| 1 | //===- RISCVInsertVSETVLI.cpp - Insert VSETVLI instructions ---------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements a function pass that inserts VSETVLI instructions where |
| 10 | // needed and expands the vl outputs of VLEFF/VLSEGFF to PseudoReadVL |
| 11 | // instructions. |
| 12 | // |
| 13 | // This pass consists of 3 phases: |
| 14 | // |
| 15 | // Phase 1 collects how each basic block affects VL/VTYPE. |
| 16 | // |
| 17 | // Phase 2 uses the information from phase 1 to do a data flow analysis to |
| 18 | // propagate the VL/VTYPE changes through the function. This gives us the |
| 19 | // VL/VTYPE at the start of each basic block. |
| 20 | // |
| 21 | // Phase 3 inserts VSETVLI instructions in each basic block. Information from |
| 22 | // phase 2 is used to prevent inserting a VSETVLI before the first vector |
| 23 | // instruction in the block if possible. |
| 24 | // |
| 25 | //===----------------------------------------------------------------------===// |
| 26 | |
| 27 | #include "RISCV.h" |
| 28 | #include "RISCVSubtarget.h" |
| 29 | #include "llvm/ADT/PostOrderIterator.h" |
| 30 | #include "llvm/ADT/Statistic.h" |
| 31 | #include "llvm/CodeGen/LiveDebugVariables.h" |
| 32 | #include "llvm/CodeGen/LiveIntervals.h" |
| 33 | #include "llvm/CodeGen/LiveStacks.h" |
| 34 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 35 | #include <queue> |
| 36 | using namespace llvm; |
| 37 | |
| 38 | #define DEBUG_TYPE "riscv-insert-vsetvli" |
| 39 | #define RISCV_INSERT_VSETVLI_NAME "RISC-V Insert VSETVLI pass" |
| 40 | |
| 41 | STATISTIC(NumInsertedVSETVL, "Number of VSETVL inst inserted" ); |
| 42 | STATISTIC(NumCoalescedVSETVL, "Number of VSETVL inst coalesced" ); |
| 43 | |
| 44 | static cl::opt<bool> EnsureWholeVectorRegisterMoveValidVTYPE( |
| 45 | DEBUG_TYPE "-whole-vector-register-move-valid-vtype" , cl::Hidden, |
| 46 | cl::desc("Insert vsetvlis before vmvNr.vs to ensure vtype is valid and " |
| 47 | "vill is cleared" ), |
| 48 | cl::init(Val: true)); |
| 49 | |
| 50 | namespace { |
| 51 | |
| 52 | /// Given a virtual register \p Reg, return the corresponding VNInfo for it. |
| 53 | /// This will return nullptr if the virtual register is an implicit_def or |
| 54 | /// if LiveIntervals is not available. |
| 55 | static VNInfo *getVNInfoFromReg(Register Reg, const MachineInstr &MI, |
| 56 | const LiveIntervals *LIS) { |
| 57 | assert(Reg.isVirtual()); |
| 58 | if (!LIS) |
| 59 | return nullptr; |
| 60 | auto &LI = LIS->getInterval(Reg); |
| 61 | SlotIndex SI = LIS->getSlotIndexes()->getInstructionIndex(MI); |
| 62 | return LI.getVNInfoBefore(Idx: SI); |
| 63 | } |
| 64 | |
| 65 | static unsigned getVLOpNum(const MachineInstr &MI) { |
| 66 | return RISCVII::getVLOpNum(Desc: MI.getDesc()); |
| 67 | } |
| 68 | |
| 69 | static unsigned getSEWOpNum(const MachineInstr &MI) { |
| 70 | return RISCVII::getSEWOpNum(Desc: MI.getDesc()); |
| 71 | } |
| 72 | |
| 73 | /// Get the EEW for a load or store instruction. Return std::nullopt if MI is |
| 74 | /// not a load or store which ignores SEW. |
| 75 | static std::optional<unsigned> getEEWForLoadStore(const MachineInstr &MI) { |
| 76 | switch (RISCV::getRVVMCOpcode(RVVPseudoOpcode: MI.getOpcode())) { |
| 77 | default: |
| 78 | return std::nullopt; |
| 79 | case RISCV::VLE8_V: |
| 80 | case RISCV::VLSE8_V: |
| 81 | case RISCV::VSE8_V: |
| 82 | case RISCV::VSSE8_V: |
| 83 | return 8; |
| 84 | case RISCV::VLE16_V: |
| 85 | case RISCV::VLSE16_V: |
| 86 | case RISCV::VSE16_V: |
| 87 | case RISCV::VSSE16_V: |
| 88 | return 16; |
| 89 | case RISCV::VLE32_V: |
| 90 | case RISCV::VLSE32_V: |
| 91 | case RISCV::VSE32_V: |
| 92 | case RISCV::VSSE32_V: |
| 93 | return 32; |
| 94 | case RISCV::VLE64_V: |
| 95 | case RISCV::VLSE64_V: |
| 96 | case RISCV::VSE64_V: |
| 97 | case RISCV::VSSE64_V: |
| 98 | return 64; |
| 99 | } |
| 100 | } |
| 101 | |
| 102 | /// Return true if this is an operation on mask registers. Note that |
| 103 | /// this includes both arithmetic/logical ops and load/store (vlm/vsm). |
| 104 | static bool isMaskRegOp(const MachineInstr &MI) { |
| 105 | if (!RISCVII::hasSEWOp(TSFlags: MI.getDesc().TSFlags)) |
| 106 | return false; |
| 107 | const unsigned Log2SEW = MI.getOperand(i: getSEWOpNum(MI)).getImm(); |
| 108 | // A Log2SEW of 0 is an operation on mask registers only. |
| 109 | return Log2SEW == 0; |
| 110 | } |
| 111 | |
| 112 | /// Return true if the inactive elements in the result are entirely undefined. |
| 113 | /// Note that this is different from "agnostic" as defined by the vector |
| 114 | /// specification. Agnostic requires each lane to either be undisturbed, or |
| 115 | /// take the value -1; no other value is allowed. |
| 116 | static bool hasUndefinedPassthru(const MachineInstr &MI) { |
| 117 | |
| 118 | unsigned UseOpIdx; |
| 119 | if (!MI.isRegTiedToUseOperand(DefOpIdx: 0, UseOpIdx: &UseOpIdx)) |
| 120 | // If there is no passthrough operand, then the pass through |
| 121 | // lanes are undefined. |
| 122 | return true; |
| 123 | |
| 124 | // All undefined passthrus should be $noreg: see |
| 125 | // RISCVDAGToDAGISel::doPeepholeNoRegPassThru |
| 126 | const MachineOperand &UseMO = MI.getOperand(i: UseOpIdx); |
| 127 | return UseMO.getReg() == RISCV::NoRegister || UseMO.isUndef(); |
| 128 | } |
| 129 | |
| 130 | /// Return true if \p MI is a copy that will be lowered to one or more vmvNr.vs. |
| 131 | static bool isVectorCopy(const TargetRegisterInfo *TRI, |
| 132 | const MachineInstr &MI) { |
| 133 | return MI.isCopy() && MI.getOperand(i: 0).getReg().isPhysical() && |
| 134 | RISCVRegisterInfo::isRVVRegClass( |
| 135 | RC: TRI->getMinimalPhysRegClass(Reg: MI.getOperand(i: 0).getReg())); |
| 136 | } |
| 137 | |
| 138 | /// Which subfields of VL or VTYPE have values we need to preserve? |
| 139 | struct DemandedFields { |
| 140 | // Some unknown property of VL is used. If demanded, must preserve entire |
| 141 | // value. |
| 142 | bool VLAny = false; |
| 143 | // Only zero vs non-zero is used. If demanded, can change non-zero values. |
| 144 | bool VLZeroness = false; |
| 145 | // What properties of SEW we need to preserve. |
| 146 | enum : uint8_t { |
| 147 | SEWEqual = 3, // The exact value of SEW needs to be preserved. |
| 148 | SEWGreaterThanOrEqualAndLessThan64 = |
| 149 | 2, // SEW can be changed as long as it's greater |
| 150 | // than or equal to the original value, but must be less |
| 151 | // than 64. |
| 152 | SEWGreaterThanOrEqual = 1, // SEW can be changed as long as it's greater |
| 153 | // than or equal to the original value. |
| 154 | SEWNone = 0 // We don't need to preserve SEW at all. |
| 155 | } SEW = SEWNone; |
| 156 | enum : uint8_t { |
| 157 | LMULEqual = 2, // The exact value of LMUL needs to be preserved. |
| 158 | LMULLessThanOrEqualToM1 = 1, // We can use any LMUL <= M1. |
| 159 | LMULNone = 0 // We don't need to preserve LMUL at all. |
| 160 | } LMUL = LMULNone; |
| 161 | bool SEWLMULRatio = false; |
| 162 | bool TailPolicy = false; |
| 163 | bool MaskPolicy = false; |
| 164 | // If this is true, we demand that VTYPE is set to some legal state, i.e. that |
| 165 | // vill is unset. |
| 166 | bool VILL = false; |
| 167 | |
| 168 | // Return true if any part of VTYPE was used |
| 169 | bool usedVTYPE() const { |
| 170 | return SEW || LMUL || SEWLMULRatio || TailPolicy || MaskPolicy || VILL; |
| 171 | } |
| 172 | |
| 173 | // Return true if any property of VL was used |
| 174 | bool usedVL() { |
| 175 | return VLAny || VLZeroness; |
| 176 | } |
| 177 | |
| 178 | // Mark all VTYPE subfields and properties as demanded |
| 179 | void demandVTYPE() { |
| 180 | SEW = SEWEqual; |
| 181 | LMUL = LMULEqual; |
| 182 | SEWLMULRatio = true; |
| 183 | TailPolicy = true; |
| 184 | MaskPolicy = true; |
| 185 | VILL = true; |
| 186 | } |
| 187 | |
| 188 | // Mark all VL properties as demanded |
| 189 | void demandVL() { |
| 190 | VLAny = true; |
| 191 | VLZeroness = true; |
| 192 | } |
| 193 | |
| 194 | static DemandedFields all() { |
| 195 | DemandedFields DF; |
| 196 | DF.demandVTYPE(); |
| 197 | DF.demandVL(); |
| 198 | return DF; |
| 199 | } |
| 200 | |
| 201 | // Make this the result of demanding both the fields in this and B. |
| 202 | void doUnion(const DemandedFields &B) { |
| 203 | VLAny |= B.VLAny; |
| 204 | VLZeroness |= B.VLZeroness; |
| 205 | SEW = std::max(a: SEW, b: B.SEW); |
| 206 | LMUL = std::max(a: LMUL, b: B.LMUL); |
| 207 | SEWLMULRatio |= B.SEWLMULRatio; |
| 208 | TailPolicy |= B.TailPolicy; |
| 209 | MaskPolicy |= B.MaskPolicy; |
| 210 | VILL |= B.VILL; |
| 211 | } |
| 212 | |
| 213 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 214 | /// Support for debugging, callable in GDB: V->dump() |
| 215 | LLVM_DUMP_METHOD void dump() const { |
| 216 | print(dbgs()); |
| 217 | dbgs() << "\n" ; |
| 218 | } |
| 219 | |
| 220 | /// Implement operator<<. |
| 221 | void print(raw_ostream &OS) const { |
| 222 | OS << "{" ; |
| 223 | OS << "VLAny=" << VLAny << ", " ; |
| 224 | OS << "VLZeroness=" << VLZeroness << ", " ; |
| 225 | OS << "SEW=" ; |
| 226 | switch (SEW) { |
| 227 | case SEWEqual: |
| 228 | OS << "SEWEqual" ; |
| 229 | break; |
| 230 | case SEWGreaterThanOrEqual: |
| 231 | OS << "SEWGreaterThanOrEqual" ; |
| 232 | break; |
| 233 | case SEWGreaterThanOrEqualAndLessThan64: |
| 234 | OS << "SEWGreaterThanOrEqualAndLessThan64" ; |
| 235 | break; |
| 236 | case SEWNone: |
| 237 | OS << "SEWNone" ; |
| 238 | break; |
| 239 | }; |
| 240 | OS << ", " ; |
| 241 | OS << "LMUL=" ; |
| 242 | switch (LMUL) { |
| 243 | case LMULEqual: |
| 244 | OS << "LMULEqual" ; |
| 245 | break; |
| 246 | case LMULLessThanOrEqualToM1: |
| 247 | OS << "LMULLessThanOrEqualToM1" ; |
| 248 | break; |
| 249 | case LMULNone: |
| 250 | OS << "LMULNone" ; |
| 251 | break; |
| 252 | }; |
| 253 | OS << ", " ; |
| 254 | OS << "SEWLMULRatio=" << SEWLMULRatio << ", " ; |
| 255 | OS << "TailPolicy=" << TailPolicy << ", " ; |
| 256 | OS << "MaskPolicy=" << MaskPolicy << ", " ; |
| 257 | OS << "VILL=" << VILL; |
| 258 | OS << "}" ; |
