| 1 | //===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "PPCTargetTransformInfo.h" |
| 10 | #include "llvm/Analysis/CodeMetrics.h" |
| 11 | #include "llvm/Analysis/TargetLibraryInfo.h" |
| 12 | #include "llvm/Analysis/TargetTransformInfo.h" |
| 13 | #include "llvm/CodeGen/BasicTTIImpl.h" |
| 14 | #include "llvm/CodeGen/TargetLowering.h" |
| 15 | #include "llvm/CodeGen/TargetSchedule.h" |
| 16 | #include "llvm/IR/IntrinsicsPowerPC.h" |
| 17 | #include "llvm/IR/ProfDataUtils.h" |
| 18 | #include "llvm/Support/CommandLine.h" |
| 19 | #include "llvm/Transforms/InstCombine/InstCombiner.h" |
| 20 | #include "llvm/Transforms/Utils/Local.h" |
| 21 | #include <optional> |
| 22 | |
| 23 | using namespace llvm; |
| 24 | |
| 25 | #define DEBUG_TYPE "ppctti" |
| 26 | |
| 27 | static cl::opt<bool> VecMaskCost("ppc-vec-mask-cost" , |
| 28 | cl::desc("add masking cost for i1 vectors" ), cl::init(Val: true), cl::Hidden); |
| 29 | |
| 30 | static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting" , |
| 31 | cl::desc("disable constant hoisting on PPC" ), cl::init(Val: false), cl::Hidden); |
| 32 | |
| 33 | static cl::opt<bool> |
| 34 | EnablePPCColdCC("ppc-enable-coldcc" , cl::Hidden, cl::init(Val: false), |
| 35 | cl::desc("Enable using coldcc calling conv for cold " |
| 36 | "internal functions" )); |
| 37 | |
| 38 | static cl::opt<bool> |
| 39 | LsrNoInsnsCost("ppc-lsr-no-insns-cost" , cl::Hidden, cl::init(Val: false), |
| 40 | cl::desc("Do not add instruction count to lsr cost model" )); |
| 41 | |
| 42 | // The latency of mtctr is only justified if there are more than 4 |
| 43 | // comparisons that will be removed as a result. |
| 44 | static cl::opt<unsigned> |
| 45 | SmallCTRLoopThreshold("min-ctr-loop-threshold" , cl::init(Val: 4), cl::Hidden, |
| 46 | cl::desc("Loops with a constant trip count smaller than " |
| 47 | "this value will not use the count register." )); |
| 48 | |
| 49 | //===----------------------------------------------------------------------===// |
| 50 | // |
| 51 | // PPC cost model. |
| 52 | // |
| 53 | //===----------------------------------------------------------------------===// |
| 54 | |
| 55 | TargetTransformInfo::PopcntSupportKind |
| 56 | PPCTTIImpl::getPopcntSupport(unsigned TyWidth) const { |
| 57 | assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2" ); |
| 58 | if (ST->hasPOPCNTD() != PPCSubtarget::POPCNTD_Unavailable && TyWidth <= 64) |
| 59 | return ST->hasPOPCNTD() == PPCSubtarget::POPCNTD_Slow ? |
| 60 | TTI::PSK_SlowHardware : TTI::PSK_FastHardware; |
| 61 | return TTI::PSK_Software; |
| 62 | } |
| 63 | |
| 64 | std::optional<Instruction *> |
| 65 | PPCTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const { |
| 66 | Intrinsic::ID IID = II.getIntrinsicID(); |
| 67 | switch (IID) { |
| 68 | default: |
| 69 | break; |
| 70 | case Intrinsic::ppc_altivec_lvx: |
| 71 | case Intrinsic::ppc_altivec_lvxl: |
| 72 | // Turn PPC lvx -> load if the pointer is known aligned. |
| 73 | if (getOrEnforceKnownAlignment( |
| 74 | V: II.getArgOperand(i: 0), PrefAlign: Align(16), DL: IC.getDataLayout(), CxtI: &II, |
| 75 | AC: &IC.getAssumptionCache(), DT: &IC.getDominatorTree()) >= 16) { |
| 76 | Value *Ptr = II.getArgOperand(i: 0); |
| 77 | return new LoadInst(II.getType(), Ptr, "" , false, Align(16)); |
| 78 | } |
| 79 | break; |
| 80 | case Intrinsic::ppc_vsx_lxvw4x: |
| 81 | case Intrinsic::ppc_vsx_lxvd2x: { |
| 82 | // Turn PPC VSX loads into normal loads. |
| 83 | Value *Ptr = II.getArgOperand(i: 0); |
| 84 | return new LoadInst(II.getType(), Ptr, Twine("" ), false, Align(1)); |
| 85 | } |
| 86 | case Intrinsic::ppc_altivec_stvx: |
| 87 | case Intrinsic::ppc_altivec_stvxl: |
| 88 | // Turn stvx -> store if the pointer is known aligned. |
| 89 | if (getOrEnforceKnownAlignment( |
| 90 | V: II.getArgOperand(i: 1), PrefAlign: Align(16), DL: IC.getDataLayout(), CxtI: &II, |
| 91 | AC: &IC.getAssumptionCache(), DT: &IC.getDominatorTree()) >= 16) { |
| 92 | Value *Ptr = II.getArgOperand(i: 1); |
| 93 | return new StoreInst(II.getArgOperand(i: 0), Ptr, false, Align(16)); |
| 94 | } |
| 95 | break; |
| 96 | case Intrinsic::ppc_vsx_stxvw4x: |
| 97 | case Intrinsic::ppc_vsx_stxvd2x: { |
| 98 | // Turn PPC VSX stores into normal stores. |
| 99 | Value *Ptr = II.getArgOperand(i: 1); |
| 100 | return new StoreInst(II.getArgOperand(i: 0), Ptr, false, Align(1)); |
| 101 | } |
| 102 | case Intrinsic::ppc_altivec_vperm: |
| 103 | // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant. |
| 104 | // Note that ppc_altivec_vperm has a big-endian bias, so when creating |
| 105 | // a vectorshuffle for little endian, we must undo the transformation |
| 106 | // performed on vec_perm in altivec.h. That is, we must complement |
| 107 | // the permutation mask with respect to 31 and reverse the order of |
| 108 | // V1 and V2. |
| 109 | if (Constant *Mask = dyn_cast<Constant>(Val: II.getArgOperand(i: 2))) { |
| 110 | assert(cast<FixedVectorType>(Mask->getType())->getNumElements() == 16 && |
| 111 | "Bad type for intrinsic!" ); |
| 112 | |
| 113 | // Check that all of the elements are integer constants or undefs. |
| 114 | bool AllEltsOk = true; |
| 115 | for (unsigned I = 0; I != 16; ++I) { |
| 116 | Constant *Elt = Mask->getAggregateElement(Elt: I); |
| 117 | if (!Elt || !(isa<ConstantInt>(Val: Elt) || isa<UndefValue>(Val: Elt))) { |
| 118 | AllEltsOk = false; |
| 119 | break; |
| 120 | } |
| 121 | } |
| 122 | |
| 123 | if (AllEltsOk) { |
| 124 | // Cast the input vectors to byte vectors. |
| 125 | Value *Op0 = |
