| 1 | //===---- PPCReduceCRLogicals.cpp - Reduce CR Bit Logical operations ------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===---------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This pass aims to reduce the number of logical operations on bits in the CR |
| 10 | // register. These instructions have a fairly high latency and only a single |
| 11 | // pipeline at their disposal in modern PPC cores. Furthermore, they have a |
| 12 | // tendency to occur in fairly small blocks where there's little opportunity |
| 13 | // to hide the latency between the CR logical operation and its user. |
| 14 | // |
| 15 | //===---------------------------------------------------------------------===// |
| 16 | |
| 17 | #include "PPC.h" |
| 18 | #include "PPCInstrInfo.h" |
| 19 | #include "PPCTargetMachine.h" |
| 20 | #include "llvm/ADT/Statistic.h" |
| 21 | #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" |
| 22 | #include "llvm/CodeGen/MachineDominators.h" |
| 23 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 24 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 25 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 26 | #include "llvm/Config/llvm-config.h" |
| 27 | #include "llvm/Support/Debug.h" |
| 28 | |
| 29 | using namespace llvm; |
| 30 | |
| 31 | #define DEBUG_TYPE "ppc-reduce-cr-ops" |
| 32 | |
| 33 | STATISTIC(NumContainedSingleUseBinOps, |
| 34 | "Number of single-use binary CR logical ops contained in a block" ); |
| 35 | STATISTIC(NumToSplitBlocks, |
| 36 | "Number of binary CR logical ops that can be used to split blocks" ); |
| 37 | STATISTIC(TotalCRLogicals, "Number of CR logical ops." ); |
| 38 | STATISTIC(TotalNullaryCRLogicals, |
| 39 | "Number of nullary CR logical ops (CRSET/CRUNSET)." ); |
| 40 | STATISTIC(TotalUnaryCRLogicals, "Number of unary CR logical ops." ); |
| 41 | STATISTIC(TotalBinaryCRLogicals, "Number of CR logical ops." ); |
| 42 | STATISTIC(NumBlocksSplitOnBinaryCROp, |
| 43 | "Number of blocks split on CR binary logical ops." ); |
| 44 | STATISTIC(NumNotSplitIdenticalOperands, |
| 45 | "Number of blocks not split due to operands being identical." ); |
| 46 | STATISTIC(NumNotSplitChainCopies, |
| 47 | "Number of blocks not split due to operands being chained copies." ); |
| 48 | STATISTIC(NumNotSplitWrongOpcode, |
| 49 | "Number of blocks not split due to the wrong opcode." ); |
| 50 | |
| 51 | /// Given a basic block \p Successor that potentially contains PHIs, this |
| 52 | /// function will look for any incoming values in the PHIs that are supposed to |
| 53 | /// be coming from \p OrigMBB but whose definition is actually in \p NewMBB. |
| 54 | /// Any such PHIs will be updated to reflect reality. |
| 55 | static void updatePHIs(MachineBasicBlock *Successor, MachineBasicBlock *OrigMBB, |
| 56 | MachineBasicBlock *NewMBB, MachineRegisterInfo *MRI) { |
| 57 | for (auto &MI : Successor->instrs()) { |
| 58 | if (!MI.isPHI()) |
| 59 | continue; |
| 60 | // This is a really ugly-looking loop, but it was pillaged directly from |
| 61 | // MachineBasicBlock::transferSuccessorsAndUpdatePHIs(). |
| 62 | for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { |
| 63 | MachineOperand &MO = MI.getOperand(i); |
| 64 | if (MO.getMBB() == OrigMBB) { |
| 65 | // Check if the instruction is actually defined in NewMBB. |
| 66 | if (MI.getOperand(i: i - 1).isReg()) { |
| 67 | MachineInstr *DefMI = MRI->getVRegDef(Reg: MI.getOperand(i: i - 1).getReg()); |
| 68 | if (DefMI->getParent() == NewMBB || |
| 69 | !OrigMBB->isSuccessor(MBB: Successor)) { |
| 70 | MO.setMBB(NewMBB); |
| 71 | break; |
| 72 | } |
| 73 | } |
| 74 | } |
| 75 | } |
| 76 | } |
| 77 | } |
| 78 | |
| 79 | /// Given a basic block \p Successor that potentially contains PHIs, this |
| 80 | /// function will look for PHIs that have an incoming value from \p OrigMBB |
| 81 | /// and will add the same incoming value from \p NewMBB. |
| 82 | /// NOTE: This should only be used if \p NewMBB is an immediate dominator of |
| 83 | /// \p OrigMBB. |
| 84 | static void addIncomingValuesToPHIs(MachineBasicBlock *Successor, |
| 85 | MachineBasicBlock *OrigMBB, |
| 86 | MachineBasicBlock *NewMBB, |
| 87 | MachineRegisterInfo *MRI) { |
| 88 | assert(OrigMBB->isSuccessor(NewMBB) && |
