 4 }, |
728 | |
729 | { .ISD: ISD::FP_TO_SINT, .Dst: MVT::v4i32, .Src: MVT::v4f32, .Cost: 1 }, |
730 | { .ISD: ISD::FP_TO_UINT, .Dst: MVT::v4i32, .Src: MVT::v4f32, .Cost: 1 }, |
731 | { .ISD: ISD::FP_TO_SINT, .Dst: MVT::v4i8, .Src: MVT::v4f32, .Cost: 3 }, |
732 | { .ISD: ISD::FP_TO_UINT, .Dst: MVT::v4i8, .Src: MVT::v4f32, .Cost: 3 }, |
733 | { .ISD: ISD::FP_TO_SINT, .Dst: MVT::v4i16, .Src: MVT::v4f32, .Cost: 2 }, |
734 | { .ISD: ISD::FP_TO_UINT, .Dst: MVT::v4i16, .Src: MVT::v4f32, .Cost: 2 }, |
735 | |
736 | // Vector double <-> i32 conversions. |
737 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::v2f64, .Src: MVT::v2i32, .Cost: 2 }, |
738 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::v2f64, .Src: MVT::v2i32, .Cost: 2 }, |
739 | |
740 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::v2f64, .Src: MVT::v2i8, .Cost: 4 }, |
741 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::v2f64, .Src: MVT::v2i8, .Cost: 4 }, |
742 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::v2f64, .Src: MVT::v2i16, .Cost: 3 }, |
743 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::v2f64, .Src: MVT::v2i16, .Cost: 3 }, |
744 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::v2f64, .Src: MVT::v2i32, .Cost: 2 }, |
745 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::v2f64, .Src: MVT::v2i32, .Cost: 2 }, |
746 | |
747 | { .ISD: ISD::FP_TO_SINT, .Dst: MVT::v2i32, .Src: MVT::v2f64, .Cost: 2 }, |
748 | { .ISD: ISD::FP_TO_UINT, .Dst: MVT::v2i32, .Src: MVT::v2f64, .Cost: 2 }, |
749 | { .ISD: ISD::FP_TO_SINT, .Dst: MVT::v8i16, .Src: MVT::v8f32, .Cost: 4 }, |
750 | { .ISD: ISD::FP_TO_UINT, .Dst: MVT::v8i16, .Src: MVT::v8f32, .Cost: 4 }, |
751 | { .ISD: ISD::FP_TO_SINT, .Dst: MVT::v16i16, .Src: MVT::v16f32, .Cost: 8 }, |
752 | { .ISD: ISD::FP_TO_UINT, .Dst: MVT::v16i16, .Src: MVT::v16f32, .Cost: 8 } |
753 | }; |
754 | |
755 | if (SrcTy.isVector() && ST->hasNEON()) { |
756 | if (const auto *Entry = ConvertCostTableLookup(Table: NEONVectorConversionTbl, ISD, |
757 | Dst: DstTy.getSimpleVT(), |
758 | Src: SrcTy.getSimpleVT())) |
759 | return AdjustCost(Entry->Cost); |
760 | } |
761 | |
762 | // Scalar float to integer conversions. |
763 | static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = { |
764 | { .ISD: ISD::FP_TO_SINT, .Dst: MVT::i1, .Src: MVT::f32, .Cost: 2 }, |
765 | { .ISD: ISD::FP_TO_UINT, .Dst: MVT::i1, .Src: MVT::f32, .Cost: 2 }, |
766 | { .ISD: ISD::FP_TO_SINT, .Dst: MVT::i1, .Src: MVT::f64, .Cost: 2 }, |
767 | { .ISD: ISD::FP_TO_UINT, .Dst: MVT::i1, .Src: MVT::f64, .Cost: 2 }, |
768 | { .ISD: ISD::FP_TO_SINT, .Dst: MVT::i8, .Src: MVT::f32, .Cost: 2 }, |
769 | { .ISD: ISD::FP_TO_UINT, .Dst: MVT::i8, .Src: MVT::f32, .Cost: 2 }, |
770 | { .ISD: ISD::FP_TO_SINT, .Dst: MVT::i8, .Src: MVT::f64, .Cost: 2 }, |
771 | { .ISD: ISD::FP_TO_UINT, .Dst: MVT::i8, .Src: MVT::f64, .Cost: 2 }, |
772 | { .ISD: ISD::FP_TO_SINT, .Dst: MVT::i16, .Src: MVT::f32, .Cost: 2 }, |
773 | { .ISD: ISD::FP_TO_UINT, .Dst: MVT::i16, .Src: MVT::f32, .Cost: 2 }, |
774 | { .ISD: ISD::FP_TO_SINT, .Dst: MVT::i16, .Src: MVT::f64, .Cost: 2 }, |
775 | { .ISD: ISD::FP_TO_UINT, .Dst: MVT::i16, .Src: MVT::f64, .Cost: 2 }, |
776 | { .ISD: ISD::FP_TO_SINT, .Dst: MVT::i32, .Src: MVT::f32, .Cost: 2 }, |
777 | { .ISD: ISD::FP_TO_UINT, .Dst: MVT::i32, .Src: MVT::f32, .Cost: 2 }, |
778 | { .ISD: ISD::FP_TO_SINT, .Dst: MVT::i32, .Src: MVT::f64, .Cost: 2 }, |
779 | { .ISD: ISD::FP_TO_UINT, .Dst: MVT::i32, .Src: MVT::f64, .Cost: 2 }, |
780 | { .ISD: ISD::FP_TO_SINT, .Dst: MVT::i64, .Src: MVT::f32, .Cost: 10 }, |
781 | { .ISD: ISD::FP_TO_UINT, .Dst: MVT::i64, .Src: MVT::f32, .Cost: 10 }, |
782 | { .ISD: ISD::FP_TO_SINT, .Dst: MVT::i64, .Src: MVT::f64, .Cost: 10 }, |
783 | { .ISD: ISD::FP_TO_UINT, .Dst: MVT::i64, .Src: MVT::f64, .Cost: 10 } |
784 | }; |
785 | if (SrcTy.isFloatingPoint() && ST->hasNEON()) { |
786 | if (const auto *Entry = ConvertCostTableLookup(Table: NEONFloatConversionTbl, ISD, |
787 | Dst: DstTy.getSimpleVT(), |
788 | Src: SrcTy.getSimpleVT())) |
789 | return AdjustCost(Entry->Cost); |
790 | } |
791 | |
792 | // Scalar integer to float conversions. |
793 | static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = { |
794 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::f32, .Src: MVT::i1, .Cost: 2 }, |
795 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::f32, .Src: MVT::i1, .Cost: 2 }, |
796 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::f64, .Src: MVT::i1, .Cost: 2 }, |
797 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::f64, .Src: MVT::i1, .Cost: 2 }, |
798 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::f32, .Src: MVT::i8, .Cost: 2 }, |
799 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::f32, .Src: MVT::i8, .Cost: 2 }, |
800 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::f64, .Src: MVT::i8, .Cost: 2 }, |
801 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::f64, .Src: MVT::i8, .Cost: 2 }, |
802 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::f32, .Src: MVT::i16, .Cost: 2 }, |
803 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::f32, .Src: MVT::i16, .Cost: 2 }, |
804 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::f64, .Src: MVT::i16, .Cost: 2 }, |
805 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::f64, .Src: MVT::i16, .Cost: 2 }, |
806 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::f32, .Src: MVT::i32, .Cost: 2 }, |
807 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::f32, .Src: MVT::i32, .Cost: 2 }, |
808 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::f64, .Src: MVT::i32, .Cost: 2 }, |
809 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::f64, .Src: MVT::i32, .Cost: 2 }, |
810 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::f32, .Src: MVT::i64, .Cost: 10 }, |
811 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::f32, .Src: MVT::i64, .Cost: 10 }, |
812 | { .ISD: ISD::SINT_TO_FP, .Dst: MVT::f64, .Src: MVT::i64, .Cost: 10 }, |
813 | { .ISD: ISD::UINT_TO_FP, .Dst: MVT::f64, .Src: MVT::i64, .Cost: 10 } |
814 | }; |
815 | |
816 | if (SrcTy.isInteger() && ST->hasNEON()) { |
817 | if (const auto *Entry = ConvertCostTableLookup(Table: NEONIntegerConversionTbl, |
818 | ISD, Dst: DstTy.getSimpleVT(), |
819 | Src: SrcTy.getSimpleVT())) |
820 | return AdjustCost(Entry->Cost); |
821 | } |
822 | |
823 | // MVE extend costs, taken from codegen tests. i8->i16 or i16->i32 is one |
824 | // instruction, i8->i32 is two. i64 zexts are an VAND with a constant, sext |
825 | // are linearised so take more. |
826 | static const TypeConversionCostTblEntry MVEVectorConversionTbl[] = { |
827 | { .ISD: ISD::SIGN_EXTEND, .Dst: MVT::v8i16, .Src: MVT::v8i8, .Cost: 1 }, |
828 | { .ISD: ISD::ZERO_EXTEND, .Dst: MVT::v8i16, .Src: MVT::v8i8, .Cost: 1 }, |
829 | { .ISD: ISD::SIGN_EXTEND, .Dst: MVT::v4i32, .Src: MVT::v4i8, .Cost: 2 }, |
830 | { .ISD: ISD::ZERO_EXTEND, .Dst: MVT::v4i32, .Src: MVT::v4i8, .Cost: 2 }, |
831 | { .ISD: ISD::SIGN_EXTEND, .Dst: MVT::v2i64, .Src: MVT::v2i8, .Cost: 10 }, |
832 | { .ISD: ISD::ZERO_EXTEND, .Dst: MVT::v2i64, .Src: MVT::v2i8, .Cost: 2 }, |
833 | { .ISD: ISD::SIGN_EXTEND, .Dst: MVT::v4i32, .Src: MVT::v4i16, .Cost: 1 }, |
834 | { .ISD: ISD::ZERO_EXTEND, .Dst: MVT::v4i32, .Src: MVT::v4i16, .Cost: 1 }, |
835 | { .ISD: ISD::SIGN_EXTEND, .Dst: MVT::v2i64, .Src: MVT::v2i16, .Cost: 10 }, |
836 | { .ISD: ISD::ZERO_EXTEND, .Dst: MVT::v2i64, .Src: MVT::v2i16, .Cost: 2 }, |
837 | { .ISD: ISD::SIGN_EXTEND, .Dst: MVT::v2i64, .Src: MVT::v2i32, .Cost: 8 }, |
838 | { .ISD: ISD::ZERO_EXTEND, .Dst: MVT::v2i64, .Src: MVT::v2i32, .Cost: 2 }, |
839 | }; |
840 | |
841 | if (SrcTy.isVector() && ST->hasMVEIntegerOps()) { |
842 | if (const auto *Entry = ConvertCostTableLookup(Table: MVEVectorConversionTbl, |
843 | ISD, Dst: DstTy.getSimpleVT(), |
844 | Src: SrcTy.getSimpleVT())) |
845 | return Entry->Cost * ST->getMVEVectorCostFactor(CostKind); |
846 | } |
847 | |
848 | if (ISD == ISD::FP_ROUND || ISD == ISD::FP_EXTEND) { |
849 | // As general rule, fp converts that were not matched above are scalarized |
850 | // and cost 1 vcvt for each lane, so long as the instruction is available. |
851 | // If not it will become a series of function calls. |
852 | const InstructionCost CallCost = |
853 | getCallInstrCost(F: nullptr, RetTy: Dst, Tys: {Src}, CostKind); |
854 | int Lanes = 1; |
855 | if (SrcTy.isFixedLengthVector()) |
856 | Lanes = SrcTy.getVectorNumElements(); |
857 | |
858 | if (IsLegalFPType(SrcTy) && IsLegalFPType(DstTy)) |
859 | return Lanes; |
860 | else |
861 | return Lanes * CallCost; |
862 | } |
863 | |
864 | if (ISD == ISD::TRUNCATE && ST->hasMVEIntegerOps() && |
865 | SrcTy.isFixedLengthVector()) { |
866 | // Treat a truncate with larger than legal source (128bits for MVE) as |
867 | // expensive, 2 instructions per lane. |
868 | if ((SrcTy.getScalarType() == MVT::i8 || |
869 | SrcTy.getScalarType() == MVT::i16 || |
870 | SrcTy.getScalarType() == MVT::i32) && |
871 | SrcTy.getSizeInBits() > 128 && |
872 | SrcTy.getSizeInBits() > DstTy.getSizeInBits()) |
873 | return SrcTy.getVectorNumElements() * 2; |
874 | } |
875 | |
876 | // Scalar integer conversion costs. |
877 | static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = { |
878 | // i16 -> i64 requires two dependent operations. |
879 | { .ISD: ISD::SIGN_EXTEND, .Dst: MVT::i64, .Src: MVT::i16, .Cost: 2 }, |
880 | |
881 | // Truncates on i64 are assumed to be free. |
882 | { .ISD: ISD::TRUNCATE, .Dst: MVT::i32, .Src: MVT::i64, .Cost: 0 }, |
883 | { .ISD: ISD::TRUNCATE, .Dst: MVT::i16, .Src: MVT::i64, .Cost: 0 }, |
884 | { .ISD: ISD::TRUNCATE, .Dst: MVT::i8, .Src: MVT::i64, .Cost: 0 }, |
885 | { .ISD: ISD::TRUNCATE, .Dst: MVT::i1, .Src: MVT::i64, .Cost: 0 } |
886 | }; |
887 | |
888 | if (SrcTy.isInteger()) { |
889 | if (const auto *Entry = ConvertCostTableLookup(Table: ARMIntegerConversionTbl, ISD, |
890 | Dst: DstTy.getSimpleVT(), |
891 | Src: SrcTy.getSimpleVT())) |
892 | return AdjustCost(Entry->Cost); |
893 | } |
894 | |
895 | int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy() |
896 | ? ST->getMVEVectorCostFactor(CostKind) |
897 | : 1; |
898 | return AdjustCost( |
899 | BaseCost * BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I)); |
900 | } |
901 | |
902 | InstructionCost ARMTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, |
903 | TTI::TargetCostKind CostKind, |
904 | unsigned Index, const Value *Op0, |
905 | const Value *Op1) const { |
906 | // Penalize inserting into an D-subregister. We end up with a three times |
907 | // lower estimated throughput on swift. |
908 | if (ST->hasSlowLoadDSubregister() && Opcode == Instruction::InsertElement && |
909 | ValTy->isVectorTy() && ValTy->getScalarSizeInBits() <= 32) |
910 | return 3; |
911 | |
912 | if (ST->hasNEON() && (Opcode == Instruction::InsertElement || |
913 | Opcode == Instruction::ExtractElement)) { |
914 | // Cross-class copies are expensive on many microarchitectures, |
915 | // so assume they are expensive by default. |
916 | if (cast<VectorType>(Val: ValTy)->getElementType()->isIntegerTy()) |
917 | return 3; |
918 | |
919 | // Even if it's not a cross class copy, this likely leads to mixing |
920 | // of NEON and VFP code and should be therefore penalized. |
921 | if (ValTy->isVectorTy() && |
922 | ValTy->getScalarSizeInBits() <= 32) |
923 | return std::max<InstructionCost>( |
924 | a: BaseT::getVectorInstrCost(Opcode, Val: ValTy, CostKind, Index, Op0, Op1), |
925 | b: 2U); |
926 | } |
927 | |
928 | if (ST->hasMVEIntegerOps() && (Opcode == Instruction::InsertElement || |
929 | Opcode == Instruction::ExtractElement)) { |
930 | // Integer cross-lane moves are more expensive than float, which can |
931 | // sometimes just be vmovs. Integer involve being passes to GPR registers, |
932 | // causing more of a delay. |
933 | std::pair<InstructionCost, MVT> LT = |
934 | getTypeLegalizationCost(Ty: ValTy->getScalarType()); |
935 | return LT.first * (ValTy->getScalarType()->isIntegerTy() ? 4 : 1); |
936 | } |
937 | |
938 | return BaseT::getVectorInstrCost(Opcode, Val: ValTy, CostKind, Index, Op0, Op1); |
939 | } |
940 | |
941 | InstructionCost ARMTTIImpl::getCmpSelInstrCost( |
942 | unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred, |
943 | TTI::TargetCostKind CostKind, TTI::OperandValueInfo Op1Info, |
944 | TTI::OperandValueInfo Op2Info, const Instruction *I) const { |
945 | int ISD = TLI->InstructionOpcodeToISD(Opcode); |
946 | |
947 | // Thumb scalar code size cost for select. |
948 | if (CostKind == TTI::TCK_CodeSize && ISD == ISD::SELECT && |