| 259 | } |
| 260 | #endif |
| 261 | }; |
| 262 | |
| 263 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 264 | LLVM_ATTRIBUTE_USED |
| 265 | inline raw_ostream &operator<<(raw_ostream &OS, const DemandedFields &DF) { |
| 266 | DF.print(OS); |
| 267 | return OS; |
| 268 | } |
| 269 | #endif |
| 270 | |
| 271 | static bool isLMUL1OrSmaller(RISCVVType::VLMUL LMUL) { |
| 272 | auto [LMul, Fractional] = RISCVVType::decodeVLMUL(VLMul: LMUL); |
| 273 | return Fractional || LMul == 1; |
| 274 | } |
| 275 | |
| 276 | /// Return true if moving from CurVType to NewVType is |
| 277 | /// indistinguishable from the perspective of an instruction (or set |
| 278 | /// of instructions) which use only the Used subfields and properties. |
| 279 | static bool areCompatibleVTYPEs(uint64_t CurVType, uint64_t NewVType, |
| 280 | const DemandedFields &Used) { |
| 281 | switch (Used.SEW) { |
| 282 | case DemandedFields::SEWNone: |
| 283 | break; |
| 284 | case DemandedFields::SEWEqual: |
| 285 | if (RISCVVType::getSEW(VType: CurVType) != RISCVVType::getSEW(VType: NewVType)) |
| 286 | return false; |
| 287 | break; |
| 288 | case DemandedFields::SEWGreaterThanOrEqual: |
| 289 | if (RISCVVType::getSEW(VType: NewVType) < RISCVVType::getSEW(VType: CurVType)) |
| 290 | return false; |
| 291 | break; |
| 292 | case DemandedFields::SEWGreaterThanOrEqualAndLessThan64: |
| 293 | if (RISCVVType::getSEW(VType: NewVType) < RISCVVType::getSEW(VType: CurVType) || |
| 294 | RISCVVType::getSEW(VType: NewVType) >= 64) |
| 295 | return false; |
| 296 | break; |
| 297 | } |
| 298 | |
| 299 | switch (Used.LMUL) { |
| 300 | case DemandedFields::LMULNone: |
| 301 | break; |
| 302 | case DemandedFields::LMULEqual: |
| 303 | if (RISCVVType::getVLMUL(VType: CurVType) != RISCVVType::getVLMUL(VType: NewVType)) |
| 304 | return false; |
| 305 | break; |
| 306 | case DemandedFields::LMULLessThanOrEqualToM1: |
| 307 | if (!isLMUL1OrSmaller(LMUL: RISCVVType::getVLMUL(VType: NewVType))) |
| 308 | return false; |
| 309 | break; |
| 310 | } |
| 311 | |
| 312 | if (Used.SEWLMULRatio) { |
| 313 | auto Ratio1 = RISCVVType::getSEWLMULRatio(SEW: RISCVVType::getSEW(VType: CurVType), |
| 314 | VLMul: RISCVVType::getVLMUL(VType: CurVType)); |
| 315 | auto Ratio2 = RISCVVType::getSEWLMULRatio(SEW: RISCVVType::getSEW(VType: NewVType), |
| 316 | VLMul: RISCVVType::getVLMUL(VType: NewVType)); |
| 317 | if (Ratio1 != Ratio2) |
| 318 | return false; |
| 319 | } |
| 320 | |
| 321 | if (Used.TailPolicy && RISCVVType::isTailAgnostic(VType: CurVType) != |
| 322 | RISCVVType::isTailAgnostic(VType: NewVType)) |
| 323 | return false; |
| 324 | if (Used.MaskPolicy && RISCVVType::isMaskAgnostic(VType: CurVType) != |
| 325 | RISCVVType::isMaskAgnostic(VType: NewVType)) |
| 326 | return false; |
| 327 | return true; |
| 328 | } |
| 329 | |
| 330 | /// Return the fields and properties demanded by the provided instruction. |
| 331 | DemandedFields getDemanded(const MachineInstr &MI, const RISCVSubtarget *ST) { |
| 332 | // This function works in coalesceVSETVLI too. We can still use the value of a |
| 333 | // SEW, VL, or Policy operand even though it might not be the exact value in |
| 334 | // the VL or VTYPE, since we only care about what the instruction originally |
| 335 | // demanded. |
| 336 | |
| 337 | // Most instructions don't use any of these subfeilds. |
| 338 | DemandedFields Res; |
| 339 | // Start conservative if registers are used |
| 340 | if (MI.isCall() || MI.isInlineAsm() || |
| 341 | MI.readsRegister(Reg: RISCV::VL, /*TRI=*/nullptr)) |
| 342 | Res.demandVL(); |
| 343 | if (MI.isCall() || MI.isInlineAsm() || |
| 344 | MI.readsRegister(Reg: RISCV::VTYPE, /*TRI=*/nullptr)) |
| 345 | Res.demandVTYPE(); |
| 346 | // Start conservative on the unlowered form too |
| 347 | uint64_t TSFlags = MI.getDesc().TSFlags; |
| 348 | if (RISCVII::hasSEWOp(TSFlags)) { |
| 349 | Res.demandVTYPE(); |
| 350 | if (RISCVII::hasVLOp(TSFlags)) |
| 351 | if (const MachineOperand &VLOp = MI.getOperand(i: getVLOpNum(MI)); |
| 352 | !VLOp.isReg() || !VLOp.isUndef()) |
| 353 | Res.demandVL(); |
| 354 | |
| 355 | // Behavior is independent of mask policy. |
| 356 | if (!RISCVII::usesMaskPolicy(TSFlags)) |
| 357 | Res.MaskPolicy = false; |
| 358 | } |
| 359 | |
| 360 | // Loads and stores with implicit EEW do not demand SEW or LMUL directly. |
| 361 | // They instead demand the ratio of the two which is used in computing |
| 362 | // EMUL, but which allows us the flexibility to change SEW and LMUL |
| 363 | // provided we don't change the ratio. |
| 364 | // Note: We assume that the instructions initial SEW is the EEW encoded |
| 365 | // in the opcode. This is asserted when constructing the VSETVLIInfo. |
| 366 | if (getEEWForLoadStore(MI)) { |
| 367 | Res.SEW = DemandedFields::SEWNone; |
| 368 | Res.LMUL = DemandedFields::LMULNone; |
| 369 | } |
| 370 | |
| 371 | // Store instructions don't use the policy fields. |
| 372 | if (RISCVII::hasSEWOp(TSFlags) && MI.getNumExplicitDefs() == 0) { |
| 373 | Res.TailPolicy = false; |
| 374 | Res.MaskPolicy = false; |
| 375 | } |
| 376 | |
| 377 | // If this is a mask reg operation, it only cares about VLMAX. |
| 378 | // TODO: Possible extensions to this logic |
| 379 | // * Probably ok if available VLMax is larger than demanded |
| 380 | // * The policy bits can probably be ignored.. |
| 381 | if (isMaskRegOp(MI)) { |
| 382 | Res.SEW = DemandedFields::SEWNone; |
| 383 | Res.LMUL = DemandedFields::LMULNone; |
| 384 | } |
| 385 | |
| 386 | // For vmv.s.x and vfmv.s.f, there are only two behaviors, VL = 0 and VL > 0. |
| 387 | if (RISCVInstrInfo::isScalarInsertInstr(MI)) { |
| 388 | Res.LMUL = DemandedFields::LMULNone; |
| 389 | Res.SEWLMULRatio = false; |
| 390 | Res.VLAny = false; |
| 391 | // For vmv.s.x and vfmv.s.f, if the passthru is *undefined*, we don't |
| 392 | // need to preserve any other bits and are thus compatible with any larger, |
| 393 | // etype and can disregard policy bits. Warning: It's tempting to try doing |
| 394 | // this for any tail agnostic operation, but we can't as TA requires |
| 395 | // tail lanes to either be the original value or -1. We are writing |
| 396 | // unknown bits to the lanes here. |
| 397 | if (hasUndefinedPassthru(MI)) { |
| 398 | if (RISCVInstrInfo::isFloatScalarMoveOrScalarSplatInstr(MI) && |
| 399 | !ST->hasVInstructionsF64()) |
| 400 | Res.SEW = DemandedFields::SEWGreaterThanOrEqualAndLessThan64; |
| 401 | else |
| 402 | Res.SEW = DemandedFields::SEWGreaterThanOrEqual; |
| 403 | Res.TailPolicy = false; |
| 404 | } |
| 405 | } |
| 406 | |
| 407 | // vmv.x.s, and vfmv.f.s are unconditional and ignore everything except SEW. |
| 408 | if (RISCVInstrInfo::isScalarExtractInstr(MI)) { |
| 409 | assert(!RISCVII::hasVLOp(TSFlags)); |
| 410 | Res.LMUL = DemandedFields::LMULNone; |
| 411 | Res.SEWLMULRatio = false; |
| 412 | Res.TailPolicy = false; |
| 413 | Res.MaskPolicy = false; |
| 414 | } |
| 415 | |
| 416 | if (RISCVII::hasVLOp(TSFlags: MI.getDesc().TSFlags)) { |
| 417 | const MachineOperand &VLOp = MI.getOperand(i: getVLOpNum(MI)); |
| 418 | // A slidedown/slideup with an *undefined* passthru can freely clobber |
| 419 | // elements not copied from the source vector (e.g. masked off, tail, or |
| 420 | // slideup's prefix). Notes: |
| 421 | // * We can't modify SEW here since the slide amount is in units of SEW. |
| 422 | // * VL=1 is special only because we have existing support for zero vs |
| 423 | // non-zero VL. We could generalize this if we had a VL > C predicate. |
| 424 | // * The LMUL1 restriction is for machines whose latency may depend on VL. |
| 425 | // * As above, this is only legal for tail "undefined" not "agnostic". |
| 426 | if (RISCVInstrInfo::isVSlideInstr(MI) && VLOp.isImm() && |
| 427 | VLOp.getImm() == 1 && hasUndefinedPassthru(MI)) { |
| 428 | Res.VLAny = false; |
| 429 | Res.VLZeroness = true; |
| 430 | Res.LMUL = DemandedFields::LMULLessThanOrEqualToM1; |
| 431 | Res.TailPolicy = false; |
| 432 | } |
| 433 | |
| 434 | // A tail undefined vmv.v.i/x or vfmv.v.f with VL=1 can be treated in the |
| 435 | // same semantically as vmv.s.x. This is particularly useful since we don't |
| 436 | // have an immediate form of vmv.s.x, and thus frequently use vmv.v.i in |
| 437 | // it's place. Since a splat is non-constant time in LMUL, we do need to be |
| 438 | // careful to not increase the number of active vector registers (unlike for |
| 439 | // vmv.s.x.) |
| 440 | if (RISCVInstrInfo::isScalarSplatInstr(MI) && VLOp.isImm() && |
| 441 | VLOp.getImm() == 1 && hasUndefinedPassthru(MI)) { |
| 442 | Res.LMUL = DemandedFields::LMULLessThanOrEqualToM1; |
| 443 | Res.SEWLMULRatio = false; |
| 444 | Res.VLAny = false; |
| 445 | if (RISCVInstrInfo::isFloatScalarMoveOrScalarSplatInstr(MI) && |
| 446 | !ST->hasVInstructionsF64()) |
| 447 | Res.SEW = DemandedFields::SEWGreaterThanOrEqualAndLessThan64; |
| 448 | else |
| 449 | Res.SEW = DemandedFields::SEWGreaterThanOrEqual; |
| 450 | Res.TailPolicy = false; |
| 451 | } |
| 452 | } |
| 453 | |
| 454 | // In §32.16.6, whole vector register moves have a dependency on SEW. At the |
| 455 | // MIR level though we don't encode the element type, and it gives the same |
| 456 | // result whatever the SEW may be. |
| 457 | // |
| 458 | // However it does need valid SEW, i.e. vill must be cleared. The entry to a |
| 459 | // function, calls and inline assembly may all set it, so make sure we clear |
| 460 | // it for whole register copies. Do this by leaving VILL demanded. |
| 461 | if (isVectorCopy(TRI: ST->getRegisterInfo(), MI)) { |
| 462 | Res.LMUL = DemandedFields::LMULNone; |
| 463 | Res.SEW = DemandedFields::SEWNone; |
| 464 | Res.SEWLMULRatio = false; |
| 465 | Res.TailPolicy = false; |
| 466 | Res.MaskPolicy = false; |
| 467 | } |
| 468 | |
| 469 | if (RISCVInstrInfo::isVExtractInstr(MI)) { |
| 470 | assert(!RISCVII::hasVLOp(TSFlags)); |
| 471 | // TODO: LMUL can be any larger value (without cost) |
| 472 | Res.TailPolicy = false; |
| 473 | } |
| 474 | |
| 475 | return Res; |
