1 | //===---- PPCReduceCRLogicals.cpp - Reduce CR Bit Logical operations ------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===---------------------------------------------------------------------===// |
8 | // |
9 | // This pass aims to reduce the number of logical operations on bits in the CR |
10 | // register. These instructions have a fairly high latency and only a single |
11 | // pipeline at their disposal in modern PPC cores. Furthermore, they have a |
12 | // tendency to occur in fairly small blocks where there's little opportunity |
13 | // to hide the latency between the CR logical operation and its user. |
14 | // |
15 | //===---------------------------------------------------------------------===// |
16 | |
17 | #include "PPC.h" |
18 | #include "PPCInstrInfo.h" |
19 | #include "PPCTargetMachine.h" |
20 | #include "llvm/ADT/Statistic.h" |
21 | #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" |
22 | #include "llvm/CodeGen/MachineDominators.h" |
23 | #include "llvm/CodeGen/MachineFunctionPass.h" |
24 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
25 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
26 | #include "llvm/Config/llvm-config.h" |
27 | #include "llvm/Support/Debug.h" |
28 | |
29 | using namespace llvm; |
30 | |
31 | #define DEBUG_TYPE "ppc-reduce-cr-ops" |
32 | |
33 | STATISTIC(NumContainedSingleUseBinOps, |
34 | "Number of single-use binary CR logical ops contained in a block" ); |
35 | STATISTIC(NumToSplitBlocks, |
36 | "Number of binary CR logical ops that can be used to split blocks" ); |
37 | STATISTIC(TotalCRLogicals, "Number of CR logical ops." ); |
38 | STATISTIC(TotalNullaryCRLogicals, |
39 | "Number of nullary CR logical ops (CRSET/CRUNSET)." ); |
40 | STATISTIC(TotalUnaryCRLogicals, "Number of unary CR logical ops." ); |
41 | STATISTIC(TotalBinaryCRLogicals, "Number of CR logical ops." ); |
42 | STATISTIC(NumBlocksSplitOnBinaryCROp, |
43 | "Number of blocks split on CR binary logical ops." ); |
44 | STATISTIC(NumNotSplitIdenticalOperands, |
45 | "Number of blocks not split due to operands being identical." ); |
46 | STATISTIC(NumNotSplitChainCopies, |
47 | "Number of blocks not split due to operands being chained copies." ); |
48 | STATISTIC(NumNotSplitWrongOpcode, |
49 | "Number of blocks not split due to the wrong opcode." ); |
50 | |
51 | /// Given a basic block \p Successor that potentially contains PHIs, this |
52 | /// function will look for any incoming values in the PHIs that are supposed to |
53 | /// be coming from \p OrigMBB but whose definition is actually in \p NewMBB. |
54 | /// Any such PHIs will be updated to reflect reality. |
55 | static void updatePHIs(MachineBasicBlock *Successor, MachineBasicBlock *OrigMBB, |
56 | MachineBasicBlock *NewMBB, MachineRegisterInfo *MRI) { |
57 | for (auto &MI : Successor->instrs()) { |
58 | if (!MI.isPHI()) |
59 | continue; |
60 | // This is a really ugly-looking loop, but it was pillaged directly from |
61 | // MachineBasicBlock::transferSuccessorsAndUpdatePHIs(). |
62 | for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { |
63 | MachineOperand &MO = MI.getOperand(i); |
64 | if (MO.getMBB() == OrigMBB) { |
65 | // Check if the instruction is actually defined in NewMBB. |
66 | if (MI.getOperand(i: i - 1).isReg()) { |
67 | MachineInstr *DefMI = MRI->getVRegDef(Reg: MI.getOperand(i: i - 1).getReg()); |
68 | if (DefMI->getParent() == NewMBB || |
69 | !OrigMBB->isSuccessor(MBB: Successor)) { |
70 | MO.setMBB(NewMBB); |
71 | break; |
72 | } |
73 | } |
74 | } |
75 | } |
76 | } |
77 | } |
78 | |
79 | /// Given a basic block \p Successor that potentially contains PHIs, this |
80 | /// function will look for PHIs that have an incoming value from \p OrigMBB |
81 | /// and will add the same incoming value from \p NewMBB. |
82 | /// NOTE: This should only be used if \p NewMBB is an immediate dominator of |
83 | /// \p OrigMBB. |
84 | static void addIncomingValuesToPHIs(MachineBasicBlock *Successor, |
85 | MachineBasicBlock *OrigMBB, |
86 | MachineBasicBlock *NewMBB, |
87 | MachineRegisterInfo *MRI) { |
