1 | //===-- X86ShuffleDecode.cpp - X86 shuffle decode logic -------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // Define several functions to decode x86 specific shuffle semantics into a |
10 | // generic vector mask. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "X86ShuffleDecode.h" |
15 | #include "llvm/ADT/APInt.h" |
16 | #include "llvm/ADT/ArrayRef.h" |
17 | #include "llvm/ADT/SmallVector.h" |
18 | #include "llvm/Support/MathExtras.h" |
19 | |
20 | //===----------------------------------------------------------------------===// |
21 | // Vector Mask Decoding |
22 | //===----------------------------------------------------------------------===// |
23 | |
24 | namespace llvm { |
25 | |
26 | void DecodeINSERTPSMask(unsigned Imm, SmallVectorImpl<int> &ShuffleMask, |
27 | bool SrcIsMem) { |
28 | // Defaults the copying the dest value. |
29 | ShuffleMask.push_back(Elt: 0); |
30 | ShuffleMask.push_back(Elt: 1); |
31 | ShuffleMask.push_back(Elt: 2); |
32 | ShuffleMask.push_back(Elt: 3); |
33 | |
34 | // Decode the immediate. |
35 | unsigned ZMask = Imm & 15; |
36 | unsigned CountD = (Imm >> 4) & 3; |
37 | unsigned CountS = SrcIsMem ? 0 : (Imm >> 6) & 3; |
38 | |
39 | // CountS selects which input element to use. |
40 | unsigned InVal = 4 + CountS; |
41 | // CountD specifies which element of destination to update. |
42 | ShuffleMask[CountD] = InVal; |
43 | // ZMask zaps values, potentially overriding the CountD elt. |
44 | if (ZMask & 1) ShuffleMask[0] = SM_SentinelZero; |
45 | if (ZMask & 2) ShuffleMask[1] = SM_SentinelZero; |
46 | if (ZMask & 4) ShuffleMask[2] = SM_SentinelZero; |
47 | if (ZMask & 8) ShuffleMask[3] = SM_SentinelZero; |
48 | } |
49 | |
50 | void DecodeInsertElementMask(unsigned NumElts, unsigned Idx, unsigned Len, |
51 | SmallVectorImpl<int> &ShuffleMask) { |
52 | assert((Idx + Len) <= NumElts && "Insertion out of range" ); |
53 | |
54 | for (unsigned i = 0; i != NumElts; ++i) |
55 | ShuffleMask.push_back(Elt: i); |
56 | for (unsigned i = 0; i != Len; ++i) |
57 | ShuffleMask[Idx + i] = NumElts + i; |
58 | } |
59 | |
60 | // <3,1> or <6,7,2,3> |
61 | void DecodeMOVHLPSMask(unsigned NElts, SmallVectorImpl<int> &ShuffleMask) { |
62 | for (unsigned i = NElts / 2; i != NElts; ++i) |
63 | ShuffleMask.push_back(Elt: NElts + i); |
64 | |
65 | for (unsigned i = NElts / 2; i != NElts; ++i) |
66 | ShuffleMask.push_back(Elt: i); |
67 | } |
68 | |
69 | // <0,2> or <0,1,4,5> |
70 | void DecodeMOVLHPSMask(unsigned NElts, SmallVectorImpl<int> &ShuffleMask) { |
71 | for (unsigned i = 0; i != NElts / 2; ++i) |
72 | ShuffleMask.push_back(Elt: i); |
73 | |
74 | for (unsigned i = 0; i != NElts / 2; ++i) |
75 | ShuffleMask.push_back(Elt: NElts + i); |
76 | } |
77 | |
78 | void DecodeMOVSLDUPMask(unsigned NumElts, SmallVectorImpl<int> &ShuffleMask) { |
79 | for (int i = 0, e = NumElts / 2; i < e; ++i) { |
80 | ShuffleMask.push_back(Elt: 2 * i); |
81 | ShuffleMask.push_back(Elt: 2 * i); |
82 | } |
83 | } |
84 | |
85 | void DecodeMOVSHDUPMask(unsigned NumElts, SmallVectorImpl<int> &ShuffleMask) { |
86 | for (int i = 0, e = NumElts / 2; i < e; ++i) { |