| 476 | } |
| 477 | |
| 478 | /// Defines the abstract state with which the forward dataflow models the |
| 479 | /// values of the VL and VTYPE registers after insertion. |
| 480 | class VSETVLIInfo { |
| 481 | struct AVLDef { |
| 482 | // Every AVLDef should have a VNInfo, unless we're running without |
| 483 | // LiveIntervals in which case this will be nullptr. |
| 484 | const VNInfo *ValNo; |
| 485 | Register DefReg; |
| 486 | }; |
| 487 | union { |
| 488 | AVLDef AVLRegDef; |
| 489 | unsigned AVLImm; |
| 490 | }; |
| 491 | |
| 492 | enum : uint8_t { |
| 493 | Uninitialized, |
| 494 | AVLIsReg, |
| 495 | AVLIsImm, |
| 496 | AVLIsVLMAX, |
| 497 | Unknown, // AVL and VTYPE are fully unknown |
| 498 | } State = Uninitialized; |
| 499 | |
| 500 | // Fields from VTYPE. |
| 501 | RISCVVType::VLMUL VLMul = RISCVVType::LMUL_1; |
| 502 | uint8_t SEW = 0; |
| 503 | uint8_t TailAgnostic : 1; |
| 504 | uint8_t MaskAgnostic : 1; |
| 505 | uint8_t SEWLMULRatioOnly : 1; |
| 506 | |
| 507 | public: |
| 508 | VSETVLIInfo() |
| 509 | : AVLImm(0), TailAgnostic(false), MaskAgnostic(false), |
| 510 | SEWLMULRatioOnly(false) {} |
| 511 | |
| 512 | static VSETVLIInfo getUnknown() { |
| 513 | VSETVLIInfo Info; |
| 514 | Info.setUnknown(); |
| 515 | return Info; |
| 516 | } |
| 517 | |
| 518 | bool isValid() const { return State != Uninitialized; } |
| 519 | void setUnknown() { State = Unknown; } |
| 520 | bool isUnknown() const { return State == Unknown; } |
| 521 | |
| 522 | void setAVLRegDef(const VNInfo *VNInfo, Register AVLReg) { |
| 523 | assert(AVLReg.isVirtual()); |
| 524 | AVLRegDef.ValNo = VNInfo; |
| 525 | AVLRegDef.DefReg = AVLReg; |
| 526 | State = AVLIsReg; |
| 527 | } |
| 528 | |
| 529 | void setAVLImm(unsigned Imm) { |
| 530 | AVLImm = Imm; |
| 531 | State = AVLIsImm; |
| 532 | } |
| 533 | |
| 534 | void setAVLVLMAX() { State = AVLIsVLMAX; } |
| 535 | |
| 536 | bool hasAVLImm() const { return State == AVLIsImm; } |
| 537 | bool hasAVLReg() const { return State == AVLIsReg; } |
| 538 | bool hasAVLVLMAX() const { return State == AVLIsVLMAX; } |
| 539 | Register getAVLReg() const { |
| 540 | assert(hasAVLReg() && AVLRegDef.DefReg.isVirtual()); |
| 541 | return AVLRegDef.DefReg; |
| 542 | } |
| 543 | unsigned getAVLImm() const { |
| 544 | assert(hasAVLImm()); |
| 545 | return AVLImm; |
| 546 | } |
| 547 | const VNInfo *getAVLVNInfo() const { |
| 548 | assert(hasAVLReg()); |
| 549 | return AVLRegDef.ValNo; |
| 550 | } |
| 551 | // Most AVLIsReg infos will have a single defining MachineInstr, unless it was |
| 552 | // a PHI node. In that case getAVLVNInfo()->def will point to the block |
| 553 | // boundary slot and this will return nullptr. If LiveIntervals isn't |
| 554 | // available, nullptr is also returned. |
| 555 | const MachineInstr *getAVLDefMI(const LiveIntervals *LIS) const { |
| 556 | assert(hasAVLReg()); |
| 557 | if (!LIS || getAVLVNInfo()->isPHIDef()) |
| 558 | return nullptr; |
| 559 | auto *MI = LIS->getInstructionFromIndex(index: getAVLVNInfo()->def); |
| 560 | assert(MI); |
| 561 | return MI; |
| 562 | } |
| 563 | |
| 564 | void setAVL(const VSETVLIInfo &Info) { |
| 565 | assert(Info.isValid()); |
| 566 | if (Info.isUnknown()) |
| 567 | setUnknown(); |
| 568 | else if (Info.hasAVLReg()) |
| 569 | setAVLRegDef(VNInfo: Info.getAVLVNInfo(), AVLReg: Info.getAVLReg()); |
| 570 | else if (Info.hasAVLVLMAX()) |
| 571 | setAVLVLMAX(); |
| 572 | else { |
| 573 | assert(Info.hasAVLImm()); |
| 574 | setAVLImm(Info.getAVLImm()); |
| 575 | } |
| 576 | } |
| 577 | |
| 578 | unsigned getSEW() const { return SEW; } |
| 579 | RISCVVType::VLMUL getVLMUL() const { return VLMul; } |
| 580 | bool getTailAgnostic() const { return TailAgnostic; } |
| 581 | bool getMaskAgnostic() const { return MaskAgnostic; } |
| 582 | |
| 583 | bool hasNonZeroAVL(const LiveIntervals *LIS) const { |
| 584 | if (hasAVLImm()) |
| 585 | return getAVLImm() > 0; |
| 586 | if (hasAVLReg()) { |
| 587 | if (auto *DefMI = getAVLDefMI(LIS)) |
| 588 | return RISCVInstrInfo::isNonZeroLoadImmediate(MI: *DefMI); |
| 589 | } |
| 590 | if (hasAVLVLMAX()) |
| 591 | return true; |
| 592 | return false; |
| 593 | } |
| 594 | |
| 595 | bool hasEquallyZeroAVL(const VSETVLIInfo &Other, |
| 596 | const LiveIntervals *LIS) const { |
| 597 | if (hasSameAVL(Other)) |
| 598 | return true; |
| 599 | return (hasNonZeroAVL(LIS) && Other.hasNonZeroAVL(LIS)); |
| 600 | } |
| 601 | |
| 602 | bool hasSameAVLLatticeValue(const VSETVLIInfo &Other) const { |
| 603 | if (hasAVLReg() && Other.hasAVLReg()) { |
| 604 | assert(!getAVLVNInfo() == !Other.getAVLVNInfo() && |
| 605 | "we either have intervals or we don't" ); |
| 606 | if (!getAVLVNInfo()) |
| 607 | return getAVLReg() == Other.getAVLReg(); |
| 608 | return getAVLVNInfo()->id == Other.getAVLVNInfo()->id && |
| 609 | getAVLReg() == Other.getAVLReg(); |
| 610 | } |
| 611 | |
| 612 | if (hasAVLImm() && Other.hasAVLImm()) |
| 613 | return getAVLImm() == Other.getAVLImm(); |
| 614 | |
| 615 | if (hasAVLVLMAX()) |
| 616 | return Other.hasAVLVLMAX() && hasSameVLMAX(Other); |
| 617 | |
| 618 | return false; |
| 619 | } |
| 620 | |
| 621 | // Return true if the two lattice values are guaranteed to have |
| 622 | // the same AVL value at runtime. |
| 623 | bool hasSameAVL(const VSETVLIInfo &Other) const { |
| 624 | // Without LiveIntervals, we don't know which instruction defines a |
| 625 | // register. Since a register may be redefined, this means all AVLIsReg |
| 626 | // states must be treated as possibly distinct. |
| 627 | if (hasAVLReg() && Other.hasAVLReg()) { |
| 628 | assert(!getAVLVNInfo() == !Other.getAVLVNInfo() && |
| 629 | "we either have intervals or we don't" ); |
| 630 | if (!getAVLVNInfo()) |
| 631 | return false; |
| 632 | } |
| 633 | return hasSameAVLLatticeValue(Other); |
| 634 | } |
| 635 | |
| 636 | void setVTYPE(unsigned VType) { |
| 637 | assert(isValid() && !isUnknown() && |
| 638 | "Can't set VTYPE for uninitialized or unknown" ); |
| 639 | VLMul = RISCVVType::getVLMUL(VType); |
| 640 | SEW = RISCVVType::getSEW(VType); |
| 641 | TailAgnostic = RISCVVType::isTailAgnostic(VType); |
| 642 | MaskAgnostic = RISCVVType::isMaskAgnostic(VType); |
| 643 | } |
| 644 | void setVTYPE(RISCVVType::VLMUL L, unsigned S, bool TA, bool MA) { |
| 645 | assert(isValid() && !isUnknown() && |
| 646 | "Can't set VTYPE for uninitialized or unknown" ); |
| 647 | VLMul = L; |
| 648 | SEW = S; |
| 649 | TailAgnostic = TA; |
| 650 | MaskAgnostic = MA; |
| 651 | } |
| 652 | |
| 653 | void setVLMul(RISCVVType::VLMUL VLMul) { this->VLMul = VLMul; } |
| 654 | |
| 655 | unsigned encodeVTYPE() const { |
| 656 | assert(isValid() && !isUnknown() && !SEWLMULRatioOnly && |
| 657 | "Can't encode VTYPE for uninitialized or unknown" ); |
| 658 | return RISCVVType::encodeVTYPE(VLMUL: VLMul, SEW, TailAgnostic, MaskAgnostic); |
| 659 | } |
| 660 | |
| 661 | bool hasSEWLMULRatioOnly() const { return SEWLMULRatioOnly; } |
| 662 | |
| 663 | bool hasSameVTYPE(const VSETVLIInfo &Other) const { |
| 664 | assert(isValid() && Other.isValid() && |
| 665 | "Can't compare invalid VSETVLIInfos" ); |
| 666 | assert(!isUnknown() && !Other.isUnknown() && |
| 667 | "Can't compare VTYPE in unknown state" ); |
| 668 | assert(!SEWLMULRatioOnly && !Other.SEWLMULRatioOnly && |
| 669 | "Can't compare when only LMUL/SEW ratio is valid." ); |
| 670 | return std::tie(args: VLMul, args: SEW, args: TailAgnostic, args: MaskAgnostic) == |
| 671 | std::tie(args: Other.VLMul, args: Other.SEW, args: Other.TailAgnostic, |
| 672 | args: Other.MaskAgnostic); |
| 673 | } |
| 674 | |
| 675 | unsigned getSEWLMULRatio() const { |
| 676 | assert(isValid() && !isUnknown() && |
| 677 | "Can't use VTYPE for uninitialized or unknown" ); |
| 678 | return RISCVVType::getSEWLMULRatio(SEW, VLMul); |
| 679 | } |
| 680 | |
| 681 | // Check if the VTYPE for these two VSETVLIInfos produce the same VLMAX. |
| 682 | // Note that having the same VLMAX ensures that both share the same |
| 683 | // function from AVL to VL; that is, they must produce the same VL value |
| 684 | // for any given AVL value. |
| 685 | bool hasSameVLMAX(const VSETVLIInfo &Other) const { |
| 686 | assert(isValid() && Other.isValid() && |
| 687 | "Can't compare invalid VSETVLIInfos" ); |
| 688 | assert(!isUnknown() && !Other.isUnknown() && |
| 689 | "Can't compare VTYPE in unknown state" ); |
| 690 | return getSEWLMULRatio() == Other.getSEWLMULRatio(); |
| 691 | } |
| 692 | |
| 693 | bool hasCompatibleVTYPE(const DemandedFields &Used, |
| 694 | const VSETVLIInfo &Require) const { |
| 695 | return areCompatibleVTYPEs(CurVType: Require.encodeVTYPE(), NewVType: encodeVTYPE(), Used); |
| 696 | } |
| 697 | |
| 698 | // Determine whether the vector instructions requirements represented by |
| 699 | // Require are compatible with the previous vsetvli instruction represented |
| 700 | // by this. MI is the instruction whose requirements we're considering. |
| 701 | bool isCompatible(const DemandedFields &Used, const VSETVLIInfo &Require, |
| 702 | const LiveIntervals *LIS) const { |
| 703 | assert(isValid() && Require.isValid() && |
| 704 | "Can't compare invalid VSETVLIInfos" ); |
| 705 | // Nothing is compatible with Unknown. |
| 706 | if (isUnknown() || Require.isUnknown()) |
| 707 | return false; |
| 708 | |
| 709 | // If only our VLMAX ratio is valid, then this isn't compatible. |
| 710 | if (SEWLMULRatioOnly || Require.SEWLMULRatioOnly) |
| 711 | return false; |
| 712 | |
| 713 | if (Used.VLAny && !(hasSameAVL(Other: Require) && hasSameVLMAX(Other: Require))) |
| 714 | return false; |
| 715 | |
| 716 | if (Used.VLZeroness && !hasEquallyZeroAVL(Other: Require, LIS)) |
| 717 | return false; |
| 718 | |
| 719 | return hasCompatibleVTYPE(Used, Require); |
| 720 | } |
| 721 | |
| 722 | bool operator==(const VSETVLIInfo &Other) const { |
| 723 | // Uninitialized is only equal to another Uninitialized. |
| 724 | if (!isValid()) |
| 725 | return !Other.isValid(); |
| 726 | if (!Other.isValid()) |
| 727 | return !isValid(); |
| 728 | |