88 | assert(OrigMBB->isSuccessor(NewMBB) && |
89 | "NewMBB must be a successor of OrigMBB" ); |
90 | for (auto &MI : Successor->instrs()) { |
91 | if (!MI.isPHI()) |
92 | continue; |
93 | // This is a really ugly-looking loop, but it was pillaged directly from |
94 | // MachineBasicBlock::transferSuccessorsAndUpdatePHIs(). |
95 | for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { |
96 | MachineOperand &MO = MI.getOperand(i); |
97 | if (MO.getMBB() == OrigMBB) { |
98 | MachineInstrBuilder MIB(*MI.getParent()->getParent(), &MI); |
99 | MIB.addReg(RegNo: MI.getOperand(i: i - 1).getReg()).addMBB(MBB: NewMBB); |
100 | break; |
101 | } |
102 | } |
103 | } |
104 | } |
105 | |
106 | namespace { |
107 | struct BlockSplitInfo { |
108 | MachineInstr *OrigBranch; |
109 | MachineInstr *SplitBefore; |
110 | MachineInstr *SplitCond; |
111 | unsigned OrigSubreg; |
112 | unsigned SplitCondSubreg; |
113 | bool InvertNewBranch; |
114 | bool InvertOrigBranch; |
115 | bool BranchToFallThrough; |
116 | const MachineBranchProbabilityInfo *MBPI; |
117 | MachineInstr *MIToDelete; |
118 | MachineInstr *NewCond; |
119 | bool allInstrsInSameMBB() { |
120 | if (!OrigBranch || !SplitBefore || !SplitCond) |
121 | return false; |
122 | MachineBasicBlock *MBB = OrigBranch->getParent(); |
123 | if (SplitBefore->getParent() != MBB || SplitCond->getParent() != MBB) |
124 | return false; |
125 | if (MIToDelete && MIToDelete->getParent() != MBB) |
126 | return false; |
127 | if (NewCond && NewCond->getParent() != MBB) |
128 | return false; |
129 | return true; |
130 | } |
131 | }; |
132 | } // end anonymous namespace |
133 | |
134 | /// Splits a MachineBasicBlock to branch before \p SplitBefore. The original |
135 | /// branch is \p OrigBranch. The target of the new branch can either be the same |
136 | /// as the target of the original branch or the fallthrough successor of the |
137 | /// original block as determined by \p BranchToFallThrough. The branch |
138 | /// conditions will be inverted according to \p InvertNewBranch and |
139 | /// \p InvertOrigBranch. If an instruction that previously fed the branch is to |
140 | /// be deleted, it is provided in \p MIToDelete and \p NewCond will be used as |
141 | /// the branch condition. The branch probabilities will be set if the |
142 | /// MachineBranchProbabilityInfo isn't null. |
143 | static bool splitMBB(BlockSplitInfo &BSI) { |
144 | assert(BSI.allInstrsInSameMBB() && |
145 | "All instructions must be in the same block." ); |
146 | |
147 | MachineBasicBlock *ThisMBB = BSI.OrigBranch->getParent(); |
148 | MachineFunction *MF = ThisMBB->getParent(); |
149 | MachineRegisterInfo *MRI = &MF->getRegInfo(); |
150 | assert(MRI->isSSA() && "Can only do this while the function is in SSA form." ); |
151 | if (ThisMBB->succ_size() != 2) { |
152 | LLVM_DEBUG( |
153 | dbgs() << "Don't know how to handle blocks that don't have exactly" |
154 | << " two successors.\n" ); |
155 | return false; |
156 | } |
157 | |
158 | const PPCInstrInfo *TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo(); |
159 | unsigned OrigBROpcode = BSI.OrigBranch->getOpcode(); |
160 | unsigned InvertedOpcode = |
161 | OrigBROpcode == PPC::BC |
162 | ? PPC::BCn |
163 | : OrigBROpcode == PPC::BCn |
164 | ? PPC::BC |
165 | : OrigBROpcode == PPC::BCLR ? PPC::BCLRn : PPC::BCLR; |
166 | unsigned NewBROpcode = BSI.InvertNewBranch ? InvertedOpcode : OrigBROpcode; |
167 | MachineBasicBlock *OrigTarget = BSI.OrigBranch->getOperand(i: 1).getMBB(); |
168 | MachineBasicBlock *OrigFallThrough = OrigTarget == *ThisMBB->succ_begin() |
169 | ? *ThisMBB->succ_rbegin() |
170 | : *ThisMBB->succ_begin(); |
171 | MachineBasicBlock *NewBRTarget = |
172 | BSI.BranchToFallThrough ? OrigFallThrough : OrigTarget; |
173 | |
174 | // It's impossible to know the precise branch probability after the split. |
175 | // But it still needs to be reasonable, the whole probability to original |
176 | // targets should not be changed. |
177 | // After split NewBRTarget will get two incoming edges. Assume P0 is the |
