| 1 | //===-- X86InstCombineIntrinsic.cpp - X86 specific InstCombine pass -------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /// \file |
| 9 | /// This file implements a TargetTransformInfo analysis pass specific to the |
| 10 | /// X86 target machine. It uses the target's detailed information to provide |
| 11 | /// more precise answers to certain TTI queries, while letting the target |
| 12 | /// independent and default TTI implementations handle the rest. |
| 13 | /// |
| 14 | //===----------------------------------------------------------------------===// |
| 15 | |
| 16 | #include "X86TargetTransformInfo.h" |
| 17 | #include "llvm/IR/IntrinsicInst.h" |
| 18 | #include "llvm/IR/IntrinsicsX86.h" |
| 19 | #include "llvm/Support/KnownBits.h" |
| 20 | #include "llvm/Transforms/InstCombine/InstCombiner.h" |
| 21 | #include <optional> |
| 22 | |
| 23 | using namespace llvm; |
| 24 | using namespace llvm::PatternMatch; |
| 25 | |
| 26 | #define DEBUG_TYPE "x86tti" |
| 27 | |
| 28 | /// Return a constant boolean vector that has true elements in all positions |
| 29 | /// where the input constant data vector has an element with the sign bit set. |
| 30 | static Constant *getNegativeIsTrueBoolVec(Constant *V, const DataLayout &DL) { |
| 31 | VectorType *IntTy = VectorType::getInteger(VTy: cast<VectorType>(Val: V->getType())); |
| 32 | V = ConstantExpr::getBitCast(C: V, Ty: IntTy); |
| 33 | V = ConstantFoldCompareInstOperands(Predicate: CmpInst::ICMP_SGT, |
| 34 | LHS: Constant::getNullValue(Ty: IntTy), RHS: V, DL); |
| 35 | assert(V && "Vector must be foldable" ); |
| 36 | return V; |
| 37 | } |
| 38 | |
| 39 | /// Convert the x86 XMM integer vector mask to a vector of bools based on |
| 40 | /// each element's most significant bit (the sign bit). |
| 41 | static Value *getBoolVecFromMask(Value *Mask, const DataLayout &DL) { |
| 42 | // Fold Constant Mask. |
| 43 | if (auto *ConstantMask = dyn_cast<ConstantDataVector>(Val: Mask)) |
| 44 | return getNegativeIsTrueBoolVec(V: ConstantMask, DL); |
| 45 | |
| 46 | // Mask was extended from a boolean vector. |
| 47 | Value *ExtMask; |
| 48 | if (match(V: Mask, P: m_SExt(Op: m_Value(V&: ExtMask))) && |
| 49 | ExtMask->getType()->isIntOrIntVectorTy(BitWidth: 1)) |
| 50 | return ExtMask; |
| 51 | |
| 52 | return nullptr; |
| 53 | } |
| 54 | |
| 55 | // TODO: If the x86 backend knew how to convert a bool vector mask back to an |
| 56 | // XMM register mask efficiently, we could transform all x86 masked intrinsics |
| 57 | // to LLVM masked intrinsics and remove the x86 masked intrinsic defs. |
| 58 | static Instruction *simplifyX86MaskedLoad(IntrinsicInst &II, InstCombiner &IC) { |
| 59 | Value *Ptr = II.getOperand(i_nocapture: 0); |
| 60 | Value *Mask = II.getOperand(i_nocapture: 1); |
| 61 | Constant *ZeroVec = Constant::getNullValue(Ty: II.getType()); |
| 62 | |
| 63 | // Zero Mask - masked load instruction creates a zero vector. |
| 64 | if (isa<ConstantAggregateZero>(Val: Mask)) |
| 65 | return IC.replaceInstUsesWith(I&: II, V: ZeroVec); |
| 66 | |
| 67 | // The mask is constant or extended from a bool vector. Convert this x86 |
| 68 | // intrinsic to the LLVM intrinsic to allow target-independent optimizations. |
| 69 | if (Value *BoolMask = getBoolVecFromMask(Mask, DL: IC.getDataLayout())) { |
| 70 | // The pass-through vector for an x86 masked load is a zero vector. |
| 71 | CallInst *NewMaskedLoad = IC.Builder.CreateMaskedLoad( |
| 72 | Ty: II.getType(), Ptr, Alignment: Align(1), Mask: BoolMask, PassThru: ZeroVec); |
| 73 | return IC.replaceInstUsesWith(I&: II, V: NewMaskedLoad); |
| 74 | } |
| 75 | |
| 76 | return nullptr; |
| 77 | } |
| 78 | |
| 79 | // TODO: If the x86 backend knew how to convert a bool vector mask back to an |
| 80 | // XMM register mask efficiently, we could transform all x86 masked intrinsics |
| 81 | // to LLVM masked intrinsics and remove the x86 masked intrinsic defs. |
| 82 | static bool simplifyX86MaskedStore(IntrinsicInst &II, InstCombiner &IC) { |
| 83 | Value *Ptr = II.getOperand(i_nocapture: 0); |
| 84 | Value *Mask = II.getOperand(i_nocapture: 1); |
| 85 | Value *Vec = II.getOperand(i_nocapture: 2); |
| 86 | |
| 87 | // Zero Mask - this masked store instruction does nothing. |
| 88 | if (isa<ConstantAggregateZero>(Val: Mask)) { |
| 89 | IC.eraseInstFromFunction(I&: II); |
| 90 | return true; |
| 91 | } |
| 92 | |
| 93 | // The SSE2 version is too weird (eg, unaligned but non-temporal) to do |
| 94 | // anything else at this level. |
| 95 | if (II.getIntrinsicID() == Intrinsic::x86_sse2_maskmov_dqu) |
| 96 | return false; |
| 97 | |
| 98 | // The mask is constant or extended from a bool vector. Convert this x86 |
| 99 | // intrinsic to the LLVM intrinsic to allow target-independent optimizations. |
