| 1 | //===-- RISCVTargetTransformInfo.cpp - RISC-V specific TTI ----------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "RISCVTargetTransformInfo.h" |
| 10 | #include "MCTargetDesc/RISCVMatInt.h" |
| 11 | #include "llvm/ADT/STLExtras.h" |
| 12 | #include "llvm/Analysis/TargetTransformInfo.h" |
| 13 | #include "llvm/CodeGen/BasicTTIImpl.h" |
| 14 | #include "llvm/CodeGen/CostTable.h" |
| 15 | #include "llvm/CodeGen/TargetLowering.h" |
| 16 | #include "llvm/CodeGen/ValueTypes.h" |
| 17 | #include "llvm/IR/Instructions.h" |
| 18 | #include "llvm/IR/PatternMatch.h" |
| 19 | #include <cmath> |
| 20 | #include <optional> |
| 21 | using namespace llvm; |
| 22 | using namespace llvm::PatternMatch; |
| 23 | |
| 24 | #define DEBUG_TYPE "riscvtti" |
| 25 | |
| 26 | static cl::opt<unsigned> RVVRegisterWidthLMUL( |
| 27 | "riscv-v-register-bit-width-lmul" , |
| 28 | cl::desc( |
| 29 | "The LMUL to use for getRegisterBitWidth queries. Affects LMUL used " |
| 30 | "by autovectorized code. Fractional LMULs are not supported." ), |
| 31 | cl::init(Val: 2), cl::Hidden); |
| 32 | |
| 33 | static cl::opt<unsigned> SLPMaxVF( |
| 34 | "riscv-v-slp-max-vf" , |
| 35 | cl::desc( |
| 36 | "Overrides result used for getMaximumVF query which is used " |
| 37 | "exclusively by SLP vectorizer." ), |
| 38 | cl::Hidden); |
| 39 | |
| 40 | static cl::opt<unsigned> |
| 41 | RVVMinTripCount("riscv-v-min-trip-count" , |
| 42 | cl::desc("Set the lower bound of a trip count to decide on " |
| 43 | "vectorization while tail-folding." ), |
| 44 | cl::init(Val: 5), cl::Hidden); |
| 45 | |
| 46 | InstructionCost |
| 47 | RISCVTTIImpl::getRISCVInstructionCost(ArrayRef<unsigned> OpCodes, MVT VT, |
| 48 | TTI::TargetCostKind CostKind) const { |
| 49 | // Check if the type is valid for all CostKind |
| 50 | if (!VT.isVector()) |
| 51 | return InstructionCost::getInvalid(); |
| 52 | size_t NumInstr = OpCodes.size(); |
| 53 | if (CostKind == TTI::TCK_CodeSize) |
| 54 | return NumInstr; |
| 55 | InstructionCost LMULCost = TLI->getLMULCost(VT); |
| 56 | if ((CostKind != TTI::TCK_RecipThroughput) && (CostKind != TTI::TCK_Latency)) |
| 57 | return LMULCost * NumInstr; |
| 58 | InstructionCost Cost = 0; |
| 59 | for (auto Op : OpCodes) { |
| 60 | switch (Op) { |
| 61 | case RISCV::VRGATHER_VI: |
| 62 | Cost += TLI->getVRGatherVICost(VT); |
| 63 | break; |
| 64 | case RISCV::VRGATHER_VV: |
| 65 | Cost += TLI->getVRGatherVVCost(VT); |
| 66 | break; |
| 67 | case RISCV::VSLIDEUP_VI: |
| 68 | case RISCV::VSLIDEDOWN_VI: |
| 69 | Cost += TLI->getVSlideVICost(VT); |
| 70 | break; |
| 71 | case RISCV::VSLIDEUP_VX: |
| 72 | case RISCV::VSLIDEDOWN_VX: |
| 73 | Cost += TLI->getVSlideVXCost(VT); |
| 74 | break; |
| 75 | case RISCV::VREDMAX_VS: |
| 76 | case RISCV::VREDMIN_VS: |
| 77 | case RISCV::VREDMAXU_VS: |
| 78 | case RISCV::VREDMINU_VS: |
| 79 | case RISCV::VREDSUM_VS: |
| 80 | case RISCV::VREDAND_VS: |
| 81 | case RISCV::VREDOR_VS: |
| 82 | case RISCV::VREDXOR_VS: |
| 83 | case RISCV::VFREDMAX_VS: |
| 84 | case RISCV::VFREDMIN_VS: |
| 85 | case RISCV::VFREDUSUM_VS: { |
| 86 | unsigned VL = VT.getVectorMinNumElements(); |
| 87 | if (!VT.isFixedLengthVector()) |
| 88 | VL *= *getVScaleForTuning(); |
| 89 | Cost += Log2_32_Ceil(Value: VL); |
| 90 | break; |
| 91 | } |
| 92 | case RISCV::VFREDOSUM_VS: { |
| 93 | unsigned VL = VT.getVectorMinNumElements(); |
| 94 | if (!VT.isFixedLengthVector()) |
| 95 | VL *= *getVScaleForTuning(); |
| 96 | Cost += VL; |
| 97 | break; |
| 98 | } |
| 99 | case RISCV::VMV_X_S: |
| 100 | case RISCV::VMV_S_X: |
| 101 | case RISCV::VFMV_F_S: |
| 102 | case RISCV::VFMV_S_F: |
| 103 | case RISCV::VMOR_MM: |
| 104 | case RISCV::VMXOR_MM: |
| 105 | case RISCV::VMAND_MM: |
| 106 | case RISCV::VMANDN_MM: |
| 107 | case RISCV::VMNAND_MM: |
| 108 | case RISCV::VCPOP_M: |
| 109 | case RISCV::VFIRST_M: |
| 110 | Cost += 1; |
| 111 | break; |
| 112 | default: |
| 113 | Cost += LMULCost; |
| 114 | } |
| 115 | } |
| 116 | return Cost; |
| 117 | } |
| 118 | |
| 119 | static InstructionCost getIntImmCostImpl(const DataLayout &DL, |
| 120 | const RISCVSubtarget *ST, |
| 121 | const APInt &Imm, Type *Ty, |
| 122 | TTI::TargetCostKind CostKind, |
| 123 | bool FreeZeroes) { |
| 124 | assert(Ty->isIntegerTy() && |
| 125 | "getIntImmCost can only estimate cost of materialising integers" ); |
| 126 | |
| 127 | // We have a Zero register, so 0 is always free. |
| 128 | if (Imm == 0) |
| 129 | return TTI::TCC_Free; |
| 130 | |
| 131 | // Otherwise, we check how many instructions it will take to materialise. |
| 132 | return RISCVMatInt::getIntMatCost(Val: Imm, Size: DL.getTypeSizeInBits(Ty), STI: *ST, |
| 133 | /*CompressionCost=*/false, FreeZeroes); |
| 134 | } |
| 135 | |
| 136 | InstructionCost |
| 137 | RISCVTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty, |
| 138 | TTI::TargetCostKind CostKind) const { |
| 139 | return getIntImmCostImpl(DL: getDataLayout(), ST: getST(), Imm, Ty, CostKind, FreeZeroes: false); |
| 140 | } |
| 141 | |
| 142 | // Look for patterns of shift followed by AND that can be turned into a pair of |
| 143 | // shifts. We won't need to materialize an immediate for the AND so these can |
| 144 | // be considered free. |
| 145 | static bool canUseShiftPair(Instruction *Inst, const APInt &Imm) { |
| 146 | uint64_t Mask = Imm.getZExtValue(); |
| 147 | auto *BO = dyn_cast<BinaryOperator>(Val: Inst->getOperand(i: 0)); |
| 148 | if (!BO || !BO->hasOneUse()) |
| 149 | return false; |
| 150 | |
| 151 | if (BO->getOpcode() != Instruction::Shl) |
| 152 | return false; |
| 153 | |
| 154 | if (!isa<ConstantInt>(Val: BO->getOperand(i_nocapture: 1))) |
| 155 | return false; |
| 156 | |
| 157 | unsigned ShAmt = cast<ConstantInt>(Val: BO->getOperand(i_nocapture: 1))->getZExtValue(); |
| 158 | // (and (shl x, c2), c1) will be matched to (srli (slli x, c2+c3), c3) if c1 |
| 159 | // is a mask shifted by c2 bits with c3 leading zeros. |
| 160 | if (isShiftedMask_64(Value: Mask)) { |
| 161 | unsigned Trailing = llvm::countr_zero(Val: Mask); |
| 162 | if (ShAmt == Trailing) |
| 163 | return true; |
| 164 | } |
| 165 | |
| 166 | return false; |
| 167 | } |
| 168 | |
| 169 | InstructionCost RISCVTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, |
| 170 | const APInt &Imm, Type *Ty, |
| 171 | TTI::TargetCostKind CostKind, |
| 172 | Instruction *Inst) const { |
| 173 | assert(Ty->isIntegerTy() && |
| 174 | "getIntImmCost can only estimate cost of materialising integers" ); |
| 175 | |
| 176 | // We have a Zero register, so 0 is always free. |
| 177 | if (Imm == 0) |
| 178 | return TTI::TCC_Free; |
| 179 | |
| 180 | // Some instructions in RISC-V can take a 12-bit immediate. Some of these are |
| 181 | // commutative, in others the immediate comes from a specific argument index. |
| 182 | bool Takes12BitImm = false; |
| 183 | unsigned ImmArgIdx = ~0U; |
| 184 | |
| 185 | switch (Opcode) { |
| 186 | case Instruction::GetElementPtr: |
| 187 | // Never hoist any arguments to a GetElementPtr. CodeGenPrepare will |
| 188 | // split up large offsets in GEP into better parts than ConstantHoisting |
| 189 | // can. |
| 190 | return TTI::TCC_Free; |
| 191 | case Instruction::Store: { |
| 192 | // Use the materialization cost regardless of if it's the address or the |
| 193 | // value that is constant, except for if the store is misaligned and |
| 194 | // misaligned accesses are not legal (experience shows constant hoisting |
| 195 | // can sometimes be harmful in such cases). |
| 196 | if (Idx == 1 || !Inst) |
| 197 | return getIntImmCostImpl(DL: getDataLayout(), ST: getST(), Imm, Ty, CostKind, |
| 198 | /*FreeZeroes=*/true); |
| 199 | |
| 200 | StoreInst *ST = cast<StoreInst>(Val: Inst); |
| 201 | if (!getTLI()->allowsMemoryAccessForAlignment( |
| 202 | Context&: Ty->getContext(), DL, VT: getTLI()->getValueType(DL, Ty), |
| 203 | AddrSpace: ST->getPointerAddressSpace(), Alignment: ST->getAlign())) |
| 204 | return TTI::TCC_Free; |
| 205 | |
| 206 | return getIntImmCostImpl(DL: getDataLayout(), ST: getST(), Imm, Ty, CostKind, |
| 207 | /*FreeZeroes=*/true); |
| 208 | } |
| 209 | case Instruction::Load: |
| 210 | // If the address is a constant, use the materialization cost. |
| 211 | return getIntImmCost(Imm, Ty, CostKind); |
| 212 | case Instruction::And: |
| 213 | // zext.h |
| 214 | if (Imm == UINT64_C(0xffff) && ST->hasStdExtZbb()) |
| 215 | return TTI::TCC_Free; |
| 216 | // zext.w |
| 217 | if (Imm == UINT64_C(0xffffffff) && |
| 218 | ((ST->hasStdExtZba() && ST->isRV64()) || ST->isRV32())) |
| 219 | return TTI::TCC_Free; |
| 220 | // bclri |
| 221 | if (ST->hasStdExtZbs() && (~Imm).isPowerOf2()) |
| 222 | return TTI::TCC_Free; |
| 223 | if (Inst && Idx == 1 && Imm.getBitWidth() <= ST->getXLen() && |
| 224 | canUseShiftPair(Inst, Imm)) |
| 225 | return TTI::TCC_Free; |
| 226 | Takes12BitImm = true; |
| 227 | break; |
| 228 | case Instruction::Add: |
| 229 | Takes12BitImm = true; |
| 230 | break; |
| 231 | case Instruction::Or: |
| 232 | case Instruction::Xor: |
| 233 | // bseti/binvi |
| 234 | if (ST->hasStdExtZbs() && Imm.isPowerOf2()) |
| 235 | return TTI::TCC_Free; |
| 236 | Takes12BitImm = true; |
| 237 | break; |
| 238 | case Instruction::Mul: |
| 239 | // Power of 2 is a shift. Negated power of 2 is a shift and a negate. |
| 240 | if (Imm.isPowerOf2() || Imm.isNegatedPowerOf2()) |
| 241 | return TTI::TCC_Free; |
| 242 | // One more or less than a power of 2 can use SLLI+ADD/SUB. |
| 243 | if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2()) |
| 244 | return TTI::TCC_Free; |
| 245 | // FIXME: There is no MULI instruction. |
| 246 | Takes12BitImm = true; |
| 247 | break; |
| 248 | case Instruction::Sub: |
| 249 | case Instruction::Shl: |
| 250 | case Instruction::LShr: |
| 251 | case Instruction::AShr: |
| 252 | Takes12BitImm = true; |
| 253 | ImmArgIdx = 1; |
| 254 | break; |
| 255 | default: |
| 256 | break; |
| 257 | } |
| 258 | |
| 259 | if (Takes12BitImm) { |
| 260 | // Check immediate is the correct argument... |
| 261 | if (Instruction::isCommutative(Opcode) || Idx == ImmArgIdx) { |
| 262 | // ... and fits into the 12-bit immediate. |
| 263 | if (Imm.getSignificantBits() <= 64 && |
| 264 | getTLI()->isLegalAddImmediate(Imm: Imm.getSExtValue())) { |
| 265 | return TTI::TCC_Free; |
| 266 | } |
| 267 | } |
| 268 | |
| 269 | // Otherwise, use the full materialisation cost. |
| 270 | return getIntImmCost(Imm, Ty, CostKind); |
| 271 | } |
| 272 | |
| 273 | // By default, prevent hoisting. |
| 274 | return TTI::TCC_Free; |
| 275 | } |
| 276 | |
| 277 | InstructionCost |
| 278 | RISCVTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, |
| 279 | const APInt &Imm, Type *Ty, |
| 280 | TTI::TargetCostKind CostKind) const { |
| 281 | // Prevent hoisting in unknown cases. |
| 282 | return TTI::TCC_Free; |
| 283 | } |
| 284 | |
| 285 | bool RISCVTTIImpl::hasActiveVectorLength() const { |
| 286 | return ST->hasVInstructions(); |
| 287 | } |
| 288 | |
| 289 | TargetTransformInfo::PopcntSupportKind |
| 290 | RISCVTTIImpl::getPopcntSupport(unsigned TyWidth) const { |
| 291 | assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2" ); |
| 292 | return ST->hasStdExtZbb() || (ST->hasVendorXCVbitmanip() && !ST->is64Bit()) |
| 293 | ? TTI::PSK_FastHardware |
| 294 | : TTI::PSK_Software; |
| 295 | } |
| 296 | |
| 297 | InstructionCost RISCVTTIImpl::getPartialReductionCost( |
| 298 | unsigned Opcode, Type *InputTypeA, Type *InputTypeB, Type *AccumType, |
| 299 | ElementCount VF, TTI::PartialReductionExtendKind OpAExtend, |
| 300 | TTI::PartialReductionExtendKind OpBExtend, std::optional<unsigned> BinOp, |
| 301 | TTI::TargetCostKind CostKind) const { |
| 302 | |
| 303 | // zve32x is broken for partial_reduce_umla, but let's make sure we |
| 304 | // don't generate them. |
| 305 | if (!ST->hasStdExtZvqdotq() || ST->getELen() < 64 || |
| 306 | Opcode != Instruction::Add || !BinOp || *BinOp != Instruction::Mul || |
| 307 | InputTypeA != InputTypeB || !InputTypeA->isIntegerTy(Bitwidth: 8) || |
| 308 | !AccumType->isIntegerTy(Bitwidth: 32) || !VF.isKnownMultipleOf(RHS: 4)) |
| 309 | return InstructionCost::getInvalid(); |
| 310 | |
| 311 | Type *Tp = VectorType::get(ElementType: AccumType, EC: VF.divideCoefficientBy(RHS: 4)); |
| 312 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: Tp); |
| 313 | // Note: Asuming all vqdot* variants are equal cost |
| 314 | return LT.first * |
| 315 | getRISCVInstructionCost(OpCodes: RISCV::VQDOT_VV, VT: LT.second, CostKind); |
| 316 | } |
| 317 | |
| 318 | bool RISCVTTIImpl::shouldExpandReduction(const IntrinsicInst *II) const { |
| 319 | // Currently, the ExpandReductions pass can't expand scalable-vector |
| 320 | // reductions, but we still request expansion as RVV doesn't support certain |
| 321 | // reductions and the SelectionDAG can't legalize them either. |
| 322 | switch (II->getIntrinsicID()) { |
| 323 | default: |
| 324 | return false; |
| 325 | // These reductions have no equivalent in RVV |
| 326 | case Intrinsic::vector_reduce_mul: |
| 327 | case Intrinsic::vector_reduce_fmul: |
| 328 | return true; |
| 329 | } |
| 330 | } |
| 331 | |
| 332 | std::optional<unsigned> RISCVTTIImpl::getMaxVScale() const { |
| 333 | if (ST->hasVInstructions()) |
| 334 | return ST->getRealMaxVLen() / RISCV::RVVBitsPerBlock; |
| 335 | return BaseT::getMaxVScale(); |
| 336 | } |
| 337 | |
| 338 | std::optional<unsigned> RISCVTTIImpl::getVScaleForTuning() const { |
| 339 | if (ST->hasVInstructions()) |
| 340 | if (unsigned MinVLen = ST->getRealMinVLen(); |
| 341 | MinVLen >= RISCV::RVVBitsPerBlock) |
| 342 | return MinVLen / RISCV::RVVBitsPerBlock; |
| 343 | return BaseT::getVScaleForTuning(); |
| 344 | } |
| 345 | |
| 346 | TypeSize |
| 347 | RISCVTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const { |
| 348 | unsigned LMUL = |
| 349 | llvm::bit_floor(Value: std::clamp<unsigned>(val: RVVRegisterWidthLMUL, lo: 1, hi: 8)); |
| 350 | switch (K) { |
| 351 | case TargetTransformInfo::RGK_Scalar: |
| 352 | return TypeSize::getFixed(ExactSize: ST->getXLen()); |
| 353 | case TargetTransformInfo::RGK_FixedWidthVector: |
| 354 | return TypeSize::getFixed( |
| 355 | ExactSize: ST->useRVVForFixedLengthVectors() ? LMUL * ST->getRealMinVLen() : 0); |
| 356 | case TargetTransformInfo::RGK_ScalableVector: |
| 357 | return TypeSize::getScalable( |
| 358 | MinimumSize: (ST->hasVInstructions() && |
| 359 | ST->getRealMinVLen() >= RISCV::RVVBitsPerBlock) |
| 360 | ? LMUL * RISCV::RVVBitsPerBlock |
| 361 | : 0); |
| 362 | } |
| 363 | |
| 364 | llvm_unreachable("Unsupported register kind" ); |
| 365 | } |
| 366 | |
| 367 | InstructionCost |
| 368 | RISCVTTIImpl::getConstantPoolLoadCost(Type *Ty, |
| 369 | TTI::TargetCostKind CostKind) const { |
| 370 | // Add a cost of address generation + the cost of the load. The address |
| 371 | // is expected to be a PC relative offset to a constant pool entry |
| 372 | // using auipc/addi. |
| 373 | return 2 + getMemoryOpCost(Opcode: Instruction::Load, Src: Ty, Alignment: DL.getABITypeAlign(Ty), |
| 374 | /*AddressSpace=*/0, CostKind); |
| 375 | } |
| 376 | |
| 377 | static bool isRepeatedConcatMask(ArrayRef<int> Mask, int &SubVectorSize) { |
| 378 | unsigned Size = Mask.size(); |
| 379 | if (!isPowerOf2_32(Value: Size)) |
| 380 | return false; |
| 381 | for (unsigned I = 0; I != Size; ++I) { |
| 382 | if (static_cast<unsigned>(Mask[I]) == I) |
| 383 | continue; |
| 384 | if (Mask[I] != 0) |
| 385 | return false; |
| 386 | if (Size % I != 0) |
| 387 | return false; |
| 388 | for (unsigned J = I + 1; J != Size; ++J) |
| 389 | // Check the pattern is repeated. |
| 390 | if (static_cast<unsigned>(Mask[J]) != J % I) |
| 391 | return false; |
| 392 | SubVectorSize = I; |
| 393 | return true; |
| 394 | } |
| 395 | // That means Mask is <0, 1, 2, 3>. This is not a concatenation. |
| 396 | return false; |
| 397 | } |
| 398 | |
| 399 | static VectorType *getVRGatherIndexType(MVT DataVT, const RISCVSubtarget &ST, |
| 400 | LLVMContext &C) { |
| 401 | assert((DataVT.getScalarSizeInBits() != 8 || |
| 402 | DataVT.getVectorNumElements() <= 256) && "unhandled case in lowering" ); |
| 403 | MVT IndexVT = DataVT.changeTypeToInteger(); |
| 404 | if (IndexVT.getScalarType().bitsGT(VT: ST.getXLenVT())) |
| 405 | IndexVT = IndexVT.changeVectorElementType(EltVT: MVT::i16); |
| 406 | return cast<VectorType>(Val: EVT(IndexVT).getTypeForEVT(Context&: C)); |
| 407 | } |
| 408 | |
| 409 | /// Attempt to approximate the cost of a shuffle which will require splitting |
| 410 | /// during legalization. Note that processShuffleMasks is not an exact proxy |
| 411 | /// for the algorithm used in LegalizeVectorTypes, but hopefully it's a |
| 412 | /// reasonably close upperbound. |
| 413 | static InstructionCost costShuffleViaSplitting(const RISCVTTIImpl &TTI, |
| 414 | MVT LegalVT, VectorType *Tp, |
| 415 | ArrayRef<int> Mask, |
| 416 | TTI::TargetCostKind CostKind) { |
| 417 | assert(LegalVT.isFixedLengthVector() && !Mask.empty() && |
| 418 | "Expected fixed vector type and non-empty mask" ); |
| 419 | unsigned LegalNumElts = LegalVT.getVectorNumElements(); |
| 420 | // Number of destination vectors after legalization: |
| 421 | unsigned NumOfDests = divideCeil(Numerator: Mask.size(), Denominator: LegalNumElts); |
| 422 | // We are going to permute multiple sources and the result will be in |
| 423 | // multiple destinations. Providing an accurate cost only for splits where |
| 424 | // the element type remains the same. |
| 425 | if (NumOfDests <= 1 || |
| 426 | LegalVT.getVectorElementType().getSizeInBits() != |