178 | // original branch probability to NewBRTarget, P1 and P2 are new branch |
179 | // probabilies to NewBRTarget after split. If the two edge frequencies are |
180 | // same, then |
181 | // F * P1 = F * P0 / 2 ==> P1 = P0 / 2 |
182 | // F * (1 - P1) * P2 = F * P1 ==> P2 = P1 / (1 - P1) |
183 | BranchProbability ProbToNewTarget, ProbFallThrough; // Prob for new Br. |
184 | BranchProbability ProbOrigTarget, ProbOrigFallThrough; // Prob for orig Br. |
185 | ProbToNewTarget = ProbFallThrough = BranchProbability::getUnknown(); |
186 | ProbOrigTarget = ProbOrigFallThrough = BranchProbability::getUnknown(); |
187 | if (BSI.MBPI) { |
188 | if (BSI.BranchToFallThrough) { |
189 | ProbToNewTarget = BSI.MBPI->getEdgeProbability(Src: ThisMBB, Dst: OrigFallThrough) / 2; |
190 | ProbFallThrough = ProbToNewTarget.getCompl(); |
191 | ProbOrigFallThrough = ProbToNewTarget / ProbToNewTarget.getCompl(); |
192 | ProbOrigTarget = ProbOrigFallThrough.getCompl(); |
193 | } else { |
194 | ProbToNewTarget = BSI.MBPI->getEdgeProbability(Src: ThisMBB, Dst: OrigTarget) / 2; |
195 | ProbFallThrough = ProbToNewTarget.getCompl(); |
196 | ProbOrigTarget = ProbToNewTarget / ProbToNewTarget.getCompl(); |
197 | ProbOrigFallThrough = ProbOrigTarget.getCompl(); |
198 | } |
199 | } |
200 | |
201 | // Create a new basic block. |
202 | MachineBasicBlock::iterator InsertPoint = BSI.SplitBefore; |
203 | const BasicBlock *LLVM_BB = ThisMBB->getBasicBlock(); |
204 | MachineFunction::iterator It = ThisMBB->getIterator(); |
205 | MachineBasicBlock *NewMBB = MF->CreateMachineBasicBlock(BB: LLVM_BB); |
206 | MF->insert(MBBI: ++It, MBB: NewMBB); |
207 | |
208 | // Move everything after SplitBefore into the new block. |
209 | NewMBB->splice(Where: NewMBB->end(), Other: ThisMBB, From: InsertPoint, To: ThisMBB->end()); |
210 | NewMBB->transferSuccessors(FromMBB: ThisMBB); |
211 | if (!ProbOrigTarget.isUnknown()) { |
212 | auto MBBI = find(Range: NewMBB->successors(), Val: OrigTarget); |
213 | NewMBB->setSuccProbability(I: MBBI, Prob: ProbOrigTarget); |
214 | MBBI = find(Range: NewMBB->successors(), Val: OrigFallThrough); |
215 | NewMBB->setSuccProbability(I: MBBI, Prob: ProbOrigFallThrough); |
216 | } |
217 | |
218 | // Add the two successors to ThisMBB. |
219 | ThisMBB->addSuccessor(Succ: NewBRTarget, Prob: ProbToNewTarget); |
220 | ThisMBB->addSuccessor(Succ: NewMBB, Prob: ProbFallThrough); |
221 | |
222 | // Add the branches to ThisMBB. |
223 | BuildMI(BB&: *ThisMBB, I: ThisMBB->end(), MIMD: BSI.SplitBefore->getDebugLoc(), |
224 | MCID: TII->get(Opcode: NewBROpcode)) |
225 | .addReg(RegNo: BSI.SplitCond->getOperand(i: 0).getReg(), flags: 0, SubReg: BSI.SplitCondSubreg) |
226 | .addMBB(MBB: NewBRTarget); |
227 | BuildMI(BB&: *ThisMBB, I: ThisMBB->end(), MIMD: BSI.SplitBefore->getDebugLoc(), |
228 | MCID: TII->get(Opcode: PPC::B)) |
229 | .addMBB(MBB: NewMBB); |
230 | if (BSI.MIToDelete) |
231 | BSI.MIToDelete->eraseFromParent(); |
232 | |
233 | // Change the condition on the original branch and invert it if requested. |
234 | auto FirstTerminator = NewMBB->getFirstTerminator(); |
235 | if (BSI.NewCond) { |
236 | assert(FirstTerminator->getOperand(0).isReg() && |
237 | "Can't update condition of unconditional branch." ); |
238 | FirstTerminator->getOperand(i: 0).setReg(BSI.NewCond->getOperand(i: 0).getReg()); |
239 | FirstTerminator->getOperand(i: 0).setSubReg(BSI.OrigSubreg); |
240 | } |
241 | if (BSI.InvertOrigBranch) |
242 | FirstTerminator->setDesc(TII->get(Opcode: InvertedOpcode)); |
243 | |
244 | // If any of the PHIs in the successors of NewMBB reference values that |
245 | // now come from NewMBB, they need to be updated. |
246 | for (auto *Succ : NewMBB->successors()) { |
247 | updatePHIs(Successor: Succ, OrigMBB: ThisMBB, NewMBB, MRI); |
248 | } |
249 | addIncomingValuesToPHIs(Successor: NewBRTarget, OrigMBB: ThisMBB, NewMBB, MRI); |
250 | |
251 | LLVM_DEBUG(dbgs() << "After splitting, ThisMBB:\n" ; ThisMBB->dump()); |
252 | LLVM_DEBUG(dbgs() << "NewMBB:\n" ; NewMBB->dump()); |
253 | LLVM_DEBUG(dbgs() << "New branch-to block:\n" ; NewBRTarget->dump()); |