949 | ST->isThumb() && !ValTy->isVectorTy()) { |
950 | // Assume expensive structs. |
951 | if (TLI->getValueType(DL, Ty: ValTy, AllowUnknown: true) == MVT::Other) |
952 | return TTI::TCC_Expensive; |
953 | |
954 | // Select costs can vary because they: |
955 | // - may require one or more conditional mov (including an IT), |
956 | // - can't operate directly on immediates, |
957 | // - require live flags, which we can't copy around easily. |
958 | InstructionCost Cost = getTypeLegalizationCost(Ty: ValTy).first; |
959 | |
960 | // Possible IT instruction for Thumb2, or more for Thumb1. |
961 | ++Cost; |
962 | |
963 | // i1 values may need rematerialising by using mov immediates and/or |
964 | // flag setting instructions. |
965 | if (ValTy->isIntegerTy(Bitwidth: 1)) |
966 | ++Cost; |
967 | |
968 | return Cost; |
969 | } |
970 | |
971 | // If this is a vector min/max/abs, use the cost of that intrinsic directly |
972 | // instead. Hopefully when min/max intrinsics are more prevalent this code |
973 | // will not be needed. |
974 | const Instruction *Sel = I; |
975 | if ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && Sel && |
976 | Sel->hasOneUse()) |
977 | Sel = cast<Instruction>(Val: Sel->user_back()); |
978 | if (Sel && ValTy->isVectorTy() && |
979 | (ValTy->isIntOrIntVectorTy() || ValTy->isFPOrFPVectorTy())) { |
980 | const Value *LHS, *RHS; |
981 | SelectPatternFlavor SPF = matchSelectPattern(V: Sel, LHS, RHS).Flavor; |
982 | unsigned IID = 0; |
983 | switch (SPF) { |
984 | case SPF_ABS: |
985 | IID = Intrinsic::abs; |
986 | break; |
987 | case SPF_SMIN: |
988 | IID = Intrinsic::smin; |
989 | break; |
990 | case SPF_SMAX: |
991 | IID = Intrinsic::smax; |
992 | break; |
993 | case SPF_UMIN: |
994 | IID = Intrinsic::umin; |
995 | break; |
996 | case SPF_UMAX: |
997 | IID = Intrinsic::umax; |
998 | break; |
999 | case SPF_FMINNUM: |
1000 | IID = Intrinsic::minnum; |
1001 | break; |
1002 | case SPF_FMAXNUM: |
1003 | IID = Intrinsic::maxnum; |
1004 | break; |
1005 | default: |
1006 | break; |
1007 | } |
1008 | if (IID) { |
1009 | // The ICmp is free, the select gets the cost of the min/max/etc |
1010 | if (Sel != I) |
1011 | return 0; |
1012 | IntrinsicCostAttributes CostAttrs(IID, ValTy, {ValTy, ValTy}); |
1013 | return getIntrinsicInstrCost(ICA: CostAttrs, CostKind); |
1014 | } |
1015 | } |
1016 | |
1017 | // On NEON a vector select gets lowered to vbsl. |
1018 | if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT && CondTy) { |
1019 | // Lowering of some vector selects is currently far from perfect. |
1020 | static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = { |
1021 | { .ISD: ISD::SELECT, .Dst: MVT::v4i1, .Src: MVT::v4i64, .Cost: 4*4 + 1*2 + 1 }, |
1022 | { .ISD: ISD::SELECT, .Dst: MVT::v8i1, .Src: MVT::v8i64, .Cost: 50 }, |
1023 | { .ISD: ISD::SELECT, .Dst: MVT::v16i1, .Src: MVT::v16i64, .Cost: 100 } |
1024 | }; |
1025 | |
1026 | EVT SelCondTy = TLI->getValueType(DL, Ty: CondTy); |
1027 | EVT SelValTy = TLI->getValueType(DL, Ty: ValTy); |
1028 | if (SelCondTy.isSimple() && SelValTy.isSimple()) { |
1029 | if (const auto *Entry = ConvertCostTableLookup(Table: NEONVectorSelectTbl, ISD, |
1030 | Dst: SelCondTy.getSimpleVT(), |
1031 | Src: SelValTy.getSimpleVT())) |
1032 | return Entry->Cost; |
1033 | } |
1034 | |
1035 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: ValTy); |
1036 | return LT.first; |
1037 | } |
1038 | |
1039 | if (ST->hasMVEIntegerOps() && ValTy->isVectorTy() && |
1040 | (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && |
1041 | cast<FixedVectorType>(Val: ValTy)->getNumElements() > 1) { |
1042 | FixedVectorType *VecValTy = cast<FixedVectorType>(Val: ValTy); |
1043 | FixedVectorType *VecCondTy = dyn_cast_or_null<FixedVectorType>(Val: CondTy); |
1044 | if (!VecCondTy) |
1045 | VecCondTy = cast<FixedVectorType>(Val: CmpInst::makeCmpResultType(opnd_type: VecValTy)); |
1046 | |
1047 | // If we don't have mve.fp any fp operations will need to be scalarized. |
1048 | if (Opcode == Instruction::FCmp && !ST->hasMVEFloatOps()) { |
1049 | // One scalaization insert, one scalarization extract and the cost of the |
1050 | // fcmps. |
1051 | return BaseT::getScalarizationOverhead(InTy: VecValTy, /*Insert*/ false, |
1052 | /*Extract*/ true, CostKind) + |
1053 | BaseT::getScalarizationOverhead(InTy: VecCondTy, /*Insert*/ true, |
1054 | /*Extract*/ false, CostKind) + |
1055 | VecValTy->getNumElements() * |
1056 | getCmpSelInstrCost(Opcode, ValTy: ValTy->getScalarType(), |
1057 | CondTy: VecCondTy->getScalarType(), VecPred, |
1058 | CostKind, Op1Info, Op2Info, I); |
1059 | } |
1060 | |
1061 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: ValTy); |
1062 | int BaseCost = ST->getMVEVectorCostFactor(CostKind); |
1063 | // There are two types - the input that specifies the type of the compare |
1064 | // and the output vXi1 type. Because we don't know how the output will be |
1065 | // split, we may need an expensive shuffle to get two in sync. This has the |
1066 | // effect of making larger than legal compares (v8i32 for example) |
1067 | // expensive. |
1068 | if (LT.second.isVector() && LT.second.getVectorNumElements() > 2) { |
1069 | if (LT.first > 1) |
1070 | return LT.first * BaseCost + |
1071 | BaseT::getScalarizationOverhead(InTy: VecCondTy, /*Insert*/ true, |
1072 | /*Extract*/ false, CostKind); |
1073 | return BaseCost; |
1074 | } |
1075 | } |
1076 | |
1077 | // Default to cheap (throughput/size of 1 instruction) but adjust throughput |
1078 | // for "multiple beats" potentially needed by MVE instructions. |
1079 | int BaseCost = 1; |
1080 | if (ST->hasMVEIntegerOps() && ValTy->isVectorTy()) |
1081 | BaseCost = ST->getMVEVectorCostFactor(CostKind); |
1082 | |
1083 | return BaseCost * BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, |
1084 | CostKind, Op1Info, Op2Info, I); |
1085 | } |
1086 | |
1087 | InstructionCost ARMTTIImpl::getAddressComputationCost(Type *Ty, |
1088 | ScalarEvolution *SE, |
1089 | const SCEV *Ptr) const { |
1090 | // Address computations in vectorized code with non-consecutive addresses will |
1091 | // likely result in more instructions compared to scalar code where the |
1092 | // computation can more often be merged into the index mode. The resulting |
1093 | // extra micro-ops can significantly decrease throughput. |
1094 | unsigned NumVectorInstToHideOverhead = 10; |
1095 | int MaxMergeDistance = 64; |
1096 | |
1097 | if (ST->hasNEON()) { |
1098 | if (Ty->isVectorTy() && SE && |
1099 | !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MergeDistance: MaxMergeDistance + 1)) |
1100 | return NumVectorInstToHideOverhead; |
1101 | |
1102 | // In many cases the address computation is not merged into the instruction |
1103 | // addressing mode. |
1104 | return 1; |
1105 | } |
1106 | return BaseT::getAddressComputationCost(Ty, SE, Ptr); |
1107 | } |
1108 | |
1109 | bool ARMTTIImpl::isProfitableLSRChainElement(Instruction *I) const { |
1110 | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: I)) { |
1111 | // If a VCTP is part of a chain, it's already profitable and shouldn't be |
1112 | // optimized, else LSR may block tail-predication. |
1113 | switch (II->getIntrinsicID()) { |
1114 | case Intrinsic::arm_mve_vctp8: |
1115 | case Intrinsic::arm_mve_vctp16: |
1116 | case Intrinsic::arm_mve_vctp32: |
1117 | case Intrinsic::arm_mve_vctp64: |
1118 | return true; |
1119 | default: |
1120 | break; |
1121 | } |
1122 | } |
1123 | return false; |
1124 | } |
1125 | |
1126 | bool ARMTTIImpl::isLegalMaskedLoad(Type *DataTy, Align Alignment, |
1127 | unsigned /*AddressSpace*/) const { |
1128 | if (!EnableMaskedLoadStores || !ST->hasMVEIntegerOps()) |
1129 | return false; |
1130 | |
1131 | if (auto *VecTy = dyn_cast<FixedVectorType>(Val: DataTy)) { |
1132 | // Don't support v2i1 yet. |
1133 | if (VecTy->getNumElements() == 2) |
1134 | return false; |
1135 | |
1136 | // We don't support extending fp types. |
1137 | unsigned VecWidth = DataTy->getPrimitiveSizeInBits(); |
1138 | if (VecWidth != 128 && VecTy->getElementType()->isFloatingPointTy()) |
1139 | return false; |
1140 | } |
1141 | |
1142 | unsigned EltWidth = DataTy->getScalarSizeInBits(); |
1143 | return (EltWidth == 32 && Alignment >= 4) || |
1144 | (EltWidth == 16 && Alignment >= 2) || (EltWidth == 8); |
1145 | } |
1146 | |
1147 | bool ARMTTIImpl::isLegalMaskedGather(Type *Ty, Align Alignment) const { |
1148 | if (!EnableMaskedGatherScatters || !ST->hasMVEIntegerOps()) |
1149 | return false; |
1150 | |
1151 | unsigned EltWidth = Ty->getScalarSizeInBits(); |
1152 | return ((EltWidth == 32 && Alignment >= 4) || |
1153 | (EltWidth == 16 && Alignment >= 2) || EltWidth == 8); |
1154 | } |
1155 | |
1156 | /// Given a memcpy/memset/memmove instruction, return the number of memory |
1157 | /// operations performed, via querying findOptimalMemOpLowering. Returns -1 if a |
1158 | /// call is used. |
1159 | int ARMTTIImpl::getNumMemOps(const IntrinsicInst *I) const { |
1160 | MemOp MOp; |
1161 | unsigned DstAddrSpace = ~0u; |
1162 | unsigned SrcAddrSpace = ~0u; |
1163 | const Function *F = I->getParent()->getParent(); |
1164 | |
1165 | if (const auto *MC = dyn_cast<MemTransferInst>(Val: I)) { |
1166 | ConstantInt *C = dyn_cast<ConstantInt>(Val: MC->getLength()); |
1167 | // If 'size' is not a constant, a library call will be generated. |
1168 | if (!C) |
1169 | return -1; |
1170 | |
1171 | const unsigned Size = C->getValue().getZExtValue(); |
1172 | const Align DstAlign = MC->getDestAlign().valueOrOne(); |
1173 | const Align SrcAlign = MC->getSourceAlign().valueOrOne(); |
1174 | |
1175 | MOp = MemOp::Copy(Size, /*DstAlignCanChange*/ false, DstAlign, SrcAlign, |
1176 | /*IsVolatile*/ false); |
1177 | DstAddrSpace = MC->getDestAddressSpace(); |
1178 | SrcAddrSpace = MC->getSourceAddressSpace(); |
1179 | } |
1180 | else if (const auto *MS = dyn_cast<MemSetInst>(Val: I)) { |
1181 | ConstantInt *C = dyn_cast<ConstantInt>(Val: MS->getLength()); |
1182 | // If 'size' is not a constant, a library call will be generated. |
1183 | if (!C) |
1184 | return -1; |
1185 | |
1186 | const unsigned Size = C->getValue().getZExtValue(); |
1187 | const Align DstAlign = MS->getDestAlign().valueOrOne(); |
1188 | |
1189 | MOp = MemOp::Set(Size, /*DstAlignCanChange*/ false, DstAlign, |
1190 | /*IsZeroMemset*/ false, /*IsVolatile*/ false); |
1191 | DstAddrSpace = MS->getDestAddressSpace(); |
1192 | } |
1193 | else |
1194 | llvm_unreachable("Expected a memcpy/move or memset!" ); |
1195 | |
1196 | unsigned Limit, Factor = 2; |
1197 | switch(I->getIntrinsicID()) { |
1198 | case Intrinsic::memcpy: |
1199 | Limit = TLI->getMaxStoresPerMemcpy(OptSize: F->hasMinSize()); |
1200 | break; |
1201 | case Intrinsic::memmove: |
1202 | Limit = TLI->getMaxStoresPerMemmove(OptSize: F->hasMinSize()); |
1203 | break; |
1204 | case Intrinsic::memset: |
1205 | Limit = TLI->getMaxStoresPerMemset(OptSize: F->hasMinSize()); |
1206 | Factor = 1; |
1207 | break; |
1208 | default: |
1209 | llvm_unreachable("Expected a memcpy/move or memset!" ); |
1210 | } |
1211 | |
1212 | // MemOps will be poplulated with a list of data types that needs to be |
1213 | // loaded and stored. That's why we multiply the number of elements by 2 to |
1214 | // get the cost for this memcpy. |
1215 | std::vector<EVT> MemOps; |
1216 | if (getTLI()->findOptimalMemOpLowering( |
1217 | MemOps, Limit, Op: MOp, DstAS: DstAddrSpace, |
1218 | SrcAS: SrcAddrSpace, FuncAttributes: F->getAttributes())) |
1219 | return MemOps.size() * Factor; |
1220 | |
1221 | // If we can't find an optimal memop lowering, return the default cost |
1222 | return -1; |
1223 | } |
1224 | |
1225 | InstructionCost ARMTTIImpl::getMemcpyCost(const Instruction *I) const { |
1226 | int NumOps = getNumMemOps(I: cast<IntrinsicInst>(Val: I)); |
1227 | |
1228 | // To model the cost of a library call, we assume 1 for the call, and |
1229 | // 3 for the argument setup. |
1230 | if (NumOps == -1) |
1231 | return 4; |
1232 | return NumOps; |
1233 | } |
1234 | |
1235 | InstructionCost ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, |
1236 | VectorType *DstTy, VectorType *SrcTy, |
1237 | ArrayRef<int> Mask, |
1238 | TTI::TargetCostKind CostKind, |
1239 | int Index, VectorType *SubTp, |
1240 | ArrayRef<const Value *> Args, |
1241 | const Instruction *CxtI) const { |
1242 | assert((Mask.empty() || DstTy->isScalableTy() || |
1243 | Mask.size() == DstTy->getElementCount().getKnownMinValue()) && |
1244 | "Expected the Mask to match the return size if given" ); |
