| 1 | //===-- NVPTXISelDAGToDAG.cpp - A dag to dag inst selector for NVPTX ------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file defines an instruction selector for the NVPTX target. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "NVPTXISelDAGToDAG.h" |
| 14 | #include "NVPTX.h" |
| 15 | #include "NVPTXUtilities.h" |
| 16 | #include "llvm/ADT/APInt.h" |
| 17 | #include "llvm/Analysis/ValueTracking.h" |
| 18 | #include "llvm/CodeGen/ISDOpcodes.h" |
| 19 | #include "llvm/CodeGen/SelectionDAG.h" |
| 20 | #include "llvm/CodeGen/SelectionDAGNodes.h" |
| 21 | #include "llvm/IR/GlobalValue.h" |
| 22 | #include "llvm/IR/Instructions.h" |
| 23 | #include "llvm/IR/IntrinsicsNVPTX.h" |
| 24 | #include "llvm/IR/NVVMIntrinsicUtils.h" |
| 25 | #include "llvm/Support/AtomicOrdering.h" |
| 26 | #include "llvm/Support/CommandLine.h" |
| 27 | #include "llvm/Support/ErrorHandling.h" |
| 28 | #include "llvm/Support/FormatVariadic.h" |
| 29 | #include "llvm/Support/MathExtras.h" |
| 30 | #include <optional> |
| 31 | |
| 32 | using namespace llvm; |
| 33 | |
| 34 | #define DEBUG_TYPE "nvptx-isel" |
| 35 | #define PASS_NAME "NVPTX DAG->DAG Pattern Instruction Selection" |
| 36 | |
| 37 | static cl::opt<bool> |
| 38 | EnableRsqrtOpt("nvptx-rsqrt-approx-opt" , cl::init(Val: true), cl::Hidden, |
| 39 | cl::desc("Enable reciprocal sqrt optimization" )); |
| 40 | |
| 41 | /// createNVPTXISelDag - This pass converts a legalized DAG into a |
| 42 | /// NVPTX-specific DAG, ready for instruction scheduling. |
| 43 | FunctionPass *llvm::createNVPTXISelDag(NVPTXTargetMachine &TM, |
| 44 | llvm::CodeGenOptLevel OptLevel) { |
| 45 | return new NVPTXDAGToDAGISelLegacy(TM, OptLevel); |
| 46 | } |
| 47 | |
| 48 | NVPTXDAGToDAGISelLegacy::NVPTXDAGToDAGISelLegacy(NVPTXTargetMachine &tm, |
| 49 | CodeGenOptLevel OptLevel) |
| 50 | : SelectionDAGISelLegacy( |
| 51 | ID, std::make_unique<NVPTXDAGToDAGISel>(args&: tm, args&: OptLevel)) {} |
| 52 | |
| 53 | char NVPTXDAGToDAGISelLegacy::ID = 0; |
| 54 | |
| 55 | INITIALIZE_PASS(NVPTXDAGToDAGISelLegacy, DEBUG_TYPE, PASS_NAME, false, false) |
| 56 | |
| 57 | NVPTXDAGToDAGISel::NVPTXDAGToDAGISel(NVPTXTargetMachine &tm, |
| 58 | CodeGenOptLevel OptLevel) |
| 59 | : SelectionDAGISel(tm, OptLevel), TM(tm) { |
| 60 | doMulWide = (OptLevel > CodeGenOptLevel::None); |
| 61 | } |
| 62 | |
| 63 | bool NVPTXDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) { |
| 64 | Subtarget = &MF.getSubtarget<NVPTXSubtarget>(); |
| 65 | Scopes = NVPTXScopes(MF.getFunction().getContext()); |
| 66 | return SelectionDAGISel::runOnMachineFunction(mf&: MF); |
| 67 | } |
| 68 | |
| 69 | NVPTX::DivPrecisionLevel |
| 70 | NVPTXDAGToDAGISel::getDivF32Level(const SDNode *N) const { |
| 71 | return Subtarget->getTargetLowering()->getDivF32Level(MF: *MF, N: *N); |
| 72 | } |
| 73 | |
| 74 | bool NVPTXDAGToDAGISel::usePrecSqrtF32(const SDNode *N) const { |
| 75 | return Subtarget->getTargetLowering()->usePrecSqrtF32(MF: *MF, N); |
| 76 | } |
| 77 | |
| 78 | bool NVPTXDAGToDAGISel::useF32FTZ() const { |
| 79 | return Subtarget->getTargetLowering()->useF32FTZ(MF: *MF); |
| 80 | } |
| 81 | |
| 82 | bool NVPTXDAGToDAGISel::allowFMA() const { |
| 83 | const NVPTXTargetLowering *TL = Subtarget->getTargetLowering(); |
| 84 | return TL->allowFMA(MF&: *MF, OptLevel); |
| 85 | } |
| 86 | |
| 87 | bool NVPTXDAGToDAGISel::allowUnsafeFPMath() const { |
| 88 | const NVPTXTargetLowering *TL = Subtarget->getTargetLowering(); |
| 89 | return TL->allowUnsafeFPMath(MF: *MF); |
| 90 | } |
| 91 | |
| 92 | bool NVPTXDAGToDAGISel::doRsqrtOpt() const { return EnableRsqrtOpt; } |
| 93 | |
| 94 | /// Select - Select instructions not customized! Used for |
| 95 | /// expanded, promoted and normal instructions. |
| 96 | void NVPTXDAGToDAGISel::Select(SDNode *N) { |
| 97 | |
| 98 | if (N->isMachineOpcode()) { |
| 99 | N->setNodeId(-1); |
| 100 | return; // Already selected. |
| 101 | } |
| 102 | |
| 103 | switch (N->getOpcode()) { |
| 104 | case ISD::LOAD: |
| 105 | case ISD::ATOMIC_LOAD: |
| 106 | if (tryLoad(N)) |
| 107 | return; |
| 108 | break; |
| 109 | case ISD::STORE: |
| 110 | case ISD::ATOMIC_STORE: |
| 111 | if (tryStore(N)) |
| 112 | return; |
| 113 | break; |
| 114 | case ISD::ATOMIC_FENCE: |
| 115 | if (tryFence(N)) |
| 116 | return; |
| 117 | break; |
| 118 | case NVPTXISD::UNPACK_VECTOR: |
| 119 | tryUNPACK_VECTOR(N); |
| 120 | return; |
| 121 | case ISD::EXTRACT_VECTOR_ELT: |
| 122 | if (tryEXTRACT_VECTOR_ELEMENT(N)) |
| 123 | return; |
| 124 | break; |
| 125 | case NVPTXISD::SETP_F16X2: |
| 126 | SelectSETP_F16X2(N); |
| 127 | return; |
| 128 | case NVPTXISD::SETP_BF16X2: |
| 129 | SelectSETP_BF16X2(N); |
| 130 | return; |
| 131 | case NVPTXISD::LoadV2: |
| 132 | case NVPTXISD::LoadV4: |
| 133 | case NVPTXISD::LoadV8: |
| 134 | if (tryLoadVector(N)) |
| 135 | return; |
| 136 | break; |
| 137 | case NVPTXISD::LDUV2: |
| 138 | case NVPTXISD::LDUV4: |
| 139 | if (tryLDU(N)) |
| 140 | return; |
| 141 | break; |
| 142 | case NVPTXISD::StoreV2: |
| 143 | case NVPTXISD::StoreV4: |
| 144 | case NVPTXISD::StoreV8: |
| 145 | if (tryStoreVector(N)) |
| 146 | return; |
| 147 | break; |
| 148 | case NVPTXISD::LoadParam: |
| 149 | case NVPTXISD::LoadParamV2: |
| 150 | case NVPTXISD::LoadParamV4: |
| 151 | if (tryLoadParam(N)) |
| 152 | return; |
| 153 | break; |
| 154 | case NVPTXISD::StoreParam: |
| 155 | case NVPTXISD::StoreParamV2: |
| 156 | case NVPTXISD::StoreParamV4: |
| 157 | if (tryStoreParam(N)) |
| 158 | return; |
| 159 | break; |
| 160 | case ISD::INTRINSIC_W_CHAIN: |
| 161 | if (tryIntrinsicChain(N)) |
| 162 | return; |
| 163 | break; |
| 164 | case ISD::INTRINSIC_VOID: |
| 165 | if (tryIntrinsicVoid(N)) |
| 166 | return; |
| 167 | break; |
| 168 | case ISD::AND: |
| 169 | case ISD::SRA: |
| 170 | case ISD::SRL: |
| 171 | // Try to select BFE |
| 172 | if (tryBFE(N)) |
| 173 | return; |
| 174 | break; |
| 175 | case ISD::ADDRSPACECAST: |
| 176 | SelectAddrSpaceCast(N); |
| 177 | return; |
| 178 | case ISD::CopyToReg: { |
| 179 | if (N->getOperand(Num: 1).getValueType() == MVT::i128) { |
| 180 | SelectV2I64toI128(N); |
| 181 | return; |
| 182 | } |
| 183 | break; |
| 184 | } |
| 185 | case ISD::CopyFromReg: { |
| 186 | if (N->getOperand(Num: 1).getValueType() == MVT::i128) { |
| 187 | SelectI128toV2I64(N); |
| 188 | return; |
| 189 | } |
| 190 | break; |
| 191 | } |
| 192 | case ISD::FADD: |
| 193 | case ISD::FMUL: |
| 194 | case ISD::FSUB: |
| 195 | if (tryBF16ArithToFMA(N)) |
| 196 | return; |
| 197 | break; |
| 198 | default: |
| 199 | break; |
| 200 | } |
| 201 | SelectCode(N); |
| 202 | } |
| 203 | |
| 204 | #define TCGEN05_LD_OPCODE(SHAPE, NUM) \ |
| 205 | (enablePack ? NVPTX::TCGEN05_LD_##SHAPE##_##NUM##_PACK \ |
| 206 | : NVPTX::TCGEN05_LD_##SHAPE##_##NUM) |
| 207 | |
| 208 | static unsigned getTcgen05LdOpcode(unsigned IID, bool enablePack) { |
| 209 | switch (IID) { |
| 210 | case Intrinsic::nvvm_tcgen05_ld_16x64b_x1: |
| 211 | return TCGEN05_LD_OPCODE(16x64b, x1); |
| 212 | case Intrinsic::nvvm_tcgen05_ld_16x64b_x2: |
| 213 | return TCGEN05_LD_OPCODE(16x64b, x2); |
| 214 | case Intrinsic::nvvm_tcgen05_ld_16x64b_x4: |
| 215 | return TCGEN05_LD_OPCODE(16x64b, x4); |
| 216 | case Intrinsic::nvvm_tcgen05_ld_16x64b_x8: |
| 217 | return TCGEN05_LD_OPCODE(16x64b, x8); |
| 218 | case Intrinsic::nvvm_tcgen05_ld_16x64b_x16: |
| 219 | return TCGEN05_LD_OPCODE(16x64b, x16); |
| 220 | case Intrinsic::nvvm_tcgen05_ld_16x64b_x32: |
| 221 | return TCGEN05_LD_OPCODE(16x64b, x32); |
| 222 | case Intrinsic::nvvm_tcgen05_ld_16x64b_x64: |
| 223 | return TCGEN05_LD_OPCODE(16x64b, x64); |
| 224 | case Intrinsic::nvvm_tcgen05_ld_16x64b_x128: |
| 225 | return TCGEN05_LD_OPCODE(16x64b, x128); |
| 226 | case Intrinsic::nvvm_tcgen05_ld_16x128b_x1: |
| 227 | return TCGEN05_LD_OPCODE(16x128b, x1); |
| 228 | case Intrinsic::nvvm_tcgen05_ld_16x128b_x2: |
| 229 | return TCGEN05_LD_OPCODE(16x128b, x2); |
| 230 | case Intrinsic::nvvm_tcgen05_ld_16x128b_x4: |
| 231 | return TCGEN05_LD_OPCODE(16x128b, x4); |
| 232 | case Intrinsic::nvvm_tcgen05_ld_16x128b_x8: |
| 233 | return TCGEN05_LD_OPCODE(16x128b, x8); |
| 234 | case Intrinsic::nvvm_tcgen05_ld_16x128b_x16: |
| 235 | return TCGEN05_LD_OPCODE(16x128b, x16); |
| 236 | case Intrinsic::nvvm_tcgen05_ld_16x128b_x32: |
| 237 | return TCGEN05_LD_OPCODE(16x128b, x32); |
| 238 | case Intrinsic::nvvm_tcgen05_ld_16x128b_x64: |
| 239 | return TCGEN05_LD_OPCODE(16x128b, x64); |
| 240 | case Intrinsic::nvvm_tcgen05_ld_16x256b_x1: |
| 241 | return TCGEN05_LD_OPCODE(16x256b, x1); |
| 242 | case Intrinsic::nvvm_tcgen05_ld_16x256b_x2: |
| 243 | return TCGEN05_LD_OPCODE(16x256b, x2); |
| 244 | case Intrinsic::nvvm_tcgen05_ld_16x256b_x4: |
| 245 | return TCGEN05_LD_OPCODE(16x256b, x4); |
| 246 | case Intrinsic::nvvm_tcgen05_ld_16x256b_x8: |
| 247 | return TCGEN05_LD_OPCODE(16x256b, x8); |
| 248 | case Intrinsic::nvvm_tcgen05_ld_16x256b_x16: |
| 249 | return TCGEN05_LD_OPCODE(16x256b, x16); |
| 250 | case Intrinsic::nvvm_tcgen05_ld_16x256b_x32: |
| 251 | return TCGEN05_LD_OPCODE(16x256b, x32); |
| 252 | case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x1: |
| 253 | return TCGEN05_LD_OPCODE(16x32bx2, x1); |
| 254 | case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x2: |
| 255 | return TCGEN05_LD_OPCODE(16x32bx2, x2); |
| 256 | case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x4: |
| 257 | return TCGEN05_LD_OPCODE(16x32bx2, x4); |
| 258 | case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x8: |
| 259 | return TCGEN05_LD_OPCODE(16x32bx2, x8); |
| 260 | case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x16: |
| 261 | return TCGEN05_LD_OPCODE(16x32bx2, x16); |
| 262 | case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x32: |
| 263 | return TCGEN05_LD_OPCODE(16x32bx2, x32); |
| 264 | case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x64: |
| 265 | return TCGEN05_LD_OPCODE(16x32bx2, x64); |
| 266 | case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x128: |
| 267 | return TCGEN05_LD_OPCODE(16x32bx2, x128); |
| 268 | case Intrinsic::nvvm_tcgen05_ld_32x32b_x1: |
| 269 | return TCGEN05_LD_OPCODE(32x32b, x1); |
| 270 | case Intrinsic::nvvm_tcgen05_ld_32x32b_x2: |
| 271 | return TCGEN05_LD_OPCODE(32x32b, x2); |
| 272 | case Intrinsic::nvvm_tcgen05_ld_32x32b_x4: |
| 273 | return TCGEN05_LD_OPCODE(32x32b, x4); |
| 274 | case Intrinsic::nvvm_tcgen05_ld_32x32b_x8: |
| 275 | return TCGEN05_LD_OPCODE(32x32b, x8); |
| 276 | case Intrinsic::nvvm_tcgen05_ld_32x32b_x16: |
| 277 | return TCGEN05_LD_OPCODE(32x32b, x16); |
| 278 | case Intrinsic::nvvm_tcgen05_ld_32x32b_x32: |
| 279 | return TCGEN05_LD_OPCODE(32x32b, x32); |
| 280 | case Intrinsic::nvvm_tcgen05_ld_32x32b_x64: |
| 281 | return TCGEN05_LD_OPCODE(32x32b, x64); |
| 282 | case Intrinsic::nvvm_tcgen05_ld_32x32b_x128: |
| 283 | return TCGEN05_LD_OPCODE(32x32b, x128); |
| 284 | } |
| 285 | llvm_unreachable("unhandled tcgen05.ld lowering" ); |
| 286 | } |
| 287 | |
| 288 | void NVPTXDAGToDAGISel::SelectTcgen05Ld(SDNode *N, bool hasOffset) { |
| 289 | SDLoc DL(N); |
| 290 | unsigned IID = cast<ConstantSDNode>(Val: N->getOperand(Num: 1))->getZExtValue(); |
| 291 | |
| 292 | if (hasOffset) { |
| 293 | bool enablePack = cast<ConstantSDNode>(Val: N->getOperand(Num: 4))->getZExtValue(); |
| 294 | auto OffsetNode = CurDAG->getTargetConstant( |
| 295 | Val: cast<ConstantSDNode>(Val: N->getOperand(Num: 3))->getZExtValue(), DL, VT: MVT::i32); |
| 296 | ReplaceNode(F: N, T: CurDAG->getMachineNode( |
| 297 | Opcode: getTcgen05LdOpcode(IID, enablePack), dl: DL, VTs: N->getVTList(), |
| 298 | Ops: {N->getOperand(Num: 2), OffsetNode, N->getOperand(Num: 0)})); |
| 299 | } else { |
| 300 | bool enablePack = cast<ConstantSDNode>(Val: N->getOperand(Num: 3))->getZExtValue(); |
| 301 | ReplaceNode(F: N, T: CurDAG->getMachineNode( |
| 302 | Opcode: getTcgen05LdOpcode(IID, enablePack), dl: DL, VTs: N->getVTList(), |
| 303 | Ops: {N->getOperand(Num: 2), N->getOperand(Num: 0)})); |
| 304 | } |
| 305 | } |
| 306 | |
| 307 | bool NVPTXDAGToDAGISel::tryIntrinsicChain(SDNode *N) { |
| 308 | unsigned IID = N->getConstantOperandVal(Num: 1); |
| 309 | switch (IID) { |
| 310 | default: |
| 311 | return false; |
| 312 | case Intrinsic::nvvm_ldu_global_f: |
| 313 | case Intrinsic::nvvm_ldu_global_i: |
| 314 | case Intrinsic::nvvm_ldu_global_p: |
| 315 | return tryLDU(N); |
| 316 | |
| 317 | case Intrinsic::nvvm_tcgen05_ld_16x64b_x1: |
| 318 | case Intrinsic::nvvm_tcgen05_ld_16x64b_x2: |
| 319 | case Intrinsic::nvvm_tcgen05_ld_16x64b_x4: |
| 320 | case Intrinsic::nvvm_tcgen05_ld_16x64b_x8: |
| 321 | case Intrinsic::nvvm_tcgen05_ld_16x64b_x16: |
| 322 | case Intrinsic::nvvm_tcgen05_ld_16x64b_x32: |
| 323 | case Intrinsic::nvvm_tcgen05_ld_16x64b_x64: |
| 324 | case Intrinsic::nvvm_tcgen05_ld_16x64b_x128: |
| 325 | case Intrinsic::nvvm_tcgen05_ld_16x128b_x1: |
| 326 | case Intrinsic::nvvm_tcgen05_ld_16x128b_x2: |
| 327 | case Intrinsic::nvvm_tcgen05_ld_16x128b_x4: |
| 328 | case Intrinsic::nvvm_tcgen05_ld_16x128b_x16: |
| 329 | case Intrinsic::nvvm_tcgen05_ld_16x128b_x32: |
| 330 | case Intrinsic::nvvm_tcgen05_ld_16x128b_x64: |
| 331 | case Intrinsic::nvvm_tcgen05_ld_16x256b_x1: |
| 332 | case Intrinsic::nvvm_tcgen05_ld_16x128b_x8: |
| 333 | case Intrinsic::nvvm_tcgen05_ld_16x256b_x2: |
| 334 | case Intrinsic::nvvm_tcgen05_ld_16x256b_x4: |
| 335 | case Intrinsic::nvvm_tcgen05_ld_16x256b_x8: |
| 336 | case Intrinsic::nvvm_tcgen05_ld_16x256b_x16: |
| 337 | case Intrinsic::nvvm_tcgen05_ld_16x256b_x32: |
| 338 | case Intrinsic::nvvm_tcgen05_ld_32x32b_x1: |
| 339 | case Intrinsic::nvvm_tcgen05_ld_32x32b_x2: |
| 340 | case Intrinsic::nvvm_tcgen05_ld_32x32b_x4: |
| 341 | case Intrinsic::nvvm_tcgen05_ld_32x32b_x8: |
| 342 | case Intrinsic::nvvm_tcgen05_ld_32x32b_x16: |
| 343 | case Intrinsic::nvvm_tcgen05_ld_32x32b_x32: |
| 344 | case Intrinsic::nvvm_tcgen05_ld_32x32b_x64: |
| 345 | case Intrinsic::nvvm_tcgen05_ld_32x32b_x128: { |
| 346 | SelectTcgen05Ld(N); |
| 347 | return true; |
| 348 | } |
| 349 | |
| 350 | case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x1: |
| 351 | case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x2: |
| 352 | case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x4: |
| 353 | case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x8: |
| 354 | case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x16: |
| 355 | case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x32: |
| 356 | case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x64: |
| 357 | case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x128: { |
| 358 | SelectTcgen05Ld(N, /* hasOffset */ true); |
| 359 | return true; |
| 360 | } |
| 361 | } |
| 362 | } |
| 363 | |
| 364 | // Map ISD:CONDCODE value to appropriate CmpMode expected by |
| 365 | // NVPTXInstPrinter::printCmpMode() |
| 366 | static unsigned getPTXCmpMode(const CondCodeSDNode &CondCode, bool FTZ) { |
| 367 | using NVPTX::PTXCmpMode::CmpMode; |
| 368 | unsigned PTXCmpMode = [](ISD::CondCode CC) { |
| 369 | switch (CC) { |
| 370 | default: |
| 371 | llvm_unreachable("Unexpected condition code." ); |
| 372 | case ISD::SETOEQ: |
| 373 | return CmpMode::EQ; |
| 374 | case ISD::SETOGT: |
| 375 | return CmpMode::GT; |
| 376 | case ISD::SETOGE: |
| 377 | return CmpMode::GE; |
| 378 | case ISD::SETOLT: |