254 | return true; |
255 | } |
256 | |
257 | static bool isBinary(MachineInstr &MI) { |
258 | return MI.getNumOperands() == 3; |
259 | } |
260 | |
261 | static bool isNullary(MachineInstr &MI) { |
262 | return MI.getNumOperands() == 1; |
263 | } |
264 | |
265 | /// Given a CR logical operation \p CROp, branch opcode \p BROp as well as |
266 | /// a flag to indicate if the first operand of \p CROp is used as the |
267 | /// SplitBefore operand, determines whether either of the branches are to be |
268 | /// inverted as well as whether the new target should be the original |
269 | /// fall-through block. |
270 | static void |
271 | computeBranchTargetAndInversion(unsigned CROp, unsigned BROp, bool UsingDef1, |
272 | bool &InvertNewBranch, bool &InvertOrigBranch, |
273 | bool &TargetIsFallThrough) { |
274 | // The conditions under which each of the output operands should be [un]set |
275 | // can certainly be written much more concisely with just 3 if statements or |
276 | // ternary expressions. However, this provides a much clearer overview to the |
277 | // reader as to what is set for each <CROp, BROp, OpUsed> combination. |
278 | if (BROp == PPC::BC || BROp == PPC::BCLR) { |
279 | // Regular branches. |
280 | switch (CROp) { |
281 | default: |
282 | llvm_unreachable("Don't know how to handle this CR logical." ); |
283 | case PPC::CROR: |
284 | InvertNewBranch = false; |
285 | InvertOrigBranch = false; |
286 | TargetIsFallThrough = false; |
287 | return; |
288 | case PPC::CRAND: |
289 | InvertNewBranch = true; |
290 | InvertOrigBranch = false; |
291 | TargetIsFallThrough = true; |
292 | return; |
293 | case PPC::CRNAND: |
294 | InvertNewBranch = true; |
295 | InvertOrigBranch = true; |
296 | TargetIsFallThrough = false; |
297 | return; |
298 | case PPC::CRNOR: |
299 | InvertNewBranch = false; |
300 | InvertOrigBranch = true; |
301 | TargetIsFallThrough = true; |
302 | return; |
303 | case PPC::CRORC: |
304 | InvertNewBranch = UsingDef1; |
305 | InvertOrigBranch = !UsingDef1; |
306 | TargetIsFallThrough = false; |
307 | return; |
308 | case PPC::CRANDC: |
309 | InvertNewBranch = !UsingDef1; |
310 | InvertOrigBranch = !UsingDef1; |
311 | TargetIsFallThrough = true; |
312 | return; |
313 | } |
314 | } else if (BROp == PPC::BCn || BROp == PPC::BCLRn) { |
315 | // Negated branches. |
316 | switch (CROp) { |
317 | default: |
318 | llvm_unreachable("Don't know how to handle this CR logical." ); |
319 | case PPC::CROR: |
320 | InvertNewBranch = true; |
321 | InvertOrigBranch = false; |
322 | TargetIsFallThrough = true; |
323 | return; |
324 | case PPC::CRAND: |
325 | InvertNewBranch = false; |
326 | InvertOrigBranch = false; |
327 | TargetIsFallThrough = false; |
328 | return; |
329 | case PPC::CRNAND: |
330 | InvertNewBranch = false; |
331 | InvertOrigBranch = true; |
332 | TargetIsFallThrough = true; |
333 | return; |
334 | case PPC::CRNOR: |
335 | InvertNewBranch = true; |
336 | InvertOrigBranch = true; |
337 | TargetIsFallThrough = false; |
338 | return; |
339 | case PPC::CRORC: |
340 | InvertNewBranch = !UsingDef1; |
341 | InvertOrigBranch = !UsingDef1; |
342 | TargetIsFallThrough = true; |
343 | return; |
344 | case PPC::CRANDC: |
345 | InvertNewBranch = UsingDef1; |
346 | InvertOrigBranch = !UsingDef1; |
347 | TargetIsFallThrough = false; |
348 | return; |
349 | } |
350 | } else |
351 | llvm_unreachable("Don't know how to handle this branch." ); |
352 | } |
353 | |
354 | namespace { |
355 | |
356 | class PPCReduceCRLogicals : public MachineFunctionPass { |
357 | public: |
358 | static char ID; |
359 | struct CRLogicalOpInfo { |
360 | MachineInstr *MI; |
361 | // FIXME: If chains of copies are to be handled, this should be a vector. |
362 | std::pair<MachineInstr*, MachineInstr*> CopyDefs; |
363 | std::pair<MachineInstr*, MachineInstr*> TrueDefs; |
364 | unsigned IsBinary : 1; |
365 | unsigned IsNullary : 1; |
366 | unsigned ContainedInBlock : 1; |
367 | unsigned FeedsISEL : 1; |
368 | unsigned FeedsBR : 1; |
369 | unsigned FeedsLogical : 1; |
370 | unsigned SingleUse : 1; |
