| 1 | //===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file contains small standalone helper functions and enum definitions for |
| 10 | // the X86 target useful for the compiler back-end and the MC libraries. |
| 11 | // As such, it deliberately does not include references to LLVM core |
| 12 | // code gen types, passes, etc.. |
| 13 | // |
| 14 | //===----------------------------------------------------------------------===// |
| 15 | |
| 16 | #ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H |
| 17 | #define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H |
| 18 | |
| 19 | #include "X86MCTargetDesc.h" |
| 20 | #include "llvm/MC/MCInstrDesc.h" |
| 21 | #include "llvm/Support/DataTypes.h" |
| 22 | #include "llvm/Support/ErrorHandling.h" |
| 23 | |
| 24 | namespace llvm { |
| 25 | namespace X86 { |
| 26 | // Enums for memory operand decoding. Each memory operand is represented with |
| 27 | // a 5 operand sequence in the form: [Base, Scale, Index, Disp, Segment] |
| 28 | enum { |
| 29 | AddrBaseReg = 0, |
| 30 | AddrScaleAmt = 1, |
| 31 | AddrIndexReg = 2, |
| 32 | AddrDisp = 3, |
| 33 | // The operand # of the segment in the memory operand. |
| 34 | AddrSegmentReg = 4, |
| 35 | // Total number of operands in a memory reference. |
| 36 | AddrNumOperands = 5 |
| 37 | }; |
| 38 | |
| 39 | /// AVX512 static rounding constants. These need to match the values in |
| 40 | /// avx512fintrin.h. |
| 41 | enum STATIC_ROUNDING { |
| 42 | TO_NEAREST_INT = 0, |
| 43 | TO_NEG_INF = 1, |
| 44 | TO_POS_INF = 2, |
| 45 | TO_ZERO = 3, |
| 46 | CUR_DIRECTION = 4, |
| 47 | NO_EXC = 8 |
| 48 | }; |
| 49 | |
| 50 | /// The constants to describe instr prefixes if there are |
| 51 | enum IPREFIXES { |
| 52 | IP_NO_PREFIX = 0, |
| 53 | IP_HAS_OP_SIZE = 1U << 0, |
| 54 | IP_HAS_AD_SIZE = 1U << 1, |
| 55 | IP_HAS_REPEAT_NE = 1U << 2, |
| 56 | IP_HAS_REPEAT = 1U << 3, |
| 57 | IP_HAS_LOCK = 1U << 4, |
| 58 | IP_HAS_NOTRACK = 1U << 5, |
| 59 | IP_USE_REX = 1U << 6, |
| 60 | IP_USE_REX2 = 1U << 7, |
| 61 | IP_USE_VEX = 1U << 8, |
| 62 | IP_USE_VEX2 = 1U << 9, |
| 63 | IP_USE_VEX3 = 1U << 10, |
| 64 | IP_USE_EVEX = 1U << 11, |
| 65 | IP_USE_DISP8 = 1U << 12, |
| 66 | IP_USE_DISP32 = 1U << 13, |
| 67 | }; |
| 68 | |
| 69 | enum OperandType : unsigned { |
| 70 | // AVX512 embedded rounding control. This should only have values 0-3. |
| 71 | OPERAND_ROUNDING_CONTROL = MCOI::OPERAND_FIRST_TARGET, |
| 72 | OPERAND_COND_CODE, |
| 73 | }; |
| 74 | |
| 75 | // X86 specific condition code. These correspond to X86_*_COND in |
| 76 | // X86InstrInfo.td. They must be kept in synch. |
| 77 | enum CondCode { |
| 78 | COND_O = 0, |
| 79 | COND_NO = 1, |
| 80 | COND_B = 2, |
| 81 | COND_AE = 3, |
| 82 | COND_E = 4, |
| 83 | COND_NE = 5, |
| 84 | COND_BE = 6, |
| 85 | COND_A = 7, |
| 86 | COND_S = 8, |
| 87 | COND_NS = 9, |
| 88 | COND_P = 10, |
| 89 | COND_NP = 11, |
| 90 | COND_L = 12, |
| 91 | COND_GE = 13, |
| 92 | COND_LE = 14, |
| 93 | COND_G = 15, |
| 94 | LAST_VALID_COND = COND_G, |
| 95 | // Artificial condition codes. These are used by analyzeBranch |
| 96 | // to indicate a block terminated with two conditional branches that together |
| 97 | // form a compound condition. They occur in code using FCMP_OEQ or FCMP_UNE, |
| 98 | // which can't be represented on x86 with a single condition. These |
| 99 | // are never used in MachineInstrs and are inverses of one another. |
| 100 | COND_NE_OR_P, |
| 101 | COND_E_AND_NP, |
| 102 | COND_INVALID |
| 103 | }; |
| 104 | |
| 105 | // The classification for the first instruction in macro fusion. |
| 106 | // FIXME: Zen 3 support branch fusion for OR/XOR. |
| 107 | enum class FirstMacroFusionInstKind { |
| 108 | Test, // TEST |
| 109 | Cmp, // CMP |
| 110 | And, // AND |
| 111 | AddSub, // ADD, SUB |
| 112 | IncDec, // INC, DEC |
| 113 | Invalid // Not valid as a first macro fusion instruction |
| 114 | }; |
| 115 | |
| 116 | enum class SecondMacroFusionInstKind { |
| 117 | AB, // JA, JB and variants |
| 118 | ELG, // JE, JL, JG and variants |
| 119 | SPO, // JS, JP, JO and variants |
| 120 | Invalid, // Not a fusible jump. |
| 121 | }; |
| 122 | |
| 123 | /// \returns the type of the first instruction in macro-fusion. |
| 124 | // FIXME: Zen 3 support branch fusion for OR/XOR. |
| 125 | inline FirstMacroFusionInstKind |
| 126 | classifyFirstOpcodeInMacroFusion(unsigned Opcode) { |
| 127 | switch (Opcode) { |
| 128 | default: |
| 129 | return FirstMacroFusionInstKind::Invalid; |
| 130 | // TEST |
| 131 | case X86::TEST16i16: |
| 132 | case X86::TEST16mr: |
| 133 | case X86::TEST16ri: |
| 134 | case X86::TEST16rr: |
| 135 | case X86::TEST32i32: |
| 136 | case X86::TEST32mr: |
| 137 | case X86::TEST32ri: |
| 138 | case X86::TEST32rr: |
| 139 | case X86::TEST64i32: |
| 140 | case X86::TEST64mr: |
| 141 | case X86::TEST64ri32: |
| 142 | case X86::TEST64rr: |
| 143 | case X86::TEST8i8: |
| 144 | case X86::TEST8mr: |
| 145 | case X86::TEST8ri: |
| 146 | case X86::TEST8rr: |
| 147 | return FirstMacroFusionInstKind::Test; |
| 148 | case X86::AND16i16: |
| 149 | case X86::AND16ri: |
| 150 | case X86::AND16ri8: |
| 151 | case X86::AND16rm: |
| 152 | case X86::AND16rr: |
| 153 | case X86::AND32i32: |
| 154 | case X86::AND32ri: |
| 155 | case X86::AND32ri8: |
| 156 | case X86::AND32rm: |
| 157 | case X86::AND32rr: |
| 158 | case X86::AND64i32: |
| 159 | case X86::AND64ri32: |
| 160 | case X86::AND64ri8: |
| 161 | case X86::AND64rm: |
| 162 | case X86::AND64rr: |
| 163 | case X86::AND8i8: |
| 164 | case X86::AND8ri: |
| 165 | case X86::AND8ri8: |
| 166 | case X86::AND8rm: |
| 167 | case X86::AND8rr: |
| 168 | return FirstMacroFusionInstKind::And; |
| 169 | // CMP |
| 170 | case X86::CMP16i16: |
| 171 | case X86::CMP16mr: |
| 172 | case X86::CMP16ri: |
| 173 | case X86::CMP16ri8: |
| 174 | case X86::CMP16rm: |
| 175 | case X86::CMP16rr: |
| 176 | case X86::CMP32i32: |
| 177 | case X86::CMP32mr: |
| 178 | case X86::CMP32ri: |
| 179 | case X86::CMP32ri8: |
| 180 | case X86::CMP32rm: |
| 181 | case X86::CMP32rr: |
| 182 | case X86::CMP64i32: |
| 183 | case X86::CMP64mr: |
| 184 | case X86::CMP64ri32: |
| 185 | case X86::CMP64ri8: |
| 186 | case X86::CMP64rm: |
| 187 | case X86::CMP64rr: |
| 188 | case X86::CMP8i8: |
| 189 | case X86::CMP8mr: |
| 190 | case X86::CMP8ri: |
| 191 | case X86::CMP8ri8: |
| 192 | case X86::CMP8rm: |
| 193 | case X86::CMP8rr: |
| 194 | return FirstMacroFusionInstKind::Cmp; |
| 195 | // ADD |
| 196 | case X86::ADD16i16: |
| 197 | case X86::ADD16ri: |
| 198 | case X86::ADD16ri8: |
| 199 | case X86::ADD16rm: |
| 200 | case X86::ADD16rr: |
| 201 | case X86::ADD32i32: |
| 202 | case X86::ADD32ri: |
| 203 | case X86::ADD32ri8: |
| 204 | case X86::ADD32rm: |
| 205 | case X86::ADD32rr: |
| 206 | case X86::ADD64i32: |
| 207 | case X86::ADD64ri32: |
| 208 | case X86::ADD64ri8: |
| 209 | case X86::ADD64rm: |
| 210 | case X86::ADD64rr: |
| 211 | case X86::ADD8i8: |
| 212 | case X86::ADD8ri: |
| 213 | case X86::ADD8ri8: |
| 214 | case X86::ADD8rm: |