| 379 | return CmpMode::LT; |
| 380 | case ISD::SETOLE: |
| 381 | return CmpMode::LE; |
| 382 | case ISD::SETONE: |
| 383 | return CmpMode::NE; |
| 384 | case ISD::SETO: |
| 385 | return CmpMode::NUM; |
| 386 | case ISD::SETUO: |
| 387 | return CmpMode::NotANumber; |
| 388 | case ISD::SETUEQ: |
| 389 | return CmpMode::EQU; |
| 390 | case ISD::SETUGT: |
| 391 | return CmpMode::GTU; |
| 392 | case ISD::SETUGE: |
| 393 | return CmpMode::GEU; |
| 394 | case ISD::SETULT: |
| 395 | return CmpMode::LTU; |
| 396 | case ISD::SETULE: |
| 397 | return CmpMode::LEU; |
| 398 | case ISD::SETUNE: |
| 399 | return CmpMode::NEU; |
| 400 | case ISD::SETEQ: |
| 401 | return CmpMode::EQ; |
| 402 | case ISD::SETGT: |
| 403 | return CmpMode::GT; |
| 404 | case ISD::SETGE: |
| 405 | return CmpMode::GE; |
| 406 | case ISD::SETLT: |
| 407 | return CmpMode::LT; |
| 408 | case ISD::SETLE: |
| 409 | return CmpMode::LE; |
| 410 | case ISD::SETNE: |
| 411 | return CmpMode::NE; |
| 412 | } |
| 413 | }(CondCode.get()); |
| 414 | |
| 415 | if (FTZ) |
| 416 | PTXCmpMode |= NVPTX::PTXCmpMode::FTZ_FLAG; |
| 417 | |
| 418 | return PTXCmpMode; |
| 419 | } |
| 420 | |
| 421 | bool NVPTXDAGToDAGISel::SelectSETP_F16X2(SDNode *N) { |
| 422 | unsigned PTXCmpMode = |
| 423 | getPTXCmpMode(CondCode: *cast<CondCodeSDNode>(Val: N->getOperand(Num: 2)), FTZ: useF32FTZ()); |
| 424 | SDLoc DL(N); |
| 425 | SDNode *SetP = CurDAG->getMachineNode( |
| 426 | Opcode: NVPTX::SETP_f16x2rr, dl: DL, VT1: MVT::i1, VT2: MVT::i1, Op1: N->getOperand(Num: 0), |
| 427 | Op2: N->getOperand(Num: 1), Op3: CurDAG->getTargetConstant(Val: PTXCmpMode, DL, VT: MVT::i32)); |
| 428 | ReplaceNode(F: N, T: SetP); |
| 429 | return true; |
| 430 | } |
| 431 | |
| 432 | bool NVPTXDAGToDAGISel::SelectSETP_BF16X2(SDNode *N) { |
| 433 | unsigned PTXCmpMode = |
| 434 | getPTXCmpMode(CondCode: *cast<CondCodeSDNode>(Val: N->getOperand(Num: 2)), FTZ: useF32FTZ()); |
| 435 | SDLoc DL(N); |
| 436 | SDNode *SetP = CurDAG->getMachineNode( |
| 437 | Opcode: NVPTX::SETP_bf16x2rr, dl: DL, VT1: MVT::i1, VT2: MVT::i1, Op1: N->getOperand(Num: 0), |
| 438 | Op2: N->getOperand(Num: 1), Op3: CurDAG->getTargetConstant(Val: PTXCmpMode, DL, VT: MVT::i32)); |
| 439 | ReplaceNode(F: N, T: SetP); |
| 440 | return true; |
| 441 | } |
| 442 | |
| 443 | bool NVPTXDAGToDAGISel::tryUNPACK_VECTOR(SDNode *N) { |
| 444 | SDValue Vector = N->getOperand(Num: 0); |
| 445 | MVT EltVT = N->getSimpleValueType(ResNo: 0); |
| 446 | |
| 447 | MachineSDNode *N2 = |
| 448 | CurDAG->getMachineNode(Opcode: NVPTX::I64toV2I32, dl: SDLoc(N), VT1: EltVT, VT2: EltVT, Ops: Vector); |
| 449 | |
| 450 | ReplaceNode(F: N, T: N2); |
| 451 | return true; |
| 452 | } |
| 453 | |
| 454 | // Find all instances of extract_vector_elt that use this v2f16 vector |
| 455 | // and coalesce them into a scattering move instruction. |
| 456 | bool NVPTXDAGToDAGISel::(SDNode *N) { |
| 457 | SDValue Vector = N->getOperand(Num: 0); |
| 458 | |
| 459 | // We only care about 16x2 as it's the only real vector type we |
| 460 | // need to deal with. |
| 461 | MVT VT = Vector.getSimpleValueType(); |
| 462 | if (!Isv2x16VT(VT)) |
| 463 | return false; |
| 464 | // Find and record all uses of this vector that extract element 0 or 1. |
| 465 | SmallVector<SDNode *, 4> E0, E1; |
| 466 | for (auto *U : Vector.getNode()->users()) { |
| 467 | if (U->getOpcode() != ISD::EXTRACT_VECTOR_ELT) |
| 468 | continue; |
| 469 | if (U->getOperand(Num: 0) != Vector) |
| 470 | continue; |
| 471 | if (const ConstantSDNode *IdxConst = |
| 472 | dyn_cast<ConstantSDNode>(Val: U->getOperand(Num: 1))) { |
| 473 | if (IdxConst->getZExtValue() == 0) |
| 474 | E0.push_back(Elt: U); |
| 475 | else if (IdxConst->getZExtValue() == 1) |
| 476 | E1.push_back(Elt: U); |
| 477 | else |
| 478 | llvm_unreachable("Invalid vector index." ); |
| 479 | } |
| 480 | } |
| 481 | |
| 482 | // There's no point scattering f16x2 if we only ever access one |
| 483 | // element of it. |
| 484 | if (E0.empty() || E1.empty()) |
| 485 | return false; |
| 486 | |
| 487 | // Merge (f16 extractelt(V, 0), f16 extractelt(V,1)) |
| 488 | // into f16,f16 SplitF16x2(V) |
| 489 | MVT EltVT = VT.getVectorElementType(); |
| 490 | SDNode *ScatterOp = |
| 491 | CurDAG->getMachineNode(Opcode: NVPTX::I32toV2I16, dl: SDLoc(N), VT1: EltVT, VT2: EltVT, Ops: Vector); |
| 492 | for (auto *Node : E0) |
| 493 | ReplaceUses(F: SDValue(Node, 0), T: SDValue(ScatterOp, 0)); |
| 494 | for (auto *Node : E1) |
| 495 | ReplaceUses(F: SDValue(Node, 0), T: SDValue(ScatterOp, 1)); |
| 496 | |
| 497 | return true; |
| 498 | } |
| 499 | |
| 500 | static std::optional<unsigned> convertAS(unsigned AS) { |
| 501 | switch (AS) { |
| 502 | case llvm::ADDRESS_SPACE_LOCAL: |
| 503 | return NVPTX::AddressSpace::Local; |
| 504 | case llvm::ADDRESS_SPACE_GLOBAL: |
| 505 | return NVPTX::AddressSpace::Global; |
| 506 | case llvm::ADDRESS_SPACE_SHARED: |
| 507 | return NVPTX::AddressSpace::Shared; |
| 508 | case llvm::ADDRESS_SPACE_SHARED_CLUSTER: |
| 509 | return NVPTX::AddressSpace::SharedCluster; |
| 510 | case llvm::ADDRESS_SPACE_GENERIC: |
| 511 | return NVPTX::AddressSpace::Generic; |
| 512 | case llvm::ADDRESS_SPACE_PARAM: |
| 513 | return NVPTX::AddressSpace::Param; |
| 514 | case llvm::ADDRESS_SPACE_CONST: |
| 515 | return NVPTX::AddressSpace::Const; |
| 516 | default: |
| 517 | return std::nullopt; |
| 518 | } |
| 519 | } |
| 520 | |
| 521 | static unsigned int getCodeAddrSpace(const MemSDNode *N) { |
| 522 | return convertAS(AS: N->getMemOperand()->getAddrSpace()) |
| 523 | .value_or(u: NVPTX::AddressSpace::Generic); |
| 524 | } |
| 525 | |
| 526 | namespace { |
| 527 | |
| 528 | struct OperationOrderings { |
| 529 | NVPTX::Ordering InstructionOrdering, FenceOrdering; |
| 530 | OperationOrderings(NVPTX::Ordering IO = NVPTX::Ordering::NotAtomic, |
| 531 | NVPTX::Ordering FO = NVPTX::Ordering::NotAtomic) |
| 532 | : InstructionOrdering(IO), FenceOrdering(FO) {} |
| 533 | }; |
| 534 | |
| 535 | static OperationOrderings |
| 536 | getOperationOrderings(MemSDNode *N, const NVPTXSubtarget *Subtarget) { |
| 537 | AtomicOrdering Ordering = N->getSuccessOrdering(); |
| 538 | auto CodeAddrSpace = getCodeAddrSpace(N); |
| 539 | |
| 540 | bool HasMemoryOrdering = Subtarget->hasMemoryOrdering(); |
| 541 | bool HasRelaxedMMIO = Subtarget->hasRelaxedMMIO(); |
| 542 | |
| 543 | // clang-format off |
| 544 | |
| 545 | // Lowering for Load/Store Operations (note: AcquireRelease Loads or Stores error). |
| 546 | // Note: uses of Relaxed in the Atomic column of this table refer |
| 547 | // to LLVM AtomicOrdering::Monotonic. |
| 548 | // |
| 549 | // | Atomic | Volatile | Statespace | PTX sm_60- | PTX sm_70+ | |
| 550 | // |---------|----------|--------------------|------------|------------------------------| |
| 551 | // | No | No | All | plain | .weak | |
| 552 | // | No | Yes | Generic,Shared, | .volatile | .volatile | |
| 553 | // | | | Global [0] | | | |
| 554 | // | No | Yes | Local,Const,Param | plain [1] | .weak [1] | |
| 555 | // | Unorder | Yes/No | All | == Relaxed | == Relaxed | |
| 556 | // | Relaxed | No | Generic,Shared, | .volatile | <atomic sem> | |
| 557 | // | | | Global [0] | | | |
| 558 | // | Other | No | Generic,Shared, | Error [2] | <atomic sem> | |
| 559 | // | | | Global [0] | | | |
| 560 | // | Yes | No | Local,Const,Param | plain [1] | .weak [1] | |
| 561 | // | Relaxed | Yes | Generic,Shared [0] | .volatile | .volatile | |
| 562 | // | Relaxed | Yes | Global [0] | .volatile | .mmio.relaxed.sys (PTX 8.2+) | |
| 563 | // | | | | | or .volatile (PTX 8.1-) | |
| 564 | // | Relaxed | Yes | Local,Const,Param | plain [1] | .weak [1] | |
| 565 | // | Other | Yes | Generic, Shared, | Error [2] | <atomic sem> [3] | |
| 566 | // | | | / Global [0] | | | |
| 567 | |
| 568 | // Lowering of CUDA C++ SequentiallyConsistent Operations and Fences to PTX |
| 569 | // by following the ABI proven sound in: |
| 570 | // Lustig et al, A Formal Analysis of the NVIDIA PTX Memory Consistency Model, ASPLOS’19. |
| 571 | // https://dl.acm.org/doi/pdf/10.1145/3297858.3304043 |
| 572 | // |
| 573 | // | CUDA C++ Atomic Operation or Atomic Fence | PTX Atomic Operation or Fence | |
| 574 | // |------------------------------------------------------|-------------------------------| |
| 575 | // | cuda::atomic_thread_fence | fence.sc.<scope>; | |
| 576 | // | (memory_order_seq_cst, cuda::thread_scope_<scope>) | | |
| 577 | // |------------------------------------------------------|-------------------------------| |
| 578 | // | cuda::atomic_load | fence.sc.<scope>; | |
| 579 | // | (memory_order_seq_cst, cuda::thread_scope_<scope>) | ld.acquire.<scope>; | |
| 580 | // |------------------------------------------------------|-------------------------------| |
| 581 | // | cuda::atomic_store | fence.sc.<scope>; | |
| 582 | // | (memory_order_seq_cst, cuda::thread_scope_<scope>) | st.release.<scope>; | |
| 583 | // |------------------------------------------------------|-------------------------------| |
| 584 | // | cuda::atomic_fetch_<op> | fence.sc.<scope>; | |
| 585 | // | (memory_order_seq_cst, cuda::thread_scope_<scope>) | atom.acq_rel.<scope>; | |
| 586 | |
| 587 | // clang-format on |
| 588 | |
| 589 | // [0]: volatile and atomics are only supported on global or shared |
| 590 | // memory locations, accessed via generic/shared/global pointers. |
| 591 | // MMIO is only supported on global memory locations, |
| 592 | // accessed via generic/global pointers. |
| 593 | // TODO: Implement MMIO access via generic pointer to global. |
| 594 | // Currently implemented for global pointers only. |
| 595 | |
| 596 | // [1]: Lowering volatile/atomic operations to non-volatile/non-atomic |
| 597 | // PTX instructions fails to preserve their C++ side-effects. |
| 598 | // |
| 599 | // Example (https://github.com/llvm/llvm-project/issues/62057): |
| 600 | // |
| 601 | // void example() { |
| 602 | // std::atomic<bool> True = true; |
| 603 | // while (True.load(std::memory_order_relaxed)); |
| 604 | // } |
| 605 | // |
| 606 | // A C++ program that calls "example" is well-defined: the infinite loop |
| 607 | // performs an atomic operation. By lowering volatile/atomics to |
| 608 | // "weak" memory operations, we are transforming the above into: |
| 609 | // |
| 610 | // void undefined_behavior() { |
| 611 | // bool True = true; |
| 612 | // while (True); |
| 613 | // } |
| 614 | // |
| 615 | // which exhibits undefined behavior in both C++ and PTX. |
| 616 | // |
| 617 | // Calling "example" in CUDA C++ compiled for sm_60- exhibits undefined |
| 618 | // behavior due to lack of Independent Forward Progress. Lowering these |
| 619 | // to weak memory operations in sm_60- is therefore fine. |
| 620 | // |
| 621 | // TODO: lower atomic and volatile operations to memory locations |
| 622 | // in local, const, and param to two PTX instructions in sm_70+: |
| 623 | // - the "weak" memory instruction we are currently lowering to, and |
| 624 | // - some other instruction that preserves the side-effect, e.g., |
| 625 | // a dead dummy volatile load. |
| 626 | if (CodeAddrSpace == NVPTX::AddressSpace::Local || |
| 627 | CodeAddrSpace == NVPTX::AddressSpace::Const || |
| 628 | CodeAddrSpace == NVPTX::AddressSpace::Param) { |
| 629 | return NVPTX::Ordering::NotAtomic; |
| 630 | } |
| 631 | |
| 632 | // [2]: Atomics with Ordering different than Unordered or Relaxed are not |
| 633 | // supported on sm_60 and older; this includes volatile atomics. |
| 634 | if (!(Ordering == AtomicOrdering::NotAtomic || |
| 635 | Ordering == AtomicOrdering::Unordered || |
| 636 | Ordering == AtomicOrdering::Monotonic) && |
| 637 | !HasMemoryOrdering) { |
| 638 | report_fatal_error( |
| 639 | reason: formatv(Fmt: "PTX does not support \"atomic\" for orderings different than" |
| 640 | "\"NotAtomic\" or \"Monotonic\" for sm_60 or older, but order " |
| 641 | "is: \"{}\"." , |
| 642 | Vals: toIRString(ao: Ordering))); |
| 643 | } |
| 644 | |
| 645 | // [3]: TODO: these should eventually use .mmio<.atomic sem>; for now we drop |
| 646 | // the volatile semantics and preserve the atomic ones. |
| 647 | |
| 648 | // PTX volatile and PTX atomics are not available for statespace that differ |
| 649 | // from .generic, .global, or .shared. The behavior of PTX volatile and PTX |
| 650 | // atomics is undefined if the generic address does not refer to a .global or |
| 651 | // .shared memory location. |
| 652 | bool AddrGenericOrGlobalOrShared = |
| 653 | (CodeAddrSpace == NVPTX::AddressSpace::Generic || |
| 654 | CodeAddrSpace == NVPTX::AddressSpace::Global || |
| 655 | CodeAddrSpace == NVPTX::AddressSpace::Shared || |
| 656 | CodeAddrSpace == NVPTX::AddressSpace::SharedCluster); |
| 657 | if (!AddrGenericOrGlobalOrShared) |
| 658 | return NVPTX::Ordering::NotAtomic; |
| 659 | |
| 660 | bool UseRelaxedMMIO = |
| 661 | HasRelaxedMMIO && CodeAddrSpace == NVPTX::AddressSpace::Global; |
| 662 | |
| 663 | switch (Ordering) { |
| 664 | case AtomicOrdering::NotAtomic: |
| 665 | return N->isVolatile() ? NVPTX::Ordering::Volatile |
| 666 | : NVPTX::Ordering::NotAtomic; |
| 667 | case AtomicOrdering::Unordered: |
| 668 | // We lower unordered in the exact same way as 'monotonic' to respect |
| 669 | // LLVM IR atomicity requirements. |
| 670 | case AtomicOrdering::Monotonic: |
| 671 | if (N->isVolatile()) |
| 672 | return UseRelaxedMMIO ? NVPTX::Ordering::RelaxedMMIO |
| 673 | : NVPTX::Ordering::Volatile; |
| 674 | else |
| 675 | return HasMemoryOrdering ? NVPTX::Ordering::Relaxed |
| 676 | : NVPTX::Ordering::Volatile; |
| 677 | // case AtomicOrdering::Consume: // If LLVM ever provides this, lower it to |
| 678 | // Acquire. |
| 679 | case AtomicOrdering::Acquire: |
| 680 | if (!N->readMem()) |
| 681 | report_fatal_error( |
| 682 | reason: formatv(Fmt: "PTX only supports Acquire Ordering on reads: {}" , |
| 683 | Vals: N->getOperationName())); |
| 684 | return NVPTX::Ordering::Acquire; |
| 685 | case AtomicOrdering::Release: |
| 686 | if (!N->writeMem()) |
| 687 | report_fatal_error( |
| 688 | reason: formatv(Fmt: "PTX only supports Release Ordering on writes: {}" , |
| 689 | Vals: N->getOperationName())); |
| 690 | return NVPTX::Ordering::Release; |
| 691 | case AtomicOrdering::AcquireRelease: { |
| 692 | report_fatal_error( |
| 693 | reason: formatv(Fmt: "NVPTX does not support AcquireRelease Ordering on " |
| 694 | "read-modify-write " |
| 695 | "yet and PTX does not support it on loads or stores: {}" , |
| 696 | Vals: N->getOperationName())); |
| 697 | } |
| 698 | case AtomicOrdering::SequentiallyConsistent: { |
| 699 | // LLVM-IR SequentiallyConsistent atomics map to a two-instruction PTX |
| 700 | // sequence including a "fence.sc.sco" and the memory instruction with an |
| 701 | // Ordering that differs from "sc": acq, rel, or acq_rel, depending on |
| 702 | // whether the memory operation is a read, write, or read-modify-write. |
| 703 | // |
| 704 | // This sets the ordering of the fence to SequentiallyConsistent, and |
| 705 | // sets the corresponding ordering for the instruction. |
| 706 | NVPTX::Ordering InstrOrder; |
| 707 | if (N->readMem()) |
| 708 | InstrOrder = NVPTX::Ordering::Acquire; |
| 709 | else if (N->writeMem()) |
| 710 | InstrOrder = NVPTX::Ordering::Release; |
| 711 | else |
| 712 | report_fatal_error( |