371 | unsigned DefsSingleUse : 1; |
372 | unsigned SubregDef1; |
373 | unsigned SubregDef2; |
374 | CRLogicalOpInfo() : MI(nullptr), IsBinary(0), IsNullary(0), |
375 | ContainedInBlock(0), FeedsISEL(0), FeedsBR(0), |
376 | FeedsLogical(0), SingleUse(0), DefsSingleUse(1), |
377 | SubregDef1(0), SubregDef2(0) { } |
378 | void dump(); |
379 | }; |
380 | |
381 | private: |
382 | const PPCInstrInfo *TII = nullptr; |
383 | MachineFunction *MF = nullptr; |
384 | MachineRegisterInfo *MRI = nullptr; |
385 | const MachineBranchProbabilityInfo *MBPI = nullptr; |
386 | |
387 | // A vector to contain all the CR logical operations |
388 | SmallVector<CRLogicalOpInfo, 16> AllCRLogicalOps; |
389 | void initialize(MachineFunction &MFParm); |
390 | void collectCRLogicals(); |
391 | bool handleCROp(unsigned Idx); |
392 | bool splitBlockOnBinaryCROp(CRLogicalOpInfo &CRI); |
393 | static bool isCRLogical(MachineInstr &MI) { |
394 | unsigned Opc = MI.getOpcode(); |
395 | return Opc == PPC::CRAND || Opc == PPC::CRNAND || Opc == PPC::CROR || |
396 | Opc == PPC::CRXOR || Opc == PPC::CRNOR || Opc == PPC::CRNOT || |
397 | Opc == PPC::CREQV || Opc == PPC::CRANDC || Opc == PPC::CRORC || |
398 | Opc == PPC::CRSET || Opc == PPC::CRUNSET || Opc == PPC::CR6SET || |
399 | Opc == PPC::CR6UNSET; |
400 | } |
401 | bool simplifyCode() { |
402 | bool Changed = false; |
403 | // Not using a range-based for loop here as the vector may grow while being |
404 | // operated on. |
405 | for (unsigned i = 0; i < AllCRLogicalOps.size(); i++) |
406 | Changed |= handleCROp(Idx: i); |
407 | return Changed; |
408 | } |
409 | |
410 | public: |
411 | PPCReduceCRLogicals() : MachineFunctionPass(ID) {} |
412 | |
413 | MachineInstr *lookThroughCRCopy(unsigned Reg, unsigned &Subreg, |
414 | MachineInstr *&CpDef); |
415 | bool runOnMachineFunction(MachineFunction &MF) override { |
416 | if (skipFunction(F: MF.getFunction())) |
417 | return false; |
418 | |
419 | // If the subtarget doesn't use CR bits, there's nothing to do. |
420 | const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>(); |
421 | if (!STI.useCRBits()) |
422 | return false; |
423 | |
424 | initialize(MFParm&: MF); |
425 | collectCRLogicals(); |
426 | return simplifyCode(); |
427 | } |
428 | CRLogicalOpInfo createCRLogicalOpInfo(MachineInstr &MI); |
429 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
430 | AU.addRequired<MachineBranchProbabilityInfoWrapperPass>(); |
431 | AU.addRequired<MachineDominatorTreeWrapperPass>(); |
432 | MachineFunctionPass::getAnalysisUsage(AU); |
433 | } |
434 | }; |
435 | } // end anonymous namespace |
436 | |
437 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
438 | LLVM_DUMP_METHOD void PPCReduceCRLogicals::CRLogicalOpInfo::dump() { |
439 | dbgs() << "CRLogicalOpMI: " ; |
440 | MI->dump(); |
441 | dbgs() << "IsBinary: " << IsBinary << ", FeedsISEL: " << FeedsISEL; |
442 | dbgs() << ", FeedsBR: " << FeedsBR << ", FeedsLogical: " ; |
443 | dbgs() << FeedsLogical << ", SingleUse: " << SingleUse; |
444 | dbgs() << ", DefsSingleUse: " << DefsSingleUse; |
445 | dbgs() << ", SubregDef1: " << SubregDef1 << ", SubregDef2: " ; |
446 | dbgs() << SubregDef2 << ", ContainedInBlock: " << ContainedInBlock; |
447 | if (!IsNullary) { |
448 | dbgs() << "\nDefs:\n" ; |
449 | TrueDefs.first->dump(); |
450 | } |
451 | if (IsBinary) |
452 | TrueDefs.second->dump(); |
453 | dbgs() << "\n" ; |
454 | if (CopyDefs.first) { |
455 | dbgs() << "CopyDef1: " ; |
456 | CopyDefs.first->dump(); |
457 | } |
458 | if (CopyDefs.second) { |
459 | dbgs() << "CopyDef2: " ; |
460 | CopyDefs.second->dump(); |
461 | } |
462 | } |
463 | #endif |
464 | |
465 | PPCReduceCRLogicals::CRLogicalOpInfo |
466 | PPCReduceCRLogicals::createCRLogicalOpInfo(MachineInstr &MIParam) { |
467 | CRLogicalOpInfo Ret; |
468 | Ret.MI = &MIParam; |
469 | // Get the defs |
470 | if (isNullary(MI&: MIParam)) { |
471 | Ret.IsNullary = 1; |
472 | Ret.TrueDefs = std::make_pair(x: nullptr, y: nullptr); |
473 | Ret.CopyDefs = std::make_pair(x: nullptr, y: nullptr); |
474 | } else { |