| 126 | IC.Builder.CreateBitCast(V: II.getArgOperand(i: 0), DestTy: Mask->getType()); |
| 127 | Value *Op1 = |
| 128 | IC.Builder.CreateBitCast(V: II.getArgOperand(i: 1), DestTy: Mask->getType()); |
| 129 | Value *Result = PoisonValue::get(T: Op0->getType()); |
| 130 | |
| 131 | // Only extract each element once. |
| 132 | Value *[32]; |
| 133 | memset(s: ExtractedElts, c: 0, n: sizeof(ExtractedElts)); |
| 134 | |
| 135 | for (unsigned I = 0; I != 16; ++I) { |
| 136 | if (isa<UndefValue>(Val: Mask->getAggregateElement(Elt: I))) |
| 137 | continue; |
| 138 | unsigned Idx = |
| 139 | cast<ConstantInt>(Val: Mask->getAggregateElement(Elt: I))->getZExtValue(); |
| 140 | Idx &= 31; // Match the hardware behavior. |
| 141 | if (DL.isLittleEndian()) |
| 142 | Idx = 31 - Idx; |
| 143 | |
| 144 | if (!ExtractedElts[Idx]) { |
| 145 | Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0; |
| 146 | Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1; |
| 147 | ExtractedElts[Idx] = IC.Builder.CreateExtractElement( |
| 148 | Vec: Idx < 16 ? Op0ToUse : Op1ToUse, Idx: IC.Builder.getInt32(C: Idx & 15)); |
| 149 | } |
| 150 | |
| 151 | // Insert this value into the result vector. |
| 152 | Result = IC.Builder.CreateInsertElement(Vec: Result, NewElt: ExtractedElts[Idx], |
| 153 | Idx: IC.Builder.getInt32(C: I)); |
| 154 | } |
| 155 | return CastInst::Create(Instruction::BitCast, S: Result, Ty: II.getType()); |
| 156 | } |
| 157 | } |
| 158 | break; |
| 159 | } |
| 160 | return std::nullopt; |
| 161 | } |
| 162 | |
| 163 | InstructionCost PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty, |
| 164 | TTI::TargetCostKind CostKind) const { |
| 165 | if (DisablePPCConstHoist) |
| 166 | return BaseT::getIntImmCost(Imm, Ty, CostKind); |
| 167 | |
| 168 | assert(Ty->isIntegerTy()); |
| 169 | |
| 170 | unsigned BitSize = Ty->getPrimitiveSizeInBits(); |
| 171 | if (BitSize == 0) |
| 172 | return ~0U; |
| 173 | |
| 174 | if (Imm == 0) |
| 175 | return TTI::TCC_Free; |
| 176 | |
| 177 | if (Imm.getBitWidth() <= 64) { |
| 178 | if (isInt<16>(x: Imm.getSExtValue())) |
| 179 | return TTI::TCC_Basic; |
| 180 | |
| 181 | if (isInt<32>(x: Imm.getSExtValue())) { |
| 182 | // A constant that can be materialized using lis. |
| 183 | if ((Imm.getZExtValue() & 0xFFFF) == 0) |
| 184 | return TTI::TCC_Basic; |
| 185 | |
| 186 | return 2 * TTI::TCC_Basic; |
| 187 | } |
| 188 | } |
| 189 | |
| 190 | return 4 * TTI::TCC_Basic; |
| 191 | } |
| 192 | |
| 193 | InstructionCost |
| 194 | PPCTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, |
| 195 | const APInt &Imm, Type *Ty, |
| 196 | TTI::TargetCostKind CostKind) const { |
| 197 | if (DisablePPCConstHoist) |
| 198 | return BaseT::getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind); |
| 199 | |
| 200 | assert(Ty->isIntegerTy()); |
| 201 | |
| 202 | unsigned BitSize = Ty->getPrimitiveSizeInBits(); |
| 203 | if (BitSize == 0) |
| 204 | return ~0U; |
| 205 | |
| 206 | switch (IID) { |
| 207 | default: |
| 208 | return TTI::TCC_Free; |
| 209 | case Intrinsic::sadd_with_overflow: |
| 210 | case Intrinsic::uadd_with_overflow: |
| 211 | case Intrinsic::ssub_with_overflow: |
| 212 | case Intrinsic::usub_with_overflow: |
| 213 | if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(x: Imm.getSExtValue())) |
| 214 | return TTI::TCC_Free; |
| 215 | break; |
| 216 | case Intrinsic::experimental_stackmap: |
| 217 | if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(x: Imm.getSExtValue()))) |
| 218 | return TTI::TCC_Free; |
| 219 | break; |
| 220 | case Intrinsic::experimental_patchpoint_void: |
| 221 | case Intrinsic::experimental_patchpoint: |
| 222 | if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(x: Imm.getSExtValue()))) |
| 223 | return TTI::TCC_Free; |
| 224 | break; |
| 225 | } |
| 226 | return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind); |
| 227 | } |
| 228 | |
| 229 | InstructionCost PPCTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, |
| 230 | const APInt &Imm, Type *Ty, |
| 231 | TTI::TargetCostKind CostKind, |
| 232 | Instruction *Inst) const { |
| 233 | if (DisablePPCConstHoist) |
| 234 | return BaseT::getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind, Inst); |
| 235 | |
| 236 | assert(Ty->isIntegerTy()); |
| 237 | |
| 238 | unsigned BitSize = Ty->getPrimitiveSizeInBits(); |
| 239 | if (BitSize == 0) |
| 240 | return ~0U; |
| 241 | |
| 242 | unsigned ImmIdx = ~0U; |
| 243 | bool ShiftedFree = false, RunFree = false, UnsignedFree = false, |
| 244 | ZeroFree = false; |
| 245 | switch (Opcode) { |
| 246 | default: |
| 247 | return TTI::TCC_Free; |
| 248 | case Instruction::GetElementPtr: |
| 249 | // Always hoist the base address of a GetElementPtr. This prevents the |
| 250 | // creation of new constants for every base constant that gets constant |
| 251 | // folded with the offset. |
| 252 | if (Idx == 0) |
| 253 | return 2 * TTI::TCC_Basic; |
| 254 | return TTI::TCC_Free; |
| 255 | case Instruction::And: |
| 256 | RunFree = true; // (for the rotate-and-mask instructions) |
| 257 | [[fallthrough]]; |
| 258 | case Instruction::Add: |
| 259 | case Instruction::Or: |
| 260 | case Instruction::Xor: |
| 261 | ShiftedFree = true; |
| 262 | [[fallthrough]]; |
| 263 | case Instruction::Sub: |
| 264 | case Instruction::Mul: |
| 265 | case Instruction::Shl: |
| 266 | case Instruction::LShr: |
| 267 | case Instruction::AShr: |
| 268 | ImmIdx = 1; |
| 269 | break; |
| 270 | case Instruction::ICmp: |
| 271 | UnsignedFree = true; |
| 272 | ImmIdx = 1; |
| 273 | // Zero comparisons can use record-form instructions. |
| 274 | [[fallthrough]]; |
| 275 | case Instruction::Select: |