| 215 | case X86::ADD8rr: |
| 216 | // SUB |
| 217 | case X86::SUB16i16: |
| 218 | case X86::SUB16ri: |
| 219 | case X86::SUB16ri8: |
| 220 | case X86::SUB16rm: |
| 221 | case X86::SUB16rr: |
| 222 | case X86::SUB32i32: |
| 223 | case X86::SUB32ri: |
| 224 | case X86::SUB32ri8: |
| 225 | case X86::SUB32rm: |
| 226 | case X86::SUB32rr: |
| 227 | case X86::SUB64i32: |
| 228 | case X86::SUB64ri32: |
| 229 | case X86::SUB64ri8: |
| 230 | case X86::SUB64rm: |
| 231 | case X86::SUB64rr: |
| 232 | case X86::SUB8i8: |
| 233 | case X86::SUB8ri: |
| 234 | case X86::SUB8ri8: |
| 235 | case X86::SUB8rm: |
| 236 | case X86::SUB8rr: |
| 237 | return FirstMacroFusionInstKind::AddSub; |
| 238 | // INC |
| 239 | case X86::INC16r: |
| 240 | case X86::INC16r_alt: |
| 241 | case X86::INC32r: |
| 242 | case X86::INC32r_alt: |
| 243 | case X86::INC64r: |
| 244 | case X86::INC8r: |
| 245 | // DEC |
| 246 | case X86::DEC16r: |
| 247 | case X86::DEC16r_alt: |
| 248 | case X86::DEC32r: |
| 249 | case X86::DEC32r_alt: |
| 250 | case X86::DEC64r: |
| 251 | case X86::DEC8r: |
| 252 | return FirstMacroFusionInstKind::IncDec; |
| 253 | } |
| 254 | } |
| 255 | |
| 256 | /// \returns the type of the second instruction in macro-fusion. |
| 257 | inline SecondMacroFusionInstKind |
| 258 | classifySecondCondCodeInMacroFusion(X86::CondCode CC) { |
| 259 | if (CC == X86::COND_INVALID) |
| 260 | return SecondMacroFusionInstKind::Invalid; |
| 261 | switch (CC) { |
| 262 | default: |
| 263 | return SecondMacroFusionInstKind::Invalid; |
| 264 | case X86::COND_E: // JE,JZ |
| 265 | case X86::COND_NE: // JNE,JNZ |
| 266 | case X86::COND_L: // JL,JNGE |
| 267 | case X86::COND_LE: // JLE,JNG |
| 268 | case X86::COND_G: // JG,JNLE |
| 269 | case X86::COND_GE: // JGE,JNL |
| 270 | return SecondMacroFusionInstKind::ELG; |
| 271 | case X86::COND_B: // JB,JC |
| 272 | case X86::COND_BE: // JNA,JBE |
| 273 | case X86::COND_A: // JA,JNBE |
| 274 | case X86::COND_AE: // JAE,JNC,JNB |
| 275 | return SecondMacroFusionInstKind::AB; |
| 276 | case X86::COND_S: // JS |
| 277 | case X86::COND_NS: // JNS |
| 278 | case X86::COND_P: // JP,JPE |
| 279 | case X86::COND_NP: // JNP,JPO |
| 280 | case X86::COND_O: // JO |
| 281 | case X86::COND_NO: // JNO |
| 282 | return SecondMacroFusionInstKind::SPO; |
| 283 | } |
| 284 | } |
| 285 | |
| 286 | /// \param FirstKind kind of the first instruction in macro fusion. |
| 287 | /// \param SecondKind kind of the second instruction in macro fusion. |
| 288 | /// |
| 289 | /// \returns true if the two instruction can be macro fused. |
| 290 | inline bool isMacroFused(FirstMacroFusionInstKind FirstKind, |
| 291 | SecondMacroFusionInstKind SecondKind) { |
| 292 | switch (FirstKind) { |
| 293 | case X86::FirstMacroFusionInstKind::Test: |
| 294 | case X86::FirstMacroFusionInstKind::And: |
| 295 | return true; |
| 296 | case X86::FirstMacroFusionInstKind::Cmp: |
| 297 | case X86::FirstMacroFusionInstKind::AddSub: |
| 298 | return SecondKind == X86::SecondMacroFusionInstKind::AB || |
| 299 | SecondKind == X86::SecondMacroFusionInstKind::ELG; |
| 300 | case X86::FirstMacroFusionInstKind::IncDec: |
| 301 | return SecondKind == X86::SecondMacroFusionInstKind::ELG; |
| 302 | case X86::FirstMacroFusionInstKind::Invalid: |
| 303 | return false; |
| 304 | } |
| 305 | llvm_unreachable("unknown fusion type" ); |
| 306 | } |
| 307 | |
| 308 | /// Defines the possible values of the branch boundary alignment mask. |
| 309 | enum AlignBranchBoundaryKind : uint8_t { |
| 310 | AlignBranchNone = 0, |
| 311 | AlignBranchFused = 1U << 0, |
| 312 | AlignBranchJcc = 1U << 1, |
| 313 | AlignBranchJmp = 1U << 2, |
| 314 | AlignBranchCall = 1U << 3, |
| 315 | AlignBranchRet = 1U << 4, |
| 316 | AlignBranchIndirect = 1U << 5 |
| 317 | }; |
| 318 | |
| 319 | /// Defines the encoding values for segment override prefix. |
| 320 | enum EncodingOfSegmentOverridePrefix : uint8_t { |
| 321 | CS_Encoding = 0x2E, |
| 322 | DS_Encoding = 0x3E, |
| 323 | ES_Encoding = 0x26, |
| 324 | FS_Encoding = 0x64, |
| 325 | GS_Encoding = 0x65, |
| 326 | SS_Encoding = 0x36 |
| 327 | }; |
| 328 | |
| 329 | /// Given a segment register, return the encoding of the segment override |
| 330 | /// prefix for it. |
| 331 | inline EncodingOfSegmentOverridePrefix |
| 332 | getSegmentOverridePrefixForReg(MCRegister Reg) { |
| 333 | switch (Reg.id()) { |
| 334 | default: |
| 335 | llvm_unreachable("Unknown segment register!" ); |
| 336 | case X86::CS: |
| 337 | return CS_Encoding; |
| 338 | case X86::DS: |
| 339 | return DS_Encoding; |
| 340 | case X86::ES: |
| 341 | return ES_Encoding; |
| 342 | case X86::FS: |
| 343 | return FS_Encoding; |
| 344 | case X86::GS: |
| 345 | return GS_Encoding; |
| 346 | case X86::SS: |
| 347 | return SS_Encoding; |
| 348 | } |
| 349 | } |
| 350 | |
| 351 | } // namespace X86 |
| 352 | |
| 353 | /// X86II - This namespace holds all of the target specific flags that |
| 354 | /// instruction info tracks. |
| 355 | /// |
| 356 | namespace X86II { |
| 357 | /// Target Operand Flag enum. |
| 358 | enum TOF { |
| 359 | //===------------------------------------------------------------------===// |
| 360 | // X86 Specific MachineOperand flags. |
| 361 | // |
| 362 | /// MO_NO_FLAG - No flag for the operand |
| 363 | MO_NO_FLAG, |
| 364 | /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a |
| 365 | /// relocation of: |
| 366 | /// SYMBOL_LABEL + [. - PICBASELABEL] |
| 367 | MO_GOT_ABSOLUTE_ADDRESS, |
| 368 | /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the |
| 369 | /// immediate should get the value of the symbol minus the PIC base label: |
| 370 | /// SYMBOL_LABEL - PICBASELABEL |
| 371 | MO_PIC_BASE_OFFSET, |
| 372 | /// MO_GOT - On a symbol operand this indicates that the immediate is the |
| 373 | /// offset to the GOT entry for the symbol name from the base of the GOT. |
| 374 | /// See the X86-64 ELF ABI supplement for more details. |
| 375 | /// SYMBOL_LABEL @GOT |
| 376 | MO_GOT, |
| 377 | /// MO_GOTOFF - On a symbol operand this indicates that the immediate is |
| 378 | /// the offset to the location of the symbol name from the base of the GOT. |
| 379 | /// See the X86-64 ELF ABI supplement for more details. |
| 380 | /// SYMBOL_LABEL @GOTOFF |
| 381 | MO_GOTOFF, |
| 382 | /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is |
| 383 | /// offset to the GOT entry for the symbol name from the current code |
| 384 | /// location. |
| 385 | /// See the X86-64 ELF ABI supplement for more details. |
| 386 | /// SYMBOL_LABEL @GOTPCREL |
| 387 | MO_GOTPCREL, |
| 388 | /// MO_GOTPCREL_NORELAX - Same as MO_GOTPCREL except that R_X86_64_GOTPCREL |
| 389 | /// relocations are guaranteed to be emitted by the integrated assembler |
| 390 | /// instead of the relaxable R_X86_64[_REX]_GOTPCRELX relocations. |
| 391 | MO_GOTPCREL_NORELAX, |
| 392 | /// MO_PLT - On a symbol operand this indicates that the immediate is |
| 393 | /// offset to the PLT entry of symbol name from the current code location. |
| 394 | /// See the X86-64 ELF ABI supplement for more details. |