| 427 | Tp->getElementType()->getPrimitiveSizeInBits() || |
| 428 | LegalNumElts >= Tp->getElementCount().getFixedValue()) |
| 429 | return InstructionCost::getInvalid(); |
| 430 | |
| 431 | unsigned VecTySize = TTI.getDataLayout().getTypeStoreSize(Ty: Tp); |
| 432 | unsigned LegalVTSize = LegalVT.getStoreSize(); |
| 433 | // Number of source vectors after legalization: |
| 434 | unsigned NumOfSrcs = divideCeil(Numerator: VecTySize, Denominator: LegalVTSize); |
| 435 | |
| 436 | auto *SingleOpTy = FixedVectorType::get(ElementType: Tp->getElementType(), NumElts: LegalNumElts); |
| 437 | |
| 438 | unsigned NormalizedVF = LegalNumElts * std::max(a: NumOfSrcs, b: NumOfDests); |
| 439 | unsigned NumOfSrcRegs = NormalizedVF / LegalNumElts; |
| 440 | unsigned NumOfDestRegs = NormalizedVF / LegalNumElts; |
| 441 | SmallVector<int> NormalizedMask(NormalizedVF, PoisonMaskElem); |
| 442 | assert(NormalizedVF >= Mask.size() && |
| 443 | "Normalized mask expected to be not shorter than original mask." ); |
| 444 | copy(Range&: Mask, Out: NormalizedMask.begin()); |
| 445 | InstructionCost Cost = 0; |
| 446 | SmallDenseSet<std::pair<ArrayRef<int>, unsigned>> ReusedSingleSrcShuffles; |
| 447 | processShuffleMasks( |
| 448 | Mask: NormalizedMask, NumOfSrcRegs, NumOfDestRegs, NumOfUsedRegs: NumOfDestRegs, NoInputAction: []() {}, |
| 449 | SingleInputAction: [&](ArrayRef<int> RegMask, unsigned SrcReg, unsigned DestReg) { |
| 450 | if (ShuffleVectorInst::isIdentityMask(Mask: RegMask, NumSrcElts: RegMask.size())) |
| 451 | return; |
| 452 | if (!ReusedSingleSrcShuffles.insert(V: std::make_pair(x&: RegMask, y&: SrcReg)) |
| 453 | .second) |
| 454 | return; |
| 455 | Cost += TTI.getShuffleCost( |
| 456 | Kind: TTI::SK_PermuteSingleSrc, |
| 457 | DstTy: FixedVectorType::get(ElementType: SingleOpTy->getElementType(), NumElts: RegMask.size()), |
| 458 | SrcTy: SingleOpTy, Mask: RegMask, CostKind, Index: 0, SubTp: nullptr); |
| 459 | }, |
| 460 | ManyInputsAction: [&](ArrayRef<int> RegMask, unsigned Idx1, unsigned Idx2, bool NewReg) { |
| 461 | Cost += TTI.getShuffleCost( |
| 462 | Kind: TTI::SK_PermuteTwoSrc, |
| 463 | DstTy: FixedVectorType::get(ElementType: SingleOpTy->getElementType(), NumElts: RegMask.size()), |
| 464 | SrcTy: SingleOpTy, Mask: RegMask, CostKind, Index: 0, SubTp: nullptr); |
| 465 | }); |
| 466 | return Cost; |
| 467 | } |
| 468 | |
| 469 | /// Try to perform better estimation of the permutation. |
| 470 | /// 1. Split the source/destination vectors into real registers. |
| 471 | /// 2. Do the mask analysis to identify which real registers are |
| 472 | /// permuted. If more than 1 source registers are used for the |
| 473 | /// destination register building, the cost for this destination register |
| 474 | /// is (Number_of_source_register - 1) * Cost_PermuteTwoSrc. If only one |
| 475 | /// source register is used, build mask and calculate the cost as a cost |
| 476 | /// of PermuteSingleSrc. |
| 477 | /// Also, for the single register permute we try to identify if the |
| 478 | /// destination register is just a copy of the source register or the |
| 479 | /// copy of the previous destination register (the cost is |
| 480 | /// TTI::TCC_Basic). If the source register is just reused, the cost for |
| 481 | /// this operation is 0. |
| 482 | static InstructionCost |
| 483 | costShuffleViaVRegSplitting(const RISCVTTIImpl &TTI, MVT LegalVT, |
| 484 | std::optional<unsigned> VLen, VectorType *Tp, |
| 485 | ArrayRef<int> Mask, TTI::TargetCostKind CostKind) { |
| 486 | assert(LegalVT.isFixedLengthVector()); |
| 487 | if (!VLen || Mask.empty()) |
| 488 | return InstructionCost::getInvalid(); |
| 489 | MVT ElemVT = LegalVT.getVectorElementType(); |
| 490 | unsigned ElemsPerVReg = *VLen / ElemVT.getFixedSizeInBits(); |
| 491 | LegalVT = TTI.getTypeLegalizationCost( |
| 492 | Ty: FixedVectorType::get(ElementType: Tp->getElementType(), NumElts: ElemsPerVReg)) |
| 493 | .second; |
| 494 | // Number of destination vectors after legalization: |
| 495 | InstructionCost NumOfDests = |
| 496 | divideCeil(Numerator: Mask.size(), Denominator: LegalVT.getVectorNumElements()); |
| 497 | if (NumOfDests <= 1 || |
| 498 | LegalVT.getVectorElementType().getSizeInBits() != |
| 499 | Tp->getElementType()->getPrimitiveSizeInBits() || |
| 500 | LegalVT.getVectorNumElements() >= Tp->getElementCount().getFixedValue()) |
| 501 | return InstructionCost::getInvalid(); |
| 502 | |
| 503 | unsigned VecTySize = TTI.getDataLayout().getTypeStoreSize(Ty: Tp); |
| 504 | unsigned LegalVTSize = LegalVT.getStoreSize(); |
| 505 | // Number of source vectors after legalization: |
| 506 | unsigned NumOfSrcs = divideCeil(Numerator: VecTySize, Denominator: LegalVTSize); |
| 507 | |
| 508 | auto *SingleOpTy = FixedVectorType::get(ElementType: Tp->getElementType(), |
| 509 | NumElts: LegalVT.getVectorNumElements()); |
| 510 | |
| 511 | unsigned E = NumOfDests.getValue(); |
| 512 | unsigned NormalizedVF = |
| 513 | LegalVT.getVectorNumElements() * std::max(a: NumOfSrcs, b: E); |
| 514 | unsigned NumOfSrcRegs = NormalizedVF / LegalVT.getVectorNumElements(); |
| 515 | unsigned NumOfDestRegs = NormalizedVF / LegalVT.getVectorNumElements(); |
| 516 | SmallVector<int> NormalizedMask(NormalizedVF, PoisonMaskElem); |
| 517 | assert(NormalizedVF >= Mask.size() && |
| 518 | "Normalized mask expected to be not shorter than original mask." ); |
| 519 | copy(Range&: Mask, Out: NormalizedMask.begin()); |
| 520 | InstructionCost Cost = 0; |
| 521 | int NumShuffles = 0; |
| 522 | SmallDenseSet<std::pair<ArrayRef<int>, unsigned>> ReusedSingleSrcShuffles; |
| 523 | processShuffleMasks( |
| 524 | Mask: NormalizedMask, NumOfSrcRegs, NumOfDestRegs, NumOfUsedRegs: NumOfDestRegs, NoInputAction: []() {}, |
| 525 | SingleInputAction: [&](ArrayRef<int> RegMask, unsigned SrcReg, unsigned DestReg) { |
| 526 | if (ShuffleVectorInst::isIdentityMask(Mask: RegMask, NumSrcElts: RegMask.size())) |
| 527 | return; |
| 528 | if (!ReusedSingleSrcShuffles.insert(V: std::make_pair(x&: RegMask, y&: SrcReg)) |
| 529 | .second) |
| 530 | return; |
| 531 | ++NumShuffles; |
| 532 | Cost += TTI.getShuffleCost(Kind: TTI::SK_PermuteSingleSrc, DstTy: SingleOpTy, |
| 533 | SrcTy: SingleOpTy, Mask: RegMask, CostKind, Index: 0, SubTp: nullptr); |
| 534 | }, |
| 535 | ManyInputsAction: [&](ArrayRef<int> RegMask, unsigned Idx1, unsigned Idx2, bool NewReg) { |
| 536 | Cost += TTI.getShuffleCost(Kind: TTI::SK_PermuteTwoSrc, DstTy: SingleOpTy, |
| 537 | SrcTy: SingleOpTy, Mask: RegMask, CostKind, Index: 0, SubTp: nullptr); |
| 538 | NumShuffles += 2; |
| 539 | }); |
| 540 | // Note: check that we do not emit too many shuffles here to prevent code |
| 541 | // size explosion. |
| 542 | // TODO: investigate, if it can be improved by extra analysis of the masks |
| 543 | // to check if the code is more profitable. |
| 544 | if ((NumOfDestRegs > 2 && NumShuffles <= static_cast<int>(NumOfDestRegs)) || |
| 545 | (NumOfDestRegs <= 2 && NumShuffles < 4)) |
| 546 | return Cost; |
| 547 | return InstructionCost::getInvalid(); |
| 548 | } |
| 549 | |
| 550 | InstructionCost RISCVTTIImpl::getSlideCost(FixedVectorType *Tp, |
| 551 | ArrayRef<int> Mask, |
| 552 | TTI::TargetCostKind CostKind) const { |
| 553 | // Avoid missing masks and length changing shuffles |
| 554 | if (Mask.size() <= 2 || Mask.size() != Tp->getNumElements()) |
| 555 | return InstructionCost::getInvalid(); |
| 556 | |
| 557 | int NumElts = Tp->getNumElements(); |
| 558 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: Tp); |
| 559 | // Avoid scalarization cases |
| 560 | if (!LT.second.isFixedLengthVector()) |
| 561 | return InstructionCost::getInvalid(); |
| 562 | |
| 563 | // Requires moving elements between parts, which requires additional |
| 564 | // unmodeled instructions. |
| 565 | if (LT.first != 1) |
| 566 | return InstructionCost::getInvalid(); |
| 567 | |
| 568 | auto GetSlideOpcode = [&](int SlideAmt) { |
| 569 | assert(SlideAmt != 0); |
| 570 | bool IsVI = isUInt<5>(x: std::abs(x: SlideAmt)); |
| 571 | if (SlideAmt < 0) |
| 572 | return IsVI ? RISCV::VSLIDEDOWN_VI : RISCV::VSLIDEDOWN_VX; |
| 573 | return IsVI ? RISCV::VSLIDEUP_VI : RISCV::VSLIDEUP_VX; |
| 574 | }; |
| 575 | |
| 576 | std::array<std::pair<int, int>, 2> SrcInfo; |
| 577 | if (!isMaskedSlidePair(Mask, NumElts, SrcInfo)) |
| 578 | return InstructionCost::getInvalid(); |
| 579 | |
| 580 | if (SrcInfo[1].second == 0) |
| 581 | std::swap(x&: SrcInfo[0], y&: SrcInfo[1]); |
| 582 | |
| 583 | InstructionCost FirstSlideCost = 0; |
| 584 | if (SrcInfo[0].second != 0) { |
| 585 | unsigned Opcode = GetSlideOpcode(SrcInfo[0].second); |
| 586 | FirstSlideCost = getRISCVInstructionCost(OpCodes: Opcode, VT: LT.second, CostKind); |
| 587 | } |
| 588 | |
| 589 | if (SrcInfo[1].first == -1) |
| 590 | return FirstSlideCost; |
| 591 | |
| 592 | InstructionCost SecondSlideCost = 0; |
| 593 | if (SrcInfo[1].second != 0) { |
| 594 | unsigned Opcode = GetSlideOpcode(SrcInfo[1].second); |
| 595 | SecondSlideCost = getRISCVInstructionCost(OpCodes: Opcode, VT: LT.second, CostKind); |
| 596 | } else { |
| 597 | SecondSlideCost = |
| 598 | getRISCVInstructionCost(OpCodes: RISCV::VMERGE_VVM, VT: LT.second, CostKind); |
| 599 | } |
| 600 | |
| 601 | auto EC = Tp->getElementCount(); |
| 602 | VectorType *MaskTy = |
| 603 | VectorType::get(ElementType: IntegerType::getInt1Ty(C&: Tp->getContext()), EC); |
| 604 | InstructionCost MaskCost = getConstantPoolLoadCost(Ty: MaskTy, CostKind); |
| 605 | return FirstSlideCost + SecondSlideCost + MaskCost; |
| 606 | } |
| 607 | |
| 608 | InstructionCost |
| 609 | RISCVTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, VectorType *DstTy, |
| 610 | VectorType *SrcTy, ArrayRef<int> Mask, |
| 611 | TTI::TargetCostKind CostKind, int Index, |
| 612 | VectorType *SubTp, ArrayRef<const Value *> Args, |
| 613 | const Instruction *CxtI) const { |
| 614 | assert((Mask.empty() || DstTy->isScalableTy() || |
| 615 | Mask.size() == DstTy->getElementCount().getKnownMinValue()) && |
| 616 | "Expected the Mask to match the return size if given" ); |
| 617 | assert(SrcTy->getScalarType() == DstTy->getScalarType() && |
| 618 | "Expected the same scalar types" ); |
| 619 | |
| 620 | Kind = improveShuffleKindFromMask(Kind, Mask, SrcTy, Index, SubTy&: SubTp); |
| 621 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: SrcTy); |
| 622 | |
| 623 | // First, handle cases where having a fixed length vector enables us to |
| 624 | // give a more accurate cost than falling back to generic scalable codegen. |
| 625 | // TODO: Each of these cases hints at a modeling gap around scalable vectors. |
| 626 | if (auto *FVTp = dyn_cast<FixedVectorType>(Val: SrcTy); |
| 627 | FVTp && ST->hasVInstructions() && LT.second.isFixedLengthVector()) { |
| 628 | InstructionCost VRegSplittingCost = costShuffleViaVRegSplitting( |
| 629 | TTI: *this, LegalVT: LT.second, VLen: ST->getRealVLen(), |
| 630 | Tp: Kind == TTI::SK_InsertSubvector ? DstTy : SrcTy, Mask, CostKind); |
| 631 | if (VRegSplittingCost.isValid()) |
| 632 | return VRegSplittingCost; |
| 633 | switch (Kind) { |
| 634 | default: |
| 635 | break; |
| 636 | case TTI::SK_PermuteSingleSrc: { |
| 637 | if (Mask.size() >= 2) { |
| 638 | MVT EltTp = LT.second.getVectorElementType(); |
| 639 | // If the size of the element is < ELEN then shuffles of interleaves and |
| 640 | // deinterleaves of 2 vectors can be lowered into the following |
| 641 | // sequences |
| 642 | if (EltTp.getScalarSizeInBits() < ST->getELen()) { |
| 643 | // Example sequence: |
| 644 | // vsetivli zero, 4, e8, mf4, ta, ma (ignored) |
| 645 | // vwaddu.vv v10, v8, v9 |
| 646 | // li a0, -1 (ignored) |
| 647 | // vwmaccu.vx v10, a0, v9 |
| 648 | if (ShuffleVectorInst::isInterleaveMask(Mask, Factor: 2, NumInputElts: Mask.size())) |
| 649 | return 2 * LT.first * TLI->getLMULCost(VT: LT.second); |
| 650 | |
| 651 | if (Mask[0] == 0 || Mask[0] == 1) { |
| 652 | auto DeinterleaveMask = createStrideMask(Start: Mask[0], Stride: 2, VF: Mask.size()); |
| 653 | // Example sequence: |
| 654 | // vnsrl.wi v10, v8, 0 |
| 655 | if (equal(LRange&: DeinterleaveMask, RRange&: Mask)) |
| 656 | return LT.first * getRISCVInstructionCost(OpCodes: RISCV::VNSRL_WI, |
| 657 | VT: LT.second, CostKind); |
| 658 | } |
| 659 | } |
| 660 | int SubVectorSize; |
| 661 | if (LT.second.getScalarSizeInBits() != 1 && |
| 662 | isRepeatedConcatMask(Mask, SubVectorSize)) { |
| 663 | InstructionCost Cost = 0; |
| 664 | unsigned NumSlides = Log2_32(Value: Mask.size() / SubVectorSize); |
| 665 | // The cost of extraction from a subvector is 0 if the index is 0. |
| 666 | for (unsigned I = 0; I != NumSlides; ++I) { |
| 667 | unsigned InsertIndex = SubVectorSize * (1 << I); |
| 668 | FixedVectorType *SubTp = |
| 669 | FixedVectorType::get(ElementType: SrcTy->getElementType(), NumElts: InsertIndex); |
| 670 | FixedVectorType *DestTp = |
| 671 | FixedVectorType::getDoubleElementsVectorType(VTy: SubTp); |
| 672 | std::pair<InstructionCost, MVT> DestLT = |
| 673 | getTypeLegalizationCost(Ty: DestTp); |
| 674 | // Add the cost of whole vector register move because the |
| 675 | // destination vector register group for vslideup cannot overlap the |
| 676 | // source. |
| 677 | Cost += DestLT.first * TLI->getLMULCost(VT: DestLT.second); |
| 678 | Cost += getShuffleCost(Kind: TTI::SK_InsertSubvector, DstTy: DestTp, SrcTy: DestTp, Mask: {}, |
| 679 | CostKind, Index: InsertIndex, SubTp); |
| 680 | } |
| 681 | return Cost; |
| 682 | } |
| 683 | } |
| 684 | |
| 685 | if (InstructionCost SlideCost = getSlideCost(Tp: FVTp, Mask, CostKind); |
| 686 | SlideCost.isValid()) |
| 687 | return SlideCost; |
| 688 | |
| 689 | // vrgather + cost of generating the mask constant. |
| 690 | // We model this for an unknown mask with a single vrgather. |
| 691 | if (LT.first == 1 && (LT.second.getScalarSizeInBits() != 8 || |
| 692 | LT.second.getVectorNumElements() <= 256)) { |
| 693 | VectorType *IdxTy = |
| 694 | getVRGatherIndexType(DataVT: LT.second, ST: *ST, C&: SrcTy->getContext()); |
| 695 | InstructionCost IndexCost = getConstantPoolLoadCost(Ty: IdxTy, CostKind); |
| 696 | return IndexCost + |
| 697 | getRISCVInstructionCost(OpCodes: RISCV::VRGATHER_VV, VT: LT.second, CostKind); |
| 698 | } |
| 699 | break; |
| 700 | } |
| 701 | case TTI::SK_Transpose: |
| 702 | case TTI::SK_PermuteTwoSrc: { |
| 703 | |
| 704 | if (InstructionCost SlideCost = getSlideCost(Tp: FVTp, Mask, CostKind); |
| 705 | SlideCost.isValid()) |
| 706 | return SlideCost; |
| 707 | |
| 708 | // 2 x (vrgather + cost of generating the mask constant) + cost of mask |
| 709 | // register for the second vrgather. We model this for an unknown |
| 710 | // (shuffle) mask. |
| 711 | if (LT.first == 1 && (LT.second.getScalarSizeInBits() != 8 || |
| 712 | LT.second.getVectorNumElements() <= 256)) { |
| 713 | auto &C = SrcTy->getContext(); |
| 714 | auto EC = SrcTy->getElementCount(); |
| 715 | VectorType *IdxTy = getVRGatherIndexType(DataVT: LT.second, ST: *ST, C); |
| 716 | VectorType *MaskTy = VectorType::get(ElementType: IntegerType::getInt1Ty(C), EC); |
| 717 | InstructionCost IndexCost = getConstantPoolLoadCost(Ty: IdxTy, CostKind); |
| 718 | InstructionCost MaskCost = getConstantPoolLoadCost(Ty: MaskTy, CostKind); |
| 719 | return 2 * IndexCost + |
| 720 | getRISCVInstructionCost(OpCodes: {RISCV::VRGATHER_VV, RISCV::VRGATHER_VV}, |
| 721 | VT: LT.second, CostKind) + |
| 722 | MaskCost; |
| 723 | } |
| 724 | break; |
| 725 | } |
| 726 | } |
| 727 | |
| 728 | auto shouldSplit = [](TTI::ShuffleKind Kind) { |
| 729 | switch (Kind) { |
| 730 | default: |
| 731 | return false; |
| 732 | case TTI::SK_PermuteSingleSrc: |
| 733 | case TTI::SK_Transpose: |
| 734 | case TTI::SK_PermuteTwoSrc: |
| 735 | return true; |
| 736 | } |
| 737 | }; |
| 738 | |
| 739 | if (!Mask.empty() && LT.first.isValid() && LT.first != 1 && |
| 740 | shouldSplit(Kind)) { |
| 741 | InstructionCost SplitCost = |
| 742 | costShuffleViaSplitting(TTI: *this, LegalVT: LT.second, Tp: FVTp, Mask, CostKind); |
| 743 | if (SplitCost.isValid()) |
| 744 | return SplitCost; |
| 745 | } |
| 746 | } |
| 747 | |
| 748 | // Handle scalable vectors (and fixed vectors legalized to scalable vectors). |
| 749 | switch (Kind) { |
| 750 | default: |
| 751 | // Fallthrough to generic handling. |
| 752 | // TODO: Most of these cases will return getInvalid in generic code, and |
| 753 | // must be implemented here. |
| 754 | break; |
| 755 | case TTI::SK_ExtractSubvector: |
| 756 | // Extract at zero is always a subregister extract |
| 757 | if (Index == 0) |
| 758 | return TTI::TCC_Free; |
| 759 | |
| 760 | // If we're extracting a subvector of at most m1 size at a sub-register |
| 761 | // boundary - which unfortunately we need exact vlen to identify - this is |
| 762 | // a subregister extract at worst and thus won't require a vslidedown. |
| 763 | // TODO: Extend for aligned m2, m4 subvector extracts |
| 764 | // TODO: Extend for misalgined (but contained) extracts |
| 765 | // TODO: Extend for scalable subvector types |
| 766 | if (std::pair<InstructionCost, MVT> SubLT = getTypeLegalizationCost(Ty: SubTp); |
| 767 | SubLT.second.isValid() && SubLT.second.isFixedLengthVector()) { |
| 768 | if (std::optional<unsigned> VLen = ST->getRealVLen(); |
| 769 | VLen && SubLT.second.getScalarSizeInBits() * Index % *VLen == 0 && |
| 770 | SubLT.second.getSizeInBits() <= *VLen) |
| 771 | return TTI::TCC_Free; |
| 772 | } |
| 773 | |
| 774 | // Example sequence: |
| 775 | // vsetivli zero, 4, e8, mf2, tu, ma (ignored) |