475 | MachineInstr *Def1 = lookThroughCRCopy(Reg: MIParam.getOperand(i: 1).getReg(), |
476 | Subreg&: Ret.SubregDef1, CpDef&: Ret.CopyDefs.first); |
477 | Ret.SubregDef1 = MIParam.getOperand(i: 1).getSubReg(); |
478 | assert(Def1 && "Must be able to find a definition of operand 1." ); |
479 | Ret.DefsSingleUse &= |
480 | MRI->hasOneNonDBGUse(RegNo: Def1->getOperand(i: 0).getReg()); |
481 | Ret.DefsSingleUse &= |
482 | MRI->hasOneNonDBGUse(RegNo: Ret.CopyDefs.first->getOperand(i: 0).getReg()); |
483 | if (isBinary(MI&: MIParam)) { |
484 | Ret.IsBinary = 1; |
485 | MachineInstr *Def2 = lookThroughCRCopy(Reg: MIParam.getOperand(i: 2).getReg(), |
486 | Subreg&: Ret.SubregDef2, |
487 | CpDef&: Ret.CopyDefs.second); |
488 | Ret.SubregDef2 = MIParam.getOperand(i: 2).getSubReg(); |
489 | assert(Def2 && "Must be able to find a definition of operand 2." ); |
490 | Ret.DefsSingleUse &= |
491 | MRI->hasOneNonDBGUse(RegNo: Def2->getOperand(i: 0).getReg()); |
492 | Ret.DefsSingleUse &= |
493 | MRI->hasOneNonDBGUse(RegNo: Ret.CopyDefs.second->getOperand(i: 0).getReg()); |
494 | Ret.TrueDefs = std::make_pair(x&: Def1, y&: Def2); |
495 | } else { |
496 | Ret.TrueDefs = std::make_pair(x&: Def1, y: nullptr); |
497 | Ret.CopyDefs.second = nullptr; |
498 | } |
499 | } |
500 | |
501 | Ret.ContainedInBlock = 1; |
502 | // Get the uses |
503 | for (MachineInstr &UseMI : |
504 | MRI->use_nodbg_instructions(Reg: MIParam.getOperand(i: 0).getReg())) { |
505 | unsigned Opc = UseMI.getOpcode(); |
506 | if (Opc == PPC::ISEL || Opc == PPC::ISEL8) |
507 | Ret.FeedsISEL = 1; |
508 | if (Opc == PPC::BC || Opc == PPC::BCn || Opc == PPC::BCLR || |
509 | Opc == PPC::BCLRn) |
510 | Ret.FeedsBR = 1; |
511 | Ret.FeedsLogical = isCRLogical(MI&: UseMI); |
512 | if (UseMI.getParent() != MIParam.getParent()) |
513 | Ret.ContainedInBlock = 0; |
514 | } |
515 | Ret.SingleUse = MRI->hasOneNonDBGUse(RegNo: MIParam.getOperand(i: 0).getReg()) ? 1 : 0; |
516 | |
517 | // We now know whether all the uses of the CR logical are in the same block. |
518 | if (!Ret.IsNullary) { |
519 | Ret.ContainedInBlock &= |
520 | (MIParam.getParent() == Ret.TrueDefs.first->getParent()); |
521 | if (Ret.IsBinary) |
522 | Ret.ContainedInBlock &= |
523 | (MIParam.getParent() == Ret.TrueDefs.second->getParent()); |
524 | } |
525 | LLVM_DEBUG(Ret.dump()); |
526 | if (Ret.IsBinary && Ret.ContainedInBlock && Ret.SingleUse) { |
527 | NumContainedSingleUseBinOps++; |
528 | if (Ret.FeedsBR && Ret.DefsSingleUse) |
529 | NumToSplitBlocks++; |
530 | } |
531 | return Ret; |
532 | } |
533 | |
534 | /// Looks through a COPY instruction to the actual definition of the CR-bit |
535 | /// register and returns the instruction that defines it. |
536 | /// FIXME: This currently handles what is by-far the most common case: |
537 | /// an instruction that defines a CR field followed by a single copy of a bit |
538 | /// from that field into a virtual register. If chains of copies need to be |
539 | /// handled, this should have a loop until a non-copy instruction is found. |
540 | MachineInstr *PPCReduceCRLogicals::lookThroughCRCopy(unsigned Reg, |
541 | unsigned &Subreg, |
542 | MachineInstr *&CpDef) { |
543 | if (!Register::isVirtualRegister(Reg)) |
544 | return nullptr; |
545 | MachineInstr *Copy = MRI->getVRegDef(Reg); |
546 | CpDef = Copy; |
547 | if (!Copy->isCopy()) |
548 | return Copy; |
549 | Register CopySrc = Copy->getOperand(i: 1).getReg(); |
550 | if (!CopySrc.isVirtual()) { |
551 | const TargetRegisterInfo *TRI = &TII->getRegisterInfo(); |
552 | // Loop backwards and return the first MI that modifies the physical CR Reg. |
553 | MachineBasicBlock::iterator Me = Copy, B = Copy->getParent()->begin(); |
554 | while (Me != B) |
555 | if ((--Me)->modifiesRegister(Reg: CopySrc, TRI)) |
556 | return &*Me; |
557 | return nullptr; |
558 | } |
559 | return MRI->getVRegDef(Reg: CopySrc); |
560 | } |
561 | |
562 | void PPCReduceCRLogicals::initialize(MachineFunction &MFParam) { |
563 | MF = &MFParam; |
564 | MRI = &MF->getRegInfo(); |
565 | TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo(); |