1245 | assert(SrcTy->getScalarType() == DstTy->getScalarType() && |
1246 | "Expected the same scalar types" ); |
1247 | |
1248 | Kind = improveShuffleKindFromMask(Kind, Mask, SrcTy, Index, SubTy&: SubTp); |
1249 | // Treat extractsubvector as single op permutation. |
1250 | bool = Kind == TTI::SK_ExtractSubvector; |
1251 | if (IsExtractSubvector) |
1252 | Kind = TTI::SK_PermuteSingleSrc; |
1253 | if (ST->hasNEON()) { |
1254 | if (Kind == TTI::SK_Broadcast) { |
1255 | static const CostTblEntry NEONDupTbl[] = { |
1256 | // VDUP handles these cases. |
1257 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v2i32, .Cost: 1}, |
1258 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v2f32, .Cost: 1}, |
1259 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v2i64, .Cost: 1}, |
1260 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v2f64, .Cost: 1}, |
1261 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v4i16, .Cost: 1}, |
1262 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v8i8, .Cost: 1}, |
1263 | |
1264 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v4i32, .Cost: 1}, |
1265 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v4f32, .Cost: 1}, |
1266 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v8i16, .Cost: 1}, |
1267 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v16i8, .Cost: 1}}; |
1268 | |
1269 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: SrcTy); |
1270 | if (const auto *Entry = |
1271 | CostTableLookup(Table: NEONDupTbl, ISD: ISD::VECTOR_SHUFFLE, Ty: LT.second)) |
1272 | return LT.first * Entry->Cost; |
1273 | } |
1274 | if (Kind == TTI::SK_Reverse) { |
1275 | static const CostTblEntry NEONShuffleTbl[] = { |
1276 | // Reverse shuffle cost one instruction if we are shuffling within a |
1277 | // double word (vrev) or two if we shuffle a quad word (vrev, vext). |
1278 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v2i32, .Cost: 1}, |
1279 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v2f32, .Cost: 1}, |
1280 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v2i64, .Cost: 1}, |
1281 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v2f64, .Cost: 1}, |
1282 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v4i16, .Cost: 1}, |
1283 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v8i8, .Cost: 1}, |
1284 | |
1285 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v4i32, .Cost: 2}, |
1286 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v4f32, .Cost: 2}, |
1287 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v8i16, .Cost: 2}, |
1288 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v16i8, .Cost: 2}}; |
1289 | |
1290 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: SrcTy); |
1291 | if (const auto *Entry = |
1292 | CostTableLookup(Table: NEONShuffleTbl, ISD: ISD::VECTOR_SHUFFLE, Ty: LT.second)) |
1293 | return LT.first * Entry->Cost; |
1294 | } |
1295 | if (Kind == TTI::SK_Select) { |
1296 | static const CostTblEntry NEONSelShuffleTbl[] = { |
1297 | // Select shuffle cost table for ARM. Cost is the number of |
1298 | // instructions |
1299 | // required to create the shuffled vector. |
1300 | |
1301 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v2f32, .Cost: 1}, |
1302 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v2i64, .Cost: 1}, |
1303 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v2f64, .Cost: 1}, |
1304 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v2i32, .Cost: 1}, |
1305 | |
1306 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v4i32, .Cost: 2}, |
1307 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v4f32, .Cost: 2}, |
1308 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v4i16, .Cost: 2}, |
1309 | |
1310 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v8i16, .Cost: 16}, |
1311 | |
1312 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v16i8, .Cost: 32}}; |
1313 | |
1314 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: SrcTy); |
1315 | if (const auto *Entry = CostTableLookup(Table: NEONSelShuffleTbl, |
1316 | ISD: ISD::VECTOR_SHUFFLE, Ty: LT.second)) |
1317 | return LT.first * Entry->Cost; |
1318 | } |
1319 | } |
1320 | if (ST->hasMVEIntegerOps()) { |
1321 | if (Kind == TTI::SK_Broadcast) { |
1322 | static const CostTblEntry MVEDupTbl[] = { |
1323 | // VDUP handles these cases. |
1324 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v4i32, .Cost: 1}, |
1325 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v8i16, .Cost: 1}, |
1326 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v16i8, .Cost: 1}, |
1327 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v4f32, .Cost: 1}, |
1328 | {.ISD: ISD::VECTOR_SHUFFLE, .Type: MVT::v8f16, .Cost: 1}}; |
1329 | |
1330 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: SrcTy); |
1331 | if (const auto *Entry = CostTableLookup(Table: MVEDupTbl, ISD: ISD::VECTOR_SHUFFLE, |
1332 | Ty: LT.second)) |
1333 | return LT.first * Entry->Cost * |
1334 | ST->getMVEVectorCostFactor(CostKind: TTI::TCK_RecipThroughput); |
1335 | } |
1336 | |
1337 | if (!Mask.empty()) { |
1338 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: SrcTy); |
1339 | if (LT.second.isVector() && |
1340 | Mask.size() <= LT.second.getVectorNumElements() && |
1341 | (isVREVMask(M: Mask, VT: LT.second, BlockSize: 16) || isVREVMask(M: Mask, VT: LT.second, BlockSize: 32) || |
1342 | isVREVMask(M: Mask, VT: LT.second, BlockSize: 64))) |
1343 | return ST->getMVEVectorCostFactor(CostKind: TTI::TCK_RecipThroughput) * LT.first; |
1344 | } |
1345 | } |
1346 | |
1347 | // Restore optimal kind. |
1348 | if (IsExtractSubvector) |
1349 | Kind = TTI::SK_ExtractSubvector; |
1350 | int BaseCost = ST->hasMVEIntegerOps() && SrcTy->isVectorTy() |
1351 | ? ST->getMVEVectorCostFactor(CostKind: TTI::TCK_RecipThroughput) |
1352 | : 1; |
1353 | return BaseCost * BaseT::getShuffleCost(Kind, DstTy, SrcTy, Mask, CostKind, |
1354 | Index, SubTp); |
1355 | } |
1356 | |
1357 | InstructionCost ARMTTIImpl::getArithmeticInstrCost( |
1358 | unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, |
1359 | TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info, |
1360 | ArrayRef<const Value *> Args, const Instruction *CxtI) const { |
1361 | int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode); |
1362 | if (ST->isThumb() && CostKind == TTI::TCK_CodeSize && Ty->isIntegerTy(Bitwidth: 1)) { |
1363 | // Make operations on i1 relatively expensive as this often involves |
1364 | // combining predicates. AND and XOR should be easier to handle with IT |
1365 | // blocks. |
1366 | switch (ISDOpcode) { |
1367 | default: |
1368 | break; |
1369 | case ISD::AND: |
1370 | case ISD::XOR: |
1371 | return 2; |
1372 | case ISD::OR: |
1373 | return 3; |
1374 | } |
1375 | } |
1376 | |
1377 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty); |
1378 | |
1379 | if (ST->hasNEON()) { |
1380 | const unsigned FunctionCallDivCost = 20; |
1381 | const unsigned ReciprocalDivCost = 10; |
1382 | static const CostTblEntry CostTbl[] = { |
1383 | // Division. |
1384 | // These costs are somewhat random. Choose a cost of 20 to indicate that |
1385 | // vectorizing devision (added function call) is going to be very expensive. |
1386 | // Double registers types. |
1387 | { .ISD: ISD::SDIV, .Type: MVT::v1i64, .Cost: 1 * FunctionCallDivCost}, |
1388 | { .ISD: ISD::UDIV, .Type: MVT::v1i64, .Cost: 1 * FunctionCallDivCost}, |
1389 | { .ISD: ISD::SREM, .Type: MVT::v1i64, .Cost: 1 * FunctionCallDivCost}, |
1390 | { .ISD: ISD::UREM, .Type: MVT::v1i64, .Cost: 1 * FunctionCallDivCost}, |
1391 | { .ISD: ISD::SDIV, .Type: MVT::v2i32, .Cost: 2 * FunctionCallDivCost}, |
1392 | { .ISD: ISD::UDIV, .Type: MVT::v2i32, .Cost: 2 * FunctionCallDivCost}, |
1393 | { .ISD: ISD::SREM, .Type: MVT::v2i32, .Cost: 2 * FunctionCallDivCost}, |
1394 | { .ISD: ISD::UREM, .Type: MVT::v2i32, .Cost: 2 * FunctionCallDivCost}, |
1395 | { .ISD: ISD::SDIV, .Type: MVT::v4i16, .Cost: ReciprocalDivCost}, |
1396 | { .ISD: ISD::UDIV, .Type: MVT::v4i16, .Cost: ReciprocalDivCost}, |
1397 | { .ISD: ISD::SREM, .Type: MVT::v4i16, .Cost: 4 * FunctionCallDivCost}, |
1398 | { .ISD: ISD::UREM, .Type: MVT::v4i16, .Cost: 4 * FunctionCallDivCost}, |
1399 | { .ISD: ISD::SDIV, .Type: MVT::v8i8, .Cost: ReciprocalDivCost}, |
1400 | { .ISD: ISD::UDIV, .Type: MVT::v8i8, .Cost: ReciprocalDivCost}, |
1401 | { .ISD: ISD::SREM, .Type: MVT::v8i8, .Cost: 8 * FunctionCallDivCost}, |
1402 | { .ISD: ISD::UREM, .Type: MVT::v8i8, .Cost: 8 * FunctionCallDivCost}, |
1403 | // Quad register types. |
1404 | { .ISD: ISD::SDIV, .Type: MVT::v2i64, .Cost: 2 * FunctionCallDivCost}, |
1405 | { .ISD: ISD::UDIV, .Type: MVT::v2i64, .Cost: 2 * FunctionCallDivCost}, |
1406 | { .ISD: ISD::SREM, .Type: MVT::v2i64, .Cost: 2 * FunctionCallDivCost}, |
1407 | { .ISD: ISD::UREM, .Type: MVT::v2i64, .Cost: 2 * FunctionCallDivCost}, |
1408 | { .ISD: ISD::SDIV, .Type: MVT::v4i32, .Cost: 4 * FunctionCallDivCost}, |
1409 | { .ISD: ISD::UDIV, .Type: MVT::v4i32, .Cost: 4 * FunctionCallDivCost}, |
1410 | { .ISD: ISD::SREM, .Type: MVT::v4i32, .Cost: 4 * FunctionCallDivCost}, |
1411 | { .ISD: ISD::UREM, .Type: MVT::v4i32, .Cost: 4 * FunctionCallDivCost}, |
1412 | { .ISD: ISD::SDIV, .Type: MVT::v8i16, .Cost: 8 * FunctionCallDivCost}, |
1413 | { .ISD: ISD::UDIV, .Type: MVT::v8i16, .Cost: 8 * FunctionCallDivCost}, |
1414 | { .ISD: ISD::SREM, .Type: MVT::v8i16, .Cost: 8 * FunctionCallDivCost}, |
1415 | { .ISD: ISD::UREM, .Type: MVT::v8i16, .Cost: 8 * FunctionCallDivCost}, |
1416 | { .ISD: ISD::SDIV, .Type: MVT::v16i8, .Cost: 16 * FunctionCallDivCost}, |
1417 | { .ISD: ISD::UDIV, .Type: MVT::v16i8, .Cost: 16 * FunctionCallDivCost}, |
1418 | { .ISD: ISD::SREM, .Type: MVT::v16i8, .Cost: 16 * FunctionCallDivCost}, |
1419 | { .ISD: ISD::UREM, .Type: MVT::v16i8, .Cost: 16 * FunctionCallDivCost}, |
1420 | // Multiplication. |
1421 | }; |
1422 | |
1423 | if (const auto *Entry = CostTableLookup(Table: CostTbl, ISD: ISDOpcode, Ty: LT.second)) |
1424 | return LT.first * Entry->Cost; |
1425 | |
1426 | InstructionCost Cost = BaseT::getArithmeticInstrCost( |
1427 | Opcode, Ty, CostKind, Opd1Info: Op1Info, Opd2Info: Op2Info); |
1428 | |
1429 | // This is somewhat of a hack. The problem that we are facing is that SROA |
1430 | // creates a sequence of shift, and, or instructions to construct values. |
1431 | // These sequences are recognized by the ISel and have zero-cost. Not so for |
1432 | // the vectorized code. Because we have support for v2i64 but not i64 those |
1433 | // sequences look particularly beneficial to vectorize. |
1434 | // To work around this we increase the cost of v2i64 operations to make them |
1435 | // seem less beneficial. |
1436 | if (LT.second == MVT::v2i64 && Op2Info.isUniform() && Op2Info.isConstant()) |
1437 | Cost += 4; |
1438 | |
1439 | return Cost; |
1440 | } |
1441 | |
1442 | // If this operation is a shift on arm/thumb2, it might well be folded into |
1443 | // the following instruction, hence having a cost of 0. |
1444 | auto LooksLikeAFreeShift = [&]() { |
1445 | if (ST->isThumb1Only() || Ty->isVectorTy()) |
1446 | return false; |
1447 | |
1448 | if (!CxtI || !CxtI->hasOneUse() || !CxtI->isShift()) |
1449 | return false; |
1450 | if (!Op2Info.isUniform() || !Op2Info.isConstant()) |
1451 | return false; |
1452 | |
1453 | // Folded into a ADC/ADD/AND/BIC/CMP/EOR/MVN/ORR/ORN/RSB/SBC/SUB |
1454 | switch (cast<Instruction>(Val: CxtI->user_back())->getOpcode()) { |
1455 | case Instruction::Add: |
1456 | case Instruction::Sub: |
1457 | case Instruction::And: |
1458 | case Instruction::Xor: |
1459 | case Instruction::Or: |
1460 | case Instruction::ICmp: |
1461 | return true; |
1462 | default: |
1463 | return false; |
1464 | } |
1465 | }; |
1466 | if (LooksLikeAFreeShift()) |
1467 | return 0; |
1468 | |
1469 | // When targets have both DSP and MVE we find that the |
1470 | // the compiler will attempt to vectorize as well as using |
1471 | // scalar (S/U)MLAL operations. This is in cases where we have |
1472 | // the pattern ext(mul(ext(i16), ext(i16))) we find |
1473 | // that codegen performs better when only using (S/U)MLAL scalar |
1474 | // ops instead of trying to mix vector ops with (S/U)MLAL ops. We therefore |
1475 | // check if a mul instruction is used in a (U/S)MLAL pattern. |
1476 | auto MulInDSPMLALPattern = [&](const Instruction *I, unsigned Opcode, |
1477 | Type *Ty) -> bool { |
1478 | if (!ST->hasDSP()) |
1479 | return false; |
1480 | |
1481 | if (!I) |
1482 | return false; |
1483 | |
1484 | if (Opcode != Instruction::Mul) |
1485 | return false; |