87 | ShuffleMask.push_back(Elt: 2 * i + 1); |
88 | ShuffleMask.push_back(Elt: 2 * i + 1); |
89 | } |
90 | } |
91 | |
92 | void DecodeMOVDDUPMask(unsigned NumElts, SmallVectorImpl<int> &ShuffleMask) { |
93 | const unsigned NumLaneElts = 2; |
94 | |
95 | for (unsigned l = 0; l < NumElts; l += NumLaneElts) |
96 | for (unsigned i = 0; i < NumLaneElts; ++i) |
97 | ShuffleMask.push_back(Elt: l); |
98 | } |
99 | |
100 | void DecodePSLLDQMask(unsigned NumElts, unsigned Imm, |
101 | SmallVectorImpl<int> &ShuffleMask) { |
102 | const unsigned NumLaneElts = 16; |
103 | |
104 | for (unsigned l = 0; l < NumElts; l += NumLaneElts) |
105 | for (unsigned i = 0; i < NumLaneElts; ++i) { |
106 | int M = SM_SentinelZero; |
107 | if (i >= Imm) M = i - Imm + l; |
108 | ShuffleMask.push_back(Elt: M); |
109 | } |
110 | } |
111 | |
112 | void DecodePSRLDQMask(unsigned NumElts, unsigned Imm, |
113 | SmallVectorImpl<int> &ShuffleMask) { |
114 | const unsigned NumLaneElts = 16; |
115 | |
116 | for (unsigned l = 0; l < NumElts; l += NumLaneElts) |
117 | for (unsigned i = 0; i < NumLaneElts; ++i) { |
118 | unsigned Base = i + Imm; |
119 | int M = Base + l; |
120 | if (Base >= NumLaneElts) M = SM_SentinelZero; |
121 | ShuffleMask.push_back(Elt: M); |
122 | } |
123 | } |
124 | |
125 | void DecodePALIGNRMask(unsigned NumElts, unsigned Imm, |
126 | SmallVectorImpl<int> &ShuffleMask) { |
127 | const unsigned NumLaneElts = 16; |
128 | |
129 | for (unsigned l = 0; l != NumElts; l += NumLaneElts) { |
130 | for (unsigned i = 0; i != NumLaneElts; ++i) { |
131 | unsigned Base = i + Imm; |
132 | // if i+imm is out of this lane then we actually need the other source |
133 | if (Base >= NumLaneElts) Base += NumElts - NumLaneElts; |
134 | ShuffleMask.push_back(Elt: Base + l); |
135 | } |
136 | } |
137 | } |
138 | |
139 | void DecodeVALIGNMask(unsigned NumElts, unsigned Imm, |
140 | SmallVectorImpl<int> &ShuffleMask) { |
141 | // Not all bits of the immediate are used so mask it. |
142 | assert(isPowerOf2_32(NumElts) && "NumElts should be power of 2" ); |
143 | Imm = Imm & (NumElts - 1); |
144 | for (unsigned i = 0; i != NumElts; ++i) |
145 | ShuffleMask.push_back(Elt: i + Imm); |
146 | } |
147 | |
148 | void DecodePSHUFMask(unsigned NumElts, unsigned ScalarBits, unsigned Imm, |
149 | SmallVectorImpl<int> &ShuffleMask) { |
150 | unsigned Size = NumElts * ScalarBits; |
151 | unsigned NumLanes = Size / 128; |
152 | if (NumLanes == 0) NumLanes = 1; // Handle MMX |
153 | unsigned NumLaneElts = NumElts / NumLanes; |
154 | |
155 | uint32_t SplatImm = (Imm & 0xff) * 0x01010101; |
156 | for (unsigned l = 0; l != NumElts; l += NumLaneElts) { |
157 | for (unsigned i = 0; i != NumLaneElts; ++i) { |
158 | ShuffleMask.push_back(Elt: SplatImm % NumLaneElts + l); |
159 | SplatImm /= NumLaneElts; |
160 | } |
161 | } |
162 | } |
163 | |
164 | void DecodePSHUFHWMask(unsigned NumElts, unsigned Imm, |
165 | SmallVectorImpl<int> &ShuffleMask) { |
166 | for (unsigned l = 0; l != NumElts; l += 8) { |
167 | unsigned NewImm = Imm; |
168 | for (unsigned i = 0, e = 4; i != e; ++i) { |
169 | ShuffleMask.push_back(Elt: l + i); |