| 89 | "NewMBB must be a successor of OrigMBB" ); |
| 90 | for (auto &MI : Successor->instrs()) { |
| 91 | if (!MI.isPHI()) |
| 92 | continue; |
| 93 | // This is a really ugly-looking loop, but it was pillaged directly from |
| 94 | // MachineBasicBlock::transferSuccessorsAndUpdatePHIs(). |
| 95 | for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { |
| 96 | MachineOperand &MO = MI.getOperand(i); |
| 97 | if (MO.getMBB() == OrigMBB) { |
| 98 | MachineInstrBuilder MIB(*MI.getParent()->getParent(), &MI); |
| 99 | MIB.addReg(RegNo: MI.getOperand(i: i - 1).getReg()).addMBB(MBB: NewMBB); |
| 100 | break; |
| 101 | } |
| 102 | } |
| 103 | } |
| 104 | } |
| 105 | |
| 106 | namespace { |
| 107 | struct BlockSplitInfo { |
| 108 | MachineInstr *OrigBranch; |
| 109 | MachineInstr *SplitBefore; |
| 110 | MachineInstr *SplitCond; |
| 111 | unsigned OrigSubreg; |
| 112 | unsigned SplitCondSubreg; |
| 113 | bool InvertNewBranch; |
| 114 | bool InvertOrigBranch; |
| 115 | bool BranchToFallThrough; |
| 116 | const MachineBranchProbabilityInfo *MBPI; |
| 117 | MachineInstr *MIToDelete; |
| 118 | MachineInstr *NewCond; |
| 119 | bool allInstrsInSameMBB() { |
| 120 | if (!OrigBranch || !SplitBefore || !SplitCond) |
| 121 | return false; |
| 122 | MachineBasicBlock *MBB = OrigBranch->getParent(); |
| 123 | if (SplitBefore->getParent() != MBB || SplitCond->getParent() != MBB) |
| 124 | return false; |
| 125 | if (MIToDelete && MIToDelete->getParent() != MBB) |
| 126 | return false; |
| 127 | if (NewCond && NewCond->getParent() != MBB) |
| 128 | return false; |
| 129 | return true; |
| 130 | } |
| 131 | }; |
| 132 | } // end anonymous namespace |
| 133 | |
| 134 | /// Splits a MachineBasicBlock to branch before \p SplitBefore. The original |
| 135 | /// branch is \p OrigBranch. The target of the new branch can either be the same |
| 136 | /// as the target of the original branch or the fallthrough successor of the |
| 137 | /// original block as determined by \p BranchToFallThrough. The branch |
| 138 | /// conditions will be inverted according to \p InvertNewBranch and |
| 139 | /// \p InvertOrigBranch. If an instruction that previously fed the branch is to |
| 140 | /// be deleted, it is provided in \p MIToDelete and \p NewCond will be used as |
| 141 | /// the branch condition. The branch probabilities will be set if the |
| 142 | /// MachineBranchProbabilityInfo isn't null. |
| 143 | static bool splitMBB(BlockSplitInfo &BSI) { |
| 144 | assert(BSI.allInstrsInSameMBB() && |
| 145 | "All instructions must be in the same block." ); |
| 146 | |
| 147 | MachineBasicBlock *ThisMBB = BSI.OrigBranch->getParent(); |
| 148 | MachineFunction *MF = ThisMBB->getParent(); |
| 149 | MachineRegisterInfo *MRI = &MF->getRegInfo(); |
| 150 | assert(MRI->isSSA() && "Can only do this while the function is in SSA form." ); |
| 151 | if (ThisMBB->succ_size() != 2) { |
| 152 | LLVM_DEBUG( |
| 153 | dbgs() << "Don't know how to handle blocks that don't have exactly" |
| 154 | << " two successors.\n" ); |
| 155 | return false; |
| 156 | } |
| 157 | |
| 158 | const PPCInstrInfo *TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo(); |
| 159 | unsigned OrigBROpcode = BSI.OrigBranch->getOpcode(); |
| 160 | unsigned InvertedOpcode = |
| 161 | OrigBROpcode == PPC::BC |
| 162 | ? PPC::BCn |
| 163 | : OrigBROpcode == PPC::BCn |
| 164 | ? PPC::BC |
| 165 | : OrigBROpcode == PPC::BCLR ? PPC::BCLRn : PPC::BCLR; |
| 166 | unsigned NewBROpcode = BSI.InvertNewBranch ? InvertedOpcode : OrigBROpcode; |
| 167 | MachineBasicBlock *OrigTarget = BSI.OrigBranch->getOperand(i: 1).getMBB(); |
| 168 | MachineBasicBlock *OrigFallThrough = OrigTarget == *ThisMBB->succ_begin() |
| 169 | ? *ThisMBB->succ_rbegin() |
| 170 | : *ThisMBB->succ_begin(); |
| 171 | MachineBasicBlock *NewBRTarget = |
| 172 | BSI.BranchToFallThrough ? OrigFallThrough : OrigTarget; |
| 173 | |
| 174 | // It's impossible to know the precise branch probability after the split. |
| 175 | // But it still needs to be reasonable, the whole probability to original |
| 176 | // targets should not be changed. |
| 177 | // After split NewBRTarget will get two incoming edges. Assume P0 is the |
| 178 | // original branch probability to NewBRTarget, P1 and P2 are new branch |