| 100 | if (Value *BoolMask = getBoolVecFromMask(Mask, DL: IC.getDataLayout())) { |
| 101 | unsigned AddrSpace = cast<PointerType>(Val: Ptr->getType())->getAddressSpace(); |
| 102 | PointerType *VecPtrTy = PointerType::get(C&: Vec->getContext(), AddressSpace: AddrSpace); |
| 103 | Value *PtrCast = IC.Builder.CreateBitCast(V: Ptr, DestTy: VecPtrTy, Name: "castvec" ); |
| 104 | |
| 105 | IC.Builder.CreateMaskedStore(Val: Vec, Ptr: PtrCast, Alignment: Align(1), Mask: BoolMask); |
| 106 | |
| 107 | // 'Replace uses' doesn't work for stores. Erase the original masked store. |
| 108 | IC.eraseInstFromFunction(I&: II); |
| 109 | return true; |
| 110 | } |
| 111 | |
| 112 | return false; |
| 113 | } |
| 114 | |
| 115 | static Value *simplifyX86immShift(const IntrinsicInst &II, |
| 116 | InstCombiner::BuilderTy &Builder) { |
| 117 | bool LogicalShift = false; |
| 118 | bool ShiftLeft = false; |
| 119 | bool IsImm = false; |
| 120 | |
| 121 | switch (II.getIntrinsicID()) { |
| 122 | default: |
| 123 | llvm_unreachable("Unexpected intrinsic!" ); |
| 124 | case Intrinsic::x86_sse2_psrai_d: |
| 125 | case Intrinsic::x86_sse2_psrai_w: |
| 126 | case Intrinsic::x86_avx2_psrai_d: |
| 127 | case Intrinsic::x86_avx2_psrai_w: |
| 128 | case Intrinsic::x86_avx512_psrai_q_128: |
| 129 | case Intrinsic::x86_avx512_psrai_q_256: |
| 130 | case Intrinsic::x86_avx512_psrai_d_512: |
| 131 | case Intrinsic::x86_avx512_psrai_q_512: |
| 132 | case Intrinsic::x86_avx512_psrai_w_512: |
| 133 | IsImm = true; |
| 134 | [[fallthrough]]; |
| 135 | case Intrinsic::x86_sse2_psra_d: |
| 136 | case Intrinsic::x86_sse2_psra_w: |
| 137 | case Intrinsic::x86_avx2_psra_d: |
| 138 | case Intrinsic::x86_avx2_psra_w: |
| 139 | case Intrinsic::x86_avx512_psra_q_128: |
| 140 | case Intrinsic::x86_avx512_psra_q_256: |
| 141 | case Intrinsic::x86_avx512_psra_d_512: |
| 142 | case Intrinsic::x86_avx512_psra_q_512: |
| 143 | case Intrinsic::x86_avx512_psra_w_512: |
| 144 | LogicalShift = false; |
| 145 | ShiftLeft = false; |
| 146 | break; |
| 147 | case Intrinsic::x86_sse2_psrli_d: |
| 148 | case Intrinsic::x86_sse2_psrli_q: |
| 149 | case Intrinsic::x86_sse2_psrli_w: |
| 150 | case Intrinsic::x86_avx2_psrli_d: |
| 151 | case Intrinsic::x86_avx2_psrli_q: |
| 152 | case Intrinsic::x86_avx2_psrli_w: |
| 153 | case Intrinsic::x86_avx512_psrli_d_512: |
| 154 | case Intrinsic::x86_avx512_psrli_q_512: |
| 155 | case Intrinsic::x86_avx512_psrli_w_512: |
| 156 | IsImm = true; |
| 157 | [[fallthrough]]; |
| 158 | case Intrinsic::x86_sse2_psrl_d: |
| 159 | case Intrinsic::x86_sse2_psrl_q: |
| 160 | case Intrinsic::x86_sse2_psrl_w: |
| 161 | case Intrinsic::x86_avx2_psrl_d: |
| 162 | case Intrinsic::x86_avx2_psrl_q: |
| 163 | case Intrinsic::x86_avx2_psrl_w: |
| 164 | case Intrinsic::x86_avx512_psrl_d_512: |
| 165 | case Intrinsic::x86_avx512_psrl_q_512: |
| 166 | case Intrinsic::x86_avx512_psrl_w_512: |
| 167 | LogicalShift = true; |
| 168 | ShiftLeft = false; |
| 169 | break; |
| 170 | case Intrinsic::x86_sse2_pslli_d: |
| 171 | case Intrinsic::x86_sse2_pslli_q: |
| 172 | case Intrinsic::x86_sse2_pslli_w: |
| 173 | case Intrinsic::x86_avx2_pslli_d: |
| 174 | case Intrinsic::x86_avx2_pslli_q: |
| 175 | case Intrinsic::x86_avx2_pslli_w: |
| 176 | case Intrinsic::x86_avx512_pslli_d_512: |
| 177 | case Intrinsic::x86_avx512_pslli_q_512: |
| 178 | case Intrinsic::x86_avx512_pslli_w_512: |
| 179 | IsImm = true; |
| 180 | [[fallthrough]]; |
| 181 | case Intrinsic::x86_sse2_psll_d: |
| 182 | case Intrinsic::x86_sse2_psll_q: |
| 183 | case Intrinsic::x86_sse2_psll_w: |
| 184 | case Intrinsic::x86_avx2_psll_d: |
| 185 | case Intrinsic::x86_avx2_psll_q: |
| 186 | case Intrinsic::x86_avx2_psll_w: |
| 187 | case Intrinsic::x86_avx512_psll_d_512: |
| 188 | case Intrinsic::x86_avx512_psll_q_512: |
| 189 | case Intrinsic::x86_avx512_psll_w_512: |
| 190 | LogicalShift = true; |
| 191 | ShiftLeft = true; |
| 192 | break; |
| 193 | } |
| 194 | assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left" ); |
| 195 | |
| 196 | Value *Vec = II.getArgOperand(i: 0); |
| 197 | Value *Amt = II.getArgOperand(i: 1); |
| 198 | auto *VT = cast<FixedVectorType>(Val: Vec->getType()); |
| 199 | Type *SVT = VT->getElementType(); |
| 200 | Type *AmtVT = Amt->getType(); |
| 201 | unsigned VWidth = VT->getNumElements(); |
| 202 | unsigned BitWidth = SVT->getPrimitiveSizeInBits(); |
| 203 | |
| 204 | // If the shift amount is guaranteed to be in-range we can replace it with a |
| 205 | // generic shift. If its guaranteed to be out of range, logical shifts combine |
| 206 | // to zero and arithmetic shifts are clamped to (BitWidth - 1). |
| 207 | if (IsImm) { |
| 208 | assert(AmtVT->isIntegerTy(32) && "Unexpected shift-by-immediate type" ); |
| 209 | KnownBits KnownAmtBits = |
| 210 | llvm::computeKnownBits(V: Amt, DL: II.getDataLayout()); |