| 776 | // vslidedown.vi v8, v9, 2 |
| 777 | return LT.first * |
| 778 | getRISCVInstructionCost(OpCodes: RISCV::VSLIDEDOWN_VI, VT: LT.second, CostKind); |
| 779 | case TTI::SK_InsertSubvector: |
| 780 | // Example sequence: |
| 781 | // vsetivli zero, 4, e8, mf2, tu, ma (ignored) |
| 782 | // vslideup.vi v8, v9, 2 |
| 783 | LT = getTypeLegalizationCost(Ty: DstTy); |
| 784 | return LT.first * |
| 785 | getRISCVInstructionCost(OpCodes: RISCV::VSLIDEUP_VI, VT: LT.second, CostKind); |
| 786 | case TTI::SK_Select: { |
| 787 | // Example sequence: |
| 788 | // li a0, 90 |
| 789 | // vsetivli zero, 8, e8, mf2, ta, ma (ignored) |
| 790 | // vmv.s.x v0, a0 |
| 791 | // vmerge.vvm v8, v9, v8, v0 |
| 792 | // We use 2 for the cost of the mask materialization as this is the true |
| 793 | // cost for small masks and most shuffles are small. At worst, this cost |
| 794 | // should be a very small constant for the constant pool load. As such, |
| 795 | // we may bias towards large selects slightly more than truly warranted. |
| 796 | return LT.first * |
| 797 | (1 + getRISCVInstructionCost(OpCodes: {RISCV::VMV_S_X, RISCV::VMERGE_VVM}, |
| 798 | VT: LT.second, CostKind)); |
| 799 | } |
| 800 | case TTI::SK_Broadcast: { |
| 801 | bool HasScalar = (Args.size() > 0) && (Operator::getOpcode(V: Args[0]) == |
| 802 | Instruction::InsertElement); |
| 803 | if (LT.second.getScalarSizeInBits() == 1) { |
| 804 | if (HasScalar) { |
| 805 | // Example sequence: |
| 806 | // andi a0, a0, 1 |
| 807 | // vsetivli zero, 2, e8, mf8, ta, ma (ignored) |
| 808 | // vmv.v.x v8, a0 |
| 809 | // vmsne.vi v0, v8, 0 |
| 810 | return LT.first * |
| 811 | (1 + getRISCVInstructionCost(OpCodes: {RISCV::VMV_V_X, RISCV::VMSNE_VI}, |
| 812 | VT: LT.second, CostKind)); |
| 813 | } |
| 814 | // Example sequence: |
| 815 | // vsetivli zero, 2, e8, mf8, ta, mu (ignored) |
| 816 | // vmv.v.i v8, 0 |
| 817 | // vmerge.vim v8, v8, 1, v0 |
| 818 | // vmv.x.s a0, v8 |
| 819 | // andi a0, a0, 1 |
| 820 | // vmv.v.x v8, a0 |
| 821 | // vmsne.vi v0, v8, 0 |
| 822 | |
| 823 | return LT.first * |
| 824 | (1 + getRISCVInstructionCost(OpCodes: {RISCV::VMV_V_I, RISCV::VMERGE_VIM, |
| 825 | RISCV::VMV_X_S, RISCV::VMV_V_X, |
| 826 | RISCV::VMSNE_VI}, |
| 827 | VT: LT.second, CostKind)); |
| 828 | } |
| 829 | |
| 830 | if (HasScalar) { |
| 831 | // Example sequence: |
| 832 | // vmv.v.x v8, a0 |
| 833 | return LT.first * |
| 834 | getRISCVInstructionCost(OpCodes: RISCV::VMV_V_X, VT: LT.second, CostKind); |
| 835 | } |
| 836 | |
| 837 | // Example sequence: |
| 838 | // vrgather.vi v9, v8, 0 |
| 839 | return LT.first * |
| 840 | getRISCVInstructionCost(OpCodes: RISCV::VRGATHER_VI, VT: LT.second, CostKind); |
| 841 | } |
| 842 | case TTI::SK_Splice: { |
| 843 | // vslidedown+vslideup. |
| 844 | // TODO: Multiplying by LT.first implies this legalizes into multiple copies |
| 845 | // of similar code, but I think we expand through memory. |
| 846 | unsigned Opcodes[2] = {RISCV::VSLIDEDOWN_VX, RISCV::VSLIDEUP_VX}; |
| 847 | if (Index >= 0 && Index < 32) |
| 848 | Opcodes[0] = RISCV::VSLIDEDOWN_VI; |
| 849 | else if (Index < 0 && Index > -32) |
| 850 | Opcodes[1] = RISCV::VSLIDEUP_VI; |
| 851 | return LT.first * getRISCVInstructionCost(OpCodes: Opcodes, VT: LT.second, CostKind); |
| 852 | } |
| 853 | case TTI::SK_Reverse: { |
| 854 | |
| 855 | if (!LT.second.isVector()) |
| 856 | return InstructionCost::getInvalid(); |
| 857 | |
| 858 | // TODO: Cases to improve here: |
| 859 | // * Illegal vector types |
| 860 | // * i64 on RV32 |
| 861 | if (SrcTy->getElementType()->isIntegerTy(Bitwidth: 1)) { |
| 862 | VectorType *WideTy = |
| 863 | VectorType::get(ElementType: IntegerType::get(C&: SrcTy->getContext(), NumBits: 8), |
| 864 | EC: cast<VectorType>(Val: SrcTy)->getElementCount()); |
| 865 | return getCastInstrCost(Opcode: Instruction::ZExt, Dst: WideTy, Src: SrcTy, |
| 866 | CCH: TTI::CastContextHint::None, CostKind) + |
| 867 | getShuffleCost(Kind: TTI::SK_Reverse, DstTy: WideTy, SrcTy: WideTy, Mask: {}, CostKind, Index: 0, |
| 868 | SubTp: nullptr) + |
| 869 | getCastInstrCost(Opcode: Instruction::Trunc, Dst: SrcTy, Src: WideTy, |
| 870 | CCH: TTI::CastContextHint::None, CostKind); |
| 871 | } |
| 872 | |
| 873 | MVT ContainerVT = LT.second; |
| 874 | if (LT.second.isFixedLengthVector()) |
| 875 | ContainerVT = TLI->getContainerForFixedLengthVector(VT: LT.second); |
| 876 | MVT M1VT = RISCVTargetLowering::getM1VT(VT: ContainerVT); |
| 877 | if (ContainerVT.bitsLE(VT: M1VT)) { |
| 878 | // Example sequence: |
| 879 | // csrr a0, vlenb |
| 880 | // srli a0, a0, 3 |
| 881 | // addi a0, a0, -1 |
| 882 | // vsetvli a1, zero, e8, mf8, ta, mu (ignored) |
| 883 | // vid.v v9 |
| 884 | // vrsub.vx v10, v9, a0 |
| 885 | // vrgather.vv v9, v8, v10 |
| 886 | InstructionCost LenCost = 3; |
| 887 | if (LT.second.isFixedLengthVector()) |
| 888 | // vrsub.vi has a 5 bit immediate field, otherwise an li suffices |
| 889 | LenCost = isInt<5>(x: LT.second.getVectorNumElements() - 1) ? 0 : 1; |
| 890 | unsigned Opcodes[] = {RISCV::VID_V, RISCV::VRSUB_VX, RISCV::VRGATHER_VV}; |
| 891 | if (LT.second.isFixedLengthVector() && |
| 892 | isInt<5>(x: LT.second.getVectorNumElements() - 1)) |
| 893 | Opcodes[1] = RISCV::VRSUB_VI; |
| 894 | InstructionCost GatherCost = |
| 895 | getRISCVInstructionCost(OpCodes: Opcodes, VT: LT.second, CostKind); |
| 896 | return LT.first * (LenCost + GatherCost); |
| 897 | } |
| 898 | |
| 899 | // At high LMUL, we split into a series of M1 reverses (see |
| 900 | // lowerVECTOR_REVERSE) and then do a single slide at the end to eliminate |
| 901 | // the resulting gap at the bottom (for fixed vectors only). The important |
| 902 | // bit is that the cost scales linearly, not quadratically with LMUL. |
| 903 | unsigned M1Opcodes[] = {RISCV::VID_V, RISCV::VRSUB_VX}; |
| 904 | InstructionCost FixedCost = |
| 905 | getRISCVInstructionCost(OpCodes: M1Opcodes, VT: M1VT, CostKind) + 3; |
| 906 | unsigned Ratio = |
| 907 | ContainerVT.getVectorMinNumElements() / M1VT.getVectorMinNumElements(); |
| 908 | InstructionCost GatherCost = |
| 909 | getRISCVInstructionCost(OpCodes: {RISCV::VRGATHER_VV}, VT: M1VT, CostKind) * Ratio; |
| 910 | InstructionCost SlideCost = !LT.second.isFixedLengthVector() ? 0 : |
| 911 | getRISCVInstructionCost(OpCodes: {RISCV::VSLIDEDOWN_VX}, VT: LT.second, CostKind); |
| 912 | return FixedCost + LT.first * (GatherCost + SlideCost); |
| 913 | } |
| 914 | } |
| 915 | return BaseT::getShuffleCost(Kind, DstTy, SrcTy, Mask, CostKind, Index, |
| 916 | SubTp); |
| 917 | } |
| 918 | |
| 919 | static unsigned isM1OrSmaller(MVT VT) { |
| 920 | RISCVVType::VLMUL LMUL = RISCVTargetLowering::getLMUL(VT); |
| 921 | return (LMUL == RISCVVType::VLMUL::LMUL_F8 || |
| 922 | LMUL == RISCVVType::VLMUL::LMUL_F4 || |
| 923 | LMUL == RISCVVType::VLMUL::LMUL_F2 || |
| 924 | LMUL == RISCVVType::VLMUL::LMUL_1); |
| 925 | } |
| 926 | |
| 927 | InstructionCost RISCVTTIImpl::getScalarizationOverhead( |
| 928 | VectorType *Ty, const APInt &DemandedElts, bool Insert, bool , |
| 929 | TTI::TargetCostKind CostKind, bool ForPoisonSrc, |
| 930 | ArrayRef<Value *> VL) const { |
| 931 | if (isa<ScalableVectorType>(Val: Ty)) |
| 932 | return InstructionCost::getInvalid(); |
| 933 | |
| 934 | // A build_vector (which is m1 sized or smaller) can be done in no |
| 935 | // worse than one vslide1down.vx per element in the type. We could |
| 936 | // in theory do an explode_vector in the inverse manner, but our |
| 937 | // lowering today does not have a first class node for this pattern. |
| 938 | InstructionCost Cost = BaseT::getScalarizationOverhead( |
| 939 | InTy: Ty, DemandedElts, Insert, Extract, CostKind); |
| 940 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty); |
| 941 | if (Insert && !Extract && LT.first.isValid() && LT.second.isVector()) { |
| 942 | if (Ty->getScalarSizeInBits() == 1) { |
| 943 | auto *WideVecTy = cast<VectorType>(Val: Ty->getWithNewBitWidth(NewBitWidth: 8)); |
| 944 | // Note: Implicit scalar anyextend is assumed to be free since the i1 |
| 945 | // must be stored in a GPR. |
| 946 | return getScalarizationOverhead(Ty: WideVecTy, DemandedElts, Insert, Extract, |
| 947 | CostKind) + |
| 948 | getCastInstrCost(Opcode: Instruction::Trunc, Dst: Ty, Src: WideVecTy, |
| 949 | CCH: TTI::CastContextHint::None, CostKind, I: nullptr); |
| 950 | } |
| 951 | |
| 952 | assert(LT.second.isFixedLengthVector()); |
| 953 | MVT ContainerVT = TLI->getContainerForFixedLengthVector(VT: LT.second); |
| 954 | if (isM1OrSmaller(VT: ContainerVT)) { |
| 955 | InstructionCost BV = |
| 956 | cast<FixedVectorType>(Val: Ty)->getNumElements() * |
| 957 | getRISCVInstructionCost(OpCodes: RISCV::VSLIDE1DOWN_VX, VT: LT.second, CostKind); |
| 958 | if (BV < Cost) |
| 959 | Cost = BV; |
| 960 | } |
| 961 | } |
| 962 | return Cost; |
| 963 | } |
| 964 | |
| 965 | InstructionCost |
| 966 | RISCVTTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, |
| 967 | unsigned AddressSpace, |
| 968 | TTI::TargetCostKind CostKind) const { |
| 969 | if (!isLegalMaskedLoadStore(DataType: Src, Alignment) || |
| 970 | CostKind != TTI::TCK_RecipThroughput) |
| 971 | return BaseT::getMaskedMemoryOpCost(Opcode, DataTy: Src, Alignment, AddressSpace, |
| 972 | CostKind); |
| 973 | |
| 974 | return getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind); |
| 975 | } |
| 976 | |
| 977 | InstructionCost RISCVTTIImpl::getInterleavedMemoryOpCost( |
| 978 | unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, |
| 979 | Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, |
| 980 | bool UseMaskForCond, bool UseMaskForGaps) const { |
| 981 | |
| 982 | // The interleaved memory access pass will lower interleaved memory ops (i.e |
| 983 | // a load and store followed by a specific shuffle) to vlseg/vsseg |
| 984 | // intrinsics. |
| 985 | if (!UseMaskForCond && !UseMaskForGaps && |
| 986 | Factor <= TLI->getMaxSupportedInterleaveFactor()) { |
| 987 | auto *VTy = cast<VectorType>(Val: VecTy); |
| 988 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: VTy); |
| 989 | // Need to make sure type has't been scalarized |
| 990 | if (LT.second.isVector()) { |
| 991 | auto *SubVecTy = |
| 992 | VectorType::get(ElementType: VTy->getElementType(), |
| 993 | EC: VTy->getElementCount().divideCoefficientBy(RHS: Factor)); |
| 994 | if (VTy->getElementCount().isKnownMultipleOf(RHS: Factor) && |
| 995 | TLI->isLegalInterleavedAccessType(VTy: SubVecTy, Factor, Alignment, |
| 996 | AddrSpace: AddressSpace, DL)) { |
| 997 | |
| 998 | // Some processors optimize segment loads/stores as one wide memory op + |
| 999 | // Factor * LMUL shuffle ops. |
| 1000 | if (ST->hasOptimizedSegmentLoadStore(NF: Factor)) { |
| 1001 | InstructionCost Cost = |
| 1002 | getMemoryOpCost(Opcode, Src: VTy, Alignment, AddressSpace, CostKind); |
| 1003 | MVT SubVecVT = getTLI()->getValueType(DL, Ty: SubVecTy).getSimpleVT(); |
| 1004 | Cost += Factor * TLI->getLMULCost(VT: SubVecVT); |
| 1005 | return LT.first * Cost; |
| 1006 | } |
| 1007 | |
| 1008 | // Otherwise, the cost is proportional to the number of elements (VL * |
| 1009 | // Factor ops). |
| 1010 | InstructionCost MemOpCost = |
| 1011 | getMemoryOpCost(Opcode, Src: VTy->getElementType(), Alignment, AddressSpace: 0, |
| 1012 | CostKind, OpdInfo: {.Kind: TTI::OK_AnyValue, .Properties: TTI::OP_None}); |
| 1013 | unsigned NumLoads = getEstimatedVLFor(Ty: VTy); |
| 1014 | return NumLoads * MemOpCost; |
| 1015 | } |
| 1016 | } |
| 1017 | } |
| 1018 | |
| 1019 | // TODO: Return the cost of interleaved accesses for scalable vector when |
| 1020 | // unable to convert to segment accesses instructions. |
| 1021 | if (isa<ScalableVectorType>(Val: VecTy)) |
| 1022 | return InstructionCost::getInvalid(); |
| 1023 | |
| 1024 | auto *FVTy = cast<FixedVectorType>(Val: VecTy); |
| 1025 | InstructionCost MemCost = |
| 1026 | getMemoryOpCost(Opcode, Src: VecTy, Alignment, AddressSpace, CostKind); |
| 1027 | unsigned VF = FVTy->getNumElements() / Factor; |
| 1028 | |
| 1029 | // An interleaved load will look like this for Factor=3: |
| 1030 | // %wide.vec = load <12 x i32>, ptr %3, align 4 |
| 1031 | // %strided.vec = shufflevector %wide.vec, poison, <4 x i32> <stride mask> |
| 1032 | // %strided.vec1 = shufflevector %wide.vec, poison, <4 x i32> <stride mask> |
| 1033 | // %strided.vec2 = shufflevector %wide.vec, poison, <4 x i32> <stride mask> |
| 1034 | if (Opcode == Instruction::Load) { |
| 1035 | InstructionCost Cost = MemCost; |
| 1036 | for (unsigned Index : Indices) { |
| 1037 | FixedVectorType *VecTy = |
| 1038 | FixedVectorType::get(ElementType: FVTy->getElementType(), NumElts: VF * Factor); |
| 1039 | auto Mask = createStrideMask(Start: Index, Stride: Factor, VF); |
| 1040 | Mask.resize(N: VF * Factor, NV: -1); |
| 1041 | InstructionCost ShuffleCost = |
| 1042 | getShuffleCost(Kind: TTI::ShuffleKind::SK_PermuteSingleSrc, DstTy: VecTy, SrcTy: VecTy, |
| 1043 | Mask, CostKind, Index: 0, SubTp: nullptr, Args: {}); |
| 1044 | Cost += ShuffleCost; |
| 1045 | } |
| 1046 | return Cost; |
| 1047 | } |
| 1048 | |
| 1049 | // TODO: Model for NF > 2 |
| 1050 | // We'll need to enhance getShuffleCost to model shuffles that are just |
| 1051 | // inserts and extracts into subvectors, since they won't have the full cost |
| 1052 | // of a vrgather. |
| 1053 | // An interleaved store for 3 vectors of 4 lanes will look like |
| 1054 | // %11 = shufflevector <4 x i32> %4, <4 x i32> %6, <8 x i32> <0...7> |
| 1055 | // %12 = shufflevector <4 x i32> %9, <4 x i32> poison, <8 x i32> <0...3> |
| 1056 | // %13 = shufflevector <8 x i32> %11, <8 x i32> %12, <12 x i32> <0...11> |
| 1057 | // %interleaved.vec = shufflevector %13, poison, <12 x i32> <interleave mask> |
| 1058 | // store <12 x i32> %interleaved.vec, ptr %10, align 4 |
| 1059 | if (Factor != 2) |
| 1060 | return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, |
| 1061 | Alignment, AddressSpace, CostKind, |
| 1062 | UseMaskForCond, UseMaskForGaps); |
| 1063 | |
| 1064 | assert(Opcode == Instruction::Store && "Opcode must be a store" ); |
| 1065 | // For an interleaving store of 2 vectors, we perform one large interleaving |
| 1066 | // shuffle that goes into the wide store |
| 1067 | auto Mask = createInterleaveMask(VF, NumVecs: Factor); |
| 1068 | InstructionCost ShuffleCost = |
| 1069 | getShuffleCost(Kind: TTI::ShuffleKind::SK_PermuteSingleSrc, DstTy: FVTy, SrcTy: FVTy, Mask, |
| 1070 | CostKind, Index: 0, SubTp: nullptr, Args: {}); |
| 1071 | return MemCost + ShuffleCost; |
| 1072 | } |
| 1073 | |
| 1074 | InstructionCost RISCVTTIImpl::getGatherScatterOpCost( |
| 1075 | unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, |
| 1076 | Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) const { |
| 1077 | if (CostKind != TTI::TCK_RecipThroughput) |
| 1078 | return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, |
| 1079 | Alignment, CostKind, I); |
| 1080 | |
| 1081 | if ((Opcode == Instruction::Load && |
| 1082 | !isLegalMaskedGather(DataType: DataTy, Alignment: Align(Alignment))) || |
| 1083 | (Opcode == Instruction::Store && |
| 1084 | !isLegalMaskedScatter(DataType: DataTy, Alignment: Align(Alignment)))) |
| 1085 | return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, |
| 1086 | Alignment, CostKind, I); |
| 1087 | |
| 1088 | // Cost is proportional to the number of memory operations implied. For |
| 1089 | // scalable vectors, we use an estimate on that number since we don't |
| 1090 | // know exactly what VL will be. |
| 1091 | auto &VTy = *cast<VectorType>(Val: DataTy); |
| 1092 | InstructionCost MemOpCost = |
| 1093 | getMemoryOpCost(Opcode, Src: VTy.getElementType(), Alignment, AddressSpace: 0, CostKind, |
| 1094 | OpdInfo: {.Kind: TTI::OK_AnyValue, .Properties: TTI::OP_None}, I); |
| 1095 | unsigned NumLoads = getEstimatedVLFor(Ty: &VTy); |
| 1096 | return NumLoads * MemOpCost; |
| 1097 | } |
| 1098 | |
| 1099 | InstructionCost RISCVTTIImpl::getExpandCompressMemoryOpCost( |
| 1100 | unsigned Opcode, Type *DataTy, bool VariableMask, Align Alignment, |
| 1101 | TTI::TargetCostKind CostKind, const Instruction *I) const { |
| 1102 | bool IsLegal = (Opcode == Instruction::Store && |
| 1103 | isLegalMaskedCompressStore(DataTy, Alignment)) || |
| 1104 | (Opcode == Instruction::Load && |
| 1105 | isLegalMaskedExpandLoad(DataType: DataTy, Alignment)); |
| 1106 | if (!IsLegal || CostKind != TTI::TCK_RecipThroughput) |
| 1107 | return BaseT::getExpandCompressMemoryOpCost(Opcode, DataTy, VariableMask, |
| 1108 | Alignment, CostKind, I); |
| 1109 | // Example compressstore sequence: |
| 1110 | // vsetivli zero, 8, e32, m2, ta, ma (ignored) |
| 1111 | // vcompress.vm v10, v8, v0 |
| 1112 | // vcpop.m a1, v0 |
| 1113 | // vsetvli zero, a1, e32, m2, ta, ma |
| 1114 | // vse32.v v10, (a0) |
| 1115 | // Example expandload sequence: |
| 1116 | // vsetivli zero, 8, e8, mf2, ta, ma (ignored) |
| 1117 | // vcpop.m a1, v0 |
| 1118 | // vsetvli zero, a1, e32, m2, ta, ma |
| 1119 | // vle32.v v10, (a0) |
| 1120 | // vsetivli zero, 8, e32, m2, ta, ma |
| 1121 | // viota.m v12, v0 |
| 1122 | // vrgather.vv v8, v10, v12, v0.t |
| 1123 | auto MemOpCost = |
| 1124 | getMemoryOpCost(Opcode, Src: DataTy, Alignment, /*AddressSpace*/ 0, CostKind); |
| 1125 | auto LT = getTypeLegalizationCost(Ty: DataTy); |
| 1126 | SmallVector<unsigned, 4> Opcodes{RISCV::VSETVLI}; |
| 1127 | if (VariableMask) |
| 1128 | Opcodes.push_back(Elt: RISCV::VCPOP_M); |
| 1129 | if (Opcode == Instruction::Store) |
| 1130 | Opcodes.append(IL: {RISCV::VCOMPRESS_VM}); |