| 713 | reason: formatv(Fmt: "NVPTX does not support SequentiallyConsistent Ordering on " |
| 714 | "read-modify-writes yet: {}" , |
| 715 | Vals: N->getOperationName())); |
| 716 | return OperationOrderings(InstrOrder, |
| 717 | NVPTX::Ordering::SequentiallyConsistent); |
| 718 | } |
| 719 | } |
| 720 | report_fatal_error( |
| 721 | reason: formatv(Fmt: "NVPTX backend does not support AtomicOrdering \"{}\" yet." , |
| 722 | Vals: toIRString(ao: Ordering))); |
| 723 | } |
| 724 | |
| 725 | } // namespace |
| 726 | |
| 727 | NVPTX::Scope NVPTXDAGToDAGISel::getOperationScope(MemSDNode *N, |
| 728 | NVPTX::Ordering O) const { |
| 729 | switch (O) { |
| 730 | case NVPTX::Ordering::NotAtomic: |
| 731 | case NVPTX::Ordering::Volatile: // Non-atomic volatile operations |
| 732 | // NVPTX uses Thread scope as the scope of non-atomic operations. |
| 733 | return NVPTX::Scope::Thread; |
| 734 | case NVPTX::Ordering::RelaxedMMIO: |
| 735 | // RelaxedMMIO operations are always system scope. |
| 736 | // If a RelaxedMMIO order was generated from an atomic volatile operation |
| 737 | // with a smaller thread scope, we bump it here to system scope. |
| 738 | return NVPTX::Scope::System; |
| 739 | case NVPTX::Ordering::Relaxed: |
| 740 | case NVPTX::Ordering::Acquire: |
| 741 | case NVPTX::Ordering::Release: |
| 742 | case NVPTX::Ordering::AcquireRelease: |
| 743 | case NVPTX::Ordering::SequentiallyConsistent: |
| 744 | auto S = Scopes[N->getSyncScopeID()]; |
| 745 | |
| 746 | // Atomic operations must have a scope greater than thread. |
| 747 | if (S == NVPTX::Scope::Thread) |
| 748 | report_fatal_error( |
| 749 | reason: formatv(Fmt: "Atomics need scope > \"{}\"." , Vals: ScopeToString(S))); |
| 750 | |
| 751 | // If scope is cluster, clusters must be supported. |
| 752 | if (S == NVPTX::Scope::Cluster) |
| 753 | Subtarget->failIfClustersUnsupported(FailureMessage: "cluster scope" ); |
| 754 | |
| 755 | // If operation is volatile, then its scope is system. |
| 756 | return N->isVolatile() ? NVPTX::Scope::System : S; |
| 757 | } |
| 758 | llvm_unreachable("unhandled ordering" ); |
| 759 | } |
| 760 | |
| 761 | static bool canLowerToLDG(const MemSDNode &N, const NVPTXSubtarget &Subtarget, |
| 762 | unsigned CodeAddrSpace) { |
| 763 | // We use ldg (i.e. ld.global.nc) for invariant loads from the global address |
| 764 | // space. |
| 765 | return Subtarget.hasLDG() && CodeAddrSpace == NVPTX::AddressSpace::Global && |
| 766 | N.isInvariant(); |
| 767 | } |
| 768 | |
| 769 | static unsigned int getFenceOp(NVPTX::Ordering O, NVPTX::Scope S, |
| 770 | NVPTXSubtarget const *T) { |
| 771 | if (S == NVPTX::Scope::Cluster) |
| 772 | T->failIfClustersUnsupported(FailureMessage: ".cluster scope fence" ); |
| 773 | |
| 774 | // Fall back to .acq_rel if .acquire, .release is not supported. |
| 775 | if (!T->hasSplitAcquireAndReleaseFences() && |
| 776 | (O == NVPTX::Ordering::Acquire || O == NVPTX::Ordering::Release)) |
| 777 | O = NVPTX::Ordering::AcquireRelease; |
| 778 | |
| 779 | switch (O) { |
| 780 | case NVPTX::Ordering::Acquire: |
| 781 | switch (S) { |
| 782 | case NVPTX::Scope::System: |
| 783 | return T->hasMemoryOrdering() ? NVPTX::atomic_thread_fence_acquire_sys |
| 784 | : NVPTX::INT_MEMBAR_SYS; |
| 785 | case NVPTX::Scope::Block: |
| 786 | return T->hasMemoryOrdering() ? NVPTX::atomic_thread_fence_acquire_cta |
| 787 | : NVPTX::INT_MEMBAR_CTA; |
| 788 | case NVPTX::Scope::Cluster: |
| 789 | return NVPTX::atomic_thread_fence_acquire_cluster; |
| 790 | case NVPTX::Scope::Device: |
| 791 | return T->hasMemoryOrdering() ? NVPTX::atomic_thread_fence_acquire_gpu |
| 792 | : NVPTX::INT_MEMBAR_GL; |
| 793 | case NVPTX::Scope::Thread: |
| 794 | report_fatal_error( |
| 795 | reason: formatv(Fmt: "Unsupported scope \"{}\" for acquire/release/acq_rel fence." , |
| 796 | Vals: ScopeToString(S))); |
| 797 | } |
| 798 | break; |
| 799 | case NVPTX::Ordering::Release: |
| 800 | switch (S) { |
| 801 | case NVPTX::Scope::System: |
| 802 | return T->hasMemoryOrdering() ? NVPTX::atomic_thread_fence_release_sys |
| 803 | : NVPTX::INT_MEMBAR_SYS; |
| 804 | case NVPTX::Scope::Block: |
| 805 | return T->hasMemoryOrdering() ? NVPTX::atomic_thread_fence_release_cta |
| 806 | : NVPTX::INT_MEMBAR_CTA; |
| 807 | case NVPTX::Scope::Cluster: |
| 808 | return NVPTX::atomic_thread_fence_release_cluster; |
| 809 | case NVPTX::Scope::Device: |
| 810 | return T->hasMemoryOrdering() ? NVPTX::atomic_thread_fence_release_gpu |
| 811 | : NVPTX::INT_MEMBAR_GL; |
| 812 | case NVPTX::Scope::Thread: |
| 813 | report_fatal_error( |
| 814 | reason: formatv(Fmt: "Unsupported scope \"{}\" for acquire/release/acq_rel fence." , |
| 815 | Vals: ScopeToString(S))); |
| 816 | } |
| 817 | break; |
| 818 | case NVPTX::Ordering::AcquireRelease: { |
| 819 | switch (S) { |
| 820 | case NVPTX::Scope::System: |
| 821 | return T->hasMemoryOrdering() ? NVPTX::atomic_thread_fence_acq_rel_sys |
| 822 | : NVPTX::INT_MEMBAR_SYS; |
| 823 | case NVPTX::Scope::Block: |
| 824 | return T->hasMemoryOrdering() ? NVPTX::atomic_thread_fence_acq_rel_cta |
| 825 | : NVPTX::INT_MEMBAR_CTA; |
| 826 | case NVPTX::Scope::Cluster: |
| 827 | return NVPTX::atomic_thread_fence_acq_rel_cluster; |
| 828 | case NVPTX::Scope::Device: |
| 829 | return T->hasMemoryOrdering() ? NVPTX::atomic_thread_fence_acq_rel_gpu |
| 830 | : NVPTX::INT_MEMBAR_GL; |
| 831 | case NVPTX::Scope::Thread: |
| 832 | report_fatal_error( |
| 833 | reason: formatv(Fmt: "Unsupported scope \"{}\" for acquire/release/acq_rel fence." , |
| 834 | Vals: ScopeToString(S))); |
| 835 | } |
| 836 | break; |
| 837 | } |
| 838 | case NVPTX::Ordering::SequentiallyConsistent: { |
| 839 | switch (S) { |
| 840 | case NVPTX::Scope::System: |
| 841 | return T->hasMemoryOrdering() ? NVPTX::atomic_thread_fence_seq_cst_sys |
| 842 | : NVPTX::INT_MEMBAR_SYS; |
| 843 | case NVPTX::Scope::Block: |
| 844 | return T->hasMemoryOrdering() ? NVPTX::atomic_thread_fence_seq_cst_cta |
| 845 | : NVPTX::INT_MEMBAR_CTA; |
| 846 | case NVPTX::Scope::Cluster: |
| 847 | return NVPTX::atomic_thread_fence_seq_cst_cluster; |
| 848 | case NVPTX::Scope::Device: |
| 849 | return T->hasMemoryOrdering() ? NVPTX::atomic_thread_fence_seq_cst_gpu |
| 850 | : NVPTX::INT_MEMBAR_GL; |
| 851 | case NVPTX::Scope::Thread: |
| 852 | report_fatal_error(reason: formatv(Fmt: "Unsupported scope \"{}\" for seq_cst fence." , |
| 853 | Vals: ScopeToString(S))); |
| 854 | } |
| 855 | break; |
| 856 | } |
| 857 | case NVPTX::Ordering::NotAtomic: |
| 858 | case NVPTX::Ordering::Relaxed: |
| 859 | case NVPTX::Ordering::Volatile: |
| 860 | case NVPTX::Ordering::RelaxedMMIO: |
| 861 | report_fatal_error( |
| 862 | reason: formatv(Fmt: "Unsupported \"{}\" ordering and \"{}\" scope for fence." , |
| 863 | Vals: OrderingToString(Order: O), Vals: ScopeToString(S))); |
| 864 | } |
| 865 | llvm_unreachable("unhandled ordering" ); |
| 866 | } |
| 867 | |
| 868 | // Returns Memory Order and Scope of a memory instruction, and |
| 869 | // inserts any fence before the instruction that's required to |
| 870 | // implement its memory ordering. |
| 871 | std::pair<NVPTX::Ordering, NVPTX::Scope> |
| 872 | NVPTXDAGToDAGISel::insertMemoryInstructionFence(SDLoc DL, SDValue &Chain, |
| 873 | MemSDNode *N) { |
| 874 | auto [InstructionOrdering, FenceOrdering] = |
| 875 | getOperationOrderings(N, Subtarget); |
| 876 | auto Scope = getOperationScope(N, O: InstructionOrdering); |
| 877 | |
| 878 | // If a fence is required before the operation, insert it: |
| 879 | switch (NVPTX::Ordering(FenceOrdering)) { |
| 880 | case NVPTX::Ordering::NotAtomic: |
| 881 | break; |
| 882 | case NVPTX::Ordering::SequentiallyConsistent: { |
| 883 | auto Op = getFenceOp(O: FenceOrdering, S: Scope, T: Subtarget); |
| 884 | Chain = SDValue(CurDAG->getMachineNode(Opcode: Op, dl: DL, VT: MVT::Other, Op1: Chain), 0); |
| 885 | break; |
| 886 | } |
| 887 | default: |
| 888 | report_fatal_error( |
| 889 | reason: formatv(Fmt: "Unexpected fence ordering: \"{}\"." , |
| 890 | Vals: OrderingToString(Order: NVPTX::Ordering(FenceOrdering)))); |
| 891 | } |
| 892 | return {InstructionOrdering, Scope}; |
| 893 | } |
| 894 | |
| 895 | void NVPTXDAGToDAGISel::SelectAddrSpaceCast(SDNode *N) { |
| 896 | SDValue Src = N->getOperand(Num: 0); |
| 897 | AddrSpaceCastSDNode *CastN = cast<AddrSpaceCastSDNode>(Val: N); |
| 898 | unsigned SrcAddrSpace = CastN->getSrcAddressSpace(); |
| 899 | unsigned DstAddrSpace = CastN->getDestAddressSpace(); |
| 900 | SDLoc DL(N); |
| 901 | assert(SrcAddrSpace != DstAddrSpace && |
| 902 | "addrspacecast must be between different address spaces" ); |
| 903 | |
| 904 | if (DstAddrSpace == ADDRESS_SPACE_GENERIC) { |
| 905 | // Specific to generic |
| 906 | |
| 907 | if (TM.is64Bit() && TM.getPointerSizeInBits(AS: SrcAddrSpace) == 32) { |
| 908 | SDValue CvtNone = |
| 909 | CurDAG->getTargetConstant(Val: NVPTX::PTXCvtMode::NONE, DL, VT: MVT::i32); |
| 910 | SDNode *Cvt = CurDAG->getMachineNode(Opcode: NVPTX::CVT_u64_u32, dl: DL, VT: MVT::i64, |
| 911 | Op1: Src, Op2: CvtNone); |
| 912 | Src = SDValue(Cvt, 0); |
| 913 | } |
| 914 | |
| 915 | unsigned Opc; |
| 916 | switch (SrcAddrSpace) { |
| 917 | default: report_fatal_error(reason: "Bad address space in addrspacecast" ); |
| 918 | case ADDRESS_SPACE_GLOBAL: |
| 919 | Opc = TM.is64Bit() ? NVPTX::cvta_global_64 : NVPTX::cvta_global; |
| 920 | break; |
| 921 | case ADDRESS_SPACE_SHARED: |
| 922 | Opc = TM.is64Bit() ? NVPTX::cvta_shared_64 : NVPTX::cvta_shared; |
| 923 | break; |
| 924 | case ADDRESS_SPACE_SHARED_CLUSTER: |
| 925 | if (!TM.is64Bit()) |
| 926 | report_fatal_error( |
| 927 | reason: "Shared cluster address space is only supported in 64-bit mode" ); |
| 928 | Opc = NVPTX::cvta_shared_cluster_64; |
| 929 | break; |
| 930 | case ADDRESS_SPACE_CONST: |
| 931 | Opc = TM.is64Bit() ? NVPTX::cvta_const_64 : NVPTX::cvta_const; |
| 932 | break; |
| 933 | case ADDRESS_SPACE_LOCAL: |
| 934 | Opc = TM.is64Bit() ? NVPTX::cvta_local_64 : NVPTX::cvta_local; |
| 935 | break; |
| 936 | case ADDRESS_SPACE_PARAM: |
| 937 | Opc = TM.is64Bit() ? NVPTX::cvta_param_64 : NVPTX::cvta_param; |
| 938 | break; |
| 939 | } |
| 940 | ReplaceNode(F: N, T: CurDAG->getMachineNode(Opcode: Opc, dl: DL, VT: N->getValueType(ResNo: 0), Op1: Src)); |
| 941 | return; |
| 942 | } else { |
| 943 | // Generic to specific |
| 944 | if (SrcAddrSpace != 0) |
| 945 | report_fatal_error(reason: "Cannot cast between two non-generic address spaces" ); |
| 946 | unsigned Opc; |
| 947 | switch (DstAddrSpace) { |
| 948 | default: report_fatal_error(reason: "Bad address space in addrspacecast" ); |
| 949 | case ADDRESS_SPACE_GLOBAL: |
| 950 | Opc = TM.is64Bit() ? NVPTX::cvta_to_global_64 : NVPTX::cvta_to_global; |
| 951 | break; |
| 952 | case ADDRESS_SPACE_SHARED: |
| 953 | Opc = TM.is64Bit() ? NVPTX::cvta_to_shared_64 : NVPTX::cvta_to_shared; |
| 954 | break; |
| 955 | case ADDRESS_SPACE_SHARED_CLUSTER: |
| 956 | if (!TM.is64Bit()) |
| 957 | report_fatal_error( |
| 958 | reason: "Shared cluster address space is only supported in 64-bit mode" ); |
| 959 | Opc = NVPTX::cvta_to_shared_cluster_64; |
| 960 | break; |
| 961 | case ADDRESS_SPACE_CONST: |
| 962 | Opc = TM.is64Bit() ? NVPTX::cvta_to_const_64 : NVPTX::cvta_to_const; |
| 963 | break; |
| 964 | case ADDRESS_SPACE_LOCAL: |
| 965 | Opc = TM.is64Bit() ? NVPTX::cvta_to_local_64 : NVPTX::cvta_to_local; |
| 966 | break; |
| 967 | case ADDRESS_SPACE_PARAM: |
| 968 | Opc = TM.is64Bit() ? NVPTX::cvta_to_param_64 : NVPTX::cvta_to_param; |
| 969 | break; |
| 970 | } |
| 971 | |
| 972 | SDNode *CVTA = CurDAG->getMachineNode(Opcode: Opc, dl: DL, VT: N->getValueType(ResNo: 0), Op1: Src); |
| 973 | if (TM.is64Bit() && TM.getPointerSizeInBits(AS: DstAddrSpace) == 32) { |
| 974 | SDValue CvtNone = |
| 975 | CurDAG->getTargetConstant(Val: NVPTX::PTXCvtMode::NONE, DL, VT: MVT::i32); |
| 976 | CVTA = CurDAG->getMachineNode(Opcode: NVPTX::CVT_u32_u64, dl: DL, VT: MVT::i32, |
| 977 | Op1: SDValue(CVTA, 0), Op2: CvtNone); |
| 978 | } |
| 979 | |
| 980 | ReplaceNode(F: N, T: CVTA); |
| 981 | return; |
| 982 | } |
| 983 | } |
| 984 | |
| 985 | // Helper function template to reduce amount of boilerplate code for |
| 986 | // opcode selection. |
| 987 | static std::optional<unsigned> |
| 988 | pickOpcodeForVT(MVT::SimpleValueType VT, std::optional<unsigned> Opcode_i8, |
| 989 | std::optional<unsigned> Opcode_i16, |
| 990 | std::optional<unsigned> Opcode_i32, |
| 991 | std::optional<unsigned> Opcode_i64) { |
| 992 | switch (VT) { |
| 993 | case MVT::i1: |
| 994 | case MVT::i8: |
| 995 | return Opcode_i8; |
| 996 | case MVT::f16: |
| 997 | case MVT::i16: |
| 998 | case MVT::bf16: |
| 999 | return Opcode_i16; |
| 1000 | case MVT::v2f16: |
| 1001 | case MVT::v2bf16: |
| 1002 | case MVT::v2i16: |
| 1003 | case MVT::v4i8: |
| 1004 | case MVT::i32: |
| 1005 | case MVT::f32: |
| 1006 | return Opcode_i32; |
| 1007 | case MVT::i64: |
| 1008 | case MVT::f64: |
| 1009 | return Opcode_i64; |
| 1010 | default: |
| 1011 | return std::nullopt; |
| 1012 | } |
| 1013 | } |
| 1014 | |
| 1015 | bool NVPTXDAGToDAGISel::tryLoad(SDNode *N) { |
| 1016 | MemSDNode *LD = cast<MemSDNode>(Val: N); |
| 1017 | assert(LD->readMem() && "Expected load" ); |
| 1018 | |
| 1019 | // do not support pre/post inc/dec |
| 1020 | const LoadSDNode *PlainLoad = dyn_cast<LoadSDNode>(Val: LD); |
| 1021 | if (PlainLoad && PlainLoad->isIndexed()) |
| 1022 | return false; |
| 1023 | |
| 1024 | const EVT LoadedEVT = LD->getMemoryVT(); |
| 1025 | if (!LoadedEVT.isSimple()) |
| 1026 | return false; |
| 1027 | const MVT LoadedVT = LoadedEVT.getSimpleVT(); |
| 1028 | |
| 1029 | // Address Space Setting |
| 1030 | const unsigned CodeAddrSpace = getCodeAddrSpace(N: LD); |
| 1031 | if (canLowerToLDG(N: *LD, Subtarget: *Subtarget, CodeAddrSpace)) |
| 1032 | return tryLDG(N: LD); |
| 1033 | |
| 1034 | SDLoc DL(LD); |
| 1035 | SDValue Chain = N->getOperand(Num: 0); |
| 1036 | const auto [Ordering, Scope] = insertMemoryInstructionFence(DL, Chain, N: LD); |
| 1037 | |
| 1038 | const unsigned FromTypeWidth = LoadedVT.getSizeInBits(); |
| 1039 | |
| 1040 | // Vector Setting |
| 1041 | const unsigned FromType = |
| 1042 | (PlainLoad && (PlainLoad->getExtensionType() == ISD::SEXTLOAD)) |
| 1043 | ? NVPTX::PTXLdStInstCode::Signed |
| 1044 | : NVPTX::PTXLdStInstCode::Untyped; |
| 1045 | |
| 1046 | assert(isPowerOf2_32(FromTypeWidth) && FromTypeWidth >= 8 && |
| 1047 | FromTypeWidth <= 128 && "Invalid width for load" ); |
| 1048 | |
| 1049 | // Create the machine instruction DAG |
| 1050 | SDValue Offset, Base; |
| 1051 | SelectADDR(Addr: N->getOperand(Num: 1), Base, Offset); |
| 1052 | SDValue Ops[] = {getI32Imm(Imm: Ordering, DL), |
| 1053 | getI32Imm(Imm: Scope, DL), |
| 1054 | getI32Imm(Imm: CodeAddrSpace, DL), |
| 1055 | getI32Imm(Imm: FromType, DL), |
| 1056 | getI32Imm(Imm: FromTypeWidth, DL), |
| 1057 | Base, |
| 1058 | Offset, |
| 1059 | Chain}; |
| 1060 | |
| 1061 | const MVT::SimpleValueType TargetVT = LD->getSimpleValueType(ResNo: 0).SimpleTy; |
| 1062 | const std::optional<unsigned> Opcode = pickOpcodeForVT( |
| 1063 | VT: TargetVT, Opcode_i8: NVPTX::LD_i8, Opcode_i16: NVPTX::LD_i16, Opcode_i32: NVPTX::LD_i32, Opcode_i64: NVPTX::LD_i64); |
| 1064 | if (!Opcode) |
| 1065 | return false; |
| 1066 | |