| 729 | // Unknown is only equal to another Unknown. |
| 730 | if (isUnknown()) |
| 731 | return Other.isUnknown(); |
| 732 | if (Other.isUnknown()) |
| 733 | return isUnknown(); |
| 734 | |
| 735 | if (!hasSameAVLLatticeValue(Other)) |
| 736 | return false; |
| 737 | |
| 738 | // If the SEWLMULRatioOnly bits are different, then they aren't equal. |
| 739 | if (SEWLMULRatioOnly != Other.SEWLMULRatioOnly) |
| 740 | return false; |
| 741 | |
| 742 | // If only the VLMAX is valid, check that it is the same. |
| 743 | if (SEWLMULRatioOnly) |
| 744 | return hasSameVLMAX(Other); |
| 745 | |
| 746 | // If the full VTYPE is valid, check that it is the same. |
| 747 | return hasSameVTYPE(Other); |
| 748 | } |
| 749 | |
| 750 | bool operator!=(const VSETVLIInfo &Other) const { |
| 751 | return !(*this == Other); |
| 752 | } |
| 753 | |
| 754 | // Calculate the VSETVLIInfo visible to a block assuming this and Other are |
| 755 | // both predecessors. |
| 756 | VSETVLIInfo intersect(const VSETVLIInfo &Other) const { |
| 757 | // If the new value isn't valid, ignore it. |
| 758 | if (!Other.isValid()) |
| 759 | return *this; |
| 760 | |
| 761 | // If this value isn't valid, this must be the first predecessor, use it. |
| 762 | if (!isValid()) |
| 763 | return Other; |
| 764 | |
| 765 | // If either is unknown, the result is unknown. |
| 766 | if (isUnknown() || Other.isUnknown()) |
| 767 | return VSETVLIInfo::getUnknown(); |
| 768 | |
| 769 | // If we have an exact, match return this. |
| 770 | if (*this == Other) |
| 771 | return *this; |
| 772 | |
| 773 | // Not an exact match, but maybe the AVL and VLMAX are the same. If so, |
| 774 | // return an SEW/LMUL ratio only value. |
| 775 | if (hasSameAVL(Other) && hasSameVLMAX(Other)) { |
| 776 | VSETVLIInfo MergeInfo = *this; |
| 777 | MergeInfo.SEWLMULRatioOnly = true; |
| 778 | return MergeInfo; |
| 779 | } |
| 780 | |
| 781 | // Otherwise the result is unknown. |
| 782 | return VSETVLIInfo::getUnknown(); |
| 783 | } |
| 784 | |
| 785 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 786 | /// Support for debugging, callable in GDB: V->dump() |
| 787 | LLVM_DUMP_METHOD void dump() const { |
| 788 | print(dbgs()); |
| 789 | dbgs() << "\n" ; |
| 790 | } |
| 791 | |
| 792 | /// Implement operator<<. |
| 793 | /// @{ |
| 794 | void print(raw_ostream &OS) const { |
| 795 | OS << "{" ; |
| 796 | if (!isValid()) |
| 797 | OS << "Uninitialized" ; |
| 798 | if (isUnknown()) |
| 799 | OS << "unknown" ; |
| 800 | if (hasAVLReg()) |
| 801 | OS << "AVLReg=" << llvm::printReg(getAVLReg()); |
| 802 | if (hasAVLImm()) |
| 803 | OS << "AVLImm=" << (unsigned)AVLImm; |
| 804 | if (hasAVLVLMAX()) |
| 805 | OS << "AVLVLMAX" ; |
| 806 | OS << ", " ; |
| 807 | |
| 808 | unsigned LMul; |
| 809 | bool Fractional; |
| 810 | std::tie(LMul, Fractional) = decodeVLMUL(VLMul); |
| 811 | |
| 812 | OS << "VLMul=" ; |
| 813 | if (Fractional) |
| 814 | OS << "mf" ; |
| 815 | else |
| 816 | OS << "m" ; |
| 817 | OS << LMul << ", " |
| 818 | << "SEW=e" << (unsigned)SEW << ", " |
| 819 | << "TailAgnostic=" << (bool)TailAgnostic << ", " |
| 820 | << "MaskAgnostic=" << (bool)MaskAgnostic << ", " |
| 821 | << "SEWLMULRatioOnly=" << (bool)SEWLMULRatioOnly << "}" ; |
| 822 | } |
| 823 | #endif |
| 824 | }; |
| 825 | |
| 826 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 827 | LLVM_ATTRIBUTE_USED |
| 828 | inline raw_ostream &operator<<(raw_ostream &OS, const VSETVLIInfo &V) { |
| 829 | V.print(OS); |
| 830 | return OS; |
| 831 | } |
| 832 | #endif |
| 833 | |
| 834 | struct BlockData { |
| 835 | // The VSETVLIInfo that represents the VL/VTYPE settings on exit from this |
| 836 | // block. Calculated in Phase 2. |
| 837 | VSETVLIInfo Exit; |
| 838 | |
| 839 | // The VSETVLIInfo that represents the VL/VTYPE settings from all predecessor |
| 840 | // blocks. Calculated in Phase 2, and used by Phase 3. |
| 841 | VSETVLIInfo Pred; |
| 842 | |
| 843 | // Keeps track of whether the block is already in the queue. |
| 844 | bool InQueue = false; |
| 845 | |
| 846 | BlockData() = default; |
| 847 | }; |
| 848 | |
| 849 | class RISCVInsertVSETVLI : public MachineFunctionPass { |
| 850 | const RISCVSubtarget *ST; |
| 851 | const TargetInstrInfo *TII; |
| 852 | MachineRegisterInfo *MRI; |
| 853 | // Possibly null! |
| 854 | LiveIntervals *LIS; |
| 855 | |
| 856 | std::vector<BlockData> BlockInfo; |
| 857 | std::queue<const MachineBasicBlock *> WorkList; |
| 858 | |
| 859 | public: |
| 860 | static char ID; |
| 861 | |
| 862 | RISCVInsertVSETVLI() : MachineFunctionPass(ID) {} |
| 863 | bool runOnMachineFunction(MachineFunction &MF) override; |
| 864 | |
| 865 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 866 | AU.setPreservesCFG(); |
| 867 | |
| 868 | AU.addUsedIfAvailable<LiveIntervalsWrapperPass>(); |
| 869 | AU.addPreserved<LiveIntervalsWrapperPass>(); |
| 870 | AU.addPreserved<SlotIndexesWrapperPass>(); |
| 871 | AU.addPreserved<LiveDebugVariablesWrapperLegacy>(); |
| 872 | AU.addPreserved<LiveStacksWrapperLegacy>(); |
| 873 | |
| 874 | MachineFunctionPass::getAnalysisUsage(AU); |
| 875 | } |
| 876 | |
| 877 | StringRef getPassName() const override { return RISCV_INSERT_VSETVLI_NAME; } |
| 878 | |
| 879 | private: |
| 880 | bool needVSETVLI(const DemandedFields &Used, const VSETVLIInfo &Require, |
| 881 | const VSETVLIInfo &CurInfo) const; |
| 882 | bool needVSETVLIPHI(const VSETVLIInfo &Require, |
| 883 | const MachineBasicBlock &MBB) const; |
| 884 | void insertVSETVLI(MachineBasicBlock &MBB, |
| 885 | MachineBasicBlock::iterator InsertPt, DebugLoc DL, |
| 886 | const VSETVLIInfo &Info, const VSETVLIInfo &PrevInfo); |
| 887 | |
| 888 | void transferBefore(VSETVLIInfo &Info, const MachineInstr &MI) const; |
| 889 | void transferAfter(VSETVLIInfo &Info, const MachineInstr &MI) const; |
| 890 | bool computeVLVTYPEChanges(const MachineBasicBlock &MBB, |
| 891 | VSETVLIInfo &Info) const; |
| 892 | void computeIncomingVLVTYPE(const MachineBasicBlock &MBB); |
| 893 | void emitVSETVLIs(MachineBasicBlock &MBB); |
| 894 | void doPRE(MachineBasicBlock &MBB); |
| 895 | void insertReadVL(MachineBasicBlock &MBB); |
| 896 | |
| 897 | bool canMutatePriorConfig(const MachineInstr &PrevMI, const MachineInstr &MI, |
| 898 | const DemandedFields &Used) const; |
| 899 | void coalesceVSETVLIs(MachineBasicBlock &MBB) const; |
| 900 | |
| 901 | VSETVLIInfo getInfoForVSETVLI(const MachineInstr &MI) const; |
| 902 | VSETVLIInfo computeInfoForInstr(const MachineInstr &MI) const; |
| 903 | void forwardVSETVLIAVL(VSETVLIInfo &Info) const; |
| 904 | }; |
| 905 | |
| 906 | } // end anonymous namespace |
| 907 | |
| 908 | char RISCVInsertVSETVLI::ID = 0; |
| 909 | char &llvm::RISCVInsertVSETVLIID = RISCVInsertVSETVLI::ID; |
| 910 | |
| 911 | INITIALIZE_PASS(RISCVInsertVSETVLI, DEBUG_TYPE, RISCV_INSERT_VSETVLI_NAME, |
| 912 | false, false) |
| 913 | |
| 914 | // If the AVL is defined by a vsetvli's output vl with the same VLMAX, we can |
| 915 | // replace the AVL operand with the AVL of the defining vsetvli. E.g. |
| 916 | // |
| 917 | // %vl = PseudoVSETVLI %avl:gpr, SEW=32, LMUL=M1 |
| 918 | // $x0 = PseudoVSETVLI %vl:gpr, SEW=32, LMUL=M1 |
| 919 | // -> |
| 920 | // %vl = PseudoVSETVLI %avl:gpr, SEW=32, LMUL=M1 |
| 921 | // $x0 = PseudoVSETVLI %avl:gpr, SEW=32, LMUL=M1 |
| 922 | void RISCVInsertVSETVLI::forwardVSETVLIAVL(VSETVLIInfo &Info) const { |
| 923 | if (!Info.hasAVLReg()) |
| 924 | return; |
| 925 | const MachineInstr *DefMI = Info.getAVLDefMI(LIS); |
| 926 | if (!DefMI || !RISCVInstrInfo::isVectorConfigInstr(MI: *DefMI)) |
| 927 | return; |
| 928 | VSETVLIInfo DefInstrInfo = getInfoForVSETVLI(MI: *DefMI); |
| 929 | if (!DefInstrInfo.hasSameVLMAX(Other: Info)) |
| 930 | return; |
| 931 | Info.setAVL(DefInstrInfo); |
| 932 | } |
| 933 | |
| 934 | // Return a VSETVLIInfo representing the changes made by this VSETVLI or |
| 935 | // VSETIVLI instruction. |
| 936 | VSETVLIInfo |
| 937 | RISCVInsertVSETVLI::getInfoForVSETVLI(const MachineInstr &MI) const { |
| 938 | VSETVLIInfo NewInfo; |
| 939 | if (MI.getOpcode() == RISCV::PseudoVSETIVLI) { |
| 940 | NewInfo.setAVLImm(MI.getOperand(i: 1).getImm()); |
| 941 | } else { |
| 942 | assert(MI.getOpcode() == RISCV::PseudoVSETVLI || |
| 943 | MI.getOpcode() == RISCV::PseudoVSETVLIX0); |
| 944 | if (MI.getOpcode() == RISCV::PseudoVSETVLIX0) |
| 945 | NewInfo.setAVLVLMAX(); |
| 946 | else if (MI.getOperand(i: 1).isUndef()) |
| 947 | // Otherwise use an AVL of 1 to avoid depending on previous vl. |
| 948 | NewInfo.setAVLImm(1); |
| 949 | else { |
| 950 | Register AVLReg = MI.getOperand(i: 1).getReg(); |
| 951 | VNInfo *VNI = getVNInfoFromReg(Reg: AVLReg, MI, LIS); |
| 952 | NewInfo.setAVLRegDef(VNInfo: VNI, AVLReg); |
| 953 | } |
| 954 | } |
| 955 | NewInfo.setVTYPE(MI.getOperand(i: 2).getImm()); |
| 956 | |
| 957 | forwardVSETVLIAVL(Info&: NewInfo); |
| 958 | |
| 959 | return NewInfo; |
| 960 | } |
| 961 | |
| 962 | static unsigned computeVLMAX(unsigned VLEN, unsigned SEW, |
| 963 | RISCVVType::VLMUL VLMul) { |
| 964 | auto [LMul, Fractional] = RISCVVType::decodeVLMUL(VLMul); |
| 965 | if (Fractional) |
| 966 | VLEN = VLEN / LMul; |
| 967 | else |
| 968 | VLEN = VLEN * LMul; |
| 969 | return VLEN/SEW; |
| 970 | } |
| 971 | |
| 972 | VSETVLIInfo |
| 973 | RISCVInsertVSETVLI::computeInfoForInstr(const MachineInstr &MI) const { |
| 974 | VSETVLIInfo InstrInfo; |
| 975 | const uint64_t TSFlags = MI.getDesc().TSFlags; |
| 976 | |
| 977 | bool TailAgnostic = true; |
| 978 | bool MaskAgnostic = true; |
| 979 | if (!hasUndefinedPassthru(MI)) { |
| 980 | // Start with undisturbed. |
| 981 | TailAgnostic = false; |
| 982 | MaskAgnostic = false; |
| 983 | |
| 984 | // If there is a policy operand, use it. |
| 985 | if (RISCVII::hasVecPolicyOp(TSFlags)) { |
| 986 | const MachineOperand &Op = MI.getOperand(i: MI.getNumExplicitOperands() - 1); |
| 987 | uint64_t Policy = Op.getImm(); |
| 988 | assert(Policy <= |
| 989 | (RISCVVType::TAIL_AGNOSTIC | RISCVVType::MASK_AGNOSTIC) && |
| 990 | "Invalid Policy Value" ); |