| 211 | if (KnownAmtBits.getMaxValue().ult(RHS: BitWidth)) { |
| 212 | Amt = Builder.CreateZExtOrTrunc(V: Amt, DestTy: SVT); |
| 213 | Amt = Builder.CreateVectorSplat(NumElts: VWidth, V: Amt); |
| 214 | return (LogicalShift ? (ShiftLeft ? Builder.CreateShl(LHS: Vec, RHS: Amt) |
| 215 | : Builder.CreateLShr(LHS: Vec, RHS: Amt)) |
| 216 | : Builder.CreateAShr(LHS: Vec, RHS: Amt)); |
| 217 | } |
| 218 | if (KnownAmtBits.getMinValue().uge(RHS: BitWidth)) { |
| 219 | if (LogicalShift) |
| 220 | return ConstantAggregateZero::get(Ty: VT); |
| 221 | Amt = ConstantInt::get(Ty: SVT, V: BitWidth - 1); |
| 222 | return Builder.CreateAShr(LHS: Vec, RHS: Builder.CreateVectorSplat(NumElts: VWidth, V: Amt)); |
| 223 | } |
| 224 | } else { |
| 225 | // Ensure the first element has an in-range value and the rest of the |
| 226 | // elements in the bottom 64 bits are zero. |
| 227 | assert(AmtVT->isVectorTy() && AmtVT->getPrimitiveSizeInBits() == 128 && |
| 228 | cast<VectorType>(AmtVT)->getElementType() == SVT && |
| 229 | "Unexpected shift-by-scalar type" ); |
| 230 | unsigned NumAmtElts = cast<FixedVectorType>(Val: AmtVT)->getNumElements(); |
| 231 | APInt DemandedLower = APInt::getOneBitSet(numBits: NumAmtElts, BitNo: 0); |
| 232 | APInt DemandedUpper = APInt::getBitsSet(numBits: NumAmtElts, loBit: 1, hiBit: NumAmtElts / 2); |
| 233 | KnownBits KnownLowerBits = llvm::computeKnownBits( |
| 234 | V: Amt, DemandedElts: DemandedLower, DL: II.getDataLayout()); |
| 235 | KnownBits KnownUpperBits = llvm::computeKnownBits( |
| 236 | V: Amt, DemandedElts: DemandedUpper, DL: II.getDataLayout()); |
| 237 | if (KnownLowerBits.getMaxValue().ult(RHS: BitWidth) && |
| 238 | (DemandedUpper.isZero() || KnownUpperBits.isZero())) { |
| 239 | SmallVector<int, 16> ZeroSplat(VWidth, 0); |
| 240 | Amt = Builder.CreateShuffleVector(V: Amt, Mask: ZeroSplat); |
| 241 | return (LogicalShift ? (ShiftLeft ? Builder.CreateShl(LHS: Vec, RHS: Amt) |
| 242 | : Builder.CreateLShr(LHS: Vec, RHS: Amt)) |
| 243 | : Builder.CreateAShr(LHS: Vec, RHS: Amt)); |
| 244 | } |
| 245 | } |
| 246 | |
| 247 | // Simplify if count is constant vector. |
| 248 | auto *CDV = dyn_cast<ConstantDataVector>(Val: Amt); |
| 249 | if (!CDV) |
| 250 | return nullptr; |
| 251 | |
| 252 | // SSE2/AVX2 uses all the first 64-bits of the 128-bit vector |
| 253 | // operand to compute the shift amount. |
| 254 | assert(AmtVT->isVectorTy() && AmtVT->getPrimitiveSizeInBits() == 128 && |
| 255 | cast<VectorType>(AmtVT)->getElementType() == SVT && |
| 256 | "Unexpected shift-by-scalar type" ); |
| 257 | |
| 258 | // Concatenate the sub-elements to create the 64-bit value. |
| 259 | APInt Count(64, 0); |
| 260 | for (unsigned i = 0, NumSubElts = 64 / BitWidth; i != NumSubElts; ++i) { |
| 261 | unsigned SubEltIdx = (NumSubElts - 1) - i; |
| 262 | auto *SubElt = cast<ConstantInt>(Val: CDV->getElementAsConstant(i: SubEltIdx)); |
| 263 | Count <<= BitWidth; |
| 264 | Count |= SubElt->getValue().zextOrTrunc(width: 64); |
| 265 | } |
| 266 | |
| 267 | // If shift-by-zero then just return the original value. |
| 268 | if (Count.isZero()) |
| 269 | return Vec; |
| 270 | |
| 271 | // Handle cases when Shift >= BitWidth. |
| 272 | if (Count.uge(RHS: BitWidth)) { |
| 273 | // If LogicalShift - just return zero. |
| 274 | if (LogicalShift) |
| 275 | return ConstantAggregateZero::get(Ty: VT); |
| 276 | |
| 277 | // If ArithmeticShift - clamp Shift to (BitWidth - 1). |
| 278 | Count = APInt(64, BitWidth - 1); |
| 279 | } |
| 280 | |
| 281 | // Get a constant vector of the same type as the first operand. |
| 282 | auto ShiftAmt = ConstantInt::get(Ty: SVT, V: Count.zextOrTrunc(width: BitWidth)); |
| 283 | auto ShiftVec = Builder.CreateVectorSplat(NumElts: VWidth, V: ShiftAmt); |
| 284 | |
| 285 | if (ShiftLeft) |
| 286 | return Builder.CreateShl(LHS: Vec, RHS: ShiftVec); |
| 287 | |
| 288 | if (LogicalShift) |
| 289 | return Builder.CreateLShr(LHS: Vec, RHS: ShiftVec); |
| 290 | |
| 291 | return Builder.CreateAShr(LHS: Vec, RHS: ShiftVec); |
| 292 | } |
| 293 | |
| 294 | // Attempt to simplify AVX2 per-element shift intrinsics to a generic IR shift. |
| 295 | // Unlike the generic IR shifts, the intrinsics have defined behaviour for out |
| 296 | // of range shift amounts (logical - set to zero, arithmetic - splat sign bit). |
| 297 | static Value *simplifyX86varShift(const IntrinsicInst &II, |
| 298 | InstCombiner::BuilderTy &Builder) { |
| 299 | bool LogicalShift = false; |
| 300 | bool ShiftLeft = false; |
| 301 | |
| 302 | switch (II.getIntrinsicID()) { |
| 303 | default: |
| 304 | llvm_unreachable("Unexpected intrinsic!" ); |
| 305 | case Intrinsic::x86_avx2_psrav_d: |
| 306 | case Intrinsic::x86_avx2_psrav_d_256: |
| 307 | case Intrinsic::x86_avx512_psrav_q_128: |
| 308 | case Intrinsic::x86_avx512_psrav_q_256: |