| 1067 | SDNode *NVPTXLD = CurDAG->getMachineNode(Opcode: *Opcode, dl: DL, VTs: LD->getVTList(), Ops); |
| 1068 | if (!NVPTXLD) |
| 1069 | return false; |
| 1070 | |
| 1071 | MachineMemOperand *MemRef = LD->getMemOperand(); |
| 1072 | CurDAG->setNodeMemRefs(N: cast<MachineSDNode>(Val: NVPTXLD), NewMemRefs: {MemRef}); |
| 1073 | |
| 1074 | ReplaceNode(F: LD, T: NVPTXLD); |
| 1075 | return true; |
| 1076 | } |
| 1077 | |
| 1078 | static unsigned getLoadStoreVectorNumElts(SDNode *N) { |
| 1079 | switch (N->getOpcode()) { |
| 1080 | case NVPTXISD::LoadV2: |
| 1081 | case NVPTXISD::StoreV2: |
| 1082 | return 2; |
| 1083 | case NVPTXISD::LoadV4: |
| 1084 | case NVPTXISD::StoreV4: |
| 1085 | return 4; |
| 1086 | case NVPTXISD::LoadV8: |
| 1087 | case NVPTXISD::StoreV8: |
| 1088 | return 8; |
| 1089 | default: |
| 1090 | llvm_unreachable("Unexpected opcode" ); |
| 1091 | } |
| 1092 | } |
| 1093 | |
| 1094 | bool NVPTXDAGToDAGISel::tryLoadVector(SDNode *N) { |
| 1095 | MemSDNode *LD = cast<MemSDNode>(Val: N); |
| 1096 | const EVT MemEVT = LD->getMemoryVT(); |
| 1097 | if (!MemEVT.isSimple()) |
| 1098 | return false; |
| 1099 | const MVT MemVT = MemEVT.getSimpleVT(); |
| 1100 | |
| 1101 | // Address Space Setting |
| 1102 | const unsigned CodeAddrSpace = getCodeAddrSpace(N: LD); |
| 1103 | if (canLowerToLDG(N: *LD, Subtarget: *Subtarget, CodeAddrSpace)) |
| 1104 | return tryLDG(N: LD); |
| 1105 | |
| 1106 | const MVT EltVT = LD->getSimpleValueType(ResNo: 0); |
| 1107 | SDLoc DL(LD); |
| 1108 | SDValue Chain = LD->getChain(); |
| 1109 | const auto [Ordering, Scope] = insertMemoryInstructionFence(DL, Chain, N: LD); |
| 1110 | |
| 1111 | // Type Setting: fromType + fromTypeWidth |
| 1112 | // |
| 1113 | // Sign : ISD::SEXTLOAD |
| 1114 | // Unsign : ISD::ZEXTLOAD, ISD::NON_EXTLOAD or ISD::EXTLOAD and the |
| 1115 | // type is integer |
| 1116 | // Float : ISD::NON_EXTLOAD or ISD::EXTLOAD and the type is float |
| 1117 | // Read at least 8 bits (predicates are stored as 8-bit values) |
| 1118 | // The last operand holds the original LoadSDNode::getExtensionType() value |
| 1119 | const unsigned TotalWidth = MemVT.getSizeInBits(); |
| 1120 | const unsigned ExtensionType = |
| 1121 | N->getConstantOperandVal(Num: N->getNumOperands() - 1); |
| 1122 | const unsigned FromType = (ExtensionType == ISD::SEXTLOAD) |
| 1123 | ? NVPTX::PTXLdStInstCode::Signed |
| 1124 | : NVPTX::PTXLdStInstCode::Untyped; |
| 1125 | |
| 1126 | const unsigned FromTypeWidth = TotalWidth / getLoadStoreVectorNumElts(N); |
| 1127 | |
| 1128 | assert(!(EltVT.isVector() && ExtensionType != ISD::NON_EXTLOAD)); |
| 1129 | assert(isPowerOf2_32(FromTypeWidth) && FromTypeWidth >= 8 && |
| 1130 | FromTypeWidth <= 128 && TotalWidth <= 256 && "Invalid width for load" ); |
| 1131 | |
| 1132 | SDValue Offset, Base; |
| 1133 | SelectADDR(Addr: N->getOperand(Num: 1), Base, Offset); |
| 1134 | SDValue Ops[] = {getI32Imm(Imm: Ordering, DL), |
| 1135 | getI32Imm(Imm: Scope, DL), |
| 1136 | getI32Imm(Imm: CodeAddrSpace, DL), |
| 1137 | getI32Imm(Imm: FromType, DL), |
| 1138 | getI32Imm(Imm: FromTypeWidth, DL), |
| 1139 | Base, |
| 1140 | Offset, |
| 1141 | Chain}; |
| 1142 | |
| 1143 | std::optional<unsigned> Opcode; |
| 1144 | switch (N->getOpcode()) { |
| 1145 | default: |
| 1146 | llvm_unreachable("Unexpected opcode" ); |
| 1147 | case NVPTXISD::LoadV2: |
| 1148 | Opcode = |
| 1149 | pickOpcodeForVT(VT: EltVT.SimpleTy, Opcode_i8: NVPTX::LDV_i8_v2, Opcode_i16: NVPTX::LDV_i16_v2, |
| 1150 | Opcode_i32: NVPTX::LDV_i32_v2, Opcode_i64: NVPTX::LDV_i64_v2); |
| 1151 | break; |
| 1152 | case NVPTXISD::LoadV4: |
| 1153 | Opcode = |
| 1154 | pickOpcodeForVT(VT: EltVT.SimpleTy, Opcode_i8: NVPTX::LDV_i8_v4, Opcode_i16: NVPTX::LDV_i16_v4, |
| 1155 | Opcode_i32: NVPTX::LDV_i32_v4, Opcode_i64: NVPTX::LDV_i64_v4); |
| 1156 | break; |
| 1157 | case NVPTXISD::LoadV8: |
| 1158 | Opcode = pickOpcodeForVT(VT: EltVT.SimpleTy, Opcode_i8: {/* no v8i8 */}, Opcode_i16: {/* no v8i16 */}, |
| 1159 | Opcode_i32: NVPTX::LDV_i32_v8, Opcode_i64: {/* no v8i64 */}); |
| 1160 | break; |
| 1161 | } |
| 1162 | if (!Opcode) |
| 1163 | return false; |
| 1164 | |
| 1165 | SDNode *NVPTXLD = CurDAG->getMachineNode(Opcode: *Opcode, dl: DL, VTs: LD->getVTList(), Ops); |
| 1166 | |
| 1167 | MachineMemOperand *MemRef = LD->getMemOperand(); |
| 1168 | CurDAG->setNodeMemRefs(N: cast<MachineSDNode>(Val: NVPTXLD), NewMemRefs: {MemRef}); |
| 1169 | |
| 1170 | ReplaceNode(F: LD, T: NVPTXLD); |
| 1171 | return true; |
| 1172 | } |
| 1173 | |
| 1174 | bool NVPTXDAGToDAGISel::tryLDG(MemSDNode *LD) { |
| 1175 | const EVT LoadedEVT = LD->getMemoryVT(); |
| 1176 | if (!LoadedEVT.isSimple()) |
| 1177 | return false; |
| 1178 | const MVT LoadedVT = LoadedEVT.getSimpleVT(); |
| 1179 | |
| 1180 | SDLoc DL(LD); |
| 1181 | |
| 1182 | const unsigned TotalWidth = LoadedVT.getSizeInBits(); |
| 1183 | unsigned ExtensionType; |
| 1184 | unsigned NumElts; |
| 1185 | if (const auto *Load = dyn_cast<LoadSDNode>(Val: LD)) { |
| 1186 | ExtensionType = Load->getExtensionType(); |
| 1187 | NumElts = 1; |
| 1188 | } else { |
| 1189 | ExtensionType = LD->getConstantOperandVal(Num: LD->getNumOperands() - 1); |
| 1190 | NumElts = getLoadStoreVectorNumElts(N: LD); |
| 1191 | } |
| 1192 | const unsigned FromType = (ExtensionType == ISD::SEXTLOAD) |
| 1193 | ? NVPTX::PTXLdStInstCode::Signed |
| 1194 | : NVPTX::PTXLdStInstCode::Untyped; |
| 1195 | |
| 1196 | const unsigned FromTypeWidth = TotalWidth / NumElts; |
| 1197 | |
| 1198 | assert(!(LD->getSimpleValueType(0).isVector() && |
| 1199 | ExtensionType != ISD::NON_EXTLOAD)); |
| 1200 | assert(isPowerOf2_32(FromTypeWidth) && FromTypeWidth >= 8 && |
| 1201 | FromTypeWidth <= 128 && TotalWidth <= 256 && "Invalid width for load" ); |
| 1202 | |
| 1203 | SDValue Base, Offset; |
| 1204 | SelectADDR(Addr: LD->getOperand(Num: 1), Base, Offset); |
| 1205 | SDValue Ops[] = {getI32Imm(Imm: FromType, DL), getI32Imm(Imm: FromTypeWidth, DL), Base, |
| 1206 | Offset, LD->getChain()}; |
| 1207 | |
| 1208 | const MVT::SimpleValueType TargetVT = LD->getSimpleValueType(ResNo: 0).SimpleTy; |
| 1209 | std::optional<unsigned> Opcode; |
| 1210 | switch (LD->getOpcode()) { |
| 1211 | default: |
| 1212 | llvm_unreachable("Unexpected opcode" ); |
| 1213 | case ISD::LOAD: |
| 1214 | Opcode = pickOpcodeForVT(VT: TargetVT, Opcode_i8: NVPTX::LD_GLOBAL_NC_i8, |
| 1215 | Opcode_i16: NVPTX::LD_GLOBAL_NC_i16, Opcode_i32: NVPTX::LD_GLOBAL_NC_i32, |
| 1216 | Opcode_i64: NVPTX::LD_GLOBAL_NC_i64); |
| 1217 | break; |
| 1218 | case NVPTXISD::LoadV2: |
| 1219 | Opcode = pickOpcodeForVT( |
| 1220 | VT: TargetVT, Opcode_i8: NVPTX::LD_GLOBAL_NC_v2i8, Opcode_i16: NVPTX::LD_GLOBAL_NC_v2i16, |
| 1221 | Opcode_i32: NVPTX::LD_GLOBAL_NC_v2i32, Opcode_i64: NVPTX::LD_GLOBAL_NC_v2i64); |
| 1222 | break; |
| 1223 | case NVPTXISD::LoadV4: |
| 1224 | Opcode = pickOpcodeForVT( |
| 1225 | VT: TargetVT, Opcode_i8: NVPTX::LD_GLOBAL_NC_v4i8, Opcode_i16: NVPTX::LD_GLOBAL_NC_v4i16, |
| 1226 | Opcode_i32: NVPTX::LD_GLOBAL_NC_v4i32, Opcode_i64: NVPTX::LD_GLOBAL_NC_v4i64); |
| 1227 | break; |
| 1228 | case NVPTXISD::LoadV8: |
| 1229 | Opcode = pickOpcodeForVT(VT: TargetVT, Opcode_i8: {/* no v8i8 */}, Opcode_i16: {/* no v8i16 */}, |
| 1230 | Opcode_i32: NVPTX::LD_GLOBAL_NC_v8i32, Opcode_i64: {/* no v8i64 */}); |
| 1231 | break; |
| 1232 | } |
| 1233 | if (!Opcode) |
| 1234 | return false; |
| 1235 | |
| 1236 | SDNode *NVPTXLDG = CurDAG->getMachineNode(Opcode: *Opcode, dl: DL, VTs: LD->getVTList(), Ops); |
| 1237 | |
| 1238 | ReplaceNode(F: LD, T: NVPTXLDG); |
| 1239 | return true; |
| 1240 | } |
| 1241 | |
| 1242 | bool NVPTXDAGToDAGISel::tryLDU(SDNode *N) { |
| 1243 | auto *LD = cast<MemSDNode>(Val: N); |
| 1244 | |
| 1245 | unsigned NumElts; |
| 1246 | switch (N->getOpcode()) { |
| 1247 | default: |
| 1248 | llvm_unreachable("Unexpected opcode" ); |
| 1249 | case ISD::INTRINSIC_W_CHAIN: |
| 1250 | NumElts = 1; |
| 1251 | break; |
| 1252 | case NVPTXISD::LDUV2: |
| 1253 | NumElts = 2; |
| 1254 | break; |
| 1255 | case NVPTXISD::LDUV4: |
| 1256 | NumElts = 4; |
| 1257 | break; |
| 1258 | } |
| 1259 | |
| 1260 | const MVT::SimpleValueType SelectVT = |
| 1261 | MVT::getIntegerVT(BitWidth: LD->getMemoryVT().getSizeInBits() / NumElts).SimpleTy; |
| 1262 | |
| 1263 | // If this is an LDU intrinsic, the address is the third operand. If its an |
| 1264 | // LDU SD node (from custom vector handling), then its the second operand |
| 1265 | SDValue Addr = |
| 1266 | LD->getOperand(Num: LD->getOpcode() == ISD::INTRINSIC_W_CHAIN ? 2 : 1); |
| 1267 | |
| 1268 | SDValue Base, Offset; |
| 1269 | SelectADDR(Addr, Base, Offset); |
| 1270 | SDValue Ops[] = {Base, Offset, LD->getChain()}; |
| 1271 | |
| 1272 | std::optional<unsigned> Opcode; |
| 1273 | switch (N->getOpcode()) { |
| 1274 | default: |
| 1275 | llvm_unreachable("Unexpected opcode" ); |
| 1276 | case ISD::INTRINSIC_W_CHAIN: |
| 1277 | Opcode = |
| 1278 | pickOpcodeForVT(VT: SelectVT, Opcode_i8: NVPTX::LDU_GLOBAL_i8, Opcode_i16: NVPTX::LDU_GLOBAL_i16, |
| 1279 | Opcode_i32: NVPTX::LDU_GLOBAL_i32, Opcode_i64: NVPTX::LDU_GLOBAL_i64); |
| 1280 | break; |
| 1281 | case NVPTXISD::LDUV2: |
| 1282 | Opcode = pickOpcodeForVT(VT: SelectVT, Opcode_i8: NVPTX::LDU_GLOBAL_v2i8, |
| 1283 | Opcode_i16: NVPTX::LDU_GLOBAL_v2i16, Opcode_i32: NVPTX::LDU_GLOBAL_v2i32, |
| 1284 | Opcode_i64: NVPTX::LDU_GLOBAL_v2i64); |
| 1285 | break; |
| 1286 | case NVPTXISD::LDUV4: |
| 1287 | Opcode = pickOpcodeForVT(VT: SelectVT, Opcode_i8: NVPTX::LDU_GLOBAL_v4i8, |
| 1288 | Opcode_i16: NVPTX::LDU_GLOBAL_v4i16, Opcode_i32: NVPTX::LDU_GLOBAL_v4i32, |
| 1289 | Opcode_i64: {/* no v4i64 */}); |
| 1290 | break; |
| 1291 | } |
| 1292 | if (!Opcode) |
| 1293 | return false; |
| 1294 | |
| 1295 | SDLoc DL(N); |
| 1296 | SDNode *NVPTXLDU = CurDAG->getMachineNode(Opcode: *Opcode, dl: DL, VTs: LD->getVTList(), Ops); |
| 1297 | |
| 1298 | ReplaceNode(F: LD, T: NVPTXLDU); |
| 1299 | return true; |
| 1300 | } |
| 1301 | |
| 1302 | bool NVPTXDAGToDAGISel::tryStore(SDNode *N) { |
| 1303 | MemSDNode *ST = cast<MemSDNode>(Val: N); |
| 1304 | assert(ST->writeMem() && "Expected store" ); |
| 1305 | StoreSDNode *PlainStore = dyn_cast<StoreSDNode>(Val: ST); |
| 1306 | AtomicSDNode *AtomicStore = dyn_cast<AtomicSDNode>(Val: ST); |
| 1307 | assert((PlainStore || AtomicStore) && "Expected store" ); |
| 1308 | |
| 1309 | // do not support pre/post inc/dec |
| 1310 | if (PlainStore && PlainStore->isIndexed()) |
| 1311 | return false; |
| 1312 | |
| 1313 | const EVT StoreVT = ST->getMemoryVT(); |
| 1314 | if (!StoreVT.isSimple()) |
| 1315 | return false; |
| 1316 | |
| 1317 | // Address Space Setting |
| 1318 | const unsigned CodeAddrSpace = getCodeAddrSpace(N: ST); |
| 1319 | |
| 1320 | SDLoc DL(ST); |
| 1321 | SDValue Chain = ST->getChain(); |
| 1322 | const auto [Ordering, Scope] = insertMemoryInstructionFence(DL, Chain, N: ST); |
| 1323 | |
| 1324 | // Vector Setting |
| 1325 | const unsigned ToTypeWidth = StoreVT.getSimpleVT().getSizeInBits(); |
| 1326 | |
| 1327 | // Create the machine instruction DAG |
| 1328 | SDValue Value = PlainStore ? PlainStore->getValue() : AtomicStore->getVal(); |
| 1329 | |
| 1330 | assert(isPowerOf2_32(ToTypeWidth) && ToTypeWidth >= 8 && ToTypeWidth <= 128 && |
| 1331 | "Invalid width for store" ); |
| 1332 | |
| 1333 | SDValue Offset, Base; |
| 1334 | SelectADDR(Addr: ST->getBasePtr(), Base, Offset); |
| 1335 | |
| 1336 | SDValue Ops[] = {selectPossiblyImm(V: Value), |
| 1337 | getI32Imm(Imm: Ordering, DL), |
| 1338 | getI32Imm(Imm: Scope, DL), |
| 1339 | getI32Imm(Imm: CodeAddrSpace, DL), |
| 1340 | getI32Imm(Imm: ToTypeWidth, DL), |
| 1341 | Base, |
| 1342 | Offset, |
| 1343 | Chain}; |
| 1344 | |
| 1345 | const std::optional<unsigned> Opcode = |
| 1346 | pickOpcodeForVT(VT: Value.getSimpleValueType().SimpleTy, Opcode_i8: NVPTX::ST_i8, |
| 1347 | Opcode_i16: NVPTX::ST_i16, Opcode_i32: NVPTX::ST_i32, Opcode_i64: NVPTX::ST_i64); |
| 1348 | if (!Opcode) |
| 1349 | return false; |
| 1350 | |
| 1351 | SDNode *NVPTXST = CurDAG->getMachineNode(Opcode: *Opcode, dl: DL, VT: MVT::Other, Ops); |
| 1352 | |
| 1353 | if (!NVPTXST) |
| 1354 | return false; |
| 1355 | |
| 1356 | MachineMemOperand *MemRef = ST->getMemOperand(); |
| 1357 | CurDAG->setNodeMemRefs(N: cast<MachineSDNode>(Val: NVPTXST), NewMemRefs: {MemRef}); |
| 1358 | ReplaceNode(F: ST, T: NVPTXST); |
| 1359 | return true; |
| 1360 | } |
| 1361 | |
| 1362 | bool NVPTXDAGToDAGISel::tryStoreVector(SDNode *N) { |
| 1363 | MemSDNode *ST = cast<MemSDNode>(Val: N); |
| 1364 | const EVT StoreVT = ST->getMemoryVT(); |
| 1365 | assert(StoreVT.isSimple() && "Store value is not simple" ); |
| 1366 | |
| 1367 | // Address Space Setting |
| 1368 | const unsigned CodeAddrSpace = getCodeAddrSpace(N: ST); |
| 1369 | if (CodeAddrSpace == NVPTX::AddressSpace::Const) { |
| 1370 | report_fatal_error(reason: "Cannot store to pointer that points to constant " |
| 1371 | "memory space" ); |
| 1372 | } |
| 1373 | |
| 1374 | SDLoc DL(ST); |
| 1375 | SDValue Chain = ST->getChain(); |
| 1376 | const auto [Ordering, Scope] = insertMemoryInstructionFence(DL, Chain, N: ST); |
| 1377 | |
| 1378 | // Type Setting: toType + toTypeWidth |
| 1379 | // - for integer type, always use 'u' |
| 1380 | const unsigned TotalWidth = StoreVT.getSimpleVT().getSizeInBits(); |
| 1381 | |
| 1382 | const unsigned NumElts = getLoadStoreVectorNumElts(N: ST); |
| 1383 | |
| 1384 | SmallVector<SDValue, 16> Ops; |
| 1385 | for (auto &V : ST->ops().slice(N: 1, M: NumElts)) |
| 1386 | Ops.push_back(Elt: selectPossiblyImm(V)); |
| 1387 | SDValue Addr = N->getOperand(Num: NumElts + 1); |
| 1388 | const unsigned ToTypeWidth = TotalWidth / NumElts; |
| 1389 | |
| 1390 | assert(isPowerOf2_32(ToTypeWidth) && ToTypeWidth >= 8 && ToTypeWidth <= 128 && |
| 1391 | TotalWidth <= 256 && "Invalid width for store" ); |
| 1392 | |
| 1393 | SDValue Offset, Base; |
| 1394 | SelectADDR(Addr, Base, Offset); |
| 1395 | |
| 1396 | Ops.append(IL: {getI32Imm(Imm: Ordering, DL), getI32Imm(Imm: Scope, DL), |
| 1397 | getI32Imm(Imm: CodeAddrSpace, DL), getI32Imm(Imm: ToTypeWidth, DL), Base, |
| 1398 | Offset, Chain}); |
| 1399 | |
| 1400 | const MVT::SimpleValueType EltVT = |
| 1401 | ST->getOperand(Num: 1).getSimpleValueType().SimpleTy; |
| 1402 | std::optional<unsigned> Opcode; |
| 1403 | switch (ST->getOpcode()) { |
| 1404 | default: |
| 1405 | return false; |
| 1406 | case NVPTXISD::StoreV2: |
| 1407 | Opcode = pickOpcodeForVT(VT: EltVT, Opcode_i8: NVPTX::STV_i8_v2, Opcode_i16: NVPTX::STV_i16_v2, |
| 1408 | Opcode_i32: NVPTX::STV_i32_v2, Opcode_i64: NVPTX::STV_i64_v2); |
| 1409 | break; |
| 1410 | case NVPTXISD::StoreV4: |
| 1411 | Opcode = pickOpcodeForVT(VT: EltVT, Opcode_i8: NVPTX::STV_i8_v4, Opcode_i16: NVPTX::STV_i16_v4, |
| 1412 | Opcode_i32: NVPTX::STV_i32_v4, Opcode_i64: NVPTX::STV_i64_v4); |
| 1413 | break; |
| 1414 | case NVPTXISD::StoreV8: |
| 1415 | Opcode = pickOpcodeForVT(VT: EltVT, Opcode_i8: {/* no v8i8 */}, Opcode_i16: {/* no v8i16 */}, |
| 1416 | Opcode_i32: NVPTX::STV_i32_v8, Opcode_i64: {/* no v8i64 */}); |
| 1417 | break; |
| 1418 | } |
| 1419 | |
| 1420 | if (!Opcode) |
| 1421 | return false; |
| 1422 | |
| 1423 | SDNode *NVPTXST = CurDAG->getMachineNode(Opcode: *Opcode, dl: DL, VT: MVT::Other, Ops); |
| 1424 | |
| 1425 | MachineMemOperand *MemRef = ST->getMemOperand(); |