1486 | |
1487 | if (Ty->isVectorTy()) |
1488 | return false; |
1489 | |
1490 | auto ValueOpcodesEqual = [](const Value *LHS, const Value *RHS) -> bool { |
1491 | return cast<Instruction>(Val: LHS)->getOpcode() == |
1492 | cast<Instruction>(Val: RHS)->getOpcode(); |
1493 | }; |
1494 | auto IsExtInst = [](const Value *V) -> bool { |
1495 | return isa<ZExtInst>(Val: V) || isa<SExtInst>(Val: V); |
1496 | }; |
1497 | auto IsExtensionFromHalf = [](const Value *V) -> bool { |
1498 | return cast<Instruction>(Val: V)->getOperand(i: 0)->getType()->isIntegerTy(Bitwidth: 16); |
1499 | }; |
1500 | |
1501 | // We check the arguments of the instruction to see if they're extends |
1502 | auto *BinOp = dyn_cast<BinaryOperator>(Val: I); |
1503 | if (!BinOp) |
1504 | return false; |
1505 | Value *Op0 = BinOp->getOperand(i_nocapture: 0); |
1506 | Value *Op1 = BinOp->getOperand(i_nocapture: 1); |
1507 | if (IsExtInst(Op0) && IsExtInst(Op1) && ValueOpcodesEqual(Op0, Op1)) { |
1508 | // We're interested in an ext of an i16 |
1509 | if (!I->getType()->isIntegerTy(Bitwidth: 32) || !IsExtensionFromHalf(Op0) || |
1510 | !IsExtensionFromHalf(Op1)) |
1511 | return false; |
1512 | // We need to check if this result will be further extended to i64 |
1513 | // and that all these uses are SExt |
1514 | for (auto *U : I->users()) |
1515 | if (!IsExtInst(U)) |
1516 | return false; |
1517 | return true; |
1518 | } |
1519 | |
1520 | return false; |
1521 | }; |
1522 | |
1523 | if (MulInDSPMLALPattern(CxtI, Opcode, Ty)) |
1524 | return 0; |
1525 | |
1526 | // Default to cheap (throughput/size of 1 instruction) but adjust throughput |
1527 | // for "multiple beats" potentially needed by MVE instructions. |
1528 | int BaseCost = 1; |
1529 | if (ST->hasMVEIntegerOps() && Ty->isVectorTy()) |
1530 | BaseCost = ST->getMVEVectorCostFactor(CostKind); |
1531 | |
1532 | // The rest of this mostly follows what is done in |
1533 | // BaseT::getArithmeticInstrCost, without treating floats as more expensive |
1534 | // that scalars or increasing the costs for custom operations. The results is |
1535 | // also multiplied by the MVEVectorCostFactor where appropriate. |
1536 | if (TLI->isOperationLegalOrCustomOrPromote(Op: ISDOpcode, VT: LT.second)) |
1537 | return LT.first * BaseCost; |
1538 | |
1539 | // Else this is expand, assume that we need to scalarize this op. |
1540 | if (auto *VTy = dyn_cast<FixedVectorType>(Val: Ty)) { |
1541 | unsigned Num = VTy->getNumElements(); |
1542 | InstructionCost Cost = |
1543 | getArithmeticInstrCost(Opcode, Ty: Ty->getScalarType(), CostKind); |
1544 | // Return the cost of multiple scalar invocation plus the cost of |
1545 | // inserting and extracting the values. |
1546 | SmallVector<Type *> Tys(Args.size(), Ty); |
1547 | return BaseT::getScalarizationOverhead(RetTy: VTy, Args, Tys, CostKind) + |
1548 | Num * Cost; |
1549 | } |
1550 | |
1551 | return BaseCost; |
1552 | } |
1553 | |
1554 | InstructionCost ARMTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, |
1555 | Align Alignment, |
1556 | unsigned AddressSpace, |
1557 | TTI::TargetCostKind CostKind, |
1558 | TTI::OperandValueInfo OpInfo, |
1559 | const Instruction *I) const { |
1560 | // TODO: Handle other cost kinds. |
1561 | if (CostKind != TTI::TCK_RecipThroughput) |
1562 | return 1; |
1563 | |
1564 | // Type legalization can't handle structs |
1565 | if (TLI->getValueType(DL, Ty: Src, AllowUnknown: true) == MVT::Other) |
1566 | return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, |
1567 | CostKind); |
1568 | |
1569 | if (ST->hasNEON() && Src->isVectorTy() && Alignment != Align(16) && |
1570 | cast<VectorType>(Val: Src)->getElementType()->isDoubleTy()) { |
1571 | // Unaligned loads/stores are extremely inefficient. |
1572 | // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr. |
1573 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: Src); |
1574 | return LT.first * 4; |
1575 | } |
1576 | |
1577 | // MVE can optimize a fpext(load(4xhalf)) using an extending integer load. |
1578 | // Same for stores. |
1579 | if (ST->hasMVEFloatOps() && isa<FixedVectorType>(Val: Src) && I && |
1580 | ((Opcode == Instruction::Load && I->hasOneUse() && |
1581 | isa<FPExtInst>(Val: *I->user_begin())) || |
1582 | (Opcode == Instruction::Store && isa<FPTruncInst>(Val: I->getOperand(i: 0))))) { |
1583 | FixedVectorType *SrcVTy = cast<FixedVectorType>(Val: Src); |
1584 | Type *DstTy = |
1585 | Opcode == Instruction::Load |
1586 | ? (*I->user_begin())->getType() |
1587 | : cast<Instruction>(Val: I->getOperand(i: 0))->getOperand(i: 0)->getType(); |
1588 | if (SrcVTy->getNumElements() == 4 && SrcVTy->getScalarType()->isHalfTy() && |
1589 | DstTy->getScalarType()->isFloatTy()) |
1590 | return ST->getMVEVectorCostFactor(CostKind); |
1591 | } |
1592 | |
1593 | int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy() |
1594 | ? ST->getMVEVectorCostFactor(CostKind) |
1595 | : 1; |
1596 | return BaseCost * BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, |
1597 | CostKind, OpInfo, I); |
1598 | } |
1599 | |
1600 | InstructionCost |
1601 | ARMTTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, |
1602 | unsigned AddressSpace, |
1603 | TTI::TargetCostKind CostKind) const { |
1604 | if (ST->hasMVEIntegerOps()) { |
1605 | if (Opcode == Instruction::Load && |
1606 | isLegalMaskedLoad(DataTy: Src, Alignment, AddressSpace)) |
1607 | return ST->getMVEVectorCostFactor(CostKind); |
1608 | if (Opcode == Instruction::Store && |
1609 | isLegalMaskedStore(DataTy: Src, Alignment, AddressSpace)) |
1610 | return ST->getMVEVectorCostFactor(CostKind); |
1611 | } |
1612 | if (!isa<FixedVectorType>(Val: Src)) |
1613 | return BaseT::getMaskedMemoryOpCost(Opcode, DataTy: Src, Alignment, AddressSpace, |
1614 | CostKind); |
1615 | // Scalar cost, which is currently very high due to the efficiency of the |
1616 | // generated code. |
1617 | return cast<FixedVectorType>(Val: Src)->getNumElements() * 8; |
1618 | } |
1619 | |
1620 | InstructionCost ARMTTIImpl::getInterleavedMemoryOpCost( |
1621 | unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, |
1622 | Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, |
1623 | bool UseMaskForCond, bool UseMaskForGaps) const { |
1624 | assert(Factor >= 2 && "Invalid interleave factor" ); |
1625 | assert(isa<VectorType>(VecTy) && "Expect a vector type" ); |
1626 | |
1627 | // vldN/vstN doesn't support vector types of i64/f64 element. |
1628 | bool EltIs64Bits = DL.getTypeSizeInBits(Ty: VecTy->getScalarType()) == 64; |
1629 | |
1630 | if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits && |
1631 | !UseMaskForCond && !UseMaskForGaps) { |
1632 | unsigned NumElts = cast<FixedVectorType>(Val: VecTy)->getNumElements(); |
1633 | auto *SubVecTy = |
1634 | FixedVectorType::get(ElementType: VecTy->getScalarType(), NumElts: NumElts / Factor); |
1635 | |
1636 | // vldN/vstN only support legal vector types of size 64 or 128 in bits. |
1637 | // Accesses having vector types that are a multiple of 128 bits can be |
1638 | // matched to more than one vldN/vstN instruction. |
1639 | int BaseCost = |
1640 | ST->hasMVEIntegerOps() ? ST->getMVEVectorCostFactor(CostKind) : 1; |
1641 | if (NumElts % Factor == 0 && |
1642 | TLI->isLegalInterleavedAccessType(Factor, VecTy: SubVecTy, Alignment, DL)) |
1643 | return Factor * BaseCost * TLI->getNumInterleavedAccesses(VecTy: SubVecTy, DL); |
1644 | |
1645 | // Some smaller than legal interleaved patterns are cheap as we can make |
1646 | // use of the vmovn or vrev patterns to interleave a standard load. This is |
1647 | // true for v4i8, v8i8 and v4i16 at least (but not for v4f16 as it is |
1648 | // promoted differently). The cost of 2 here is then a load and vrev or |
1649 | // vmovn. |
1650 | if (ST->hasMVEIntegerOps() && Factor == 2 && NumElts / Factor > 2 && |
1651 | VecTy->isIntOrIntVectorTy() && |
1652 | DL.getTypeSizeInBits(Ty: SubVecTy).getFixedValue() <= 64) |
1653 | return 2 * BaseCost; |
1654 | } |
1655 | |
1656 | return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, |
1657 | Alignment, AddressSpace, CostKind, |
1658 | UseMaskForCond, UseMaskForGaps); |
1659 | } |
1660 | |
1661 | InstructionCost ARMTTIImpl::getGatherScatterOpCost( |
1662 | unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, |
1663 | Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) const { |
1664 | using namespace PatternMatch; |
1665 | if (!ST->hasMVEIntegerOps() || !EnableMaskedGatherScatters) |
1666 | return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, |
1667 | Alignment, CostKind, I); |
1668 | |
1669 | assert(DataTy->isVectorTy() && "Can't do gather/scatters on scalar!" ); |
1670 | auto *VTy = cast<FixedVectorType>(Val: DataTy); |
1671 | |
1672 | // TODO: Splitting, once we do that. |
1673 | |
1674 | unsigned NumElems = VTy->getNumElements(); |
1675 | unsigned EltSize = VTy->getScalarSizeInBits(); |
1676 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: DataTy); |
1677 | |
1678 | // For now, it is assumed that for the MVE gather instructions the loads are |
1679 | // all effectively serialised. This means the cost is the scalar cost |
1680 | // multiplied by the number of elements being loaded. This is possibly very |
1681 | // conservative, but even so we still end up vectorising loops because the |
1682 | // cost per iteration for many loops is lower than for scalar loops. |
1683 | InstructionCost VectorCost = |
1684 | NumElems * LT.first * ST->getMVEVectorCostFactor(CostKind); |
1685 | // The scalarization cost should be a lot higher. We use the number of vector |
1686 | // elements plus the scalarization overhead. If masking is required then a lot |
1687 | // of little blocks will be needed and potentially a scalarized p0 mask, |
1688 | // greatly increasing the cost. |
1689 | InstructionCost ScalarCost = |
1690 | NumElems * LT.first + (VariableMask ? NumElems * 5 : 0) + |
1691 | BaseT::getScalarizationOverhead(InTy: VTy, /*Insert*/ true, /*Extract*/ false, |
1692 | CostKind) + |
1693 | BaseT::getScalarizationOverhead(InTy: VTy, /*Insert*/ false, /*Extract*/ true, |
1694 | CostKind); |
1695 | |
1696 | if (EltSize < 8 || Alignment < EltSize / 8) |
1697 | return ScalarCost; |
1698 | |
1699 | unsigned ExtSize = EltSize; |
1700 | // Check whether there's a single user that asks for an extended type |
1701 | if (I != nullptr) { |
1702 | // Dependent of the caller of this function, a gather instruction will |
1703 | // either have opcode Instruction::Load or be a call to the masked_gather |
1704 | // intrinsic |
1705 | if ((I->getOpcode() == Instruction::Load || |
1706 | match(V: I, P: m_Intrinsic<Intrinsic::masked_gather>())) && |
1707 | I->hasOneUse()) { |
1708 | const User *Us = *I->users().begin(); |
1709 | if (isa<ZExtInst>(Val: Us) || isa<SExtInst>(Val: Us)) { |
1710 | // only allow valid type combinations |
1711 | unsigned TypeSize = |
1712 | cast<Instruction>(Val: Us)->getType()->getScalarSizeInBits(); |
1713 | if (((TypeSize == 32 && (EltSize == 8 || EltSize == 16)) || |
1714 | (TypeSize == 16 && EltSize == 8)) && |
1715 | TypeSize * NumElems == 128) { |
1716 | ExtSize = TypeSize; |
1717 | } |
1718 | } |
1719 | } |
1720 | // Check whether the input data needs to be truncated |
1721 | TruncInst *T; |
1722 | if ((I->getOpcode() == Instruction::Store || |
1723 | match(V: I, P: m_Intrinsic<Intrinsic::masked_scatter>())) && |
1724 | (T = dyn_cast<TruncInst>(Val: I->getOperand(i: 0)))) { |
1725 | // Only allow valid type combinations |
1726 | unsigned TypeSize = T->getOperand(i_nocapture: 0)->getType()->getScalarSizeInBits(); |
1727 | if (((EltSize == 16 && TypeSize == 32) || |
1728 | (EltSize == 8 && (TypeSize == 32 || TypeSize == 16))) && |
1729 | TypeSize * NumElems == 128) |
1730 | ExtSize = TypeSize; |
1731 | } |
1732 | } |
1733 | |
1734 | if (ExtSize * NumElems != 128 || NumElems < 4) |
1735 | return ScalarCost; |
1736 | |
1737 | // Any (aligned) i32 gather will not need to be scalarised. |
1738 | if (ExtSize == 32) |
1739 | return VectorCost; |
1740 | // For smaller types, we need to ensure that the gep's inputs are correctly |
1741 | // extended from a small enough value. Other sizes (including i64) are |
1742 | // scalarized for now. |
1743 | if (ExtSize != 8 && ExtSize != 16) |
1744 | return ScalarCost; |
1745 | |
1746 | if (const auto *BC = dyn_cast<BitCastInst>(Val: Ptr)) |
1747 | Ptr = BC->getOperand(i_nocapture: 0); |
1748 | if (const auto *GEP = dyn_cast<GetElementPtrInst>(Val: Ptr)) { |
1749 | if (GEP->getNumOperands() != 2) |
1750 | return ScalarCost; |