| 309 | case Intrinsic::x86_avx512_psrav_d_512: |
| 310 | case Intrinsic::x86_avx512_psrav_q_512: |
| 311 | case Intrinsic::x86_avx512_psrav_w_128: |
| 312 | case Intrinsic::x86_avx512_psrav_w_256: |
| 313 | case Intrinsic::x86_avx512_psrav_w_512: |
| 314 | LogicalShift = false; |
| 315 | ShiftLeft = false; |
| 316 | break; |
| 317 | case Intrinsic::x86_avx2_psrlv_d: |
| 318 | case Intrinsic::x86_avx2_psrlv_d_256: |
| 319 | case Intrinsic::x86_avx2_psrlv_q: |
| 320 | case Intrinsic::x86_avx2_psrlv_q_256: |
| 321 | case Intrinsic::x86_avx512_psrlv_d_512: |
| 322 | case Intrinsic::x86_avx512_psrlv_q_512: |
| 323 | case Intrinsic::x86_avx512_psrlv_w_128: |
| 324 | case Intrinsic::x86_avx512_psrlv_w_256: |
| 325 | case Intrinsic::x86_avx512_psrlv_w_512: |
| 326 | LogicalShift = true; |
| 327 | ShiftLeft = false; |
| 328 | break; |
| 329 | case Intrinsic::x86_avx2_psllv_d: |
| 330 | case Intrinsic::x86_avx2_psllv_d_256: |
| 331 | case Intrinsic::x86_avx2_psllv_q: |
| 332 | case Intrinsic::x86_avx2_psllv_q_256: |
| 333 | case Intrinsic::x86_avx512_psllv_d_512: |
| 334 | case Intrinsic::x86_avx512_psllv_q_512: |
| 335 | case Intrinsic::x86_avx512_psllv_w_128: |
| 336 | case Intrinsic::x86_avx512_psllv_w_256: |
| 337 | case Intrinsic::x86_avx512_psllv_w_512: |
| 338 | LogicalShift = true; |
| 339 | ShiftLeft = true; |
| 340 | break; |
| 341 | } |
| 342 | assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left" ); |
| 343 | |
| 344 | Value *Vec = II.getArgOperand(i: 0); |
| 345 | Value *Amt = II.getArgOperand(i: 1); |
| 346 | auto *VT = cast<FixedVectorType>(Val: II.getType()); |
| 347 | Type *SVT = VT->getElementType(); |
| 348 | int NumElts = VT->getNumElements(); |
| 349 | int BitWidth = SVT->getIntegerBitWidth(); |
| 350 | |
| 351 | // If the shift amount is guaranteed to be in-range we can replace it with a |
| 352 | // generic shift. |
| 353 | KnownBits KnownAmt = |
| 354 | llvm::computeKnownBits(V: Amt, DL: II.getDataLayout()); |
| 355 | if (KnownAmt.getMaxValue().ult(RHS: BitWidth)) { |
| 356 | return (LogicalShift ? (ShiftLeft ? Builder.CreateShl(LHS: Vec, RHS: Amt) |
| 357 | : Builder.CreateLShr(LHS: Vec, RHS: Amt)) |
| 358 | : Builder.CreateAShr(LHS: Vec, RHS: Amt)); |
| 359 | } |
| 360 | |
| 361 | // Simplify if all shift amounts are constant/undef. |
| 362 | auto *CShift = dyn_cast<Constant>(Val: Amt); |
| 363 | if (!CShift) |
| 364 | return nullptr; |
| 365 | |
| 366 | // Collect each element's shift amount. |
| 367 | // We also collect special cases: UNDEF = -1, OUT-OF-RANGE = BitWidth. |
| 368 | bool AnyOutOfRange = false; |
| 369 | SmallVector<int, 8> ShiftAmts; |
| 370 | for (int I = 0; I < NumElts; ++I) { |
| 371 | auto *CElt = CShift->getAggregateElement(Elt: I); |
| 372 | if (isa_and_nonnull<UndefValue>(Val: CElt)) { |
| 373 | ShiftAmts.push_back(Elt: -1); |
| 374 | continue; |
| 375 | } |
| 376 | |
| 377 | auto *COp = dyn_cast_or_null<ConstantInt>(Val: CElt); |
| 378 | if (!COp) |
| 379 | return nullptr; |
| 380 | |
| 381 | // Handle out of range shifts. |
| 382 | // If LogicalShift - set to BitWidth (special case). |
| 383 | // If ArithmeticShift - set to (BitWidth - 1) (sign splat). |
| 384 | APInt ShiftVal = COp->getValue(); |
| 385 | if (ShiftVal.uge(RHS: BitWidth)) { |
| 386 | AnyOutOfRange = LogicalShift; |
| 387 | ShiftAmts.push_back(Elt: LogicalShift ? BitWidth : BitWidth - 1); |
| 388 | continue; |
| 389 | } |
| 390 | |
| 391 | ShiftAmts.push_back(Elt: (int)ShiftVal.getZExtValue()); |
| 392 | } |
| 393 | |
| 394 | // If all elements out of range or UNDEF, return vector of zeros/undefs. |
| 395 | // ArithmeticShift should only hit this if they are all UNDEF. |
| 396 | auto OutOfRange = [&](int Idx) { return (Idx < 0) || (BitWidth <= Idx); }; |
| 397 | if (llvm::all_of(Range&: ShiftAmts, P: OutOfRange)) { |
| 398 | SmallVector<Constant *, 8> ConstantVec; |
| 399 | for (int Idx : ShiftAmts) { |
| 400 | if (Idx < 0) { |
| 401 | ConstantVec.push_back(Elt: UndefValue::get(T: SVT)); |
| 402 | } else { |
| 403 | assert(LogicalShift && "Logical shift expected" ); |
| 404 | ConstantVec.push_back(Elt: ConstantInt::getNullValue(Ty: SVT)); |
| 405 | } |
| 406 | } |
| 407 | return ConstantVector::get(V: ConstantVec); |
| 408 | } |
| 409 | |
| 410 | // We can't handle only some out of range values with generic logical shifts. |
| 411 | if (AnyOutOfRange) |
| 412 | return nullptr; |
| 413 | |
| 414 | // Build the shift amount constant vector. |
| 415 | SmallVector<Constant *, 8> ShiftVecAmts; |
| 416 | for (int Idx : ShiftAmts) { |
| 417 | if (Idx < 0) |
| 418 | ShiftVecAmts.push_back(Elt: UndefValue::get(T: SVT)); |
| 419 | else |
| 420 | ShiftVecAmts.push_back(Elt: ConstantInt::get(Ty: SVT, V: Idx)); |
| 421 | } |
| 422 | auto ShiftVec = ConstantVector::get(V: ShiftVecAmts); |
