| 1 | //===-- RISCVBaseInfo.cpp - Top level definitions for RISC-V MC -----------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file contains small standalone enum definitions for the RISC-V target |
| 10 | // useful for the compiler back-end and the MC libraries. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "RISCVBaseInfo.h" |
| 15 | #include "llvm/MC/MCInst.h" |
| 16 | #include "llvm/MC/MCRegisterInfo.h" |
| 17 | #include "llvm/MC/MCSubtargetInfo.h" |
| 18 | #include "llvm/Support/raw_ostream.h" |
| 19 | #include "llvm/TargetParser/TargetParser.h" |
| 20 | #include "llvm/TargetParser/Triple.h" |
| 21 | |
| 22 | namespace llvm { |
| 23 | |
| 24 | extern const SubtargetFeatureKV RISCVFeatureKV[RISCV::NumSubtargetFeatures]; |
| 25 | |
| 26 | namespace RISCVSysReg { |
| 27 | #define GET_SysRegsList_IMPL |
| 28 | #include "RISCVGenSearchableTables.inc" |
| 29 | } // namespace RISCVSysReg |
| 30 | |
| 31 | namespace RISCVInsnOpcode { |
| 32 | #define GET_RISCVOpcodesList_IMPL |
| 33 | #include "RISCVGenSearchableTables.inc" |
| 34 | } // namespace RISCVInsnOpcode |
| 35 | |
| 36 | namespace RISCVVInversePseudosTable { |
| 37 | using namespace RISCV; |
| 38 | #define GET_RISCVVInversePseudosTable_IMPL |
| 39 | #include "RISCVGenSearchableTables.inc" |
| 40 | } // namespace RISCVVInversePseudosTable |
| 41 | |
| 42 | namespace RISCV { |
| 43 | #define GET_RISCVVSSEGTable_IMPL |
| 44 | #define GET_RISCVVLSEGTable_IMPL |
| 45 | #define GET_RISCVVLXSEGTable_IMPL |
| 46 | #define GET_RISCVVSXSEGTable_IMPL |
| 47 | #define GET_RISCVVLETable_IMPL |
| 48 | #define GET_RISCVVSETable_IMPL |
| 49 | #define GET_RISCVVLXTable_IMPL |
| 50 | #define GET_RISCVVSXTable_IMPL |
| 51 | #include "RISCVGenSearchableTables.inc" |
| 52 | } // namespace RISCV |
| 53 | |
| 54 | // Report an error but don't ask the user to report a bug. |
| 55 | // TODO: Remove these wrappers. |
| 56 | [[noreturn]] static void reportError(const char *Reason) { |
| 57 | reportFatalUsageError(reason: Reason); |
| 58 | } |
| 59 | [[noreturn]] static void reportError(Error Err) { |
| 60 | reportFatalUsageError(Err: std::move(Err)); |
| 61 | } |
| 62 | |
| 63 | namespace RISCVABI { |
| 64 | ABI computeTargetABI(const Triple &TT, const FeatureBitset &FeatureBits, |
| 65 | StringRef ABIName) { |
| 66 | auto TargetABI = getTargetABI(ABIName); |
| 67 | bool IsRV64 = TT.isArch64Bit(); |
| 68 | bool IsRVE = FeatureBits[RISCV::FeatureStdExtE]; |
| 69 | |
| 70 | if (!ABIName.empty() && TargetABI == ABI_Unknown) { |
| 71 | errs() |
| 72 | << "'" << ABIName |
| 73 | << "' is not a recognized ABI for this target (ignoring target-abi)\n" ; |
| 74 | } else if (ABIName.starts_with(Prefix: "ilp32" ) && IsRV64) { |
| 75 | errs() << "32-bit ABIs are not supported for 64-bit targets (ignoring " |