| 276 | ZeroFree = true; |
| 277 | break; |
| 278 | case Instruction::PHI: |
| 279 | case Instruction::Call: |
| 280 | case Instruction::Ret: |
| 281 | case Instruction::Load: |
| 282 | case Instruction::Store: |
| 283 | break; |
| 284 | } |
| 285 | |
| 286 | if (ZeroFree && Imm == 0) |
| 287 | return TTI::TCC_Free; |
| 288 | |
| 289 | if (Idx == ImmIdx && Imm.getBitWidth() <= 64) { |
| 290 | if (isInt<16>(x: Imm.getSExtValue())) |
| 291 | return TTI::TCC_Free; |
| 292 | |
| 293 | if (RunFree) { |
| 294 | if (Imm.getBitWidth() <= 32 && |
| 295 | (isShiftedMask_32(Value: Imm.getZExtValue()) || |
| 296 | isShiftedMask_32(Value: ~Imm.getZExtValue()))) |
| 297 | return TTI::TCC_Free; |
| 298 | |
| 299 | if (ST->isPPC64() && |
| 300 | (isShiftedMask_64(Value: Imm.getZExtValue()) || |
| 301 | isShiftedMask_64(Value: ~Imm.getZExtValue()))) |
| 302 | return TTI::TCC_Free; |
| 303 | } |
| 304 | |
| 305 | if (UnsignedFree && isUInt<16>(x: Imm.getZExtValue())) |
| 306 | return TTI::TCC_Free; |
| 307 | |
| 308 | if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0) |
| 309 | return TTI::TCC_Free; |
| 310 | } |
| 311 | |
| 312 | return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind); |
| 313 | } |
| 314 | |
| 315 | // Check if the current Type is an MMA vector type. Valid MMA types are |
| 316 | // v256i1 and v512i1 respectively. |
| 317 | static bool isMMAType(Type *Ty) { |
| 318 | return Ty->isVectorTy() && (Ty->getScalarSizeInBits() == 1) && |
| 319 | (Ty->getPrimitiveSizeInBits() > 128); |
| 320 | } |
| 321 | |
| 322 | InstructionCost |
| 323 | PPCTTIImpl::getInstructionCost(const User *U, ArrayRef<const Value *> Operands, |
| 324 | TTI::TargetCostKind CostKind) const { |
| 325 | // We already implement getCastInstrCost and getMemoryOpCost where we perform |
| 326 | // the vector adjustment there. |
| 327 | if (isa<CastInst>(Val: U) || isa<LoadInst>(Val: U) || isa<StoreInst>(Val: U)) |
| 328 | return BaseT::getInstructionCost(U, Operands, CostKind); |
| 329 | |
| 330 | if (U->getType()->isVectorTy()) { |
| 331 | // Instructions that need to be split should cost more. |
| 332 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: U->getType()); |
| 333 | return LT.first * BaseT::getInstructionCost(U, Operands, CostKind); |
| 334 | } |
| 335 | |
| 336 | return BaseT::getInstructionCost(U, Operands, CostKind); |
| 337 | } |
| 338 | |
| 339 | bool PPCTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, |
| 340 | AssumptionCache &AC, |
| 341 | TargetLibraryInfo *LibInfo, |
| 342 | HardwareLoopInfo &HWLoopInfo) const { |
| 343 | const PPCTargetMachine &TM = ST->getTargetMachine(); |
| 344 | TargetSchedModel SchedModel; |
| 345 | SchedModel.init(TSInfo: ST); |
| 346 | |
| 347 | // FIXME: Sure there is no other way to get TTI? This should be cheap though. |
| 348 | TargetTransformInfo TTI = |
| 349 | TM.getTargetTransformInfo(F: *L->getHeader()->getParent()); |
| 350 | |
| 351 | // Do not convert small short loops to CTR loop. |
| 352 | unsigned ConstTripCount = SE.getSmallConstantTripCount(L); |
| 353 | if (ConstTripCount && ConstTripCount < SmallCTRLoopThreshold) { |
| 354 | SmallPtrSet<const Value *, 32> EphValues; |
| 355 | CodeMetrics::collectEphemeralValues(L, AC: &AC, EphValues); |
| 356 | CodeMetrics Metrics; |
| 357 | for (BasicBlock *BB : L->blocks()) |
| 358 | Metrics.analyzeBasicBlock(BB, TTI, EphValues); |
| 359 | // 6 is an approximate latency for the mtctr instruction. |
| 360 | if (Metrics.NumInsts <= (6 * SchedModel.getIssueWidth())) |
| 361 | return false; |
| 362 | } |
| 363 | |
| 364 | // Check that there is no hardware loop related intrinsics in the loop. |
| 365 | for (auto *BB : L->getBlocks()) |
| 366 | for (auto &I : *BB) |
| 367 | if (auto *Call = dyn_cast<IntrinsicInst>(Val: &I)) |
| 368 | if (Call->getIntrinsicID() == Intrinsic::set_loop_iterations || |
| 369 | Call->getIntrinsicID() == Intrinsic::loop_decrement) |
| 370 | return false; |
| 371 | |
| 372 | SmallVector<BasicBlock*, 4> ExitingBlocks; |
| 373 | L->getExitingBlocks(ExitingBlocks); |
| 374 | |
| 375 | // If there is an exit edge known to be frequently taken, |
| 376 | // we should not transform this loop. |
| 377 | for (auto &BB : ExitingBlocks) { |
| 378 | Instruction *TI = BB->getTerminator(); |
| 379 | if (!TI) continue; |
| 380 | |
| 381 | if (BranchInst *BI = dyn_cast<BranchInst>(Val: TI)) { |
| 382 | uint64_t TrueWeight = 0, FalseWeight = 0; |
| 383 | if (!BI->isConditional() || |
| 384 | !extractBranchWeights(I: *BI, TrueVal&: TrueWeight, FalseVal&: FalseWeight)) |
| 385 | continue; |
| 386 | |
| 387 | // If the exit path is more frequent than the loop path, |
| 388 | // we return here without further analysis for this loop. |
| 389 | bool TrueIsExit = !L->contains(BB: BI->getSuccessor(i: 0)); |
| 390 | if (( TrueIsExit && FalseWeight < TrueWeight) || |
| 391 | (!TrueIsExit && FalseWeight > TrueWeight)) |
| 392 | return false; |
| 393 | } |
| 394 | } |
| 395 | |
| 396 | LLVMContext &C = L->getHeader()->getContext(); |
| 397 | HWLoopInfo.CountType = TM.isPPC64() ? |
| 398 | Type::getInt64Ty(C) : Type::getInt32Ty(C); |
| 399 | HWLoopInfo.LoopDecrement = ConstantInt::get(Ty: HWLoopInfo.CountType, V: 1); |
| 400 | return true; |
| 401 | } |
| 402 | |
| 403 | void PPCTTIImpl::(Loop *L, ScalarEvolution &SE, |
| 404 | TTI::UnrollingPreferences &UP, |
| 405 | OptimizationRemarkEmitter *ORE) const { |
| 406 | if (ST->getCPUDirective() == PPC::DIR_A2) { |
| 407 | // The A2 is in-order with a deep pipeline, and concatenation unrolling |