| 423 | |
| 424 | if (ShiftLeft) |
| 425 | return Builder.CreateShl(LHS: Vec, RHS: ShiftVec); |
| 426 | |
| 427 | if (LogicalShift) |
| 428 | return Builder.CreateLShr(LHS: Vec, RHS: ShiftVec); |
| 429 | |
| 430 | return Builder.CreateAShr(LHS: Vec, RHS: ShiftVec); |
| 431 | } |
| 432 | |
| 433 | static Value *simplifyX86pack(IntrinsicInst &II, |
| 434 | InstCombiner::BuilderTy &Builder, bool IsSigned) { |
| 435 | Value *Arg0 = II.getArgOperand(i: 0); |
| 436 | Value *Arg1 = II.getArgOperand(i: 1); |
| 437 | Type *ResTy = II.getType(); |
| 438 | |
| 439 | // Fast all undef handling. |
| 440 | if (isa<UndefValue>(Val: Arg0) && isa<UndefValue>(Val: Arg1)) |
| 441 | return UndefValue::get(T: ResTy); |
| 442 | |
| 443 | auto *ArgTy = cast<FixedVectorType>(Val: Arg0->getType()); |
| 444 | unsigned NumLanes = ResTy->getPrimitiveSizeInBits() / 128; |
| 445 | unsigned NumSrcElts = ArgTy->getNumElements(); |
| 446 | assert(cast<FixedVectorType>(ResTy)->getNumElements() == (2 * NumSrcElts) && |
| 447 | "Unexpected packing types" ); |
| 448 | |
| 449 | unsigned NumSrcEltsPerLane = NumSrcElts / NumLanes; |
| 450 | unsigned DstScalarSizeInBits = ResTy->getScalarSizeInBits(); |
| 451 | unsigned SrcScalarSizeInBits = ArgTy->getScalarSizeInBits(); |
| 452 | assert(SrcScalarSizeInBits == (2 * DstScalarSizeInBits) && |
| 453 | "Unexpected packing types" ); |
| 454 | |
| 455 | // Constant folding. |
| 456 | if (!isa<Constant>(Val: Arg0) || !isa<Constant>(Val: Arg1)) |
| 457 | return nullptr; |
| 458 | |
| 459 | // Clamp Values - signed/unsigned both use signed clamp values, but they |
| 460 | // differ on the min/max values. |
| 461 | APInt MinValue, MaxValue; |
| 462 | if (IsSigned) { |
| 463 | // PACKSS: Truncate signed value with signed saturation. |
| 464 | // Source values less than dst minint are saturated to minint. |
| 465 | // Source values greater than dst maxint are saturated to maxint. |
| 466 | MinValue = |
| 467 | APInt::getSignedMinValue(numBits: DstScalarSizeInBits).sext(width: SrcScalarSizeInBits); |
| 468 | MaxValue = |
| 469 | APInt::getSignedMaxValue(numBits: DstScalarSizeInBits).sext(width: SrcScalarSizeInBits); |
| 470 | } else { |
| 471 | // PACKUS: Truncate signed value with unsigned saturation. |
| 472 | // Source values less than zero are saturated to zero. |
| 473 | // Source values greater than dst maxuint are saturated to maxuint. |
| 474 | MinValue = APInt::getZero(numBits: SrcScalarSizeInBits); |
| 475 | MaxValue = APInt::getLowBitsSet(numBits: SrcScalarSizeInBits, loBitsSet: DstScalarSizeInBits); |
| 476 | } |
| 477 | |
| 478 | auto *MinC = Constant::getIntegerValue(Ty: ArgTy, V: MinValue); |
| 479 | auto *MaxC = Constant::getIntegerValue(Ty: ArgTy, V: MaxValue); |
| 480 | Arg0 = Builder.CreateSelect(C: Builder.CreateICmpSLT(LHS: Arg0, RHS: MinC), True: MinC, False: Arg0); |
| 481 | Arg1 = Builder.CreateSelect(C: Builder.CreateICmpSLT(LHS: Arg1, RHS: MinC), True: MinC, False: Arg1); |
| 482 | Arg0 = Builder.CreateSelect(C: Builder.CreateICmpSGT(LHS: Arg0, RHS: MaxC), True: MaxC, False: Arg0); |
| 483 | Arg1 = Builder.CreateSelect(C: Builder.CreateICmpSGT(LHS: Arg1, RHS: MaxC), True: MaxC, False: Arg1); |
| 484 | |
| 485 | // Shuffle clamped args together at the lane level. |
| 486 | SmallVector<int, 32> PackMask; |
| 487 | for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { |
| 488 | for (unsigned Elt = 0; Elt != NumSrcEltsPerLane; ++Elt) |
| 489 | PackMask.push_back(Elt: Elt + (Lane * NumSrcEltsPerLane)); |
| 490 | for (unsigned Elt = 0; Elt != NumSrcEltsPerLane; ++Elt) |
| 491 | PackMask.push_back(Elt: Elt + (Lane * NumSrcEltsPerLane) + NumSrcElts); |
| 492 | } |
| 493 | auto *Shuffle = Builder.CreateShuffleVector(V1: Arg0, V2: Arg1, Mask: PackMask); |
| 494 | |
| 495 | // Truncate to dst size. |
| 496 | return Builder.CreateTrunc(V: Shuffle, DestTy: ResTy); |
| 497 | } |
| 498 | |
| 499 | static Value *simplifyX86pmulh(IntrinsicInst &II, |
| 500 | InstCombiner::BuilderTy &Builder, bool IsSigned, |
| 501 | bool IsRounding) { |
| 502 | Value *Arg0 = II.getArgOperand(i: 0); |
| 503 | Value *Arg1 = II.getArgOperand(i: 1); |
| 504 | auto *ResTy = cast<FixedVectorType>(Val: II.getType()); |
| 505 | auto *ArgTy = cast<FixedVectorType>(Val: Arg0->getType()); |
| 506 | assert(ArgTy == ResTy && ResTy->getScalarSizeInBits() == 16 && |
| 507 | "Unexpected PMULH types" ); |
| 508 | assert((!IsRounding || IsSigned) && "PMULHRS instruction must be signed" ); |
| 509 | |
| 510 | // Multiply by undef -> zero (NOT undef!) as other arg could still be zero. |
| 511 | if (isa<UndefValue>(Val: Arg0) || isa<UndefValue>(Val: Arg1)) |
| 512 | return ConstantAggregateZero::get(Ty: ResTy); |
| 513 | |
| 514 | // Multiply by zero. |
| 515 | if (isa<ConstantAggregateZero>(Val: Arg0) || isa<ConstantAggregateZero>(Val: Arg1)) |