| 991 | TailAgnostic = Policy & RISCVVType::TAIL_AGNOSTIC; |
| 992 | MaskAgnostic = Policy & RISCVVType::MASK_AGNOSTIC; |
| 993 | } |
| 994 | |
| 995 | if (!RISCVII::usesMaskPolicy(TSFlags)) |
| 996 | MaskAgnostic = true; |
| 997 | } |
| 998 | |
| 999 | RISCVVType::VLMUL VLMul = RISCVII::getLMul(TSFlags); |
| 1000 | |
| 1001 | unsigned Log2SEW = MI.getOperand(i: getSEWOpNum(MI)).getImm(); |
| 1002 | // A Log2SEW of 0 is an operation on mask registers only. |
| 1003 | unsigned SEW = Log2SEW ? 1 << Log2SEW : 8; |
| 1004 | assert(RISCVVType::isValidSEW(SEW) && "Unexpected SEW" ); |
| 1005 | |
| 1006 | if (RISCVII::hasVLOp(TSFlags)) { |
| 1007 | const MachineOperand &VLOp = MI.getOperand(i: getVLOpNum(MI)); |
| 1008 | if (VLOp.isImm()) { |
| 1009 | int64_t Imm = VLOp.getImm(); |
| 1010 | // Convert the VLMax sentintel to X0 register. |
| 1011 | if (Imm == RISCV::VLMaxSentinel) { |
| 1012 | // If we know the exact VLEN, see if we can use the constant encoding |
| 1013 | // for the VLMAX instead. This reduces register pressure slightly. |
| 1014 | const unsigned VLMAX = computeVLMAX(VLEN: ST->getRealMaxVLen(), SEW, VLMul); |
| 1015 | if (ST->getRealMinVLen() == ST->getRealMaxVLen() && VLMAX <= 31) |
| 1016 | InstrInfo.setAVLImm(VLMAX); |
| 1017 | else |
| 1018 | InstrInfo.setAVLVLMAX(); |
| 1019 | } |
| 1020 | else |
| 1021 | InstrInfo.setAVLImm(Imm); |
| 1022 | } else if (VLOp.isUndef()) { |
| 1023 | // Otherwise use an AVL of 1 to avoid depending on previous vl. |
| 1024 | InstrInfo.setAVLImm(1); |
| 1025 | } else { |
| 1026 | VNInfo *VNI = getVNInfoFromReg(Reg: VLOp.getReg(), MI, LIS); |
| 1027 | InstrInfo.setAVLRegDef(VNInfo: VNI, AVLReg: VLOp.getReg()); |
| 1028 | } |
| 1029 | } else { |
| 1030 | assert(RISCVInstrInfo::isScalarExtractInstr(MI) || |
| 1031 | RISCVInstrInfo::isVExtractInstr(MI)); |
| 1032 | // Pick a random value for state tracking purposes, will be ignored via |
| 1033 | // the demanded fields mechanism |
| 1034 | InstrInfo.setAVLImm(1); |
| 1035 | } |
| 1036 | #ifndef NDEBUG |
| 1037 | if (std::optional<unsigned> EEW = getEEWForLoadStore(MI)) { |
| 1038 | assert(SEW == EEW && "Initial SEW doesn't match expected EEW" ); |
| 1039 | } |
| 1040 | #endif |
| 1041 | InstrInfo.setVTYPE(L: VLMul, S: SEW, TA: TailAgnostic, MA: MaskAgnostic); |
| 1042 | |
| 1043 | forwardVSETVLIAVL(Info&: InstrInfo); |
| 1044 | |
| 1045 | return InstrInfo; |
| 1046 | } |
| 1047 | |
| 1048 | void RISCVInsertVSETVLI::insertVSETVLI(MachineBasicBlock &MBB, |
| 1049 | MachineBasicBlock::iterator InsertPt, DebugLoc DL, |
| 1050 | const VSETVLIInfo &Info, const VSETVLIInfo &PrevInfo) { |
| 1051 | |
| 1052 | ++NumInsertedVSETVL; |
| 1053 | if (PrevInfo.isValid() && !PrevInfo.isUnknown()) { |
| 1054 | // Use X0, X0 form if the AVL is the same and the SEW+LMUL gives the same |
| 1055 | // VLMAX. |
| 1056 | if (Info.hasSameAVL(Other: PrevInfo) && Info.hasSameVLMAX(Other: PrevInfo)) { |
| 1057 | auto MI = BuildMI(BB&: MBB, I: InsertPt, MIMD: DL, MCID: TII->get(Opcode: RISCV::PseudoVSETVLIX0X0)) |
| 1058 | .addReg(RegNo: RISCV::X0, flags: RegState::Define | RegState::Dead) |
| 1059 | .addReg(RegNo: RISCV::X0, flags: RegState::Kill) |
| 1060 | .addImm(Val: Info.encodeVTYPE()) |
| 1061 | .addReg(RegNo: RISCV::VL, flags: RegState::Implicit); |
| 1062 | if (LIS) |
| 1063 | LIS->InsertMachineInstrInMaps(MI&: *MI); |
| 1064 | return; |
| 1065 | } |
| 1066 | |
| 1067 | // If our AVL is a virtual register, it might be defined by a VSET(I)VLI. If |
| 1068 | // it has the same VLMAX we want and the last VL/VTYPE we observed is the |
| 1069 | // same, we can use the X0, X0 form. |
| 1070 | if (Info.hasSameVLMAX(Other: PrevInfo) && Info.hasAVLReg()) { |
| 1071 | if (const MachineInstr *DefMI = Info.getAVLDefMI(LIS); |
| 1072 | DefMI && RISCVInstrInfo::isVectorConfigInstr(MI: *DefMI)) { |
| 1073 | VSETVLIInfo DefInfo = getInfoForVSETVLI(MI: *DefMI); |
| 1074 | if (DefInfo.hasSameAVL(Other: PrevInfo) && DefInfo.hasSameVLMAX(Other: PrevInfo)) { |
| 1075 | auto MI = |
| 1076 | BuildMI(BB&: MBB, I: InsertPt, MIMD: DL, MCID: TII->get(Opcode: RISCV::PseudoVSETVLIX0X0)) |
| 1077 | .addReg(RegNo: RISCV::X0, flags: RegState::Define | RegState::Dead) |
| 1078 | .addReg(RegNo: RISCV::X0, flags: RegState::Kill) |
| 1079 | .addImm(Val: Info.encodeVTYPE()) |
| 1080 | .addReg(RegNo: RISCV::VL, flags: RegState::Implicit); |
| 1081 | if (LIS) |
| 1082 | LIS->InsertMachineInstrInMaps(MI&: *MI); |
| 1083 | return; |
| 1084 | } |
| 1085 | } |
| 1086 | } |
| 1087 | } |
| 1088 | |
| 1089 | if (Info.hasAVLImm()) { |
| 1090 | auto MI = BuildMI(BB&: MBB, I: InsertPt, MIMD: DL, MCID: TII->get(Opcode: RISCV::PseudoVSETIVLI)) |
| 1091 | .addReg(RegNo: RISCV::X0, flags: RegState::Define | RegState::Dead) |
| 1092 | .addImm(Val: Info.getAVLImm()) |
| 1093 | .addImm(Val: Info.encodeVTYPE()); |
| 1094 | if (LIS) |
| 1095 | LIS->InsertMachineInstrInMaps(MI&: *MI); |
| 1096 | return; |
| 1097 | } |
| 1098 | |
| 1099 | if (Info.hasAVLVLMAX()) { |
| 1100 | Register DestReg = MRI->createVirtualRegister(RegClass: &RISCV::GPRNoX0RegClass); |
| 1101 | auto MI = BuildMI(BB&: MBB, I: InsertPt, MIMD: DL, MCID: TII->get(Opcode: RISCV::PseudoVSETVLIX0)) |
| 1102 | .addReg(RegNo: DestReg, flags: RegState::Define | RegState::Dead) |
| 1103 | .addReg(RegNo: RISCV::X0, flags: RegState::Kill) |
| 1104 | .addImm(Val: Info.encodeVTYPE()); |
| 1105 | if (LIS) { |
| 1106 | LIS->InsertMachineInstrInMaps(MI&: *MI); |
| 1107 | LIS->createAndComputeVirtRegInterval(Reg: DestReg); |
| 1108 | } |
| 1109 | return; |
| 1110 | } |
| 1111 | |
| 1112 | Register AVLReg = Info.getAVLReg(); |
| 1113 | MRI->constrainRegClass(Reg: AVLReg, RC: &RISCV::GPRNoX0RegClass); |
| 1114 | auto MI = BuildMI(BB&: MBB, I: InsertPt, MIMD: DL, MCID: TII->get(Opcode: RISCV::PseudoVSETVLI)) |
| 1115 | .addReg(RegNo: RISCV::X0, flags: RegState::Define | RegState::Dead) |
| 1116 | .addReg(RegNo: AVLReg) |
| 1117 | .addImm(Val: Info.encodeVTYPE()); |
| 1118 | if (LIS) { |
| 1119 | LIS->InsertMachineInstrInMaps(MI&: *MI); |
| 1120 | LiveInterval &LI = LIS->getInterval(Reg: AVLReg); |
| 1121 | SlotIndex SI = LIS->getInstructionIndex(Instr: *MI).getRegSlot(); |
| 1122 | const VNInfo *CurVNI = Info.getAVLVNInfo(); |
| 1123 | // If the AVL value isn't live at MI, do a quick check to see if it's easily |
| 1124 | // extendable. Otherwise, we need to copy it. |
| 1125 | if (LI.getVNInfoBefore(Idx: SI) != CurVNI) { |
| 1126 | if (!LI.liveAt(index: SI) && LI.containsOneValue()) |
| 1127 | LIS->extendToIndices(LR&: LI, Indices: SI); |
| 1128 | else { |
| 1129 | Register AVLCopyReg = |
| 1130 | MRI->createVirtualRegister(RegClass: &RISCV::GPRNoX0RegClass); |
| 1131 | MachineBasicBlock *MBB = LIS->getMBBFromIndex(index: CurVNI->def); |
| 1132 | MachineBasicBlock::iterator II; |
| 1133 | if (CurVNI->isPHIDef()) |
| 1134 | II = MBB->getFirstNonPHI(); |
| 1135 | else { |
| 1136 | II = LIS->getInstructionFromIndex(index: CurVNI->def); |
| 1137 | II = std::next(x: II); |
| 1138 | } |
| 1139 | assert(II.isValid()); |
| 1140 | auto AVLCopy = BuildMI(BB&: *MBB, I: II, MIMD: DL, MCID: TII->get(Opcode: RISCV::COPY), DestReg: AVLCopyReg) |
| 1141 | .addReg(RegNo: AVLReg); |
| 1142 | LIS->InsertMachineInstrInMaps(MI&: *AVLCopy); |
| 1143 | MI->getOperand(i: 1).setReg(AVLCopyReg); |
| 1144 | LIS->createAndComputeVirtRegInterval(Reg: AVLCopyReg); |
| 1145 | } |
| 1146 | } |
| 1147 | } |
| 1148 | } |
| 1149 | |
| 1150 | /// Return true if a VSETVLI is required to transition from CurInfo to Require |
| 1151 | /// given a set of DemandedFields \p Used. |
| 1152 | bool RISCVInsertVSETVLI::needVSETVLI(const DemandedFields &Used, |
| 1153 | const VSETVLIInfo &Require, |
| 1154 | const VSETVLIInfo &CurInfo) const { |
| 1155 | if (!CurInfo.isValid() || CurInfo.isUnknown() || CurInfo.hasSEWLMULRatioOnly()) |
| 1156 | return true; |
| 1157 | |
| 1158 | if (CurInfo.isCompatible(Used, Require, LIS)) |
| 1159 | return false; |
| 1160 | |
| 1161 | return true; |
| 1162 | } |
| 1163 | |
| 1164 | // If we don't use LMUL or the SEW/LMUL ratio, then adjust LMUL so that we |
| 1165 | // maintain the SEW/LMUL ratio. This allows us to eliminate VL toggles in more |
| 1166 | // places. |
| 1167 | static VSETVLIInfo adjustIncoming(const VSETVLIInfo &PrevInfo, |
| 1168 | const VSETVLIInfo &NewInfo, |
| 1169 | DemandedFields &Demanded) { |
| 1170 | VSETVLIInfo Info = NewInfo; |
| 1171 | |
| 1172 | if (!Demanded.LMUL && !Demanded.SEWLMULRatio && PrevInfo.isValid() && |
| 1173 | !PrevInfo.isUnknown()) { |
| 1174 | if (auto NewVLMul = RISCVVType::getSameRatioLMUL( |
| 1175 | SEW: PrevInfo.getSEW(), VLMUL: PrevInfo.getVLMUL(), EEW: Info.getSEW())) |
| 1176 | Info.setVLMul(*NewVLMul); |
| 1177 | Demanded.LMUL = DemandedFields::LMULEqual; |
| 1178 | } |
| 1179 | |
| 1180 | return Info; |
| 1181 | } |
| 1182 | |
| 1183 | // Given an incoming state reaching MI, minimally modifies that state so that it |
| 1184 | // is compatible with MI. The resulting state is guaranteed to be semantically |
| 1185 | // legal for MI, but may not be the state requested by MI. |
| 1186 | void RISCVInsertVSETVLI::transferBefore(VSETVLIInfo &Info, |
| 1187 | const MachineInstr &MI) const { |
| 1188 | if (isVectorCopy(TRI: ST->getRegisterInfo(), MI) && |
| 1189 | (Info.isUnknown() || !Info.isValid() || Info.hasSEWLMULRatioOnly())) { |
| 1190 | // Use an arbitrary but valid AVL and VTYPE so vill will be cleared. It may |
| 1191 | // be coalesced into another vsetvli since we won't demand any fields. |
| 1192 | VSETVLIInfo NewInfo; // Need a new VSETVLIInfo to clear SEWLMULRatioOnly |
| 1193 | NewInfo.setAVLImm(1); |
| 1194 | NewInfo.setVTYPE(L: RISCVVType::LMUL_1, /*sew*/ S: 8, /*ta*/ TA: true, /*ma*/ MA: true); |
| 1195 | Info = NewInfo; |
| 1196 | return; |
| 1197 | } |
| 1198 | |
| 1199 | if (!RISCVII::hasSEWOp(TSFlags: MI.getDesc().TSFlags)) |
| 1200 | return; |
| 1201 | |
| 1202 | DemandedFields Demanded = getDemanded(MI, ST); |
| 1203 | |
| 1204 | const VSETVLIInfo NewInfo = computeInfoForInstr(MI); |
| 1205 | assert(NewInfo.isValid() && !NewInfo.isUnknown()); |