1751 | unsigned Scale = DL.getTypeAllocSize(Ty: GEP->getResultElementType()); |
1752 | // Scale needs to be correct (which is only relevant for i16s). |
1753 | if (Scale != 1 && Scale * 8 != ExtSize) |
1754 | return ScalarCost; |
1755 | // And we need to zext (not sext) the indexes from a small enough type. |
1756 | if (const auto *ZExt = dyn_cast<ZExtInst>(Val: GEP->getOperand(i_nocapture: 1))) { |
1757 | if (ZExt->getOperand(i_nocapture: 0)->getType()->getScalarSizeInBits() <= ExtSize) |
1758 | return VectorCost; |
1759 | } |
1760 | return ScalarCost; |
1761 | } |
1762 | return ScalarCost; |
1763 | } |
1764 | |
1765 | InstructionCost |
1766 | ARMTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy, |
1767 | std::optional<FastMathFlags> FMF, |
1768 | TTI::TargetCostKind CostKind) const { |
1769 | |
1770 | EVT ValVT = TLI->getValueType(DL, Ty: ValTy); |
1771 | int ISD = TLI->InstructionOpcodeToISD(Opcode); |
1772 | unsigned EltSize = ValVT.getScalarSizeInBits(); |
1773 | |
1774 | // In general floating point reductions are a series of elementwise |
1775 | // operations, with free extracts on each step. These are either in-order or |
1776 | // treewise depending on whether that is allowed by the fast math flags. |
1777 | if ((ISD == ISD::FADD || ISD == ISD::FMUL) && |
1778 | ((EltSize == 32 && ST->hasVFP2Base()) || |
1779 | (EltSize == 64 && ST->hasFP64()) || |
1780 | (EltSize == 16 && ST->hasFullFP16()))) { |
1781 | unsigned NumElts = cast<FixedVectorType>(Val: ValTy)->getNumElements(); |
1782 | unsigned VecLimit = ST->hasMVEFloatOps() ? 128 : (ST->hasNEON() ? 64 : -1); |
1783 | InstructionCost VecCost = 0; |
1784 | while (!TTI::requiresOrderedReduction(FMF) && isPowerOf2_32(Value: NumElts) && |
1785 | NumElts * EltSize > VecLimit) { |
1786 | Type *VecTy = FixedVectorType::get(ElementType: ValTy->getElementType(), NumElts: NumElts / 2); |
1787 | VecCost += getArithmeticInstrCost(Opcode, Ty: VecTy, CostKind); |
1788 | NumElts /= 2; |
1789 | } |
1790 | |
1791 | // For fp16 we need to extract the upper lane elements. MVE can add a |
1792 | // VREV+FMIN/MAX to perform another vector step instead. |
1793 | InstructionCost = 0; |
1794 | if (!TTI::requiresOrderedReduction(FMF) && ST->hasMVEFloatOps() && |
1795 | ValVT.getVectorElementType() == MVT::f16 && NumElts == 8) { |
1796 | VecCost += ST->getMVEVectorCostFactor(CostKind) * 2; |
1797 | NumElts /= 2; |
1798 | } else if (ValVT.getVectorElementType() == MVT::f16) |
1799 | ExtractCost = NumElts / 2; |
1800 | |
1801 | return VecCost + ExtractCost + |
1802 | NumElts * |
1803 | getArithmeticInstrCost(Opcode, Ty: ValTy->getElementType(), CostKind); |
1804 | } |
1805 | |
1806 | if ((ISD == ISD::AND || ISD == ISD::OR || ISD == ISD::XOR) && |
1807 | (EltSize == 64 || EltSize == 32 || EltSize == 16 || EltSize == 8)) { |
1808 | unsigned NumElts = cast<FixedVectorType>(Val: ValTy)->getNumElements(); |
1809 | unsigned VecLimit = |
1810 | ST->hasMVEIntegerOps() ? 128 : (ST->hasNEON() ? 64 : -1); |
1811 | InstructionCost VecCost = 0; |
1812 | while (isPowerOf2_32(Value: NumElts) && NumElts * EltSize > VecLimit) { |
1813 | Type *VecTy = FixedVectorType::get(ElementType: ValTy->getElementType(), NumElts: NumElts / 2); |
1814 | VecCost += getArithmeticInstrCost(Opcode, Ty: VecTy, CostKind); |
1815 | NumElts /= 2; |
1816 | } |
1817 | // For i16/i8, MVE will perform a VREV + VORR/VAND/VEOR for the 64bit vector |
1818 | // step. |
1819 | if (ST->hasMVEIntegerOps() && ValVT.getScalarSizeInBits() <= 16 && |
1820 | NumElts * EltSize == 64) { |
1821 | Type *VecTy = FixedVectorType::get(ElementType: ValTy->getElementType(), NumElts); |
1822 | VecCost += ST->getMVEVectorCostFactor(CostKind) + |
1823 | getArithmeticInstrCost(Opcode, Ty: VecTy, CostKind); |
1824 | NumElts /= 2; |
1825 | } |
1826 | |
1827 | // From here we extract the elements and perform the and/or/xor. |
1828 | InstructionCost = NumElts; |
1829 | return VecCost + ExtractCost + |
1830 | (NumElts - 1) * getArithmeticInstrCost( |
1831 | Opcode, Ty: ValTy->getElementType(), CostKind); |
1832 | } |
1833 | |
1834 | if (!ST->hasMVEIntegerOps() || !ValVT.isSimple() || ISD != ISD::ADD || |
1835 | TTI::requiresOrderedReduction(FMF)) |
1836 | return BaseT::getArithmeticReductionCost(Opcode, Ty: ValTy, FMF, CostKind); |
1837 | |
1838 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: ValTy); |
1839 | |
1840 | static const CostTblEntry CostTblAdd[]{ |
1841 | {.ISD: ISD::ADD, .Type: MVT::v16i8, .Cost: 1}, |
1842 | {.ISD: ISD::ADD, .Type: MVT::v8i16, .Cost: 1}, |
1843 | {.ISD: ISD::ADD, .Type: MVT::v4i32, .Cost: 1}, |
1844 | }; |
1845 | if (const auto *Entry = CostTableLookup(Table: CostTblAdd, ISD, Ty: LT.second)) |
1846 | return Entry->Cost * ST->getMVEVectorCostFactor(CostKind) * LT.first; |
1847 | |
1848 | return BaseT::getArithmeticReductionCost(Opcode, Ty: ValTy, FMF, CostKind); |
1849 | } |
1850 | |
1851 | InstructionCost ARMTTIImpl::getExtendedReductionCost( |
1852 | unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *ValTy, |
1853 | std::optional<FastMathFlags> FMF, TTI::TargetCostKind CostKind) const { |
1854 | EVT ValVT = TLI->getValueType(DL, Ty: ValTy); |
1855 | EVT ResVT = TLI->getValueType(DL, Ty: ResTy); |
1856 | |
1857 | int ISD = TLI->InstructionOpcodeToISD(Opcode); |
1858 | |
1859 | switch (ISD) { |
1860 | case ISD::ADD: |
1861 | if (ST->hasMVEIntegerOps() && ValVT.isSimple() && ResVT.isSimple()) { |
1862 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: ValTy); |
1863 | |
1864 | // The legal cases are: |
1865 | // VADDV u/s 8/16/32 |
1866 | // VADDLV u/s 32 |
1867 | // Codegen currently cannot always handle larger than legal vectors very |
1868 | // well, especially for predicated reductions where the mask needs to be |
1869 | // split, so restrict to 128bit or smaller input types. |
1870 | unsigned RevVTSize = ResVT.getSizeInBits(); |
1871 | if (ValVT.getSizeInBits() <= 128 && |
1872 | ((LT.second == MVT::v16i8 && RevVTSize <= 32) || |
1873 | (LT.second == MVT::v8i16 && RevVTSize <= 32) || |
1874 | (LT.second == MVT::v4i32 && RevVTSize <= 64))) |
1875 | return ST->getMVEVectorCostFactor(CostKind) * LT.first; |
1876 | } |
1877 | break; |
1878 | default: |
1879 | break; |
1880 | } |
1881 | return BaseT::getExtendedReductionCost(Opcode, IsUnsigned, ResTy, Ty: ValTy, FMF, |
1882 | CostKind); |
1883 | } |
1884 | |
1885 | InstructionCost |
1886 | ARMTTIImpl::getMulAccReductionCost(bool IsUnsigned, Type *ResTy, |
1887 | VectorType *ValTy, |
1888 | TTI::TargetCostKind CostKind) const { |
1889 | EVT ValVT = TLI->getValueType(DL, Ty: ValTy); |
1890 | EVT ResVT = TLI->getValueType(DL, Ty: ResTy); |
1891 | |
1892 | if (ST->hasMVEIntegerOps() && ValVT.isSimple() && ResVT.isSimple()) { |
1893 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: ValTy); |
1894 | |
1895 | // The legal cases are: |
1896 | // VMLAV u/s 8/16/32 |
1897 | // VMLALV u/s 16/32 |
1898 | // Codegen currently cannot always handle larger than legal vectors very |
1899 | // well, especially for predicated reductions where the mask needs to be |
1900 | // split, so restrict to 128bit or smaller input types. |
1901 | unsigned RevVTSize = ResVT.getSizeInBits(); |
1902 | if (ValVT.getSizeInBits() <= 128 && |
1903 | ((LT.second == MVT::v16i8 && RevVTSize <= 32) || |
1904 | (LT.second == MVT::v8i16 && RevVTSize <= 64) || |
1905 | (LT.second == MVT::v4i32 && RevVTSize <= 64))) |
1906 | return ST->getMVEVectorCostFactor(CostKind) * LT.first; |
1907 | } |
1908 | |
1909 | return BaseT::getMulAccReductionCost(IsUnsigned, ResTy, Ty: ValTy, CostKind); |
1910 | } |
1911 | |
1912 | InstructionCost |
1913 | ARMTTIImpl::getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, |
1914 | FastMathFlags FMF, |
1915 | TTI::TargetCostKind CostKind) const { |
1916 | EVT ValVT = TLI->getValueType(DL, Ty); |
1917 | |
1918 | // In general floating point reductions are a series of elementwise |
1919 | // operations, with free extracts on each step. These are either in-order or |
1920 | // treewise depending on whether that is allowed by the fast math flags. |
1921 | if ((IID == Intrinsic::minnum || IID == Intrinsic::maxnum) && |
1922 | ((ValVT.getVectorElementType() == MVT::f32 && ST->hasVFP2Base()) || |
1923 | (ValVT.getVectorElementType() == MVT::f64 && ST->hasFP64()) || |
1924 | (ValVT.getVectorElementType() == MVT::f16 && ST->hasFullFP16()))) { |
1925 | unsigned NumElts = cast<FixedVectorType>(Val: Ty)->getNumElements(); |
1926 | unsigned EltSize = ValVT.getScalarSizeInBits(); |
1927 | unsigned VecLimit = ST->hasMVEFloatOps() ? 128 : (ST->hasNEON() ? 64 : -1); |
1928 | InstructionCost VecCost; |
1929 | while (isPowerOf2_32(Value: NumElts) && NumElts * EltSize > VecLimit) { |
1930 | Type *VecTy = FixedVectorType::get(ElementType: Ty->getElementType(), NumElts: NumElts/2); |
1931 | IntrinsicCostAttributes ICA(IID, VecTy, {VecTy, VecTy}, FMF); |
1932 | VecCost += getIntrinsicInstrCost(ICA, CostKind); |
1933 | NumElts /= 2; |
1934 | } |
1935 | |
1936 | // For fp16 we need to extract the upper lane elements. MVE can add a |
1937 | // VREV+FMIN/MAX to perform another vector step instead. |
1938 | InstructionCost = 0; |
1939 | if (ST->hasMVEFloatOps() && ValVT.getVectorElementType() == MVT::f16 && |
1940 | NumElts == 8) { |
1941 | VecCost += ST->getMVEVectorCostFactor(CostKind) * 2; |
1942 | NumElts /= 2; |
1943 | } else if (ValVT.getVectorElementType() == MVT::f16) |
1944 | ExtractCost = cast<FixedVectorType>(Val: Ty)->getNumElements() / 2; |
1945 | |
1946 | IntrinsicCostAttributes ICA(IID, Ty->getElementType(), |
1947 | {Ty->getElementType(), Ty->getElementType()}, |
1948 | FMF); |
1949 | return VecCost + ExtractCost + |
1950 | (NumElts - 1) * getIntrinsicInstrCost(ICA, CostKind); |
1951 | } |
1952 | |
1953 | if (IID == Intrinsic::smin || IID == Intrinsic::smax || |
1954 | IID == Intrinsic::umin || IID == Intrinsic::umax) { |
1955 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty); |
1956 | |
1957 | // All costs are the same for u/s min/max. These lower to vminv, which are |
1958 | // given a slightly higher cost as they tend to take multiple cycles for |
1959 | // smaller type sizes. |
1960 | static const CostTblEntry CostTblAdd[]{ |
1961 | {.ISD: ISD::SMIN, .Type: MVT::v16i8, .Cost: 4}, |
1962 | {.ISD: ISD::SMIN, .Type: MVT::v8i16, .Cost: 3}, |
1963 | {.ISD: ISD::SMIN, .Type: MVT::v4i32, .Cost: 2}, |
1964 | }; |
1965 | if (const auto *Entry = CostTableLookup(Table: CostTblAdd, ISD: ISD::SMIN, Ty: LT.second)) |
1966 | return Entry->Cost * ST->getMVEVectorCostFactor(CostKind) * LT.first; |
1967 | } |
1968 | |
1969 | return BaseT::getMinMaxReductionCost(IID, Ty, FMF, CostKind); |
1970 | } |
1971 | |
1972 | InstructionCost |
1973 | ARMTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, |
1974 | TTI::TargetCostKind CostKind) const { |
1975 | unsigned Opc = ICA.getID(); |
1976 | switch (Opc) { |
1977 | case Intrinsic::get_active_lane_mask: |
1978 | // Currently we make a somewhat optimistic assumption that |
1979 | // active_lane_mask's are always free. In reality it may be freely folded |
1980 | // into a tail predicated loop, expanded into a VCPT or expanded into a lot |
1981 | // of add/icmp code. We may need to improve this in the future, but being |
1982 | // able to detect if it is free or not involves looking at a lot of other |
1983 | // code. We currently assume that the vectorizer inserted these, and knew |
1984 | // what it was doing in adding one. |
1985 | if (ST->hasMVEIntegerOps()) |
1986 | return 0; |
1987 | break; |
1988 | case Intrinsic::sadd_sat: |
1989 | case Intrinsic::ssub_sat: |
1990 | case Intrinsic::uadd_sat: |
1991 | case Intrinsic::usub_sat: { |
1992 | bool IsAdd = (Opc == Intrinsic::sadd_sat || Opc == Intrinsic::ssub_sat); |
1993 | bool IsSigned = (Opc == Intrinsic::sadd_sat || Opc == Intrinsic::ssub_sat); |
1994 | Type *RetTy = ICA.getReturnType(); |
1995 | |
1996 | if (auto *ITy = dyn_cast<IntegerType>(Val: RetTy)) { |
1997 | if (IsSigned && ST->hasDSP() && ITy->getBitWidth() == 32) |
1998 | return 1; // qadd / qsub |
1999 | if (ST->hasDSP() && (ITy->getBitWidth() == 8 || ITy->getBitWidth() == 16)) |
2000 | return 2; // uqadd16 / qadd16 / uqsub16 / qsub16 + possible extend. |
2001 | // Otherwise return the cost of expanding the node. Generally an add + |
2002 | // icmp + sel. |
2003 | CmpInst::Predicate Pred = CmpInst::ICMP_SGT; |
2004 | Type *CondTy = RetTy->getWithNewBitWidth(NewBitWidth: 1); |
2005 | return getArithmeticInstrCost(Opcode: IsAdd ? Instruction::Add : Instruction::Sub, |
2006 | Ty: RetTy, CostKind) + |