| 1131 | else |
| 1132 | Opcodes.append(IL: {RISCV::VSETIVLI, RISCV::VIOTA_M, RISCV::VRGATHER_VV}); |
| 1133 | return MemOpCost + |
| 1134 | LT.first * getRISCVInstructionCost(OpCodes: Opcodes, VT: LT.second, CostKind); |
| 1135 | } |
| 1136 | |
| 1137 | InstructionCost RISCVTTIImpl::getStridedMemoryOpCost( |
| 1138 | unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, |
| 1139 | Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) const { |
| 1140 | if (((Opcode == Instruction::Load || Opcode == Instruction::Store) && |
| 1141 | !isLegalStridedLoadStore(DataType: DataTy, Alignment)) || |
| 1142 | (Opcode != Instruction::Load && Opcode != Instruction::Store)) |
| 1143 | return BaseT::getStridedMemoryOpCost(Opcode, DataTy, Ptr, VariableMask, |
| 1144 | Alignment, CostKind, I); |
| 1145 | |
| 1146 | if (CostKind == TTI::TCK_CodeSize) |
| 1147 | return TTI::TCC_Basic; |
| 1148 | |
| 1149 | // Cost is proportional to the number of memory operations implied. For |
| 1150 | // scalable vectors, we use an estimate on that number since we don't |
| 1151 | // know exactly what VL will be. |
| 1152 | auto &VTy = *cast<VectorType>(Val: DataTy); |
| 1153 | InstructionCost MemOpCost = |
| 1154 | getMemoryOpCost(Opcode, Src: VTy.getElementType(), Alignment, AddressSpace: 0, CostKind, |
| 1155 | OpdInfo: {.Kind: TTI::OK_AnyValue, .Properties: TTI::OP_None}, I); |
| 1156 | unsigned NumLoads = getEstimatedVLFor(Ty: &VTy); |
| 1157 | return NumLoads * MemOpCost; |
| 1158 | } |
| 1159 | |
| 1160 | InstructionCost |
| 1161 | RISCVTTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const { |
| 1162 | // FIXME: This is a property of the default vector convention, not |
| 1163 | // all possible calling conventions. Fixing that will require |
| 1164 | // some TTI API and SLP rework. |
| 1165 | InstructionCost Cost = 0; |
| 1166 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; |
| 1167 | for (auto *Ty : Tys) { |
| 1168 | if (!Ty->isVectorTy()) |
| 1169 | continue; |
| 1170 | Align A = DL.getPrefTypeAlign(Ty); |
| 1171 | Cost += getMemoryOpCost(Opcode: Instruction::Store, Src: Ty, Alignment: A, AddressSpace: 0, CostKind) + |
| 1172 | getMemoryOpCost(Opcode: Instruction::Load, Src: Ty, Alignment: A, AddressSpace: 0, CostKind); |
| 1173 | } |
| 1174 | return Cost; |
| 1175 | } |
| 1176 | |
| 1177 | // Currently, these represent both throughput and codesize costs |
| 1178 | // for the respective intrinsics. The costs in this table are simply |
| 1179 | // instruction counts with the following adjustments made: |
| 1180 | // * One vsetvli is considered free. |
| 1181 | static const CostTblEntry VectorIntrinsicCostTable[]{ |
| 1182 | {.ISD: Intrinsic::floor, .Type: MVT::f32, .Cost: 9}, |
| 1183 | {.ISD: Intrinsic::floor, .Type: MVT::f64, .Cost: 9}, |
| 1184 | {.ISD: Intrinsic::ceil, .Type: MVT::f32, .Cost: 9}, |
| 1185 | {.ISD: Intrinsic::ceil, .Type: MVT::f64, .Cost: 9}, |
| 1186 | {.ISD: Intrinsic::trunc, .Type: MVT::f32, .Cost: 7}, |
| 1187 | {.ISD: Intrinsic::trunc, .Type: MVT::f64, .Cost: 7}, |
| 1188 | {.ISD: Intrinsic::round, .Type: MVT::f32, .Cost: 9}, |
| 1189 | {.ISD: Intrinsic::round, .Type: MVT::f64, .Cost: 9}, |
| 1190 | {.ISD: Intrinsic::roundeven, .Type: MVT::f32, .Cost: 9}, |
| 1191 | {.ISD: Intrinsic::roundeven, .Type: MVT::f64, .Cost: 9}, |
| 1192 | {.ISD: Intrinsic::rint, .Type: MVT::f32, .Cost: 7}, |
| 1193 | {.ISD: Intrinsic::rint, .Type: MVT::f64, .Cost: 7}, |
| 1194 | {.ISD: Intrinsic::lrint, .Type: MVT::i32, .Cost: 1}, |
| 1195 | {.ISD: Intrinsic::lrint, .Type: MVT::i64, .Cost: 1}, |
| 1196 | {.ISD: Intrinsic::llrint, .Type: MVT::i64, .Cost: 1}, |
| 1197 | {.ISD: Intrinsic::nearbyint, .Type: MVT::f32, .Cost: 9}, |
| 1198 | {.ISD: Intrinsic::nearbyint, .Type: MVT::f64, .Cost: 9}, |
| 1199 | {.ISD: Intrinsic::bswap, .Type: MVT::i16, .Cost: 3}, |
| 1200 | {.ISD: Intrinsic::bswap, .Type: MVT::i32, .Cost: 12}, |
| 1201 | {.ISD: Intrinsic::bswap, .Type: MVT::i64, .Cost: 31}, |
| 1202 | {.ISD: Intrinsic::vp_bswap, .Type: MVT::i16, .Cost: 3}, |
| 1203 | {.ISD: Intrinsic::vp_bswap, .Type: MVT::i32, .Cost: 12}, |
| 1204 | {.ISD: Intrinsic::vp_bswap, .Type: MVT::i64, .Cost: 31}, |
| 1205 | {.ISD: Intrinsic::vp_fshl, .Type: MVT::i8, .Cost: 7}, |
| 1206 | {.ISD: Intrinsic::vp_fshl, .Type: MVT::i16, .Cost: 7}, |
| 1207 | {.ISD: Intrinsic::vp_fshl, .Type: MVT::i32, .Cost: 7}, |
| 1208 | {.ISD: Intrinsic::vp_fshl, .Type: MVT::i64, .Cost: 7}, |
| 1209 | {.ISD: Intrinsic::vp_fshr, .Type: MVT::i8, .Cost: 7}, |
| 1210 | {.ISD: Intrinsic::vp_fshr, .Type: MVT::i16, .Cost: 7}, |
| 1211 | {.ISD: Intrinsic::vp_fshr, .Type: MVT::i32, .Cost: 7}, |
| 1212 | {.ISD: Intrinsic::vp_fshr, .Type: MVT::i64, .Cost: 7}, |
| 1213 | {.ISD: Intrinsic::bitreverse, .Type: MVT::i8, .Cost: 17}, |
| 1214 | {.ISD: Intrinsic::bitreverse, .Type: MVT::i16, .Cost: 24}, |
| 1215 | {.ISD: Intrinsic::bitreverse, .Type: MVT::i32, .Cost: 33}, |
| 1216 | {.ISD: Intrinsic::bitreverse, .Type: MVT::i64, .Cost: 52}, |
| 1217 | {.ISD: Intrinsic::vp_bitreverse, .Type: MVT::i8, .Cost: 17}, |
| 1218 | {.ISD: Intrinsic::vp_bitreverse, .Type: MVT::i16, .Cost: 24}, |
| 1219 | {.ISD: Intrinsic::vp_bitreverse, .Type: MVT::i32, .Cost: 33}, |
| 1220 | {.ISD: Intrinsic::vp_bitreverse, .Type: MVT::i64, .Cost: 52}, |
| 1221 | {.ISD: Intrinsic::ctpop, .Type: MVT::i8, .Cost: 12}, |
| 1222 | {.ISD: Intrinsic::ctpop, .Type: MVT::i16, .Cost: 19}, |
| 1223 | {.ISD: Intrinsic::ctpop, .Type: MVT::i32, .Cost: 20}, |
| 1224 | {.ISD: Intrinsic::ctpop, .Type: MVT::i64, .Cost: 21}, |
| 1225 | {.ISD: Intrinsic::ctlz, .Type: MVT::i8, .Cost: 19}, |
| 1226 | {.ISD: Intrinsic::ctlz, .Type: MVT::i16, .Cost: 28}, |
| 1227 | {.ISD: Intrinsic::ctlz, .Type: MVT::i32, .Cost: 31}, |
| 1228 | {.ISD: Intrinsic::ctlz, .Type: MVT::i64, .Cost: 35}, |
| 1229 | {.ISD: Intrinsic::cttz, .Type: MVT::i8, .Cost: 16}, |
| 1230 | {.ISD: Intrinsic::cttz, .Type: MVT::i16, .Cost: 23}, |
| 1231 | {.ISD: Intrinsic::cttz, .Type: MVT::i32, .Cost: 24}, |
| 1232 | {.ISD: Intrinsic::cttz, .Type: MVT::i64, .Cost: 25}, |
| 1233 | {.ISD: Intrinsic::vp_ctpop, .Type: MVT::i8, .Cost: 12}, |
| 1234 | {.ISD: Intrinsic::vp_ctpop, .Type: MVT::i16, .Cost: 19}, |
| 1235 | {.ISD: Intrinsic::vp_ctpop, .Type: MVT::i32, .Cost: 20}, |
| 1236 | {.ISD: Intrinsic::vp_ctpop, .Type: MVT::i64, .Cost: 21}, |
| 1237 | {.ISD: Intrinsic::vp_ctlz, .Type: MVT::i8, .Cost: 19}, |
| 1238 | {.ISD: Intrinsic::vp_ctlz, .Type: MVT::i16, .Cost: 28}, |
| 1239 | {.ISD: Intrinsic::vp_ctlz, .Type: MVT::i32, .Cost: 31}, |
| 1240 | {.ISD: Intrinsic::vp_ctlz, .Type: MVT::i64, .Cost: 35}, |
| 1241 | {.ISD: Intrinsic::vp_cttz, .Type: MVT::i8, .Cost: 16}, |
| 1242 | {.ISD: Intrinsic::vp_cttz, .Type: MVT::i16, .Cost: 23}, |
| 1243 | {.ISD: Intrinsic::vp_cttz, .Type: MVT::i32, .Cost: 24}, |
| 1244 | {.ISD: Intrinsic::vp_cttz, .Type: MVT::i64, .Cost: 25}, |
| 1245 | }; |
| 1246 | |
| 1247 | static unsigned getISDForVPIntrinsicID(Intrinsic::ID ID) { |
| 1248 | switch (ID) { |
| 1249 | #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ |
| 1250 | case Intrinsic::VPID: \ |
| 1251 | return ISD::VPSD; |
| 1252 | #include "llvm/IR/VPIntrinsics.def" |
| 1253 | #undef HELPER_MAP_VPID_TO_VPSD |
| 1254 | } |
| 1255 | return ISD::DELETED_NODE; |
| 1256 | } |
| 1257 | |
| 1258 | InstructionCost |
| 1259 | RISCVTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, |
| 1260 | TTI::TargetCostKind CostKind) const { |
| 1261 | auto *RetTy = ICA.getReturnType(); |
| 1262 | switch (ICA.getID()) { |
| 1263 | case Intrinsic::lrint: |
| 1264 | case Intrinsic::llrint: |
| 1265 | // We can't currently lower half or bfloat vector lrint/llrint. |
| 1266 | if (auto *VecTy = dyn_cast<VectorType>(Val: ICA.getArgTypes()[0]); |
| 1267 | VecTy && VecTy->getElementType()->is16bitFPTy()) |
| 1268 | return InstructionCost::getInvalid(); |
| 1269 | [[fallthrough]]; |
| 1270 | case Intrinsic::ceil: |
| 1271 | case Intrinsic::floor: |
| 1272 | case Intrinsic::trunc: |
| 1273 | case Intrinsic::rint: |
| 1274 | case Intrinsic::round: |
| 1275 | case Intrinsic::roundeven: { |
| 1276 | // These all use the same code. |
| 1277 | auto LT = getTypeLegalizationCost(Ty: RetTy); |
| 1278 | if (!LT.second.isVector() && TLI->isOperationCustom(Op: ISD::FCEIL, VT: LT.second)) |
| 1279 | return LT.first * 8; |
| 1280 | break; |
| 1281 | } |
| 1282 | case Intrinsic::umin: |
| 1283 | case Intrinsic::umax: |
| 1284 | case Intrinsic::smin: |
| 1285 | case Intrinsic::smax: { |
| 1286 | auto LT = getTypeLegalizationCost(Ty: RetTy); |
| 1287 | if (LT.second.isScalarInteger() && ST->hasStdExtZbb()) |
| 1288 | return LT.first; |
| 1289 | |
| 1290 | if (ST->hasVInstructions() && LT.second.isVector()) { |
| 1291 | unsigned Op; |
| 1292 | switch (ICA.getID()) { |
| 1293 | case Intrinsic::umin: |
| 1294 | Op = RISCV::VMINU_VV; |
| 1295 | break; |
| 1296 | case Intrinsic::umax: |
| 1297 | Op = RISCV::VMAXU_VV; |
| 1298 | break; |
| 1299 | case Intrinsic::smin: |
| 1300 | Op = RISCV::VMIN_VV; |
| 1301 | break; |
| 1302 | case Intrinsic::smax: |
| 1303 | Op = RISCV::VMAX_VV; |
| 1304 | break; |
| 1305 | } |
| 1306 | return LT.first * getRISCVInstructionCost(OpCodes: Op, VT: LT.second, CostKind); |
| 1307 | } |
| 1308 | break; |
| 1309 | } |
| 1310 | case Intrinsic::sadd_sat: |
| 1311 | case Intrinsic::ssub_sat: |
| 1312 | case Intrinsic::uadd_sat: |
| 1313 | case Intrinsic::usub_sat: { |
| 1314 | auto LT = getTypeLegalizationCost(Ty: RetTy); |
| 1315 | if (ST->hasVInstructions() && LT.second.isVector()) { |
| 1316 | unsigned Op; |
| 1317 | switch (ICA.getID()) { |
| 1318 | case Intrinsic::sadd_sat: |
| 1319 | Op = RISCV::VSADD_VV; |
| 1320 | break; |
| 1321 | case Intrinsic::ssub_sat: |
| 1322 | Op = RISCV::VSSUBU_VV; |
| 1323 | break; |
| 1324 | case Intrinsic::uadd_sat: |
| 1325 | Op = RISCV::VSADDU_VV; |
| 1326 | break; |
| 1327 | case Intrinsic::usub_sat: |
| 1328 | Op = RISCV::VSSUBU_VV; |
| 1329 | break; |
| 1330 | } |
| 1331 | return LT.first * getRISCVInstructionCost(OpCodes: Op, VT: LT.second, CostKind); |
| 1332 | } |
| 1333 | break; |
| 1334 | } |
| 1335 | case Intrinsic::fma: |
| 1336 | case Intrinsic::fmuladd: { |
| 1337 | // TODO: handle promotion with f16/bf16 with zvfhmin/zvfbfmin |
| 1338 | auto LT = getTypeLegalizationCost(Ty: RetTy); |
| 1339 | if (ST->hasVInstructions() && LT.second.isVector()) |
| 1340 | return LT.first * |
| 1341 | getRISCVInstructionCost(OpCodes: RISCV::VFMADD_VV, VT: LT.second, CostKind); |
| 1342 | break; |
| 1343 | } |
| 1344 | case Intrinsic::fabs: { |
| 1345 | auto LT = getTypeLegalizationCost(Ty: RetTy); |
| 1346 | if (ST->hasVInstructions() && LT.second.isVector()) { |
| 1347 | // lui a0, 8 |
| 1348 | // addi a0, a0, -1 |
| 1349 | // vsetvli a1, zero, e16, m1, ta, ma |
| 1350 | // vand.vx v8, v8, a0 |
| 1351 | // f16 with zvfhmin and bf16 with zvfhbmin |
| 1352 | if (LT.second.getVectorElementType() == MVT::bf16 || |
| 1353 | (LT.second.getVectorElementType() == MVT::f16 && |
| 1354 | !ST->hasVInstructionsF16())) |
| 1355 | return LT.first * getRISCVInstructionCost(OpCodes: RISCV::VAND_VX, VT: LT.second, |
| 1356 | CostKind) + |
| 1357 | 2; |
| 1358 | else |
| 1359 | return LT.first * |
| 1360 | getRISCVInstructionCost(OpCodes: RISCV::VFSGNJX_VV, VT: LT.second, CostKind); |
| 1361 | } |
| 1362 | break; |
| 1363 | } |
| 1364 | case Intrinsic::sqrt: { |
| 1365 | auto LT = getTypeLegalizationCost(Ty: RetTy); |
| 1366 | if (ST->hasVInstructions() && LT.second.isVector()) { |
| 1367 | SmallVector<unsigned, 4> ConvOp; |
| 1368 | SmallVector<unsigned, 2> FsqrtOp; |
| 1369 | MVT ConvType = LT.second; |
| 1370 | MVT FsqrtType = LT.second; |
| 1371 | // f16 with zvfhmin and bf16 with zvfbfmin and the type of nxv32[b]f16 |
| 1372 | // will be spilt. |
| 1373 | if (LT.second.getVectorElementType() == MVT::bf16) { |
| 1374 | if (LT.second == MVT::nxv32bf16) { |
| 1375 | ConvOp = {RISCV::VFWCVTBF16_F_F_V, RISCV::VFWCVTBF16_F_F_V, |
| 1376 | RISCV::VFNCVTBF16_F_F_W, RISCV::VFNCVTBF16_F_F_W}; |
| 1377 | FsqrtOp = {RISCV::VFSQRT_V, RISCV::VFSQRT_V}; |
| 1378 | ConvType = MVT::nxv16f16; |
| 1379 | FsqrtType = MVT::nxv16f32; |
| 1380 | } else { |
| 1381 | ConvOp = {RISCV::VFWCVTBF16_F_F_V, RISCV::VFNCVTBF16_F_F_W}; |
| 1382 | FsqrtOp = {RISCV::VFSQRT_V}; |
| 1383 | FsqrtType = TLI->getTypeToPromoteTo(Op: ISD::FSQRT, VT: FsqrtType); |
| 1384 | } |
| 1385 | } else if (LT.second.getVectorElementType() == MVT::f16 && |
| 1386 | !ST->hasVInstructionsF16()) { |
| 1387 | if (LT.second == MVT::nxv32f16) { |
| 1388 | ConvOp = {RISCV::VFWCVT_F_F_V, RISCV::VFWCVT_F_F_V, |
| 1389 | RISCV::VFNCVT_F_F_W, RISCV::VFNCVT_F_F_W}; |
| 1390 | FsqrtOp = {RISCV::VFSQRT_V, RISCV::VFSQRT_V}; |
| 1391 | ConvType = MVT::nxv16f16; |
| 1392 | FsqrtType = MVT::nxv16f32; |
| 1393 | } else { |
| 1394 | ConvOp = {RISCV::VFWCVT_F_F_V, RISCV::VFNCVT_F_F_W}; |
| 1395 | FsqrtOp = {RISCV::VFSQRT_V}; |
| 1396 | FsqrtType = TLI->getTypeToPromoteTo(Op: ISD::FSQRT, VT: FsqrtType); |
| 1397 | } |
| 1398 | } else { |
| 1399 | FsqrtOp = {RISCV::VFSQRT_V}; |
| 1400 | } |
| 1401 | |
| 1402 | return LT.first * (getRISCVInstructionCost(OpCodes: FsqrtOp, VT: FsqrtType, CostKind) + |
| 1403 | getRISCVInstructionCost(OpCodes: ConvOp, VT: ConvType, CostKind)); |
| 1404 | } |
| 1405 | break; |
| 1406 | } |
| 1407 | case Intrinsic::cttz: |
| 1408 | case Intrinsic::ctlz: |
| 1409 | case Intrinsic::ctpop: { |
| 1410 | auto LT = getTypeLegalizationCost(Ty: RetTy); |
| 1411 | if (ST->hasVInstructions() && ST->hasStdExtZvbb() && LT.second.isVector()) { |
| 1412 | unsigned Op; |
| 1413 | switch (ICA.getID()) { |
| 1414 | case Intrinsic::cttz: |
| 1415 | Op = RISCV::VCTZ_V; |
| 1416 | break; |
| 1417 | case Intrinsic::ctlz: |
| 1418 | Op = RISCV::VCLZ_V; |
| 1419 | break; |
| 1420 | case Intrinsic::ctpop: |
| 1421 | Op = RISCV::VCPOP_V; |
| 1422 | break; |
| 1423 | } |
| 1424 | return LT.first * getRISCVInstructionCost(OpCodes: Op, VT: LT.second, CostKind); |
| 1425 | } |
| 1426 | break; |
| 1427 | } |
| 1428 | case Intrinsic::abs: { |
| 1429 | auto LT = getTypeLegalizationCost(Ty: RetTy); |
| 1430 | if (ST->hasVInstructions() && LT.second.isVector()) { |
| 1431 | // vrsub.vi v10, v8, 0 |
| 1432 | // vmax.vv v8, v8, v10 |
| 1433 | return LT.first * |
| 1434 | getRISCVInstructionCost(OpCodes: {RISCV::VRSUB_VI, RISCV::VMAX_VV}, |
| 1435 | VT: LT.second, CostKind); |
| 1436 | } |
| 1437 | break; |
| 1438 | } |
| 1439 | case Intrinsic::get_active_lane_mask: { |
| 1440 | if (ST->hasVInstructions()) { |
| 1441 | Type *ExpRetTy = VectorType::get( |
| 1442 | ElementType: ICA.getArgTypes()[0], EC: cast<VectorType>(Val: RetTy)->getElementCount()); |
| 1443 | auto LT = getTypeLegalizationCost(Ty: ExpRetTy); |
| 1444 | |
| 1445 | // vid.v v8 // considered hoisted |
| 1446 | // vsaddu.vx v8, v8, a0 |
| 1447 | // vmsltu.vx v0, v8, a1 |
| 1448 | return LT.first * |
| 1449 | getRISCVInstructionCost(OpCodes: {RISCV::VSADDU_VX, RISCV::VMSLTU_VX}, |
| 1450 | VT: LT.second, CostKind); |
| 1451 | } |
| 1452 | break; |
| 1453 | } |
| 1454 | // TODO: add more intrinsic |
| 1455 | case Intrinsic::stepvector: { |
| 1456 | auto LT = getTypeLegalizationCost(Ty: RetTy); |
| 1457 | // Legalisation of illegal types involves an `index' instruction plus |
| 1458 | // (LT.first - 1) vector adds. |
| 1459 | if (ST->hasVInstructions()) |
| 1460 | return getRISCVInstructionCost(OpCodes: RISCV::VID_V, VT: LT.second, CostKind) + |
| 1461 | (LT.first - 1) * |
| 1462 | getRISCVInstructionCost(OpCodes: RISCV::VADD_VX, VT: LT.second, CostKind); |
| 1463 | return 1 + (LT.first - 1); |
| 1464 | } |
| 1465 | case Intrinsic::experimental_cttz_elts: { |
| 1466 | Type *ArgTy = ICA.getArgTypes()[0]; |
| 1467 | EVT ArgType = TLI->getValueType(DL, Ty: ArgTy, AllowUnknown: true); |
| 1468 | if (getTLI()->shouldExpandCttzElements(VT: ArgType)) |
| 1469 | break; |
| 1470 | InstructionCost Cost = getRISCVInstructionCost( |
| 1471 | OpCodes: RISCV::VFIRST_M, VT: getTypeLegalizationCost(Ty: ArgTy).second, CostKind); |
| 1472 | |
| 1473 | // If zero_is_poison is false, then we will generate additional |
| 1474 | // cmp + select instructions to convert -1 to EVL. |
| 1475 | Type *BoolTy = Type::getInt1Ty(C&: RetTy->getContext()); |
| 1476 | if (ICA.getArgs().size() > 1 && |
| 1477 | cast<ConstantInt>(Val: ICA.getArgs()[1])->isZero()) |
| 1478 | Cost += getCmpSelInstrCost(Opcode: Instruction::ICmp, ValTy: BoolTy, CondTy: RetTy, |
| 1479 | VecPred: CmpInst::ICMP_SLT, CostKind) + |
| 1480 | getCmpSelInstrCost(Opcode: Instruction::Select, ValTy: RetTy, CondTy: BoolTy, |
| 1481 | VecPred: CmpInst::BAD_ICMP_PREDICATE, CostKind); |
| 1482 | |
| 1483 | return Cost; |
| 1484 | } |
| 1485 | case Intrinsic::vp_rint: { |
| 1486 | // RISC-V target uses at least 5 instructions to lower rounding intrinsics. |
| 1487 | unsigned Cost = 5; |
| 1488 | auto LT = getTypeLegalizationCost(Ty: RetTy); |
| 1489 | if (TLI->isOperationCustom(Op: ISD::VP_FRINT, VT: LT.second)) |
| 1490 | return Cost * LT.first; |
| 1491 | break; |
| 1492 | } |
| 1493 | case Intrinsic::vp_nearbyint: { |
| 1494 | // More one read and one write for fflags than vp_rint. |
| 1495 | unsigned Cost = 7; |
| 1496 | auto LT = getTypeLegalizationCost(Ty: RetTy); |
| 1497 | if (TLI->isOperationCustom(Op: ISD::VP_FRINT, VT: LT.second)) |
| 1498 | return Cost * LT.first; |
| 1499 | break; |
| 1500 | } |
| 1501 | case Intrinsic::vp_ceil: |
| 1502 | case Intrinsic::vp_floor: |
| 1503 | case Intrinsic::vp_round: |
| 1504 | case Intrinsic::vp_roundeven: |
| 1505 | case Intrinsic::vp_roundtozero: { |
| 1506 | // Rounding with static rounding mode needs two more instructions to |