| 408 | // helps expose latency-hiding opportunities to the instruction scheduler. |
| 409 | UP.Partial = UP.Runtime = true; |
| 410 | |
| 411 | // We unroll a lot on the A2 (hundreds of instructions), and the benefits |
| 412 | // often outweigh the cost of a division to compute the trip count. |
| 413 | UP.AllowExpensiveTripCount = true; |
| 414 | } |
| 415 | |
| 416 | BaseT::getUnrollingPreferences(L, SE, UP, ORE); |
| 417 | } |
| 418 | |
| 419 | void PPCTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, |
| 420 | TTI::PeelingPreferences &PP) const { |
| 421 | BaseT::getPeelingPreferences(L, SE, PP); |
| 422 | } |
| 423 | // This function returns true to allow using coldcc calling convention. |
| 424 | // Returning true results in coldcc being used for functions which are cold at |
| 425 | // all call sites when the callers of the functions are not calling any other |
| 426 | // non coldcc functions. |
| 427 | bool PPCTTIImpl::useColdCCForColdCall(Function &F) const { |
| 428 | return EnablePPCColdCC; |
| 429 | } |
| 430 | |
| 431 | bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) const { |
| 432 | // On the A2, always unroll aggressively. |
| 433 | if (ST->getCPUDirective() == PPC::DIR_A2) |
| 434 | return true; |
| 435 | |
| 436 | return LoopHasReductions; |
| 437 | } |
| 438 | |
| 439 | PPCTTIImpl::TTI::MemCmpExpansionOptions |
| 440 | PPCTTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const { |
| 441 | TTI::MemCmpExpansionOptions Options; |
| 442 | Options.LoadSizes = {8, 4, 2, 1}; |
| 443 | Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize); |
| 444 | return Options; |
| 445 | } |
| 446 | |
| 447 | bool PPCTTIImpl::enableInterleavedAccessVectorization() const { return true; } |
| 448 | |
| 449 | unsigned PPCTTIImpl::getNumberOfRegisters(unsigned ClassID) const { |
| 450 | assert(ClassID == GPRRC || ClassID == FPRRC || |
| 451 | ClassID == VRRC || ClassID == VSXRC); |
| 452 | if (ST->hasVSX()) { |
| 453 | assert(ClassID == GPRRC || ClassID == VSXRC || ClassID == VRRC); |
| 454 | return ClassID == VSXRC ? 64 : 32; |
| 455 | } |
| 456 | assert(ClassID == GPRRC || ClassID == FPRRC || ClassID == VRRC); |
| 457 | return 32; |
| 458 | } |
| 459 | |
| 460 | unsigned PPCTTIImpl::getRegisterClassForType(bool Vector, Type *Ty) const { |
| 461 | if (Vector) |
| 462 | return ST->hasVSX() ? VSXRC : VRRC; |
| 463 | if (Ty && |
| 464 | (Ty->getScalarType()->isFloatTy() || Ty->getScalarType()->isDoubleTy())) |
| 465 | return ST->hasVSX() ? VSXRC : FPRRC; |
| 466 | if (Ty && (Ty->getScalarType()->isFP128Ty() || |
| 467 | Ty->getScalarType()->isPPC_FP128Ty())) |
| 468 | return VRRC; |
| 469 | if (Ty && Ty->getScalarType()->isHalfTy()) |
| 470 | return VSXRC; |
| 471 | return GPRRC; |
| 472 | } |
| 473 | |
| 474 | const char* PPCTTIImpl::getRegisterClassName(unsigned ClassID) const { |
| 475 | |
| 476 | switch (ClassID) { |
| 477 | default: |
| 478 | llvm_unreachable("unknown register class" ); |
| 479 | return "PPC::unknown register class" ; |
| 480 | case GPRRC: return "PPC::GPRRC" ; |
| 481 | case FPRRC: return "PPC::FPRRC" ; |
| 482 | case VRRC: return "PPC::VRRC" ; |
| 483 | case VSXRC: return "PPC::VSXRC" ; |
| 484 | } |
| 485 | } |
| 486 | |
| 487 | TypeSize |
| 488 | PPCTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const { |
| 489 | switch (K) { |
| 490 | case TargetTransformInfo::RGK_Scalar: |
| 491 | return TypeSize::getFixed(ExactSize: ST->isPPC64() ? 64 : 32); |
| 492 | case TargetTransformInfo::RGK_FixedWidthVector: |
| 493 | return TypeSize::getFixed(ExactSize: ST->hasAltivec() ? 128 : 0); |
| 494 | case TargetTransformInfo::RGK_ScalableVector: |
| 495 | return TypeSize::getScalable(MinimumSize: 0); |
| 496 | } |
| 497 | |
| 498 | llvm_unreachable("Unsupported register kind" ); |
| 499 | } |
| 500 | |
| 501 | unsigned PPCTTIImpl::getCacheLineSize() const { |
| 502 | // Starting with P7 we have a cache line size of 128. |
| 503 | unsigned Directive = ST->getCPUDirective(); |
| 504 | // Assume that Future CPU has the same cache line size as the others. |
| 505 | if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 || |
| 506 | Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR10 || |
| 507 | Directive == PPC::DIR_PWR11 || Directive == PPC::DIR_PWR_FUTURE) |
| 508 | return 128; |
| 509 | |
| 510 | // On other processors return a default of 64 bytes. |
| 511 | return 64; |
| 512 | } |
| 513 | |
| 514 | unsigned PPCTTIImpl::getPrefetchDistance() const { |
| 515 | return 300; |
| 516 | } |
| 517 | |
| 518 | unsigned PPCTTIImpl::getMaxInterleaveFactor(ElementCount VF) const { |
| 519 | unsigned Directive = ST->getCPUDirective(); |
| 520 | // The 440 has no SIMD support, but floating-point instructions |
| 521 | // have a 5-cycle latency, so unroll by 5x for latency hiding. |
| 522 | if (Directive == PPC::DIR_440) |
| 523 | return 5; |
| 524 | |
| 525 | // The A2 has no SIMD support, but floating-point instructions |
| 526 | // have a 6-cycle latency, so unroll by 6x for latency hiding. |
| 527 | if (Directive == PPC::DIR_A2) |
| 528 | return 6; |
| 529 | |
| 530 | // FIXME: For lack of any better information, do no harm... |
| 531 | if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) |
| 532 | return 1; |
| 533 | |
| 534 | // For P7 and P8, floating-point instructions have a 6-cycle latency and |
| 535 | // there are two execution units, so unroll by 12x for latency hiding. |
| 536 | // FIXME: the same for P9 as previous gen until POWER9 scheduling is ready |
| 537 | // FIXME: the same for P10 as previous gen until POWER10 scheduling is ready |