2007 | 2 * getCmpSelInstrCost(Opcode: BinaryOperator::ICmp, ValTy: RetTy, CondTy, VecPred: Pred, |
2008 | CostKind) + |
2009 | 2 * getCmpSelInstrCost(Opcode: BinaryOperator::Select, ValTy: RetTy, CondTy, VecPred: Pred, |
2010 | CostKind); |
2011 | } |
2012 | |
2013 | if (!ST->hasMVEIntegerOps()) |
2014 | break; |
2015 | |
2016 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: RetTy); |
2017 | if (LT.second == MVT::v4i32 || LT.second == MVT::v8i16 || |
2018 | LT.second == MVT::v16i8) { |
2019 | // This is a base cost of 1 for the vqadd, plus 3 extract shifts if we |
2020 | // need to extend the type, as it uses shr(qadd(shl, shl)). |
2021 | unsigned Instrs = |
2022 | LT.second.getScalarSizeInBits() == RetTy->getScalarSizeInBits() ? 1 |
2023 | : 4; |
2024 | return LT.first * ST->getMVEVectorCostFactor(CostKind) * Instrs; |
2025 | } |
2026 | break; |
2027 | } |
2028 | case Intrinsic::abs: |
2029 | case Intrinsic::smin: |
2030 | case Intrinsic::smax: |
2031 | case Intrinsic::umin: |
2032 | case Intrinsic::umax: { |
2033 | if (!ST->hasMVEIntegerOps()) |
2034 | break; |
2035 | Type *VT = ICA.getReturnType(); |
2036 | |
2037 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: VT); |
2038 | if (LT.second == MVT::v4i32 || LT.second == MVT::v8i16 || |
2039 | LT.second == MVT::v16i8) |
2040 | return LT.first * ST->getMVEVectorCostFactor(CostKind); |
2041 | break; |
2042 | } |
2043 | case Intrinsic::minnum: |
2044 | case Intrinsic::maxnum: { |
2045 | if (!ST->hasMVEFloatOps()) |
2046 | break; |
2047 | Type *VT = ICA.getReturnType(); |
2048 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: VT); |
2049 | if (LT.second == MVT::v4f32 || LT.second == MVT::v8f16) |
2050 | return LT.first * ST->getMVEVectorCostFactor(CostKind); |
2051 | break; |
2052 | } |
2053 | case Intrinsic::fptosi_sat: |
2054 | case Intrinsic::fptoui_sat: { |
2055 | if (ICA.getArgTypes().empty()) |
2056 | break; |
2057 | bool IsSigned = Opc == Intrinsic::fptosi_sat; |
2058 | auto LT = getTypeLegalizationCost(Ty: ICA.getArgTypes()[0]); |
2059 | EVT MTy = TLI->getValueType(DL, Ty: ICA.getReturnType()); |
2060 | // Check for the legal types, with the corect subtarget features. |
2061 | if ((ST->hasVFP2Base() && LT.second == MVT::f32 && MTy == MVT::i32) || |
2062 | (ST->hasFP64() && LT.second == MVT::f64 && MTy == MVT::i32) || |
2063 | (ST->hasFullFP16() && LT.second == MVT::f16 && MTy == MVT::i32)) |
2064 | return LT.first; |
2065 | |
2066 | // Equally for MVE vector types |
2067 | if (ST->hasMVEFloatOps() && |
2068 | (LT.second == MVT::v4f32 || LT.second == MVT::v8f16) && |
2069 | LT.second.getScalarSizeInBits() == MTy.getScalarSizeInBits()) |
2070 | return LT.first * ST->getMVEVectorCostFactor(CostKind); |
2071 | |
2072 | // If we can we use a legal convert followed by a min+max |
2073 | if (((ST->hasVFP2Base() && LT.second == MVT::f32) || |
2074 | (ST->hasFP64() && LT.second == MVT::f64) || |
2075 | (ST->hasFullFP16() && LT.second == MVT::f16) || |
2076 | (ST->hasMVEFloatOps() && |
2077 | (LT.second == MVT::v4f32 || LT.second == MVT::v8f16))) && |
2078 | LT.second.getScalarSizeInBits() >= MTy.getScalarSizeInBits()) { |
2079 | Type *LegalTy = Type::getIntNTy(C&: ICA.getReturnType()->getContext(), |
2080 | N: LT.second.getScalarSizeInBits()); |
2081 | InstructionCost Cost = |
2082 | LT.second.isVector() ? ST->getMVEVectorCostFactor(CostKind) : 1; |
2083 | IntrinsicCostAttributes Attrs1(IsSigned ? Intrinsic::smin |
2084 | : Intrinsic::umin, |
2085 | LegalTy, {LegalTy, LegalTy}); |
2086 | Cost += getIntrinsicInstrCost(ICA: Attrs1, CostKind); |
2087 | IntrinsicCostAttributes Attrs2(IsSigned ? Intrinsic::smax |
2088 | : Intrinsic::umax, |
2089 | LegalTy, {LegalTy, LegalTy}); |
2090 | Cost += getIntrinsicInstrCost(ICA: Attrs2, CostKind); |
2091 | return LT.first * Cost; |
2092 | } |
2093 | // Otherwise we need to follow the default expansion that clamps the value |
2094 | // using a float min/max with a fcmp+sel for nan handling when signed. |
2095 | Type *FPTy = ICA.getArgTypes()[0]; |
2096 | Type *RetTy = ICA.getReturnType(); |
2097 | IntrinsicCostAttributes Attrs1(Intrinsic::minnum, FPTy, {FPTy, FPTy}); |
2098 | InstructionCost Cost = getIntrinsicInstrCost(ICA: Attrs1, CostKind); |
2099 | IntrinsicCostAttributes Attrs2(Intrinsic::maxnum, FPTy, {FPTy, FPTy}); |
2100 | Cost += getIntrinsicInstrCost(ICA: Attrs2, CostKind); |
2101 | Cost += |
2102 | getCastInstrCost(Opcode: IsSigned ? Instruction::FPToSI : Instruction::FPToUI, |
2103 | Dst: RetTy, Src: FPTy, CCH: TTI::CastContextHint::None, CostKind); |
2104 | if (IsSigned) { |
2105 | Type *CondTy = RetTy->getWithNewBitWidth(NewBitWidth: 1); |
2106 | Cost += getCmpSelInstrCost(Opcode: BinaryOperator::FCmp, ValTy: FPTy, CondTy, |
2107 | VecPred: CmpInst::FCMP_UNO, CostKind); |
2108 | Cost += getCmpSelInstrCost(Opcode: BinaryOperator::Select, ValTy: RetTy, CondTy, |
2109 | VecPred: CmpInst::FCMP_UNO, CostKind); |
2110 | } |
2111 | return Cost; |
2112 | } |
2113 | } |
2114 | |
2115 | return BaseT::getIntrinsicInstrCost(ICA, CostKind); |
2116 | } |
2117 | |
2118 | bool ARMTTIImpl::isLoweredToCall(const Function *F) const { |
2119 | if (!F->isIntrinsic()) |
2120 | return BaseT::isLoweredToCall(F); |
2121 | |
2122 | // Assume all Arm-specific intrinsics map to an instruction. |
2123 | if (F->getName().starts_with(Prefix: "llvm.arm" )) |
2124 | return false; |
2125 | |
2126 | switch (F->getIntrinsicID()) { |
2127 | default: break; |
2128 | case Intrinsic::powi: |
2129 | case Intrinsic::sin: |
2130 | case Intrinsic::cos: |
2131 | case Intrinsic::sincos: |
2132 | case Intrinsic::pow: |
2133 | case Intrinsic::log: |
2134 | case Intrinsic::log10: |
2135 | case Intrinsic::log2: |
2136 | case Intrinsic::exp: |
2137 | case Intrinsic::exp2: |
2138 | return true; |
2139 | case Intrinsic::sqrt: |
2140 | case Intrinsic::fabs: |
2141 | case Intrinsic::copysign: |
2142 | case Intrinsic::floor: |
2143 | case Intrinsic::ceil: |
2144 | case Intrinsic::trunc: |
2145 | case Intrinsic::rint: |
2146 | case Intrinsic::nearbyint: |
2147 | case Intrinsic::round: |
2148 | case Intrinsic::canonicalize: |
2149 | case Intrinsic::lround: |
2150 | case Intrinsic::llround: |
2151 | case Intrinsic::lrint: |
2152 | case Intrinsic::llrint: |
2153 | if (F->getReturnType()->isDoubleTy() && !ST->hasFP64()) |
2154 | return true; |
2155 | if (F->getReturnType()->isHalfTy() && !ST->hasFullFP16()) |
2156 | return true; |
2157 | // Some operations can be handled by vector instructions and assume |
2158 | // unsupported vectors will be expanded into supported scalar ones. |
2159 | // TODO Handle scalar operations properly. |
2160 | return !ST->hasFPARMv8Base() && !ST->hasVFP2Base(); |
2161 | case Intrinsic::masked_store: |
2162 | case Intrinsic::masked_load: |
2163 | case Intrinsic::masked_gather: |
2164 | case Intrinsic::masked_scatter: |
2165 | return !ST->hasMVEIntegerOps(); |
2166 | case Intrinsic::sadd_with_overflow: |
2167 | case Intrinsic::uadd_with_overflow: |
2168 | case Intrinsic::ssub_with_overflow: |
2169 | case Intrinsic::usub_with_overflow: |
2170 | case Intrinsic::sadd_sat: |
2171 | case Intrinsic::uadd_sat: |
2172 | case Intrinsic::ssub_sat: |
2173 | case Intrinsic::usub_sat: |
2174 | return false; |
2175 | } |
2176 | |
2177 | return BaseT::isLoweredToCall(F); |
2178 | } |
2179 | |
2180 | bool ARMTTIImpl::maybeLoweredToCall(Instruction &I) const { |
2181 | unsigned ISD = TLI->InstructionOpcodeToISD(Opcode: I.getOpcode()); |
2182 | EVT VT = TLI->getValueType(DL, Ty: I.getType(), AllowUnknown: true); |
2183 | if (TLI->getOperationAction(Op: ISD, VT) == TargetLowering::LibCall) |
2184 | return true; |
2185 | |
2186 | // Check if an intrinsic will be lowered to a call and assume that any |
2187 | // other CallInst will generate a bl. |
2188 | if (auto *Call = dyn_cast<CallInst>(Val: &I)) { |
2189 | if (auto *II = dyn_cast<IntrinsicInst>(Val: Call)) { |
2190 | switch(II->getIntrinsicID()) { |
2191 | case Intrinsic::memcpy: |
2192 | case Intrinsic::memset: |
2193 | case Intrinsic::memmove: |
2194 | return getNumMemOps(I: II) == -1; |
2195 | default: |
2196 | if (const Function *F = Call->getCalledFunction()) |
2197 | return isLoweredToCall(F); |
2198 | } |
2199 | } |
2200 | return true; |
2201 | } |
2202 | |
2203 | // FPv5 provides conversions between integer, double-precision, |
2204 | // single-precision, and half-precision formats. |
2205 | switch (I.getOpcode()) { |
2206 | default: |
2207 | break; |
2208 | case Instruction::FPToSI: |
2209 | case Instruction::FPToUI: |
2210 | case Instruction::SIToFP: |
2211 | case Instruction::UIToFP: |
2212 | case Instruction::FPTrunc: |
2213 | case Instruction::FPExt: |
2214 | return !ST->hasFPARMv8Base(); |
2215 | } |
2216 | |
2217 | // FIXME: Unfortunately the approach of checking the Operation Action does |
2218 | // not catch all cases of Legalization that use library calls. Our |
2219 | // Legalization step categorizes some transformations into library calls as |
2220 | // Custom, Expand or even Legal when doing type legalization. So for now |
2221 | // we have to special case for instance the SDIV of 64bit integers and the |
2222 | // use of floating point emulation. |
2223 | if (VT.isInteger() && VT.getSizeInBits() >= 64) { |
2224 | switch (ISD) { |
2225 | default: |
2226 | break; |
2227 | case ISD::SDIV: |
2228 | case ISD::UDIV: |
2229 | case ISD::SREM: |
2230 | case ISD::UREM: |
2231 | case ISD::SDIVREM: |
2232 | case ISD::UDIVREM: |
2233 | return true; |
2234 | } |
2235 | } |
2236 | |
2237 | // Assume all other non-float operations are supported. |
2238 | if (!VT.isFloatingPoint()) |
2239 | return false; |
2240 | |
2241 | // We'll need a library call to handle most floats when using soft. |
2242 | if (TLI->useSoftFloat()) { |
2243 | switch (I.getOpcode()) { |
2244 | default: |
2245 | return true; |
2246 | case Instruction::Alloca: |
2247 | case Instruction::Load: |
2248 | case Instruction::Store: |
2249 | case Instruction::Select: |
2250 | case Instruction::PHI: |
2251 | return false; |
2252 | } |
2253 | } |
2254 | |
2255 | // We'll need a libcall to perform double precision operations on a single |
2256 | // precision only FPU. |
2257 | if (I.getType()->isDoubleTy() && !ST->hasFP64()) |
2258 | return true; |
2259 | |
2260 | // Likewise for half precision arithmetic. |
2261 | if (I.getType()->isHalfTy() && !ST->hasFullFP16()) |
2262 | return true; |
2263 | |
2264 | return false; |
2265 | } |
2266 | |
2267 | bool ARMTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, |
2268 | AssumptionCache &AC, |
2269 | TargetLibraryInfo *LibInfo, |
2270 | HardwareLoopInfo &HWLoopInfo) const { |
2271 | // Low-overhead branches are only supported in the 'low-overhead branch' |
2272 | // extension of v8.1-m. |
2273 | if (!ST->hasLOB() || DisableLowOverheadLoops) { |
2274 | LLVM_DEBUG(dbgs() << "ARMHWLoops: Disabled\n" ); |
2275 | return false; |
2276 | } |
2277 | |
2278 | if (!SE.hasLoopInvariantBackedgeTakenCount(L)) { |
2279 | LLVM_DEBUG(dbgs() << "ARMHWLoops: No BETC\n" ); |
2280 | return false; |
2281 | } |
2282 | |
2283 | const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); |
2284 | if (isa<SCEVCouldNotCompute>(Val: BackedgeTakenCount)) { |
2285 | LLVM_DEBUG(dbgs() << "ARMHWLoops: Uncomputable BETC\n" ); |
2286 | return false; |
2287 | } |
2288 | |
2289 | const SCEV *TripCountSCEV = |
2290 | SE.getAddExpr(LHS: BackedgeTakenCount, |
2291 | RHS: SE.getOne(Ty: BackedgeTakenCount->getType())); |
2292 | |
2293 | // We need to store the trip count in LR, a 32-bit register. |
2294 | if (SE.getUnsignedRangeMax(S: TripCountSCEV).getBitWidth() > 32) { |
2295 | LLVM_DEBUG(dbgs() << "ARMHWLoops: Trip count does not fit into 32bits\n" ); |
2296 | return false; |
2297 | } |
2298 | |
2299 | // Making a call will trash LR and clear LO_BRANCH_INFO, so there's little |
2300 | // point in generating a hardware loop if that's going to happen. |
2301 | |
2302 | auto IsHardwareLoopIntrinsic = [](Instruction &I) { |
2303 | if (auto *Call = dyn_cast<IntrinsicInst>(Val: &I)) { |
2304 | switch (Call->getIntrinsicID()) { |
2305 | default: |
2306 | break; |
2307 | case Intrinsic::start_loop_iterations: |
2308 | case Intrinsic::test_start_loop_iterations: |
2309 | case Intrinsic::loop_decrement: |
2310 | case Intrinsic::loop_decrement_reg: |
2311 | return true; |
2312 | } |
2313 | } |
2314 | return false; |
2315 | }; |
2316 | |
2317 | // Scan the instructions to see if there's any that we know will turn into a |
2318 | // call or if this loop is already a low-overhead loop or will become a tail |