| 1507 | // swap/write FRM than vp_rint. |
| 1508 | unsigned Cost = 7; |
| 1509 | auto LT = getTypeLegalizationCost(Ty: RetTy); |
| 1510 | unsigned VPISD = getISDForVPIntrinsicID(ID: ICA.getID()); |
| 1511 | if (TLI->isOperationCustom(Op: VPISD, VT: LT.second)) |
| 1512 | return Cost * LT.first; |
| 1513 | break; |
| 1514 | } |
| 1515 | case Intrinsic::vp_select: { |
| 1516 | Intrinsic::ID IID = ICA.getID(); |
| 1517 | std::optional<unsigned> FOp = VPIntrinsic::getFunctionalOpcodeForVP(ID: IID); |
| 1518 | assert(FOp.has_value()); |
| 1519 | return getCmpSelInstrCost(Opcode: *FOp, ValTy: ICA.getReturnType(), CondTy: ICA.getArgTypes()[0], |
| 1520 | VecPred: CmpInst::BAD_ICMP_PREDICATE, CostKind); |
| 1521 | } |
| 1522 | case Intrinsic::vp_merge: |
| 1523 | return getCmpSelInstrCost(Opcode: Instruction::Select, ValTy: ICA.getReturnType(), |
| 1524 | CondTy: ICA.getArgTypes()[0], VecPred: CmpInst::BAD_ICMP_PREDICATE, |
| 1525 | CostKind); |
| 1526 | case Intrinsic::experimental_vp_splat: { |
| 1527 | auto LT = getTypeLegalizationCost(Ty: RetTy); |
| 1528 | // TODO: Lower i1 experimental_vp_splat |
| 1529 | if (!ST->hasVInstructions() || LT.second.getScalarType() == MVT::i1) |
| 1530 | return InstructionCost::getInvalid(); |
| 1531 | return LT.first * getRISCVInstructionCost(OpCodes: LT.second.isFloatingPoint() |
| 1532 | ? RISCV::VFMV_V_F |
| 1533 | : RISCV::VMV_V_X, |
| 1534 | VT: LT.second, CostKind); |
| 1535 | } |
| 1536 | case Intrinsic::experimental_vp_splice: { |
| 1537 | // To support type-based query from vectorizer, set the index to 0. |
| 1538 | // Note that index only change the cost from vslide.vx to vslide.vi and in |
| 1539 | // current implementations they have same costs. |
| 1540 | return getShuffleCost(Kind: TTI::SK_Splice, DstTy: cast<VectorType>(Val: ICA.getReturnType()), |
| 1541 | SrcTy: cast<VectorType>(Val: ICA.getArgTypes()[0]), Mask: {}, CostKind, |
| 1542 | Index: 0, SubTp: cast<VectorType>(Val: ICA.getReturnType())); |
| 1543 | } |
| 1544 | } |
| 1545 | |
| 1546 | if (ST->hasVInstructions() && RetTy->isVectorTy()) { |
| 1547 | if (auto LT = getTypeLegalizationCost(Ty: RetTy); |
| 1548 | LT.second.isVector()) { |
| 1549 | MVT EltTy = LT.second.getVectorElementType(); |
| 1550 | if (const auto *Entry = CostTableLookup(Table: VectorIntrinsicCostTable, |
| 1551 | ISD: ICA.getID(), Ty: EltTy)) |
| 1552 | return LT.first * Entry->Cost; |
| 1553 | } |
| 1554 | } |
| 1555 | |
| 1556 | return BaseT::getIntrinsicInstrCost(ICA, CostKind); |
| 1557 | } |
| 1558 | |
| 1559 | InstructionCost RISCVTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, |
| 1560 | Type *Src, |
| 1561 | TTI::CastContextHint CCH, |
| 1562 | TTI::TargetCostKind CostKind, |
| 1563 | const Instruction *I) const { |
| 1564 | bool IsVectorType = isa<VectorType>(Val: Dst) && isa<VectorType>(Val: Src); |
| 1565 | if (!IsVectorType) |
| 1566 | return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I); |
| 1567 | |
| 1568 | // FIXME: Need to compute legalizing cost for illegal types. The current |
| 1569 | // code handles only legal types and those which can be trivially |
| 1570 | // promoted to legal. |
| 1571 | if (!ST->hasVInstructions() || Src->getScalarSizeInBits() > ST->getELen() || |
| 1572 | Dst->getScalarSizeInBits() > ST->getELen()) |
| 1573 | return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I); |
| 1574 | |
| 1575 | int ISD = TLI->InstructionOpcodeToISD(Opcode); |
| 1576 | assert(ISD && "Invalid opcode" ); |
| 1577 | std::pair<InstructionCost, MVT> SrcLT = getTypeLegalizationCost(Ty: Src); |
| 1578 | std::pair<InstructionCost, MVT> DstLT = getTypeLegalizationCost(Ty: Dst); |
| 1579 | |
| 1580 | // Handle i1 source and dest cases *before* calling logic in BasicTTI. |
| 1581 | // The shared implementation doesn't model vector widening during legalization |
| 1582 | // and instead assumes scalarization. In order to scalarize an <N x i1> |
| 1583 | // vector, we need to extend/trunc to/from i8. If we don't special case |
| 1584 | // this, we can get an infinite recursion cycle. |
| 1585 | switch (ISD) { |
| 1586 | default: |
| 1587 | break; |
| 1588 | case ISD::SIGN_EXTEND: |
| 1589 | case ISD::ZERO_EXTEND: |
| 1590 | if (Src->getScalarSizeInBits() == 1) { |
| 1591 | // We do not use vsext/vzext to extend from mask vector. |
| 1592 | // Instead we use the following instructions to extend from mask vector: |
| 1593 | // vmv.v.i v8, 0 |
| 1594 | // vmerge.vim v8, v8, -1, v0 (repeated per split) |
| 1595 | return getRISCVInstructionCost(OpCodes: RISCV::VMV_V_I, VT: DstLT.second, CostKind) + |
| 1596 | DstLT.first * getRISCVInstructionCost(OpCodes: RISCV::VMERGE_VIM, |
| 1597 | VT: DstLT.second, CostKind) + |
| 1598 | DstLT.first - 1; |
| 1599 | } |
| 1600 | break; |
| 1601 | case ISD::TRUNCATE: |
| 1602 | if (Dst->getScalarSizeInBits() == 1) { |
| 1603 | // We do not use several vncvt to truncate to mask vector. So we could |
| 1604 | // not use PowDiff to calculate it. |
| 1605 | // Instead we use the following instructions to truncate to mask vector: |
| 1606 | // vand.vi v8, v8, 1 |
| 1607 | // vmsne.vi v0, v8, 0 |
| 1608 | return SrcLT.first * |
| 1609 | getRISCVInstructionCost(OpCodes: {RISCV::VAND_VI, RISCV::VMSNE_VI}, |
| 1610 | VT: SrcLT.second, CostKind) + |
| 1611 | SrcLT.first - 1; |
| 1612 | } |
| 1613 | break; |
| 1614 | }; |
| 1615 | |
| 1616 | // Our actual lowering for the case where a wider legal type is available |
| 1617 | // uses promotion to the wider type. This is reflected in the result of |
| 1618 | // getTypeLegalizationCost, but BasicTTI assumes the widened cases are |
| 1619 | // scalarized if the legalized Src and Dst are not equal sized. |
| 1620 | const DataLayout &DL = this->getDataLayout(); |
| 1621 | if (!SrcLT.second.isVector() || !DstLT.second.isVector() || |
| 1622 | !TypeSize::isKnownLE(LHS: DL.getTypeSizeInBits(Ty: Src), |
| 1623 | RHS: SrcLT.second.getSizeInBits()) || |
| 1624 | !TypeSize::isKnownLE(LHS: DL.getTypeSizeInBits(Ty: Dst), |
| 1625 | RHS: DstLT.second.getSizeInBits())) |
| 1626 | return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I); |
| 1627 | |
| 1628 | // The split cost is handled by the base getCastInstrCost |
| 1629 | assert((SrcLT.first == 1) && (DstLT.first == 1) && "Illegal type" ); |
| 1630 | |
| 1631 | int PowDiff = (int)Log2_32(Value: DstLT.second.getScalarSizeInBits()) - |
| 1632 | (int)Log2_32(Value: SrcLT.second.getScalarSizeInBits()); |
| 1633 | switch (ISD) { |
| 1634 | case ISD::SIGN_EXTEND: |
| 1635 | case ISD::ZERO_EXTEND: { |
| 1636 | if ((PowDiff < 1) || (PowDiff > 3)) |
| 1637 | return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I); |
| 1638 | unsigned SExtOp[] = {RISCV::VSEXT_VF2, RISCV::VSEXT_VF4, RISCV::VSEXT_VF8}; |
| 1639 | unsigned ZExtOp[] = {RISCV::VZEXT_VF2, RISCV::VZEXT_VF4, RISCV::VZEXT_VF8}; |
| 1640 | unsigned Op = |
| 1641 | (ISD == ISD::SIGN_EXTEND) ? SExtOp[PowDiff - 1] : ZExtOp[PowDiff - 1]; |
| 1642 | return getRISCVInstructionCost(OpCodes: Op, VT: DstLT.second, CostKind); |
| 1643 | } |
| 1644 | case ISD::TRUNCATE: |
| 1645 | case ISD::FP_EXTEND: |
| 1646 | case ISD::FP_ROUND: { |
| 1647 | // Counts of narrow/widen instructions. |
| 1648 | unsigned SrcEltSize = SrcLT.second.getScalarSizeInBits(); |
| 1649 | unsigned DstEltSize = DstLT.second.getScalarSizeInBits(); |
| 1650 | |
| 1651 | unsigned Op = (ISD == ISD::TRUNCATE) ? RISCV::VNSRL_WI |
| 1652 | : (ISD == ISD::FP_EXTEND) ? RISCV::VFWCVT_F_F_V |
| 1653 | : RISCV::VFNCVT_F_F_W; |
| 1654 | InstructionCost Cost = 0; |
| 1655 | for (; SrcEltSize != DstEltSize;) { |
| 1656 | MVT ElementMVT = (ISD == ISD::TRUNCATE) |
| 1657 | ? MVT::getIntegerVT(BitWidth: DstEltSize) |
| 1658 | : MVT::getFloatingPointVT(BitWidth: DstEltSize); |
| 1659 | MVT DstMVT = DstLT.second.changeVectorElementType(EltVT: ElementMVT); |
| 1660 | DstEltSize = |
| 1661 | (DstEltSize > SrcEltSize) ? DstEltSize >> 1 : DstEltSize << 1; |
| 1662 | Cost += getRISCVInstructionCost(OpCodes: Op, VT: DstMVT, CostKind); |
| 1663 | } |
| 1664 | return Cost; |
| 1665 | } |
| 1666 | case ISD::FP_TO_SINT: |
| 1667 | case ISD::FP_TO_UINT: { |
| 1668 | unsigned IsSigned = ISD == ISD::FP_TO_SINT; |
| 1669 | unsigned FCVT = IsSigned ? RISCV::VFCVT_RTZ_X_F_V : RISCV::VFCVT_RTZ_XU_F_V; |
| 1670 | unsigned FWCVT = |
| 1671 | IsSigned ? RISCV::VFWCVT_RTZ_X_F_V : RISCV::VFWCVT_RTZ_XU_F_V; |
| 1672 | unsigned FNCVT = |
| 1673 | IsSigned ? RISCV::VFNCVT_RTZ_X_F_W : RISCV::VFNCVT_RTZ_XU_F_W; |
| 1674 | unsigned SrcEltSize = Src->getScalarSizeInBits(); |
| 1675 | unsigned DstEltSize = Dst->getScalarSizeInBits(); |
| 1676 | InstructionCost Cost = 0; |
| 1677 | if ((SrcEltSize == 16) && |
| 1678 | (!ST->hasVInstructionsF16() || ((DstEltSize / 2) > SrcEltSize))) { |
| 1679 | // If the target only supports zvfhmin or it is fp16-to-i64 conversion |
| 1680 | // pre-widening to f32 and then convert f32 to integer |
| 1681 | VectorType *VecF32Ty = |
| 1682 | VectorType::get(ElementType: Type::getFloatTy(C&: Dst->getContext()), |
| 1683 | EC: cast<VectorType>(Val: Dst)->getElementCount()); |
| 1684 | std::pair<InstructionCost, MVT> VecF32LT = |
| 1685 | getTypeLegalizationCost(Ty: VecF32Ty); |
| 1686 | Cost += |
| 1687 | VecF32LT.first * getRISCVInstructionCost(OpCodes: RISCV::VFWCVT_F_F_V, |
| 1688 | VT: VecF32LT.second, CostKind); |
| 1689 | Cost += getCastInstrCost(Opcode, Dst, Src: VecF32Ty, CCH, CostKind, I); |
| 1690 | return Cost; |
| 1691 | } |
| 1692 | if (DstEltSize == SrcEltSize) |
| 1693 | Cost += getRISCVInstructionCost(OpCodes: FCVT, VT: DstLT.second, CostKind); |
| 1694 | else if (DstEltSize > SrcEltSize) |
| 1695 | Cost += getRISCVInstructionCost(OpCodes: FWCVT, VT: DstLT.second, CostKind); |
| 1696 | else { // (SrcEltSize > DstEltSize) |
| 1697 | // First do a narrowing conversion to an integer half the size, then |
| 1698 | // truncate if needed. |
| 1699 | MVT ElementVT = MVT::getIntegerVT(BitWidth: SrcEltSize / 2); |
| 1700 | MVT VecVT = DstLT.second.changeVectorElementType(EltVT: ElementVT); |
| 1701 | Cost += getRISCVInstructionCost(OpCodes: FNCVT, VT: VecVT, CostKind); |
| 1702 | if ((SrcEltSize / 2) > DstEltSize) { |
| 1703 | Type *VecTy = EVT(VecVT).getTypeForEVT(Context&: Dst->getContext()); |
| 1704 | Cost += |
| 1705 | getCastInstrCost(Opcode: Instruction::Trunc, Dst, Src: VecTy, CCH, CostKind, I); |
| 1706 | } |
| 1707 | } |
| 1708 | return Cost; |
| 1709 | } |
| 1710 | case ISD::SINT_TO_FP: |
| 1711 | case ISD::UINT_TO_FP: { |
| 1712 | unsigned IsSigned = ISD == ISD::SINT_TO_FP; |
| 1713 | unsigned FCVT = IsSigned ? RISCV::VFCVT_F_X_V : RISCV::VFCVT_F_XU_V; |
| 1714 | unsigned FWCVT = IsSigned ? RISCV::VFWCVT_F_X_V : RISCV::VFWCVT_F_XU_V; |
| 1715 | unsigned FNCVT = IsSigned ? RISCV::VFNCVT_F_X_W : RISCV::VFNCVT_F_XU_W; |
| 1716 | unsigned SrcEltSize = Src->getScalarSizeInBits(); |
| 1717 | unsigned DstEltSize = Dst->getScalarSizeInBits(); |
| 1718 | |
| 1719 | InstructionCost Cost = 0; |
| 1720 | if ((DstEltSize == 16) && |
| 1721 | (!ST->hasVInstructionsF16() || ((SrcEltSize / 2) > DstEltSize))) { |
| 1722 | // If the target only supports zvfhmin or it is i64-to-fp16 conversion |
| 1723 | // it is converted to f32 and then converted to f16 |
| 1724 | VectorType *VecF32Ty = |
| 1725 | VectorType::get(ElementType: Type::getFloatTy(C&: Dst->getContext()), |
| 1726 | EC: cast<VectorType>(Val: Dst)->getElementCount()); |
| 1727 | std::pair<InstructionCost, MVT> VecF32LT = |
| 1728 | getTypeLegalizationCost(Ty: VecF32Ty); |
| 1729 | Cost += getCastInstrCost(Opcode, Dst: VecF32Ty, Src, CCH, CostKind, I); |
| 1730 | Cost += VecF32LT.first * getRISCVInstructionCost(OpCodes: RISCV::VFNCVT_F_F_W, |
| 1731 | VT: DstLT.second, CostKind); |
| 1732 | return Cost; |
| 1733 | } |
| 1734 | |
| 1735 | if (DstEltSize == SrcEltSize) |
| 1736 | Cost += getRISCVInstructionCost(OpCodes: FCVT, VT: DstLT.second, CostKind); |
| 1737 | else if (DstEltSize > SrcEltSize) { |
| 1738 | if ((DstEltSize / 2) > SrcEltSize) { |
| 1739 | VectorType *VecTy = |
| 1740 | VectorType::get(ElementType: IntegerType::get(C&: Dst->getContext(), NumBits: DstEltSize / 2), |
| 1741 | EC: cast<VectorType>(Val: Dst)->getElementCount()); |
| 1742 | unsigned Op = IsSigned ? Instruction::SExt : Instruction::ZExt; |
| 1743 | Cost += getCastInstrCost(Opcode: Op, Dst: VecTy, Src, CCH, CostKind, I); |
| 1744 | } |
| 1745 | Cost += getRISCVInstructionCost(OpCodes: FWCVT, VT: DstLT.second, CostKind); |
| 1746 | } else |
| 1747 | Cost += getRISCVInstructionCost(OpCodes: FNCVT, VT: DstLT.second, CostKind); |
| 1748 | return Cost; |
| 1749 | } |
| 1750 | } |
| 1751 | return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I); |
| 1752 | } |
| 1753 | |
| 1754 | unsigned RISCVTTIImpl::getEstimatedVLFor(VectorType *Ty) const { |
| 1755 | if (isa<ScalableVectorType>(Val: Ty)) { |
| 1756 | const unsigned EltSize = DL.getTypeSizeInBits(Ty: Ty->getElementType()); |
| 1757 | const unsigned MinSize = DL.getTypeSizeInBits(Ty).getKnownMinValue(); |
| 1758 | const unsigned VectorBits = *getVScaleForTuning() * RISCV::RVVBitsPerBlock; |
| 1759 | return RISCVTargetLowering::computeVLMAX(VectorBits, EltSize, MinSize); |
| 1760 | } |
| 1761 | return cast<FixedVectorType>(Val: Ty)->getNumElements(); |
| 1762 | } |
| 1763 | |
| 1764 | InstructionCost |
| 1765 | RISCVTTIImpl::getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, |
| 1766 | FastMathFlags FMF, |
| 1767 | TTI::TargetCostKind CostKind) const { |
| 1768 | if (isa<FixedVectorType>(Val: Ty) && !ST->useRVVForFixedLengthVectors()) |
| 1769 | return BaseT::getMinMaxReductionCost(IID, Ty, FMF, CostKind); |
| 1770 | |
| 1771 | // Skip if scalar size of Ty is bigger than ELEN. |
| 1772 | if (Ty->getScalarSizeInBits() > ST->getELen()) |
| 1773 | return BaseT::getMinMaxReductionCost(IID, Ty, FMF, CostKind); |
| 1774 | |
| 1775 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty); |
| 1776 | if (Ty->getElementType()->isIntegerTy(Bitwidth: 1)) { |
| 1777 | // SelectionDAGBuilder does following transforms: |
| 1778 | // vector_reduce_{smin,umax}(<n x i1>) --> vector_reduce_or(<n x i1>) |
| 1779 | // vector_reduce_{smax,umin}(<n x i1>) --> vector_reduce_and(<n x i1>) |
| 1780 | if (IID == Intrinsic::umax || IID == Intrinsic::smin) |
| 1781 | return getArithmeticReductionCost(Opcode: Instruction::Or, Ty, FMF, CostKind); |
| 1782 | else |
| 1783 | return getArithmeticReductionCost(Opcode: Instruction::And, Ty, FMF, CostKind); |
| 1784 | } |
| 1785 | |
| 1786 | if (IID == Intrinsic::maximum || IID == Intrinsic::minimum) { |
| 1787 | SmallVector<unsigned, 3> Opcodes; |
| 1788 | InstructionCost = 0; |
| 1789 | switch (IID) { |
| 1790 | case Intrinsic::maximum: |
| 1791 | if (FMF.noNaNs()) { |
| 1792 | Opcodes = {RISCV::VFREDMAX_VS, RISCV::VFMV_F_S}; |
| 1793 | } else { |
| 1794 | Opcodes = {RISCV::VMFNE_VV, RISCV::VCPOP_M, RISCV::VFREDMAX_VS, |
| 1795 | RISCV::VFMV_F_S}; |
| 1796 | // Cost of Canonical Nan + branch |
| 1797 | // lui a0, 523264 |
| 1798 | // fmv.w.x fa0, a0 |
| 1799 | Type *DstTy = Ty->getScalarType(); |
| 1800 | const unsigned EltTyBits = DstTy->getScalarSizeInBits(); |
| 1801 | Type *SrcTy = IntegerType::getIntNTy(C&: DstTy->getContext(), N: EltTyBits); |
| 1802 | ExtraCost = 1 + |
| 1803 | getCastInstrCost(Opcode: Instruction::UIToFP, Dst: DstTy, Src: SrcTy, |
| 1804 | CCH: TTI::CastContextHint::None, CostKind) + |
| 1805 | getCFInstrCost(Opcode: Instruction::Br, CostKind); |
| 1806 | } |
| 1807 | break; |
| 1808 | |
| 1809 | case Intrinsic::minimum: |
| 1810 | if (FMF.noNaNs()) { |
| 1811 | Opcodes = {RISCV::VFREDMIN_VS, RISCV::VFMV_F_S}; |
| 1812 | } else { |
| 1813 | Opcodes = {RISCV::VMFNE_VV, RISCV::VCPOP_M, RISCV::VFREDMIN_VS, |
| 1814 | RISCV::VFMV_F_S}; |
| 1815 | // Cost of Canonical Nan + branch |
| 1816 | // lui a0, 523264 |
| 1817 | // fmv.w.x fa0, a0 |
| 1818 | Type *DstTy = Ty->getScalarType(); |
| 1819 | const unsigned EltTyBits = DL.getTypeSizeInBits(Ty: DstTy); |
| 1820 | Type *SrcTy = IntegerType::getIntNTy(C&: DstTy->getContext(), N: EltTyBits); |
| 1821 | ExtraCost = 1 + |
| 1822 | getCastInstrCost(Opcode: Instruction::UIToFP, Dst: DstTy, Src: SrcTy, |
| 1823 | CCH: TTI::CastContextHint::None, CostKind) + |
| 1824 | getCFInstrCost(Opcode: Instruction::Br, CostKind); |
| 1825 | } |
| 1826 | break; |
| 1827 | } |
| 1828 | return ExtraCost + getRISCVInstructionCost(OpCodes: Opcodes, VT: LT.second, CostKind); |
| 1829 | } |
| 1830 | |
| 1831 | // IR Reduction is composed by one rvv reduction instruction and vmv |
| 1832 | unsigned SplitOp; |
| 1833 | SmallVector<unsigned, 3> Opcodes; |
| 1834 | switch (IID) { |
| 1835 | default: |
| 1836 | llvm_unreachable("Unsupported intrinsic" ); |
| 1837 | case Intrinsic::smax: |
| 1838 | SplitOp = RISCV::VMAX_VV; |
| 1839 | Opcodes = {RISCV::VREDMAX_VS, RISCV::VMV_X_S}; |
| 1840 | break; |
| 1841 | case Intrinsic::smin: |
| 1842 | SplitOp = RISCV::VMIN_VV; |
| 1843 | Opcodes = {RISCV::VREDMIN_VS, RISCV::VMV_X_S}; |
| 1844 | break; |
| 1845 | case Intrinsic::umax: |
| 1846 | SplitOp = RISCV::VMAXU_VV; |
| 1847 | Opcodes = {RISCV::VREDMAXU_VS, RISCV::VMV_X_S}; |
| 1848 | break; |
| 1849 | case Intrinsic::umin: |
| 1850 | SplitOp = RISCV::VMINU_VV; |
| 1851 | Opcodes = {RISCV::VREDMINU_VS, RISCV::VMV_X_S}; |
| 1852 | break; |
| 1853 | case Intrinsic::maxnum: |
| 1854 | SplitOp = RISCV::VFMAX_VV; |
| 1855 | Opcodes = {RISCV::VFREDMAX_VS, RISCV::VFMV_F_S}; |
| 1856 | break; |
| 1857 | case Intrinsic::minnum: |
| 1858 | SplitOp = RISCV::VFMIN_VV; |
| 1859 | Opcodes = {RISCV::VFREDMIN_VS, RISCV::VFMV_F_S}; |