| 1206 | if (Info.isValid() && !needVSETVLI(Used: Demanded, Require: NewInfo, CurInfo: Info)) |
| 1207 | return; |
| 1208 | |
| 1209 | const VSETVLIInfo PrevInfo = Info; |
| 1210 | if (!Info.isValid() || Info.isUnknown()) |
| 1211 | Info = NewInfo; |
| 1212 | |
| 1213 | const VSETVLIInfo IncomingInfo = adjustIncoming(PrevInfo, NewInfo, Demanded); |
| 1214 | |
| 1215 | // If MI only demands that VL has the same zeroness, we only need to set the |
| 1216 | // AVL if the zeroness differs. This removes a vsetvli entirely if the types |
| 1217 | // match or allows use of cheaper avl preserving variant if VLMAX doesn't |
| 1218 | // change. If VLMAX might change, we couldn't use the 'vsetvli x0, x0, vtype" |
| 1219 | // variant, so we avoid the transform to prevent extending live range of an |
| 1220 | // avl register operand. |
| 1221 | // TODO: We can probably relax this for immediates. |
| 1222 | bool EquallyZero = IncomingInfo.hasEquallyZeroAVL(Other: PrevInfo, LIS) && |
| 1223 | IncomingInfo.hasSameVLMAX(Other: PrevInfo); |
| 1224 | if (Demanded.VLAny || (Demanded.VLZeroness && !EquallyZero)) |
| 1225 | Info.setAVL(IncomingInfo); |
| 1226 | |
| 1227 | Info.setVTYPE( |
| 1228 | L: ((Demanded.LMUL || Demanded.SEWLMULRatio) ? IncomingInfo : Info) |
| 1229 | .getVLMUL(), |
| 1230 | S: ((Demanded.SEW || Demanded.SEWLMULRatio) ? IncomingInfo : Info).getSEW(), |
| 1231 | // Prefer tail/mask agnostic since it can be relaxed to undisturbed later |
| 1232 | // if needed. |
| 1233 | TA: (Demanded.TailPolicy ? IncomingInfo : Info).getTailAgnostic() || |
| 1234 | IncomingInfo.getTailAgnostic(), |
| 1235 | MA: (Demanded.MaskPolicy ? IncomingInfo : Info).getMaskAgnostic() || |
| 1236 | IncomingInfo.getMaskAgnostic()); |
| 1237 | |
| 1238 | // If we only knew the sew/lmul ratio previously, replace the VTYPE but keep |
| 1239 | // the AVL. |
| 1240 | if (Info.hasSEWLMULRatioOnly()) { |
| 1241 | VSETVLIInfo RatiolessInfo = IncomingInfo; |
| 1242 | RatiolessInfo.setAVL(Info); |
| 1243 | Info = RatiolessInfo; |
| 1244 | } |
| 1245 | } |
| 1246 | |
| 1247 | // Given a state with which we evaluated MI (see transferBefore above for why |
| 1248 | // this might be different that the state MI requested), modify the state to |
| 1249 | // reflect the changes MI might make. |
| 1250 | void RISCVInsertVSETVLI::transferAfter(VSETVLIInfo &Info, |
| 1251 | const MachineInstr &MI) const { |
| 1252 | if (RISCVInstrInfo::isVectorConfigInstr(MI)) { |
| 1253 | Info = getInfoForVSETVLI(MI); |
| 1254 | return; |
| 1255 | } |
| 1256 | |
| 1257 | if (RISCVInstrInfo::isFaultOnlyFirstLoad(MI)) { |
| 1258 | // Update AVL to vl-output of the fault first load. |
| 1259 | assert(MI.getOperand(1).getReg().isVirtual()); |
| 1260 | if (LIS) { |
| 1261 | auto &LI = LIS->getInterval(Reg: MI.getOperand(i: 1).getReg()); |
| 1262 | SlotIndex SI = |
| 1263 | LIS->getSlotIndexes()->getInstructionIndex(MI).getRegSlot(); |
| 1264 | VNInfo *VNI = LI.getVNInfoAt(Idx: SI); |
| 1265 | Info.setAVLRegDef(VNInfo: VNI, AVLReg: MI.getOperand(i: 1).getReg()); |
| 1266 | } else |
| 1267 | Info.setAVLRegDef(VNInfo: nullptr, AVLReg: MI.getOperand(i: 1).getReg()); |
| 1268 | return; |
| 1269 | } |
| 1270 | |
| 1271 | // If this is something that updates VL/VTYPE that we don't know about, set |
| 1272 | // the state to unknown. |
| 1273 | if (MI.isCall() || MI.isInlineAsm() || |
| 1274 | MI.modifiesRegister(Reg: RISCV::VL, /*TRI=*/nullptr) || |
| 1275 | MI.modifiesRegister(Reg: RISCV::VTYPE, /*TRI=*/nullptr)) |
| 1276 | Info = VSETVLIInfo::getUnknown(); |
| 1277 | } |
| 1278 | |
| 1279 | bool RISCVInsertVSETVLI::computeVLVTYPEChanges(const MachineBasicBlock &MBB, |
| 1280 | VSETVLIInfo &Info) const { |
| 1281 | bool HadVectorOp = false; |
| 1282 | |
| 1283 | Info = BlockInfo[MBB.getNumber()].Pred; |
| 1284 | for (const MachineInstr &MI : MBB) { |
| 1285 | transferBefore(Info, MI); |
| 1286 | |
| 1287 | if (RISCVInstrInfo::isVectorConfigInstr(MI) || |
| 1288 | RISCVII::hasSEWOp(TSFlags: MI.getDesc().TSFlags) || |
| 1289 | isVectorCopy(TRI: ST->getRegisterInfo(), MI)) |
| 1290 | HadVectorOp = true; |
| 1291 | |
| 1292 | transferAfter(Info, MI); |
| 1293 | } |
| 1294 | |
| 1295 | return HadVectorOp; |
| 1296 | } |
| 1297 | |
| 1298 | void RISCVInsertVSETVLI::computeIncomingVLVTYPE(const MachineBasicBlock &MBB) { |
| 1299 | |
| 1300 | BlockData &BBInfo = BlockInfo[MBB.getNumber()]; |
| 1301 | |
| 1302 | BBInfo.InQueue = false; |
| 1303 | |
| 1304 | // Start with the previous entry so that we keep the most conservative state |
| 1305 | // we have ever found. |
| 1306 | VSETVLIInfo InInfo = BBInfo.Pred; |
| 1307 | if (MBB.pred_empty()) { |
| 1308 | // There are no predecessors, so use the default starting status. |
| 1309 | InInfo.setUnknown(); |
| 1310 | } else { |
| 1311 | for (MachineBasicBlock *P : MBB.predecessors()) |
| 1312 | InInfo = InInfo.intersect(Other: BlockInfo[P->getNumber()].Exit); |
| 1313 | } |
| 1314 | |
| 1315 | // If we don't have any valid predecessor value, wait until we do. |
| 1316 | if (!InInfo.isValid()) |
| 1317 | return; |
| 1318 | |
| 1319 | // If no change, no need to rerun block |
| 1320 | if (InInfo == BBInfo.Pred) |
| 1321 | return; |
| 1322 | |
| 1323 | BBInfo.Pred = InInfo; |
| 1324 | LLVM_DEBUG(dbgs() << "Entry state of " << printMBBReference(MBB) |
| 1325 | << " changed to " << BBInfo.Pred << "\n" ); |
| 1326 | |
| 1327 | // Note: It's tempting to cache the state changes here, but due to the |
| 1328 | // compatibility checks performed a blocks output state can change based on |
| 1329 | // the input state. To cache, we'd have to add logic for finding |
| 1330 | // never-compatible state changes. |
| 1331 | VSETVLIInfo TmpStatus; |
| 1332 | computeVLVTYPEChanges(MBB, Info&: TmpStatus); |
| 1333 | |
| 1334 | // If the new exit value matches the old exit value, we don't need to revisit |
| 1335 | // any blocks. |
| 1336 | if (BBInfo.Exit == TmpStatus) |
| 1337 | return; |
| 1338 | |
| 1339 | BBInfo.Exit = TmpStatus; |
| 1340 | LLVM_DEBUG(dbgs() << "Exit state of " << printMBBReference(MBB) |
| 1341 | << " changed to " << BBInfo.Exit << "\n" ); |
| 1342 | |
| 1343 | // Add the successors to the work list so we can propagate the changed exit |
| 1344 | // status. |
| 1345 | for (MachineBasicBlock *S : MBB.successors()) |
| 1346 | if (!BlockInfo[S->getNumber()].InQueue) { |
| 1347 | BlockInfo[S->getNumber()].InQueue = true; |
| 1348 | WorkList.push(x: S); |
| 1349 | } |
| 1350 | } |
| 1351 | |
| 1352 | // If we weren't able to prove a vsetvli was directly unneeded, it might still |
| 1353 | // be unneeded if the AVL was a phi node where all incoming values are VL |
| 1354 | // outputs from the last VSETVLI in their respective basic blocks. |
| 1355 | bool RISCVInsertVSETVLI::needVSETVLIPHI(const VSETVLIInfo &Require, |
| 1356 | const MachineBasicBlock &MBB) const { |
| 1357 | if (!Require.hasAVLReg()) |
| 1358 | return true; |
| 1359 | |
| 1360 | if (!LIS) |
| 1361 | return true; |
| 1362 | |
| 1363 | // We need the AVL to have been produced by a PHI node in this basic block. |
| 1364 | const VNInfo *Valno = Require.getAVLVNInfo(); |
| 1365 | if (!Valno->isPHIDef() || LIS->getMBBFromIndex(index: Valno->def) != &MBB) |
| 1366 | return true; |
| 1367 | |
| 1368 | const LiveRange &LR = LIS->getInterval(Reg: Require.getAVLReg()); |
| 1369 | |
| 1370 | for (auto *PBB : MBB.predecessors()) { |
| 1371 | const VSETVLIInfo &PBBExit = BlockInfo[PBB->getNumber()].Exit; |
| 1372 | |
| 1373 | // We need the PHI input to the be the output of a VSET(I)VLI. |
| 1374 | const VNInfo *Value = LR.getVNInfoBefore(Idx: LIS->getMBBEndIdx(mbb: PBB)); |
| 1375 | if (!Value) |
| 1376 | return true; |
| 1377 | MachineInstr *DefMI = LIS->getInstructionFromIndex(index: Value->def); |
| 1378 | if (!DefMI || !RISCVInstrInfo::isVectorConfigInstr(MI: *DefMI)) |
| 1379 | return true; |
| 1380 | |
| 1381 | // We found a VSET(I)VLI make sure it matches the output of the |
| 1382 | // predecessor block. |
| 1383 | VSETVLIInfo DefInfo = getInfoForVSETVLI(MI: *DefMI); |
| 1384 | if (DefInfo != PBBExit) |
| 1385 | return true; |
| 1386 | |
| 1387 | // Require has the same VL as PBBExit, so if the exit from the |
| 1388 | // predecessor has the VTYPE we are looking for we might be able |
| 1389 | // to avoid a VSETVLI. |
| 1390 | if (PBBExit.isUnknown() || !PBBExit.hasSameVTYPE(Other: Require)) |
| 1391 | return true; |
| 1392 | } |
| 1393 | |
| 1394 | // If all the incoming values to the PHI checked out, we don't need |
| 1395 | // to insert a VSETVLI. |
| 1396 | return false; |
| 1397 | } |
| 1398 | |
| 1399 | void RISCVInsertVSETVLI::emitVSETVLIs(MachineBasicBlock &MBB) { |
| 1400 | VSETVLIInfo CurInfo = BlockInfo[MBB.getNumber()].Pred; |
| 1401 | // Track whether the prefix of the block we've scanned is transparent |
| 1402 | // (meaning has not yet changed the abstract state). |
| 1403 | bool PrefixTransparent = true; |
| 1404 | for (MachineInstr &MI : MBB) { |
| 1405 | const VSETVLIInfo PrevInfo = CurInfo; |
| 1406 | transferBefore(Info&: CurInfo, MI); |
| 1407 | |
| 1408 | // If this is an explicit VSETVLI or VSETIVLI, update our state. |
| 1409 | if (RISCVInstrInfo::isVectorConfigInstr(MI)) { |
| 1410 | // Conservatively, mark the VL and VTYPE as live. |
| 1411 | assert(MI.getOperand(3).getReg() == RISCV::VL && |
| 1412 | MI.getOperand(4).getReg() == RISCV::VTYPE && |
| 1413 | "Unexpected operands where VL and VTYPE should be" ); |
| 1414 | MI.getOperand(i: 3).setIsDead(false); |
| 1415 | MI.getOperand(i: 4).setIsDead(false); |
| 1416 | PrefixTransparent = false; |
| 1417 | } |
| 1418 | |
| 1419 | if (EnsureWholeVectorRegisterMoveValidVTYPE && |
| 1420 | isVectorCopy(TRI: ST->getRegisterInfo(), MI)) { |
| 1421 | if (!PrevInfo.isCompatible(Used: DemandedFields::all(), Require: CurInfo, LIS)) { |
| 1422 | insertVSETVLI(MBB, InsertPt: MI, DL: MI.getDebugLoc(), Info: CurInfo, PrevInfo); |
| 1423 | PrefixTransparent = false; |
| 1424 | } |