2319 | // predicated loop. |
2320 | bool IsTailPredLoop = false; |
2321 | auto ScanLoop = [&](Loop *L) { |
2322 | for (auto *BB : L->getBlocks()) { |
2323 | for (auto &I : *BB) { |
2324 | if (maybeLoweredToCall(I) || IsHardwareLoopIntrinsic(I) || |
2325 | isa<InlineAsm>(Val: I)) { |
2326 | LLVM_DEBUG(dbgs() << "ARMHWLoops: Bad instruction: " << I << "\n" ); |
2327 | return false; |
2328 | } |
2329 | if (auto *II = dyn_cast<IntrinsicInst>(Val: &I)) |
2330 | IsTailPredLoop |= |
2331 | II->getIntrinsicID() == Intrinsic::get_active_lane_mask || |
2332 | II->getIntrinsicID() == Intrinsic::arm_mve_vctp8 || |
2333 | II->getIntrinsicID() == Intrinsic::arm_mve_vctp16 || |
2334 | II->getIntrinsicID() == Intrinsic::arm_mve_vctp32 || |
2335 | II->getIntrinsicID() == Intrinsic::arm_mve_vctp64; |
2336 | } |
2337 | } |
2338 | return true; |
2339 | }; |
2340 | |
2341 | // Visit inner loops. |
2342 | for (auto *Inner : *L) |
2343 | if (!ScanLoop(Inner)) |
2344 | return false; |
2345 | |
2346 | if (!ScanLoop(L)) |
2347 | return false; |
2348 | |
2349 | // TODO: Check whether the trip count calculation is expensive. If L is the |
2350 | // inner loop but we know it has a low trip count, calculating that trip |
2351 | // count (in the parent loop) may be detrimental. |
2352 | |
2353 | LLVMContext &C = L->getHeader()->getContext(); |
2354 | HWLoopInfo.CounterInReg = true; |
2355 | HWLoopInfo.IsNestingLegal = false; |
2356 | HWLoopInfo.PerformEntryTest = AllowWLSLoops && !IsTailPredLoop; |
2357 | HWLoopInfo.CountType = Type::getInt32Ty(C); |
2358 | HWLoopInfo.LoopDecrement = ConstantInt::get(Ty: HWLoopInfo.CountType, V: 1); |
2359 | return true; |
2360 | } |
2361 | |
2362 | static bool canTailPredicateInstruction(Instruction &I, int &ICmpCount) { |
2363 | // We don't allow icmp's, and because we only look at single block loops, |
2364 | // we simply count the icmps, i.e. there should only be 1 for the backedge. |
2365 | if (isa<ICmpInst>(Val: &I) && ++ICmpCount > 1) |
2366 | return false; |
2367 | // FIXME: This is a workaround for poor cost modelling. Min/Max intrinsics are |
2368 | // not currently canonical, but soon will be. Code without them uses icmp, and |
2369 | // so is not tail predicated as per the condition above. In order to get the |
2370 | // same performance we treat min and max the same as an icmp for tailpred |
2371 | // purposes for the moment (we often rely on non-tailpred and higher VF's to |
2372 | // pick more optimial instructions like VQDMULH. They need to be recognized |
2373 | // directly by the vectorizer). |
2374 | if (auto *II = dyn_cast<IntrinsicInst>(Val: &I)) |
2375 | if ((II->getIntrinsicID() == Intrinsic::smin || |
2376 | II->getIntrinsicID() == Intrinsic::smax || |
2377 | II->getIntrinsicID() == Intrinsic::umin || |
2378 | II->getIntrinsicID() == Intrinsic::umax) && |
2379 | ++ICmpCount > 1) |
2380 | return false; |
2381 | |
2382 | if (isa<FCmpInst>(Val: &I)) |
2383 | return false; |
2384 | |
2385 | // We could allow extending/narrowing FP loads/stores, but codegen is |
2386 | // too inefficient so reject this for now. |
2387 | if (isa<FPExtInst>(Val: &I) || isa<FPTruncInst>(Val: &I)) |
2388 | return false; |
2389 | |
2390 | // Extends have to be extending-loads |
2391 | if (isa<SExtInst>(Val: &I) || isa<ZExtInst>(Val: &I) ) |
2392 | if (!I.getOperand(i: 0)->hasOneUse() || !isa<LoadInst>(Val: I.getOperand(i: 0))) |
2393 | return false; |
2394 | |
2395 | // Truncs have to be narrowing-stores |
2396 | if (isa<TruncInst>(Val: &I) ) |
2397 | if (!I.hasOneUse() || !isa<StoreInst>(Val: *I.user_begin())) |
2398 | return false; |
2399 | |
2400 | return true; |
2401 | } |
2402 | |
2403 | // To set up a tail-predicated loop, we need to know the total number of |
2404 | // elements processed by that loop. Thus, we need to determine the element |
2405 | // size and: |
2406 | // 1) it should be uniform for all operations in the vector loop, so we |
2407 | // e.g. don't want any widening/narrowing operations. |
2408 | // 2) it should be smaller than i64s because we don't have vector operations |
2409 | // that work on i64s. |
2410 | // 3) we don't want elements to be reversed or shuffled, to make sure the |
2411 | // tail-predication masks/predicates the right lanes. |
2412 | // |
2413 | static bool canTailPredicateLoop(Loop *L, LoopInfo *LI, ScalarEvolution &SE, |
2414 | const DataLayout &DL, |
2415 | const LoopAccessInfo *LAI) { |
2416 | LLVM_DEBUG(dbgs() << "Tail-predication: checking allowed instructions\n" ); |
2417 | |
2418 | // If there are live-out values, it is probably a reduction. We can predicate |
2419 | // most reduction operations freely under MVE using a combination of |
2420 | // prefer-predicated-reduction-select and inloop reductions. We limit this to |
2421 | // floating point and integer reductions, but don't check for operators |
2422 | // specifically here. If the value ends up not being a reduction (and so the |
2423 | // vectorizer cannot tailfold the loop), we should fall back to standard |
2424 | // vectorization automatically. |
2425 | SmallVector< Instruction *, 8 > LiveOuts; |
2426 | LiveOuts = llvm::findDefsUsedOutsideOfLoop(L); |
2427 | bool ReductionsDisabled = |
2428 | EnableTailPredication == TailPredication::EnabledNoReductions || |
2429 | EnableTailPredication == TailPredication::ForceEnabledNoReductions; |
2430 | |
2431 | for (auto *I : LiveOuts) { |
2432 | if (!I->getType()->isIntegerTy() && !I->getType()->isFloatTy() && |
2433 | !I->getType()->isHalfTy()) { |
2434 | LLVM_DEBUG(dbgs() << "Don't tail-predicate loop with non-integer/float " |
2435 | "live-out value\n" ); |
2436 | return false; |
2437 | } |
2438 | if (ReductionsDisabled) { |
2439 | LLVM_DEBUG(dbgs() << "Reductions not enabled\n" ); |
2440 | return false; |
2441 | } |
2442 | } |
2443 | |
2444 | // Next, check that all instructions can be tail-predicated. |
2445 | PredicatedScalarEvolution PSE = LAI->getPSE(); |
2446 | int ICmpCount = 0; |
2447 | |
2448 | for (BasicBlock *BB : L->blocks()) { |
2449 | for (Instruction &I : BB->instructionsWithoutDebug()) { |
2450 | if (isa<PHINode>(Val: &I)) |
2451 | continue; |
2452 | if (!canTailPredicateInstruction(I, ICmpCount)) { |
2453 | LLVM_DEBUG(dbgs() << "Instruction not allowed: " ; I.dump()); |
2454 | return false; |
2455 | } |
2456 | |
2457 | Type *T = I.getType(); |
2458 | if (T->getScalarSizeInBits() > 32) { |
2459 | LLVM_DEBUG(dbgs() << "Unsupported Type: " ; T->dump()); |
2460 | return false; |
2461 | } |
2462 | if (isa<StoreInst>(Val: I) || isa<LoadInst>(Val: I)) { |
2463 | Value *Ptr = getLoadStorePointerOperand(V: &I); |
2464 | Type *AccessTy = getLoadStoreType(I: &I); |
2465 | int64_t NextStride = getPtrStride(PSE, AccessTy, Ptr, Lp: L).value_or(u: 0); |
2466 | if (NextStride == 1) { |
2467 | // TODO: for now only allow consecutive strides of 1. We could support |
2468 | // other strides as long as it is uniform, but let's keep it simple |
2469 | // for now. |
2470 | continue; |
2471 | } else if (NextStride == -1 || |
2472 | (NextStride == 2 && MVEMaxSupportedInterleaveFactor >= 2) || |
2473 | (NextStride == 4 && MVEMaxSupportedInterleaveFactor >= 4)) { |
2474 | LLVM_DEBUG(dbgs() |
2475 | << "Consecutive strides of 2 found, vld2/vstr2 can't " |
2476 | "be tail-predicated\n." ); |
2477 | return false; |
2478 | // TODO: don't tail predicate if there is a reversed load? |
2479 | } else if (EnableMaskedGatherScatters) { |
2480 | // Gather/scatters do allow loading from arbitrary strides, at |
2481 | // least if they are loop invariant. |
2482 | // TODO: Loop variant strides should in theory work, too, but |
2483 | // this requires further testing. |
2484 | const SCEV *PtrScev = PSE.getSE()->getSCEV(V: Ptr); |
2485 | if (auto AR = dyn_cast<SCEVAddRecExpr>(Val: PtrScev)) { |
2486 | const SCEV *Step = AR->getStepRecurrence(SE&: *PSE.getSE()); |
2487 | if (PSE.getSE()->isLoopInvariant(S: Step, L)) |
2488 | continue; |
2489 | } |
2490 | } |
2491 | LLVM_DEBUG(dbgs() << "Bad stride found, can't " |
2492 | "tail-predicate\n." ); |
2493 | return false; |
2494 | } |
2495 | } |
2496 | } |
2497 | |
2498 | LLVM_DEBUG(dbgs() << "tail-predication: all instructions allowed!\n" ); |
2499 | return true; |
2500 | } |
2501 | |
2502 | bool ARMTTIImpl::preferPredicateOverEpilogue(TailFoldingInfo *TFI) const { |
2503 | if (!EnableTailPredication) { |
2504 | LLVM_DEBUG(dbgs() << "Tail-predication not enabled.\n" ); |
2505 | return false; |
2506 | } |
2507 | |
2508 | // Creating a predicated vector loop is the first step for generating a |
2509 | // tail-predicated hardware loop, for which we need the MVE masked |
2510 | // load/stores instructions: |
2511 | if (!ST->hasMVEIntegerOps()) |
2512 | return false; |
2513 | |
2514 | LoopVectorizationLegality *LVL = TFI->LVL; |
2515 | Loop *L = LVL->getLoop(); |
2516 | |
2517 | // For now, restrict this to single block loops. |
2518 | if (L->getNumBlocks() > 1) { |
2519 | LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: not a single block " |
2520 | "loop.\n" ); |
2521 | return false; |
2522 | } |
2523 | |
2524 | assert(L->isInnermost() && "preferPredicateOverEpilogue: inner-loop expected" ); |
2525 | |
2526 | LoopInfo *LI = LVL->getLoopInfo(); |
2527 | HardwareLoopInfo HWLoopInfo(L); |
2528 | if (!HWLoopInfo.canAnalyze(LI&: *LI)) { |
2529 | LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not " |
2530 | "analyzable.\n" ); |
2531 | return false; |
2532 | } |
2533 | |
2534 | AssumptionCache *AC = LVL->getAssumptionCache(); |
2535 | ScalarEvolution *SE = LVL->getScalarEvolution(); |
2536 | |
2537 | // This checks if we have the low-overhead branch architecture |
2538 | // extension, and if we will create a hardware-loop: |
2539 | if (!isHardwareLoopProfitable(L, SE&: *SE, AC&: *AC, LibInfo: TFI->TLI, HWLoopInfo)) { |
2540 | LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not " |
2541 | "profitable.\n" ); |
2542 | return false; |
2543 | } |
2544 | |
2545 | DominatorTree *DT = LVL->getDominatorTree(); |
2546 | if (!HWLoopInfo.isHardwareLoopCandidate(SE&: *SE, LI&: *LI, DT&: *DT)) { |
2547 | LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not " |
2548 | "a candidate.\n" ); |
2549 | return false; |
2550 | } |
2551 | |
2552 | return canTailPredicateLoop(L, LI, SE&: *SE, DL, LAI: LVL->getLAI()); |
2553 | } |
2554 | |
2555 | TailFoldingStyle |
2556 | ARMTTIImpl::getPreferredTailFoldingStyle(bool IVUpdateMayOverflow) const { |
2557 | if (!ST->hasMVEIntegerOps() || !EnableTailPredication) |
2558 | return TailFoldingStyle::DataWithoutLaneMask; |
2559 | |
2560 | // Intrinsic @llvm.get.active.lane.mask is supported. |
2561 | // It is used in the MVETailPredication pass, which requires the number of |
2562 | // elements processed by this vector loop to setup the tail-predicated |
2563 | // loop. |
2564 | return TailFoldingStyle::Data; |
2565 | } |
2566 | void ARMTTIImpl::(Loop *L, ScalarEvolution &SE, |
2567 | TTI::UnrollingPreferences &UP, |
2568 | OptimizationRemarkEmitter *ORE) const { |
2569 | // Enable Upper bound unrolling universally, providing that we do not see an |
2570 | // active lane mask, which will be better kept as a loop to become tail |
2571 | // predicated than to be conditionally unrolled. |
2572 | UP.UpperBound = |
2573 | !ST->hasMVEIntegerOps() || !any_of(Range&: *L->getHeader(), P: [](Instruction &I) { |
2574 | return isa<IntrinsicInst>(Val: I) && |
2575 | cast<IntrinsicInst>(Val&: I).getIntrinsicID() == |
2576 | Intrinsic::get_active_lane_mask; |
2577 | }); |
2578 | |
2579 | // Only currently enable these preferences for M-Class cores. |
2580 | if (!ST->isMClass()) |
2581 | return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP, ORE); |
2582 | |
2583 | // Disable loop unrolling for Oz and Os. |
2584 | UP.OptSizeThreshold = 0; |
2585 | UP.PartialOptSizeThreshold = 0; |
2586 | if (L->getHeader()->getParent()->hasOptSize()) |
2587 | return; |
2588 | |
2589 | SmallVector<BasicBlock*, 4> ExitingBlocks; |
2590 | L->getExitingBlocks(ExitingBlocks); |
2591 | LLVM_DEBUG(dbgs() << "Loop has:\n" |
2592 | << "Blocks: " << L->getNumBlocks() << "\n" |
2593 | << "Exit blocks: " << ExitingBlocks.size() << "\n" ); |
2594 | |
2595 | // Only allow another exit other than the latch. This acts as an early exit |
2596 | // as it mirrors the profitability calculation of the runtime unroller. |
2597 | if (ExitingBlocks.size() > 2) |
2598 | return; |
2599 | |
2600 | // Limit the CFG of the loop body for targets with a branch predictor. |