| 516 | return ConstantAggregateZero::get(Ty: ResTy); |
| 517 | |
| 518 | // Multiply by one. |
| 519 | if (!IsRounding) { |
| 520 | if (match(V: Arg0, P: m_One())) |
| 521 | return IsSigned ? Builder.CreateAShr(LHS: Arg1, RHS: 15) |
| 522 | : ConstantAggregateZero::get(Ty: ResTy); |
| 523 | if (match(V: Arg1, P: m_One())) |
| 524 | return IsSigned ? Builder.CreateAShr(LHS: Arg0, RHS: 15) |
| 525 | : ConstantAggregateZero::get(Ty: ResTy); |
| 526 | } |
| 527 | |
| 528 | // Constant folding. |
| 529 | if (!isa<Constant>(Val: Arg0) || !isa<Constant>(Val: Arg1)) |
| 530 | return nullptr; |
| 531 | |
| 532 | // Extend to twice the width and multiply. |
| 533 | auto Cast = |
| 534 | IsSigned ? Instruction::CastOps::SExt : Instruction::CastOps::ZExt; |
| 535 | auto *ExtTy = FixedVectorType::getExtendedElementVectorType(VTy: ArgTy); |
| 536 | Value *LHS = Builder.CreateCast(Op: Cast, V: Arg0, DestTy: ExtTy); |
| 537 | Value *RHS = Builder.CreateCast(Op: Cast, V: Arg1, DestTy: ExtTy); |
| 538 | Value *Mul = Builder.CreateMul(LHS, RHS); |
| 539 | |
| 540 | if (IsRounding) { |
| 541 | // PMULHRSW: truncate to vXi18 of the most significant bits, add one and |
| 542 | // extract bits[16:1]. |
| 543 | auto *RndEltTy = IntegerType::get(C&: ExtTy->getContext(), NumBits: 18); |
| 544 | auto *RndTy = FixedVectorType::get(ElementType: RndEltTy, FVTy: ExtTy); |
| 545 | Mul = Builder.CreateLShr(LHS: Mul, RHS: 14); |
| 546 | Mul = Builder.CreateTrunc(V: Mul, DestTy: RndTy); |
| 547 | Mul = Builder.CreateAdd(LHS: Mul, RHS: ConstantInt::get(Ty: RndTy, V: 1)); |
| 548 | Mul = Builder.CreateLShr(LHS: Mul, RHS: 1); |
| 549 | } else { |
| 550 | // PMULH/PMULHU: extract the vXi16 most significant bits. |
| 551 | Mul = Builder.CreateLShr(LHS: Mul, RHS: 16); |
| 552 | } |
| 553 | |
| 554 | return Builder.CreateTrunc(V: Mul, DestTy: ResTy); |
| 555 | } |
| 556 | |
| 557 | static Value *simplifyX86pmadd(IntrinsicInst &II, |
| 558 | InstCombiner::BuilderTy &Builder, |
| 559 | bool IsPMADDWD) { |
| 560 | Value *Arg0 = II.getArgOperand(i: 0); |
| 561 | Value *Arg1 = II.getArgOperand(i: 1); |
| 562 | auto *ResTy = cast<FixedVectorType>(Val: II.getType()); |
| 563 | [[maybe_unused]] auto *ArgTy = cast<FixedVectorType>(Val: Arg0->getType()); |
| 564 | |
| 565 | unsigned NumDstElts = ResTy->getNumElements(); |
| 566 | assert(ArgTy->getNumElements() == (2 * NumDstElts) && |
| 567 | ResTy->getScalarSizeInBits() == (2 * ArgTy->getScalarSizeInBits()) && |
| 568 | "Unexpected PMADD types" ); |
| 569 | |
| 570 | // Multiply by undef -> zero (NOT undef!) as other arg could still be zero. |
| 571 | if (isa<UndefValue>(Val: Arg0) || isa<UndefValue>(Val: Arg1)) |
| 572 | return ConstantAggregateZero::get(Ty: ResTy); |
| 573 | |
| 574 | // Multiply by zero. |
| 575 | if (isa<ConstantAggregateZero>(Val: Arg0) || isa<ConstantAggregateZero>(Val: Arg1)) |
| 576 | return ConstantAggregateZero::get(Ty: ResTy); |
| 577 | |
| 578 | // Constant folding. |
| 579 | if (!isa<Constant>(Val: Arg0) || !isa<Constant>(Val: Arg1)) |
| 580 | return nullptr; |
| 581 | |
| 582 | // Split Lo/Hi elements pairs, extend and add together. |
| 583 | // PMADDWD(X,Y) = |
| 584 | // add(mul(sext(lhs[0]),sext(rhs[0])),mul(sext(lhs[1]),sext(rhs[1]))) |
| 585 | // PMADDUBSW(X,Y) = |
| 586 | // sadd_sat(mul(zext(lhs[0]),sext(rhs[0])),mul(zext(lhs[1]),sext(rhs[1]))) |
| 587 | SmallVector<int> LoMask, HiMask; |
| 588 | for (unsigned I = 0; I != NumDstElts; ++I) { |
| 589 | LoMask.push_back(Elt: 2 * I + 0); |
| 590 | HiMask.push_back(Elt: 2 * I + 1); |
| 591 | } |
| 592 | |
| 593 | auto *LHSLo = Builder.CreateShuffleVector(V: Arg0, Mask: LoMask); |
| 594 | auto *LHSHi = Builder.CreateShuffleVector(V: Arg0, Mask: HiMask); |
| 595 | auto *RHSLo = Builder.CreateShuffleVector(V: Arg1, Mask: LoMask); |
| 596 | auto *RHSHi = Builder.CreateShuffleVector(V: Arg1, Mask: HiMask); |
| 597 | |
| 598 | auto LHSCast = |
| 599 | IsPMADDWD ? Instruction::CastOps::SExt : Instruction::CastOps::ZExt; |
| 600 | LHSLo = Builder.CreateCast(Op: LHSCast, V: LHSLo, DestTy: ResTy); |
| 601 | LHSHi = Builder.CreateCast(Op: LHSCast, V: LHSHi, DestTy: ResTy); |
| 602 | RHSLo = Builder.CreateCast(Op: Instruction::CastOps::SExt, V: RHSLo, DestTy: ResTy); |
| 603 | RHSHi = Builder.CreateCast(Op: Instruction::CastOps::SExt, V: RHSHi, DestTy: ResTy); |
| 604 | Value *Lo = Builder.CreateMul(LHS: LHSLo, RHS: RHSLo); |
| 605 | Value *Hi = Builder.CreateMul(LHS: LHSHi, RHS: RHSHi); |
| 606 | return IsPMADDWD |
| 607 | ? Builder.CreateAdd(LHS: Lo, RHS: Hi) |
| 608 | : Builder.CreateIntrinsic(RetTy: ResTy, ID: Intrinsic::sadd_sat, Args: {Lo, Hi}); |
| 609 | } |
| 610 | |
| 611 | static Value *simplifyX86movmsk(const IntrinsicInst &II, |
| 612 | InstCombiner::BuilderTy &Builder) { |
| 613 | Value *Arg = II.getArgOperand(i: 0); |