| 179 | // probabilies to NewBRTarget after split. If the two edge frequencies are |
| 180 | // same, then |
| 181 | // F * P1 = F * P0 / 2 ==> P1 = P0 / 2 |
| 182 | // F * (1 - P1) * P2 = F * P1 ==> P2 = P1 / (1 - P1) |
| 183 | BranchProbability ProbToNewTarget, ProbFallThrough; // Prob for new Br. |
| 184 | BranchProbability ProbOrigTarget, ProbOrigFallThrough; // Prob for orig Br. |
| 185 | ProbToNewTarget = ProbFallThrough = BranchProbability::getUnknown(); |
| 186 | ProbOrigTarget = ProbOrigFallThrough = BranchProbability::getUnknown(); |
| 187 | if (BSI.MBPI) { |
| 188 | if (BSI.BranchToFallThrough) { |
| 189 | ProbToNewTarget = BSI.MBPI->getEdgeProbability(Src: ThisMBB, Dst: OrigFallThrough) / 2; |
| 190 | ProbFallThrough = ProbToNewTarget.getCompl(); |
| 191 | ProbOrigFallThrough = ProbToNewTarget / ProbToNewTarget.getCompl(); |
| 192 | ProbOrigTarget = ProbOrigFallThrough.getCompl(); |
| 193 | } else { |
| 194 | ProbToNewTarget = BSI.MBPI->getEdgeProbability(Src: ThisMBB, Dst: OrigTarget) / 2; |
| 195 | ProbFallThrough = ProbToNewTarget.getCompl(); |
| 196 | ProbOrigTarget = ProbToNewTarget / ProbToNewTarget.getCompl(); |
| 197 | ProbOrigFallThrough = ProbOrigTarget.getCompl(); |
| 198 | } |
| 199 | } |
| 200 | |
| 201 | // Create a new basic block. |
| 202 | MachineBasicBlock::iterator InsertPoint = BSI.SplitBefore; |
| 203 | const BasicBlock *LLVM_BB = ThisMBB->getBasicBlock(); |
| 204 | MachineFunction::iterator It = ThisMBB->getIterator(); |
| 205 | MachineBasicBlock *NewMBB = MF->CreateMachineBasicBlock(BB: LLVM_BB); |
| 206 | MF->insert(MBBI: ++It, MBB: NewMBB); |
| 207 | |
| 208 | // Move everything after SplitBefore into the new block. |
| 209 | NewMBB->splice(Where: NewMBB->end(), Other: ThisMBB, From: InsertPoint, To: ThisMBB->end()); |
| 210 | NewMBB->transferSuccessors(FromMBB: ThisMBB); |
| 211 | if (!ProbOrigTarget.isUnknown()) { |
| 212 | auto MBBI = find(Range: NewMBB->successors(), Val: OrigTarget); |
| 213 | NewMBB->setSuccProbability(I: MBBI, Prob: ProbOrigTarget); |
| 214 | MBBI = find(Range: NewMBB->successors(), Val: OrigFallThrough); |
| 215 | NewMBB->setSuccProbability(I: MBBI, Prob: ProbOrigFallThrough); |
| 216 | } |
| 217 | |
| 218 | // Add the two successors to ThisMBB. |
| 219 | ThisMBB->addSuccessor(Succ: NewBRTarget, Prob: ProbToNewTarget); |
| 220 | ThisMBB->addSuccessor(Succ: NewMBB, Prob: ProbFallThrough); |
| 221 | |
| 222 | // Add the branches to ThisMBB. |
| 223 | BuildMI(BB&: *ThisMBB, I: ThisMBB->end(), MIMD: BSI.SplitBefore->getDebugLoc(), |
| 224 | MCID: TII->get(Opcode: NewBROpcode)) |
| 225 | .addReg(RegNo: BSI.SplitCond->getOperand(i: 0).getReg(), flags: 0, SubReg: BSI.SplitCondSubreg) |
| 226 | .addMBB(MBB: NewBRTarget); |
| 227 | BuildMI(BB&: *ThisMBB, I: ThisMBB->end(), MIMD: BSI.SplitBefore->getDebugLoc(), |
| 228 | MCID: TII->get(Opcode: PPC::B)) |
| 229 | .addMBB(MBB: NewMBB); |
| 230 | if (BSI.MIToDelete) |
| 231 | BSI.MIToDelete->eraseFromParent(); |
| 232 | |
| 233 | // Change the condition on the original branch and invert it if requested. |
| 234 | auto FirstTerminator = NewMBB->getFirstTerminator(); |
| 235 | if (BSI.NewCond) { |
| 236 | assert(FirstTerminator->getOperand(0).isReg() && |
| 237 | "Can't update condition of unconditional branch." ); |
| 238 | FirstTerminator->getOperand(i: 0).setReg(BSI.NewCond->getOperand(i: 0).getReg()); |
| 239 | FirstTerminator->getOperand(i: 0).setSubReg(BSI.OrigSubreg); |
| 240 | } |
| 241 | if (BSI.InvertOrigBranch) |
| 242 | FirstTerminator->setDesc(TII->get(Opcode: InvertedOpcode)); |
| 243 | |
| 244 | // If any of the PHIs in the successors of NewMBB reference values that |
| 245 | // now come from NewMBB, they need to be updated. |
| 246 | for (auto *Succ : NewMBB->successors()) { |
| 247 | updatePHIs(Successor: Succ, OrigMBB: ThisMBB, NewMBB, MRI); |
| 248 | } |
| 249 | addIncomingValuesToPHIs(Successor: NewBRTarget, OrigMBB: ThisMBB, NewMBB, MRI); |
| 250 | |
| 251 | LLVM_DEBUG(dbgs() << "After splitting, ThisMBB:\n" ; ThisMBB->dump()); |
| 252 | LLVM_DEBUG(dbgs() << "NewMBB:\n" ; NewMBB->dump()); |
| 253 | LLVM_DEBUG(dbgs() << "New branch-to block:\n" ; NewBRTarget->dump()); |
| 254 | return true; |
| 255 | } |
| 256 | |