| 395 | /// SYMBOL_LABEL @PLT |
| 396 | MO_PLT, |
| 397 | /// MO_TLSGD - On a symbol operand this indicates that the immediate is |
| 398 | /// the offset of the GOT entry with the TLS index structure that contains |
| 399 | /// the module number and variable offset for the symbol. Used in the |
| 400 | /// general dynamic TLS access model. |
| 401 | /// See 'ELF Handling for Thread-Local Storage' for more details. |
| 402 | /// SYMBOL_LABEL @TLSGD |
| 403 | MO_TLSGD, |
| 404 | /// MO_TLSLD - On a symbol operand this indicates that the immediate is |
| 405 | /// the offset of the GOT entry with the TLS index for the module that |
| 406 | /// contains the symbol. When this index is passed to a call to |
| 407 | /// __tls_get_addr, the function will return the base address of the TLS |
| 408 | /// block for the symbol. Used in the x86-64 local dynamic TLS access model. |
| 409 | /// See 'ELF Handling for Thread-Local Storage' for more details. |
| 410 | /// SYMBOL_LABEL @TLSLD |
| 411 | MO_TLSLD, |
| 412 | /// MO_TLSLDM - On a symbol operand this indicates that the immediate is |
| 413 | /// the offset of the GOT entry with the TLS index for the module that |
| 414 | /// contains the symbol. When this index is passed to a call to |
| 415 | /// ___tls_get_addr, the function will return the base address of the TLS |
| 416 | /// block for the symbol. Used in the IA32 local dynamic TLS access model. |
| 417 | /// See 'ELF Handling for Thread-Local Storage' for more details. |
| 418 | /// SYMBOL_LABEL @TLSLDM |
| 419 | MO_TLSLDM, |
| 420 | /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is |
| 421 | /// the offset of the GOT entry with the thread-pointer offset for the |
| 422 | /// symbol. Used in the x86-64 initial exec TLS access model. |
| 423 | /// See 'ELF Handling for Thread-Local Storage' for more details. |
| 424 | /// SYMBOL_LABEL @GOTTPOFF |
| 425 | MO_GOTTPOFF, |
| 426 | /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is |
| 427 | /// the absolute address of the GOT entry with the negative thread-pointer |
| 428 | /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access |
| 429 | /// model. |
| 430 | /// See 'ELF Handling for Thread-Local Storage' for more details. |
| 431 | /// SYMBOL_LABEL @INDNTPOFF |
| 432 | MO_INDNTPOFF, |
| 433 | /// MO_TPOFF - On a symbol operand this indicates that the immediate is |
| 434 | /// the thread-pointer offset for the symbol. Used in the x86-64 local |
| 435 | /// exec TLS access model. |
| 436 | /// See 'ELF Handling for Thread-Local Storage' for more details. |
| 437 | /// SYMBOL_LABEL @TPOFF |
| 438 | MO_TPOFF, |
| 439 | /// MO_DTPOFF - On a symbol operand this indicates that the immediate is |
| 440 | /// the offset of the GOT entry with the TLS offset of the symbol. Used |
| 441 | /// in the local dynamic TLS access model. |
| 442 | /// See 'ELF Handling for Thread-Local Storage' for more details. |
| 443 | /// SYMBOL_LABEL @DTPOFF |
| 444 | MO_DTPOFF, |
| 445 | /// MO_NTPOFF - On a symbol operand this indicates that the immediate is |
| 446 | /// the negative thread-pointer offset for the symbol. Used in the IA32 |
| 447 | /// local exec TLS access model. |
| 448 | /// See 'ELF Handling for Thread-Local Storage' for more details. |
| 449 | /// SYMBOL_LABEL @NTPOFF |
| 450 | MO_NTPOFF, |
| 451 | /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is |
| 452 | /// the offset of the GOT entry with the negative thread-pointer offset for |
| 453 | /// the symbol. Used in the PIC IA32 initial exec TLS access model. |
| 454 | /// See 'ELF Handling for Thread-Local Storage' for more details. |
| 455 | /// SYMBOL_LABEL @GOTNTPOFF |
| 456 | MO_GOTNTPOFF, |
| 457 | /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the |
| 458 | /// reference is actually to the "__imp_FOO" symbol. This is used for |
| 459 | /// dllimport linkage on windows. |
| 460 | MO_DLLIMPORT, |
| 461 | /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the |
| 462 | /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a |
| 463 | /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub. |
| 464 | MO_DARWIN_NONLAZY, |
| 465 | /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates |
| 466 | /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is |
| 467 | /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub. |
| 468 | MO_DARWIN_NONLAZY_PIC_BASE, |
| 469 | /// MO_TLVP - On a symbol operand this indicates that the immediate is |
| 470 | /// some TLS offset. |
| 471 | /// This is the TLS offset for the Darwin TLS mechanism. |
| 472 | MO_TLVP, |
| 473 | /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate |
| 474 | /// is some TLS offset from the picbase. |
| 475 | /// This is the 32-bit TLS offset for Darwin TLS in PIC mode. |
| 476 | MO_TLVP_PIC_BASE, |
| 477 | /// MO_SECREL - On a symbol operand this indicates that the immediate is |
| 478 | /// the offset from beginning of section. |
| 479 | /// This is the TLS offset for the COFF/Windows TLS mechanism. |
| 480 | MO_SECREL, |
| 481 | /// MO_ABS8 - On a symbol operand this indicates that the symbol is known |
| 482 | /// to be an absolute symbol in range [0,128), so we can use the @ABS8 |
| 483 | /// symbol modifier. |
| 484 | MO_ABS8, |
| 485 | /// MO_COFFSTUB - On a symbol operand "FOO", this indicates that the |
| 486 | /// reference is actually to the ".refptr.FOO" symbol. This is used for |
| 487 | /// stub symbols on windows. |
| 488 | MO_COFFSTUB, |
| 489 | }; |
| 490 | |
| 491 | enum : uint64_t { |
| 492 | //===------------------------------------------------------------------===// |
| 493 | // Instruction encodings. These are the standard/most common forms for X86 |
| 494 | // instructions. |
| 495 | // |
| 496 | /// PseudoFrm - This represents an instruction that is a pseudo instruction |
| 497 | /// or one that has not been implemented yet. It is illegal to code generate |
| 498 | /// it, but tolerated for intermediate implementation stages. |
| 499 | Pseudo = 0, |
| 500 | /// Raw - This form is for instructions that don't have any operands, so |
| 501 | /// they are just a fixed opcode value, like 'leave'. |
| 502 | RawFrm = 1, |
| 503 | /// AddRegFrm - This form is used for instructions like 'push r32' that have |
| 504 | /// their one register operand added to their opcode. |
| 505 | AddRegFrm = 2, |
| 506 | /// RawFrmMemOffs - This form is for instructions that store an absolute |
| 507 | /// memory offset as an immediate with a possible segment override. |
| 508 | RawFrmMemOffs = 3, |
| 509 | /// RawFrmSrc - This form is for instructions that use the source index |
| 510 | /// register SI/ESI/RSI with a possible segment override. |
| 511 | RawFrmSrc = 4, |
| 512 | /// RawFrmDst - This form is for instructions that use the destination index |
| 513 | /// register DI/EDI/RDI. |
| 514 | RawFrmDst = 5, |
| 515 | /// RawFrmDstSrc - This form is for instructions that use the source index |
| 516 | /// register SI/ESI/RSI with a possible segment override, and also the |