| 76 | "target-abi)\n" ; |
| 77 | TargetABI = ABI_Unknown; |
| 78 | } else if (ABIName.starts_with(Prefix: "lp64" ) && !IsRV64) { |
| 79 | errs() << "64-bit ABIs are not supported for 32-bit targets (ignoring " |
| 80 | "target-abi)\n" ; |
| 81 | TargetABI = ABI_Unknown; |
| 82 | } else if (!IsRV64 && IsRVE && TargetABI != ABI_ILP32E && |
| 83 | TargetABI != ABI_Unknown) { |
| 84 | // TODO: move this checking to RISCVTargetLowering and RISCVAsmParser |
| 85 | errs() |
| 86 | << "Only the ilp32e ABI is supported for RV32E (ignoring target-abi)\n" ; |
| 87 | TargetABI = ABI_Unknown; |
| 88 | } else if (IsRV64 && IsRVE && TargetABI != ABI_LP64E && |
| 89 | TargetABI != ABI_Unknown) { |
| 90 | // TODO: move this checking to RISCVTargetLowering and RISCVAsmParser |
| 91 | errs() |
| 92 | << "Only the lp64e ABI is supported for RV64E (ignoring target-abi)\n" ; |
| 93 | TargetABI = ABI_Unknown; |
| 94 | } |
| 95 | |
| 96 | if ((TargetABI == RISCVABI::ABI::ABI_ILP32E || |
| 97 | (TargetABI == ABI_Unknown && IsRVE && !IsRV64)) && |
| 98 | FeatureBits[RISCV::FeatureStdExtD]) |
| 99 | reportError(Reason: "ILP32E cannot be used with the D ISA extension" ); |
| 100 | |
| 101 | if (TargetABI != ABI_Unknown) |
| 102 | return TargetABI; |
| 103 | |
| 104 | // If no explicit ABI is given, try to compute the default ABI. |
| 105 | auto ISAInfo = RISCVFeatures::parseFeatureBits(IsRV64, FeatureBits); |
| 106 | if (!ISAInfo) |
| 107 | reportError(Err: ISAInfo.takeError()); |
| 108 | return getTargetABI(ABIName: (*ISAInfo)->computeDefaultABI()); |
| 109 | } |
| 110 | |
| 111 | ABI getTargetABI(StringRef ABIName) { |
| 112 | auto TargetABI = StringSwitch<ABI>(ABIName) |
| 113 | .Case(S: "ilp32" , Value: ABI_ILP32) |
| 114 | .Case(S: "ilp32f" , Value: ABI_ILP32F) |
| 115 | .Case(S: "ilp32d" , Value: ABI_ILP32D) |
| 116 | .Case(S: "ilp32e" , Value: ABI_ILP32E) |
| 117 | .Case(S: "lp64" , Value: ABI_LP64) |
| 118 | .Case(S: "lp64f" , Value: ABI_LP64F) |
| 119 | .Case(S: "lp64d" , Value: ABI_LP64D) |
| 120 | .Case(S: "lp64e" , Value: ABI_LP64E) |
| 121 | .Default(Value: ABI_Unknown); |
| 122 | return TargetABI; |
| 123 | } |
| 124 | |
| 125 | // To avoid the BP value clobbered by a function call, we need to choose a |
| 126 | // callee saved register to save the value. RV32E only has X8 and X9 as callee |
| 127 | // saved registers and X8 will be used as fp. So we choose X9 as bp. |
| 128 | MCRegister getBPReg() { return RISCV::X9; } |
| 129 | |
| 130 | // Returns the register holding shadow call stack pointer. |
| 131 | MCRegister getSCSPReg() { return RISCV::X3; } |
| 132 | |
| 133 | } // namespace RISCVABI |
| 134 | |
| 135 | namespace RISCVFeatures { |
| 136 | |
| 137 | void validate(const Triple &TT, const FeatureBitset &FeatureBits) { |
| 138 | if (TT.isArch64Bit() && !FeatureBits[RISCV::Feature64Bit]) |