| 257 | static bool isBinary(MachineInstr &MI) { |
| 258 | return MI.getNumOperands() == 3; |
| 259 | } |
| 260 | |
| 261 | static bool isNullary(MachineInstr &MI) { |
| 262 | return MI.getNumOperands() == 1; |
| 263 | } |
| 264 | |
| 265 | /// Given a CR logical operation \p CROp, branch opcode \p BROp as well as |
| 266 | /// a flag to indicate if the first operand of \p CROp is used as the |
| 267 | /// SplitBefore operand, determines whether either of the branches are to be |
| 268 | /// inverted as well as whether the new target should be the original |
| 269 | /// fall-through block. |
| 270 | static void |
| 271 | computeBranchTargetAndInversion(unsigned CROp, unsigned BROp, bool UsingDef1, |
| 272 | bool &InvertNewBranch, bool &InvertOrigBranch, |
| 273 | bool &TargetIsFallThrough) { |
| 274 | // The conditions under which each of the output operands should be [un]set |
| 275 | // can certainly be written much more concisely with just 3 if statements or |
| 276 | // ternary expressions. However, this provides a much clearer overview to the |
| 277 | // reader as to what is set for each <CROp, BROp, OpUsed> combination. |
| 278 | if (BROp == PPC::BC || BROp == PPC::BCLR) { |
| 279 | // Regular branches. |
| 280 | switch (CROp) { |
| 281 | default: |
| 282 | llvm_unreachable("Don't know how to handle this CR logical." ); |
| 283 | case PPC::CROR: |
| 284 | InvertNewBranch = false; |
| 285 | InvertOrigBranch = false; |
| 286 | TargetIsFallThrough = false; |
| 287 | return; |
| 288 | case PPC::CRAND: |
| 289 | InvertNewBranch = true; |
| 290 | InvertOrigBranch = false; |
| 291 | TargetIsFallThrough = true; |
| 292 | return; |
| 293 | case PPC::CRNAND: |
| 294 | InvertNewBranch = true; |
| 295 | InvertOrigBranch = true; |
| 296 | TargetIsFallThrough = false; |
| 297 | return; |
| 298 | case PPC::CRNOR: |
| 299 | InvertNewBranch = false; |
| 300 | InvertOrigBranch = true; |
| 301 | TargetIsFallThrough = true; |
| 302 | return; |
| 303 | case PPC::CRORC: |
| 304 | InvertNewBranch = UsingDef1; |
| 305 | InvertOrigBranch = !UsingDef1; |
| 306 | TargetIsFallThrough = false; |
| 307 | return; |
| 308 | case PPC::CRANDC: |
| 309 | InvertNewBranch = !UsingDef1; |
| 310 | InvertOrigBranch = !UsingDef1; |
| 311 | TargetIsFallThrough = true; |
| 312 | return; |
| 313 | } |
| 314 | } else if (BROp == PPC::BCn || BROp == PPC::BCLRn) { |
| 315 | // Negated branches. |
| 316 | switch (CROp) { |
| 317 | default: |
| 318 | llvm_unreachable("Don't know how to handle this CR logical." ); |
| 319 | case PPC::CROR: |
| 320 | InvertNewBranch = true; |
| 321 | InvertOrigBranch = false; |
| 322 | TargetIsFallThrough = true; |
| 323 | return; |
| 324 | case PPC::CRAND: |
| 325 | InvertNewBranch = false; |
| 326 | InvertOrigBranch = false; |
| 327 | TargetIsFallThrough = false; |
| 328 | return; |
| 329 | case PPC::CRNAND: |
| 330 | InvertNewBranch = false; |
| 331 | InvertOrigBranch = true; |
| 332 | TargetIsFallThrough = true; |
| 333 | return; |
| 334 | case PPC::CRNOR: |
| 335 | InvertNewBranch = true; |
| 336 | InvertOrigBranch = true; |
| 337 | TargetIsFallThrough = false; |
| 338 | return; |
| 339 | case PPC::CRORC: |
| 340 | InvertNewBranch = !UsingDef1; |
| 341 | InvertOrigBranch = !UsingDef1; |
| 342 | TargetIsFallThrough = true; |
| 343 | return; |
| 344 | case PPC::CRANDC: |
| 345 | InvertNewBranch = UsingDef1; |
| 346 | InvertOrigBranch = !UsingDef1; |
| 347 | TargetIsFallThrough = false; |
| 348 | return; |
| 349 | } |
| 350 | } else |
| 351 | llvm_unreachable("Don't know how to handle this branch." ); |
| 352 | } |
| 353 | |
| 354 | namespace { |
| 355 | |
| 356 | class PPCReduceCRLogicals : public MachineFunctionPass { |
| 357 | public: |
| 358 | static char ID; |
| 359 | struct CRLogicalOpInfo { |
| 360 | MachineInstr *MI; |
| 361 | // FIXME: If chains of copies are to be handled, this should be a vector. |
| 362 | std::pair<MachineInstr*, MachineInstr*> CopyDefs; |
| 363 | std::pair<MachineInstr*, MachineInstr*> TrueDefs; |
| 364 | unsigned IsBinary : 1; |
| 365 | unsigned IsNullary : 1; |
| 366 | unsigned ContainedInBlock : 1; |
| 367 | unsigned FeedsISEL : 1; |
| 368 | unsigned FeedsBR : 1; |
| 369 | unsigned FeedsLogical : 1; |
| 370 | unsigned SingleUse : 1; |
| 371 | unsigned DefsSingleUse : 1; |