170 | } |
171 | for (unsigned i = 4, e = 8; i != e; ++i) { |
172 | ShuffleMask.push_back(Elt: l + 4 + (NewImm & 3)); |
173 | NewImm >>= 2; |
174 | } |
175 | } |
176 | } |
177 | |
178 | void DecodePSHUFLWMask(unsigned NumElts, unsigned Imm, |
179 | SmallVectorImpl<int> &ShuffleMask) { |
180 | for (unsigned l = 0; l != NumElts; l += 8) { |
181 | unsigned NewImm = Imm; |
182 | for (unsigned i = 0, e = 4; i != e; ++i) { |
183 | ShuffleMask.push_back(Elt: l + (NewImm & 3)); |
184 | NewImm >>= 2; |
185 | } |
186 | for (unsigned i = 4, e = 8; i != e; ++i) { |
187 | ShuffleMask.push_back(Elt: l + i); |
188 | } |
189 | } |
190 | } |
191 | |
192 | void DecodePSWAPMask(unsigned NumElts, SmallVectorImpl<int> &ShuffleMask) { |
193 | unsigned NumHalfElts = NumElts / 2; |
194 | |
195 | for (unsigned l = 0; l != NumHalfElts; ++l) |
196 | ShuffleMask.push_back(Elt: l + NumHalfElts); |
197 | for (unsigned h = 0; h != NumHalfElts; ++h) |
198 | ShuffleMask.push_back(Elt: h); |
199 | } |
200 | |
201 | void DecodeSHUFPMask(unsigned NumElts, unsigned ScalarBits, |
202 | unsigned Imm, SmallVectorImpl<int> &ShuffleMask) { |
203 | unsigned NumLaneElts = 128 / ScalarBits; |
204 | |
205 | unsigned NewImm = Imm; |
206 | for (unsigned l = 0; l != NumElts; l += NumLaneElts) { |
207 | // each half of a lane comes from different source |
208 | for (unsigned s = 0; s != NumElts * 2; s += NumElts) { |
209 | for (unsigned i = 0; i != NumLaneElts / 2; ++i) { |
210 | ShuffleMask.push_back(Elt: NewImm % NumLaneElts + s + l); |
211 | NewImm /= NumLaneElts; |
212 | } |
213 | } |
214 | if (NumLaneElts == 4) NewImm = Imm; // reload imm |
215 | } |
216 | } |
217 | |
218 | void DecodeUNPCKHMask(unsigned NumElts, unsigned ScalarBits, |
219 | SmallVectorImpl<int> &ShuffleMask) { |
220 | // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate |
221 | // independently on 128-bit lanes. |
222 | unsigned NumLanes = (NumElts * ScalarBits) / 128; |
223 | if (NumLanes == 0) NumLanes = 1; // Handle MMX |
224 | unsigned NumLaneElts = NumElts / NumLanes; |
225 | |
226 | for (unsigned l = 0; l != NumElts; l += NumLaneElts) { |
227 | for (unsigned i = l + NumLaneElts / 2, e = l + NumLaneElts; i != e; ++i) { |
228 | ShuffleMask.push_back(Elt: i); // Reads from dest/src1 |
229 | ShuffleMask.push_back(Elt: i + NumElts); // Reads from src/src2 |
230 | } |
231 | } |
232 | } |
233 | |
234 | void DecodeUNPCKLMask(unsigned NumElts, unsigned ScalarBits, |
235 | SmallVectorImpl<int> &ShuffleMask) { |
236 | // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate |
237 | // independently on 128-bit lanes. |
238 | unsigned NumLanes = (NumElts * ScalarBits) / 128; |
239 | if (NumLanes == 0 ) NumLanes = 1; // Handle MMX |
240 | unsigned NumLaneElts = NumElts / NumLanes; |
241 | |
242 | for (unsigned l = 0; l != NumElts; l += NumLaneElts) { |
243 | for (unsigned i = l, e = l + NumLaneElts / 2; i != e; ++i) { |
244 | ShuffleMask.push_back(Elt: i); // Reads from dest/src1 |
245 | ShuffleMask.push_back(Elt: i + NumElts); // Reads from src/src2 |
246 | } |
247 | } |
248 | } |
249 | |
250 | void DecodeVectorBroadcast(unsigned NumElts, |
