1 | //===-- RISCVBaseInfo.cpp - Top level definitions for RISC-V MC -----------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file contains small standalone enum definitions for the RISC-V target |
10 | // useful for the compiler back-end and the MC libraries. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "RISCVBaseInfo.h" |
15 | #include "llvm/MC/MCInst.h" |
16 | #include "llvm/MC/MCRegisterInfo.h" |
17 | #include "llvm/MC/MCSubtargetInfo.h" |
18 | #include "llvm/Support/raw_ostream.h" |
19 | #include "llvm/TargetParser/TargetParser.h" |
20 | #include "llvm/TargetParser/Triple.h" |
21 | |
22 | namespace llvm { |
23 | |
24 | extern const SubtargetFeatureKV RISCVFeatureKV[RISCV::NumSubtargetFeatures]; |
25 | |
26 | namespace RISCVSysReg { |
27 | #define GET_SysRegsList_IMPL |
28 | #include "RISCVGenSearchableTables.inc" |
29 | } // namespace RISCVSysReg |
30 | |
31 | namespace RISCVInsnOpcode { |
32 | #define GET_RISCVOpcodesList_IMPL |
33 | #include "RISCVGenSearchableTables.inc" |
34 | } // namespace RISCVInsnOpcode |
35 | |
36 | namespace RISCVVInversePseudosTable { |
37 | using namespace RISCV; |
38 | #define GET_RISCVVInversePseudosTable_IMPL |
39 | #include "RISCVGenSearchableTables.inc" |
40 | } // namespace RISCVVInversePseudosTable |
41 | |
42 | namespace RISCV { |
43 | #define GET_RISCVVSSEGTable_IMPL |
44 | #define GET_RISCVVLSEGTable_IMPL |
45 | #define GET_RISCVVLXSEGTable_IMPL |
46 | #define GET_RISCVVSXSEGTable_IMPL |
47 | #define GET_RISCVVLETable_IMPL |
48 | #define GET_RISCVVSETable_IMPL |
49 | #define GET_RISCVVLXTable_IMPL |
50 | #define GET_RISCVVSXTable_IMPL |
51 | #include "RISCVGenSearchableTables.inc" |
52 | } // namespace RISCV |
53 | |
54 | // Report an error but don't ask the user to report a bug. |
55 | // TODO: Remove these wrappers. |
56 | [[noreturn]] static void reportError(const char *Reason) { |
57 | reportFatalUsageError(reason: Reason); |
58 | } |
59 | [[noreturn]] static void reportError(Error Err) { |
60 | reportFatalUsageError(Err: std::move(Err)); |
61 | } |
62 | |
63 | namespace RISCVABI { |
64 | ABI computeTargetABI(const Triple &TT, const FeatureBitset &FeatureBits, |
65 | StringRef ABIName) { |
66 | auto TargetABI = getTargetABI(ABIName); |
67 | bool IsRV64 = TT.isArch64Bit(); |
68 | bool IsRVE = FeatureBits[RISCV::FeatureStdExtE]; |
69 | |
70 | if (!ABIName.empty() && TargetABI == ABI_Unknown) { |
71 | errs() |
72 | << "'" << ABIName |
73 | << "' is not a recognized ABI for this target (ignoring target-abi)\n" ; |
74 | } else if (ABIName.starts_with(Prefix: "ilp32" ) && IsRV64) { |
75 | errs() << "32-bit ABIs are not supported for 64-bit targets (ignoring " |
76 | "target-abi)\n" ; |
77 | TargetABI = ABI_Unknown; |
78 | } else if (ABIName.starts_with(Prefix: "lp64" ) && !IsRV64) { |
79 | errs() << "64-bit ABIs are not supported for 32-bit targets (ignoring " |
80 | "target-abi)\n" ; |
81 | TargetABI = ABI_Unknown; |
82 | } else if (!IsRV64 && IsRVE && TargetABI != ABI_ILP32E && |
83 | TargetABI != ABI_Unknown) { |
84 | // TODO: move this checking to RISCVTargetLowering and RISCVAsmParser |
85 | errs() |
86 | << "Only the ilp32e ABI is supported for RV32E (ignoring target-abi)\n" ; |
87 | TargetABI = ABI_Unknown; |
88 | } else if (IsRV64 && IsRVE && TargetABI != ABI_LP64E && |
89 | TargetABI != ABI_Unknown) { |
90 | // TODO: move this checking to RISCVTargetLowering and RISCVAsmParser |
91 | errs() |
92 | << "Only the lp64e ABI is supported for RV64E (ignoring target-abi)\n" ; |
93 | TargetABI = ABI_Unknown; |
94 | } |
95 | |