| 538 | // Assume that future is the same as the others. |
| 539 | if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 || |
| 540 | Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR10 || |
| 541 | Directive == PPC::DIR_PWR11 || Directive == PPC::DIR_PWR_FUTURE) |
| 542 | return 12; |
| 543 | |
| 544 | // For most things, modern systems have two execution units (and |
| 545 | // out-of-order execution). |
| 546 | return 2; |
| 547 | } |
| 548 | |
| 549 | // Returns a cost adjustment factor to adjust the cost of vector instructions |
| 550 | // on targets which there is overlap between the vector and scalar units, |
| 551 | // thereby reducing the overall throughput of vector code wrt. scalar code. |
| 552 | // An invalid instruction cost is returned if the type is an MMA vector type. |
| 553 | InstructionCost PPCTTIImpl::vectorCostAdjustmentFactor(unsigned Opcode, |
| 554 | Type *Ty1, |
| 555 | Type *Ty2) const { |
| 556 | // If the vector type is of an MMA type (v256i1, v512i1), an invalid |
| 557 | // instruction cost is returned. This is to signify to other cost computing |
| 558 | // functions to return the maximum instruction cost in order to prevent any |
| 559 | // opportunities for the optimizer to produce MMA types within the IR. |
| 560 | if (isMMAType(Ty: Ty1)) |
| 561 | return InstructionCost::getInvalid(); |
| 562 | |
| 563 | if (!ST->vectorsUseTwoUnits() || !Ty1->isVectorTy()) |
| 564 | return InstructionCost(1); |
| 565 | |
| 566 | std::pair<InstructionCost, MVT> LT1 = getTypeLegalizationCost(Ty: Ty1); |
| 567 | // If type legalization involves splitting the vector, we don't want to |
| 568 | // double the cost at every step - only the last step. |
| 569 | if (LT1.first != 1 || !LT1.second.isVector()) |
| 570 | return InstructionCost(1); |
| 571 | |
| 572 | int ISD = TLI->InstructionOpcodeToISD(Opcode); |
| 573 | if (TLI->isOperationExpand(Op: ISD, VT: LT1.second)) |
| 574 | return InstructionCost(1); |
| 575 | |
| 576 | if (Ty2) { |
| 577 | std::pair<InstructionCost, MVT> LT2 = getTypeLegalizationCost(Ty: Ty2); |
| 578 | if (LT2.first != 1 || !LT2.second.isVector()) |
| 579 | return InstructionCost(1); |
| 580 | } |
| 581 | |
| 582 | return InstructionCost(2); |
| 583 | } |
| 584 | |
| 585 | InstructionCost PPCTTIImpl::getArithmeticInstrCost( |
| 586 | unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, |
| 587 | TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info, |
| 588 | ArrayRef<const Value *> Args, const Instruction *CxtI) const { |
| 589 | assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode" ); |
| 590 | |
| 591 | InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Ty1: Ty, Ty2: nullptr); |
| 592 | if (!CostFactor.isValid()) |
| 593 | return InstructionCost::getMax(); |
| 594 | |
| 595 | // TODO: Handle more cost kinds. |
| 596 | if (CostKind != TTI::TCK_RecipThroughput) |
| 597 | return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info: Op1Info, |
| 598 | Opd2Info: Op2Info, Args, CxtI); |
| 599 | |
| 600 | // Fallback to the default implementation. |
| 601 | InstructionCost Cost = BaseT::getArithmeticInstrCost( |
| 602 | Opcode, Ty, CostKind, Opd1Info: Op1Info, Opd2Info: Op2Info); |
| 603 | return Cost * CostFactor; |
| 604 | } |
| 605 | |
| 606 | InstructionCost PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, |
| 607 | VectorType *DstTy, VectorType *SrcTy, |
| 608 | ArrayRef<int> Mask, |
| 609 | TTI::TargetCostKind CostKind, |
| 610 | int Index, VectorType *SubTp, |
| 611 | ArrayRef<const Value *> Args, |
| 612 | const Instruction *CxtI) const { |
| 613 | |
| 614 | InstructionCost CostFactor = |
| 615 | vectorCostAdjustmentFactor(Opcode: Instruction::ShuffleVector, Ty1: SrcTy, Ty2: nullptr); |
| 616 | if (!CostFactor.isValid()) |
| 617 | return InstructionCost::getMax(); |
| 618 | |
| 619 | // Legalize the type. |
| 620 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: SrcTy); |
| 621 | |
| 622 | // PPC, for both Altivec/VSX, support cheap arbitrary permutations |
| 623 | // (at least in the sense that there need only be one non-loop-invariant |
| 624 | // instruction). We need one such shuffle instruction for each actual |
| 625 | // register (this is not true for arbitrary shuffles, but is true for the |
| 626 | // structured types of shuffles covered by TTI::ShuffleKind). |
| 627 | return LT.first * CostFactor; |
| 628 | } |
| 629 | |
| 630 | InstructionCost PPCTTIImpl::getCFInstrCost(unsigned Opcode, |
| 631 | TTI::TargetCostKind CostKind, |
| 632 | const Instruction *I) const { |
| 633 | if (CostKind != TTI::TCK_RecipThroughput) |
| 634 | return Opcode == Instruction::PHI ? 0 : 1; |
| 635 | // Branches are assumed to be predicted. |
| 636 | return 0; |
| 637 | } |
| 638 | |
| 639 | InstructionCost PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, |
| 640 | Type *Src, |
| 641 | TTI::CastContextHint CCH, |
| 642 | TTI::TargetCostKind CostKind, |
| 643 | const Instruction *I) const { |
| 644 | assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode" ); |
| 645 | |
| 646 | InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Ty1: Dst, Ty2: Src); |
| 647 | if (!CostFactor.isValid()) |
| 648 | return InstructionCost::getMax(); |
| 649 | |
| 650 | InstructionCost Cost = |
| 651 | BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I); |
| 652 | Cost *= CostFactor; |
| 653 | // TODO: Allow non-throughput costs that aren't binary. |
| 654 | if (CostKind != TTI::TCK_RecipThroughput) |
| 655 | return Cost == 0 ? 0 : 1; |
| 656 | return Cost; |
| 657 | } |
| 658 | |
| 659 | InstructionCost PPCTTIImpl::getCmpSelInstrCost( |