| 517 | /// destination index register DI/EDI/RDI. |
| 518 | RawFrmDstSrc = 6, |
| 519 | /// RawFrmImm8 - This is used for the ENTER instruction, which has two |
| 520 | /// immediates, the first of which is a 16-bit immediate (specified by |
| 521 | /// the imm encoding) and the second is a 8-bit fixed value. |
| 522 | RawFrmImm8 = 7, |
| 523 | /// RawFrmImm16 - This is used for CALL FAR instructions, which have two |
| 524 | /// immediates, the first of which is a 16 or 32-bit immediate (specified by |
| 525 | /// the imm encoding) and the second is a 16-bit fixed value. In the AMD |
| 526 | /// manual, this operand is described as pntr16:32 and pntr16:16 |
| 527 | RawFrmImm16 = 8, |
| 528 | /// AddCCFrm - This form is used for Jcc that encode the condition code |
| 529 | /// in the lower 4 bits of the opcode. |
| 530 | AddCCFrm = 9, |
| 531 | /// PrefixByte - This form is used for instructions that represent a prefix |
| 532 | /// byte like data16 or rep. |
| 533 | PrefixByte = 10, |
| 534 | /// MRMDestRegCC - This form is used for the cfcmov instructions, which use |
| 535 | /// the Mod/RM byte to specify the operands reg(r/m) and reg(reg) and also |
| 536 | /// encodes a condition code. |
| 537 | MRMDestRegCC = 18, |
| 538 | /// MRMDestMemCC - This form is used for the cfcmov instructions, which use |
| 539 | /// the Mod/RM byte to specify the operands mem(r/m) and reg(reg) and also |
| 540 | /// encodes a condition code. |
| 541 | MRMDestMemCC = 19, |
| 542 | /// MRMDestMem4VOp3CC - This form is used for instructions that use the Mod/RM |
| 543 | /// byte to specify a destination which in this case is memory and operand 3 |
| 544 | /// with VEX.VVVV, and also encodes a condition code. |
| 545 | MRMDestMem4VOp3CC = 20, |
| 546 | /// Instructions operate on a register Reg/Opcode operand not the r/m field. |
| 547 | MRMr0 = 21, |
| 548 | /// MRMSrcMem - But force to use the SIB field. |
| 549 | MRMSrcMemFSIB = 22, |
| 550 | /// MRMDestMem - But force to use the SIB field. |
| 551 | MRMDestMemFSIB = 23, |
| 552 | /// MRMDestMem - This form is used for instructions that use the Mod/RM byte |
| 553 | /// to specify a destination, which in this case is memory. |
| 554 | MRMDestMem = 24, |
| 555 | /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte |
| 556 | /// to specify a source, which in this case is memory. |
| 557 | MRMSrcMem = 25, |
| 558 | /// MRMSrcMem4VOp3 - This form is used for instructions that encode |
| 559 | /// operand 3 with VEX.VVVV and load from memory. |
| 560 | MRMSrcMem4VOp3 = 26, |
| 561 | /// MRMSrcMemOp4 - This form is used for instructions that use the Mod/RM |
| 562 | /// byte to specify the fourth source, which in this case is memory. |
| 563 | MRMSrcMemOp4 = 27, |
| 564 | /// MRMSrcMemCC - This form is used for instructions that use the Mod/RM |
| 565 | /// byte to specify the operands and also encodes a condition code. |
| 566 | MRMSrcMemCC = 28, |
| 567 | /// MRMXm - This form is used for instructions that use the Mod/RM byte |
| 568 | /// to specify a memory source, but doesn't use the middle field. And has |
| 569 | /// a condition code. |
| 570 | MRMXmCC = 30, |
| 571 | /// MRMXm - This form is used for instructions that use the Mod/RM byte |
| 572 | /// to specify a memory source, but doesn't use the middle field. |
| 573 | MRMXm = 31, |
| 574 | /// MRM0m-MRM7m - Instructions that operate on a memory r/m operand and use |
| 575 | /// reg field to hold extended opcode, which is represented as /0, /1, ... |
| 576 | MRM0m = 32, // Format /0 |
| 577 | MRM1m = 33, // Format /1 |
| 578 | MRM2m = 34, // Format /2 |
| 579 | MRM3m = 35, // Format /3 |
| 580 | MRM4m = 36, // Format /4 |
| 581 | MRM5m = 37, // Format /5 |
| 582 | MRM6m = 38, // Format /6 |
| 583 | MRM7m = 39, // Format /7 |
| 584 | /// MRMDestReg - This form is used for instructions that use the Mod/RM byte |
| 585 | /// to specify a destination, which in this case is a register. |
| 586 | MRMDestReg = 40, |
| 587 | /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte |
| 588 | /// to specify a source, which in this case is a register. |
| 589 | MRMSrcReg = 41, |
| 590 | /// MRMSrcReg4VOp3 - This form is used for instructions that encode |
| 591 | /// operand 3 with VEX.VVVV and do not load from memory. |
| 592 | MRMSrcReg4VOp3 = 42, |
| 593 | /// MRMSrcRegOp4 - This form is used for instructions that use the Mod/RM |
| 594 | /// byte to specify the fourth source, which in this case is a register. |
| 595 | MRMSrcRegOp4 = 43, |
| 596 | /// MRMSrcRegCC - This form is used for instructions that use the Mod/RM |
| 597 | /// byte to specify the operands and also encodes a condition code |
| 598 | MRMSrcRegCC = 44, |
| 599 | /// MRMXCCr - This form is used for instructions that use the Mod/RM byte |
| 600 | /// to specify a register source, but doesn't use the middle field. And has |
| 601 | /// a condition code. |
| 602 | MRMXrCC = 46, |
| 603 | /// MRMXr - This form is used for instructions that use the Mod/RM byte |
| 604 | /// to specify a register source, but doesn't use the middle field. |
| 605 | MRMXr = 47, |
| 606 | /// MRM0r-MRM7r - Instructions that operate on a register r/m operand and use |
| 607 | /// reg field to hold extended opcode, which is represented as /0, /1, ... |
| 608 | MRM0r = 48, // Format /0 |
| 609 | MRM1r = 49, // Format /1 |
| 610 | MRM2r = 50, // Format /2 |
| 611 | MRM3r = 51, // Format /3 |
| 612 | MRM4r = 52, // Format /4 |
| 613 | MRM5r = 53, // Format /5 |
| 614 | MRM6r = 54, // Format /6 |
| 615 | MRM7r = 55, // Format /7 |
| 616 | /// MRM0X-MRM7X - Instructions that operate that have mod=11 and an opcode but |
| 617 | /// ignore r/m. |
| 618 | MRM0X = 56, // Format /0 |
| 619 | MRM1X = 57, // Format /1 |
| 620 | MRM2X = 58, // Format /2 |
| 621 | MRM3X = 59, // Format /3 |
| 622 | MRM4X = 60, // Format /4 |
| 623 | MRM5X = 61, // Format /5 |
| 624 | MRM6X = 62, // Format /6 |
| 625 | MRM7X = 63, // Format /7 |
| 626 | /// MRM_XX (XX: C0-FF)- A mod/rm byte of exactly 0xXX. |
| 627 | MRM_C0 = 64, |
| 628 | MRM_C1 = 65, |
| 629 | MRM_C2 = 66, |
| 630 | MRM_C3 = 67, |
| 631 | MRM_C4 = 68, |
| 632 | MRM_C5 = 69, |
| 633 | MRM_C6 = 70, |
| 634 | MRM_C7 = 71, |
| 635 | MRM_C8 = 72, |
| 636 | MRM_C9 = 73, |
| 637 | MRM_CA = 74, |
| 638 | MRM_CB = 75, |
| 639 | MRM_CC = 76, |
| 640 | MRM_CD = 77, |
| 641 | MRM_CE = 78, |
| 642 | MRM_CF = 79, |
| 643 | MRM_D0 = 80, |
| 644 | MRM_D1 = 81, |
| 645 | MRM_D2 = 82, |
| 646 | MRM_D3 = 83, |
| 647 | MRM_D4 = 84, |
| 648 | MRM_D5 = 85, |
| 649 | MRM_D6 = 86, |
| 650 | MRM_D7 = 87, |
| 651 | MRM_D8 = 88, |
| 652 | MRM_D9 = 89, |
| 653 | MRM_DA = 90, |
| 654 | MRM_DB = 91, |
| 655 | MRM_DC = 92, |
| 656 | MRM_DD = 93, |
| 657 | MRM_DE = 94, |
| 658 | MRM_DF = 95, |
| 659 | MRM_E0 = 96, |
| 660 | MRM_E1 = 97, |
| 661 | MRM_E2 = 98, |
| 662 | MRM_E3 = 99, |
| 663 | MRM_E4 = 100, |
| 664 | MRM_E5 = 101, |
| 665 | MRM_E6 = 102, |
| 666 | MRM_E7 = 103, |
| 667 | MRM_E8 = 104, |
| 668 | MRM_E9 = 105, |