| 614 | Type *ResTy = II.getType(); |
| 615 | |
| 616 | // movmsk(undef) -> zero as we must ensure the upper bits are zero. |
| 617 | if (isa<UndefValue>(Val: Arg)) |
| 618 | return Constant::getNullValue(Ty: ResTy); |
| 619 | |
| 620 | // Preserve previous behavior and give up. |
| 621 | // TODO: treat as <8 x i8>. |
| 622 | if (II.getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) |
| 623 | return nullptr; |
| 624 | |
| 625 | auto *ArgTy = cast<FixedVectorType>(Val: Arg->getType()); |
| 626 | |
| 627 | // Expand MOVMSK to compare/bitcast/zext: |
| 628 | // e.g. PMOVMSKB(v16i8 x): |
| 629 | // %cmp = icmp slt <16 x i8> %x, zeroinitializer |
| 630 | // %int = bitcast <16 x i1> %cmp to i16 |
| 631 | // %res = zext i16 %int to i32 |
| 632 | unsigned NumElts = ArgTy->getNumElements(); |
| 633 | Type *IntegerTy = Builder.getIntNTy(N: NumElts); |
| 634 | |
| 635 | Value *Res = Builder.CreateBitCast(V: Arg, DestTy: VectorType::getInteger(VTy: ArgTy)); |
| 636 | Res = Builder.CreateIsNeg(Arg: Res); |
| 637 | Res = Builder.CreateBitCast(V: Res, DestTy: IntegerTy); |
| 638 | Res = Builder.CreateZExtOrTrunc(V: Res, DestTy: ResTy); |
| 639 | return Res; |
| 640 | } |
| 641 | |
| 642 | static Value *simplifyX86addcarry(const IntrinsicInst &II, |
| 643 | InstCombiner::BuilderTy &Builder) { |
| 644 | Value *CarryIn = II.getArgOperand(i: 0); |
| 645 | Value *Op1 = II.getArgOperand(i: 1); |
| 646 | Value *Op2 = II.getArgOperand(i: 2); |
| 647 | Type *RetTy = II.getType(); |
| 648 | Type *OpTy = Op1->getType(); |
| 649 | assert(RetTy->getStructElementType(0)->isIntegerTy(8) && |
| 650 | RetTy->getStructElementType(1) == OpTy && OpTy == Op2->getType() && |
| 651 | "Unexpected types for x86 addcarry" ); |
| 652 | |
| 653 | // If carry-in is zero, this is just an unsigned add with overflow. |
| 654 | if (match(V: CarryIn, P: m_ZeroInt())) { |
| 655 | Value *UAdd = Builder.CreateIntrinsic(ID: Intrinsic::uadd_with_overflow, Types: OpTy, |
| 656 | Args: {Op1, Op2}); |
| 657 | // The types have to be adjusted to match the x86 call types. |
| 658 | Value *UAddResult = Builder.CreateExtractValue(Agg: UAdd, Idxs: 0); |
| 659 | Value *UAddOV = Builder.CreateZExt(V: Builder.CreateExtractValue(Agg: UAdd, Idxs: 1), |
| 660 | DestTy: Builder.getInt8Ty()); |
| 661 | Value *Res = PoisonValue::get(T: RetTy); |
| 662 | Res = Builder.CreateInsertValue(Agg: Res, Val: UAddOV, Idxs: 0); |
| 663 | return Builder.CreateInsertValue(Agg: Res, Val: UAddResult, Idxs: 1); |
| 664 | } |
| 665 | |
| 666 | return nullptr; |
| 667 | } |
| 668 | |
| 669 | static Value *simplifyTernarylogic(const IntrinsicInst &II, |
| 670 | InstCombiner::BuilderTy &Builder) { |
| 671 | |
| 672 | auto *ArgImm = dyn_cast<ConstantInt>(Val: II.getArgOperand(i: 3)); |
| 673 | if (!ArgImm || ArgImm->getValue().uge(RHS: 256)) |
| 674 | return nullptr; |
| 675 | |
| 676 | Value *ArgA = II.getArgOperand(i: 0); |
| 677 | Value *ArgB = II.getArgOperand(i: 1); |
| 678 | Value *ArgC = II.getArgOperand(i: 2); |
| 679 | |
| 680 | Type *Ty = II.getType(); |
| 681 | |
| 682 | auto Or = [&](auto Lhs, auto Rhs) -> std::pair<Value *, uint8_t> { |
| 683 | return {Builder.CreateOr(Lhs.first, Rhs.first), Lhs.second | Rhs.second}; |
| 684 | }; |
| 685 | auto Xor = [&](auto Lhs, auto Rhs) -> std::pair<Value *, uint8_t> { |
| 686 | return {Builder.CreateXor(Lhs.first, Rhs.first), Lhs.second ^ Rhs.second}; |
| 687 | }; |
| 688 | auto And = [&](auto Lhs, auto Rhs) -> std::pair<Value *, uint8_t> { |
| 689 | return {Builder.CreateAnd(Lhs.first, Rhs.first), Lhs.second & Rhs.second}; |
| 690 | }; |
| 691 | auto Not = [&](auto V) -> std::pair<Value *, uint8_t> { |
| 692 | return {Builder.CreateNot(V: V.first), ~V.second}; |
| 693 | }; |
| 694 | auto Nor = [&](auto Lhs, auto Rhs) { return Not(Or(Lhs, Rhs)); }; |
| 695 | auto Xnor = [&](auto Lhs, auto Rhs) { return Not(Xor(Lhs, Rhs)); }; |
| 696 | auto Nand = [&](auto Lhs, auto Rhs) { return Not(And(Lhs, Rhs)); }; |
| 697 | |
| 698 | bool AIsConst = match(V: ArgA, P: m_ImmConstant()); |
| 699 | bool BIsConst = match(V: ArgB, P: m_ImmConstant()); |
| 700 | bool CIsConst = match(V: ArgC, P: m_ImmConstant()); |
| 701 | |
| 702 | bool ABIsConst = AIsConst && BIsConst; |
| 703 | bool ACIsConst = AIsConst && CIsConst; |
| 704 | bool BCIsConst = BIsConst && CIsConst; |
| 705 | bool ABCIsConst = AIsConst && BIsConst && CIsConst; |
| 706 | |
| 707 | // Use for verification. Its a big table. Its difficult to go from Imm -> |
| 708 | // logic ops, but easy to verify that a set of logic ops is correct. We track |
| 709 | // the logic ops through the second value in the pair. At the end it should |
| 710 | // equal Imm. |
| 711 | std::pair<Value *, uint8_t> A = {ArgA, 0xf0}; |
| 712 | std::pair<Value *, uint8_t> B = {ArgB, 0xcc}; |