| 372 | unsigned SubregDef1; |
| 373 | unsigned SubregDef2; |
| 374 | CRLogicalOpInfo() : MI(nullptr), IsBinary(0), IsNullary(0), |
| 375 | ContainedInBlock(0), FeedsISEL(0), FeedsBR(0), |
| 376 | FeedsLogical(0), SingleUse(0), DefsSingleUse(1), |
| 377 | SubregDef1(0), SubregDef2(0) { } |
| 378 | void dump(); |
| 379 | }; |
| 380 | |
| 381 | private: |
| 382 | const PPCInstrInfo *TII = nullptr; |
| 383 | MachineFunction *MF = nullptr; |
| 384 | MachineRegisterInfo *MRI = nullptr; |
| 385 | const MachineBranchProbabilityInfo *MBPI = nullptr; |
| 386 | |
| 387 | // A vector to contain all the CR logical operations |
| 388 | SmallVector<CRLogicalOpInfo, 16> AllCRLogicalOps; |
| 389 | void initialize(MachineFunction &MFParm); |
| 390 | void collectCRLogicals(); |
| 391 | bool handleCROp(unsigned Idx); |
| 392 | bool splitBlockOnBinaryCROp(CRLogicalOpInfo &CRI); |
| 393 | static bool isCRLogical(MachineInstr &MI) { |
| 394 | unsigned Opc = MI.getOpcode(); |
| 395 | return Opc == PPC::CRAND || Opc == PPC::CRNAND || Opc == PPC::CROR || |
| 396 | Opc == PPC::CRXOR || Opc == PPC::CRNOR || Opc == PPC::CRNOT || |
| 397 | Opc == PPC::CREQV || Opc == PPC::CRANDC || Opc == PPC::CRORC || |
| 398 | Opc == PPC::CRSET || Opc == PPC::CRUNSET || Opc == PPC::CR6SET || |
| 399 | Opc == PPC::CR6UNSET; |
| 400 | } |
| 401 | bool simplifyCode() { |
| 402 | bool Changed = false; |
| 403 | // Not using a range-based for loop here as the vector may grow while being |
| 404 | // operated on. |
| 405 | for (unsigned i = 0; i < AllCRLogicalOps.size(); i++) |
| 406 | Changed |= handleCROp(Idx: i); |
| 407 | return Changed; |
| 408 | } |
| 409 | |
| 410 | public: |
| 411 | PPCReduceCRLogicals() : MachineFunctionPass(ID) {} |
| 412 | |
| 413 | MachineInstr *lookThroughCRCopy(unsigned Reg, unsigned &Subreg, |
| 414 | MachineInstr *&CpDef); |
| 415 | bool runOnMachineFunction(MachineFunction &MF) override { |
| 416 | if (skipFunction(F: MF.getFunction())) |
| 417 | return false; |
| 418 | |
| 419 | // If the subtarget doesn't use CR bits, there's nothing to do. |
| 420 | const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>(); |
| 421 | if (!STI.useCRBits()) |
| 422 | return false; |
| 423 | |
| 424 | initialize(MFParm&: MF); |
| 425 | collectCRLogicals(); |
| 426 | return simplifyCode(); |
| 427 | } |
| 428 | CRLogicalOpInfo createCRLogicalOpInfo(MachineInstr &MI); |
| 429 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 430 | AU.addRequired<MachineBranchProbabilityInfoWrapperPass>(); |
| 431 | AU.addRequired<MachineDominatorTreeWrapperPass>(); |
| 432 | MachineFunctionPass::getAnalysisUsage(AU); |
| 433 | } |
| 434 | }; |
| 435 | } // end anonymous namespace |
| 436 | |
| 437 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 438 | LLVM_DUMP_METHOD void PPCReduceCRLogicals::CRLogicalOpInfo::dump() { |
| 439 | dbgs() << "CRLogicalOpMI: " ; |
| 440 | MI->dump(); |
| 441 | dbgs() << "IsBinary: " << IsBinary << ", FeedsISEL: " << FeedsISEL; |
| 442 | dbgs() << ", FeedsBR: " << FeedsBR << ", FeedsLogical: " ; |
| 443 | dbgs() << FeedsLogical << ", SingleUse: " << SingleUse; |
| 444 | dbgs() << ", DefsSingleUse: " << DefsSingleUse; |
| 445 | dbgs() << ", SubregDef1: " << SubregDef1 << ", SubregDef2: " ; |
| 446 | dbgs() << SubregDef2 << ", ContainedInBlock: " << ContainedInBlock; |
| 447 | if (!IsNullary) { |
| 448 | dbgs() << "\nDefs:\n" ; |
| 449 | TrueDefs.first->dump(); |
| 450 | } |
| 451 | if (IsBinary) |
| 452 | TrueDefs.second->dump(); |
| 453 | dbgs() << "\n" ; |
| 454 | if (CopyDefs.first) { |
| 455 | dbgs() << "CopyDef1: " ; |
| 456 | CopyDefs.first->dump(); |
| 457 | } |
| 458 | if (CopyDefs.second) { |
| 459 | dbgs() << "CopyDef2: " ; |
| 460 | CopyDefs.second->dump(); |
| 461 | } |
| 462 | } |
| 463 | #endif |
| 464 | |
| 465 | PPCReduceCRLogicals::CRLogicalOpInfo |
| 466 | PPCReduceCRLogicals::createCRLogicalOpInfo(MachineInstr &MIParam) { |
| 467 | CRLogicalOpInfo Ret; |
| 468 | Ret.MI = &MIParam; |
| 469 | // Get the defs |
| 470 | if (isNullary(MI&: MIParam)) { |
| 471 | Ret.IsNullary = 1; |
| 472 | Ret.TrueDefs = std::make_pair(x: nullptr, y: nullptr); |
| 473 | Ret.CopyDefs = std::make_pair(x: nullptr, y: nullptr); |
| 474 | } else { |