| 669 | MRM_EA = 106, |
| 670 | MRM_EB = 107, |
| 671 | MRM_EC = 108, |
| 672 | MRM_ED = 109, |
| 673 | MRM_EE = 110, |
| 674 | MRM_EF = 111, |
| 675 | MRM_F0 = 112, |
| 676 | MRM_F1 = 113, |
| 677 | MRM_F2 = 114, |
| 678 | MRM_F3 = 115, |
| 679 | MRM_F4 = 116, |
| 680 | MRM_F5 = 117, |
| 681 | MRM_F6 = 118, |
| 682 | MRM_F7 = 119, |
| 683 | MRM_F8 = 120, |
| 684 | MRM_F9 = 121, |
| 685 | MRM_FA = 122, |
| 686 | MRM_FB = 123, |
| 687 | MRM_FC = 124, |
| 688 | MRM_FD = 125, |
| 689 | MRM_FE = 126, |
| 690 | MRM_FF = 127, |
| 691 | FormMask = 127, |
| 692 | //===------------------------------------------------------------------===// |
| 693 | // Actual flags... |
| 694 | /// OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix. |
| 695 | /// OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in |
| 696 | /// 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66 |
| 697 | /// prefix in 16-bit mode. |
| 698 | OpSizeShift = 7, |
| 699 | OpSizeMask = 0x3 << OpSizeShift, |
| 700 | OpSizeFixed = 0 << OpSizeShift, |
| 701 | OpSize16 = 1 << OpSizeShift, |
| 702 | OpSize32 = 2 << OpSizeShift, |
| 703 | /// AsSize - AdSizeX implies this instruction determines its need of 0x67 |
| 704 | /// prefix from a normal ModRM memory operand. The other types indicate that |
| 705 | /// an operand is encoded with a specific width and a prefix is needed if |
| 706 | /// it differs from the current mode. |
| 707 | AdSizeShift = OpSizeShift + 2, |
| 708 | AdSizeMask = 0x3 << AdSizeShift, |
| 709 | AdSizeX = 0 << AdSizeShift, |
| 710 | AdSize16 = 1 << AdSizeShift, |
| 711 | AdSize32 = 2 << AdSizeShift, |
| 712 | AdSize64 = 3 << AdSizeShift, |
| 713 | //===------------------------------------------------------------------===// |
| 714 | /// OpPrefix - There are several prefix bytes that are used as opcode |
| 715 | /// extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is |
| 716 | /// no prefix. |
| 717 | OpPrefixShift = AdSizeShift + 2, |
| 718 | OpPrefixMask = 0x3 << OpPrefixShift, |
| 719 | /// PD - Prefix code for packed double precision vector floating point |
| 720 | /// operations performed in the SSE registers. |
| 721 | PD = 1 << OpPrefixShift, |
| 722 | /// XS, XD - These prefix codes are for single and double precision scalar |
| 723 | /// floating point operations performed in the SSE registers. |
| 724 | XS = 2 << OpPrefixShift, |
| 725 | XD = 3 << OpPrefixShift, |
| 726 | //===------------------------------------------------------------------===// |
| 727 | /// OpMap - This field determines which opcode map this instruction |
| 728 | /// belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc. |
| 729 | OpMapShift = OpPrefixShift + 2, |
| 730 | OpMapMask = 0xF << OpMapShift, |
| 731 | /// OB - OneByte - Set if this instruction has a one byte opcode. |
| 732 | OB = 0 << OpMapShift, |
| 733 | /// TB - TwoByte - Set if this instruction has a two byte opcode, which |
| 734 | /// starts with a 0x0F byte before the real opcode. |
| 735 | TB = 1 << OpMapShift, |
| 736 | /// T8, TA - Prefix after the 0x0F prefix. |
| 737 | T8 = 2 << OpMapShift, |
| 738 | TA = 3 << OpMapShift, |
| 739 | /// XOP8 - Prefix to include use of imm byte. |
| 740 | XOP8 = 4 << OpMapShift, |
| 741 | /// XOP9 - Prefix to exclude use of imm byte. |
| 742 | XOP9 = 5 << OpMapShift, |
| 743 | /// XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions. |
| 744 | XOPA = 6 << OpMapShift, |
| 745 | /// ThreeDNow - This indicates that the instruction uses the |
| 746 | /// wacky 0x0F 0x0F prefix for 3DNow! instructions. The manual documents |
| 747 | /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction |
| 748 | /// storing a classifier in the imm8 field. To simplify our implementation, |
| 749 | /// we handle this by storeing the classifier in the opcode field and using |
| 750 | /// this flag to indicate that the encoder should do the wacky 3DNow! thing. |
| 751 | ThreeDNow = 7 << OpMapShift, |
| 752 | /// MAP4, MAP5, MAP6, MAP7 - Prefix after the 0x0F prefix. |
| 753 | T_MAP4 = 8 << OpMapShift, |
| 754 | T_MAP5 = 9 << OpMapShift, |
| 755 | T_MAP6 = 10 << OpMapShift, |
| 756 | T_MAP7 = 11 << OpMapShift, |
| 757 | //===------------------------------------------------------------------===// |
| 758 | /// REX_W - REX prefixes are instruction prefixes used in 64-bit mode. |
| 759 | /// They are used to specify GPRs and SSE registers, 64-bit operand size, |
| 760 | /// etc. We only cares about REX.W and REX.R bits and only the former is |
| 761 | /// statically determined. |
| 762 | REXShift = OpMapShift + 4, |
| 763 | REX_W = 1 << REXShift, |
| 764 | //===------------------------------------------------------------------===// |
| 765 | // This 4-bit field describes the size of an immediate operand. Zero is |
| 766 | // unused so that we can tell if we forgot to set a value. |
| 767 | ImmShift = REXShift + 1, |
| 768 | Imm8 = 1 << ImmShift, |
| 769 | Imm8PCRel = 2 << ImmShift, |
| 770 | Imm8Reg = 3 << ImmShift, |
| 771 | Imm16 = 4 << ImmShift, |
| 772 | Imm16PCRel = 5 << ImmShift, |
| 773 | Imm32 = 6 << ImmShift, |
| 774 | Imm32PCRel = 7 << ImmShift, |
| 775 | Imm32S = 8 << ImmShift, |
| 776 | Imm64 = 9 << ImmShift, |
| 777 | ImmMask = 15 << ImmShift, |
| 778 | //===------------------------------------------------------------------===// |
| 779 | /// FP Instruction Classification... Zero is non-fp instruction. |
| 780 | /// FPTypeMask - Mask for all of the FP types... |
| 781 | FPTypeShift = ImmShift + 4, |
| 782 | FPTypeMask = 7 << FPTypeShift, |
| 783 | /// NotFP - The default, set for instructions that do not use FP registers. |
| 784 | NotFP = 0 << FPTypeShift, |
| 785 | /// ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0 |
| 786 | ZeroArgFP = 1 << FPTypeShift, |
| 787 | /// OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst |
| 788 | OneArgFP = 2 << FPTypeShift, |
| 789 | /// OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a |
| 790 | /// result back to ST(0). For example, fcos, fsqrt, etc. |
| 791 | OneArgFPRW = 3 << FPTypeShift, |
| 792 | /// TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an |
| 793 | /// explicit argument, storing the result to either ST(0) or the implicit |
| 794 | /// argument. For example: fadd, fsub, fmul, etc... |
| 795 | TwoArgFP = 4 << FPTypeShift, |
| 796 | /// CompareFP - 2 arg FP instructions which implicitly read ST(0) and an |
| 797 | /// explicit argument, but have no destination. Example: fucom, fucomi, ... |
| 798 | CompareFP = 5 << FPTypeShift, |
| 799 | /// CondMovFP - "2 operand" floating point conditional move instructions. |
| 800 | CondMovFP = 6 << FPTypeShift, |
| 801 | /// SpecialFP - Special instruction forms. Dispatch by opcode explicitly. |
| 802 | SpecialFP = 7 << FPTypeShift, |
| 803 | /// Lock prefix |
| 804 | LOCKShift = FPTypeShift + 3, |
| 805 | LOCK = 1 << LOCKShift, |
| 806 | /// REP prefix |
| 807 | REPShift = LOCKShift + 1, |
| 808 | REP = 1 << REPShift, |
| 809 | /// Execution domain for SSE instructions. |