| 1426 | CurDAG->setNodeMemRefs(N: cast<MachineSDNode>(Val: NVPTXST), NewMemRefs: {MemRef}); |
| 1427 | |
| 1428 | ReplaceNode(F: ST, T: NVPTXST); |
| 1429 | return true; |
| 1430 | } |
| 1431 | |
| 1432 | bool NVPTXDAGToDAGISel::tryLoadParam(SDNode *Node) { |
| 1433 | SDValue Chain = Node->getOperand(Num: 0); |
| 1434 | SDValue Offset = Node->getOperand(Num: 2); |
| 1435 | SDValue Glue = Node->getOperand(Num: 3); |
| 1436 | SDLoc DL(Node); |
| 1437 | MemSDNode *Mem = cast<MemSDNode>(Val: Node); |
| 1438 | |
| 1439 | unsigned VecSize; |
| 1440 | switch (Node->getOpcode()) { |
| 1441 | default: |
| 1442 | return false; |
| 1443 | case NVPTXISD::LoadParam: |
| 1444 | VecSize = 1; |
| 1445 | break; |
| 1446 | case NVPTXISD::LoadParamV2: |
| 1447 | VecSize = 2; |
| 1448 | break; |
| 1449 | case NVPTXISD::LoadParamV4: |
| 1450 | VecSize = 4; |
| 1451 | break; |
| 1452 | } |
| 1453 | |
| 1454 | EVT EltVT = Node->getValueType(ResNo: 0); |
| 1455 | EVT MemVT = Mem->getMemoryVT(); |
| 1456 | |
| 1457 | std::optional<unsigned> Opcode; |
| 1458 | |
| 1459 | switch (VecSize) { |
| 1460 | default: |
| 1461 | return false; |
| 1462 | case 1: |
| 1463 | Opcode = pickOpcodeForVT(VT: MemVT.getSimpleVT().SimpleTy, |
| 1464 | Opcode_i8: NVPTX::LoadParamMemI8, Opcode_i16: NVPTX::LoadParamMemI16, |
| 1465 | Opcode_i32: NVPTX::LoadParamMemI32, Opcode_i64: NVPTX::LoadParamMemI64); |
| 1466 | break; |
| 1467 | case 2: |
| 1468 | Opcode = |
| 1469 | pickOpcodeForVT(VT: MemVT.getSimpleVT().SimpleTy, Opcode_i8: NVPTX::LoadParamMemV2I8, |
| 1470 | Opcode_i16: NVPTX::LoadParamMemV2I16, Opcode_i32: NVPTX::LoadParamMemV2I32, |
| 1471 | Opcode_i64: NVPTX::LoadParamMemV2I64); |
| 1472 | break; |
| 1473 | case 4: |
| 1474 | Opcode = pickOpcodeForVT(VT: MemVT.getSimpleVT().SimpleTy, |
| 1475 | Opcode_i8: NVPTX::LoadParamMemV4I8, Opcode_i16: NVPTX::LoadParamMemV4I16, |
| 1476 | Opcode_i32: NVPTX::LoadParamMemV4I32, Opcode_i64: {/* no v4i64 */}); |
| 1477 | break; |
| 1478 | } |
| 1479 | if (!Opcode) |
| 1480 | return false; |
| 1481 | |
| 1482 | SDVTList VTs; |
| 1483 | if (VecSize == 1) { |
| 1484 | VTs = CurDAG->getVTList(VT1: EltVT, VT2: MVT::Other, VT3: MVT::Glue); |
| 1485 | } else if (VecSize == 2) { |
| 1486 | VTs = CurDAG->getVTList(VT1: EltVT, VT2: EltVT, VT3: MVT::Other, VT4: MVT::Glue); |
| 1487 | } else { |
| 1488 | EVT EVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other, MVT::Glue }; |
| 1489 | VTs = CurDAG->getVTList(VTs: EVTs); |
| 1490 | } |
| 1491 | |
| 1492 | unsigned OffsetVal = Offset->getAsZExtVal(); |
| 1493 | |
| 1494 | SmallVector<SDValue, 2> Ops( |
| 1495 | {CurDAG->getTargetConstant(Val: OffsetVal, DL, VT: MVT::i32), Chain, Glue}); |
| 1496 | |
| 1497 | ReplaceNode(F: Node, T: CurDAG->getMachineNode(Opcode: *Opcode, dl: DL, VTs, Ops)); |
| 1498 | return true; |
| 1499 | } |
| 1500 | |
| 1501 | // Helpers for constructing opcode (ex: NVPTX::StoreParamV4F32_iiri) |
| 1502 | #define getOpcV2H(ty, opKind0, opKind1) \ |
| 1503 | NVPTX::StoreParamV2##ty##_##opKind0##opKind1 |
| 1504 | |
| 1505 | #define getOpcV2H1(ty, opKind0, isImm1) \ |
| 1506 | (isImm1) ? getOpcV2H(ty, opKind0, i) : getOpcV2H(ty, opKind0, r) |
| 1507 | |
| 1508 | #define getOpcodeForVectorStParamV2(ty, isimm) \ |
| 1509 | (isimm[0]) ? getOpcV2H1(ty, i, isimm[1]) : getOpcV2H1(ty, r, isimm[1]) |
| 1510 | |
| 1511 | #define getOpcV4H(ty, opKind0, opKind1, opKind2, opKind3) \ |
| 1512 | NVPTX::StoreParamV4##ty##_##opKind0##opKind1##opKind2##opKind3 |
| 1513 | |
| 1514 | #define getOpcV4H3(ty, opKind0, opKind1, opKind2, isImm3) \ |
| 1515 | (isImm3) ? getOpcV4H(ty, opKind0, opKind1, opKind2, i) \ |
| 1516 | : getOpcV4H(ty, opKind0, opKind1, opKind2, r) |
| 1517 | |
| 1518 | #define getOpcV4H2(ty, opKind0, opKind1, isImm2, isImm3) \ |
| 1519 | (isImm2) ? getOpcV4H3(ty, opKind0, opKind1, i, isImm3) \ |
| 1520 | : getOpcV4H3(ty, opKind0, opKind1, r, isImm3) |
| 1521 | |
| 1522 | #define getOpcV4H1(ty, opKind0, isImm1, isImm2, isImm3) \ |
| 1523 | (isImm1) ? getOpcV4H2(ty, opKind0, i, isImm2, isImm3) \ |
| 1524 | : getOpcV4H2(ty, opKind0, r, isImm2, isImm3) |
| 1525 | |
| 1526 | #define getOpcodeForVectorStParamV4(ty, isimm) \ |
| 1527 | (isimm[0]) ? getOpcV4H1(ty, i, isimm[1], isimm[2], isimm[3]) \ |
| 1528 | : getOpcV4H1(ty, r, isimm[1], isimm[2], isimm[3]) |
| 1529 | |
| 1530 | #define getOpcodeForVectorStParam(n, ty, isimm) \ |
| 1531 | (n == 2) ? getOpcodeForVectorStParamV2(ty, isimm) \ |
| 1532 | : getOpcodeForVectorStParamV4(ty, isimm) |
| 1533 | |
| 1534 | static unsigned pickOpcodeForVectorStParam(SmallVector<SDValue, 8> &Ops, |
| 1535 | unsigned NumElts, |
| 1536 | MVT::SimpleValueType MemTy, |
| 1537 | SelectionDAG *CurDAG, SDLoc DL) { |
| 1538 | // Determine which inputs are registers and immediates make new operators |
| 1539 | // with constant values |
| 1540 | SmallVector<bool, 4> IsImm(NumElts, false); |
| 1541 | for (unsigned i = 0; i < NumElts; i++) { |
| 1542 | IsImm[i] = (isa<ConstantSDNode>(Val: Ops[i]) || isa<ConstantFPSDNode>(Val: Ops[i])); |
| 1543 | if (IsImm[i]) { |
| 1544 | SDValue Imm = Ops[i]; |
| 1545 | if (MemTy == MVT::f32 || MemTy == MVT::f64) { |
| 1546 | const ConstantFPSDNode *ConstImm = cast<ConstantFPSDNode>(Val&: Imm); |
| 1547 | const ConstantFP *CF = ConstImm->getConstantFPValue(); |
| 1548 | Imm = CurDAG->getTargetConstantFP(Val: *CF, DL, VT: Imm->getValueType(ResNo: 0)); |
| 1549 | } else { |
| 1550 | const ConstantSDNode *ConstImm = cast<ConstantSDNode>(Val&: Imm); |
| 1551 | const ConstantInt *CI = ConstImm->getConstantIntValue(); |
| 1552 | Imm = CurDAG->getTargetConstant(Val: *CI, DL, VT: Imm->getValueType(ResNo: 0)); |
| 1553 | } |
| 1554 | Ops[i] = Imm; |
| 1555 | } |
| 1556 | } |
| 1557 | |
| 1558 | // Get opcode for MemTy, size, and register/immediate operand ordering |
| 1559 | switch (MemTy) { |
| 1560 | case MVT::i8: |
| 1561 | return getOpcodeForVectorStParam(NumElts, I8, IsImm); |
| 1562 | case MVT::i16: |
| 1563 | return getOpcodeForVectorStParam(NumElts, I16, IsImm); |
| 1564 | case MVT::i32: |
| 1565 | return getOpcodeForVectorStParam(NumElts, I32, IsImm); |
| 1566 | case MVT::i64: |
| 1567 | assert(NumElts == 2 && "MVT too large for NumElts > 2" ); |
| 1568 | return getOpcodeForVectorStParamV2(I64, IsImm); |
| 1569 | case MVT::f32: |
| 1570 | return getOpcodeForVectorStParam(NumElts, F32, IsImm); |
| 1571 | case MVT::f64: |
| 1572 | assert(NumElts == 2 && "MVT too large for NumElts > 2" ); |
| 1573 | return getOpcodeForVectorStParamV2(F64, IsImm); |
| 1574 | |
| 1575 | // These cases don't support immediates, just use the all register version |
| 1576 | // and generate moves. |
| 1577 | case MVT::i1: |
| 1578 | return (NumElts == 2) ? NVPTX::StoreParamV2I8_rr |
| 1579 | : NVPTX::StoreParamV4I8_rrrr; |
| 1580 | case MVT::f16: |
| 1581 | case MVT::bf16: |
| 1582 | return (NumElts == 2) ? NVPTX::StoreParamV2I16_rr |
| 1583 | : NVPTX::StoreParamV4I16_rrrr; |
| 1584 | case MVT::v2f16: |
| 1585 | case MVT::v2bf16: |
| 1586 | case MVT::v2i16: |
| 1587 | case MVT::v4i8: |
| 1588 | return (NumElts == 2) ? NVPTX::StoreParamV2I32_rr |
| 1589 | : NVPTX::StoreParamV4I32_rrrr; |
| 1590 | default: |
| 1591 | llvm_unreachable("Cannot select st.param for unknown MemTy" ); |
| 1592 | } |
| 1593 | } |
| 1594 | |
| 1595 | bool NVPTXDAGToDAGISel::tryStoreParam(SDNode *N) { |
| 1596 | SDLoc DL(N); |
| 1597 | SDValue Chain = N->getOperand(Num: 0); |
| 1598 | SDValue Param = N->getOperand(Num: 1); |
| 1599 | unsigned ParamVal = Param->getAsZExtVal(); |
| 1600 | SDValue Offset = N->getOperand(Num: 2); |
| 1601 | unsigned OffsetVal = Offset->getAsZExtVal(); |
| 1602 | MemSDNode *Mem = cast<MemSDNode>(Val: N); |
| 1603 | SDValue Glue = N->getOperand(Num: N->getNumOperands() - 1); |
| 1604 | |
| 1605 | // How many elements do we have? |
| 1606 | unsigned NumElts; |
| 1607 | switch (N->getOpcode()) { |
| 1608 | default: |
| 1609 | llvm_unreachable("Unexpected opcode" ); |
| 1610 | case NVPTXISD::StoreParam: |
| 1611 | NumElts = 1; |
| 1612 | break; |
| 1613 | case NVPTXISD::StoreParamV2: |
| 1614 | NumElts = 2; |
| 1615 | break; |
| 1616 | case NVPTXISD::StoreParamV4: |
| 1617 | NumElts = 4; |
| 1618 | break; |
| 1619 | } |
| 1620 | |
| 1621 | // Build vector of operands |
| 1622 | SmallVector<SDValue, 8> Ops; |
| 1623 | for (unsigned i = 0; i < NumElts; ++i) |
| 1624 | Ops.push_back(Elt: N->getOperand(Num: i + 3)); |
| 1625 | Ops.append(IL: {CurDAG->getTargetConstant(Val: ParamVal, DL, VT: MVT::i32), |
| 1626 | CurDAG->getTargetConstant(Val: OffsetVal, DL, VT: MVT::i32), Chain, Glue}); |
| 1627 | |
| 1628 | // Determine target opcode |
| 1629 | // If we have an i1, use an 8-bit store. The lowering code in |
| 1630 | // NVPTXISelLowering will have already emitted an upcast. |
| 1631 | std::optional<unsigned> Opcode; |
| 1632 | switch (NumElts) { |
| 1633 | default: |
| 1634 | llvm_unreachable("Unexpected NumElts" ); |
| 1635 | case 1: { |
| 1636 | MVT::SimpleValueType MemTy = Mem->getMemoryVT().getSimpleVT().SimpleTy; |
| 1637 | SDValue Imm = Ops[0]; |
| 1638 | if (MemTy != MVT::f16 && MemTy != MVT::bf16 && |
| 1639 | (isa<ConstantSDNode>(Val: Imm) || isa<ConstantFPSDNode>(Val: Imm))) { |
| 1640 | // Convert immediate to target constant |
| 1641 | if (MemTy == MVT::f32 || MemTy == MVT::f64) { |
| 1642 | const ConstantFPSDNode *ConstImm = cast<ConstantFPSDNode>(Val&: Imm); |
| 1643 | const ConstantFP *CF = ConstImm->getConstantFPValue(); |
| 1644 | Imm = CurDAG->getTargetConstantFP(Val: *CF, DL, VT: Imm->getValueType(ResNo: 0)); |
| 1645 | } else { |
| 1646 | const ConstantSDNode *ConstImm = cast<ConstantSDNode>(Val&: Imm); |
| 1647 | const ConstantInt *CI = ConstImm->getConstantIntValue(); |
| 1648 | Imm = CurDAG->getTargetConstant(Val: *CI, DL, VT: Imm->getValueType(ResNo: 0)); |
| 1649 | } |
| 1650 | Ops[0] = Imm; |
| 1651 | // Use immediate version of store param |
| 1652 | Opcode = |
| 1653 | pickOpcodeForVT(VT: MemTy, Opcode_i8: NVPTX::StoreParamI8_i, Opcode_i16: NVPTX::StoreParamI16_i, |
| 1654 | Opcode_i32: NVPTX::StoreParamI32_i, Opcode_i64: NVPTX::StoreParamI64_i); |
| 1655 | } else |
| 1656 | Opcode = pickOpcodeForVT(VT: Mem->getMemoryVT().getSimpleVT().SimpleTy, |
| 1657 | Opcode_i8: NVPTX::StoreParamI8_r, Opcode_i16: NVPTX::StoreParamI16_r, |
| 1658 | Opcode_i32: NVPTX::StoreParamI32_r, Opcode_i64: NVPTX::StoreParamI64_r); |
| 1659 | if (Opcode == NVPTX::StoreParamI8_r) { |
| 1660 | // Fine tune the opcode depending on the size of the operand. |
| 1661 | // This helps to avoid creating redundant COPY instructions in |
| 1662 | // InstrEmitter::AddRegisterOperand(). |
| 1663 | switch (Ops[0].getSimpleValueType().SimpleTy) { |
| 1664 | default: |
| 1665 | break; |
| 1666 | case MVT::i32: |
| 1667 | Opcode = NVPTX::StoreParamI8TruncI32_r; |
| 1668 | break; |
| 1669 | case MVT::i64: |
| 1670 | Opcode = NVPTX::StoreParamI8TruncI64_r; |
| 1671 | break; |
| 1672 | } |
| 1673 | } |
| 1674 | break; |
| 1675 | } |
| 1676 | case 2: |
| 1677 | case 4: { |
| 1678 | MVT::SimpleValueType MemTy = Mem->getMemoryVT().getSimpleVT().SimpleTy; |
| 1679 | Opcode = pickOpcodeForVectorStParam(Ops, NumElts, MemTy, CurDAG, DL); |
| 1680 | break; |
| 1681 | } |
| 1682 | } |
| 1683 | |
| 1684 | SDVTList RetVTs = CurDAG->getVTList(VT1: MVT::Other, VT2: MVT::Glue); |
| 1685 | SDNode *Ret = CurDAG->getMachineNode(Opcode: *Opcode, dl: DL, VTs: RetVTs, Ops); |
| 1686 | MachineMemOperand *MemRef = cast<MemSDNode>(Val: N)->getMemOperand(); |
| 1687 | CurDAG->setNodeMemRefs(N: cast<MachineSDNode>(Val: Ret), NewMemRefs: {MemRef}); |
| 1688 | |
| 1689 | ReplaceNode(F: N, T: Ret); |
| 1690 | return true; |
| 1691 | } |
| 1692 | |
| 1693 | /// SelectBFE - Look for instruction sequences that can be made more efficient |
| 1694 | /// by using the 'bfe' (bit-field extract) PTX instruction |
| 1695 | bool NVPTXDAGToDAGISel::tryBFE(SDNode *N) { |
| 1696 | SDLoc DL(N); |
| 1697 | SDValue LHS = N->getOperand(Num: 0); |
| 1698 | SDValue RHS = N->getOperand(Num: 1); |
| 1699 | SDValue Len; |
| 1700 | SDValue Start; |
| 1701 | SDValue Val; |
| 1702 | bool IsSigned = false; |
| 1703 | |
| 1704 | if (N->getOpcode() == ISD::AND) { |
| 1705 | // Canonicalize the operands |
| 1706 | // We want 'and %val, %mask' |
| 1707 | if (isa<ConstantSDNode>(Val: LHS) && !isa<ConstantSDNode>(Val: RHS)) { |
| 1708 | std::swap(a&: LHS, b&: RHS); |
| 1709 | } |
| 1710 | |
| 1711 | ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(Val&: RHS); |
| 1712 | if (!Mask) { |
| 1713 | // We need a constant mask on the RHS of the AND |
| 1714 | return false; |
| 1715 | } |
| 1716 | |
| 1717 | // Extract the mask bits |
| 1718 | uint64_t MaskVal = Mask->getZExtValue(); |
| 1719 | if (!isMask_64(Value: MaskVal)) { |
| 1720 | // We *could* handle shifted masks here, but doing so would require an |
| 1721 | // 'and' operation to fix up the low-order bits so we would trade |
| 1722 | // shr+and for bfe+and, which has the same throughput |
| 1723 | return false; |
| 1724 | } |
| 1725 | |
| 1726 | // How many bits are in our mask? |
| 1727 | int64_t NumBits = countr_one(Value: MaskVal); |
| 1728 | Len = CurDAG->getTargetConstant(Val: NumBits, DL, VT: MVT::i32); |
| 1729 | |
| 1730 | if (LHS.getOpcode() == ISD::SRL || LHS.getOpcode() == ISD::SRA) { |
| 1731 | // We have a 'srl/and' pair, extract the effective start bit and length |
| 1732 | Val = LHS.getNode()->getOperand(Num: 0); |
| 1733 | Start = LHS.getNode()->getOperand(Num: 1); |
| 1734 | ConstantSDNode *StartConst = dyn_cast<ConstantSDNode>(Val&: Start); |
| 1735 | if (StartConst) { |
| 1736 | uint64_t StartVal = StartConst->getZExtValue(); |
| 1737 | // How many "good" bits do we have left? "good" is defined here as bits |
| 1738 | // that exist in the original value, not shifted in. |
| 1739 | int64_t GoodBits = Start.getValueSizeInBits() - StartVal; |
| 1740 | if (NumBits > GoodBits) { |
| 1741 | // Do not handle the case where bits have been shifted in. In theory |
| 1742 | // we could handle this, but the cost is likely higher than just |
| 1743 | // emitting the srl/and pair. |
| 1744 | return false; |
| 1745 | } |
| 1746 | Start = CurDAG->getTargetConstant(Val: StartVal, DL, VT: MVT::i32); |
| 1747 | } else { |
| 1748 | // Do not handle the case where the shift amount (can be zero if no srl |
| 1749 | // was found) is not constant. We could handle this case, but it would |
| 1750 | // require run-time logic that would be more expensive than just |
| 1751 | // emitting the srl/and pair. |
| 1752 | return false; |
| 1753 | } |
| 1754 | } else { |
| 1755 | // Do not handle the case where the LHS of the and is not a shift. While |
| 1756 | // it would be trivial to handle this case, it would just transform |
| 1757 | // 'and' -> 'bfe', but 'and' has higher-throughput. |
| 1758 | return false; |
| 1759 | } |
| 1760 | } else if (N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) { |
| 1761 | if (LHS->getOpcode() == ISD::AND) { |
| 1762 | ConstantSDNode *ShiftCnst = dyn_cast<ConstantSDNode>(Val&: RHS); |
| 1763 | if (!ShiftCnst) { |
| 1764 | // Shift amount must be constant |
| 1765 | return false; |
| 1766 | } |
| 1767 | |
| 1768 | uint64_t ShiftAmt = ShiftCnst->getZExtValue(); |
| 1769 | |
| 1770 | SDValue AndLHS = LHS->getOperand(Num: 0); |
| 1771 | SDValue AndRHS = LHS->getOperand(Num: 1); |
| 1772 | |
| 1773 | // Canonicalize the AND to have the mask on the RHS |