| 139 | reportError(Reason: "RV64 target requires an RV64 CPU" ); |
| 140 | if (!TT.isArch64Bit() && !FeatureBits[RISCV::Feature32Bit]) |
| 141 | reportError(Reason: "RV32 target requires an RV32 CPU" ); |
| 142 | if (FeatureBits[RISCV::Feature32Bit] && |
| 143 | FeatureBits[RISCV::Feature64Bit]) |
| 144 | reportError(Reason: "RV32 and RV64 can't be combined" ); |
| 145 | } |
| 146 | |
| 147 | llvm::Expected<std::unique_ptr<RISCVISAInfo>> |
| 148 | parseFeatureBits(bool IsRV64, const FeatureBitset &FeatureBits) { |
| 149 | unsigned XLen = IsRV64 ? 64 : 32; |
| 150 | std::vector<std::string> FeatureVector; |
| 151 | // Convert FeatureBitset to FeatureVector. |
| 152 | for (auto Feature : RISCVFeatureKV) { |
| 153 | if (FeatureBits[Feature.Value] && |
| 154 | llvm::RISCVISAInfo::isSupportedExtensionFeature(Ext: Feature.Key)) |
| 155 | FeatureVector.push_back(x: std::string("+" ) + Feature.Key); |
| 156 | } |
| 157 | return llvm::RISCVISAInfo::parseFeatures(XLen, Features: FeatureVector); |
| 158 | } |
| 159 | |
| 160 | } // namespace RISCVFeatures |
| 161 | |
| 162 | // Include the auto-generated portion of the compress emitter. |
| 163 | #define GEN_UNCOMPRESS_INSTR |
| 164 | #define GEN_COMPRESS_INSTR |
| 165 | #include "RISCVGenCompressInstEmitter.inc" |
| 166 | |
| 167 | bool RISCVRVC::compress(MCInst &OutInst, const MCInst &MI, |
| 168 | const MCSubtargetInfo &STI) { |
| 169 | return compressInst(OutInst, MI, STI); |
| 170 | } |
| 171 | |
| 172 | bool RISCVRVC::uncompress(MCInst &OutInst, const MCInst &MI, |
| 173 | const MCSubtargetInfo &STI) { |
| 174 | return uncompressInst(OutInst, MI, STI); |
| 175 | } |
| 176 | |
| 177 | // Lookup table for fli.s for entries 2-31. |
| 178 | static constexpr std::pair<uint8_t, uint8_t> LoadFP32ImmArr[] = { |
| 179 | {0b01101111, 0b00}, {0b01110000, 0b00}, {0b01110111, 0b00}, |
| 180 | {0b01111000, 0b00}, {0b01111011, 0b00}, {0b01111100, 0b00}, |
| 181 | {0b01111101, 0b00}, {0b01111101, 0b01}, {0b01111101, 0b10}, |
| 182 | {0b01111101, 0b11}, {0b01111110, 0b00}, {0b01111110, 0b01}, |
| 183 | {0b01111110, 0b10}, {0b01111110, 0b11}, {0b01111111, 0b00}, |
| 184 | {0b01111111, 0b01}, {0b01111111, 0b10}, {0b01111111, 0b11}, |
| 185 | {0b10000000, 0b00}, {0b10000000, 0b01}, {0b10000000, 0b10}, |
| 186 | {0b10000001, 0b00}, {0b10000010, 0b00}, {0b10000011, 0b00}, |
| 187 | {0b10000110, 0b00}, {0b10000111, 0b00}, {0b10001110, 0b00}, |
| 188 | {0b10001111, 0b00}, {0b11111111, 0b00}, {0b11111111, 0b10}, |
| 189 | }; |
| 190 | |
| 191 | int RISCVLoadFPImm::getLoadFPImm(APFloat FPImm) { |
| 192 | assert((&FPImm.getSemantics() == &APFloat::IEEEsingle() || |
| 193 | &FPImm.getSemantics() == &APFloat::IEEEdouble() || |
| 194 | &FPImm.getSemantics() == &APFloat::IEEEhalf()) && |