| 810 | /// 0 means normal, non-SSE instruction. |
| 811 | SSEDomainShift = REPShift + 1, |
| 812 | /// Encoding |
| 813 | EncodingShift = SSEDomainShift + 2, |
| 814 | EncodingMask = 0x3 << EncodingShift, |
| 815 | /// LEGACY - encoding using REX/REX2 or w/o opcode prefix. |
| 816 | LEGACY = 0 << EncodingShift, |
| 817 | /// VEX - encoding using 0xC4/0xC5 |
| 818 | VEX = 1 << EncodingShift, |
| 819 | /// XOP - Opcode prefix used by XOP instructions. |
| 820 | XOP = 2 << EncodingShift, |
| 821 | /// EVEX - Specifies that this instruction use EVEX form which provides |
| 822 | /// syntax support up to 32 512-bit register operands and up to 7 16-bit |
| 823 | /// mask operands as well as source operand data swizzling/memory operand |
| 824 | /// conversion, eviction hint, and rounding mode. |
| 825 | EVEX = 3 << EncodingShift, |
| 826 | /// Opcode |
| 827 | OpcodeShift = EncodingShift + 2, |
| 828 | /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2 |
| 829 | /// address instructions in SSE are represented as 3 address ones in AVX |
| 830 | /// and the additional register is encoded in VEX_VVVV prefix. |
| 831 | VEX_4VShift = OpcodeShift + 8, |
| 832 | VEX_4V = 1ULL << VEX_4VShift, |
| 833 | /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current |
| 834 | /// instruction uses 256-bit wide registers. This is usually auto detected |
| 835 | /// if a VR256 register is used, but some AVX instructions also have this |
| 836 | /// field marked when using a f256 memory references. |
| 837 | VEX_LShift = VEX_4VShift + 1, |
| 838 | VEX_L = 1ULL << VEX_LShift, |
| 839 | /// EVEX_K - Set if this instruction requires masking |
| 840 | EVEX_KShift = VEX_LShift + 1, |
| 841 | EVEX_K = 1ULL << EVEX_KShift, |
| 842 | /// EVEX_Z - Set if this instruction has EVEX.Z field set. |
| 843 | EVEX_ZShift = EVEX_KShift + 1, |
| 844 | EVEX_Z = 1ULL << EVEX_ZShift, |
| 845 | /// EVEX_L2 - Set if this instruction has EVEX.L' field set. |
| 846 | EVEX_L2Shift = EVEX_ZShift + 1, |
| 847 | EVEX_L2 = 1ULL << EVEX_L2Shift, |
| 848 | /// EVEX_B - Set if this instruction has EVEX.B field set. |
| 849 | EVEX_BShift = EVEX_L2Shift + 1, |
| 850 | EVEX_B = 1ULL << EVEX_BShift, |
| 851 | /// The scaling factor for the AVX512's 8-bit compressed displacement. |
| 852 | CD8_Scale_Shift = EVEX_BShift + 1, |
| 853 | CD8_Scale_Mask = 7ULL << CD8_Scale_Shift, |
| 854 | /// Explicitly specified rounding control |
| 855 | EVEX_RCShift = CD8_Scale_Shift + 3, |
| 856 | EVEX_RC = 1ULL << EVEX_RCShift, |
| 857 | /// NOTRACK prefix |
| 858 | NoTrackShift = EVEX_RCShift + 1, |
| 859 | NOTRACK = 1ULL << NoTrackShift, |
| 860 | /// Force REX2/VEX/EVEX encoding |
| 861 | ExplicitOpPrefixShift = NoTrackShift + 1, |
| 862 | /// For instructions that require REX2 prefix even if EGPR is not used. |
| 863 | ExplicitREX2Prefix = 1ULL << ExplicitOpPrefixShift, |
| 864 | /// For instructions that use VEX encoding only when {vex}, {vex2} or {vex3} |
| 865 | /// is present. |
| 866 | ExplicitVEXPrefix = 2ULL << ExplicitOpPrefixShift, |
| 867 | /// For instructions that are promoted to EVEX space for EGPR. |
| 868 | ExplicitEVEXPrefix = 3ULL << ExplicitOpPrefixShift, |
| 869 | ExplicitOpPrefixMask = 3ULL << ExplicitOpPrefixShift, |
| 870 | /// EVEX_NF - Set if this instruction has EVEX.NF field set. |
| 871 | EVEX_NFShift = ExplicitOpPrefixShift + 2, |
| 872 | EVEX_NF = 1ULL << EVEX_NFShift, |
| 873 | // TwoConditionalOps - Set if this instruction has two conditional operands |
| 874 | TwoConditionalOps_Shift = EVEX_NFShift + 1, |
| 875 | TwoConditionalOps = 1ULL << TwoConditionalOps_Shift, |
| 876 | // EVEX_U - Set if this instruction has EVEX.U field set. |
| 877 | EVEX_UShift = TwoConditionalOps_Shift + 1, |
| 878 | EVEX_U = 1ULL << EVEX_UShift |
| 879 | }; |
| 880 | |
| 881 | /// \returns true if the instruction with given opcode is a prefix. |
| 882 | inline bool isPrefix(uint64_t TSFlags) { |
| 883 | return (TSFlags & X86II::FormMask) == PrefixByte; |
| 884 | } |
| 885 | |
| 886 | /// \returns true if the instruction with given opcode is a pseudo. |
| 887 | inline bool isPseudo(uint64_t TSFlags) { |
| 888 | return (TSFlags & X86II::FormMask) == Pseudo; |
| 889 | } |
| 890 | |
| 891 | /// \returns the "base" X86 opcode for the specified machine |
| 892 | /// instruction. |
| 893 | inline uint8_t getBaseOpcodeFor(uint64_t TSFlags) { |
| 894 | return TSFlags >> X86II::OpcodeShift; |
| 895 | } |
| 896 | |
| 897 | inline bool hasImm(uint64_t TSFlags) { return (TSFlags & X86II::ImmMask) != 0; } |
| 898 | |
| 899 | /// Decode the "size of immediate" field from the TSFlags field of the |
| 900 | /// specified instruction. |
| 901 | inline unsigned getSizeOfImm(uint64_t TSFlags) { |
| 902 | switch (TSFlags & X86II::ImmMask) { |
| 903 | default: |
| 904 | llvm_unreachable("Unknown immediate size" ); |
| 905 | case X86II::Imm8: |
| 906 | case X86II::Imm8PCRel: |
| 907 | case X86II::Imm8Reg: |
| 908 | return 1; |
| 909 | case X86II::Imm16: |
| 910 | case X86II::Imm16PCRel: |
| 911 | return 2; |
| 912 | case X86II::Imm32: |
| 913 | case X86II::Imm32S: |
| 914 | case X86II::Imm32PCRel: |
| 915 | return 4; |
| 916 | case X86II::Imm64: |
| 917 | return 8; |
| 918 | } |
| 919 | } |
| 920 | |
| 921 | /// \returns true if the immediate of the specified instruction's TSFlags |
| 922 | /// indicates that it is pc relative. |
| 923 | inline bool isImmPCRel(uint64_t TSFlags) { |
| 924 | switch (TSFlags & X86II::ImmMask) { |
| 925 | default: |
| 926 | llvm_unreachable("Unknown immediate size" ); |
| 927 | case X86II::Imm8PCRel: |
| 928 | case X86II::Imm16PCRel: |
| 929 | case X86II::Imm32PCRel: |
| 930 | return true; |
| 931 | case X86II::Imm8: |
| 932 | case X86II::Imm8Reg: |
| 933 | case X86II::Imm16: |
| 934 | case X86II::Imm32: |
| 935 | case X86II::Imm32S: |
| 936 | case X86II::Imm64: |
| 937 | return false; |
| 938 | } |
| 939 | } |
| 940 | |
| 941 | /// \returns true if the immediate of the specified instruction's |
| 942 | /// TSFlags indicates that it is signed. |
| 943 | inline bool isImmSigned(uint64_t TSFlags) { |
| 944 | switch (TSFlags & X86II::ImmMask) { |
| 945 | default: |
| 946 | llvm_unreachable("Unknown immediate signedness" ); |
| 947 | case X86II::Imm32S: |
| 948 | return true; |
| 949 | case X86II::Imm8: |
| 950 | case X86II::Imm8PCRel: |
| 951 | case X86II::Imm8Reg: |
| 952 | case X86II::Imm16: |
| 953 | case X86II::Imm16PCRel: |
| 954 | case X86II::Imm32: |
| 955 | case X86II::Imm32PCRel: |
| 956 | case X86II::Imm64: |
| 957 | return false; |
| 958 | } |
| 959 | } |
| 960 | |
| 961 | /// Compute whether all of the def operands are repeated in the uses and |
| 962 | /// therefore should be skipped. |
| 963 | /// This determines the start of the unique operand list. We need to determine |
| 964 | /// if all of the defs have a corresponding tied operand in the uses. |
| 965 | /// Unfortunately, the tied operand information is encoded in the uses not |
| 966 | /// the defs so we have to use some heuristics to find which operands to |
| 967 | /// query. |