| 660 | unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred, |
| 661 | TTI::TargetCostKind CostKind, TTI::OperandValueInfo Op1Info, |
| 662 | TTI::OperandValueInfo Op2Info, const Instruction *I) const { |
| 663 | InstructionCost CostFactor = |
| 664 | vectorCostAdjustmentFactor(Opcode, Ty1: ValTy, Ty2: nullptr); |
| 665 | if (!CostFactor.isValid()) |
| 666 | return InstructionCost::getMax(); |
| 667 | |
| 668 | InstructionCost Cost = BaseT::getCmpSelInstrCost( |
| 669 | Opcode, ValTy, CondTy, VecPred, CostKind, Op1Info, Op2Info, I); |
| 670 | // TODO: Handle other cost kinds. |
| 671 | if (CostKind != TTI::TCK_RecipThroughput) |
| 672 | return Cost; |
| 673 | return Cost * CostFactor; |
| 674 | } |
| 675 | |
| 676 | InstructionCost PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, |
| 677 | TTI::TargetCostKind CostKind, |
| 678 | unsigned Index, const Value *Op0, |
| 679 | const Value *Op1) const { |
| 680 | assert(Val->isVectorTy() && "This must be a vector type" ); |
| 681 | |
| 682 | int ISD = TLI->InstructionOpcodeToISD(Opcode); |
| 683 | assert(ISD && "Invalid opcode" ); |
| 684 | |
| 685 | InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Ty1: Val, Ty2: nullptr); |
| 686 | if (!CostFactor.isValid()) |
| 687 | return InstructionCost::getMax(); |
| 688 | |
| 689 | InstructionCost Cost = |
| 690 | BaseT::getVectorInstrCost(Opcode, Val, CostKind, Index, Op0, Op1); |
| 691 | Cost *= CostFactor; |
| 692 | |
| 693 | if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) { |
| 694 | // Double-precision scalars are already located in index #0 (or #1 if LE). |
| 695 | if (ISD == ISD::EXTRACT_VECTOR_ELT && |
| 696 | Index == (ST->isLittleEndian() ? 1 : 0)) |
| 697 | return 0; |
| 698 | |
| 699 | return Cost; |
| 700 | } |
| 701 | if (Val->getScalarType()->isIntegerTy()) { |
| 702 | unsigned EltSize = Val->getScalarSizeInBits(); |
| 703 | // Computing on 1 bit values requires extra mask or compare operations. |
| 704 | unsigned MaskCostForOneBitSize = (VecMaskCost && EltSize == 1) ? 1 : 0; |
| 705 | // Computing on non const index requires extra mask or compare operations. |
| 706 | unsigned MaskCostForIdx = (Index != -1U) ? 0 : 1; |
| 707 | if (ST->hasP9Altivec()) { |
| 708 | // P10 has vxform insert which can handle non const index. The |
| 709 | // MaskCostForIdx is for masking the index. |
| 710 | // P9 has insert for const index. A move-to VSR and a permute/insert. |
| 711 | // Assume vector operation cost for both (cost will be 2x on P9). |
| 712 | if (ISD == ISD::INSERT_VECTOR_ELT) { |
| 713 | if (ST->hasP10Vector()) |
| 714 | return CostFactor + MaskCostForIdx; |
| 715 | if (Index != -1U) |
| 716 | return 2 * CostFactor; |
| 717 | } else if (ISD == ISD::EXTRACT_VECTOR_ELT) { |
| 718 | // It's an extract. Maybe we can do a cheap move-from VSR. |
| 719 | unsigned EltSize = Val->getScalarSizeInBits(); |
| 720 | // P9 has both mfvsrd and mfvsrld for 64 bit integer. |
| 721 | if (EltSize == 64 && Index != -1U) |
| 722 | return 1; |
| 723 | if (EltSize == 32) { |
| 724 | unsigned MfvsrwzIndex = ST->isLittleEndian() ? 2 : 1; |
| 725 | if (Index == MfvsrwzIndex) |
| 726 | return 1; |
| 727 | |
| 728 | // For other indexs like non const, P9 has vxform extract. The |
| 729 | // MaskCostForIdx is for masking the index. |
| 730 | return CostFactor + MaskCostForIdx; |
| 731 | } |
| 732 | |
| 733 | // We need a vector extract (or mfvsrld). Assume vector operation cost. |
| 734 | // The cost of the load constant for a vector extract is disregarded |
| 735 | // (invariant, easily schedulable). |
| 736 | return CostFactor + MaskCostForOneBitSize + MaskCostForIdx; |
| 737 | } |
| 738 | } else if (ST->hasDirectMove() && Index != -1U) { |
| 739 | // Assume permute has standard cost. |
| 740 | // Assume move-to/move-from VSR have 2x standard cost. |
| 741 | if (ISD == ISD::INSERT_VECTOR_ELT) |
| 742 | return 3; |
| 743 | return 3 + MaskCostForOneBitSize; |
| 744 | } |
| 745 | } |
| 746 | |
| 747 | // Estimated cost of a load-hit-store delay. This was obtained |
| 748 | // experimentally as a minimum needed to prevent unprofitable |
| 749 | // vectorization for the paq8p benchmark. It may need to be |
| 750 | // raised further if other unprofitable cases remain. |
| 751 | unsigned LHSPenalty = 2; |
| 752 | if (ISD == ISD::INSERT_VECTOR_ELT) |
| 753 | LHSPenalty += 7; |
| 754 | |
| 755 | // Vector element insert/extract with Altivec is very expensive, |
| 756 | // because they require store and reload with the attendant |
| 757 | // processor stall for load-hit-store. Until VSX is available, |
| 758 | // these need to be estimated as very costly. |
| 759 | if (ISD == ISD::EXTRACT_VECTOR_ELT || |
| 760 | ISD == ISD::INSERT_VECTOR_ELT) |
| 761 | return LHSPenalty + Cost; |
| 762 | |
| 763 | return Cost; |
| 764 | } |
| 765 | |
| 766 | InstructionCost PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, |
| 767 | Align Alignment, |
| 768 | unsigned AddressSpace, |
| 769 | TTI::TargetCostKind CostKind, |
| 770 | TTI::OperandValueInfo OpInfo, |
| 771 | const Instruction *I) const { |
| 772 | |
| 773 | InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Ty1: Src, Ty2: nullptr); |
| 774 | if (!CostFactor.isValid()) |
| 775 | return InstructionCost::getMax(); |
| 776 | |
| 777 | if (TLI->getValueType(DL, Ty: Src, AllowUnknown: true) == MVT::Other) |
| 778 | return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, |
| 779 | CostKind); |
| 780 | // Legalize the type. |
| 781 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: Src); |