96 | if ((TargetABI == RISCVABI::ABI::ABI_ILP32E || |
97 | (TargetABI == ABI_Unknown && IsRVE && !IsRV64)) && |
98 | FeatureBits[RISCV::FeatureStdExtD]) |
99 | reportError(Reason: "ILP32E cannot be used with the D ISA extension" ); |
100 | |
101 | if (TargetABI != ABI_Unknown) |
102 | return TargetABI; |
103 | |
104 | // If no explicit ABI is given, try to compute the default ABI. |
105 | auto ISAInfo = RISCVFeatures::parseFeatureBits(IsRV64, FeatureBits); |
106 | if (!ISAInfo) |
107 | reportError(Err: ISAInfo.takeError()); |
108 | return getTargetABI(ABIName: (*ISAInfo)->computeDefaultABI()); |
109 | } |
110 | |
111 | ABI getTargetABI(StringRef ABIName) { |
112 | auto TargetABI = StringSwitch<ABI>(ABIName) |
113 | .Case(S: "ilp32" , Value: ABI_ILP32) |
114 | .Case(S: "ilp32f" , Value: ABI_ILP32F) |
115 | .Case(S: "ilp32d" , Value: ABI_ILP32D) |
116 | .Case(S: "ilp32e" , Value: ABI_ILP32E) |
117 | .Case(S: "lp64" , Value: ABI_LP64) |
118 | .Case(S: "lp64f" , Value: ABI_LP64F) |
119 | .Case(S: "lp64d" , Value: ABI_LP64D) |
120 | .Case(S: "lp64e" , Value: ABI_LP64E) |
121 | .Default(Value: ABI_Unknown); |
122 | return TargetABI; |
123 | } |
124 | |
125 | // To avoid the BP value clobbered by a function call, we need to choose a |
126 | // callee saved register to save the value. RV32E only has X8 and X9 as callee |
127 | // saved registers and X8 will be used as fp. So we choose X9 as bp. |
128 | MCRegister getBPReg() { return RISCV::X9; } |
129 | |
130 | // Returns the register holding shadow call stack pointer. |
131 | MCRegister getSCSPReg() { return RISCV::X3; } |
132 | |
133 | } // namespace RISCVABI |
134 | |
135 | namespace RISCVFeatures { |
136 | |
137 | void validate(const Triple &TT, const FeatureBitset &FeatureBits) { |
138 | if (TT.isArch64Bit() && !FeatureBits[RISCV::Feature64Bit]) |
139 | reportError(Reason: "RV64 target requires an RV64 CPU" ); |
140 | if (!TT.isArch64Bit() && !FeatureBits[RISCV::Feature32Bit]) |
141 | reportError(Reason: "RV32 target requires an RV32 CPU" ); |
142 | if (FeatureBits[RISCV::Feature32Bit] && |
143 | FeatureBits[RISCV::Feature64Bit]) |
144 | reportError(Reason: "RV32 and RV64 can't be combined" ); |
145 | } |
146 | |
147 | llvm::Expected<std::unique_ptr<RISCVISAInfo>> |
148 | parseFeatureBits(bool IsRV64, const FeatureBitset &FeatureBits) { |
149 | unsigned XLen = IsRV64 ? 64 : 32; |
150 | std::vector<std::string> FeatureVector; |
151 | // Convert FeatureBitset to FeatureVector. |
152 | for (auto Feature : RISCVFeatureKV) { |
153 | if (FeatureBits[Feature.Value] && |
154 | llvm::RISCVISAInfo::isSupportedExtensionFeature(Ext: Feature.Key)) |
155 | FeatureVector.push_back(x: std::string("+" ) + Feature.Key); |
156 | } |
157 | return llvm::RISCVISAInfo::parseFeatures(XLen, Features: FeatureVector); |
158 | } |
159 | |
160 | } // namespace RISCVFeatures |
161 | |
162 | // Include the auto-generated portion of the compress emitter. |
163 | #define GEN_UNCOMPRESS_INSTR |
164 | #define GEN_COMPRESS_INSTR |
165 | #include "RISCVGenCompressInstEmitter.inc" |
166 | |
167 | bool RISCVRVC::compress(MCInst &OutInst, const MCInst &MI, |
168 | const MCSubtargetInfo &STI) { |
169 | return compressInst(OutInst, MI, STI); |
170 | } |
171 | |
172 | bool RISCVRVC::uncompress(MCInst &OutInst, const MCInst &MI, |
173 | const MCSubtargetInfo &STI) { |
174 | return uncompressInst(OutInst, MI, STI); |
175 | } |
176 | |
177 | // Lookup table for fli.s for entries 2-31. |
178 | static constexpr std::pair<uint8_t, uint8_t> LoadFP32ImmArr[] = { |
179 | {0b01101111, 0b00}, {0b01110000, 0b00}, {0b01110111, 0b00}, |