| 1860 | break; |
| 1861 | } |
| 1862 | // Add a cost for data larger than LMUL8 |
| 1863 | InstructionCost SplitCost = |
| 1864 | (LT.first > 1) ? (LT.first - 1) * |
| 1865 | getRISCVInstructionCost(OpCodes: SplitOp, VT: LT.second, CostKind) |
| 1866 | : 0; |
| 1867 | return SplitCost + getRISCVInstructionCost(OpCodes: Opcodes, VT: LT.second, CostKind); |
| 1868 | } |
| 1869 | |
| 1870 | InstructionCost |
| 1871 | RISCVTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, |
| 1872 | std::optional<FastMathFlags> FMF, |
| 1873 | TTI::TargetCostKind CostKind) const { |
| 1874 | if (isa<FixedVectorType>(Val: Ty) && !ST->useRVVForFixedLengthVectors()) |
| 1875 | return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind); |
| 1876 | |
| 1877 | // Skip if scalar size of Ty is bigger than ELEN. |
| 1878 | if (Ty->getScalarSizeInBits() > ST->getELen()) |
| 1879 | return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind); |
| 1880 | |
| 1881 | int ISD = TLI->InstructionOpcodeToISD(Opcode); |
| 1882 | assert(ISD && "Invalid opcode" ); |
| 1883 | |
| 1884 | if (ISD != ISD::ADD && ISD != ISD::OR && ISD != ISD::XOR && ISD != ISD::AND && |
| 1885 | ISD != ISD::FADD) |
| 1886 | return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind); |
| 1887 | |
| 1888 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty); |
| 1889 | Type *ElementTy = Ty->getElementType(); |
| 1890 | if (ElementTy->isIntegerTy(Bitwidth: 1)) { |
| 1891 | // Example sequences: |
| 1892 | // vfirst.m a0, v0 |
| 1893 | // seqz a0, a0 |
| 1894 | if (LT.second == MVT::v1i1) |
| 1895 | return getRISCVInstructionCost(OpCodes: RISCV::VFIRST_M, VT: LT.second, CostKind) + |
| 1896 | getCmpSelInstrCost(Opcode: Instruction::ICmp, ValTy: ElementTy, CondTy: ElementTy, |
| 1897 | VecPred: CmpInst::ICMP_EQ, CostKind); |
| 1898 | |
| 1899 | if (ISD == ISD::AND) { |
| 1900 | // Example sequences: |
| 1901 | // vmand.mm v8, v9, v8 ; needed every time type is split |
| 1902 | // vmnot.m v8, v0 ; alias for vmnand |
| 1903 | // vcpop.m a0, v8 |
| 1904 | // seqz a0, a0 |
| 1905 | |
| 1906 | // See the discussion: https://github.com/llvm/llvm-project/pull/119160 |
| 1907 | // For LMUL <= 8, there is no splitting, |
| 1908 | // the sequences are vmnot, vcpop and seqz. |
| 1909 | // When LMUL > 8 and split = 1, |
| 1910 | // the sequences are vmnand, vcpop and seqz. |
| 1911 | // When LMUL > 8 and split > 1, |
| 1912 | // the sequences are (LT.first-2) * vmand, vmnand, vcpop and seqz. |
| 1913 | return ((LT.first > 2) ? (LT.first - 2) : 0) * |
| 1914 | getRISCVInstructionCost(OpCodes: RISCV::VMAND_MM, VT: LT.second, CostKind) + |
| 1915 | getRISCVInstructionCost(OpCodes: RISCV::VMNAND_MM, VT: LT.second, CostKind) + |
| 1916 | getRISCVInstructionCost(OpCodes: RISCV::VCPOP_M, VT: LT.second, CostKind) + |
| 1917 | getCmpSelInstrCost(Opcode: Instruction::ICmp, ValTy: ElementTy, CondTy: ElementTy, |
| 1918 | VecPred: CmpInst::ICMP_EQ, CostKind); |
| 1919 | } else if (ISD == ISD::XOR || ISD == ISD::ADD) { |
| 1920 | // Example sequences: |
| 1921 | // vsetvli a0, zero, e8, mf8, ta, ma |
| 1922 | // vmxor.mm v8, v0, v8 ; needed every time type is split |
| 1923 | // vcpop.m a0, v8 |
| 1924 | // andi a0, a0, 1 |
| 1925 | return (LT.first - 1) * |
| 1926 | getRISCVInstructionCost(OpCodes: RISCV::VMXOR_MM, VT: LT.second, CostKind) + |
| 1927 | getRISCVInstructionCost(OpCodes: RISCV::VCPOP_M, VT: LT.second, CostKind) + 1; |
| 1928 | } else { |
| 1929 | assert(ISD == ISD::OR); |
| 1930 | // Example sequences: |
| 1931 | // vsetvli a0, zero, e8, mf8, ta, ma |
| 1932 | // vmor.mm v8, v9, v8 ; needed every time type is split |
| 1933 | // vcpop.m a0, v0 |
| 1934 | // snez a0, a0 |
| 1935 | return (LT.first - 1) * |
| 1936 | getRISCVInstructionCost(OpCodes: RISCV::VMOR_MM, VT: LT.second, CostKind) + |
| 1937 | getRISCVInstructionCost(OpCodes: RISCV::VCPOP_M, VT: LT.second, CostKind) + |
| 1938 | getCmpSelInstrCost(Opcode: Instruction::ICmp, ValTy: ElementTy, CondTy: ElementTy, |
| 1939 | VecPred: CmpInst::ICMP_NE, CostKind); |
| 1940 | } |
| 1941 | } |
| 1942 | |
| 1943 | // IR Reduction of or/and is composed by one vmv and one rvv reduction |
| 1944 | // instruction, and others is composed by two vmv and one rvv reduction |
| 1945 | // instruction |
| 1946 | unsigned SplitOp; |
| 1947 | SmallVector<unsigned, 3> Opcodes; |
| 1948 | switch (ISD) { |
| 1949 | case ISD::ADD: |
| 1950 | SplitOp = RISCV::VADD_VV; |
| 1951 | Opcodes = {RISCV::VMV_S_X, RISCV::VREDSUM_VS, RISCV::VMV_X_S}; |
| 1952 | break; |
| 1953 | case ISD::OR: |
| 1954 | SplitOp = RISCV::VOR_VV; |
| 1955 | Opcodes = {RISCV::VREDOR_VS, RISCV::VMV_X_S}; |
| 1956 | break; |
| 1957 | case ISD::XOR: |
| 1958 | SplitOp = RISCV::VXOR_VV; |
| 1959 | Opcodes = {RISCV::VMV_S_X, RISCV::VREDXOR_VS, RISCV::VMV_X_S}; |
| 1960 | break; |
| 1961 | case ISD::AND: |
| 1962 | SplitOp = RISCV::VAND_VV; |
| 1963 | Opcodes = {RISCV::VREDAND_VS, RISCV::VMV_X_S}; |
| 1964 | break; |
| 1965 | case ISD::FADD: |
| 1966 | // We can't promote f16/bf16 fadd reductions. |
| 1967 | if ((LT.second.getScalarType() == MVT::f16 && !ST->hasVInstructionsF16()) || |
| 1968 | LT.second.getScalarType() == MVT::bf16) |
| 1969 | return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind); |
| 1970 | if (TTI::requiresOrderedReduction(FMF)) { |
| 1971 | Opcodes.push_back(Elt: RISCV::VFMV_S_F); |
| 1972 | for (unsigned i = 0; i < LT.first.getValue(); i++) |
| 1973 | Opcodes.push_back(Elt: RISCV::VFREDOSUM_VS); |
| 1974 | Opcodes.push_back(Elt: RISCV::VFMV_F_S); |
| 1975 | return getRISCVInstructionCost(OpCodes: Opcodes, VT: LT.second, CostKind); |
| 1976 | } |
| 1977 | SplitOp = RISCV::VFADD_VV; |
| 1978 | Opcodes = {RISCV::VFMV_S_F, RISCV::VFREDUSUM_VS, RISCV::VFMV_F_S}; |
| 1979 | break; |
| 1980 | } |
| 1981 | // Add a cost for data larger than LMUL8 |
| 1982 | InstructionCost SplitCost = |
| 1983 | (LT.first > 1) ? (LT.first - 1) * |
| 1984 | getRISCVInstructionCost(OpCodes: SplitOp, VT: LT.second, CostKind) |
| 1985 | : 0; |
| 1986 | return SplitCost + getRISCVInstructionCost(OpCodes: Opcodes, VT: LT.second, CostKind); |
| 1987 | } |
| 1988 | |
| 1989 | InstructionCost RISCVTTIImpl::getExtendedReductionCost( |
| 1990 | unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *ValTy, |
| 1991 | std::optional<FastMathFlags> FMF, TTI::TargetCostKind CostKind) const { |
| 1992 | if (isa<FixedVectorType>(Val: ValTy) && !ST->useRVVForFixedLengthVectors()) |
| 1993 | return BaseT::getExtendedReductionCost(Opcode, IsUnsigned, ResTy, Ty: ValTy, |
| 1994 | FMF, CostKind); |
| 1995 | |
| 1996 | // Skip if scalar size of ResTy is bigger than ELEN. |
| 1997 | if (ResTy->getScalarSizeInBits() > ST->getELen()) |
| 1998 | return BaseT::getExtendedReductionCost(Opcode, IsUnsigned, ResTy, Ty: ValTy, |
| 1999 | FMF, CostKind); |
| 2000 | |
| 2001 | if (Opcode != Instruction::Add && Opcode != Instruction::FAdd) |
| 2002 | return BaseT::getExtendedReductionCost(Opcode, IsUnsigned, ResTy, Ty: ValTy, |
| 2003 | FMF, CostKind); |
| 2004 | |
| 2005 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: ValTy); |
| 2006 | |
| 2007 | if (IsUnsigned && Opcode == Instruction::Add && |
| 2008 | LT.second.isFixedLengthVector() && LT.second.getScalarType() == MVT::i1) { |
| 2009 | // Represent vector_reduce_add(ZExt(<n x i1>)) as |
| 2010 | // ZExtOrTrunc(ctpop(bitcast <n x i1> to in)). |
| 2011 | return LT.first * |
| 2012 | getRISCVInstructionCost(OpCodes: RISCV::VCPOP_M, VT: LT.second, CostKind); |
| 2013 | } |
| 2014 | |
| 2015 | if (ResTy->getScalarSizeInBits() != 2 * LT.second.getScalarSizeInBits()) |
| 2016 | return BaseT::getExtendedReductionCost(Opcode, IsUnsigned, ResTy, Ty: ValTy, |
| 2017 | FMF, CostKind); |
| 2018 | |
| 2019 | return (LT.first - 1) + |
| 2020 | getArithmeticReductionCost(Opcode, Ty: ValTy, FMF, CostKind); |
| 2021 | } |
| 2022 | |
| 2023 | InstructionCost |
| 2024 | RISCVTTIImpl::getStoreImmCost(Type *Ty, TTI::OperandValueInfo OpInfo, |
| 2025 | TTI::TargetCostKind CostKind) const { |
| 2026 | assert(OpInfo.isConstant() && "non constant operand?" ); |
| 2027 | if (!isa<VectorType>(Val: Ty)) |
| 2028 | // FIXME: We need to account for immediate materialization here, but doing |
| 2029 | // a decent job requires more knowledge about the immediate than we |
| 2030 | // currently have here. |
| 2031 | return 0; |
| 2032 | |
| 2033 | if (OpInfo.isUniform()) |
| 2034 | // vmv.v.i, vmv.v.x, or vfmv.v.f |
| 2035 | // We ignore the cost of the scalar constant materialization to be consistent |
| 2036 | // with how we treat scalar constants themselves just above. |
| 2037 | return 1; |
| 2038 | |
| 2039 | return getConstantPoolLoadCost(Ty, CostKind); |
| 2040 | } |
| 2041 | |
| 2042 | InstructionCost RISCVTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, |
| 2043 | Align Alignment, |
| 2044 | unsigned AddressSpace, |
| 2045 | TTI::TargetCostKind CostKind, |
| 2046 | TTI::OperandValueInfo OpInfo, |
| 2047 | const Instruction *I) const { |
| 2048 | EVT VT = TLI->getValueType(DL, Ty: Src, AllowUnknown: true); |
| 2049 | // Type legalization can't handle structs |
| 2050 | if (VT == MVT::Other) |
| 2051 | return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, |
| 2052 | CostKind, OpInfo, I); |
| 2053 | |
| 2054 | InstructionCost Cost = 0; |
| 2055 | if (Opcode == Instruction::Store && OpInfo.isConstant()) |
| 2056 | Cost += getStoreImmCost(Ty: Src, OpInfo, CostKind); |
| 2057 | |
| 2058 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: Src); |
| 2059 | |
| 2060 | InstructionCost BaseCost = [&]() { |
| 2061 | InstructionCost Cost = LT.first; |
| 2062 | if (CostKind != TTI::TCK_RecipThroughput) |
| 2063 | return Cost; |
| 2064 | |
| 2065 | // Our actual lowering for the case where a wider legal type is available |
| 2066 | // uses the a VL predicated load on the wider type. This is reflected in |
| 2067 | // the result of getTypeLegalizationCost, but BasicTTI assumes the |
| 2068 | // widened cases are scalarized. |
| 2069 | const DataLayout &DL = this->getDataLayout(); |
| 2070 | if (Src->isVectorTy() && LT.second.isVector() && |
| 2071 | TypeSize::isKnownLT(LHS: DL.getTypeStoreSizeInBits(Ty: Src), |
| 2072 | RHS: LT.second.getSizeInBits())) |
| 2073 | return Cost; |
| 2074 | |
| 2075 | return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, |
| 2076 | CostKind, OpInfo, I); |
| 2077 | }(); |
| 2078 | |
| 2079 | // Assume memory ops cost scale with the number of vector registers |
| 2080 | // possible accessed by the instruction. Note that BasicTTI already |
| 2081 | // handles the LT.first term for us. |
| 2082 | if (LT.second.isVector() && CostKind != TTI::TCK_CodeSize) |
| 2083 | BaseCost *= TLI->getLMULCost(VT: LT.second); |
| 2084 | return Cost + BaseCost; |
| 2085 | } |
| 2086 | |
| 2087 | InstructionCost RISCVTTIImpl::getCmpSelInstrCost( |
| 2088 | unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred, |
| 2089 | TTI::TargetCostKind CostKind, TTI::OperandValueInfo Op1Info, |
| 2090 | TTI::OperandValueInfo Op2Info, const Instruction *I) const { |
| 2091 | if (CostKind != TTI::TCK_RecipThroughput) |
| 2092 | return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, |
| 2093 | Op1Info, Op2Info, I); |
| 2094 | |
| 2095 | if (isa<FixedVectorType>(Val: ValTy) && !ST->useRVVForFixedLengthVectors()) |
| 2096 | return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, |
| 2097 | Op1Info, Op2Info, I); |
| 2098 | |
| 2099 | // Skip if scalar size of ValTy is bigger than ELEN. |
| 2100 | if (ValTy->isVectorTy() && ValTy->getScalarSizeInBits() > ST->getELen()) |
| 2101 | return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, |
| 2102 | Op1Info, Op2Info, I); |
| 2103 | |
| 2104 | auto GetConstantMatCost = |
| 2105 | [&](TTI::OperandValueInfo OpInfo) -> InstructionCost { |
| 2106 | if (OpInfo.isUniform()) |
| 2107 | // We return 0 we currently ignore the cost of materializing scalar |
| 2108 | // constants in GPRs. |
| 2109 | return 0; |
| 2110 | |
| 2111 | return getConstantPoolLoadCost(Ty: ValTy, CostKind); |
| 2112 | }; |
| 2113 | |
| 2114 | InstructionCost ConstantMatCost; |
| 2115 | if (Op1Info.isConstant()) |
| 2116 | ConstantMatCost += GetConstantMatCost(Op1Info); |
| 2117 | if (Op2Info.isConstant()) |
| 2118 | ConstantMatCost += GetConstantMatCost(Op2Info); |
| 2119 | |
| 2120 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: ValTy); |
| 2121 | if (Opcode == Instruction::Select && ValTy->isVectorTy()) { |
| 2122 | if (CondTy->isVectorTy()) { |
| 2123 | if (ValTy->getScalarSizeInBits() == 1) { |
| 2124 | // vmandn.mm v8, v8, v9 |
| 2125 | // vmand.mm v9, v0, v9 |
| 2126 | // vmor.mm v0, v9, v8 |
| 2127 | return ConstantMatCost + |
| 2128 | LT.first * |
| 2129 | getRISCVInstructionCost( |
| 2130 | OpCodes: {RISCV::VMANDN_MM, RISCV::VMAND_MM, RISCV::VMOR_MM}, |
| 2131 | VT: LT.second, CostKind); |
| 2132 | } |
| 2133 | // vselect and max/min are supported natively. |
| 2134 | return ConstantMatCost + |
| 2135 | LT.first * getRISCVInstructionCost(OpCodes: RISCV::VMERGE_VVM, VT: LT.second, |
| 2136 | CostKind); |
| 2137 | } |
| 2138 | |
| 2139 | if (ValTy->getScalarSizeInBits() == 1) { |
| 2140 | // vmv.v.x v9, a0 |
| 2141 | // vmsne.vi v9, v9, 0 |
| 2142 | // vmandn.mm v8, v8, v9 |
| 2143 | // vmand.mm v9, v0, v9 |
| 2144 | // vmor.mm v0, v9, v8 |
| 2145 | MVT InterimVT = LT.second.changeVectorElementType(EltVT: MVT::i8); |
| 2146 | return ConstantMatCost + |
| 2147 | LT.first * |
| 2148 | getRISCVInstructionCost(OpCodes: {RISCV::VMV_V_X, RISCV::VMSNE_VI}, |
| 2149 | VT: InterimVT, CostKind) + |
| 2150 | LT.first * getRISCVInstructionCost( |
| 2151 | OpCodes: {RISCV::VMANDN_MM, RISCV::VMAND_MM, RISCV::VMOR_MM}, |
| 2152 | VT: LT.second, CostKind); |
| 2153 | } |
| 2154 | |
| 2155 | // vmv.v.x v10, a0 |
| 2156 | // vmsne.vi v0, v10, 0 |
| 2157 | // vmerge.vvm v8, v9, v8, v0 |
| 2158 | return ConstantMatCost + |
| 2159 | LT.first * getRISCVInstructionCost( |
| 2160 | OpCodes: {RISCV::VMV_V_X, RISCV::VMSNE_VI, RISCV::VMERGE_VVM}, |
| 2161 | VT: LT.second, CostKind); |
| 2162 | } |
| 2163 | |
| 2164 | if ((Opcode == Instruction::ICmp) && ValTy->isVectorTy() && |
| 2165 | CmpInst::isIntPredicate(P: VecPred)) { |
| 2166 | // Use VMSLT_VV to represent VMSEQ, VMSNE, VMSLTU, VMSLEU, VMSLT, VMSLE |
| 2167 | // provided they incur the same cost across all implementations |
| 2168 | return ConstantMatCost + LT.first * getRISCVInstructionCost(OpCodes: RISCV::VMSLT_VV, |
| 2169 | VT: LT.second, |
| 2170 | CostKind); |
| 2171 | } |
| 2172 | |
| 2173 | if ((Opcode == Instruction::FCmp) && ValTy->isVectorTy() && |
| 2174 | CmpInst::isFPPredicate(P: VecPred)) { |
| 2175 | |
| 2176 | // Use VMXOR_MM and VMXNOR_MM to generate all true/false mask |
| 2177 | if ((VecPred == CmpInst::FCMP_FALSE) || (VecPred == CmpInst::FCMP_TRUE)) |
| 2178 | return ConstantMatCost + |
| 2179 | getRISCVInstructionCost(OpCodes: RISCV::VMXOR_MM, VT: LT.second, CostKind); |
| 2180 | |
| 2181 | // If we do not support the input floating point vector type, use the base |
| 2182 | // one which will calculate as: |
| 2183 | // ScalarizeCost + Num * Cost for fixed vector, |
| 2184 | // InvalidCost for scalable vector. |
| 2185 | if ((ValTy->getScalarSizeInBits() == 16 && !ST->hasVInstructionsF16()) || |
| 2186 | (ValTy->getScalarSizeInBits() == 32 && !ST->hasVInstructionsF32()) || |
| 2187 | (ValTy->getScalarSizeInBits() == 64 && !ST->hasVInstructionsF64())) |
| 2188 | return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, |
| 2189 | Op1Info, Op2Info, I); |
| 2190 | |
| 2191 | // Assuming vector fp compare and mask instructions are all the same cost |
| 2192 | // until a need arises to differentiate them. |
| 2193 | switch (VecPred) { |
| 2194 | case CmpInst::FCMP_ONE: // vmflt.vv + vmflt.vv + vmor.mm |
| 2195 | case CmpInst::FCMP_ORD: // vmfeq.vv + vmfeq.vv + vmand.mm |
| 2196 | case CmpInst::FCMP_UNO: // vmfne.vv + vmfne.vv + vmor.mm |
| 2197 | case CmpInst::FCMP_UEQ: // vmflt.vv + vmflt.vv + vmnor.mm |
| 2198 | return ConstantMatCost + |
| 2199 | LT.first * getRISCVInstructionCost( |
| 2200 | OpCodes: {RISCV::VMFLT_VV, RISCV::VMFLT_VV, RISCV::VMOR_MM}, |
| 2201 | VT: LT.second, CostKind); |
| 2202 | |
| 2203 | case CmpInst::FCMP_UGT: // vmfle.vv + vmnot.m |
| 2204 | case CmpInst::FCMP_UGE: // vmflt.vv + vmnot.m |
| 2205 | case CmpInst::FCMP_ULT: // vmfle.vv + vmnot.m |
| 2206 | case CmpInst::FCMP_ULE: // vmflt.vv + vmnot.m |
| 2207 | return ConstantMatCost + |
| 2208 | LT.first * |
| 2209 | getRISCVInstructionCost(OpCodes: {RISCV::VMFLT_VV, RISCV::VMNAND_MM}, |
| 2210 | VT: LT.second, CostKind); |
| 2211 | |
| 2212 | case CmpInst::FCMP_OEQ: // vmfeq.vv |
| 2213 | case CmpInst::FCMP_OGT: // vmflt.vv |
| 2214 | case CmpInst::FCMP_OGE: // vmfle.vv |
| 2215 | case CmpInst::FCMP_OLT: // vmflt.vv |
| 2216 | case CmpInst::FCMP_OLE: // vmfle.vv |
| 2217 | case CmpInst::FCMP_UNE: // vmfne.vv |
| 2218 | return ConstantMatCost + |
| 2219 | LT.first * |
| 2220 | getRISCVInstructionCost(OpCodes: RISCV::VMFLT_VV, VT: LT.second, CostKind); |
| 2221 | default: |
| 2222 | break; |
| 2223 | } |
| 2224 | } |
| 2225 | |
| 2226 | // With ShortForwardBranchOpt or ConditionalMoveFusion, scalar icmp + select |
| 2227 | // instructions will lower to SELECT_CC and lower to PseudoCCMOVGPR which will |
| 2228 | // generate a conditional branch + mv. The cost of scalar (icmp + select) will |
| 2229 | // be (0 + select instr cost). |
| 2230 | if (ST->hasConditionalMoveFusion() && I && isa<ICmpInst>(Val: I) && |
| 2231 | ValTy->isIntegerTy() && !I->user_empty()) { |