| 1774 | if (isa<ConstantSDNode>(Val: AndLHS)) { |
| 1775 | std::swap(a&: AndLHS, b&: AndRHS); |
| 1776 | } |
| 1777 | |
| 1778 | ConstantSDNode *MaskCnst = dyn_cast<ConstantSDNode>(Val&: AndRHS); |
| 1779 | if (!MaskCnst) { |
| 1780 | // Mask must be constant |
| 1781 | return false; |
| 1782 | } |
| 1783 | |
| 1784 | uint64_t MaskVal = MaskCnst->getZExtValue(); |
| 1785 | uint64_t NumZeros; |
| 1786 | uint64_t NumBits; |
| 1787 | if (isMask_64(Value: MaskVal)) { |
| 1788 | NumZeros = 0; |
| 1789 | // The number of bits in the result bitfield will be the number of |
| 1790 | // trailing ones (the AND) minus the number of bits we shift off |
| 1791 | NumBits = llvm::countr_one(Value: MaskVal) - ShiftAmt; |
| 1792 | } else if (isShiftedMask_64(Value: MaskVal)) { |
| 1793 | NumZeros = llvm::countr_zero(Val: MaskVal); |
| 1794 | unsigned NumOnes = llvm::countr_one(Value: MaskVal >> NumZeros); |
| 1795 | // The number of bits in the result bitfield will be the number of |
| 1796 | // trailing zeros plus the number of set bits in the mask minus the |
| 1797 | // number of bits we shift off |
| 1798 | NumBits = NumZeros + NumOnes - ShiftAmt; |
| 1799 | } else { |
| 1800 | // This is not a mask we can handle |
| 1801 | return false; |
| 1802 | } |
| 1803 | |
| 1804 | if (ShiftAmt < NumZeros) { |
| 1805 | // Handling this case would require extra logic that would make this |
| 1806 | // transformation non-profitable |
| 1807 | return false; |
| 1808 | } |
| 1809 | |
| 1810 | Val = AndLHS; |
| 1811 | Start = CurDAG->getTargetConstant(Val: ShiftAmt, DL, VT: MVT::i32); |
| 1812 | Len = CurDAG->getTargetConstant(Val: NumBits, DL, VT: MVT::i32); |
| 1813 | |
| 1814 | // If pre-shift AND includes the sign bit in the bitfield, we must use |
| 1815 | // signed BFE to replicate that bit during bitfield extraction. If the |
| 1816 | // sign bit is not part of the mask, unsigned BFE will zero out upper bits |
| 1817 | // of the result |
| 1818 | if (N->getOpcode() == ISD::SRA) |
| 1819 | IsSigned = (ShiftAmt + NumBits) == Val.getValueSizeInBits(); |
| 1820 | } else if (LHS->getOpcode() == ISD::SHL) { |
| 1821 | // Here, we have a pattern like: |
| 1822 | // |
| 1823 | // (sra (shl val, NN), MM) |
| 1824 | // or |
| 1825 | // (srl (shl val, NN), MM) |
| 1826 | // |
| 1827 | // If MM >= NN, we can efficiently optimize this with bfe |
| 1828 | Val = LHS->getOperand(Num: 0); |
| 1829 | |
| 1830 | SDValue ShlRHS = LHS->getOperand(Num: 1); |
| 1831 | ConstantSDNode *ShlCnst = dyn_cast<ConstantSDNode>(Val&: ShlRHS); |
| 1832 | if (!ShlCnst) { |
| 1833 | // Shift amount must be constant |
| 1834 | return false; |
| 1835 | } |
| 1836 | uint64_t InnerShiftAmt = ShlCnst->getZExtValue(); |
| 1837 | |
| 1838 | SDValue ShrRHS = RHS; |
| 1839 | ConstantSDNode *ShrCnst = dyn_cast<ConstantSDNode>(Val&: ShrRHS); |
| 1840 | if (!ShrCnst) { |
| 1841 | // Shift amount must be constant |
| 1842 | return false; |
| 1843 | } |
| 1844 | uint64_t OuterShiftAmt = ShrCnst->getZExtValue(); |
| 1845 | |
| 1846 | // To avoid extra codegen and be profitable, we need Outer >= Inner |
| 1847 | if (OuterShiftAmt < InnerShiftAmt) { |
| 1848 | return false; |
| 1849 | } |
| 1850 | |
| 1851 | // If the outer shift is more than the type size, we have no bitfield to |
| 1852 | // extract (since we also check that the inner shift is <= the outer shift |
| 1853 | // then this also implies that the inner shift is < the type size) |
| 1854 | if (OuterShiftAmt >= Val.getValueSizeInBits()) { |
| 1855 | return false; |
| 1856 | } |
| 1857 | |
| 1858 | Start = CurDAG->getTargetConstant(Val: OuterShiftAmt - InnerShiftAmt, DL, |
| 1859 | VT: MVT::i32); |
| 1860 | Len = CurDAG->getTargetConstant(Val: Val.getValueSizeInBits() - OuterShiftAmt, |
| 1861 | DL, VT: MVT::i32); |
| 1862 | |
| 1863 | if (N->getOpcode() == ISD::SRA) { |
| 1864 | // If we have a arithmetic right shift, we need to use the signed bfe |
| 1865 | // variant |
| 1866 | IsSigned = true; |
| 1867 | } |
| 1868 | } else { |
| 1869 | // No can do... |
| 1870 | return false; |
| 1871 | } |
| 1872 | } else { |
| 1873 | // No can do... |
| 1874 | return false; |
| 1875 | } |
| 1876 | |
| 1877 | |
| 1878 | unsigned Opc; |
| 1879 | // For the BFE operations we form here from "and" and "srl", always use the |
| 1880 | // unsigned variants. |
| 1881 | if (Val.getValueType() == MVT::i32) { |
| 1882 | if (IsSigned) { |
| 1883 | Opc = NVPTX::BFE_S32rii; |
| 1884 | } else { |
| 1885 | Opc = NVPTX::BFE_U32rii; |
| 1886 | } |
| 1887 | } else if (Val.getValueType() == MVT::i64) { |
| 1888 | if (IsSigned) { |
| 1889 | Opc = NVPTX::BFE_S64rii; |
| 1890 | } else { |
| 1891 | Opc = NVPTX::BFE_U64rii; |
| 1892 | } |
| 1893 | } else { |
| 1894 | // We cannot handle this type |
| 1895 | return false; |
| 1896 | } |
| 1897 | |
| 1898 | SDValue Ops[] = { |
| 1899 | Val, Start, Len |
| 1900 | }; |
| 1901 | |
| 1902 | ReplaceNode(F: N, T: CurDAG->getMachineNode(Opcode: Opc, dl: DL, VTs: N->getVTList(), Ops)); |
| 1903 | return true; |
| 1904 | } |
| 1905 | |
| 1906 | // Select bf16/bf16v2 FADD, FSUB, FMUL as fma on targets with only fma |
| 1907 | bool NVPTXDAGToDAGISel::tryBF16ArithToFMA(SDNode *N) { |
| 1908 | EVT VT = SDValue(N, 0).getValueType(); |
| 1909 | if (VT.getScalarType() != MVT::bf16) |
| 1910 | return false; |
| 1911 | |
| 1912 | const NVPTXSubtarget *STI = TM.getSubtargetImpl(); |
| 1913 | if (STI->hasNativeBF16Support(Opcode: N->getOpcode())) |
| 1914 | return false; |
| 1915 | |
| 1916 | const bool IsVec = VT.isVector(); |
| 1917 | assert(!IsVec || VT.getVectorNumElements() == 2); |
| 1918 | SDLoc DL(N); |
| 1919 | SDValue N0 = N->getOperand(Num: 0); |
| 1920 | SDValue N1 = N->getOperand(Num: 1); |
| 1921 | SmallVector<SDValue, 3> Operands; |
| 1922 | auto GetConstant = [&](float Value) -> SDValue { |
| 1923 | // BF16 immediates must be legalized to integer register values |
| 1924 | APFloat APF(Value); |
| 1925 | bool LosesInfo; |
| 1926 | APF.convert(ToSemantics: APFloat::BFloat(), RM: APFloat::rmNearestTiesToEven, losesInfo: &LosesInfo); |
| 1927 | assert(!LosesInfo); |
| 1928 | if (IsVec) { |
| 1929 | auto API = APF.bitcastToAPInt(); |
| 1930 | API = API.concat(NewLSB: API); |
| 1931 | auto Const = CurDAG->getTargetConstant(Val: API, DL, VT: MVT::i32); |
| 1932 | return SDValue(CurDAG->getMachineNode(Opcode: NVPTX::IMOV32i, dl: DL, VT, Op1: Const), 0); |
| 1933 | } |
| 1934 | auto Const = CurDAG->getTargetConstantFP(Val: APF, DL, VT); |
| 1935 | return SDValue(CurDAG->getMachineNode(Opcode: NVPTX::BFMOV16i, dl: DL, VT, Op1: Const), 0); |
| 1936 | }; |
| 1937 | |
| 1938 | switch (N->getOpcode()) { |
| 1939 | case ISD::FADD: |
| 1940 | // add(a, b) -> fma(a, 1.0, b) |
| 1941 | Operands = {N0, GetConstant(1.0), N1}; |
| 1942 | break; |
| 1943 | case ISD::FSUB: |
| 1944 | // sub(a, b) -> fma(b, -1.0, a) |
| 1945 | Operands = {N1, GetConstant(-1.0), N0}; |
| 1946 | break; |
| 1947 | case ISD::FMUL: |
| 1948 | // mul(a, b) -> fma(a, b, -0.0) |
| 1949 | // NOTE: The identity is -0, not 0, because -0 + 0 == 0 for floats |
| 1950 | Operands = {N0, N1, GetConstant(-0.0)}; |
| 1951 | break; |
| 1952 | default: |
| 1953 | llvm_unreachable("Unexpected opcode" ); |
| 1954 | }; |
| 1955 | |
| 1956 | int Opcode = IsVec ? NVPTX::BFMA16x2rrr : NVPTX::BFMA16rrr; |
| 1957 | MachineSDNode *FMA = CurDAG->getMachineNode(Opcode, dl: DL, VT, Ops: Operands); |
| 1958 | ReplaceNode(F: N, T: FMA); |
| 1959 | return true; |
| 1960 | } |
| 1961 | |
| 1962 | static inline bool isAddLike(const SDValue V) { |
| 1963 | return V.getOpcode() == ISD::ADD || |
| 1964 | (V->getOpcode() == ISD::OR && V->getFlags().hasDisjoint()); |
| 1965 | } |
| 1966 | |
| 1967 | // selectBaseADDR - Match a dag node which will serve as the base address for an |
| 1968 | // ADDR operand pair. |
| 1969 | static SDValue selectBaseADDR(SDValue N, SelectionDAG *DAG) { |
| 1970 | if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Val&: N)) |
| 1971 | return DAG->getTargetGlobalAddress(GV: GA->getGlobal(), DL: SDLoc(N), |
| 1972 | VT: GA->getValueType(ResNo: 0), offset: GA->getOffset(), |
| 1973 | TargetFlags: GA->getTargetFlags()); |
| 1974 | if (const auto *ES = dyn_cast<ExternalSymbolSDNode>(Val&: N)) |
| 1975 | return DAG->getTargetExternalSymbol(Sym: ES->getSymbol(), VT: ES->getValueType(ResNo: 0), |
| 1976 | TargetFlags: ES->getTargetFlags()); |
| 1977 | if (const auto *FIN = dyn_cast<FrameIndexSDNode>(Val&: N)) |
| 1978 | return DAG->getTargetFrameIndex(FI: FIN->getIndex(), VT: FIN->getValueType(ResNo: 0)); |
| 1979 | |
| 1980 | return N; |
| 1981 | } |
| 1982 | |
| 1983 | static SDValue accumulateOffset(SDValue &Addr, SDLoc DL, SelectionDAG *DAG) { |
| 1984 | APInt AccumulatedOffset(64u, 0); |
| 1985 | while (isAddLike(V: Addr)) { |
| 1986 | const auto *CN = dyn_cast<ConstantSDNode>(Val: Addr.getOperand(i: 1)); |
| 1987 | if (!CN) |
| 1988 | break; |
| 1989 | |
| 1990 | const APInt CI = CN->getAPIntValue().sext(width: 64); |
| 1991 | if (!(CI + AccumulatedOffset).isSignedIntN(N: 32)) |
| 1992 | break; |
| 1993 | |
| 1994 | AccumulatedOffset += CI; |
| 1995 | Addr = Addr->getOperand(Num: 0); |
| 1996 | } |
| 1997 | return DAG->getSignedTargetConstant(Val: AccumulatedOffset.getSExtValue(), DL, |
| 1998 | VT: MVT::i32); |
| 1999 | } |
| 2000 | |
| 2001 | // Select a pair of operands which represent a valid PTX address, this could be |
| 2002 | // one of the following things: |
| 2003 | // - [var] - Offset is simply set to 0 |
| 2004 | // - [reg] - Offset is simply set to 0 |
| 2005 | // - [reg+immOff] |
| 2006 | // - [var+immOff] |
| 2007 | // Note that immOff must fit into a 32-bit signed integer. |
| 2008 | bool NVPTXDAGToDAGISel::SelectADDR(SDValue Addr, SDValue &Base, |
| 2009 | SDValue &Offset) { |
| 2010 | Offset = accumulateOffset(Addr, DL: SDLoc(Addr), DAG: CurDAG); |
| 2011 | Base = selectBaseADDR(N: Addr, DAG: CurDAG); |
| 2012 | return true; |
| 2013 | } |
| 2014 | |
| 2015 | SDValue NVPTXDAGToDAGISel::selectPossiblyImm(SDValue V) { |
| 2016 | if (V.getOpcode() == ISD::BITCAST) |
| 2017 | V = V.getOperand(i: 0); |
| 2018 | |
| 2019 | if (auto *CN = dyn_cast<ConstantSDNode>(Val&: V)) |
| 2020 | return CurDAG->getTargetConstant(Val: CN->getAPIntValue(), DL: SDLoc(V), |
| 2021 | VT: V.getValueType()); |
| 2022 | if (auto *CN = dyn_cast<ConstantFPSDNode>(Val&: V)) |
| 2023 | return CurDAG->getTargetConstantFP(Val: CN->getValueAPF(), DL: SDLoc(V), |
| 2024 | VT: V.getValueType()); |
| 2025 | return V; |
| 2026 | } |
| 2027 | |
| 2028 | bool NVPTXDAGToDAGISel::ChkMemSDNodeAddressSpace(SDNode *N, |
| 2029 | unsigned int spN) const { |
| 2030 | const Value *Src = nullptr; |
| 2031 | if (MemSDNode *mN = dyn_cast<MemSDNode>(Val: N)) { |
| 2032 | if (spN == 0 && mN->getMemOperand()->getPseudoValue()) |
| 2033 | return true; |
| 2034 | Src = mN->getMemOperand()->getValue(); |
| 2035 | } |
| 2036 | if (!Src) |
| 2037 | return false; |
| 2038 | if (auto *PT = dyn_cast<PointerType>(Val: Src->getType())) |
| 2039 | return (PT->getAddressSpace() == spN); |
| 2040 | return false; |
| 2041 | } |
| 2042 | |
| 2043 | /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for |
| 2044 | /// inline asm expressions. |
| 2045 | bool NVPTXDAGToDAGISel::SelectInlineAsmMemoryOperand( |
| 2046 | const SDValue &Op, InlineAsm::ConstraintCode ConstraintID, |
| 2047 | std::vector<SDValue> &OutOps) { |
| 2048 | SDValue Op0, Op1; |
| 2049 | switch (ConstraintID) { |
| 2050 | default: |
| 2051 | return true; |
| 2052 | case InlineAsm::ConstraintCode::m: // memory |
| 2053 | if (SelectADDR(Addr: Op, Base&: Op0, Offset&: Op1)) { |
| 2054 | OutOps.push_back(x: Op0); |
| 2055 | OutOps.push_back(x: Op1); |
| 2056 | return false; |
| 2057 | } |
| 2058 | break; |
| 2059 | } |
| 2060 | return true; |
| 2061 | } |
| 2062 | |
| 2063 | void NVPTXDAGToDAGISel::SelectV2I64toI128(SDNode *N) { |
| 2064 | // Lower a CopyToReg with two 64-bit inputs |
| 2065 | // Dst:i128, lo:i64, hi:i64 |
| 2066 | // |
| 2067 | // CopyToReg Dst, lo, hi; |
| 2068 | // |
| 2069 | // ==> |
| 2070 | // |
| 2071 | // tmp = V2I64toI128 {lo, hi}; |
| 2072 | // CopyToReg Dst, tmp; |
| 2073 | SDValue Dst = N->getOperand(Num: 1); |
| 2074 | SDValue Lo = N->getOperand(Num: 2); |
| 2075 | SDValue Hi = N->getOperand(Num: 3); |
| 2076 | |
| 2077 | SDLoc DL(N); |
| 2078 | SDNode *Mov = |
| 2079 | CurDAG->getMachineNode(Opcode: NVPTX::V2I64toI128, dl: DL, VT: MVT::i128, Ops: {Lo, Hi}); |
| 2080 | |
| 2081 | SmallVector<SDValue, 4> NewOps(N->getNumOperands() - 1); |
| 2082 | NewOps[0] = N->getOperand(Num: 0); |
| 2083 | NewOps[1] = Dst; |
| 2084 | NewOps[2] = SDValue(Mov, 0); |
| 2085 | if (N->getNumOperands() == 5) |
| 2086 | NewOps[3] = N->getOperand(Num: 4); |
| 2087 | SDValue NewValue = CurDAG->getNode(Opcode: ISD::CopyToReg, DL, ResultTys: SmallVector<EVT>(N->values()), Ops: NewOps); |
| 2088 | |
| 2089 | ReplaceNode(F: N, T: NewValue.getNode()); |
| 2090 | } |
| 2091 | |
| 2092 | void NVPTXDAGToDAGISel::SelectI128toV2I64(SDNode *N) { |
| 2093 | // Lower CopyFromReg from a 128-bit regs to two 64-bit regs |
| 2094 | // Dst:i128, Src:i128 |
| 2095 | // |
| 2096 | // {lo, hi} = CopyFromReg Src |
| 2097 | // |
| 2098 | // ==> |
| 2099 | // |
| 2100 | // {lo, hi} = I128toV2I64 Src |
| 2101 | // |
| 2102 | SDValue Ch = N->getOperand(Num: 0); |
| 2103 | SDValue Src = N->getOperand(Num: 1); |
| 2104 | SDValue Glue = N->getOperand(Num: 2); |
| 2105 | SDLoc DL(N); |
| 2106 | |
| 2107 | // Add Glue and Ch to the operands and results to avoid break the execution |
| 2108 | // order |
| 2109 | SDNode *Mov = CurDAG->getMachineNode( |
| 2110 | Opcode: NVPTX::I128toV2I64, dl: DL, |
| 2111 | ResultTys: {MVT::i64, MVT::i64, Ch.getValueType(), Glue.getValueType()}, |
| 2112 | Ops: {Src, Ch, Glue}); |
| 2113 | |
| 2114 | ReplaceNode(F: N, T: Mov); |
| 2115 | } |
| 2116 | |
| 2117 | bool NVPTXDAGToDAGISel::tryFence(SDNode *N) { |
| 2118 | SDLoc DL(N); |
| 2119 | assert(N->getOpcode() == ISD::ATOMIC_FENCE); |
| 2120 | unsigned int FenceOp = |
| 2121 | getFenceOp(O: NVPTX::Ordering(N->getConstantOperandVal(Num: 1)), |
| 2122 | S: Scopes[N->getConstantOperandVal(Num: 2)], T: Subtarget); |
| 2123 | SDValue Chain = N->getOperand(Num: 0); |
| 2124 | SDNode *FenceNode = CurDAG->getMachineNode(Opcode: FenceOp, dl: DL, VT: MVT::Other, Op1: Chain); |
| 2125 | ReplaceNode(F: N, T: FenceNode); |
| 2126 | return true; |
| 2127 | } |
| 2128 | |
| 2129 | NVPTXScopes::NVPTXScopes(LLVMContext &C) { |
| 2130 | Scopes[C.getOrInsertSyncScopeID(SSN: "singlethread" )] = NVPTX::Scope::Thread; |
| 2131 | Scopes[C.getOrInsertSyncScopeID(SSN: "" )] = NVPTX::Scope::System; |
| 2132 | Scopes[C.getOrInsertSyncScopeID(SSN: "block" )] = NVPTX::Scope::Block; |
| 2133 | Scopes[C.getOrInsertSyncScopeID(SSN: "cluster" )] = NVPTX::Scope::Cluster; |
| 2134 | Scopes[C.getOrInsertSyncScopeID(SSN: "device" )] = NVPTX::Scope::Device; |
| 2135 | } |
| 2136 | |
| 2137 | NVPTX::Scope NVPTXScopes::operator[](SyncScope::ID ID) const { |
| 2138 | if (Scopes.empty()) |
| 2139 | llvm_unreachable("NVPTX Scopes must be initialized before calling " |
| 2140 | "NVPTXScopes::operator[]" ); |
| 2141 | |
| 2142 | auto S = Scopes.find(Key: ID); |
| 2143 | if (S == Scopes.end()) { |
| 2144 | // TODO: |
| 2145 | // - Add API to LLVMContext to get the name of a single scope. |