| 782 | assert((Opcode == Instruction::Load || Opcode == Instruction::Store) && |
| 783 | "Invalid Opcode" ); |
| 784 | |
| 785 | InstructionCost Cost = |
| 786 | BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind); |
| 787 | // TODO: Handle other cost kinds. |
| 788 | if (CostKind != TTI::TCK_RecipThroughput) |
| 789 | return Cost; |
| 790 | |
| 791 | Cost *= CostFactor; |
| 792 | |
| 793 | bool IsAltivecType = ST->hasAltivec() && |
| 794 | (LT.second == MVT::v16i8 || LT.second == MVT::v8i16 || |
| 795 | LT.second == MVT::v4i32 || LT.second == MVT::v4f32); |
| 796 | bool IsVSXType = ST->hasVSX() && |
| 797 | (LT.second == MVT::v2f64 || LT.second == MVT::v2i64); |
| 798 | |
| 799 | // VSX has 32b/64b load instructions. Legalization can handle loading of |
| 800 | // 32b/64b to VSR correctly and cheaply. But BaseT::getMemoryOpCost and |
| 801 | // PPCTargetLowering can't compute the cost appropriately. So here we |
| 802 | // explicitly check this case. There are also corresponding store |
| 803 | // instructions. |
| 804 | unsigned MemBits = Src->getPrimitiveSizeInBits(); |
| 805 | unsigned SrcBytes = LT.second.getStoreSize(); |
| 806 | if (ST->hasVSX() && IsAltivecType) { |
| 807 | if (MemBits == 64 || (ST->hasP8Vector() && MemBits == 32)) |
| 808 | return 1; |
| 809 | |
| 810 | // Use lfiwax/xxspltw |
| 811 | if (Opcode == Instruction::Load && MemBits == 32 && Alignment < SrcBytes) |
| 812 | return 2; |
| 813 | } |
| 814 | |
| 815 | // Aligned loads and stores are easy. |
| 816 | if (!SrcBytes || Alignment >= SrcBytes) |
| 817 | return Cost; |
| 818 | |
| 819 | // If we can use the permutation-based load sequence, then this is also |
| 820 | // relatively cheap (not counting loop-invariant instructions): one load plus |
| 821 | // one permute (the last load in a series has extra cost, but we're |
| 822 | // neglecting that here). Note that on the P7, we could do unaligned loads |
| 823 | // for Altivec types using the VSX instructions, but that's more expensive |
| 824 | // than using the permutation-based load sequence. On the P8, that's no |
| 825 | // longer true. |
| 826 | if (Opcode == Instruction::Load && (!ST->hasP8Vector() && IsAltivecType) && |
| 827 | Alignment >= LT.second.getScalarType().getStoreSize()) |
| 828 | return Cost + LT.first; // Add the cost of the permutations. |
| 829 | |
| 830 | // For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the |
| 831 | // P7, unaligned vector loads are more expensive than the permutation-based |
| 832 | // load sequence, so that might be used instead, but regardless, the net cost |
| 833 | // is about the same (not counting loop-invariant instructions). |
| 834 | if (IsVSXType || (ST->hasVSX() && IsAltivecType)) |
| 835 | return Cost; |
| 836 | |
| 837 | // Newer PPC supports unaligned memory access. |
| 838 | if (TLI->allowsMisalignedMemoryAccesses(VT: LT.second, AddrSpace: 0)) |
| 839 | return Cost; |
| 840 | |
| 841 | // PPC in general does not support unaligned loads and stores. They'll need |
| 842 | // to be decomposed based on the alignment factor. |
| 843 | |
| 844 | // Add the cost of each scalar load or store. |
| 845 | Cost += LT.first * ((SrcBytes / Alignment.value()) - 1); |
| 846 | |
| 847 | // For a vector type, there is also scalarization overhead (only for |
| 848 | // stores, loads are expanded using the vector-load + permutation sequence, |
| 849 | // which is much less expensive). |
| 850 | if (Src->isVectorTy() && Opcode == Instruction::Store) |
| 851 | for (int I = 0, E = cast<FixedVectorType>(Val: Src)->getNumElements(); I < E; |
| 852 | ++I) |
| 853 | Cost += getVectorInstrCost(Opcode: Instruction::ExtractElement, Val: Src, CostKind, Index: I, |
| 854 | Op0: nullptr, Op1: nullptr); |
| 855 | |
| 856 | return Cost; |
| 857 | } |
| 858 | |
| 859 | InstructionCost PPCTTIImpl::getInterleavedMemoryOpCost( |
| 860 | unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, |
| 861 | Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, |
| 862 | bool UseMaskForCond, bool UseMaskForGaps) const { |
| 863 | InstructionCost CostFactor = |
| 864 | vectorCostAdjustmentFactor(Opcode, Ty1: VecTy, Ty2: nullptr); |
| 865 | if (!CostFactor.isValid()) |
| 866 | return InstructionCost::getMax(); |
| 867 | |
| 868 | if (UseMaskForCond || UseMaskForGaps) |
| 869 | return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, |
| 870 | Alignment, AddressSpace, CostKind, |
| 871 | UseMaskForCond, UseMaskForGaps); |
| 872 | |
| 873 | assert(isa<VectorType>(VecTy) && |
| 874 | "Expect a vector type for interleaved memory op" ); |
| 875 | |
| 876 | // Legalize the type. |
| 877 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: VecTy); |
| 878 | |
| 879 | // Firstly, the cost of load/store operation. |
| 880 | InstructionCost Cost = |
| 881 | getMemoryOpCost(Opcode, Src: VecTy, Alignment, AddressSpace, CostKind); |
| 882 | |
| 883 | // PPC, for both Altivec/VSX, support cheap arbitrary permutations |
| 884 | // (at least in the sense that there need only be one non-loop-invariant |
| 885 | // instruction). For each result vector, we need one shuffle per incoming |
| 886 | // vector (except that the first shuffle can take two incoming vectors |
| 887 | // because it does not need to take itself). |
| 888 | Cost += Factor*(LT.first-1); |
| 889 | |
| 890 | return Cost; |
| 891 | } |
| 892 | |
| 893 | InstructionCost |
| 894 | PPCTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, |
| 895 | TTI::TargetCostKind CostKind) const { |
| 896 | return BaseT::getIntrinsicInstrCost(ICA, CostKind); |
| 897 | } |
| 898 | |