| 968 | inline unsigned getOperandBias(const MCInstrDesc &Desc) { |
| 969 | unsigned NumDefs = Desc.getNumDefs(); |
| 970 | unsigned NumOps = Desc.getNumOperands(); |
| 971 | switch (NumDefs) { |
| 972 | default: |
| 973 | llvm_unreachable("Unexpected number of defs" ); |
| 974 | case 0: |
| 975 | return 0; |
| 976 | case 1: |
| 977 | // Common two addr case. |
| 978 | if (NumOps > 1 && Desc.getOperandConstraint(OpNum: 1, Constraint: MCOI::TIED_TO) == 0) |
| 979 | return 1; |
| 980 | // Check for AVX-512 scatter which has a TIED_TO in the second to last |
| 981 | // operand. |
| 982 | if (NumOps == 8 && Desc.getOperandConstraint(OpNum: 6, Constraint: MCOI::TIED_TO) == 0) |
| 983 | return 1; |
| 984 | return 0; |
| 985 | case 2: |
| 986 | // XCHG/XADD have two destinations and two sources. |
| 987 | if (NumOps >= 4 && Desc.getOperandConstraint(OpNum: 2, Constraint: MCOI::TIED_TO) == 0 && |
| 988 | Desc.getOperandConstraint(OpNum: 3, Constraint: MCOI::TIED_TO) == 1) |
| 989 | return 2; |
| 990 | // Check for gather. AVX-512 has the second tied operand early. AVX2 |
| 991 | // has it as the last op. |
| 992 | if (NumOps == 9 && Desc.getOperandConstraint(OpNum: 2, Constraint: MCOI::TIED_TO) == 0 && |
| 993 | (Desc.getOperandConstraint(OpNum: 3, Constraint: MCOI::TIED_TO) == 1 || |
| 994 | Desc.getOperandConstraint(OpNum: 8, Constraint: MCOI::TIED_TO) == 1)) |
| 995 | return 2; |
| 996 | return 0; |
| 997 | } |
| 998 | } |
| 999 | |
| 1000 | /// \returns true if the instruction has a NDD (new data destination). |
| 1001 | inline bool hasNewDataDest(uint64_t TSFlags) { |
| 1002 | return (TSFlags & X86II::OpMapMask) == X86II::T_MAP4 && |
| 1003 | (TSFlags & X86II::EVEX_B) && (TSFlags & X86II::VEX_4V); |
| 1004 | } |
| 1005 | |
| 1006 | /// \returns operand # for the first field of the memory operand or -1 if no |
| 1007 | /// memory operands. |
| 1008 | /// NOTE: This ignores tied operands. If there is a tied register which is |
| 1009 | /// duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only counted |
| 1010 | /// as one operand. |
| 1011 | inline int getMemoryOperandNo(uint64_t TSFlags) { |
| 1012 | bool HasVEX_4V = TSFlags & X86II::VEX_4V; |
| 1013 | bool HasEVEX_K = TSFlags & X86II::EVEX_K; |
| 1014 | |
| 1015 | switch (TSFlags & X86II::FormMask) { |
| 1016 | default: |
| 1017 | llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!" ); |
| 1018 | case X86II::Pseudo: |
| 1019 | case X86II::RawFrm: |
| 1020 | case X86II::AddRegFrm: |
| 1021 | case X86II::RawFrmImm8: |
| 1022 | case X86II::RawFrmImm16: |
| 1023 | case X86II::RawFrmMemOffs: |
| 1024 | case X86II::RawFrmSrc: |
| 1025 | case X86II::RawFrmDst: |
| 1026 | case X86II::RawFrmDstSrc: |
| 1027 | case X86II::AddCCFrm: |
| 1028 | case X86II::PrefixByte: |
| 1029 | return -1; |
| 1030 | case X86II::MRMDestMem: |
| 1031 | case X86II::MRMDestMemFSIB: |
| 1032 | case X86II::MRMDestMemCC: |
| 1033 | return hasNewDataDest(TSFlags); |
| 1034 | case X86II::MRMSrcMem: |
| 1035 | case X86II::MRMSrcMemFSIB: |
| 1036 | // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a |
| 1037 | // mask register. |
| 1038 | return 1 + HasVEX_4V + HasEVEX_K; |
| 1039 | case X86II::MRMSrcMem4VOp3: |
| 1040 | // Skip registers encoded in reg. |
| 1041 | return 1 + HasEVEX_K; |
| 1042 | case X86II::MRMSrcMemOp4: |
| 1043 | // Skip registers encoded in reg, VEX_VVVV, and I8IMM. |
| 1044 | return 3; |
| 1045 | case X86II::MRMSrcMemCC: |
| 1046 | return 1 + hasNewDataDest(TSFlags); |
| 1047 | case X86II::MRMDestMem4VOp3CC: |
| 1048 | // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a |
| 1049 | // mask register. |
| 1050 | return 1; |
| 1051 | case X86II::MRMDestReg: |
| 1052 | case X86II::MRMDestRegCC: |
| 1053 | case X86II::MRMSrcReg: |
| 1054 | case X86II::MRMSrcReg4VOp3: |
| 1055 | case X86II::MRMSrcRegOp4: |
| 1056 | case X86II::MRMSrcRegCC: |
| 1057 | case X86II::MRMXrCC: |
| 1058 | case X86II::MRMr0: |
| 1059 | case X86II::MRMXr: |
| 1060 | case X86II::MRM0r: |
| 1061 | case X86II::MRM1r: |
| 1062 | case X86II::MRM2r: |
| 1063 | case X86II::MRM3r: |
| 1064 | case X86II::MRM4r: |
| 1065 | case X86II::MRM5r: |
| 1066 | case X86II::MRM6r: |
| 1067 | case X86II::MRM7r: |
| 1068 | return -1; |
| 1069 | case X86II::MRM0X: |
| 1070 | case X86II::MRM1X: |
| 1071 | case X86II::MRM2X: |
| 1072 | case X86II::MRM3X: |
| 1073 | case X86II::MRM4X: |
| 1074 | case X86II::MRM5X: |
| 1075 | case X86II::MRM6X: |
| 1076 | case X86II::MRM7X: |
| 1077 | return -1; |
| 1078 | case X86II::MRMXmCC: |
| 1079 | case X86II::MRMXm: |
| 1080 | case X86II::MRM0m: |
| 1081 | case X86II::MRM1m: |
| 1082 | case X86II::MRM2m: |
| 1083 | case X86II::MRM3m: |
| 1084 | case X86II::MRM4m: |
| 1085 | case X86II::MRM5m: |
| 1086 | case X86II::MRM6m: |
| 1087 | case X86II::MRM7m: |
| 1088 | // Start from 0, skip registers encoded in VEX_VVVV or a mask register. |
| 1089 | return 0 + HasVEX_4V + HasEVEX_K; |
| 1090 | case X86II::MRM_C0: |
| 1091 | case X86II::MRM_C1: |
| 1092 | case X86II::MRM_C2: |
| 1093 | case X86II::MRM_C3: |
| 1094 | case X86II::MRM_C4: |
| 1095 | case X86II::MRM_C5: |
| 1096 | case X86II::MRM_C6: |
| 1097 | case X86II::MRM_C7: |
| 1098 | case X86II::MRM_C8: |
| 1099 | case X86II::MRM_C9: |
| 1100 | case X86II::MRM_CA: |
| 1101 | case X86II::MRM_CB: |
| 1102 | case X86II::MRM_CC: |
| 1103 | case X86II::MRM_CD: |
| 1104 | case X86II::MRM_CE: |
| 1105 | case X86II::MRM_CF: |
| 1106 | case X86II::MRM_D0: |
| 1107 | case X86II::MRM_D1: |
| 1108 | case X86II::MRM_D2: |
| 1109 | case X86II::MRM_D3: |
| 1110 | case X86II::MRM_D4: |
| 1111 | case X86II::MRM_D5: |
| 1112 | case X86II::MRM_D6: |
| 1113 | case X86II::MRM_D7: |
| 1114 | case X86II::MRM_D8: |
| 1115 | case X86II::MRM_D9: |
| 1116 | case X86II::MRM_DA: |
| 1117 | case X86II::MRM_DB: |
| 1118 | case X86II::MRM_DC: |
| 1119 | case X86II::MRM_DD: |
| 1120 | case X86II::MRM_DE: |
| 1121 | case X86II::MRM_DF: |
| 1122 | case X86II::MRM_E0: |
| 1123 | case X86II::MRM_E1: |
| 1124 | case X86II::MRM_E2: |
| 1125 | case X86II::MRM_E3: |
| 1126 | case X86II::MRM_E4: |
| 1127 | case X86II::MRM_E5: |
| 1128 | case X86II::MRM_E6: |
| 1129 | case X86II::MRM_E7: |
| 1130 | case X86II::MRM_E8: |
| 1131 | case X86II::MRM_E9: |
| 1132 | case X86II::MRM_EA: |
| 1133 | case X86II::MRM_EB: |
| 1134 | case X86II::MRM_EC: |
| 1135 | case X86II::MRM_ED: |
| 1136 | case X86II::MRM_EE: |
| 1137 | case X86II::MRM_EF: |
| 1138 | case X86II::MRM_F0: |
| 1139 | case X86II::MRM_F1: |
| 1140 | case X86II::MRM_F2: |
| 1141 | case X86II::MRM_F3: |
| 1142 | case X86II::MRM_F4: |
| 1143 | case X86II::MRM_F5: |
| 1144 | case X86II::MRM_F6: |
| 1145 | case X86II::MRM_F7: |
| 1146 | case X86II::MRM_F8: |
| 1147 | case X86II::MRM_F9: |
| 1148 | case X86II::MRM_FA: |
| 1149 | case X86II::MRM_FB: |
| 1150 | case X86II::MRM_FC: |
| 1151 | case X86II::MRM_FD: |
| 1152 | case X86II::MRM_FE: |
| 1153 | case X86II::MRM_FF: |
| 1154 | return -1; |
| 1155 | } |
| 1156 | } |
| 1157 | |
| 1158 | /// \returns true if the register is a XMM. |