2601 | // Allowing 4 blocks permits if-then-else diamonds in the body. |
2602 | if (ST->hasBranchPredictor() && L->getNumBlocks() > 4) |
2603 | return; |
2604 | |
2605 | // Don't unroll vectorized loops, including the remainder loop |
2606 | if (getBooleanLoopAttribute(TheLoop: L, Name: "llvm.loop.isvectorized" )) |
2607 | return; |
2608 | |
2609 | // Scan the loop: don't unroll loops with calls as this could prevent |
2610 | // inlining. |
2611 | InstructionCost Cost = 0; |
2612 | for (auto *BB : L->getBlocks()) { |
2613 | for (auto &I : *BB) { |
2614 | // Don't unroll vectorised loop. MVE does not benefit from it as much as |
2615 | // scalar code. |
2616 | if (I.getType()->isVectorTy()) |
2617 | return; |
2618 | |
2619 | if (isa<CallInst>(Val: I) || isa<InvokeInst>(Val: I)) { |
2620 | if (const Function *F = cast<CallBase>(Val&: I).getCalledFunction()) { |
2621 | if (!isLoweredToCall(F)) |
2622 | continue; |
2623 | } |
2624 | return; |
2625 | } |
2626 | |
2627 | SmallVector<const Value*, 4> Operands(I.operand_values()); |
2628 | Cost += getInstructionCost(U: &I, Operands, |
2629 | CostKind: TargetTransformInfo::TCK_SizeAndLatency); |
2630 | } |
2631 | } |
2632 | |
2633 | // On v6m cores, there are very few registers available. We can easily end up |
2634 | // spilling and reloading more registers in an unrolled loop. Look at the |
2635 | // number of LCSSA phis as a rough measure of how many registers will need to |
2636 | // be live out of the loop, reducing the default unroll count if more than 1 |
2637 | // value is needed. In the long run, all of this should be being learnt by a |
2638 | // machine. |
2639 | unsigned UnrollCount = 4; |
2640 | if (ST->isThumb1Only()) { |
2641 | unsigned ExitingValues = 0; |
2642 | SmallVector<BasicBlock *, 4> ExitBlocks; |
2643 | L->getExitBlocks(ExitBlocks); |
2644 | for (auto *Exit : ExitBlocks) { |
2645 | // Count the number of LCSSA phis. Exclude values coming from GEP's as |
2646 | // only the last is expected to be needed for address operands. |
2647 | unsigned LiveOuts = count_if(Range: Exit->phis(), P: [](auto &PH) { |
2648 | return PH.getNumOperands() != 1 || |
2649 | !isa<GetElementPtrInst>(PH.getOperand(0)); |
2650 | }); |
2651 | ExitingValues = ExitingValues < LiveOuts ? LiveOuts : ExitingValues; |
2652 | } |
2653 | if (ExitingValues) |
2654 | UnrollCount /= ExitingValues; |
2655 | if (UnrollCount <= 1) |
2656 | return; |
2657 | } |
2658 | |
2659 | // For processors with low overhead branching (LOB), runtime unrolling the |
2660 | // innermost loop is often detrimental to performance. In these cases the loop |
2661 | // remainder gets unrolled into a series of compare-and-jump blocks, which in |
2662 | // deeply nested loops get executed multiple times, negating the benefits of |
2663 | // LOB. This is particularly noticable when the loop trip count of the |
2664 | // innermost loop varies within the outer loop, such as in the case of |
2665 | // triangular matrix decompositions. In these cases we will prefer to not |
2666 | // unroll the innermost loop, with the intention for it to be executed as a |
2667 | // low overhead loop. |
2668 | bool Runtime = true; |
2669 | if (ST->hasLOB()) { |
2670 | if (SE.hasLoopInvariantBackedgeTakenCount(L)) { |
2671 | const auto *BETC = SE.getBackedgeTakenCount(L); |
2672 | auto *Outer = L->getOutermostLoop(); |
2673 | if ((L != Outer && Outer != L->getParentLoop()) || |
2674 | (L != Outer && BETC && !SE.isLoopInvariant(S: BETC, L: Outer))) { |
2675 | Runtime = false; |
2676 | } |
2677 | } |
2678 | } |
2679 | |
2680 | LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost << "\n" ); |
2681 | LLVM_DEBUG(dbgs() << "Default Runtime Unroll Count: " << UnrollCount << "\n" ); |
2682 | |
2683 | UP.Partial = true; |
2684 | UP.Runtime = Runtime; |
2685 | UP.UnrollRemainder = true; |
2686 | UP.DefaultUnrollRuntimeCount = UnrollCount; |
2687 | UP.UnrollAndJam = true; |
2688 | UP.UnrollAndJamInnerLoopThreshold = 60; |
2689 | |
2690 | // Force unrolling small loops can be very useful because of the branch |
2691 | // taken cost of the backedge. |
2692 | if (Cost < 12) |
2693 | UP.Force = true; |
2694 | } |
2695 | |
2696 | void ARMTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, |
2697 | TTI::PeelingPreferences &PP) const { |
2698 | BaseT::getPeelingPreferences(L, SE, PP); |
2699 | } |
2700 | |
2701 | bool ARMTTIImpl::preferInLoopReduction(RecurKind Kind, Type *Ty) const { |
2702 | if (!ST->hasMVEIntegerOps()) |
2703 | return false; |
2704 | |
2705 | unsigned ScalarBits = Ty->getScalarSizeInBits(); |
2706 | switch (Kind) { |
2707 | case RecurKind::Add: |
2708 | return ScalarBits <= 64; |
2709 | default: |
2710 | return false; |
2711 | } |
2712 | } |
2713 | |
2714 | bool ARMTTIImpl::preferPredicatedReductionSelect() const { |
2715 | if (!ST->hasMVEIntegerOps()) |
2716 | return false; |
2717 | return true; |
2718 | } |
2719 | |
2720 | InstructionCost ARMTTIImpl::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, |
2721 | StackOffset BaseOffset, |
2722 | bool HasBaseReg, int64_t Scale, |
2723 | unsigned AddrSpace) const { |
2724 | TargetLoweringBase::AddrMode AM; |
2725 | AM.BaseGV = BaseGV; |
2726 | AM.BaseOffs = BaseOffset.getFixed(); |
2727 | AM.HasBaseReg = HasBaseReg; |
2728 | AM.Scale = Scale; |
2729 | AM.ScalableOffset = BaseOffset.getScalable(); |
2730 | if (getTLI()->isLegalAddressingMode(DL, AM, Ty, AS: AddrSpace)) { |
2731 | if (ST->hasFPAO()) |
2732 | return AM.Scale < 0 ? 1 : 0; // positive offsets execute faster |
2733 | return 0; |
2734 | } |
2735 | return InstructionCost::getInvalid(); |
2736 | } |
2737 | |
2738 | bool ARMTTIImpl::hasArmWideBranch(bool Thumb) const { |
2739 | if (Thumb) { |
2740 | // B.W is available in any Thumb2-supporting target, and also in every |
2741 | // version of Armv8-M, even Baseline which does not include the rest of |
2742 | // Thumb2. |
2743 | return ST->isThumb2() || ST->hasV8MBaselineOps(); |
2744 | } else { |
2745 | // B is available in all versions of the Arm ISA, so the only question is |
2746 | // whether that ISA is available at all. |
2747 | return ST->hasARMOps(); |
2748 | } |
2749 | } |
2750 | |
2751 | /// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth |
2752 | /// of the vector elements. |
2753 | static bool (Value *Ext1, Value *Ext2) { |
2754 | using namespace PatternMatch; |
2755 | |
2756 | auto areExtDoubled = [](Instruction *Ext) { |
2757 | return Ext->getType()->getScalarSizeInBits() == |
2758 | 2 * Ext->getOperand(i: 0)->getType()->getScalarSizeInBits(); |
2759 | }; |
2760 | |
2761 | if (!match(V: Ext1, P: m_ZExtOrSExt(Op: m_Value())) || |
2762 | !match(V: Ext2, P: m_ZExtOrSExt(Op: m_Value())) || |
2763 | !areExtDoubled(cast<Instruction>(Val: Ext1)) || |
2764 | !areExtDoubled(cast<Instruction>(Val: Ext2))) |
2765 | return false; |
2766 | |
2767 | return true; |
2768 | } |
2769 | |
2770 | /// Check if sinking \p I's operands to I's basic block is profitable, because |
2771 | /// the operands can be folded into a target instruction, e.g. |
2772 | /// sext/zext can be folded into vsubl. |
2773 | bool ARMTTIImpl::isProfitableToSinkOperands(Instruction *I, |
2774 | SmallVectorImpl<Use *> &Ops) const { |
2775 | using namespace PatternMatch; |
2776 | |
2777 | if (!I->getType()->isVectorTy()) |
2778 | return false; |
2779 | |
2780 | if (ST->hasNEON()) { |
2781 | switch (I->getOpcode()) { |
2782 | case Instruction::Sub: |
2783 | case Instruction::Add: { |
2784 | if (!areExtractExts(Ext1: I->getOperand(i: 0), Ext2: I->getOperand(i: 1))) |
2785 | return false; |
2786 | Ops.push_back(Elt: &I->getOperandUse(i: 0)); |
2787 | Ops.push_back(Elt: &I->getOperandUse(i: 1)); |
2788 | return true; |
2789 | } |
2790 | default: |
2791 | return false; |
2792 | } |
2793 | } |
2794 | |
2795 | if (!ST->hasMVEIntegerOps()) |
2796 | return false; |
2797 | |
2798 | auto IsFMSMul = [&](Instruction *I) { |
2799 | if (!I->hasOneUse()) |
2800 | return false; |
2801 | auto *Sub = cast<Instruction>(Val: *I->users().begin()); |
2802 | return Sub->getOpcode() == Instruction::FSub && Sub->getOperand(i: 1) == I; |
2803 | }; |
2804 | auto IsFMS = [&](Instruction *I) { |
2805 | if (match(V: I->getOperand(i: 0), P: m_FNeg(X: m_Value())) || |
2806 | match(V: I->getOperand(i: 1), P: m_FNeg(X: m_Value()))) |
2807 | return true; |
2808 | return false; |
2809 | }; |
2810 | |
2811 | auto IsSinker = [&](Instruction *I, int Operand) { |
2812 | switch (I->getOpcode()) { |
2813 | case Instruction::Add: |
2814 | case Instruction::Mul: |
2815 | case Instruction::FAdd: |
2816 | case Instruction::ICmp: |
2817 | case Instruction::FCmp: |
2818 | return true; |
2819 | case Instruction::FMul: |
2820 | return !IsFMSMul(I); |
2821 | case Instruction::Sub: |
2822 | case Instruction::FSub: |
2823 | case Instruction::Shl: |
2824 | case Instruction::LShr: |
2825 | case Instruction::AShr: |
2826 | return Operand == 1; |
2827 | case Instruction::Call: |
2828 | if (auto *II = dyn_cast<IntrinsicInst>(Val: I)) { |
2829 | switch (II->getIntrinsicID()) { |
2830 | case Intrinsic::fma: |
2831 | return !IsFMS(I); |
2832 | case Intrinsic::sadd_sat: |
2833 | case Intrinsic::uadd_sat: |
2834 | case Intrinsic::arm_mve_add_predicated: |
2835 | case Intrinsic::arm_mve_mul_predicated: |
2836 | case Intrinsic::arm_mve_qadd_predicated: |
2837 | case Intrinsic::arm_mve_vhadd: |
2838 | case Intrinsic::arm_mve_hadd_predicated: |
2839 | case Intrinsic::arm_mve_vqdmull: |
2840 | case Intrinsic::arm_mve_vqdmull_predicated: |
2841 | case Intrinsic::arm_mve_vqdmulh: |
2842 | case Intrinsic::arm_mve_qdmulh_predicated: |
2843 | case Intrinsic::arm_mve_vqrdmulh: |
2844 | case Intrinsic::arm_mve_qrdmulh_predicated: |
2845 | case Intrinsic::arm_mve_fma_predicated: |
2846 | return true; |
2847 | case Intrinsic::ssub_sat: |
2848 | case Intrinsic::usub_sat: |
2849 | case Intrinsic::arm_mve_sub_predicated: |
2850 | case Intrinsic::arm_mve_qsub_predicated: |
2851 | case Intrinsic::arm_mve_hsub_predicated: |
2852 | case Intrinsic::arm_mve_vhsub: |
2853 | return Operand == 1; |
2854 | default: |
2855 | return false; |
2856 | } |
2857 | } |
2858 | return false; |
2859 | default: |
2860 | return false; |
2861 | } |
2862 | }; |
2863 | |
2864 | for (auto OpIdx : enumerate(First: I->operands())) { |
2865 | Instruction *Op = dyn_cast<Instruction>(Val: OpIdx.value().get()); |
2866 | // Make sure we are not already sinking this operand |
2867 | if (!Op || any_of(Range&: Ops, P: [&](Use *U) { return U->get() == Op; })) |
2868 | continue; |
2869 | |
2870 | Instruction *Shuffle = Op; |
2871 | if (Shuffle->getOpcode() == Instruction::BitCast) |
2872 | Shuffle = dyn_cast<Instruction>(Val: Shuffle->getOperand(i: 0)); |
2873 | // We are looking for a splat that can be sunk. |
2874 | if (!Shuffle || !match(V: Shuffle, P: m_Shuffle(v1: m_InsertElt(Val: m_Undef(), Elt: m_Value(), |
2875 | Idx: m_ZeroInt()), |
2876 | v2: m_Undef(), mask: m_ZeroMask()))) |
2877 | continue; |
2878 | if (!IsSinker(I, OpIdx.index())) |
2879 | continue; |
2880 | |
2881 | // All uses of the shuffle should be sunk to avoid duplicating it across gpr |
2882 | // and vector registers |
2883 | for (Use &U : Op->uses()) { |
2884 | Instruction *Insn = cast<Instruction>(Val: U.getUser()); |
2885 | if (!IsSinker(Insn, U.getOperandNo())) |
2886 | return false; |
2887 | } |
2888 | |
2889 | Ops.push_back(Elt: &Shuffle->getOperandUse(i: 0)); |
2890 | if (Shuffle != Op) |
2891 | Ops.push_back(Elt: &Op->getOperandUse(i: 0)); |
2892 | Ops.push_back(Elt: &OpIdx.value()); |
2893 | } |
2894 | return true; |
2895 | } |
2896 | |
2897 | unsigned ARMTTIImpl::getNumBytesToPadGlobalArray(unsigned Size, |
2898 | Type *ArrayType) const { |
2899 | if (!UseWidenGlobalArrays) { |
2900 | LLVM_DEBUG(dbgs() << "Padding global arrays disabled\n" ); |
2901 | return false; |
2902 | } |
2903 | |
2904 | // Don't modify none integer array types |
2905 | if (!ArrayType || !ArrayType->isArrayTy() || |
2906 | !ArrayType->getArrayElementType()->isIntegerTy()) |
2907 | return 0; |
2908 | |
2909 | // We pad to 4 byte boundaries |
2910 | if (Size % 4 == 0) |
2911 | return 0; |
2912 | |
2913 | unsigned NumBytesToPad = 4 - (Size % 4); |
2914 | unsigned NewSize = Size + NumBytesToPad; |
2915 | |
2916 | // Max number of bytes that memcpy allows for lowering to load/stores before |
2917 | // it uses library function (__aeabi_memcpy). |
2918 | unsigned MaxMemIntrinsicSize = getMaxMemIntrinsicInlineSizeThreshold(); |
2919 | |
2920 | if (NewSize > MaxMemIntrinsicSize) |
2921 | return 0; |
2922 | |
2923 | return NumBytesToPad; |
2924 | } |
2925 | |