| 2146 | // - Use that API here to print an error containing the name |
| 2147 | // of this Unknown ID. |
| 2148 | report_fatal_error(reason: formatv(Fmt: "Could not find scope ID={}." , Vals: int(ID))); |
| 2149 | } |
| 2150 | return S->second; |
| 2151 | } |
| 2152 | |
| 2153 | bool NVPTXScopes::empty() const { return Scopes.size() == 0; } |
| 2154 | |
| 2155 | #define CP_ASYNC_BULK_TENSOR_OPCODE(dir, dim, mode, is_s32, suffix) \ |
| 2156 | (is_s32 \ |
| 2157 | ? NVPTX::CP_ASYNC_BULK_TENSOR_##dir##_##dim##_SHARED32_##mode##suffix \ |
| 2158 | : NVPTX::CP_ASYNC_BULK_TENSOR_##dir##_##dim##_##mode##suffix) |
| 2159 | |
| 2160 | #define CP_ASYNC_BULK_TENSOR_OPCODE_S2G_IMPL(op, dim, mode, is_ch, is_s32) \ |
| 2161 | (is_ch ? (CP_ASYNC_BULK_TENSOR_OPCODE(op, dim, mode, is_s32, _CH)) \ |
| 2162 | : (CP_ASYNC_BULK_TENSOR_OPCODE(op, dim, mode, is_s32, ))) |
| 2163 | |
| 2164 | #define GET_CP_ASYNC_BULK_TENSOR_OPCODE_S2G(dim, mode, is_reduce, is_ch, \ |
| 2165 | is_s32) \ |
| 2166 | (is_reduce \ |
| 2167 | ? (CP_ASYNC_BULK_TENSOR_OPCODE_S2G_IMPL(RED, dim, mode, is_ch, is_s32)) \ |
| 2168 | : (CP_ASYNC_BULK_TENSOR_OPCODE_S2G_IMPL(S2G, dim, mode, is_ch, \ |
| 2169 | is_s32))) |
| 2170 | |
| 2171 | #define GET_CP_ASYNC_BULK_TENSOR_OPCODE_G2S(dim, mode, is_mc, is_ch, is_s32) \ |
| 2172 | [&]() -> auto { \ |
| 2173 | if (is_mc && is_ch) \ |
| 2174 | return CP_ASYNC_BULK_TENSOR_OPCODE(G2S, dim, mode, is_s32, _MC_CH); \ |
| 2175 | if (is_ch) \ |
| 2176 | return CP_ASYNC_BULK_TENSOR_OPCODE(G2S, dim, mode, is_s32, _CH); \ |
| 2177 | if (is_mc) \ |
| 2178 | return CP_ASYNC_BULK_TENSOR_OPCODE(G2S, dim, mode, is_s32, _MC); \ |
| 2179 | return CP_ASYNC_BULK_TENSOR_OPCODE(G2S, dim, mode, is_s32, ); \ |
| 2180 | }() |
| 2181 | |
| 2182 | #define GET_CP_ASYNC_BULK_TENSOR_OPCODE_PREFETCH(dim, mode, is_ch) \ |
| 2183 | (is_ch ? NVPTX::CP_ASYNC_BULK_TENSOR_PREFETCH_##dim##_##mode##_CH \ |
| 2184 | : NVPTX::CP_ASYNC_BULK_TENSOR_PREFETCH_##dim##_##mode) |
| 2185 | |
| 2186 | static unsigned GetCpAsyncBulkTensorS2GOpcode(size_t Dim, bool IsShared32, |
| 2187 | bool IsCacheHint, bool IsIm2Col, |
| 2188 | bool IsReduce = false) { |
| 2189 | if (IsIm2Col) { |
| 2190 | switch (Dim) { |
| 2191 | case 3: |
| 2192 | return GET_CP_ASYNC_BULK_TENSOR_OPCODE_S2G(3D, IM2COL, IsReduce, |
| 2193 | IsCacheHint, IsShared32); |
| 2194 | case 4: |
| 2195 | return GET_CP_ASYNC_BULK_TENSOR_OPCODE_S2G(4D, IM2COL, IsReduce, |
| 2196 | IsCacheHint, IsShared32); |
| 2197 | case 5: |
| 2198 | return GET_CP_ASYNC_BULK_TENSOR_OPCODE_S2G(5D, IM2COL, IsReduce, |
| 2199 | IsCacheHint, IsShared32); |
| 2200 | default: |
| 2201 | llvm_unreachable("Invalid Dimension in im2col mode for " |
| 2202 | "GetCpAsyncBulkTensorS2GOpcode." ); |
| 2203 | } |
| 2204 | } else { |
| 2205 | switch (Dim) { |
| 2206 | case 1: |
| 2207 | return GET_CP_ASYNC_BULK_TENSOR_OPCODE_S2G(1D, TILE, IsReduce, |
| 2208 | IsCacheHint, IsShared32); |
| 2209 | case 2: |
| 2210 | return GET_CP_ASYNC_BULK_TENSOR_OPCODE_S2G(2D, TILE, IsReduce, |
| 2211 | IsCacheHint, IsShared32); |
| 2212 | case 3: |
| 2213 | return GET_CP_ASYNC_BULK_TENSOR_OPCODE_S2G(3D, TILE, IsReduce, |
| 2214 | IsCacheHint, IsShared32); |
| 2215 | case 4: |
| 2216 | return GET_CP_ASYNC_BULK_TENSOR_OPCODE_S2G(4D, TILE, IsReduce, |
| 2217 | IsCacheHint, IsShared32); |
| 2218 | case 5: |
| 2219 | return GET_CP_ASYNC_BULK_TENSOR_OPCODE_S2G(5D, TILE, IsReduce, |
| 2220 | IsCacheHint, IsShared32); |
| 2221 | default: |
| 2222 | llvm_unreachable( |
| 2223 | "Invalid Dimension in tile mode for GetCpAsyncBulkTensorS2GOpcode." ); |
| 2224 | } |
| 2225 | } |
| 2226 | } |
| 2227 | |
| 2228 | static unsigned GetCpAsyncBulkTensorG2SOpcode(size_t Dim, bool IsShared32, |
| 2229 | bool IsMultiCast, |
| 2230 | bool IsCacheHint, bool IsIm2Col) { |
| 2231 | if (IsIm2Col) { |
| 2232 | switch (Dim) { |
| 2233 | case 3: |
| 2234 | return GET_CP_ASYNC_BULK_TENSOR_OPCODE_G2S(3D, IM2COL, IsMultiCast, |
| 2235 | IsCacheHint, IsShared32); |
| 2236 | case 4: |
| 2237 | return GET_CP_ASYNC_BULK_TENSOR_OPCODE_G2S(4D, IM2COL, IsMultiCast, |
| 2238 | IsCacheHint, IsShared32); |
| 2239 | case 5: |
| 2240 | return GET_CP_ASYNC_BULK_TENSOR_OPCODE_G2S(5D, IM2COL, IsMultiCast, |
| 2241 | IsCacheHint, IsShared32); |
| 2242 | default: |
| 2243 | llvm_unreachable("Invalid Dimension in im2col mode for " |
| 2244 | "GetCpAsyncBulkTensorG2SOpcode." ); |
| 2245 | } |
| 2246 | } else { |
| 2247 | switch (Dim) { |
| 2248 | case 1: |
| 2249 | return GET_CP_ASYNC_BULK_TENSOR_OPCODE_G2S(1D, TILE, IsMultiCast, |
| 2250 | IsCacheHint, IsShared32); |
| 2251 | case 2: |
| 2252 | return GET_CP_ASYNC_BULK_TENSOR_OPCODE_G2S(2D, TILE, IsMultiCast, |
| 2253 | IsCacheHint, IsShared32); |
| 2254 | case 3: |
| 2255 | return GET_CP_ASYNC_BULK_TENSOR_OPCODE_G2S(3D, TILE, IsMultiCast, |
| 2256 | IsCacheHint, IsShared32); |
| 2257 | case 4: |
| 2258 | return GET_CP_ASYNC_BULK_TENSOR_OPCODE_G2S(4D, TILE, IsMultiCast, |
| 2259 | IsCacheHint, IsShared32); |
| 2260 | case 5: |
| 2261 | return GET_CP_ASYNC_BULK_TENSOR_OPCODE_G2S(5D, TILE, IsMultiCast, |
| 2262 | IsCacheHint, IsShared32); |
| 2263 | default: |
| 2264 | llvm_unreachable( |
| 2265 | "Invalid Dimension in tile mode for GetCpAsyncBulkTensorG2SOpcode." ); |
| 2266 | } |
| 2267 | } |
| 2268 | } |
| 2269 | |
| 2270 | static unsigned GetCpAsyncBulkTensorPrefetchOpcode(size_t Dim, bool IsCacheHint, |
| 2271 | bool IsIm2Col) { |
| 2272 | if (IsIm2Col) { |
| 2273 | switch (Dim) { |
| 2274 | case 3: |
| 2275 | return GET_CP_ASYNC_BULK_TENSOR_OPCODE_PREFETCH(3D, IM2COL, IsCacheHint); |
| 2276 | case 4: |
| 2277 | return GET_CP_ASYNC_BULK_TENSOR_OPCODE_PREFETCH(4D, IM2COL, IsCacheHint); |
| 2278 | case 5: |
| 2279 | return GET_CP_ASYNC_BULK_TENSOR_OPCODE_PREFETCH(5D, IM2COL, IsCacheHint); |
| 2280 | default: |
| 2281 | llvm_unreachable("Invalid Dimension in im2col mode for " |
| 2282 | "GetCpAsyncBulkTensorPrefetchOpcode." ); |
| 2283 | } |
| 2284 | } else { |
| 2285 | switch (Dim) { |
| 2286 | case 1: |
| 2287 | return GET_CP_ASYNC_BULK_TENSOR_OPCODE_PREFETCH(1D, TILE, IsCacheHint); |
| 2288 | case 2: |
| 2289 | return GET_CP_ASYNC_BULK_TENSOR_OPCODE_PREFETCH(2D, TILE, IsCacheHint); |
| 2290 | case 3: |
| 2291 | return GET_CP_ASYNC_BULK_TENSOR_OPCODE_PREFETCH(3D, TILE, IsCacheHint); |
| 2292 | case 4: |
| 2293 | return GET_CP_ASYNC_BULK_TENSOR_OPCODE_PREFETCH(4D, TILE, IsCacheHint); |
| 2294 | case 5: |
| 2295 | return GET_CP_ASYNC_BULK_TENSOR_OPCODE_PREFETCH(5D, TILE, IsCacheHint); |
| 2296 | default: |
| 2297 | llvm_unreachable("Invalid Dimension in tile mode for " |
| 2298 | "GetCpAsyncBulkTensorPrefetchOpcode." ); |
| 2299 | } |
| 2300 | } |
| 2301 | } |
| 2302 | |
| 2303 | static size_t GetDimsFromIntrinsic(unsigned IID) { |
| 2304 | switch (IID) { |
| 2305 | case Intrinsic::nvvm_cp_async_bulk_tensor_g2s_im2col_3d: |
| 2306 | case Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_im2col_3d: |
| 2307 | return 3; |
| 2308 | case Intrinsic::nvvm_cp_async_bulk_tensor_g2s_im2col_4d: |
| 2309 | case Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_im2col_4d: |
| 2310 | return 4; |
| 2311 | case Intrinsic::nvvm_cp_async_bulk_tensor_g2s_im2col_5d: |
| 2312 | case Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_im2col_5d: |
| 2313 | return 5; |
| 2314 | default: |
| 2315 | llvm_unreachable("Invalid im2col intrinsic in GetDimsFromIntrinsic." ); |
| 2316 | } |
| 2317 | } |
| 2318 | |
| 2319 | void NVPTXDAGToDAGISel::SelectCpAsyncBulkTensorG2SCommon(SDNode *N, |
| 2320 | bool IsIm2Col) { |
| 2321 | // We have {Chain, Intrinsic-ID} followed by the actual intrisic args: |
| 2322 | // {dst, mbar, src, dims{d0...dN}, im2col_offsets{dims-2} |
| 2323 | // multicast, cache_hint, |
| 2324 | // multicast_flag, cache_hint_flag, cta_group_flag} |
| 2325 | // NumOperands = {Chain, IID} + {Actual intrinsic args} |
| 2326 | // = {2} + {8 + dims + im2col_offsets} |
| 2327 | size_t NumOps = N->getNumOperands(); |
| 2328 | size_t NumDims = IsIm2Col ? GetDimsFromIntrinsic(IID: N->getConstantOperandVal(Num: 1)) |
| 2329 | : (NumOps - 10); |
| 2330 | // Offsets is always 'NumDims - 2' and only for im2col mode |
| 2331 | size_t NumOffsets = IsIm2Col ? (NumDims - 2) : 0; |
| 2332 | bool IsCacheHint = N->getConstantOperandVal(Num: NumOps - 2) == 1; |
| 2333 | bool IsMultiCast = N->getConstantOperandVal(Num: NumOps - 3) == 1; |
| 2334 | size_t NumBaseArgs = NumDims + NumOffsets + 3; // for {dst, mbar, src} |
| 2335 | size_t MultiCastIdx = NumBaseArgs + 2; // for Chain and IID |
| 2336 | |
| 2337 | unsigned CTAGroupVal = N->getConstantOperandVal(Num: NumOps - 1); |
| 2338 | if ((CTAGroupVal > 0) && !Subtarget->hasCpAsyncBulkTensorCTAGroupSupport()) |
| 2339 | report_fatal_error( |
| 2340 | reason: formatv(Fmt: "CpAsyncBulkTensorG2S cta_group::1/2 is not supported on sm_{}" , |
| 2341 | Vals: Subtarget->getSmVersion())); |
| 2342 | |
| 2343 | SDLoc DL(N); |
| 2344 | SmallVector<SDValue, 8> Ops(N->ops().slice(N: 2, M: NumBaseArgs)); |
| 2345 | |
| 2346 | // Push MultiCast operand, if available |
| 2347 | if (IsMultiCast) |
| 2348 | Ops.push_back(Elt: N->getOperand(Num: MultiCastIdx)); |
| 2349 | |
| 2350 | // Push CacheHint operand, if available |
| 2351 | if (IsCacheHint) |
| 2352 | Ops.push_back(Elt: N->getOperand(Num: MultiCastIdx + 1)); |
| 2353 | |
| 2354 | // Flag for CTA Group |
| 2355 | Ops.push_back(Elt: getI32Imm(Imm: CTAGroupVal, DL)); |
| 2356 | |
| 2357 | // Finally, the chain operand |
| 2358 | Ops.push_back(Elt: N->getOperand(Num: 0)); |
| 2359 | |
| 2360 | bool IsShared32 = |
| 2361 | CurDAG->getDataLayout().getPointerSizeInBits(AS: ADDRESS_SPACE_SHARED) == 32; |
| 2362 | unsigned Opcode = GetCpAsyncBulkTensorG2SOpcode( |
| 2363 | Dim: NumDims, IsShared32, IsMultiCast, IsCacheHint, IsIm2Col); |
| 2364 | ReplaceNode(F: N, T: CurDAG->getMachineNode(Opcode, dl: DL, VTs: N->getVTList(), Ops)); |
| 2365 | } |
| 2366 | |
| 2367 | void NVPTXDAGToDAGISel::SelectCpAsyncBulkTensorS2GCommon(SDNode *N, |
| 2368 | bool IsIm2Col) { |
| 2369 | // We have {Chain, Intrinsic-ID} followed by the actual intrisic args: |
| 2370 | // src, dst, dims{d0...dN}, cache_hint, cache_hint_flag |
| 2371 | // NumOperands = {Chain, IID} + {Actual intrinsic args} |
| 2372 | // = {2} + {4 + dims} |
| 2373 | size_t NumOps = N->getNumOperands(); |
| 2374 | size_t NumDims = NumOps - 6; |
| 2375 | bool IsCacheHint = N->getConstantOperandVal(Num: NumOps - 1) == 1; |
| 2376 | size_t NumArgs = NumDims + (IsCacheHint ? 3 : 2); // src, dst, cache_hint |
| 2377 | |
| 2378 | SDLoc DL(N); |
| 2379 | SmallVector<SDValue, 8> Ops(N->ops().slice(N: 2, M: NumArgs)); |
| 2380 | Ops.push_back(Elt: N->getOperand(Num: 0)); // Chain operand |
| 2381 | |
| 2382 | bool IsShared32 = |
| 2383 | CurDAG->getDataLayout().getPointerSizeInBits(AS: ADDRESS_SPACE_SHARED) == 32; |
| 2384 | unsigned Opcode = |
| 2385 | GetCpAsyncBulkTensorS2GOpcode(Dim: NumDims, IsShared32, IsCacheHint, IsIm2Col); |
| 2386 | ReplaceNode(F: N, T: CurDAG->getMachineNode(Opcode, dl: DL, VTs: N->getVTList(), Ops)); |
| 2387 | } |
| 2388 | |
| 2389 | void NVPTXDAGToDAGISel::SelectCpAsyncBulkTensorPrefetchCommon(SDNode *N, |
| 2390 | bool IsIm2Col) { |
| 2391 | // We have {Chain, Intrinsic-ID} followed by the actual intrisic args: |
| 2392 | // {src, dims{d0...dN}, im2col_offsets{dims-2} |
| 2393 | // cache_hint, cache_hint_flag} |
| 2394 | // NumOperands = {Chain, IID} + {Actual intrinsic args} |
| 2395 | // = {2} + {3 + dims + im2col_offsets} |
| 2396 | size_t NumOps = N->getNumOperands(); |
| 2397 | size_t NumDims = IsIm2Col ? GetDimsFromIntrinsic(IID: N->getConstantOperandVal(Num: 1)) |
| 2398 | : (NumOps - 5); |
| 2399 | // Offsets is always 'NumDims - 2' and only for im2col mode |
| 2400 | size_t NumOffsets = IsIm2Col ? (NumDims - 2) : 0; |
| 2401 | bool IsCacheHint = N->getConstantOperandVal(Num: NumOps - 1) == 1; |
| 2402 | size_t NumArgs = NumDims + NumOffsets + (IsCacheHint ? 2 : 1); |
| 2403 | |
| 2404 | SDLoc DL(N); |
| 2405 | SmallVector<SDValue, 12> Ops(N->ops().slice(N: 2, M: NumArgs)); |
| 2406 | Ops.push_back(Elt: N->getOperand(Num: 0)); // Chain operand |
| 2407 | |
| 2408 | unsigned Opcode = |
| 2409 | GetCpAsyncBulkTensorPrefetchOpcode(Dim: NumDims, IsCacheHint, IsIm2Col); |
| 2410 | ReplaceNode(F: N, T: CurDAG->getMachineNode(Opcode, dl: DL, VTs: N->getVTList(), Ops)); |
| 2411 | } |
| 2412 | |
| 2413 | void NVPTXDAGToDAGISel::SelectCpAsyncBulkTensorReduceCommon(SDNode *N, |
| 2414 | unsigned RedOp, |
| 2415 | bool IsIm2Col) { |
| 2416 | // We have {Chain, Intrinsic-ID} followed by the actual intrisic args: |
| 2417 | // src, dst, dims{d0...dN}, cache_hint, cache_hint_flag |
| 2418 | // NumOperands = {Chain, IID} + {Actual intrinsic args} |
| 2419 | // = {2} + {4 + dims} |
| 2420 | size_t NumOps = N->getNumOperands(); |
| 2421 | size_t NumDims = NumOps - 6; |
| 2422 | bool IsCacheHint = N->getConstantOperandVal(Num: NumOps - 1) == 1; |
| 2423 | size_t NumArgs = NumDims + (IsCacheHint ? 3 : 2); // src, dst, cache_hint |
| 2424 | |
| 2425 | SDLoc DL(N); |
| 2426 | SmallVector<SDValue, 12> Ops(N->ops().slice(N: 2, M: NumArgs)); |
| 2427 | Ops.push_back(Elt: getI32Imm(Imm: RedOp, DL)); // Reduction Op |
| 2428 | Ops.push_back(Elt: N->getOperand(Num: 0)); // Chain operand |
| 2429 | |
| 2430 | bool IsShared32 = |
| 2431 | CurDAG->getDataLayout().getPointerSizeInBits(AS: ADDRESS_SPACE_SHARED) == 32; |
| 2432 | unsigned Opcode = GetCpAsyncBulkTensorS2GOpcode( |
| 2433 | Dim: NumDims, IsShared32, IsCacheHint, IsIm2Col, /*IsReduce=*/true); |
| 2434 | ReplaceNode(F: N, T: CurDAG->getMachineNode(Opcode, dl: DL, VTs: N->getVTList(), Ops)); |
| 2435 | } |
| 2436 | |
| 2437 | #define TCGEN05_ST_OPCODE(SHAPE, NUM) \ |
| 2438 | (enableUnpack ? NVPTX::TCGEN05_ST_##SHAPE##_##NUM##_UNPACK \ |
| 2439 | : NVPTX::TCGEN05_ST_##SHAPE##_##NUM) |
| 2440 | |
| 2441 | static unsigned getTcgen05StOpcode(unsigned IID, bool enableUnpack) { |
| 2442 | switch (IID) { |
| 2443 | case Intrinsic::nvvm_tcgen05_st_16x64b_x1: |
| 2444 | return TCGEN05_ST_OPCODE(16x64b, x1); |
| 2445 | case Intrinsic::nvvm_tcgen05_st_16x64b_x2: |
| 2446 | return TCGEN05_ST_OPCODE(16x64b, x2); |
| 2447 | case Intrinsic::nvvm_tcgen05_st_16x64b_x4: |
| 2448 | return TCGEN05_ST_OPCODE(16x64b, x4); |
| 2449 | case Intrinsic::nvvm_tcgen05_st_16x64b_x8: |
| 2450 | return TCGEN05_ST_OPCODE(16x64b, x8); |
| 2451 | case Intrinsic::nvvm_tcgen05_st_16x64b_x16: |
| 2452 | return TCGEN05_ST_OPCODE(16x64b, x16); |
| 2453 | case Intrinsic::nvvm_tcgen05_st_16x64b_x32: |
| 2454 | return TCGEN05_ST_OPCODE(16x64b, x32); |
| 2455 | case Intrinsic::nvvm_tcgen05_st_16x64b_x64: |
| 2456 | return TCGEN05_ST_OPCODE(16x64b, x64); |
| 2457 | case Intrinsic::nvvm_tcgen05_st_16x64b_x128: |
| 2458 | return TCGEN05_ST_OPCODE(16x64b, x128); |
| 2459 | case Intrinsic::nvvm_tcgen05_st_16x128b_x1: |
| 2460 | return TCGEN05_ST_OPCODE(16x128b, x1); |
| 2461 | case Intrinsic::nvvm_tcgen05_st_16x128b_x2: |
| 2462 | return TCGEN05_ST_OPCODE(16x128b, x2); |
| 2463 | case Intrinsic::nvvm_tcgen05_st_16x128b_x4: |
| 2464 | return TCGEN05_ST_OPCODE(16x128b, x4); |
| 2465 | case Intrinsic::nvvm_tcgen05_st_16x128b_x8: |
| 2466 | return TCGEN05_ST_OPCODE(16x128b, x8); |
| 2467 | case Intrinsic::nvvm_tcgen05_st_16x128b_x16: |
| 2468 | return TCGEN05_ST_OPCODE(16x128b, x16); |
| 2469 | case Intrinsic::nvvm_tcgen05_st_16x128b_x32: |