| 195 | "Unexpected semantics" ); |
| 196 | |
| 197 | // Handle the minimum normalized value which is different for each type. |
| 198 | if (FPImm.isSmallestNormalized() && !FPImm.isNegative()) |
| 199 | return 1; |
| 200 | |
| 201 | // Convert to single precision to use its lookup table. |
| 202 | bool LosesInfo; |
| 203 | APFloat::opStatus Status = FPImm.convert( |
| 204 | ToSemantics: APFloat::IEEEsingle(), RM: APFloat::rmNearestTiesToEven, losesInfo: &LosesInfo); |
| 205 | if (Status != APFloat::opOK || LosesInfo) |
| 206 | return -1; |
| 207 | |
| 208 | APInt Imm = FPImm.bitcastToAPInt(); |
| 209 | |
| 210 | if (Imm.extractBitsAsZExtValue(numBits: 21, bitPosition: 0) != 0) |
| 211 | return -1; |
| 212 | |
| 213 | bool Sign = Imm.extractBitsAsZExtValue(numBits: 1, bitPosition: 31); |
| 214 | uint8_t Mantissa = Imm.extractBitsAsZExtValue(numBits: 2, bitPosition: 21); |
| 215 | uint8_t Exp = Imm.extractBitsAsZExtValue(numBits: 8, bitPosition: 23); |
| 216 | |
| 217 | auto EMI = llvm::lower_bound(Range: LoadFP32ImmArr, Value: std::make_pair(x&: Exp, y&: Mantissa)); |
| 218 | if (EMI == std::end(arr: LoadFP32ImmArr) || EMI->first != Exp || |
| 219 | EMI->second != Mantissa) |
| 220 | return -1; |
| 221 | |
| 222 | // Table doesn't have entry 0 or 1. |
| 223 | int Entry = std::distance(first: std::begin(arr: LoadFP32ImmArr), last: EMI) + 2; |
| 224 | |
| 225 | // The only legal negative value is -1.0(entry 0). 1.0 is entry 16. |
| 226 | if (Sign) { |
| 227 | if (Entry == 16) |
| 228 | return 0; |
| 229 | return -1; |
| 230 | } |
| 231 | |
| 232 | return Entry; |
| 233 | } |
| 234 | |
| 235 | float RISCVLoadFPImm::getFPImm(unsigned Imm) { |
| 236 | assert(Imm != 1 && Imm != 30 && Imm != 31 && "Unsupported immediate" ); |
| 237 | |
| 238 | // Entry 0 is -1.0, the only negative value. Entry 16 is 1.0. |
| 239 | uint32_t Sign = 0; |
| 240 | if (Imm == 0) { |
| 241 | Sign = 0b1; |
| 242 | Imm = 16; |
| 243 | } |
| 244 | |
| 245 | uint32_t Exp = LoadFP32ImmArr[Imm - 2].first; |
| 246 | uint32_t Mantissa = LoadFP32ImmArr[Imm - 2].second; |
| 247 | |
| 248 | uint32_t I = Sign << 31 | Exp << 23 | Mantissa << 21; |
| 249 | return bit_cast<float>(from: I); |
| 250 | } |
| 251 | |
| 252 | void RISCVZC::printRegList(unsigned RlistEncode, raw_ostream &OS) { |
| 253 | assert(RlistEncode >= RLISTENCODE::RA && |
| 254 | RlistEncode <= RLISTENCODE::RA_S0_S11 && "Invalid Rlist" ); |
| 255 | OS << "{ra" ; |
| 256 | if (RlistEncode > RISCVZC::RA) { |
| 257 | OS << ", s0" ; |
| 258 | if (RlistEncode == RISCVZC::RA_S0_S11) |
| 259 | OS << "-s11" ; |
| 260 | else if (RlistEncode > RISCVZC::RA_S0 && RlistEncode <= RISCVZC::RA_S0_S11) |
| 261 | OS << "-s" << (RlistEncode - RISCVZC::RA_S0); |
| 262 | } |
| 263 | OS << "}" ; |
| 264 | } |
| 265 | |
| 266 | } // namespace llvm |
| 267 | |