| 1425 | MI.addOperand(Op: MachineOperand::CreateReg(Reg: RISCV::VTYPE, /*isDef*/ false, |
| 1426 | /*isImp*/ true)); |
| 1427 | } |
| 1428 | |
| 1429 | uint64_t TSFlags = MI.getDesc().TSFlags; |
| 1430 | if (RISCVII::hasSEWOp(TSFlags)) { |
| 1431 | if (!PrevInfo.isCompatible(Used: DemandedFields::all(), Require: CurInfo, LIS)) { |
| 1432 | // If this is the first implicit state change, and the state change |
| 1433 | // requested can be proven to produce the same register contents, we |
| 1434 | // can skip emitting the actual state change and continue as if we |
| 1435 | // had since we know the GPR result of the implicit state change |
| 1436 | // wouldn't be used and VL/VTYPE registers are correct. Note that |
| 1437 | // we *do* need to model the state as if it changed as while the |
| 1438 | // register contents are unchanged, the abstract model can change. |
| 1439 | if (!PrefixTransparent || needVSETVLIPHI(Require: CurInfo, MBB)) |
| 1440 | insertVSETVLI(MBB, InsertPt: MI, DL: MI.getDebugLoc(), Info: CurInfo, PrevInfo); |
| 1441 | PrefixTransparent = false; |
| 1442 | } |
| 1443 | |
| 1444 | if (RISCVII::hasVLOp(TSFlags)) { |
| 1445 | MachineOperand &VLOp = MI.getOperand(i: getVLOpNum(MI)); |
| 1446 | if (VLOp.isReg()) { |
| 1447 | Register Reg = VLOp.getReg(); |
| 1448 | |
| 1449 | // Erase the AVL operand from the instruction. |
| 1450 | VLOp.setReg(RISCV::NoRegister); |
| 1451 | VLOp.setIsKill(false); |
| 1452 | if (LIS) { |
| 1453 | LiveInterval &LI = LIS->getInterval(Reg); |
| 1454 | SmallVector<MachineInstr *> DeadMIs; |
| 1455 | LIS->shrinkToUses(li: &LI, dead: &DeadMIs); |
| 1456 | // We might have separate components that need split due to |
| 1457 | // needVSETVLIPHI causing us to skip inserting a new VL def. |
| 1458 | SmallVector<LiveInterval *> SplitLIs; |
| 1459 | LIS->splitSeparateComponents(LI, SplitLIs); |
| 1460 | |
| 1461 | // If the AVL was an immediate > 31, then it would have been emitted |
| 1462 | // as an ADDI. However, the ADDI might not have been used in the |
| 1463 | // vsetvli, or a vsetvli might not have been emitted, so it may be |
| 1464 | // dead now. |
| 1465 | for (MachineInstr *DeadMI : DeadMIs) { |
| 1466 | if (!TII->isAddImmediate(MI: *DeadMI, Reg)) |
| 1467 | continue; |
| 1468 | LIS->RemoveMachineInstrFromMaps(MI&: *DeadMI); |
| 1469 | DeadMI->eraseFromParent(); |
| 1470 | } |
| 1471 | } |
| 1472 | } |
| 1473 | MI.addOperand(Op: MachineOperand::CreateReg(Reg: RISCV::VL, /*isDef*/ false, |
| 1474 | /*isImp*/ true)); |
| 1475 | } |
| 1476 | MI.addOperand(Op: MachineOperand::CreateReg(Reg: RISCV::VTYPE, /*isDef*/ false, |
| 1477 | /*isImp*/ true)); |
| 1478 | } |
| 1479 | |
| 1480 | if (MI.isInlineAsm()) { |
| 1481 | MI.addOperand(Op: MachineOperand::CreateReg(Reg: RISCV::VL, /*isDef*/ true, |
| 1482 | /*isImp*/ true)); |
| 1483 | MI.addOperand(Op: MachineOperand::CreateReg(Reg: RISCV::VTYPE, /*isDef*/ true, |
| 1484 | /*isImp*/ true)); |
| 1485 | } |
| 1486 | |
| 1487 | if (MI.isCall() || MI.isInlineAsm() || |
| 1488 | MI.modifiesRegister(Reg: RISCV::VL, /*TRI=*/nullptr) || |
| 1489 | MI.modifiesRegister(Reg: RISCV::VTYPE, /*TRI=*/nullptr)) |
| 1490 | PrefixTransparent = false; |
| 1491 | |
| 1492 | transferAfter(Info&: CurInfo, MI); |
| 1493 | } |
| 1494 | |
| 1495 | const auto &Info = BlockInfo[MBB.getNumber()]; |
| 1496 | if (CurInfo != Info.Exit) { |
| 1497 | LLVM_DEBUG(dbgs() << "in block " << printMBBReference(MBB) << "\n" ); |
| 1498 | LLVM_DEBUG(dbgs() << " begin state: " << Info.Pred << "\n" ); |
| 1499 | LLVM_DEBUG(dbgs() << " expected end state: " << Info.Exit << "\n" ); |
| 1500 | LLVM_DEBUG(dbgs() << " actual end state: " << CurInfo << "\n" ); |
| 1501 | } |
| 1502 | assert(CurInfo == Info.Exit && "InsertVSETVLI dataflow invariant violated" ); |
| 1503 | } |
| 1504 | |
| 1505 | /// Perform simple partial redundancy elimination of the VSETVLI instructions |
| 1506 | /// we're about to insert by looking for cases where we can PRE from the |
| 1507 | /// beginning of one block to the end of one of its predecessors. Specifically, |
| 1508 | /// this is geared to catch the common case of a fixed length vsetvl in a single |
| 1509 | /// block loop when it could execute once in the preheader instead. |
| 1510 | void RISCVInsertVSETVLI::doPRE(MachineBasicBlock &MBB) { |
| 1511 | if (!BlockInfo[MBB.getNumber()].Pred.isUnknown()) |
| 1512 | return; |
| 1513 | |
| 1514 | MachineBasicBlock *UnavailablePred = nullptr; |
| 1515 | VSETVLIInfo AvailableInfo; |
| 1516 | for (MachineBasicBlock *P : MBB.predecessors()) { |
| 1517 | const VSETVLIInfo &PredInfo = BlockInfo[P->getNumber()].Exit; |
| 1518 | if (PredInfo.isUnknown()) { |
| 1519 | if (UnavailablePred) |
| 1520 | return; |
| 1521 | UnavailablePred = P; |
| 1522 | } else if (!AvailableInfo.isValid()) { |
| 1523 | AvailableInfo = PredInfo; |
| 1524 | } else if (AvailableInfo != PredInfo) { |
| 1525 | return; |
| 1526 | } |
| 1527 | } |
| 1528 | |
| 1529 | // Unreachable, single pred, or full redundancy. Note that FRE is handled by |
| 1530 | // phase 3. |
| 1531 | if (!UnavailablePred || !AvailableInfo.isValid()) |
| 1532 | return; |
| 1533 | |
| 1534 | if (!LIS) |
| 1535 | return; |
| 1536 | |
| 1537 | // If we don't know the exact VTYPE, we can't copy the vsetvli to the exit of |
| 1538 | // the unavailable pred. |
| 1539 | if (AvailableInfo.hasSEWLMULRatioOnly()) |
| 1540 | return; |
| 1541 | |
| 1542 | // Critical edge - TODO: consider splitting? |
| 1543 | if (UnavailablePred->succ_size() != 1) |
| 1544 | return; |
| 1545 | |
| 1546 | // If the AVL value is a register (other than our VLMAX sentinel), |
| 1547 | // we need to prove the value is available at the point we're going |
| 1548 | // to insert the vsetvli at. |
| 1549 | if (AvailableInfo.hasAVLReg()) { |
| 1550 | SlotIndex SI = AvailableInfo.getAVLVNInfo()->def; |
| 1551 | // This is an inline dominance check which covers the case of |
| 1552 | // UnavailablePred being the preheader of a loop. |
| 1553 | if (LIS->getMBBFromIndex(index: SI) != UnavailablePred) |
| 1554 | return; |
| 1555 | if (!UnavailablePred->terminators().empty() && |
| 1556 | SI >= LIS->getInstructionIndex(Instr: *UnavailablePred->getFirstTerminator())) |
| 1557 | return; |
| 1558 | } |
| 1559 | |
| 1560 | // Model the effect of changing the input state of the block MBB to |
| 1561 | // AvailableInfo. We're looking for two issues here; one legality, |
| 1562 | // one profitability. |
| 1563 | // 1) If the block doesn't use some of the fields from VL or VTYPE, we |
| 1564 | // may hit the end of the block with a different end state. We can |
| 1565 | // not make this change without reflowing later blocks as well. |
| 1566 | // 2) If we don't actually remove a transition, inserting a vsetvli |
| 1567 | // into the predecessor block would be correct, but unprofitable. |
| 1568 | VSETVLIInfo OldInfo = BlockInfo[MBB.getNumber()].Pred; |
| 1569 | VSETVLIInfo CurInfo = AvailableInfo; |
| 1570 | int TransitionsRemoved = 0; |
| 1571 | for (const MachineInstr &MI : MBB) { |
| 1572 | const VSETVLIInfo LastInfo = CurInfo; |
| 1573 | const VSETVLIInfo LastOldInfo = OldInfo; |
| 1574 | transferBefore(Info&: CurInfo, MI); |
| 1575 | transferBefore(Info&: OldInfo, MI); |
| 1576 | if (CurInfo == LastInfo) |
| 1577 | TransitionsRemoved++; |
| 1578 | if (LastOldInfo == OldInfo) |
| 1579 | TransitionsRemoved--; |
| 1580 | transferAfter(Info&: CurInfo, MI); |
| 1581 | transferAfter(Info&: OldInfo, MI); |
| 1582 | if (CurInfo == OldInfo) |
| 1583 | // Convergence. All transitions after this must match by construction. |
| 1584 | break; |
| 1585 | } |
| 1586 | if (CurInfo != OldInfo || TransitionsRemoved <= 0) |
| 1587 | // Issues 1 and 2 above |
| 1588 | return; |
| 1589 | |
| 1590 | // Finally, update both data flow state and insert the actual vsetvli. |
| 1591 | // Doing both keeps the code in sync with the dataflow results, which |
| 1592 | // is critical for correctness of phase 3. |
| 1593 | auto OldExit = BlockInfo[UnavailablePred->getNumber()].Exit; |
| 1594 | LLVM_DEBUG(dbgs() << "PRE VSETVLI from " << MBB.getName() << " to " |
| 1595 | << UnavailablePred->getName() << " with state " |
| 1596 | << AvailableInfo << "\n" ); |
| 1597 | BlockInfo[UnavailablePred->getNumber()].Exit = AvailableInfo; |
| 1598 | BlockInfo[MBB.getNumber()].Pred = AvailableInfo; |
| 1599 | |
| 1600 | // Note there's an implicit assumption here that terminators never use |
| 1601 | // or modify VL or VTYPE. Also, fallthrough will return end(). |
| 1602 | auto InsertPt = UnavailablePred->getFirstInstrTerminator(); |
| 1603 | insertVSETVLI(MBB&: *UnavailablePred, InsertPt, |
| 1604 | DL: UnavailablePred->findDebugLoc(MBBI: InsertPt), |
| 1605 | Info: AvailableInfo, PrevInfo: OldExit); |
| 1606 | } |
| 1607 | |
| 1608 | // Return true if we can mutate PrevMI to match MI without changing any the |
| 1609 | // fields which would be observed. |
| 1610 | bool RISCVInsertVSETVLI::canMutatePriorConfig( |
| 1611 | const MachineInstr &PrevMI, const MachineInstr &MI, |
| 1612 | const DemandedFields &Used) const { |
| 1613 | // If the VL values aren't equal, return false if either a) the former is |
| 1614 | // demanded, or b) we can't rewrite the former to be the later for |
| 1615 | // implementation reasons. |
| 1616 | if (!RISCVInstrInfo::isVLPreservingConfig(MI)) { |
| 1617 | if (Used.VLAny) |
| 1618 | return false; |
| 1619 | |
| 1620 | if (Used.VLZeroness) { |
| 1621 | if (RISCVInstrInfo::isVLPreservingConfig(MI: PrevMI)) |
| 1622 | return false; |
| 1623 | if (!getInfoForVSETVLI(MI: PrevMI).hasEquallyZeroAVL(Other: getInfoForVSETVLI(MI), |
| 1624 | LIS)) |
| 1625 | return false; |
| 1626 | } |
| 1627 | |
| 1628 | auto &AVL = MI.getOperand(i: 1); |
| 1629 | |
| 1630 | // If the AVL is a register, we need to make sure its definition is the same |
| 1631 | // at PrevMI as it was at MI. |
| 1632 | if (AVL.isReg() && AVL.getReg() != RISCV::X0) { |
| 1633 | VNInfo *VNI = getVNInfoFromReg(Reg: AVL.getReg(), MI, LIS); |
| 1634 | VNInfo *PrevVNI = getVNInfoFromReg(Reg: AVL.getReg(), MI: PrevMI, LIS); |