| 899 | bool PPCTTIImpl::areInlineCompatible(const Function *Caller, |
| 900 | const Function *Callee) const { |
| 901 | const TargetMachine &TM = getTLI()->getTargetMachine(); |
| 902 | |
| 903 | const FeatureBitset &CallerBits = |
| 904 | TM.getSubtargetImpl(*Caller)->getFeatureBits(); |
| 905 | const FeatureBitset &CalleeBits = |
| 906 | TM.getSubtargetImpl(*Callee)->getFeatureBits(); |
| 907 | |
| 908 | // Check that targets features are exactly the same. We can revisit to see if |
| 909 | // we can improve this. |
| 910 | return CallerBits == CalleeBits; |
| 911 | } |
| 912 | |
| 913 | bool PPCTTIImpl::areTypesABICompatible(const Function *Caller, |
| 914 | const Function *Callee, |
| 915 | const ArrayRef<Type *> &Types) const { |
| 916 | |
| 917 | // We need to ensure that argument promotion does not |
| 918 | // attempt to promote pointers to MMA types (__vector_pair |
| 919 | // and __vector_quad) since these types explicitly cannot be |
| 920 | // passed as arguments. Both of these types are larger than |
| 921 | // the 128-bit Altivec vectors and have a scalar size of 1 bit. |
| 922 | if (!BaseT::areTypesABICompatible(Caller, Callee, Types)) |
| 923 | return false; |
| 924 | |
| 925 | return llvm::none_of(Range: Types, P: [](Type *Ty) { |
| 926 | if (Ty->isSized()) |
| 927 | return Ty->isIntOrIntVectorTy(BitWidth: 1) && Ty->getPrimitiveSizeInBits() > 128; |
| 928 | return false; |
| 929 | }); |
| 930 | } |
| 931 | |
| 932 | bool PPCTTIImpl::canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, |
| 933 | LoopInfo *LI, DominatorTree *DT, |
| 934 | AssumptionCache *AC, |
| 935 | TargetLibraryInfo *LibInfo) const { |
| 936 | // Process nested loops first. |
| 937 | for (Loop *I : *L) |
| 938 | if (canSaveCmp(L: I, BI, SE, LI, DT, AC, LibInfo)) |
| 939 | return false; // Stop search. |
| 940 | |
| 941 | HardwareLoopInfo HWLoopInfo(L); |
| 942 | |
| 943 | if (!HWLoopInfo.canAnalyze(LI&: *LI)) |
| 944 | return false; |
| 945 | |
| 946 | if (!isHardwareLoopProfitable(L, SE&: *SE, AC&: *AC, LibInfo, HWLoopInfo)) |
| 947 | return false; |
| 948 | |
| 949 | if (!HWLoopInfo.isHardwareLoopCandidate(SE&: *SE, LI&: *LI, DT&: *DT)) |
| 950 | return false; |
| 951 | |
| 952 | *BI = HWLoopInfo.ExitBranch; |
| 953 | return true; |
| 954 | } |
| 955 | |
| 956 | bool PPCTTIImpl::isLSRCostLess(const TargetTransformInfo::LSRCost &C1, |
| 957 | const TargetTransformInfo::LSRCost &C2) const { |
| 958 | // PowerPC default behaviour here is "instruction number 1st priority". |
| 959 | // If LsrNoInsnsCost is set, call default implementation. |
| 960 | if (!LsrNoInsnsCost) |
| 961 | return std::tie(args: C1.Insns, args: C1.NumRegs, args: C1.AddRecCost, args: C1.NumIVMuls, |
| 962 | args: C1.NumBaseAdds, args: C1.ScaleCost, args: C1.ImmCost, args: C1.SetupCost) < |
| 963 | std::tie(args: C2.Insns, args: C2.NumRegs, args: C2.AddRecCost, args: C2.NumIVMuls, |
| 964 | args: C2.NumBaseAdds, args: C2.ScaleCost, args: C2.ImmCost, args: C2.SetupCost); |
| 965 | return TargetTransformInfoImplBase::isLSRCostLess(C1, C2); |
| 966 | } |
| 967 | |
| 968 | bool PPCTTIImpl::isNumRegsMajorCostOfLSR() const { return false; } |
| 969 | |
| 970 | bool PPCTTIImpl::shouldBuildRelLookupTables() const { |
| 971 | const PPCTargetMachine &TM = ST->getTargetMachine(); |
| 972 | // XCOFF hasn't implemented lowerRelativeReference, disable non-ELF for now. |
| 973 | if (!TM.isELFv2ABI()) |
| 974 | return false; |
| 975 | return BaseT::shouldBuildRelLookupTables(); |
| 976 | } |
| 977 | |
| 978 | bool PPCTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, |
| 979 | MemIntrinsicInfo &Info) const { |
| 980 | switch (Inst->getIntrinsicID()) { |
| 981 | case Intrinsic::ppc_altivec_lvx: |
| 982 | case Intrinsic::ppc_altivec_lvxl: |
| 983 | case Intrinsic::ppc_altivec_lvebx: |
| 984 | case Intrinsic::ppc_altivec_lvehx: |
| 985 | case Intrinsic::ppc_altivec_lvewx: |
| 986 | case Intrinsic::ppc_vsx_lxvd2x: |
| 987 | case Intrinsic::ppc_vsx_lxvw4x: |
| 988 | case Intrinsic::ppc_vsx_lxvd2x_be: |
| 989 | case Intrinsic::ppc_vsx_lxvw4x_be: |
| 990 | case Intrinsic::ppc_vsx_lxvl: |
| 991 | case Intrinsic::ppc_vsx_lxvll: |
| 992 | case Intrinsic::ppc_vsx_lxvp: { |
| 993 | Info.PtrVal = Inst->getArgOperand(i: 0); |
| 994 | Info.ReadMem = true; |
| 995 | Info.WriteMem = false; |
| 996 | return true; |
| 997 | } |
| 998 | case Intrinsic::ppc_altivec_stvx: |
| 999 | case Intrinsic::ppc_altivec_stvxl: |
| 1000 | case Intrinsic::ppc_altivec_stvebx: |
| 1001 | case Intrinsic::ppc_altivec_stvehx: |
| 1002 | case Intrinsic::ppc_altivec_stvewx: |
| 1003 | case Intrinsic::ppc_vsx_stxvd2x: |
| 1004 | case Intrinsic::ppc_vsx_stxvw4x: |
| 1005 | case Intrinsic::ppc_vsx_stxvd2x_be: |
| 1006 | case Intrinsic::ppc_vsx_stxvw4x_be: |
| 1007 | case Intrinsic::ppc_vsx_stxvl: |
| 1008 | case Intrinsic::ppc_vsx_stxvll: |
| 1009 | case Intrinsic::ppc_vsx_stxvp: { |
| 1010 | Info.PtrVal = Inst->getArgOperand(i: 1); |
| 1011 | Info.ReadMem = false; |
| 1012 | Info.WriteMem = true; |
| 1013 | return true; |
| 1014 | } |
| 1015 | case Intrinsic::ppc_stbcx: |
| 1016 | case Intrinsic::ppc_sthcx: |
| 1017 | case Intrinsic::ppc_stdcx: |
| 1018 | case Intrinsic::ppc_stwcx: { |
| 1019 | Info.PtrVal = Inst->getArgOperand(i: 0); |
| 1020 | Info.ReadMem = false; |
| 1021 | Info.WriteMem = true; |
| 1022 | return true; |
| 1023 | } |
| 1024 | default: |
| 1025 | break; |
| 1026 | } |
| 1027 | |
| 1028 | return false; |
| 1029 | } |
| 1030 | |
| 1031 | bool PPCTTIImpl::supportsTailCallFor(const CallBase *CB) const { |
| 1032 | return TLI->supportsTailCallFor(CB); |
| 1033 | } |
| 1034 | |