| 475 | MachineInstr *Def1 = lookThroughCRCopy(Reg: MIParam.getOperand(i: 1).getReg(), |
| 476 | Subreg&: Ret.SubregDef1, CpDef&: Ret.CopyDefs.first); |
| 477 | Ret.SubregDef1 = MIParam.getOperand(i: 1).getSubReg(); |
| 478 | assert(Def1 && "Must be able to find a definition of operand 1." ); |
| 479 | Ret.DefsSingleUse &= |
| 480 | MRI->hasOneNonDBGUse(RegNo: Def1->getOperand(i: 0).getReg()); |
| 481 | Ret.DefsSingleUse &= |
| 482 | MRI->hasOneNonDBGUse(RegNo: Ret.CopyDefs.first->getOperand(i: 0).getReg()); |
| 483 | if (isBinary(MI&: MIParam)) { |
| 484 | Ret.IsBinary = 1; |
| 485 | MachineInstr *Def2 = lookThroughCRCopy(Reg: MIParam.getOperand(i: 2).getReg(), |
| 486 | Subreg&: Ret.SubregDef2, |
| 487 | CpDef&: Ret.CopyDefs.second); |
| 488 | Ret.SubregDef2 = MIParam.getOperand(i: 2).getSubReg(); |
| 489 | assert(Def2 && "Must be able to find a definition of operand 2." ); |
| 490 | Ret.DefsSingleUse &= |
| 491 | MRI->hasOneNonDBGUse(RegNo: Def2->getOperand(i: 0).getReg()); |
| 492 | Ret.DefsSingleUse &= |
| 493 | MRI->hasOneNonDBGUse(RegNo: Ret.CopyDefs.second->getOperand(i: 0).getReg()); |
| 494 | Ret.TrueDefs = std::make_pair(x&: Def1, y&: Def2); |
| 495 | } else { |
| 496 | Ret.TrueDefs = std::make_pair(x&: Def1, y: nullptr); |
| 497 | Ret.CopyDefs.second = nullptr; |
| 498 | } |
| 499 | } |
| 500 | |
| 501 | Ret.ContainedInBlock = 1; |
| 502 | // Get the uses |
| 503 | for (MachineInstr &UseMI : |
| 504 | MRI->use_nodbg_instructions(Reg: MIParam.getOperand(i: 0).getReg())) { |
| 505 | unsigned Opc = UseMI.getOpcode(); |
| 506 | if (Opc == PPC::ISEL || Opc == PPC::ISEL8) |
| 507 | Ret.FeedsISEL = 1; |
| 508 | if (Opc == PPC::BC || Opc == PPC::BCn || Opc == PPC::BCLR || |
| 509 | Opc == PPC::BCLRn) |
| 510 | Ret.FeedsBR = 1; |
| 511 | Ret.FeedsLogical = isCRLogical(MI&: UseMI); |
| 512 | if (UseMI.getParent() != MIParam.getParent()) |
| 513 | Ret.ContainedInBlock = 0; |
| 514 | } |
| 515 | Ret.SingleUse = MRI->hasOneNonDBGUse(RegNo: MIParam.getOperand(i: 0).getReg()) ? 1 : 0; |
| 516 | |
| 517 | // We now know whether all the uses of the CR logical are in the same block. |
| 518 | if (!Ret.IsNullary) { |
| 519 | Ret.ContainedInBlock &= |
| 520 | (MIParam.getParent() == Ret.TrueDefs.first->getParent()); |
| 521 | if (Ret.IsBinary) |
| 522 | Ret.ContainedInBlock &= |
| 523 | (MIParam.getParent() == Ret.TrueDefs.second->getParent()); |
| 524 | } |
| 525 | LLVM_DEBUG(Ret.dump()); |
| 526 | if (Ret.IsBinary && Ret.ContainedInBlock && Ret.SingleUse) { |
| 527 | NumContainedSingleUseBinOps++; |
| 528 | if (Ret.FeedsBR && Ret.DefsSingleUse) |
| 529 | NumToSplitBlocks++; |
| 530 | } |
| 531 | return Ret; |
| 532 | } |
| 533 | |
| 534 | /// Looks through a COPY instruction to the actual definition of the CR-bit |
| 535 | /// register and returns the instruction that defines it. |
| 536 | /// FIXME: This currently handles what is by-far the most common case: |
| 537 | /// an instruction that defines a CR field followed by a single copy of a bit |
| 538 | /// from that field into a virtual register. If chains of copies need to be |
| 539 | /// handled, this should have a loop until a non-copy instruction is found. |
| 540 | MachineInstr *PPCReduceCRLogicals::lookThroughCRCopy(unsigned Reg, |
| 541 | unsigned &Subreg, |
| 542 | MachineInstr *&CpDef) { |
| 543 | if (!Register::isVirtualRegister(Reg)) |
| 544 | return nullptr; |
| 545 | MachineInstr *Copy = MRI->getVRegDef(Reg); |
| 546 | CpDef = Copy; |
| 547 | if (!Copy->isCopy()) |
| 548 | return Copy; |
| 549 | Register CopySrc = Copy->getOperand(i: 1).getReg(); |
| 550 | if (!CopySrc.isVirtual()) { |
| 551 | const TargetRegisterInfo *TRI = &TII->getRegisterInfo(); |
| 552 | // Loop backwards and return the first MI that modifies the physical CR Reg. |
| 553 | MachineBasicBlock::iterator Me = Copy, B = Copy->getParent()->begin(); |
| 554 | while (Me != B) |
| 555 | if ((--Me)->modifiesRegister(Reg: CopySrc, TRI)) |
| 556 | return &*Me; |
| 557 | return nullptr; |
| 558 | } |
| 559 | return MRI->getVRegDef(Reg: CopySrc); |
| 560 | } |
| 561 | |
| 562 | void PPCReduceCRLogicals::initialize(MachineFunction &MFParam) { |
| 563 | MF = &MFParam; |
| 564 | MRI = &MF->getRegInfo(); |
| 565 | TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo(); |