251 | SmallVectorImpl<int> &ShuffleMask) { |
252 | ShuffleMask.append(NumInputs: NumElts, Elt: 0); |
253 | } |
254 | |
255 | void DecodeSubVectorBroadcast(unsigned DstNumElts, unsigned SrcNumElts, |
256 | SmallVectorImpl<int> &ShuffleMask) { |
257 | unsigned Scale = DstNumElts / SrcNumElts; |
258 | |
259 | for (unsigned i = 0; i != Scale; ++i) |
260 | for (unsigned j = 0; j != SrcNumElts; ++j) |
261 | ShuffleMask.push_back(Elt: j); |
262 | } |
263 | |
264 | void decodeVSHUF64x2FamilyMask(unsigned NumElts, unsigned ScalarSize, |
265 | unsigned Imm, |
266 | SmallVectorImpl<int> &ShuffleMask) { |
267 | unsigned NumElementsInLane = 128 / ScalarSize; |
268 | unsigned NumLanes = NumElts / NumElementsInLane; |
269 | |
270 | for (unsigned l = 0; l != NumElts; l += NumElementsInLane) { |
271 | unsigned Index = (Imm % NumLanes) * NumElementsInLane; |
272 | Imm /= NumLanes; // Discard the bits we just used. |
273 | // We actually need the other source. |
274 | if (l >= (NumElts / 2)) |
275 | Index += NumElts; |
276 | for (unsigned i = 0; i != NumElementsInLane; ++i) |
277 | ShuffleMask.push_back(Elt: Index + i); |
278 | } |
279 | } |
280 | |
281 | void DecodeVPERM2X128Mask(unsigned NumElts, unsigned Imm, |
282 | SmallVectorImpl<int> &ShuffleMask) { |
283 | unsigned HalfSize = NumElts / 2; |
284 | |
285 | for (unsigned l = 0; l != 2; ++l) { |
286 | unsigned HalfMask = Imm >> (l * 4); |
287 | unsigned HalfBegin = (HalfMask & 0x3) * HalfSize; |
288 | for (unsigned i = HalfBegin, e = HalfBegin + HalfSize; i != e; ++i) |
289 | ShuffleMask.push_back(Elt: (HalfMask & 8) ? SM_SentinelZero : (int)i); |
290 | } |
291 | } |
292 | |
293 | void DecodePSHUFBMask(ArrayRef<uint64_t> RawMask, const APInt &UndefElts, |
294 | SmallVectorImpl<int> &ShuffleMask) { |
295 | for (int i = 0, e = RawMask.size(); i < e; ++i) { |
296 | uint64_t M = RawMask[i]; |
297 | if (UndefElts[i]) { |
298 | ShuffleMask.push_back(Elt: SM_SentinelUndef); |
299 | continue; |
300 | } |
301 | // For 256/512-bit vectors the base of the shuffle is the 128-bit |
302 | // subvector we're inside. |
303 | int Base = (i / 16) * 16; |
304 | // If the high bit (7) of the byte is set, the element is zeroed. |
305 | if (M & (1 << 7)) |
306 | ShuffleMask.push_back(Elt: SM_SentinelZero); |
307 | else { |
308 | // Only the least significant 4 bits of the byte are used. |
309 | int Index = Base + (M & 0xf); |
310 | ShuffleMask.push_back(Elt: Index); |
311 | } |
312 | } |
313 | } |
314 | |
315 | void DecodeBLENDMask(unsigned NumElts, unsigned Imm, |
316 | SmallVectorImpl<int> &ShuffleMask) { |
317 | for (unsigned i = 0; i < NumElts; ++i) { |
318 | // If there are more than 8 elements in the vector, then any immediate blend |
319 | // mask wraps around. |
320 | unsigned Bit = i % 8; |
321 | ShuffleMask.push_back(Elt: ((Imm >> Bit) & 1) ? NumElts + i : i); |
322 | } |
323 | } |
324 | |
325 | void DecodeVPPERMMask(ArrayRef<uint64_t> RawMask, const APInt &UndefElts, |
326 | SmallVectorImpl<int> &ShuffleMask) { |
327 | assert(RawMask.size() == 16 && "Illegal VPPERM shuffle mask size" ); |
328 | |
329 | // VPPERM Operation |