566 | MBPI = &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI(); |
567 | |
568 | AllCRLogicalOps.clear(); |
569 | } |
570 | |
571 | /// Contains all the implemented transformations on CR logical operations. |
572 | /// For example, a binary CR logical can be used to split a block on its inputs, |
573 | /// a unary CR logical might be used to change the condition code on a |
574 | /// comparison feeding it. A nullary CR logical might simply be removable |
575 | /// if the user of the bit it [un]sets can be transformed. |
576 | bool PPCReduceCRLogicals::handleCROp(unsigned Idx) { |
577 | // We can definitely split a block on the inputs to a binary CR operation |
578 | // whose defs and (single) use are within the same block. |
579 | bool Changed = false; |
580 | CRLogicalOpInfo CRI = AllCRLogicalOps[Idx]; |
581 | if (CRI.IsBinary && CRI.ContainedInBlock && CRI.SingleUse && CRI.FeedsBR && |
582 | CRI.DefsSingleUse) { |
583 | Changed = splitBlockOnBinaryCROp(CRI); |
584 | if (Changed) |
585 | NumBlocksSplitOnBinaryCROp++; |
586 | } |
587 | return Changed; |
588 | } |
589 | |
590 | /// Splits a block that contains a CR-logical operation that feeds a branch |
591 | /// and whose operands are produced within the block. |
592 | /// Example: |
593 | /// %vr5<def> = CMPDI %vr2, 0; CRRC:%vr5 G8RC:%vr2 |
594 | /// %vr6<def> = COPY %vr5:sub_eq; CRBITRC:%vr6 CRRC:%vr5 |
595 | /// %vr7<def> = CMPDI %vr3, 0; CRRC:%vr7 G8RC:%vr3 |
596 | /// %vr8<def> = COPY %vr7:sub_eq; CRBITRC:%vr8 CRRC:%vr7 |
597 | /// %vr9<def> = CROR %vr6<kill>, %vr8<kill>; CRBITRC:%vr9,%vr6,%vr8 |
598 | /// BC %vr9<kill>, <BB#2>; CRBITRC:%vr9 |
599 | /// Becomes: |
600 | /// %vr5<def> = CMPDI %vr2, 0; CRRC:%vr5 G8RC:%vr2 |
601 | /// %vr6<def> = COPY %vr5:sub_eq; CRBITRC:%vr6 CRRC:%vr5 |
602 | /// BC %vr6<kill>, <BB#2>; CRBITRC:%vr6 |
603 | /// |
604 | /// %vr7<def> = CMPDI %vr3, 0; CRRC:%vr7 G8RC:%vr3 |
605 | /// %vr8<def> = COPY %vr7:sub_eq; CRBITRC:%vr8 CRRC:%vr7 |
606 | /// BC %vr9<kill>, <BB#2>; CRBITRC:%vr9 |
607 | bool PPCReduceCRLogicals::splitBlockOnBinaryCROp(CRLogicalOpInfo &CRI) { |
608 | if (CRI.CopyDefs.first == CRI.CopyDefs.second) { |
609 | LLVM_DEBUG(dbgs() << "Unable to split as the two operands are the same\n" ); |
610 | NumNotSplitIdenticalOperands++; |
611 | return false; |
612 | } |
613 | if (CRI.TrueDefs.first->isCopy() || CRI.TrueDefs.second->isCopy() || |
614 | CRI.TrueDefs.first->isPHI() || CRI.TrueDefs.second->isPHI()) { |
615 | LLVM_DEBUG( |
616 | dbgs() << "Unable to split because one of the operands is a PHI or " |
617 | "chain of copies.\n" ); |
618 | NumNotSplitChainCopies++; |
619 | return false; |
620 | } |
621 | // Note: keep in sync with computeBranchTargetAndInversion(). |
622 | if (CRI.MI->getOpcode() != PPC::CROR && |
623 | CRI.MI->getOpcode() != PPC::CRAND && |
624 | CRI.MI->getOpcode() != PPC::CRNOR && |
625 | CRI.MI->getOpcode() != PPC::CRNAND && |
626 | CRI.MI->getOpcode() != PPC::CRORC && |
627 | CRI.MI->getOpcode() != PPC::CRANDC) { |
628 | LLVM_DEBUG(dbgs() << "Unable to split blocks on this opcode.\n" ); |
629 | NumNotSplitWrongOpcode++; |
630 | return false; |
631 | } |
632 | LLVM_DEBUG(dbgs() << "Splitting the following CR op:\n" ; CRI.dump()); |
633 | MachineBasicBlock::iterator Def1It = CRI.TrueDefs.first; |
634 | MachineBasicBlock::iterator Def2It = CRI.TrueDefs.second; |
635 | |
636 | bool UsingDef1 = false; |
637 | MachineInstr *SplitBefore = &*Def2It; |
638 | for (auto E = CRI.MI->getParent()->end(); Def2It != E; ++Def2It) { |
639 | if (Def1It == Def2It) { // Def2 comes before Def1. |
640 | SplitBefore = &*Def1It; |
641 | UsingDef1 = true; |
642 | break; |
643 | } |
644 | } |
645 | |
646 | LLVM_DEBUG(dbgs() << "We will split the following block:\n" ;); |
647 | LLVM_DEBUG(CRI.MI->getParent()->dump()); |
648 | LLVM_DEBUG(dbgs() << "Before instruction:\n" ; SplitBefore->dump()); |
649 | |
650 | // Get the branch instruction. |
651 | MachineInstr *Branch = |
652 | MRI->use_nodbg_begin(RegNo: CRI.MI->getOperand(i: 0).getReg())->getParent(); |
653 | |
654 | // We want the new block to have no code in it other than the definition |