180 | {0b01111000, 0b00}, {0b01111011, 0b00}, {0b01111100, 0b00}, |
181 | {0b01111101, 0b00}, {0b01111101, 0b01}, {0b01111101, 0b10}, |
182 | {0b01111101, 0b11}, {0b01111110, 0b00}, {0b01111110, 0b01}, |
183 | {0b01111110, 0b10}, {0b01111110, 0b11}, {0b01111111, 0b00}, |
184 | {0b01111111, 0b01}, {0b01111111, 0b10}, {0b01111111, 0b11}, |
185 | {0b10000000, 0b00}, {0b10000000, 0b01}, {0b10000000, 0b10}, |
186 | {0b10000001, 0b00}, {0b10000010, 0b00}, {0b10000011, 0b00}, |
187 | {0b10000110, 0b00}, {0b10000111, 0b00}, {0b10001110, 0b00}, |
188 | {0b10001111, 0b00}, {0b11111111, 0b00}, {0b11111111, 0b10}, |
189 | }; |
190 | |
191 | int RISCVLoadFPImm::getLoadFPImm(APFloat FPImm) { |
192 | assert((&FPImm.getSemantics() == &APFloat::IEEEsingle() || |
193 | &FPImm.getSemantics() == &APFloat::IEEEdouble() || |
194 | &FPImm.getSemantics() == &APFloat::IEEEhalf()) && |
195 | "Unexpected semantics" ); |
196 | |
197 | // Handle the minimum normalized value which is different for each type. |
198 | if (FPImm.isSmallestNormalized() && !FPImm.isNegative()) |
199 | return 1; |
200 | |
201 | // Convert to single precision to use its lookup table. |
202 | bool LosesInfo; |
203 | APFloat::opStatus Status = FPImm.convert( |
204 | ToSemantics: APFloat::IEEEsingle(), RM: APFloat::rmNearestTiesToEven, losesInfo: &LosesInfo); |
205 | if (Status != APFloat::opOK || LosesInfo) |
206 | return -1; |
207 | |
208 | APInt Imm = FPImm.bitcastToAPInt(); |
209 | |
210 | if (Imm.extractBitsAsZExtValue(numBits: 21, bitPosition: 0) != 0) |
211 | return -1; |
212 | |
213 | bool Sign = Imm.extractBitsAsZExtValue(numBits: 1, bitPosition: 31); |
214 | uint8_t Mantissa = Imm.extractBitsAsZExtValue(numBits: 2, bitPosition: 21); |
215 | uint8_t Exp = Imm.extractBitsAsZExtValue(numBits: 8, bitPosition: 23); |
216 | |
217 | auto EMI = llvm::lower_bound(Range: LoadFP32ImmArr, Value: std::make_pair(x&: Exp, y&: Mantissa)); |
218 | if (EMI == std::end(arr: LoadFP32ImmArr) || EMI->first != Exp || |
219 | EMI->second != Mantissa) |
220 | return -1; |
221 | |
222 | // Table doesn't have entry 0 or 1. |
223 | int Entry = std::distance(first: std::begin(arr: LoadFP32ImmArr), last: EMI) + 2; |
224 | |
225 | // The only legal negative value is -1.0(entry 0). 1.0 is entry 16. |
226 | if (Sign) { |
227 | if (Entry == 16) |
228 | return 0; |
229 | return -1; |
230 | } |
231 | |
232 | return Entry; |
233 | } |
234 | |
235 | float RISCVLoadFPImm::getFPImm(unsigned Imm) { |
236 | assert(Imm != 1 && Imm != 30 && Imm != 31 && "Unsupported immediate" ); |
237 | |
238 | // Entry 0 is -1.0, the only negative value. Entry 16 is 1.0. |
239 | uint32_t Sign = 0; |
240 | if (Imm == 0) { |
241 | Sign = 0b1; |
242 | Imm = 16; |
243 | } |
244 | |
245 | uint32_t Exp = LoadFP32ImmArr[Imm - 2].first; |
246 | uint32_t Mantissa = LoadFP32ImmArr[Imm - 2].second; |
247 | |
248 | uint32_t I = Sign << 31 | Exp << 23 | Mantissa << 21; |
249 | return bit_cast<float>(from: I); |
250 | } |
251 | |
252 | void RISCVZC::printRegList(unsigned RlistEncode, raw_ostream &OS) { |
253 | assert(RlistEncode >= RLISTENCODE::RA && |
254 | RlistEncode <= RLISTENCODE::RA_S0_S11 && "Invalid Rlist" ); |
255 | OS << "{ra" ; |
256 | if (RlistEncode > RISCVZC::RA) { |
257 | OS << ", s0" ; |
258 | if (RlistEncode == RISCVZC::RA_S0_S11) |
259 | OS << "-s11" ; |
260 | else if (RlistEncode > RISCVZC::RA_S0 && RlistEncode <= RISCVZC::RA_S0_S11) |
261 | OS << "-s" << (RlistEncode - RISCVZC::RA_S0); |
262 | } |
263 | OS << "}" ; |
264 | } |
265 | |
266 | } // namespace llvm |
267 | |