| 2232 | if (all_of(Range: I->users(), P: [&](const User *U) { |
| 2233 | return match(V: U, P: m_Select(C: m_Specific(V: I), L: m_Value(), R: m_Value())) && |
| 2234 | U->getType()->isIntegerTy() && |
| 2235 | !isa<ConstantData>(Val: U->getOperand(i: 1)) && |
| 2236 | !isa<ConstantData>(Val: U->getOperand(i: 2)); |
| 2237 | })) |
| 2238 | return 0; |
| 2239 | } |
| 2240 | |
| 2241 | // TODO: Add cost for scalar type. |
| 2242 | |
| 2243 | return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, |
| 2244 | Op1Info, Op2Info, I); |
| 2245 | } |
| 2246 | |
| 2247 | InstructionCost RISCVTTIImpl::getCFInstrCost(unsigned Opcode, |
| 2248 | TTI::TargetCostKind CostKind, |
| 2249 | const Instruction *I) const { |
| 2250 | if (CostKind != TTI::TCK_RecipThroughput) |
| 2251 | return Opcode == Instruction::PHI ? 0 : 1; |
| 2252 | // Branches are assumed to be predicted. |
| 2253 | return 0; |
| 2254 | } |
| 2255 | |
| 2256 | InstructionCost RISCVTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, |
| 2257 | TTI::TargetCostKind CostKind, |
| 2258 | unsigned Index, |
| 2259 | const Value *Op0, |
| 2260 | const Value *Op1) const { |
| 2261 | assert(Val->isVectorTy() && "This must be a vector type" ); |
| 2262 | |
| 2263 | if (Opcode != Instruction::ExtractElement && |
| 2264 | Opcode != Instruction::InsertElement) |
| 2265 | return BaseT::getVectorInstrCost(Opcode, Val, CostKind, Index, Op0, Op1); |
| 2266 | |
| 2267 | // Legalize the type. |
| 2268 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: Val); |
| 2269 | |
| 2270 | // This type is legalized to a scalar type. |
| 2271 | if (!LT.second.isVector()) { |
| 2272 | auto *FixedVecTy = cast<FixedVectorType>(Val); |
| 2273 | // If Index is a known constant, cost is zero. |
| 2274 | if (Index != -1U) |
| 2275 | return 0; |
| 2276 | // Extract/InsertElement with non-constant index is very costly when |
| 2277 | // scalarized; estimate cost of loads/stores sequence via the stack: |
| 2278 | // ExtractElement cost: store vector to stack, load scalar; |
| 2279 | // InsertElement cost: store vector to stack, store scalar, load vector. |
| 2280 | Type *ElemTy = FixedVecTy->getElementType(); |
| 2281 | auto NumElems = FixedVecTy->getNumElements(); |
| 2282 | auto Align = DL.getPrefTypeAlign(Ty: ElemTy); |
| 2283 | InstructionCost LoadCost = |
| 2284 | getMemoryOpCost(Opcode: Instruction::Load, Src: ElemTy, Alignment: Align, AddressSpace: 0, CostKind); |
| 2285 | InstructionCost StoreCost = |
| 2286 | getMemoryOpCost(Opcode: Instruction::Store, Src: ElemTy, Alignment: Align, AddressSpace: 0, CostKind); |
| 2287 | return Opcode == Instruction::ExtractElement |
| 2288 | ? StoreCost * NumElems + LoadCost |
| 2289 | : (StoreCost + LoadCost) * NumElems + StoreCost; |
| 2290 | } |
| 2291 | |
| 2292 | // For unsupported scalable vector. |
| 2293 | if (LT.second.isScalableVector() && !LT.first.isValid()) |
| 2294 | return LT.first; |
| 2295 | |
| 2296 | // Mask vector extract/insert is expanded via e8. |
| 2297 | if (Val->getScalarSizeInBits() == 1) { |
| 2298 | VectorType *WideTy = |
| 2299 | VectorType::get(ElementType: IntegerType::get(C&: Val->getContext(), NumBits: 8), |
| 2300 | EC: cast<VectorType>(Val)->getElementCount()); |
| 2301 | if (Opcode == Instruction::ExtractElement) { |
| 2302 | InstructionCost ExtendCost |
| 2303 | = getCastInstrCost(Opcode: Instruction::ZExt, Dst: WideTy, Src: Val, |
| 2304 | CCH: TTI::CastContextHint::None, CostKind); |
| 2305 | InstructionCost |
| 2306 | = getVectorInstrCost(Opcode, Val: WideTy, CostKind, Index, Op0: nullptr, Op1: nullptr); |
| 2307 | return ExtendCost + ExtractCost; |
| 2308 | } |
| 2309 | InstructionCost ExtendCost |
| 2310 | = getCastInstrCost(Opcode: Instruction::ZExt, Dst: WideTy, Src: Val, |
| 2311 | CCH: TTI::CastContextHint::None, CostKind); |
| 2312 | InstructionCost InsertCost |
| 2313 | = getVectorInstrCost(Opcode, Val: WideTy, CostKind, Index, Op0: nullptr, Op1: nullptr); |
| 2314 | InstructionCost TruncCost |
| 2315 | = getCastInstrCost(Opcode: Instruction::Trunc, Dst: Val, Src: WideTy, |
| 2316 | CCH: TTI::CastContextHint::None, CostKind); |
| 2317 | return ExtendCost + InsertCost + TruncCost; |
| 2318 | } |
| 2319 | |
| 2320 | |
| 2321 | // In RVV, we could use vslidedown + vmv.x.s to extract element from vector |
| 2322 | // and vslideup + vmv.s.x to insert element to vector. |
| 2323 | unsigned BaseCost = 1; |
| 2324 | // When insertelement we should add the index with 1 as the input of vslideup. |
| 2325 | unsigned SlideCost = Opcode == Instruction::InsertElement ? 2 : 1; |
| 2326 | |
| 2327 | if (Index != -1U) { |
| 2328 | // The type may be split. For fixed-width vectors we can normalize the |
| 2329 | // index to the new type. |
| 2330 | if (LT.second.isFixedLengthVector()) { |
| 2331 | unsigned Width = LT.second.getVectorNumElements(); |
| 2332 | Index = Index % Width; |
| 2333 | } |
| 2334 | |
| 2335 | // If exact VLEN is known, we will insert/extract into the appropriate |
| 2336 | // subvector with no additional subvector insert/extract cost. |
| 2337 | if (auto VLEN = ST->getRealVLen()) { |
| 2338 | unsigned EltSize = LT.second.getScalarSizeInBits(); |
| 2339 | unsigned M1Max = *VLEN / EltSize; |
| 2340 | Index = Index % M1Max; |
| 2341 | } |
| 2342 | |
| 2343 | if (Index == 0) |
| 2344 | // We can extract/insert the first element without vslidedown/vslideup. |
| 2345 | SlideCost = 0; |
| 2346 | else if (ST->hasVendorXRivosVisni() && isUInt<5>(x: Index) && |
| 2347 | Val->getScalarType()->isIntegerTy()) |
| 2348 | SlideCost = 0; // With ri.vinsert/ri.vextract there is no slide needed |
| 2349 | else if (Opcode == Instruction::InsertElement) |
| 2350 | SlideCost = 1; // With a constant index, we do not need to use addi. |
| 2351 | } |
| 2352 | |
| 2353 | // When the vector needs to split into multiple register groups and the index |
| 2354 | // exceeds single vector register group, we need to insert/extract the element |
| 2355 | // via stack. |
| 2356 | if (LT.first > 1 && |
| 2357 | ((Index == -1U) || (Index >= LT.second.getVectorMinNumElements() && |
| 2358 | LT.second.isScalableVector()))) { |
| 2359 | Type *ScalarType = Val->getScalarType(); |
| 2360 | Align VecAlign = DL.getPrefTypeAlign(Ty: Val); |
| 2361 | Align SclAlign = DL.getPrefTypeAlign(Ty: ScalarType); |
| 2362 | // Extra addi for unknown index. |
| 2363 | InstructionCost IdxCost = Index == -1U ? 1 : 0; |
| 2364 | |
| 2365 | // Store all split vectors into stack and load the target element. |
| 2366 | if (Opcode == Instruction::ExtractElement) |
| 2367 | return getMemoryOpCost(Opcode: Instruction::Store, Src: Val, Alignment: VecAlign, AddressSpace: 0, CostKind) + |
| 2368 | getMemoryOpCost(Opcode: Instruction::Load, Src: ScalarType, Alignment: SclAlign, AddressSpace: 0, |
| 2369 | CostKind) + |
| 2370 | IdxCost; |
| 2371 | |
| 2372 | // Store all split vectors into stack and store the target element and load |
| 2373 | // vectors back. |
| 2374 | return getMemoryOpCost(Opcode: Instruction::Store, Src: Val, Alignment: VecAlign, AddressSpace: 0, CostKind) + |
| 2375 | getMemoryOpCost(Opcode: Instruction::Load, Src: Val, Alignment: VecAlign, AddressSpace: 0, CostKind) + |
| 2376 | getMemoryOpCost(Opcode: Instruction::Store, Src: ScalarType, Alignment: SclAlign, AddressSpace: 0, |
| 2377 | CostKind) + |
| 2378 | IdxCost; |
| 2379 | } |
| 2380 | |
| 2381 | // Extract i64 in the target that has XLEN=32 need more instruction. |
| 2382 | if (Val->getScalarType()->isIntegerTy() && |
| 2383 | ST->getXLen() < Val->getScalarSizeInBits()) { |
| 2384 | // For extractelement, we need the following instructions: |
| 2385 | // vsetivli zero, 1, e64, m1, ta, mu (not count) |
| 2386 | // vslidedown.vx v8, v8, a0 |
| 2387 | // vmv.x.s a0, v8 |
| 2388 | // li a1, 32 |
| 2389 | // vsrl.vx v8, v8, a1 |
| 2390 | // vmv.x.s a1, v8 |
| 2391 | |
| 2392 | // For insertelement, we need the following instructions: |
| 2393 | // vsetivli zero, 2, e32, m4, ta, mu (not count) |
| 2394 | // vmv.v.i v12, 0 |
| 2395 | // vslide1up.vx v16, v12, a1 |
| 2396 | // vslide1up.vx v12, v16, a0 |
| 2397 | // addi a0, a2, 1 |
| 2398 | // vsetvli zero, a0, e64, m4, tu, mu (not count) |
| 2399 | // vslideup.vx v8, v12, a2 |
| 2400 | |
| 2401 | // TODO: should we count these special vsetvlis? |
| 2402 | BaseCost = Opcode == Instruction::InsertElement ? 3 : 4; |
| 2403 | } |
| 2404 | return BaseCost + SlideCost; |
| 2405 | } |
| 2406 | |
| 2407 | InstructionCost RISCVTTIImpl::getArithmeticInstrCost( |
| 2408 | unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, |
| 2409 | TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info, |
| 2410 | ArrayRef<const Value *> Args, const Instruction *CxtI) const { |
| 2411 | |
| 2412 | // TODO: Handle more cost kinds. |
| 2413 | if (CostKind != TTI::TCK_RecipThroughput) |
| 2414 | return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info: Op1Info, Opd2Info: Op2Info, |
| 2415 | Args, CxtI); |
| 2416 | |
| 2417 | if (isa<FixedVectorType>(Val: Ty) && !ST->useRVVForFixedLengthVectors()) |
| 2418 | return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info: Op1Info, Opd2Info: Op2Info, |
| 2419 | Args, CxtI); |
| 2420 | |
| 2421 | // Skip if scalar size of Ty is bigger than ELEN. |
| 2422 | if (isa<VectorType>(Val: Ty) && Ty->getScalarSizeInBits() > ST->getELen()) |
| 2423 | return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info: Op1Info, Opd2Info: Op2Info, |
| 2424 | Args, CxtI); |
| 2425 | |
| 2426 | // Legalize the type. |
| 2427 | std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty); |
| 2428 | |
| 2429 | // TODO: Handle scalar type. |
| 2430 | if (!LT.second.isVector()) |
| 2431 | return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info: Op1Info, Opd2Info: Op2Info, |
| 2432 | Args, CxtI); |
| 2433 | |
| 2434 | // f16 with zvfhmin and bf16 will be promoted to f32. |
| 2435 | // FIXME: nxv32[b]f16 will be custom lowered and split. |
| 2436 | unsigned ISDOpcode = TLI->InstructionOpcodeToISD(Opcode); |
| 2437 | InstructionCost CastCost = 0; |
| 2438 | if ((LT.second.getVectorElementType() == MVT::f16 || |
| 2439 | LT.second.getVectorElementType() == MVT::bf16) && |
| 2440 | TLI->getOperationAction(Op: ISDOpcode, VT: LT.second) == |
| 2441 | TargetLoweringBase::LegalizeAction::Promote) { |
| 2442 | MVT PromotedVT = TLI->getTypeToPromoteTo(Op: ISDOpcode, VT: LT.second); |
| 2443 | Type *PromotedTy = EVT(PromotedVT).getTypeForEVT(Context&: Ty->getContext()); |
| 2444 | Type *LegalTy = EVT(LT.second).getTypeForEVT(Context&: Ty->getContext()); |
| 2445 | // Add cost of extending arguments |
| 2446 | CastCost += LT.first * Args.size() * |
| 2447 | getCastInstrCost(Opcode: Instruction::FPExt, Dst: PromotedTy, Src: LegalTy, |
| 2448 | CCH: TTI::CastContextHint::None, CostKind); |
| 2449 | // Add cost of truncating result |
| 2450 | CastCost += |
| 2451 | LT.first * getCastInstrCost(Opcode: Instruction::FPTrunc, Dst: LegalTy, Src: PromotedTy, |
| 2452 | CCH: TTI::CastContextHint::None, CostKind); |
| 2453 | // Compute cost of op in promoted type |
| 2454 | LT.second = PromotedVT; |
| 2455 | } |
| 2456 | |
| 2457 | auto getConstantMatCost = |
| 2458 | [&](unsigned Operand, TTI::OperandValueInfo OpInfo) -> InstructionCost { |
| 2459 | if (OpInfo.isUniform() && canSplatOperand(Opcode, Operand)) |
| 2460 | // Two sub-cases: |
| 2461 | // * Has a 5 bit immediate operand which can be splatted. |
| 2462 | // * Has a larger immediate which must be materialized in scalar register |
| 2463 | // We return 0 for both as we currently ignore the cost of materializing |
| 2464 | // scalar constants in GPRs. |
| 2465 | return 0; |
| 2466 | |
| 2467 | return getConstantPoolLoadCost(Ty, CostKind); |
| 2468 | }; |
| 2469 | |
| 2470 | // Add the cost of materializing any constant vectors required. |
| 2471 | InstructionCost ConstantMatCost = 0; |
| 2472 | if (Op1Info.isConstant()) |
| 2473 | ConstantMatCost += getConstantMatCost(0, Op1Info); |
| 2474 | if (Op2Info.isConstant()) |
| 2475 | ConstantMatCost += getConstantMatCost(1, Op2Info); |
| 2476 | |
| 2477 | unsigned Op; |
| 2478 | switch (ISDOpcode) { |
| 2479 | case ISD::ADD: |
| 2480 | case ISD::SUB: |
| 2481 | Op = RISCV::VADD_VV; |
| 2482 | break; |
| 2483 | case ISD::SHL: |
| 2484 | case ISD::SRL: |
| 2485 | case ISD::SRA: |
| 2486 | Op = RISCV::VSLL_VV; |
| 2487 | break; |
| 2488 | case ISD::AND: |
| 2489 | case ISD::OR: |
| 2490 | case ISD::XOR: |
| 2491 | Op = (Ty->getScalarSizeInBits() == 1) ? RISCV::VMAND_MM : RISCV::VAND_VV; |
| 2492 | break; |
| 2493 | case ISD::MUL: |
| 2494 | case ISD::MULHS: |
| 2495 | case ISD::MULHU: |
| 2496 | Op = RISCV::VMUL_VV; |
| 2497 | break; |
| 2498 | case ISD::SDIV: |
| 2499 | case ISD::UDIV: |
| 2500 | Op = RISCV::VDIV_VV; |
| 2501 | break; |
| 2502 | case ISD::SREM: |
| 2503 | case ISD::UREM: |
| 2504 | Op = RISCV::VREM_VV; |
| 2505 | break; |
| 2506 | case ISD::FADD: |
| 2507 | case ISD::FSUB: |
| 2508 | Op = RISCV::VFADD_VV; |
| 2509 | break; |
| 2510 | case ISD::FMUL: |
| 2511 | Op = RISCV::VFMUL_VV; |
| 2512 | break; |
| 2513 | case ISD::FDIV: |
| 2514 | Op = RISCV::VFDIV_VV; |
| 2515 | break; |
| 2516 | case ISD::FNEG: |
| 2517 | Op = RISCV::VFSGNJN_VV; |
| 2518 | break; |
| 2519 | default: |
| 2520 | // Assuming all other instructions have the same cost until a need arises to |
| 2521 | // differentiate them. |
| 2522 | return CastCost + ConstantMatCost + |
| 2523 | BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info: Op1Info, Opd2Info: Op2Info, |
| 2524 | Args, CxtI); |
| 2525 | } |
| 2526 | |
| 2527 | InstructionCost InstrCost = getRISCVInstructionCost(OpCodes: Op, VT: LT.second, CostKind); |
| 2528 | // We use BasicTTIImpl to calculate scalar costs, which assumes floating point |
| 2529 | // ops are twice as expensive as integer ops. Do the same for vectors so |
| 2530 | // scalar floating point ops aren't cheaper than their vector equivalents. |
| 2531 | if (Ty->isFPOrFPVectorTy()) |
| 2532 | InstrCost *= 2; |
| 2533 | return CastCost + ConstantMatCost + LT.first * InstrCost; |
| 2534 | } |
| 2535 | |
| 2536 | // TODO: Deduplicate from TargetTransformInfoImplCRTPBase. |
| 2537 | InstructionCost RISCVTTIImpl::getPointersChainCost( |
| 2538 | ArrayRef<const Value *> Ptrs, const Value *Base, |
| 2539 | const TTI::PointersChainInfo &Info, Type *AccessTy, |
| 2540 | TTI::TargetCostKind CostKind) const { |
| 2541 | InstructionCost Cost = TTI::TCC_Free; |
| 2542 | // In the basic model we take into account GEP instructions only |
| 2543 | // (although here can come alloca instruction, a value, constants and/or |
| 2544 | // constant expressions, PHIs, bitcasts ... whatever allowed to be used as a |
| 2545 | // pointer). Typically, if Base is a not a GEP-instruction and all the |
| 2546 | // pointers are relative to the same base address, all the rest are |
| 2547 | // either GEP instructions, PHIs, bitcasts or constants. When we have same |
| 2548 | // base, we just calculate cost of each non-Base GEP as an ADD operation if |
| 2549 | // any their index is a non-const. |
| 2550 | // If no known dependencies between the pointers cost is calculated as a sum |
| 2551 | // of costs of GEP instructions. |
| 2552 | for (auto [I, V] : enumerate(First&: Ptrs)) { |
| 2553 | const auto *GEP = dyn_cast<GetElementPtrInst>(Val: V); |
| 2554 | if (!GEP) |
| 2555 | continue; |
| 2556 | if (Info.isSameBase() && V != Base) { |
| 2557 | if (GEP->hasAllConstantIndices()) |
| 2558 | continue; |
| 2559 | // If the chain is unit-stride and BaseReg + stride*i is a legal |
| 2560 | // addressing mode, then presume the base GEP is sitting around in a |
| 2561 | // register somewhere and check if we can fold the offset relative to |
| 2562 | // it. |
| 2563 | unsigned Stride = DL.getTypeStoreSize(Ty: AccessTy); |
| 2564 | if (Info.isUnitStride() && |
| 2565 | isLegalAddressingMode(Ty: AccessTy, |
| 2566 | /* BaseGV */ nullptr, |
| 2567 | /* BaseOffset */ Stride * I, |
| 2568 | /* HasBaseReg */ true, |
| 2569 | /* Scale */ 0, |
| 2570 | AddrSpace: GEP->getType()->getPointerAddressSpace())) |
| 2571 | continue; |
| 2572 | Cost += getArithmeticInstrCost(Opcode: Instruction::Add, Ty: GEP->getType(), CostKind, |
| 2573 | Op1Info: {.Kind: TTI::OK_AnyValue, .Properties: TTI::OP_None}, |
| 2574 | Op2Info: {.Kind: TTI::OK_AnyValue, .Properties: TTI::OP_None}, Args: {}); |
| 2575 | } else { |
| 2576 | SmallVector<const Value *> Indices(GEP->indices()); |
| 2577 | Cost += getGEPCost(PointeeType: GEP->getSourceElementType(), Ptr: GEP->getPointerOperand(), |
| 2578 | Operands: Indices, AccessType: AccessTy, CostKind); |
| 2579 | } |
| 2580 | } |
| 2581 | return Cost; |
| 2582 | } |
| 2583 | |
| 2584 | void RISCVTTIImpl::( |
| 2585 | Loop *L, ScalarEvolution &SE, TTI::UnrollingPreferences &UP, |
| 2586 | OptimizationRemarkEmitter *ORE) const { |
| 2587 | // TODO: More tuning on benchmarks and metrics with changes as needed |
| 2588 | // would apply to all settings below to enable performance. |
| 2589 | |
| 2590 | |
| 2591 | if (ST->enableDefaultUnroll()) |
| 2592 | return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP, ORE); |
| 2593 | |
| 2594 | // Enable Upper bound unrolling universally, not dependent upon the conditions |
| 2595 | // below. |
| 2596 | UP.UpperBound = true; |
| 2597 | |
| 2598 | // Disable loop unrolling for Oz and Os. |
| 2599 | UP.OptSizeThreshold = 0; |
| 2600 | UP.PartialOptSizeThreshold = 0; |
| 2601 | if (L->getHeader()->getParent()->hasOptSize()) |
| 2602 | return; |
| 2603 | |