655 | // of the input to the CR logical and the CR logical itself. So we move |
656 | // those to the bottom of the block (just before the branch). Then we |
657 | // will split before the CR logical. |
658 | MachineBasicBlock *MBB = SplitBefore->getParent(); |
659 | auto FirstTerminator = MBB->getFirstTerminator(); |
660 | MachineBasicBlock::iterator FirstInstrToMove = |
661 | UsingDef1 ? CRI.TrueDefs.first : CRI.TrueDefs.second; |
662 | MachineBasicBlock::iterator SecondInstrToMove = |
663 | UsingDef1 ? CRI.CopyDefs.first : CRI.CopyDefs.second; |
664 | |
665 | // The instructions that need to be moved are not guaranteed to be |
666 | // contiguous. Move them individually. |
667 | // FIXME: If one of the operands is a chain of (single use) copies, they |
668 | // can all be moved and we can still split. |
669 | MBB->splice(Where: FirstTerminator, Other: MBB, From: FirstInstrToMove); |
670 | if (FirstInstrToMove != SecondInstrToMove) |
671 | MBB->splice(Where: FirstTerminator, Other: MBB, From: SecondInstrToMove); |
672 | MBB->splice(Where: FirstTerminator, Other: MBB, From: CRI.MI); |
673 | |
674 | unsigned Opc = CRI.MI->getOpcode(); |
675 | bool InvertOrigBranch, InvertNewBranch, TargetIsFallThrough; |
676 | computeBranchTargetAndInversion(CROp: Opc, BROp: Branch->getOpcode(), UsingDef1, |
677 | InvertNewBranch, InvertOrigBranch, |
678 | TargetIsFallThrough); |
679 | MachineInstr *NewCond = CRI.CopyDefs.first; |
680 | MachineInstr *SplitCond = CRI.CopyDefs.second; |
681 | if (!UsingDef1) { |
682 | std::swap(a&: NewCond, b&: SplitCond); |
683 | std::swap(a&: CRI.SubregDef1, b&: CRI.SubregDef2); |
684 | } |
685 | LLVM_DEBUG(dbgs() << "We will " << (InvertNewBranch ? "invert" : "copy" )); |
686 | LLVM_DEBUG(dbgs() << " the original branch and the target is the " |
687 | << (TargetIsFallThrough ? "fallthrough block\n" |
688 | : "orig. target block\n" )); |
689 | LLVM_DEBUG(dbgs() << "Original branch instruction: " ; Branch->dump()); |
690 | BlockSplitInfo BSI{ |
691 | .OrigBranch: Branch, .SplitBefore: SplitBefore, .SplitCond: SplitCond, .OrigSubreg: CRI.SubregDef1, |
692 | .SplitCondSubreg: CRI.SubregDef2, .InvertNewBranch: InvertNewBranch, .InvertOrigBranch: InvertOrigBranch, .BranchToFallThrough: TargetIsFallThrough, |
693 | .MBPI: MBPI, .MIToDelete: CRI.MI, .NewCond: NewCond}; |
694 | bool Changed = splitMBB(BSI); |
695 | // If we've split on a CR logical that is fed by a CR logical, |
696 | // recompute the source CR logical as it may be usable for splitting. |
697 | if (Changed) { |
698 | bool Input1CRlogical = |
699 | CRI.TrueDefs.first && isCRLogical(MI&: *CRI.TrueDefs.first); |
700 | bool Input2CRlogical = |
701 | CRI.TrueDefs.second && isCRLogical(MI&: *CRI.TrueDefs.second); |
702 | if (Input1CRlogical) |
703 | AllCRLogicalOps.push_back(Elt: createCRLogicalOpInfo(MIParam&: *CRI.TrueDefs.first)); |
704 | if (Input2CRlogical) |
705 | AllCRLogicalOps.push_back(Elt: createCRLogicalOpInfo(MIParam&: *CRI.TrueDefs.second)); |
706 | } |
707 | return Changed; |
708 | } |
709 | |
710 | void PPCReduceCRLogicals::collectCRLogicals() { |
711 | for (MachineBasicBlock &MBB : *MF) { |
712 | for (MachineInstr &MI : MBB) { |
713 | if (isCRLogical(MI)) { |
714 | AllCRLogicalOps.push_back(Elt: createCRLogicalOpInfo(MIParam&: MI)); |
715 | TotalCRLogicals++; |
716 | if (AllCRLogicalOps.back().IsNullary) |
717 | TotalNullaryCRLogicals++; |
718 | else if (AllCRLogicalOps.back().IsBinary) |
719 | TotalBinaryCRLogicals++; |
720 | else |
721 | TotalUnaryCRLogicals++; |
722 | } |
723 | } |
724 | } |
725 | } |
726 | |
727 | INITIALIZE_PASS_BEGIN(PPCReduceCRLogicals, DEBUG_TYPE, |
728 | "PowerPC Reduce CR logical Operation" , false, false) |
729 | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) |
730 | INITIALIZE_PASS_END(PPCReduceCRLogicals, DEBUG_TYPE, |
731 | "PowerPC Reduce CR logical Operation" , false, false) |
732 | |
733 | char PPCReduceCRLogicals::ID = 0; |
734 | FunctionPass* |
735 | llvm::createPPCReduceCRLogicalsPass() { return new PPCReduceCRLogicals(); } |
736 | |