330 | // Bits[4:0] - Byte Index (0 - 31) |
331 | // Bits[7:5] - Permute Operation |
332 | // |
333 | // Permute Operation: |
334 | // 0 - Source byte (no logical operation). |
335 | // 1 - Invert source byte. |
336 | // 2 - Bit reverse of source byte. |
337 | // 3 - Bit reverse of inverted source byte. |
338 | // 4 - 00h (zero - fill). |
339 | // 5 - FFh (ones - fill). |
340 | // 6 - Most significant bit of source byte replicated in all bit positions. |
341 | // 7 - Invert most significant bit of source byte and replicate in all bit positions. |
342 | for (int i = 0, e = RawMask.size(); i < e; ++i) { |
343 | if (UndefElts[i]) { |
344 | ShuffleMask.push_back(Elt: SM_SentinelUndef); |
345 | continue; |
346 | } |
347 | |
348 | uint64_t M = RawMask[i]; |
349 | uint64_t PermuteOp = (M >> 5) & 0x7; |
350 | if (PermuteOp == 4) { |
351 | ShuffleMask.push_back(Elt: SM_SentinelZero); |
352 | continue; |
353 | } |
354 | if (PermuteOp != 0) { |
355 | ShuffleMask.clear(); |
356 | return; |
357 | } |
358 | |
359 | uint64_t Index = M & 0x1F; |
360 | ShuffleMask.push_back(Elt: (int)Index); |
361 | } |
362 | } |
363 | |
364 | void DecodeVPERMMask(unsigned NumElts, unsigned Imm, |
365 | SmallVectorImpl<int> &ShuffleMask) { |
366 | for (unsigned l = 0; l != NumElts; l += 4) |
367 | for (unsigned i = 0; i != 4; ++i) |
368 | ShuffleMask.push_back(Elt: l + ((Imm >> (2 * i)) & 3)); |
369 | } |
370 | |
371 | void DecodeZeroExtendMask(unsigned SrcScalarBits, unsigned DstScalarBits, |
372 | unsigned NumDstElts, bool IsAnyExtend, |
373 | SmallVectorImpl<int> &ShuffleMask) { |
374 | unsigned Scale = DstScalarBits / SrcScalarBits; |
375 | assert(SrcScalarBits < DstScalarBits && |
376 | "Expected zero extension mask to increase scalar size" ); |
377 | |
378 | int Sentinel = IsAnyExtend ? SM_SentinelUndef : SM_SentinelZero; |
379 | for (unsigned i = 0; i != NumDstElts; i++) { |
380 | ShuffleMask.push_back(Elt: i); |
381 | ShuffleMask.append(NumInputs: Scale - 1, Elt: Sentinel); |
382 | } |
383 | } |
384 | |
385 | void DecodeZeroMoveLowMask(unsigned NumElts, |
386 | SmallVectorImpl<int> &ShuffleMask) { |
387 | ShuffleMask.push_back(Elt: 0); |
388 | ShuffleMask.append(NumInputs: NumElts - 1, Elt: SM_SentinelZero); |
389 | } |
390 | |
391 | void DecodeScalarMoveMask(unsigned NumElts, bool IsLoad, |
392 | SmallVectorImpl<int> &ShuffleMask) { |
393 | // First element comes from the first element of second source. |
394 | // Remaining elements: Load zero extends / Move copies from first source. |
395 | ShuffleMask.push_back(Elt: NumElts); |
396 | for (unsigned i = 1; i < NumElts; i++) |
397 | ShuffleMask.push_back(Elt: IsLoad ? static_cast<int>(SM_SentinelZero) : i); |
398 | } |
399 | |
400 | void DecodeEXTRQIMask(unsigned NumElts, unsigned EltSize, int Len, int Idx, |
401 | SmallVectorImpl<int> &ShuffleMask) { |
402 | unsigned HalfElts = NumElts / 2; |
403 | |
404 | // Only the bottom 6 bits are valid for each immediate. |
405 | Len &= 0x3F; |
406 | Idx &= 0x3F; |
407 | |
408 | // We can only decode this bit extraction instruction as a shuffle if both the |
409 | // length and index work with whole elements. |