| 2470 | return TCGEN05_ST_OPCODE(16x128b, x32); |
| 2471 | case Intrinsic::nvvm_tcgen05_st_16x128b_x64: |
| 2472 | return TCGEN05_ST_OPCODE(16x128b, x64); |
| 2473 | case Intrinsic::nvvm_tcgen05_st_16x256b_x1: |
| 2474 | return TCGEN05_ST_OPCODE(16x256b, x1); |
| 2475 | case Intrinsic::nvvm_tcgen05_st_16x256b_x2: |
| 2476 | return TCGEN05_ST_OPCODE(16x256b, x2); |
| 2477 | case Intrinsic::nvvm_tcgen05_st_16x256b_x4: |
| 2478 | return TCGEN05_ST_OPCODE(16x256b, x4); |
| 2479 | case Intrinsic::nvvm_tcgen05_st_16x256b_x8: |
| 2480 | return TCGEN05_ST_OPCODE(16x256b, x8); |
| 2481 | case Intrinsic::nvvm_tcgen05_st_16x256b_x16: |
| 2482 | return TCGEN05_ST_OPCODE(16x256b, x16); |
| 2483 | case Intrinsic::nvvm_tcgen05_st_16x256b_x32: |
| 2484 | return TCGEN05_ST_OPCODE(16x256b, x32); |
| 2485 | case Intrinsic::nvvm_tcgen05_st_16x32bx2_x1: |
| 2486 | return TCGEN05_ST_OPCODE(16x32bx2, x1); |
| 2487 | case Intrinsic::nvvm_tcgen05_st_16x32bx2_x2: |
| 2488 | return TCGEN05_ST_OPCODE(16x32bx2, x2); |
| 2489 | case Intrinsic::nvvm_tcgen05_st_16x32bx2_x4: |
| 2490 | return TCGEN05_ST_OPCODE(16x32bx2, x4); |
| 2491 | case Intrinsic::nvvm_tcgen05_st_16x32bx2_x8: |
| 2492 | return TCGEN05_ST_OPCODE(16x32bx2, x8); |
| 2493 | case Intrinsic::nvvm_tcgen05_st_16x32bx2_x16: |
| 2494 | return TCGEN05_ST_OPCODE(16x32bx2, x16); |
| 2495 | case Intrinsic::nvvm_tcgen05_st_16x32bx2_x32: |
| 2496 | return TCGEN05_ST_OPCODE(16x32bx2, x32); |
| 2497 | case Intrinsic::nvvm_tcgen05_st_16x32bx2_x64: |
| 2498 | return TCGEN05_ST_OPCODE(16x32bx2, x64); |
| 2499 | case Intrinsic::nvvm_tcgen05_st_16x32bx2_x128: |
| 2500 | return TCGEN05_ST_OPCODE(16x32bx2, x128); |
| 2501 | case Intrinsic::nvvm_tcgen05_st_32x32b_x1: |
| 2502 | return TCGEN05_ST_OPCODE(32x32b, x1); |
| 2503 | case Intrinsic::nvvm_tcgen05_st_32x32b_x2: |
| 2504 | return TCGEN05_ST_OPCODE(32x32b, x2); |
| 2505 | case Intrinsic::nvvm_tcgen05_st_32x32b_x4: |
| 2506 | return TCGEN05_ST_OPCODE(32x32b, x4); |
| 2507 | case Intrinsic::nvvm_tcgen05_st_32x32b_x8: |
| 2508 | return TCGEN05_ST_OPCODE(32x32b, x8); |
| 2509 | case Intrinsic::nvvm_tcgen05_st_32x32b_x16: |
| 2510 | return TCGEN05_ST_OPCODE(32x32b, x16); |
| 2511 | case Intrinsic::nvvm_tcgen05_st_32x32b_x32: |
| 2512 | return TCGEN05_ST_OPCODE(32x32b, x32); |
| 2513 | case Intrinsic::nvvm_tcgen05_st_32x32b_x64: |
| 2514 | return TCGEN05_ST_OPCODE(32x32b, x64); |
| 2515 | case Intrinsic::nvvm_tcgen05_st_32x32b_x128: |
| 2516 | return TCGEN05_ST_OPCODE(32x32b, x128); |
| 2517 | } |
| 2518 | llvm_unreachable("unhandled tcgen05.st lowering" ); |
| 2519 | } |
| 2520 | |
| 2521 | void NVPTXDAGToDAGISel::SelectTcgen05St(SDNode *N, bool hasOffset) { |
| 2522 | SDLoc DL(N); |
| 2523 | unsigned IID = cast<ConstantSDNode>(Val: N->getOperand(Num: 1))->getZExtValue(); |
| 2524 | |
| 2525 | SmallVector<SDValue, 128> Operands = { |
| 2526 | N->getOperand(Num: 2) // taddr |
| 2527 | }; |
| 2528 | |
| 2529 | if (hasOffset) |
| 2530 | Operands.push_back(Elt: CurDAG->getTargetConstant( |
| 2531 | Val: cast<ConstantSDNode>(Val: N->getOperand(Num: 3))->getZExtValue(), DL, |
| 2532 | VT: MVT::i32)); // Offset |
| 2533 | |
| 2534 | for (unsigned I = hasOffset ? 4 : 3; I < (N->getNumOperands() - 1); I++) |
| 2535 | Operands.push_back(Elt: N->getOperand(Num: I)); |
| 2536 | |
| 2537 | bool enableUnpack = |
| 2538 | cast<ConstantSDNode>(Val: N->getOperand(Num: N->getNumOperands() - 1)) |
| 2539 | ->getZExtValue(); |
| 2540 | |
| 2541 | Operands.push_back(Elt: N->getOperand(Num: 0)); // Chain |
| 2542 | ReplaceNode(F: N, T: CurDAG->getMachineNode(Opcode: getTcgen05StOpcode(IID, enableUnpack), |
| 2543 | dl: DL, VTs: N->getVTList(), Ops: Operands)); |
| 2544 | } |
| 2545 | |
| 2546 | bool NVPTXDAGToDAGISel::tryIntrinsicVoid(SDNode *N) { |
| 2547 | unsigned IID = N->getConstantOperandVal(Num: 1); |
| 2548 | using TMARedTy = llvm::nvvm::TMAReductionOp; |
| 2549 | auto CastTy = [](TMARedTy Op) { return static_cast<unsigned>(Op); }; |
| 2550 | switch (IID) { |
| 2551 | default: |
| 2552 | return false; |
| 2553 | case Intrinsic::nvvm_cp_async_bulk_tensor_s2g_tile_1d: |
| 2554 | case Intrinsic::nvvm_cp_async_bulk_tensor_s2g_tile_2d: |
| 2555 | case Intrinsic::nvvm_cp_async_bulk_tensor_s2g_tile_3d: |
| 2556 | case Intrinsic::nvvm_cp_async_bulk_tensor_s2g_tile_4d: |
| 2557 | case Intrinsic::nvvm_cp_async_bulk_tensor_s2g_tile_5d: |
| 2558 | SelectCpAsyncBulkTensorS2GCommon(N); |
| 2559 | return true; |
| 2560 | case Intrinsic::nvvm_cp_async_bulk_tensor_s2g_im2col_3d: |
| 2561 | case Intrinsic::nvvm_cp_async_bulk_tensor_s2g_im2col_4d: |
| 2562 | case Intrinsic::nvvm_cp_async_bulk_tensor_s2g_im2col_5d: |
| 2563 | SelectCpAsyncBulkTensorS2GCommon(N, /*IsIm2Col=*/true); |
| 2564 | return true; |
| 2565 | case Intrinsic::nvvm_cp_async_bulk_tensor_g2s_tile_1d: |
| 2566 | case Intrinsic::nvvm_cp_async_bulk_tensor_g2s_tile_2d: |
| 2567 | case Intrinsic::nvvm_cp_async_bulk_tensor_g2s_tile_3d: |
| 2568 | case Intrinsic::nvvm_cp_async_bulk_tensor_g2s_tile_4d: |
| 2569 | case Intrinsic::nvvm_cp_async_bulk_tensor_g2s_tile_5d: |
| 2570 | SelectCpAsyncBulkTensorG2SCommon(N); |
| 2571 | return true; |
| 2572 | case Intrinsic::nvvm_cp_async_bulk_tensor_g2s_im2col_3d: |
| 2573 | case Intrinsic::nvvm_cp_async_bulk_tensor_g2s_im2col_4d: |
| 2574 | case Intrinsic::nvvm_cp_async_bulk_tensor_g2s_im2col_5d: |
| 2575 | SelectCpAsyncBulkTensorG2SCommon(N, /*IsIm2Col=*/true); |
| 2576 | return true; |
| 2577 | case Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_tile_1d: |
| 2578 | case Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_tile_2d: |
| 2579 | case Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_tile_3d: |
| 2580 | case Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_tile_4d: |
| 2581 | case Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_tile_5d: |
| 2582 | SelectCpAsyncBulkTensorPrefetchCommon(N); |
| 2583 | return true; |
| 2584 | case Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_im2col_3d: |
| 2585 | case Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_im2col_4d: |
| 2586 | case Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_im2col_5d: |
| 2587 | SelectCpAsyncBulkTensorPrefetchCommon(N, /*IsIm2Col=*/true); |
| 2588 | return true; |
| 2589 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_add_tile_1d: |
| 2590 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_add_tile_2d: |
| 2591 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_add_tile_3d: |
| 2592 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_add_tile_4d: |
| 2593 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_add_tile_5d: |
| 2594 | SelectCpAsyncBulkTensorReduceCommon(N, RedOp: CastTy(TMARedTy::ADD)); |
| 2595 | return true; |
| 2596 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_add_im2col_3d: |
| 2597 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_add_im2col_4d: |
| 2598 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_add_im2col_5d: |
| 2599 | SelectCpAsyncBulkTensorReduceCommon(N, RedOp: CastTy(TMARedTy::ADD), |
| 2600 | /*IsIm2Col=*/true); |
| 2601 | return true; |
| 2602 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_min_tile_1d: |
| 2603 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_min_tile_2d: |
| 2604 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_min_tile_3d: |
| 2605 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_min_tile_4d: |
| 2606 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_min_tile_5d: |
| 2607 | SelectCpAsyncBulkTensorReduceCommon(N, RedOp: CastTy(TMARedTy::MIN)); |
| 2608 | return true; |
| 2609 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_min_im2col_3d: |
| 2610 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_min_im2col_4d: |
| 2611 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_min_im2col_5d: |
| 2612 | SelectCpAsyncBulkTensorReduceCommon(N, RedOp: CastTy(TMARedTy::MIN), |
| 2613 | /*IsIm2Col=*/true); |
| 2614 | return true; |
| 2615 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_max_tile_1d: |
| 2616 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_max_tile_2d: |
| 2617 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_max_tile_3d: |
| 2618 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_max_tile_4d: |
| 2619 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_max_tile_5d: |
| 2620 | SelectCpAsyncBulkTensorReduceCommon(N, RedOp: CastTy(TMARedTy::MAX)); |
| 2621 | return true; |
| 2622 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_max_im2col_3d: |
| 2623 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_max_im2col_4d: |
| 2624 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_max_im2col_5d: |
| 2625 | SelectCpAsyncBulkTensorReduceCommon(N, RedOp: CastTy(TMARedTy::MAX), |
| 2626 | /*IsIm2Col=*/true); |
| 2627 | return true; |
| 2628 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_inc_tile_1d: |
| 2629 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_inc_tile_2d: |
| 2630 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_inc_tile_3d: |
| 2631 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_inc_tile_4d: |
| 2632 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_inc_tile_5d: |
| 2633 | SelectCpAsyncBulkTensorReduceCommon(N, RedOp: CastTy(TMARedTy::INC)); |
| 2634 | return true; |
| 2635 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_inc_im2col_3d: |
| 2636 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_inc_im2col_4d: |
| 2637 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_inc_im2col_5d: |
| 2638 | SelectCpAsyncBulkTensorReduceCommon(N, RedOp: CastTy(TMARedTy::INC), |
| 2639 | /*IsIm2Col=*/true); |
| 2640 | return true; |
| 2641 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_dec_tile_1d: |
| 2642 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_dec_tile_2d: |
| 2643 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_dec_tile_3d: |
| 2644 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_dec_tile_4d: |
| 2645 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_dec_tile_5d: |
| 2646 | SelectCpAsyncBulkTensorReduceCommon(N, RedOp: CastTy(TMARedTy::DEC)); |
| 2647 | return true; |
| 2648 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_dec_im2col_3d: |
| 2649 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_dec_im2col_4d: |
| 2650 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_dec_im2col_5d: |
| 2651 | SelectCpAsyncBulkTensorReduceCommon(N, RedOp: CastTy(TMARedTy::DEC), |
| 2652 | /*IsIm2Col=*/true); |
| 2653 | return true; |
| 2654 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_and_tile_1d: |
| 2655 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_and_tile_2d: |
| 2656 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_and_tile_3d: |
| 2657 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_and_tile_4d: |
| 2658 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_and_tile_5d: |
| 2659 | SelectCpAsyncBulkTensorReduceCommon(N, RedOp: CastTy(TMARedTy::AND)); |
| 2660 | return true; |
| 2661 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_and_im2col_3d: |
| 2662 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_and_im2col_4d: |
| 2663 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_and_im2col_5d: |
| 2664 | SelectCpAsyncBulkTensorReduceCommon(N, RedOp: CastTy(TMARedTy::AND), |
| 2665 | /*IsIm2Col=*/true); |
| 2666 | return true; |
| 2667 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_or_tile_1d: |
| 2668 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_or_tile_2d: |
| 2669 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_or_tile_3d: |
| 2670 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_or_tile_4d: |
| 2671 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_or_tile_5d: |
| 2672 | SelectCpAsyncBulkTensorReduceCommon(N, RedOp: CastTy(TMARedTy::OR)); |
| 2673 | return true; |
| 2674 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_or_im2col_3d: |
| 2675 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_or_im2col_4d: |
| 2676 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_or_im2col_5d: |
| 2677 | SelectCpAsyncBulkTensorReduceCommon(N, RedOp: CastTy(TMARedTy::OR), |
| 2678 | /*IsIm2Col=*/true); |
| 2679 | return true; |
| 2680 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_xor_tile_1d: |
| 2681 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_xor_tile_2d: |
| 2682 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_xor_tile_3d: |
| 2683 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_xor_tile_4d: |
| 2684 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_xor_tile_5d: |
| 2685 | SelectCpAsyncBulkTensorReduceCommon(N, RedOp: CastTy(TMARedTy::XOR)); |
| 2686 | return true; |
| 2687 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_xor_im2col_3d: |
| 2688 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_xor_im2col_4d: |
| 2689 | case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_xor_im2col_5d: |
| 2690 | SelectCpAsyncBulkTensorReduceCommon(N, RedOp: CastTy(TMARedTy::XOR), |
| 2691 | /*IsIm2Col=*/true); |
| 2692 | return true; |
| 2693 | |
| 2694 | case Intrinsic::nvvm_tcgen05_st_16x64b_x1: |
| 2695 | case Intrinsic::nvvm_tcgen05_st_16x64b_x2: |
| 2696 | case Intrinsic::nvvm_tcgen05_st_16x64b_x4: |
| 2697 | case Intrinsic::nvvm_tcgen05_st_16x64b_x8: |
| 2698 | case Intrinsic::nvvm_tcgen05_st_16x64b_x16: |
| 2699 | case Intrinsic::nvvm_tcgen05_st_16x64b_x32: |
| 2700 | case Intrinsic::nvvm_tcgen05_st_16x64b_x64: |
| 2701 | case Intrinsic::nvvm_tcgen05_st_16x64b_x128: |
| 2702 | case Intrinsic::nvvm_tcgen05_st_32x32b_x1: |
| 2703 | case Intrinsic::nvvm_tcgen05_st_32x32b_x2: |
| 2704 | case Intrinsic::nvvm_tcgen05_st_32x32b_x4: |
| 2705 | case Intrinsic::nvvm_tcgen05_st_32x32b_x8: |
| 2706 | case Intrinsic::nvvm_tcgen05_st_32x32b_x16: |
| 2707 | case Intrinsic::nvvm_tcgen05_st_32x32b_x32: |
| 2708 | case Intrinsic::nvvm_tcgen05_st_32x32b_x64: |
| 2709 | case Intrinsic::nvvm_tcgen05_st_32x32b_x128: |
| 2710 | case Intrinsic::nvvm_tcgen05_st_16x128b_x1: |
| 2711 | case Intrinsic::nvvm_tcgen05_st_16x128b_x2: |
| 2712 | case Intrinsic::nvvm_tcgen05_st_16x128b_x4: |
| 2713 | case Intrinsic::nvvm_tcgen05_st_16x128b_x8: |
| 2714 | case Intrinsic::nvvm_tcgen05_st_16x128b_x16: |
| 2715 | case Intrinsic::nvvm_tcgen05_st_16x128b_x32: |
| 2716 | case Intrinsic::nvvm_tcgen05_st_16x128b_x64: |
| 2717 | case Intrinsic::nvvm_tcgen05_st_16x256b_x1: |
| 2718 | case Intrinsic::nvvm_tcgen05_st_16x256b_x2: |
| 2719 | case Intrinsic::nvvm_tcgen05_st_16x256b_x4: |
| 2720 | case Intrinsic::nvvm_tcgen05_st_16x256b_x8: |
| 2721 | case Intrinsic::nvvm_tcgen05_st_16x256b_x16: |
| 2722 | case Intrinsic::nvvm_tcgen05_st_16x256b_x32: { |
| 2723 | SelectTcgen05St(N); |
| 2724 | return true; |
| 2725 | } |
| 2726 | |
| 2727 | case Intrinsic::nvvm_tcgen05_st_16x32bx2_x1: |
| 2728 | case Intrinsic::nvvm_tcgen05_st_16x32bx2_x2: |
| 2729 | case Intrinsic::nvvm_tcgen05_st_16x32bx2_x4: |
| 2730 | case Intrinsic::nvvm_tcgen05_st_16x32bx2_x8: |
| 2731 | case Intrinsic::nvvm_tcgen05_st_16x32bx2_x16: |
| 2732 | case Intrinsic::nvvm_tcgen05_st_16x32bx2_x32: |
| 2733 | case Intrinsic::nvvm_tcgen05_st_16x32bx2_x64: |
| 2734 | case Intrinsic::nvvm_tcgen05_st_16x32bx2_x128: { |
| 2735 | SelectTcgen05St(N, /* hasOffset */ true); |
| 2736 | return true; |
| 2737 | } |
| 2738 | } |
| 2739 | } |
| 2740 | |