| 2604 | SmallVector<BasicBlock *, 4> ExitingBlocks; |
| 2605 | L->getExitingBlocks(ExitingBlocks); |
| 2606 | LLVM_DEBUG(dbgs() << "Loop has:\n" |
| 2607 | << "Blocks: " << L->getNumBlocks() << "\n" |
| 2608 | << "Exit blocks: " << ExitingBlocks.size() << "\n" ); |
| 2609 | |
| 2610 | // Only allow another exit other than the latch. This acts as an early exit |
| 2611 | // as it mirrors the profitability calculation of the runtime unroller. |
| 2612 | if (ExitingBlocks.size() > 2) |
| 2613 | return; |
| 2614 | |
| 2615 | // Limit the CFG of the loop body for targets with a branch predictor. |
| 2616 | // Allowing 4 blocks permits if-then-else diamonds in the body. |
| 2617 | if (L->getNumBlocks() > 4) |
| 2618 | return; |
| 2619 | |
| 2620 | // Don't unroll vectorized loops, including the remainder loop |
| 2621 | if (getBooleanLoopAttribute(TheLoop: L, Name: "llvm.loop.isvectorized" )) |
| 2622 | return; |
| 2623 | |
| 2624 | // Scan the loop: don't unroll loops with calls as this could prevent |
| 2625 | // inlining. |
| 2626 | InstructionCost Cost = 0; |
| 2627 | for (auto *BB : L->getBlocks()) { |
| 2628 | for (auto &I : *BB) { |
| 2629 | // Initial setting - Don't unroll loops containing vectorized |
| 2630 | // instructions. |
| 2631 | if (I.getType()->isVectorTy()) |
| 2632 | return; |
| 2633 | |
| 2634 | if (isa<CallInst>(Val: I) || isa<InvokeInst>(Val: I)) { |
| 2635 | if (const Function *F = cast<CallBase>(Val&: I).getCalledFunction()) { |
| 2636 | if (!isLoweredToCall(F)) |
| 2637 | continue; |
| 2638 | } |
| 2639 | return; |
| 2640 | } |
| 2641 | |
| 2642 | SmallVector<const Value *> Operands(I.operand_values()); |
| 2643 | Cost += getInstructionCost(U: &I, Operands, |
| 2644 | CostKind: TargetTransformInfo::TCK_SizeAndLatency); |
| 2645 | } |
| 2646 | } |
| 2647 | |
| 2648 | LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost << "\n" ); |
| 2649 | |
| 2650 | UP.Partial = true; |
| 2651 | UP.Runtime = true; |
| 2652 | UP.UnrollRemainder = true; |
| 2653 | UP.UnrollAndJam = true; |
| 2654 | |
| 2655 | // Force unrolling small loops can be very useful because of the branch |
| 2656 | // taken cost of the backedge. |
| 2657 | if (Cost < 12) |
| 2658 | UP.Force = true; |
| 2659 | } |
| 2660 | |
| 2661 | void RISCVTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, |
| 2662 | TTI::PeelingPreferences &PP) const { |
| 2663 | BaseT::getPeelingPreferences(L, SE, PP); |
| 2664 | } |
| 2665 | |
| 2666 | unsigned RISCVTTIImpl::getRegUsageForType(Type *Ty) const { |
| 2667 | if (Ty->isVectorTy()) { |
| 2668 | // f16 with only zvfhmin and bf16 will be promoted to f32 |
| 2669 | Type *EltTy = cast<VectorType>(Val: Ty)->getElementType(); |
| 2670 | if ((EltTy->isHalfTy() && !ST->hasVInstructionsF16()) || |
| 2671 | EltTy->isBFloatTy()) |
| 2672 | Ty = VectorType::get(ElementType: Type::getFloatTy(C&: Ty->getContext()), |
| 2673 | Other: cast<VectorType>(Val: Ty)); |
| 2674 | |
| 2675 | TypeSize Size = DL.getTypeSizeInBits(Ty); |
| 2676 | if (Size.isScalable() && ST->hasVInstructions()) |
| 2677 | return divideCeil(Numerator: Size.getKnownMinValue(), Denominator: RISCV::RVVBitsPerBlock); |
| 2678 | |
| 2679 | if (ST->useRVVForFixedLengthVectors()) |
| 2680 | return divideCeil(Numerator: Size, Denominator: ST->getRealMinVLen()); |
| 2681 | } |
| 2682 | |
| 2683 | return BaseT::getRegUsageForType(Ty); |
| 2684 | } |
| 2685 | |
| 2686 | unsigned RISCVTTIImpl::getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { |
| 2687 | if (SLPMaxVF.getNumOccurrences()) |
| 2688 | return SLPMaxVF; |
| 2689 | |
| 2690 | // Return how many elements can fit in getRegisterBitwidth. This is the |
| 2691 | // same routine as used in LoopVectorizer. We should probably be |
| 2692 | // accounting for whether we actually have instructions with the right |
| 2693 | // lane type, but we don't have enough information to do that without |
| 2694 | // some additional plumbing which hasn't been justified yet. |
| 2695 | TypeSize RegWidth = |
| 2696 | getRegisterBitWidth(K: TargetTransformInfo::RGK_FixedWidthVector); |
| 2697 | // If no vector registers, or absurd element widths, disable |
| 2698 | // vectorization by returning 1. |
| 2699 | return std::max<unsigned>(a: 1U, b: RegWidth.getFixedValue() / ElemWidth); |
| 2700 | } |
| 2701 | |
| 2702 | unsigned RISCVTTIImpl::getMinTripCountTailFoldingThreshold() const { |
| 2703 | return RVVMinTripCount; |
| 2704 | } |
| 2705 | |
| 2706 | TTI::AddressingModeKind |
| 2707 | RISCVTTIImpl::getPreferredAddressingMode(const Loop *L, |
| 2708 | ScalarEvolution *SE) const { |
| 2709 | if (ST->hasVendorXCVmem() && !ST->is64Bit()) |
| 2710 | return TTI::AMK_PostIndexed; |
| 2711 | |
| 2712 | return BasicTTIImplBase::getPreferredAddressingMode(L, SE); |
| 2713 | } |
| 2714 | |
| 2715 | bool RISCVTTIImpl::isLSRCostLess(const TargetTransformInfo::LSRCost &C1, |
| 2716 | const TargetTransformInfo::LSRCost &C2) const { |
| 2717 | // RISC-V specific here are "instruction number 1st priority". |
| 2718 | // If we need to emit adds inside the loop to add up base registers, then |
| 2719 | // we need at least one extra temporary register. |
| 2720 | unsigned C1NumRegs = C1.NumRegs + (C1.NumBaseAdds != 0); |
| 2721 | unsigned C2NumRegs = C2.NumRegs + (C2.NumBaseAdds != 0); |
| 2722 | return std::tie(args: C1.Insns, args&: C1NumRegs, args: C1.AddRecCost, |
| 2723 | args: C1.NumIVMuls, args: C1.NumBaseAdds, |
| 2724 | args: C1.ScaleCost, args: C1.ImmCost, args: C1.SetupCost) < |
| 2725 | std::tie(args: C2.Insns, args&: C2NumRegs, args: C2.AddRecCost, |
| 2726 | args: C2.NumIVMuls, args: C2.NumBaseAdds, |
| 2727 | args: C2.ScaleCost, args: C2.ImmCost, args: C2.SetupCost); |
| 2728 | } |
| 2729 | |
| 2730 | bool RISCVTTIImpl::isLegalMaskedExpandLoad(Type *DataTy, |
| 2731 | Align Alignment) const { |
| 2732 | auto *VTy = dyn_cast<VectorType>(Val: DataTy); |
| 2733 | if (!VTy || VTy->isScalableTy()) |
| 2734 | return false; |
| 2735 | |
| 2736 | if (!isLegalMaskedLoadStore(DataType: DataTy, Alignment)) |
| 2737 | return false; |
| 2738 | |
| 2739 | // FIXME: If it is an i8 vector and the element count exceeds 256, we should |
| 2740 | // scalarize these types with LMUL >= maximum fixed-length LMUL. |
| 2741 | if (VTy->getElementType()->isIntegerTy(Bitwidth: 8)) |
| 2742 | if (VTy->getElementCount().getFixedValue() > 256) |
| 2743 | return VTy->getPrimitiveSizeInBits() / ST->getRealMinVLen() < |
| 2744 | ST->getMaxLMULForFixedLengthVectors(); |
| 2745 | return true; |
| 2746 | } |
| 2747 | |
| 2748 | bool RISCVTTIImpl::isLegalMaskedCompressStore(Type *DataTy, |
| 2749 | Align Alignment) const { |
| 2750 | auto *VTy = dyn_cast<VectorType>(Val: DataTy); |
| 2751 | if (!VTy || VTy->isScalableTy()) |
| 2752 | return false; |
| 2753 | |
| 2754 | if (!isLegalMaskedLoadStore(DataType: DataTy, Alignment)) |
| 2755 | return false; |
| 2756 | return true; |
| 2757 | } |
| 2758 | |
| 2759 | /// See if \p I should be considered for address type promotion. We check if \p |
| 2760 | /// I is a sext with right type and used in memory accesses. If it used in a |
| 2761 | /// "complex" getelementptr, we allow it to be promoted without finding other |
| 2762 | /// sext instructions that sign extended the same initial value. A getelementptr |
| 2763 | /// is considered as "complex" if it has more than 2 operands. |
| 2764 | bool RISCVTTIImpl::shouldConsiderAddressTypePromotion( |
| 2765 | const Instruction &I, bool &) const { |
| 2766 | bool Considerable = false; |
| 2767 | AllowPromotionWithoutCommonHeader = false; |
| 2768 | if (!isa<SExtInst>(Val: &I)) |
| 2769 | return false; |
| 2770 | Type *ConsideredSExtType = |
| 2771 | Type::getInt64Ty(C&: I.getParent()->getParent()->getContext()); |
| 2772 | if (I.getType() != ConsideredSExtType) |
| 2773 | return false; |
| 2774 | // See if the sext is the one with the right type and used in at least one |
| 2775 | // GetElementPtrInst. |
| 2776 | for (const User *U : I.users()) { |
| 2777 | if (const GetElementPtrInst *GEPInst = dyn_cast<GetElementPtrInst>(Val: U)) { |
| 2778 | Considerable = true; |
| 2779 | // A getelementptr is considered as "complex" if it has more than 2 |
| 2780 | // operands. We will promote a SExt used in such complex GEP as we |
| 2781 | // expect some computation to be merged if they are done on 64 bits. |
| 2782 | if (GEPInst->getNumOperands() > 2) { |
| 2783 | AllowPromotionWithoutCommonHeader = true; |
| 2784 | break; |
| 2785 | } |
| 2786 | } |
| 2787 | } |
| 2788 | return Considerable; |
| 2789 | } |
| 2790 | |
| 2791 | bool RISCVTTIImpl::canSplatOperand(unsigned Opcode, int Operand) const { |
| 2792 | switch (Opcode) { |
| 2793 | case Instruction::Add: |
| 2794 | case Instruction::Sub: |
| 2795 | case Instruction::Mul: |
| 2796 | case Instruction::And: |
| 2797 | case Instruction::Or: |
| 2798 | case Instruction::Xor: |
| 2799 | case Instruction::FAdd: |
| 2800 | case Instruction::FSub: |
| 2801 | case Instruction::FMul: |
| 2802 | case Instruction::FDiv: |
| 2803 | case Instruction::ICmp: |
| 2804 | case Instruction::FCmp: |
| 2805 | return true; |
| 2806 | case Instruction::Shl: |
| 2807 | case Instruction::LShr: |
| 2808 | case Instruction::AShr: |
| 2809 | case Instruction::UDiv: |
| 2810 | case Instruction::SDiv: |
| 2811 | case Instruction::URem: |
| 2812 | case Instruction::SRem: |
| 2813 | case Instruction::Select: |
| 2814 | return Operand == 1; |
| 2815 | default: |
| 2816 | return false; |
| 2817 | } |
| 2818 | } |
| 2819 | |
| 2820 | bool RISCVTTIImpl::canSplatOperand(Instruction *I, int Operand) const { |
| 2821 | if (!I->getType()->isVectorTy() || !ST->hasVInstructions()) |
| 2822 | return false; |
| 2823 | |
| 2824 | if (canSplatOperand(Opcode: I->getOpcode(), Operand)) |
| 2825 | return true; |
| 2826 | |
| 2827 | auto *II = dyn_cast<IntrinsicInst>(Val: I); |
| 2828 | if (!II) |
| 2829 | return false; |
| 2830 | |
| 2831 | switch (II->getIntrinsicID()) { |
| 2832 | case Intrinsic::fma: |
| 2833 | case Intrinsic::vp_fma: |
| 2834 | case Intrinsic::fmuladd: |
| 2835 | case Intrinsic::vp_fmuladd: |
| 2836 | return Operand == 0 || Operand == 1; |
| 2837 | case Intrinsic::vp_shl: |
| 2838 | case Intrinsic::vp_lshr: |
| 2839 | case Intrinsic::vp_ashr: |
| 2840 | case Intrinsic::vp_udiv: |
| 2841 | case Intrinsic::vp_sdiv: |
| 2842 | case Intrinsic::vp_urem: |
| 2843 | case Intrinsic::vp_srem: |
| 2844 | case Intrinsic::ssub_sat: |
| 2845 | case Intrinsic::vp_ssub_sat: |
| 2846 | case Intrinsic::usub_sat: |
| 2847 | case Intrinsic::vp_usub_sat: |
| 2848 | case Intrinsic::vp_select: |
| 2849 | return Operand == 1; |
| 2850 | // These intrinsics are commutative. |
| 2851 | case Intrinsic::vp_add: |
| 2852 | case Intrinsic::vp_mul: |
| 2853 | case Intrinsic::vp_and: |
| 2854 | case Intrinsic::vp_or: |
| 2855 | case Intrinsic::vp_xor: |
| 2856 | case Intrinsic::vp_fadd: |
| 2857 | case Intrinsic::vp_fmul: |
| 2858 | case Intrinsic::vp_icmp: |
| 2859 | case Intrinsic::vp_fcmp: |
| 2860 | case Intrinsic::smin: |
| 2861 | case Intrinsic::vp_smin: |
| 2862 | case Intrinsic::umin: |
| 2863 | case Intrinsic::vp_umin: |
| 2864 | case Intrinsic::smax: |
| 2865 | case Intrinsic::vp_smax: |
| 2866 | case Intrinsic::umax: |
| 2867 | case Intrinsic::vp_umax: |
| 2868 | case Intrinsic::sadd_sat: |
| 2869 | case Intrinsic::vp_sadd_sat: |
| 2870 | case Intrinsic::uadd_sat: |
| 2871 | case Intrinsic::vp_uadd_sat: |
| 2872 | // These intrinsics have 'vr' versions. |
| 2873 | case Intrinsic::vp_sub: |
| 2874 | case Intrinsic::vp_fsub: |
| 2875 | case Intrinsic::vp_fdiv: |
| 2876 | return Operand == 0 || Operand == 1; |
| 2877 | default: |
| 2878 | return false; |
| 2879 | } |
| 2880 | } |
| 2881 | |
| 2882 | /// Check if sinking \p I's operands to I's basic block is profitable, because |
| 2883 | /// the operands can be folded into a target instruction, e.g. |
| 2884 | /// splats of scalars can fold into vector instructions. |
| 2885 | bool RISCVTTIImpl::isProfitableToSinkOperands( |
| 2886 | Instruction *I, SmallVectorImpl<Use *> &Ops) const { |
| 2887 | using namespace llvm::PatternMatch; |
| 2888 | |
| 2889 | if (I->isBitwiseLogicOp()) { |
| 2890 | if (!I->getType()->isVectorTy()) { |
| 2891 | if (ST->hasStdExtZbb() || ST->hasStdExtZbkb()) { |
| 2892 | for (auto &Op : I->operands()) { |
| 2893 | // (and/or/xor X, (not Y)) -> (andn/orn/xnor X, Y) |
| 2894 | if (match(V: Op.get(), P: m_Not(V: m_Value()))) { |
| 2895 | Ops.push_back(Elt: &Op); |
| 2896 | return true; |
| 2897 | } |
| 2898 | } |
| 2899 | } |
| 2900 | } else if (I->getOpcode() == Instruction::And && ST->hasStdExtZvkb()) { |
| 2901 | for (auto &Op : I->operands()) { |
| 2902 | // (and X, (not Y)) -> (vandn.vv X, Y) |
| 2903 | if (match(V: Op.get(), P: m_Not(V: m_Value()))) { |
| 2904 | Ops.push_back(Elt: &Op); |
| 2905 | return true; |
| 2906 | } |
| 2907 | // (and X, (splat (not Y))) -> (vandn.vx X, Y) |
| 2908 | if (match(V: Op.get(), P: m_Shuffle(v1: m_InsertElt(Val: m_Value(), Elt: m_Not(V: m_Value()), |
| 2909 | Idx: m_ZeroInt()), |
| 2910 | v2: m_Value(), mask: m_ZeroMask()))) { |
| 2911 | Use &InsertElt = cast<Instruction>(Val&: Op)->getOperandUse(i: 0); |
| 2912 | Use &Not = cast<Instruction>(Val&: InsertElt)->getOperandUse(i: 1); |
| 2913 | Ops.push_back(Elt: &Not); |
| 2914 | Ops.push_back(Elt: &InsertElt); |
| 2915 | Ops.push_back(Elt: &Op); |
| 2916 | return true; |
| 2917 | } |
| 2918 | } |
| 2919 | } |
| 2920 | } |
| 2921 | |
| 2922 | if (!I->getType()->isVectorTy() || !ST->hasVInstructions()) |
| 2923 | return false; |
| 2924 | |
| 2925 | // Don't sink splat operands if the target prefers it. Some targets requires |
| 2926 | // S2V transfer buffers and we can run out of them copying the same value |
| 2927 | // repeatedly. |
| 2928 | // FIXME: It could still be worth doing if it would improve vector register |
| 2929 | // pressure and prevent a vector spill. |
| 2930 | if (!ST->sinkSplatOperands()) |
| 2931 | return false; |
| 2932 | |
| 2933 | for (auto OpIdx : enumerate(First: I->operands())) { |
| 2934 | if (!canSplatOperand(I, Operand: OpIdx.index())) |
| 2935 | continue; |
| 2936 | |
| 2937 | Instruction *Op = dyn_cast<Instruction>(Val: OpIdx.value().get()); |
| 2938 | // Make sure we are not already sinking this operand |
| 2939 | if (!Op || any_of(Range&: Ops, P: [&](Use *U) { return U->get() == Op; })) |
| 2940 | continue; |
| 2941 | |
| 2942 | // We are looking for a splat/vp.splat that can be sunk. |
| 2943 | bool IsVPSplat = match(V: Op, P: m_Intrinsic<Intrinsic::experimental_vp_splat>( |
| 2944 | Op0: m_Value(), Op1: m_Value(), Op2: m_Value())); |
| 2945 | if (!IsVPSplat && |
| 2946 | !match(V: Op, P: m_Shuffle(v1: m_InsertElt(Val: m_Undef(), Elt: m_Value(), Idx: m_ZeroInt()), |
| 2947 | v2: m_Undef(), mask: m_ZeroMask()))) |
| 2948 | continue; |
| 2949 | |
| 2950 | // Don't sink i1 splats. |
| 2951 | if (cast<VectorType>(Val: Op->getType())->getElementType()->isIntegerTy(Bitwidth: 1)) |
| 2952 | continue; |
| 2953 | |
| 2954 | // All uses of the shuffle should be sunk to avoid duplicating it across gpr |
| 2955 | // and vector registers |
| 2956 | for (Use &U : Op->uses()) { |
| 2957 | Instruction *Insn = cast<Instruction>(Val: U.getUser()); |
| 2958 | if (!canSplatOperand(I: Insn, Operand: U.getOperandNo())) |
| 2959 | return false; |
| 2960 | } |
| 2961 | |
| 2962 | // Sink any fpexts since they might be used in a widening fp pattern. |
| 2963 | if (IsVPSplat) { |
| 2964 | if (isa<FPExtInst>(Val: Op->getOperand(i: 0))) |
| 2965 | Ops.push_back(Elt: &Op->getOperandUse(i: 0)); |
| 2966 | } else { |
| 2967 | Use *InsertEltUse = &Op->getOperandUse(i: 0); |
| 2968 | auto *InsertElt = cast<InsertElementInst>(Val: InsertEltUse); |
| 2969 | if (isa<FPExtInst>(Val: InsertElt->getOperand(i_nocapture: 1))) |
| 2970 | Ops.push_back(Elt: &InsertElt->getOperandUse(i: 1)); |
| 2971 | Ops.push_back(Elt: InsertEltUse); |
| 2972 | } |
| 2973 | Ops.push_back(Elt: &OpIdx.value()); |
| 2974 | } |
| 2975 | return true; |
| 2976 | } |
| 2977 | |
| 2978 | RISCVTTIImpl::TTI::MemCmpExpansionOptions |
| 2979 | RISCVTTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const { |
| 2980 | TTI::MemCmpExpansionOptions Options; |
| 2981 | // TODO: Enable expansion when unaligned access is not supported after we fix |
| 2982 | // issues in ExpandMemcmp. |
| 2983 | if (!ST->enableUnalignedScalarMem()) |
| 2984 | return Options; |
| 2985 | |
| 2986 | if (!ST->hasStdExtZbb() && !ST->hasStdExtZbkb() && !IsZeroCmp) |
| 2987 | return Options; |
| 2988 | |
| 2989 | Options.AllowOverlappingLoads = true; |
| 2990 | Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize); |
| 2991 | Options.NumLoadsPerBlock = Options.MaxNumLoads; |
| 2992 | if (ST->is64Bit()) { |
| 2993 | Options.LoadSizes = {8, 4, 2, 1}; |
| 2994 | Options.AllowedTailExpansions = {3, 5, 6}; |
| 2995 | } else { |
| 2996 | Options.LoadSizes = {4, 2, 1}; |
| 2997 | Options.AllowedTailExpansions = {3}; |
| 2998 | } |
| 2999 | |
| 3000 | if (IsZeroCmp && ST->hasVInstructions()) { |
| 3001 | unsigned VLenB = ST->getRealMinVLen() / 8; |
| 3002 | // The minimum size should be `XLen / 8 + 1`, and the maxinum size should be |
| 3003 | // `VLenB * MaxLMUL` so that it fits in a single register group. |
| 3004 | unsigned MinSize = ST->getXLen() / 8 + 1; |
| 3005 | unsigned MaxSize = VLenB * ST->getMaxLMULForFixedLengthVectors(); |
| 3006 | for (unsigned Size = MinSize; Size <= MaxSize; Size++) |
| 3007 | Options.LoadSizes.insert(I: Options.LoadSizes.begin(), Elt: Size); |
| 3008 | } |
| 3009 | return Options; |
| 3010 | } |
| 3011 | |