410 | if (0 != (Len % EltSize) || 0 != (Idx % EltSize)) |
411 | return; |
412 | |
413 | // A length of zero is equivalent to a bit length of 64. |
414 | if (Len == 0) |
415 | Len = 64; |
416 | |
417 | // If the length + index exceeds the bottom 64 bits the result is undefined. |
418 | if ((Len + Idx) > 64) { |
419 | ShuffleMask.append(NumInputs: NumElts, Elt: SM_SentinelUndef); |
420 | return; |
421 | } |
422 | |
423 | // Convert index and index to work with elements. |
424 | Len /= EltSize; |
425 | Idx /= EltSize; |
426 | |
427 | // EXTRQ: Extract Len elements starting from Idx. Zero pad the remaining |
428 | // elements of the lower 64-bits. The upper 64-bits are undefined. |
429 | for (int i = 0; i != Len; ++i) |
430 | ShuffleMask.push_back(Elt: i + Idx); |
431 | for (int i = Len; i != (int)HalfElts; ++i) |
432 | ShuffleMask.push_back(Elt: SM_SentinelZero); |
433 | for (int i = HalfElts; i != (int)NumElts; ++i) |
434 | ShuffleMask.push_back(Elt: SM_SentinelUndef); |
435 | } |
436 | |
437 | void DecodeINSERTQIMask(unsigned NumElts, unsigned EltSize, int Len, int Idx, |
438 | SmallVectorImpl<int> &ShuffleMask) { |
439 | unsigned HalfElts = NumElts / 2; |
440 | |
441 | // Only the bottom 6 bits are valid for each immediate. |
442 | Len &= 0x3F; |
443 | Idx &= 0x3F; |
444 | |
445 | // We can only decode this bit insertion instruction as a shuffle if both the |
446 | // length and index work with whole elements. |
447 | if (0 != (Len % EltSize) || 0 != (Idx % EltSize)) |
448 | return; |
449 | |
450 | // A length of zero is equivalent to a bit length of 64. |
451 | if (Len == 0) |
452 | Len = 64; |
453 | |
454 | // If the length + index exceeds the bottom 64 bits the result is undefined. |
455 | if ((Len + Idx) > 64) { |
456 | ShuffleMask.append(NumInputs: NumElts, Elt: SM_SentinelUndef); |
457 | return; |
458 | } |
459 | |
460 | // Convert index and index to work with elements. |
461 | Len /= EltSize; |
462 | Idx /= EltSize; |
463 | |
464 | // INSERTQ: Extract lowest Len elements from lower half of second source and |
465 | // insert over first source starting at Idx element. The upper 64-bits are |
466 | // undefined. |
467 | for (int i = 0; i != Idx; ++i) |
468 | ShuffleMask.push_back(Elt: i); |
469 | for (int i = 0; i != Len; ++i) |
470 | ShuffleMask.push_back(Elt: i + NumElts); |
471 | for (int i = Idx + Len; i != (int)HalfElts; ++i) |
472 | ShuffleMask.push_back(Elt: i); |
473 | for (int i = HalfElts; i != (int)NumElts; ++i) |
474 | ShuffleMask.push_back(Elt: SM_SentinelUndef); |
475 | } |
476 | |
477 | void DecodeVPERMILPMask(unsigned NumElts, unsigned ScalarBits, |
478 | ArrayRef<uint64_t> RawMask, const APInt &UndefElts, |
479 | SmallVectorImpl<int> &ShuffleMask) { |
480 | unsigned VecSize = NumElts * ScalarBits; |
481 | unsigned NumLanes = VecSize / 128; |
482 | unsigned NumEltsPerLane = NumElts / NumLanes; |
483 | assert((VecSize == 128 || VecSize == 256 || VecSize == 512) && |
484 | "Unexpected vector size" ); |
485 | assert((ScalarBits == 32 || ScalarBits == 64) && "Unexpected element size" ); |
486 | |