| 566 | MBPI = &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI(); |
| 567 | |
| 568 | AllCRLogicalOps.clear(); |
| 569 | } |
| 570 | |
| 571 | /// Contains all the implemented transformations on CR logical operations. |
| 572 | /// For example, a binary CR logical can be used to split a block on its inputs, |
| 573 | /// a unary CR logical might be used to change the condition code on a |
| 574 | /// comparison feeding it. A nullary CR logical might simply be removable |
| 575 | /// if the user of the bit it [un]sets can be transformed. |
| 576 | bool PPCReduceCRLogicals::handleCROp(unsigned Idx) { |
| 577 | // We can definitely split a block on the inputs to a binary CR operation |
| 578 | // whose defs and (single) use are within the same block. |
| 579 | bool Changed = false; |
| 580 | CRLogicalOpInfo CRI = AllCRLogicalOps[Idx]; |
| 581 | if (CRI.IsBinary && CRI.ContainedInBlock && CRI.SingleUse && CRI.FeedsBR && |
| 582 | CRI.DefsSingleUse) { |
| 583 | Changed = splitBlockOnBinaryCROp(CRI); |
| 584 | if (Changed) |
| 585 | NumBlocksSplitOnBinaryCROp++; |
| 586 | } |
| 587 | return Changed; |
| 588 | } |
| 589 | |
| 590 | /// Splits a block that contains a CR-logical operation that feeds a branch |
| 591 | /// and whose operands are produced within the block. |
| 592 | /// Example: |
| 593 | /// %vr5<def> = CMPDI %vr2, 0; CRRC:%vr5 G8RC:%vr2 |
| 594 | /// %vr6<def> = COPY %vr5:sub_eq; CRBITRC:%vr6 CRRC:%vr5 |
| 595 | /// %vr7<def> = CMPDI %vr3, 0; CRRC:%vr7 G8RC:%vr3 |
| 596 | /// %vr8<def> = COPY %vr7:sub_eq; CRBITRC:%vr8 CRRC:%vr7 |
| 597 | /// %vr9<def> = CROR %vr6<kill>, %vr8<kill>; CRBITRC:%vr9,%vr6,%vr8 |
| 598 | /// BC %vr9<kill>, <BB#2>; CRBITRC:%vr9 |
| 599 | /// Becomes: |
| 600 | /// %vr5<def> = CMPDI %vr2, 0; CRRC:%vr5 G8RC:%vr2 |
| 601 | /// %vr6<def> = COPY %vr5:sub_eq; CRBITRC:%vr6 CRRC:%vr5 |
| 602 | /// BC %vr6<kill>, <BB#2>; CRBITRC:%vr6 |
| 603 | /// |
| 604 | /// %vr7<def> = CMPDI %vr3, 0; CRRC:%vr7 G8RC:%vr3 |
| 605 | /// %vr8<def> = COPY %vr7:sub_eq; CRBITRC:%vr8 CRRC:%vr7 |
| 606 | /// BC %vr9<kill>, <BB#2>; CRBITRC:%vr9 |
| 607 | bool PPCReduceCRLogicals::splitBlockOnBinaryCROp(CRLogicalOpInfo &CRI) { |
| 608 | if (CRI.CopyDefs.first == CRI.CopyDefs.second) { |
| 609 | LLVM_DEBUG(dbgs() << "Unable to split as the two operands are the same\n" ); |
| 610 | NumNotSplitIdenticalOperands++; |
| 611 | return false; |
| 612 | } |
| 613 | if (CRI.TrueDefs.first->isCopy() || CRI.TrueDefs.second->isCopy() || |
| 614 | CRI.TrueDefs.first->isPHI() || CRI.TrueDefs.second->isPHI()) { |
| 615 | LLVM_DEBUG( |
| 616 | dbgs() << "Unable to split because one of the operands is a PHI or " |
| 617 | "chain of copies.\n" ); |
| 618 | NumNotSplitChainCopies++; |
| 619 | return false; |
| 620 | } |
| 621 | // Note: keep in sync with computeBranchTargetAndInversion(). |
| 622 | if (CRI.MI->getOpcode() != PPC::CROR && |
| 623 | CRI.MI->getOpcode() != PPC::CRAND && |
| 624 | CRI.MI->getOpcode() != PPC::CRNOR && |
| 625 | CRI.MI->getOpcode() != PPC::CRNAND && |
| 626 | CRI.MI->getOpcode() != PPC::CRORC && |
| 627 | CRI.MI->getOpcode() != PPC::CRANDC) { |
| 628 | LLVM_DEBUG(dbgs() << "Unable to split blocks on this opcode.\n" ); |
| 629 | NumNotSplitWrongOpcode++; |
| 630 | return false; |
| 631 | } |
| 632 | LLVM_DEBUG(dbgs() << "Splitting the following CR op:\n" ; CRI.dump()); |
| 633 | MachineBasicBlock::iterator Def1It = CRI.TrueDefs.first; |
| 634 | MachineBasicBlock::iterator Def2It = CRI.TrueDefs.second; |
| 635 | |
| 636 | bool UsingDef1 = false; |
| 637 | MachineInstr *SplitBefore = &*Def2It; |
| 638 | for (auto E = CRI.MI->getParent()->end(); Def2It != E; ++Def2It) { |
| 639 | if (Def1It == Def2It) { // Def2 comes before Def1. |
| 640 | SplitBefore = &*Def1It; |
| 641 | UsingDef1 = true; |
| 642 | break; |
| 643 | } |
| 644 | } |
| 645 | |
| 646 | LLVM_DEBUG(dbgs() << "We will split the following block:\n" ;); |
| 647 | LLVM_DEBUG(CRI.MI->getParent()->dump()); |
| 648 | LLVM_DEBUG(dbgs() << "Before instruction:\n" ; SplitBefore->dump()); |
| 649 | |
| 650 | // Get the branch instruction. |
| 651 | MachineInstr *Branch = |
| 652 | MRI->use_nodbg_begin(RegNo: CRI.MI->getOperand(i: 0).getReg())->getParent(); |
| 653 | |