| 1635 | if (!VNI || !PrevVNI || VNI != PrevVNI) |
| 1636 | return false; |
| 1637 | } |
| 1638 | } |
| 1639 | |
| 1640 | assert(PrevMI.getOperand(2).isImm() && MI.getOperand(2).isImm()); |
| 1641 | auto PriorVType = PrevMI.getOperand(i: 2).getImm(); |
| 1642 | auto VType = MI.getOperand(i: 2).getImm(); |
| 1643 | return areCompatibleVTYPEs(CurVType: PriorVType, NewVType: VType, Used); |
| 1644 | } |
| 1645 | |
| 1646 | void RISCVInsertVSETVLI::coalesceVSETVLIs(MachineBasicBlock &MBB) const { |
| 1647 | MachineInstr *NextMI = nullptr; |
| 1648 | // We can have arbitrary code in successors, so VL and VTYPE |
| 1649 | // must be considered demanded. |
| 1650 | DemandedFields Used; |
| 1651 | Used.demandVL(); |
| 1652 | Used.demandVTYPE(); |
| 1653 | SmallVector<MachineInstr*> ToDelete; |
| 1654 | |
| 1655 | auto dropAVLUse = [&](MachineOperand &MO) { |
| 1656 | if (!MO.isReg() || !MO.getReg().isVirtual()) |
| 1657 | return; |
| 1658 | Register OldVLReg = MO.getReg(); |
| 1659 | MO.setReg(RISCV::NoRegister); |
| 1660 | |
| 1661 | if (LIS) |
| 1662 | LIS->shrinkToUses(li: &LIS->getInterval(Reg: OldVLReg)); |
| 1663 | |
| 1664 | MachineInstr *VLOpDef = MRI->getUniqueVRegDef(Reg: OldVLReg); |
| 1665 | if (VLOpDef && TII->isAddImmediate(MI: *VLOpDef, Reg: OldVLReg) && |
| 1666 | MRI->use_nodbg_empty(RegNo: OldVLReg)) |
| 1667 | ToDelete.push_back(Elt: VLOpDef); |
| 1668 | }; |
| 1669 | |
| 1670 | for (MachineInstr &MI : make_early_inc_range(Range: reverse(C&: MBB))) { |
| 1671 | |
| 1672 | if (!RISCVInstrInfo::isVectorConfigInstr(MI)) { |
| 1673 | Used.doUnion(B: getDemanded(MI, ST)); |
| 1674 | if (MI.isCall() || MI.isInlineAsm() || |
| 1675 | MI.modifiesRegister(Reg: RISCV::VL, /*TRI=*/nullptr) || |
| 1676 | MI.modifiesRegister(Reg: RISCV::VTYPE, /*TRI=*/nullptr)) |
| 1677 | NextMI = nullptr; |
| 1678 | continue; |
| 1679 | } |
| 1680 | |
| 1681 | if (!MI.getOperand(i: 0).isDead()) |
| 1682 | Used.demandVL(); |
| 1683 | |
| 1684 | if (NextMI) { |
| 1685 | if (!Used.usedVL() && !Used.usedVTYPE()) { |
| 1686 | dropAVLUse(MI.getOperand(i: 1)); |
| 1687 | if (LIS) |
| 1688 | LIS->RemoveMachineInstrFromMaps(MI); |
| 1689 | MI.eraseFromParent(); |
| 1690 | NumCoalescedVSETVL++; |
| 1691 | // Leave NextMI unchanged |
| 1692 | continue; |
| 1693 | } |
| 1694 | |
| 1695 | if (canMutatePriorConfig(PrevMI: MI, MI: *NextMI, Used)) { |
| 1696 | if (!RISCVInstrInfo::isVLPreservingConfig(MI: *NextMI)) { |
| 1697 | Register DefReg = NextMI->getOperand(i: 0).getReg(); |
| 1698 | |
| 1699 | MI.getOperand(i: 0).setReg(DefReg); |
| 1700 | MI.getOperand(i: 0).setIsDead(false); |
| 1701 | |
| 1702 | // Move the AVL from NextMI to MI |
| 1703 | dropAVLUse(MI.getOperand(i: 1)); |
| 1704 | if (NextMI->getOperand(i: 1).isImm()) |
| 1705 | MI.getOperand(i: 1).ChangeToImmediate(ImmVal: NextMI->getOperand(i: 1).getImm()); |
| 1706 | else |
| 1707 | MI.getOperand(i: 1).ChangeToRegister(Reg: NextMI->getOperand(i: 1).getReg(), |
| 1708 | isDef: false); |
| 1709 | dropAVLUse(NextMI->getOperand(i: 1)); |
| 1710 | |
| 1711 | // The def of DefReg moved to MI, so extend the LiveInterval up to |
| 1712 | // it. |
| 1713 | if (DefReg.isVirtual() && LIS) { |
| 1714 | LiveInterval &DefLI = LIS->getInterval(Reg: DefReg); |
| 1715 | SlotIndex MISlot = LIS->getInstructionIndex(Instr: MI).getRegSlot(); |
| 1716 | SlotIndex NextMISlot = |
| 1717 | LIS->getInstructionIndex(Instr: *NextMI).getRegSlot(); |
| 1718 | VNInfo *DefVNI = DefLI.getVNInfoAt(Idx: NextMISlot); |
| 1719 | LiveInterval::Segment S(MISlot, NextMISlot, DefVNI); |
| 1720 | DefLI.addSegment(S); |
| 1721 | DefVNI->def = MISlot; |
| 1722 | // Mark DefLI as spillable if it was previously unspillable |
| 1723 | DefLI.setWeight(0); |
| 1724 | |
| 1725 | // DefReg may have had no uses, in which case we need to shrink |
| 1726 | // the LiveInterval up to MI. |
| 1727 | LIS->shrinkToUses(li: &DefLI); |
| 1728 | } |
| 1729 | |
| 1730 | MI.setDesc(NextMI->getDesc()); |
| 1731 | } |
| 1732 | MI.getOperand(i: 2).setImm(NextMI->getOperand(i: 2).getImm()); |
| 1733 | |
| 1734 | dropAVLUse(NextMI->getOperand(i: 1)); |
| 1735 | if (LIS) |
| 1736 | LIS->RemoveMachineInstrFromMaps(MI&: *NextMI); |
| 1737 | NextMI->eraseFromParent(); |
| 1738 | NumCoalescedVSETVL++; |
| 1739 | // fallthrough |
| 1740 | } |
| 1741 | } |
| 1742 | NextMI = &MI; |
| 1743 | Used = getDemanded(MI, ST); |
| 1744 | } |
| 1745 | |
| 1746 | // Loop over the dead AVL values, and delete them now. This has |
| 1747 | // to be outside the above loop to avoid invalidating iterators. |
| 1748 | for (auto *MI : ToDelete) { |
| 1749 | if (LIS) { |
| 1750 | LIS->removeInterval(Reg: MI->getOperand(i: 0).getReg()); |
| 1751 | LIS->RemoveMachineInstrFromMaps(MI&: *MI); |
| 1752 | } |
| 1753 | MI->eraseFromParent(); |
| 1754 | } |
| 1755 | } |
| 1756 | |
| 1757 | void RISCVInsertVSETVLI::insertReadVL(MachineBasicBlock &MBB) { |
| 1758 | for (auto I = MBB.begin(), E = MBB.end(); I != E;) { |
| 1759 | MachineInstr &MI = *I++; |
| 1760 | if (RISCVInstrInfo::isFaultOnlyFirstLoad(MI)) { |
| 1761 | Register VLOutput = MI.getOperand(i: 1).getReg(); |
| 1762 | assert(VLOutput.isVirtual()); |
| 1763 | if (!MI.getOperand(i: 1).isDead()) { |
| 1764 | auto ReadVLMI = BuildMI(BB&: MBB, I, MIMD: MI.getDebugLoc(), |
| 1765 | MCID: TII->get(Opcode: RISCV::PseudoReadVL), DestReg: VLOutput); |
| 1766 | // Move the LiveInterval's definition down to PseudoReadVL. |
| 1767 | if (LIS) { |
| 1768 | SlotIndex NewDefSI = |
| 1769 | LIS->InsertMachineInstrInMaps(MI&: *ReadVLMI).getRegSlot(); |
| 1770 | LiveInterval &DefLI = LIS->getInterval(Reg: VLOutput); |
| 1771 | LiveRange::Segment *DefSeg = DefLI.getSegmentContaining(Idx: NewDefSI); |
| 1772 | VNInfo *DefVNI = DefLI.getVNInfoAt(Idx: DefSeg->start); |
| 1773 | DefLI.removeSegment(Start: DefSeg->start, End: NewDefSI); |
| 1774 | DefVNI->def = NewDefSI; |
| 1775 | } |
| 1776 | } |
| 1777 | // We don't use the vl output of the VLEFF/VLSEGFF anymore. |
| 1778 | MI.getOperand(i: 1).setReg(RISCV::X0); |
| 1779 | MI.addRegisterDefined(Reg: RISCV::VL, RegInfo: MRI->getTargetRegisterInfo()); |
| 1780 | } |
| 1781 | } |
| 1782 | } |
| 1783 | |
| 1784 | bool RISCVInsertVSETVLI::runOnMachineFunction(MachineFunction &MF) { |
| 1785 | // Skip if the vector extension is not enabled. |
| 1786 | ST = &MF.getSubtarget<RISCVSubtarget>(); |
| 1787 | if (!ST->hasVInstructions()) |
| 1788 | return false; |
| 1789 | |
| 1790 | LLVM_DEBUG(dbgs() << "Entering InsertVSETVLI for " << MF.getName() << "\n" ); |
| 1791 | |
| 1792 | TII = ST->getInstrInfo(); |
| 1793 | MRI = &MF.getRegInfo(); |
| 1794 | auto *LISWrapper = getAnalysisIfAvailable<LiveIntervalsWrapperPass>(); |
| 1795 | LIS = LISWrapper ? &LISWrapper->getLIS() : nullptr; |
| 1796 | |
| 1797 | assert(BlockInfo.empty() && "Expect empty block infos" ); |
| 1798 | BlockInfo.resize(new_size: MF.getNumBlockIDs()); |
| 1799 | |
| 1800 | bool HaveVectorOp = false; |
| 1801 | |
| 1802 | // Phase 1 - determine how VL/VTYPE are affected by the each block. |
| 1803 | for (const MachineBasicBlock &MBB : MF) { |
| 1804 | VSETVLIInfo TmpStatus; |
| 1805 | HaveVectorOp |= computeVLVTYPEChanges(MBB, Info&: TmpStatus); |
| 1806 | // Initial exit state is whatever change we found in the block. |
| 1807 | BlockData &BBInfo = BlockInfo[MBB.getNumber()]; |
| 1808 | BBInfo.Exit = TmpStatus; |
| 1809 | LLVM_DEBUG(dbgs() << "Initial exit state of " << printMBBReference(MBB) |
| 1810 | << " is " << BBInfo.Exit << "\n" ); |
| 1811 | |
| 1812 | } |
| 1813 | |
| 1814 | // If we didn't find any instructions that need VSETVLI, we're done. |
| 1815 | if (!HaveVectorOp) { |
| 1816 | BlockInfo.clear(); |
| 1817 | return false; |
| 1818 | } |
| 1819 | |
| 1820 | // Phase 2 - determine the exit VL/VTYPE from each block. We add all |
| 1821 | // blocks to the list here, but will also add any that need to be revisited |
| 1822 | // during Phase 2 processing. |
| 1823 | for (const MachineBasicBlock &MBB : MF) { |
| 1824 | WorkList.push(x: &MBB); |
| 1825 | BlockInfo[MBB.getNumber()].InQueue = true; |
| 1826 | } |
| 1827 | while (!WorkList.empty()) { |
| 1828 | const MachineBasicBlock &MBB = *WorkList.front(); |
| 1829 | WorkList.pop(); |
| 1830 | computeIncomingVLVTYPE(MBB); |
| 1831 | } |
| 1832 | |
| 1833 | // Perform partial redundancy elimination of vsetvli transitions. |
| 1834 | for (MachineBasicBlock &MBB : MF) |
| 1835 | doPRE(MBB); |
| 1836 | |
| 1837 | // Phase 3 - add any vsetvli instructions needed in the block. Use the |
| 1838 | // Phase 2 information to avoid adding vsetvlis before the first vector |
| 1839 | // instruction in the block if the VL/VTYPE is satisfied by its |
| 1840 | // predecessors. |
| 1841 | for (MachineBasicBlock &MBB : MF) |
| 1842 | emitVSETVLIs(MBB); |
| 1843 | |
| 1844 | // Now that all vsetvlis are explicit, go through and do block local |
| 1845 | // DSE and peephole based demanded fields based transforms. Note that |
| 1846 | // this *must* be done outside the main dataflow so long as we allow |
| 1847 | // any cross block analysis within the dataflow. We can't have both |
| 1848 | // demanded fields based mutation and non-local analysis in the |
| 1849 | // dataflow at the same time without introducing inconsistencies. |
| 1850 | // We're visiting blocks from the bottom up because a VSETVLI in the |
| 1851 | // earlier block might become dead when its uses in later blocks are |
| 1852 | // optimized away. |
| 1853 | for (MachineBasicBlock *MBB : post_order(G: &MF)) |
| 1854 | coalesceVSETVLIs(MBB&: *MBB); |
| 1855 | |
| 1856 | // Insert PseudoReadVL after VLEFF/VLSEGFF and replace it with the vl output |
| 1857 | // of VLEFF/VLSEGFF. |
| 1858 | for (MachineBasicBlock &MBB : MF) |
| 1859 | insertReadVL(MBB); |
| 1860 | |
| 1861 | BlockInfo.clear(); |
| 1862 | return HaveVectorOp; |
| 1863 | } |
| 1864 | |
| 1865 | /// Returns an instance of the Insert VSETVLI pass. |
| 1866 | FunctionPass *llvm::createRISCVInsertVSETVLIPass() { |
| 1867 | return new RISCVInsertVSETVLI(); |
| 1868 | } |
| 1869 | |