487 | for (unsigned i = 0, e = RawMask.size(); i < e; ++i) { |
488 | if (UndefElts[i]) { |
489 | ShuffleMask.push_back(Elt: SM_SentinelUndef); |
490 | continue; |
491 | } |
492 | uint64_t M = RawMask[i]; |
493 | M = (ScalarBits == 64 ? ((M >> 1) & 0x1) : (M & 0x3)); |
494 | unsigned LaneOffset = i & ~(NumEltsPerLane - 1); |
495 | ShuffleMask.push_back(Elt: (int)(LaneOffset + M)); |
496 | } |
497 | } |
498 | |
499 | void DecodeVPERMIL2PMask(unsigned NumElts, unsigned ScalarBits, unsigned M2Z, |
500 | ArrayRef<uint64_t> RawMask, const APInt &UndefElts, |
501 | SmallVectorImpl<int> &ShuffleMask) { |
502 | unsigned VecSize = NumElts * ScalarBits; |
503 | unsigned NumLanes = VecSize / 128; |
504 | unsigned NumEltsPerLane = NumElts / NumLanes; |
505 | assert((VecSize == 128 || VecSize == 256) && "Unexpected vector size" ); |
506 | assert((ScalarBits == 32 || ScalarBits == 64) && "Unexpected element size" ); |
507 | assert((NumElts == RawMask.size()) && "Unexpected mask size" ); |
508 | |
509 | for (unsigned i = 0, e = RawMask.size(); i < e; ++i) { |
510 | if (UndefElts[i]) { |
511 | ShuffleMask.push_back(Elt: SM_SentinelUndef); |
512 | continue; |
513 | } |
514 | |
515 | // VPERMIL2 Operation. |
516 | // Bits[3] - Match Bit. |
517 | // Bits[2:1] - (Per Lane) PD Shuffle Mask. |
518 | // Bits[2:0] - (Per Lane) PS Shuffle Mask. |
519 | uint64_t Selector = RawMask[i]; |
520 | unsigned MatchBit = (Selector >> 3) & 0x1; |
521 | |
522 | // M2Z[0:1] MatchBit |
523 | // 0Xb X Source selected by Selector index. |
524 | // 10b 0 Source selected by Selector index. |
525 | // 10b 1 Zero. |
526 | // 11b 0 Zero. |
527 | // 11b 1 Source selected by Selector index. |
528 | if ((M2Z & 0x2) != 0 && MatchBit != (M2Z & 0x1)) { |
529 | ShuffleMask.push_back(Elt: SM_SentinelZero); |
530 | continue; |
531 | } |
532 | |
533 | int Index = i & ~(NumEltsPerLane - 1); |
534 | if (ScalarBits == 64) |
535 | Index += (Selector >> 1) & 0x1; |
536 | else |
537 | Index += Selector & 0x3; |
538 | |
539 | int Src = (Selector >> 2) & 0x1; |
540 | Index += Src * NumElts; |
541 | ShuffleMask.push_back(Elt: Index); |
542 | } |
543 | } |
544 | |
545 | void DecodeVPERMVMask(ArrayRef<uint64_t> RawMask, const APInt &UndefElts, |
546 | SmallVectorImpl<int> &ShuffleMask) { |
547 | uint64_t EltMaskSize = RawMask.size() - 1; |
548 | for (int i = 0, e = RawMask.size(); i != e; ++i) { |
549 | if (UndefElts[i]) { |
550 | ShuffleMask.push_back(Elt: SM_SentinelUndef); |
551 | continue; |
552 | } |
553 | uint64_t M = RawMask[i]; |
554 | M &= EltMaskSize; |
555 | ShuffleMask.push_back(Elt: (int)M); |
556 | } |
557 | } |
558 | |
559 | void DecodeVPERMV3Mask(ArrayRef<uint64_t> RawMask, const APInt &UndefElts, |
560 | SmallVectorImpl<int> &ShuffleMask) { |
561 | uint64_t EltMaskSize = (RawMask.size() * 2) - 1; |
562 | for (int i = 0, e = RawMask.size(); i != e; ++i) { |
563 | if (UndefElts[i]) { |
564 | ShuffleMask.push_back(Elt: SM_SentinelUndef); |
565 | continue; |
566 | } |
567 | uint64_t M = RawMask[i]; |
568 | M &= EltMaskSize; |
569 | ShuffleMask.push_back(Elt: (int)M); |
570 | } |
571 | } |
572 | |
573 | } // namespace llvm |
574 | |