| 1159 | inline bool isXMMReg(MCRegister Reg) { |
| 1160 | static_assert(X86::XMM15 - X86::XMM0 == 15, |
| 1161 | "XMM0-15 registers are not continuous" ); |
| 1162 | static_assert(X86::XMM31 - X86::XMM16 == 15, |
| 1163 | "XMM16-31 registers are not continuous" ); |
| 1164 | return (Reg >= X86::XMM0 && Reg <= X86::XMM15) || |
| 1165 | (Reg >= X86::XMM16 && Reg <= X86::XMM31); |
| 1166 | } |
| 1167 | |
| 1168 | /// \returns true if the register is a YMM. |
| 1169 | inline bool isYMMReg(MCRegister Reg) { |
| 1170 | static_assert(X86::YMM15 - X86::YMM0 == 15, |
| 1171 | "YMM0-15 registers are not continuous" ); |
| 1172 | static_assert(X86::YMM31 - X86::YMM16 == 15, |
| 1173 | "YMM16-31 registers are not continuous" ); |
| 1174 | return (Reg >= X86::YMM0 && Reg <= X86::YMM15) || |
| 1175 | (Reg >= X86::YMM16 && Reg <= X86::YMM31); |
| 1176 | } |
| 1177 | |
| 1178 | /// \returns true if the register is a ZMM. |
| 1179 | inline bool isZMMReg(MCRegister Reg) { |
| 1180 | static_assert(X86::ZMM31 - X86::ZMM0 == 31, |
| 1181 | "ZMM registers are not continuous" ); |
| 1182 | return Reg >= X86::ZMM0 && Reg <= X86::ZMM31; |
| 1183 | } |
| 1184 | |
| 1185 | /// \returns true if \p Reg is an apx extended register. |
| 1186 | inline bool isApxExtendedReg(MCRegister Reg) { |
| 1187 | static_assert(X86::R31WH - X86::R16 == 95, "EGPRs are not continuous" ); |
| 1188 | return Reg >= X86::R16 && Reg <= X86::R31WH; |
| 1189 | } |
| 1190 | |
| 1191 | /// \returns true if the MachineOperand is a x86-64 extended (r8 or |
| 1192 | /// higher) register, e.g. r8, xmm8, xmm13, etc. |
| 1193 | inline bool isX86_64ExtendedReg(MCRegister Reg) { |
| 1194 | if ((Reg >= X86::XMM8 && Reg <= X86::XMM15) || |
| 1195 | (Reg >= X86::XMM16 && Reg <= X86::XMM31) || |
| 1196 | (Reg >= X86::YMM8 && Reg <= X86::YMM15) || |
| 1197 | (Reg >= X86::YMM16 && Reg <= X86::YMM31) || |
| 1198 | (Reg >= X86::ZMM8 && Reg <= X86::ZMM31)) |
| 1199 | return true; |
| 1200 | |
| 1201 | if (isApxExtendedReg(Reg)) |
| 1202 | return true; |
| 1203 | |
| 1204 | switch (Reg.id()) { |
| 1205 | default: |
| 1206 | break; |
| 1207 | case X86::R8: |
| 1208 | case X86::R9: |
| 1209 | case X86::R10: |
| 1210 | case X86::R11: |
| 1211 | case X86::R12: |
| 1212 | case X86::R13: |
| 1213 | case X86::R14: |
| 1214 | case X86::R15: |
| 1215 | case X86::R8D: |
| 1216 | case X86::R9D: |
| 1217 | case X86::R10D: |
| 1218 | case X86::R11D: |
| 1219 | case X86::R12D: |
| 1220 | case X86::R13D: |
| 1221 | case X86::R14D: |
| 1222 | case X86::R15D: |
| 1223 | case X86::R8W: |
| 1224 | case X86::R9W: |
| 1225 | case X86::R10W: |
| 1226 | case X86::R11W: |
| 1227 | case X86::R12W: |
| 1228 | case X86::R13W: |
| 1229 | case X86::R14W: |
| 1230 | case X86::R15W: |
| 1231 | case X86::R8B: |
| 1232 | case X86::R9B: |
| 1233 | case X86::R10B: |
| 1234 | case X86::R11B: |
| 1235 | case X86::R12B: |
| 1236 | case X86::R13B: |
| 1237 | case X86::R14B: |
| 1238 | case X86::R15B: |
| 1239 | case X86::CR8: |
| 1240 | case X86::CR9: |
| 1241 | case X86::CR10: |
| 1242 | case X86::CR11: |
| 1243 | case X86::CR12: |
| 1244 | case X86::CR13: |
| 1245 | case X86::CR14: |
| 1246 | case X86::CR15: |
| 1247 | case X86::DR8: |
| 1248 | case X86::DR9: |
| 1249 | case X86::DR10: |
| 1250 | case X86::DR11: |
| 1251 | case X86::DR12: |
| 1252 | case X86::DR13: |
| 1253 | case X86::DR14: |
| 1254 | case X86::DR15: |
| 1255 | return true; |
| 1256 | } |
| 1257 | return false; |
| 1258 | } |
| 1259 | |
| 1260 | inline bool canUseApxExtendedReg(const MCInstrDesc &Desc) { |
| 1261 | uint64_t TSFlags = Desc.TSFlags; |
| 1262 | uint64_t Encoding = TSFlags & EncodingMask; |
| 1263 | // EVEX can always use egpr. |
| 1264 | if (Encoding == X86II::EVEX) |
| 1265 | return true; |
| 1266 | |
| 1267 | unsigned Opcode = Desc.Opcode; |
| 1268 | // MOV32r0 is always expanded to XOR32rr |
| 1269 | if (Opcode == X86::MOV32r0) |
| 1270 | return true; |
| 1271 | // To be conservative, egpr is not used for all pseudo instructions |
| 1272 | // because we are not sure what instruction it will become. |
| 1273 | // FIXME: Could we improve it in X86ExpandPseudo? |
| 1274 | if (isPseudo(TSFlags)) |
| 1275 | return false; |
| 1276 | |
| 1277 | // MAP OB/TB in legacy encoding space can always use egpr except |
| 1278 | // XSAVE*/XRSTOR*. |
| 1279 | switch (Opcode) { |
| 1280 | default: |
| 1281 | break; |
| 1282 | case X86::XSAVE: |
| 1283 | case X86::XSAVE64: |
| 1284 | case X86::XSAVEOPT: |
| 1285 | case X86::XSAVEOPT64: |
| 1286 | case X86::XSAVEC: |
| 1287 | case X86::XSAVEC64: |
| 1288 | case X86::XSAVES: |
| 1289 | case X86::XSAVES64: |
| 1290 | case X86::XRSTOR: |
| 1291 | case X86::XRSTOR64: |
| 1292 | case X86::XRSTORS: |
| 1293 | case X86::XRSTORS64: |
| 1294 | return false; |
| 1295 | } |
| 1296 | uint64_t OpMap = TSFlags & X86II::OpMapMask; |
| 1297 | return !Encoding && (OpMap == X86II::OB || OpMap == X86II::TB); |
| 1298 | } |
| 1299 | |
| 1300 | /// \returns true if the MemoryOperand is a 32 extended (zmm16 or higher) |
| 1301 | /// registers, e.g. zmm21, etc. |
| 1302 | static inline bool is32ExtendedReg(MCRegister Reg) { |
| 1303 | return ((Reg >= X86::XMM16 && Reg <= X86::XMM31) || |
| 1304 | (Reg >= X86::YMM16 && Reg <= X86::YMM31) || |
| 1305 | (Reg >= X86::ZMM16 && Reg <= X86::ZMM31)); |
| 1306 | } |
| 1307 | |
| 1308 | inline bool isX86_64NonExtLowByteReg(MCRegister Reg) { |
| 1309 | return (Reg == X86::SPL || Reg == X86::BPL || Reg == X86::SIL || |
| 1310 | Reg == X86::DIL); |
| 1311 | } |
| 1312 | |
| 1313 | /// \returns true if this is a masked instruction. |
| 1314 | inline bool isKMasked(uint64_t TSFlags) { |
| 1315 | return (TSFlags & X86II::EVEX_K) != 0; |
| 1316 | } |
| 1317 | |
| 1318 | /// \returns true if this is a merge masked instruction. |
| 1319 | inline bool isKMergeMasked(uint64_t TSFlags) { |
| 1320 | return isKMasked(TSFlags) && (TSFlags & X86II::EVEX_Z) == 0; |
| 1321 | } |
| 1322 | |
| 1323 | /// \returns true if the intruction needs a SIB. |
| 1324 | inline bool needSIB(MCRegister BaseReg, MCRegister IndexReg, bool In64BitMode) { |
| 1325 | // The SIB byte must be used if there is an index register. |
| 1326 | if (IndexReg) |
| 1327 | return true; |
| 1328 | |
| 1329 | // The SIB byte must be used if the base is ESP/RSP/R12/R20/R28, all of |
| 1330 | // which encode to an R/M value of 4, which indicates that a SIB byte is |
| 1331 | // present. |
| 1332 | switch (BaseReg.id()) { |
| 1333 | default: |
| 1334 | // If there is no base register and we're in 64-bit mode, we need a SIB |
| 1335 | // byte to emit an addr that is just 'disp32' (the non-RIP relative form). |
| 1336 | return In64BitMode && !BaseReg; |
| 1337 | case X86::ESP: |
| 1338 | case X86::RSP: |
| 1339 | case X86::R12: |
| 1340 | case X86::R12D: |
| 1341 | case X86::R20: |
| 1342 | case X86::R20D: |
| 1343 | case X86::R28: |
| 1344 | case X86::R28D: |
| 1345 | return true; |
| 1346 | } |
| 1347 | } |
| 1348 | |
| 1349 | } // namespace X86II |
| 1350 | } // namespace llvm |
| 1351 | #endif |
| 1352 | |