| 654 | // We want the new block to have no code in it other than the definition |
| 655 | // of the input to the CR logical and the CR logical itself. So we move |
| 656 | // those to the bottom of the block (just before the branch). Then we |
| 657 | // will split before the CR logical. |
| 658 | MachineBasicBlock *MBB = SplitBefore->getParent(); |
| 659 | auto FirstTerminator = MBB->getFirstTerminator(); |
| 660 | MachineBasicBlock::iterator FirstInstrToMove = |
| 661 | UsingDef1 ? CRI.TrueDefs.first : CRI.TrueDefs.second; |
| 662 | MachineBasicBlock::iterator SecondInstrToMove = |
| 663 | UsingDef1 ? CRI.CopyDefs.first : CRI.CopyDefs.second; |
| 664 | |
| 665 | // The instructions that need to be moved are not guaranteed to be |
| 666 | // contiguous. Move them individually. |
| 667 | // FIXME: If one of the operands is a chain of (single use) copies, they |
| 668 | // can all be moved and we can still split. |
| 669 | MBB->splice(Where: FirstTerminator, Other: MBB, From: FirstInstrToMove); |
| 670 | if (FirstInstrToMove != SecondInstrToMove) |
| 671 | MBB->splice(Where: FirstTerminator, Other: MBB, From: SecondInstrToMove); |
| 672 | MBB->splice(Where: FirstTerminator, Other: MBB, From: CRI.MI); |
| 673 | |
| 674 | unsigned Opc = CRI.MI->getOpcode(); |
| 675 | bool InvertOrigBranch, InvertNewBranch, TargetIsFallThrough; |
| 676 | computeBranchTargetAndInversion(CROp: Opc, BROp: Branch->getOpcode(), UsingDef1, |
| 677 | InvertNewBranch, InvertOrigBranch, |
| 678 | TargetIsFallThrough); |
| 679 | MachineInstr *NewCond = CRI.CopyDefs.first; |
| 680 | MachineInstr *SplitCond = CRI.CopyDefs.second; |
| 681 | if (!UsingDef1) { |
| 682 | std::swap(a&: NewCond, b&: SplitCond); |
| 683 | std::swap(a&: CRI.SubregDef1, b&: CRI.SubregDef2); |
| 684 | } |
| 685 | LLVM_DEBUG(dbgs() << "We will " << (InvertNewBranch ? "invert" : "copy" )); |
| 686 | LLVM_DEBUG(dbgs() << " the original branch and the target is the " |
| 687 | << (TargetIsFallThrough ? "fallthrough block\n" |
| 688 | : "orig. target block\n" )); |
| 689 | LLVM_DEBUG(dbgs() << "Original branch instruction: " ; Branch->dump()); |
| 690 | BlockSplitInfo BSI{ |
| 691 | .OrigBranch: Branch, .SplitBefore: SplitBefore, .SplitCond: SplitCond, .OrigSubreg: CRI.SubregDef1, |
| 692 | .SplitCondSubreg: CRI.SubregDef2, .InvertNewBranch: InvertNewBranch, .InvertOrigBranch: InvertOrigBranch, .BranchToFallThrough: TargetIsFallThrough, |
| 693 | .MBPI: MBPI, .MIToDelete: CRI.MI, .NewCond: NewCond}; |
| 694 | bool Changed = splitMBB(BSI); |
| 695 | // If we've split on a CR logical that is fed by a CR logical, |
| 696 | // recompute the source CR logical as it may be usable for splitting. |
| 697 | if (Changed) { |
| 698 | bool Input1CRlogical = |
| 699 | CRI.TrueDefs.first && isCRLogical(MI&: *CRI.TrueDefs.first); |
| 700 | bool Input2CRlogical = |
| 701 | CRI.TrueDefs.second && isCRLogical(MI&: *CRI.TrueDefs.second); |
| 702 | if (Input1CRlogical) |
| 703 | AllCRLogicalOps.push_back(Elt: createCRLogicalOpInfo(MIParam&: *CRI.TrueDefs.first)); |
| 704 | if (Input2CRlogical) |
| 705 | AllCRLogicalOps.push_back(Elt: createCRLogicalOpInfo(MIParam&: *CRI.TrueDefs.second)); |
| 706 | } |
| 707 | return Changed; |
| 708 | } |
| 709 | |
| 710 | void PPCReduceCRLogicals::collectCRLogicals() { |
| 711 | for (MachineBasicBlock &MBB : *MF) { |
| 712 | for (MachineInstr &MI : MBB) { |
| 713 | if (isCRLogical(MI)) { |
| 714 | AllCRLogicalOps.push_back(Elt: createCRLogicalOpInfo(MIParam&: MI)); |
| 715 | TotalCRLogicals++; |
| 716 | if (AllCRLogicalOps.back().IsNullary) |
| 717 | TotalNullaryCRLogicals++; |
| 718 | else if (AllCRLogicalOps.back().IsBinary) |
| 719 | TotalBinaryCRLogicals++; |
| 720 | else |
| 721 | TotalUnaryCRLogicals++; |
| 722 | } |
| 723 | } |
| 724 | } |
| 725 | } |
| 726 | |
| 727 | INITIALIZE_PASS_BEGIN(PPCReduceCRLogicals, DEBUG_TYPE, |
| 728 | "PowerPC Reduce CR logical Operation" , false, false) |
| 729 | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) |
| 730 | INITIALIZE_PASS_END(PPCReduceCRLogicals, DEBUG_TYPE, |
| 731 | "PowerPC Reduce CR logical Operation" , false, false) |
| 732 | |
| 733 | char PPCReduceCRLogicals::ID = 0; |
| 734 | FunctionPass* |
| 735 | llvm::createPPCReduceCRLogicalsPass() { return new PPCReduceCRLogicals(); } |
| 736 | |