| 713 | std::pair<Value *, uint8_t> C = {ArgC, 0xaa}; |
| 714 | std::pair<Value *, uint8_t> Res = {nullptr, 0}; |
| 715 | |
| 716 | // Currently we only handle cases that convert directly to another instruction |
| 717 | // or cases where all the ops are constant. This is because we don't properly |
| 718 | // handle creating ternary ops in the backend, so splitting them here may |
| 719 | // cause regressions. As the backend improves, uncomment more cases. |
| 720 | |
| 721 | uint8_t Imm = ArgImm->getValue().getZExtValue(); |
| 722 | switch (Imm) { |
| 723 | case 0x0: |
| 724 | Res = {Constant::getNullValue(Ty), 0}; |
| 725 | break; |
| 726 | case 0x1: |
| 727 | if (ABCIsConst) |
| 728 | Res = Nor(Or(A, B), C); |
| 729 | break; |
| 730 | case 0x2: |
| 731 | if (ABCIsConst) |
| 732 | Res = And(Nor(A, B), C); |
| 733 | break; |
| 734 | case 0x3: |
| 735 | if (ABIsConst) |
| 736 | Res = Nor(A, B); |
| 737 | break; |
| 738 | case 0x4: |
| 739 | if (ABCIsConst) |
| 740 | Res = And(Nor(A, C), B); |
| 741 | break; |
| 742 | case 0x5: |
| 743 | if (ACIsConst) |
| 744 | Res = Nor(A, C); |
| 745 | break; |
| 746 | case 0x6: |
| 747 | if (ABCIsConst) |
| 748 | Res = Nor(A, Xnor(B, C)); |
| 749 | break; |
| 750 | case 0x7: |
| 751 | if (ABCIsConst) |
| 752 | Res = Nor(A, And(B, C)); |
| 753 | break; |
| 754 | case 0x8: |
| 755 | if (ABCIsConst) |
| 756 | Res = Nor(A, Nand(B, C)); |
| 757 | break; |
| 758 | case 0x9: |
| 759 | if (ABCIsConst) |
| 760 | Res = Nor(A, Xor(B, C)); |
| 761 | break; |
| 762 | case 0xa: |
| 763 | if (ACIsConst) |
| 764 | Res = Nor(A, Not(C)); |
| 765 | break; |
| 766 | case 0xb: |
| 767 | if (ABCIsConst) |
| 768 | Res = Nor(A, Nor(C, Not(B))); |
| 769 | break; |
| 770 | case 0xc: |
| 771 | if (ABIsConst) |
| 772 | Res = Nor(A, Not(B)); |
| 773 | break; |
| 774 | case 0xd: |
| 775 | if (ABCIsConst) |
| 776 | Res = Nor(A, Nor(B, Not(C))); |
| 777 | break; |
| 778 | case 0xe: |
| 779 | if (ABCIsConst) |
| 780 | Res = Nor(A, Nor(B, C)); |
| 781 | break; |
| 782 | case 0xf: |
| 783 | Res = Not(A); |
| 784 | break; |
| 785 | case 0x10: |
| 786 | if (ABCIsConst) |
| 787 | Res = And(A, Nor(B, C)); |
| 788 | break; |
| 789 | case 0x11: |
| 790 | if (BCIsConst) |
| 791 | Res = Nor(B, C); |
| 792 | break; |
| 793 | case 0x12: |
| 794 | if (ABCIsConst) |
| 795 | Res = Nor(Xnor(A, C), B); |
| 796 | break; |
| 797 | case 0x13: |
| 798 | if (ABCIsConst) |
| 799 | Res = Nor(And(A, C), B); |
| 800 | break; |
| 801 | case 0x14: |
| 802 | if (ABCIsConst) |
| 803 | Res = Nor(Xnor(A, B), C); |
| 804 | break; |
| 805 | case 0x15: |
| 806 | if (ABCIsConst) |
| 807 | Res = Nor(And(A, B), C); |
| 808 | break; |
| 809 | case 0x16: |
| 810 | if (ABCIsConst) |
| 811 | Res = Xor(Xor(A, B), And(Nand(A, B), C)); |
| 812 | break; |
| 813 | case 0x17: |
| 814 | if (ABCIsConst) |
| 815 | Res = Xor(Or(A, B), Or(Xnor(A, B), C)); |
| 816 | break; |
| 817 | case 0x18: |
| 818 | if (ABCIsConst) |
| 819 | Res = Nor(Xnor(A, B), Xnor(A, C)); |
| 820 | break; |
| 821 | case 0x19: |
| 822 | if (ABCIsConst) |
| 823 | Res = And(Nand(A, B), Xnor(B, C)); |
| 824 | break; |
| 825 | case 0x1a: |
| 826 | if (ABCIsConst) |
| 827 | Res = Xor(A, Or(And(A, B), C)); |
| 828 | break; |
| 829 | case 0x1b: |
| 830 | if (ABCIsConst) |
| 831 | Res = Xor(A, Or(Xnor(A, B), C)); |
| 832 | break; |
| 833 | case 0x1c: |
| 834 | if (ABCIsConst) |
| 835 | Res = Xor(A, Or(And(A, C), B)); |
| 836 | break; |
| 837 | case 0x1d: |
| 838 | if (ABCIsConst) |
| 839 | Res = Xor(A, Or(Xnor(A, C), B)); |
| 840 | break; |
| 841 | case 0x1e: |
| 842 | if (ABCIsConst) |
| 843 | Res = Xor(A, Or(B, C)); |
| 844 | break; |
| 845 | case 0x1f: |
| 846 | if (ABCIsConst) |
| 847 | Res = Nand(A, Or(B, C)); |
| 848 | break; |
| 849 | case 0x20: |
| 850 | if (ABCIsConst) |
| 851 | Res = Nor(Nand(A, C), B); |
| 852 | break; |
| 853 | case 0x21: |
| 854 | if (ABCIsConst) |
| 855 | Res = Nor(Xor(A, C), B); |
| 856 | break; |
| 857 | case 0x22: |
| 858 | if (BCIsConst) |
| 859 | Res = Nor(B, Not(C)); |
| 860 | break; |
| 861 | case 0x23: |
| 862 | if (ABCIsConst) |
| 863 | Res = Nor(B, Nor(C, Not(A))); |
| 864 | break; |
| 865 | case 0x24: |
| 866 | if (ABCIsConst) |
| 867 | Res = Nor(Xnor(A, B), Xor(A, C)); |
| 868 | break; |
| 869 | case 0x25: |
| 870 | if (ABCIsConst) |
| 871 | Res = Xor(A, Nand(Nand(A, B), C)); |
| 872 | break; |
| 873 | case 0x26: |
| 874 | if (ABCIsConst) |
| 875 | Res = And(Nand(A, B), Xor(B, C)); |
| 876 | break; |
| 877 | case 0x27: |
| 878 | if (ABCIsConst) |
| 879 | Res = Xor(Or(Xnor(A, B), C), B); |
| 880 | break; |
| 881 | case 0x28: |
| 882 | if (ABCIsConst) |
| 883 | Res = And(Xor(A, B), C); |
| 884 | break; |
| 885 | case 0x29: |
| 886 | if (ABCIsConst) |
| 887 | Res = Xor(Xor(A, B), Nor(And(A, B), C)); |
| 888 | break; |
| 889 | case 0x2a: |
| 890 | if (ABCIsConst) |
| 891 | Res = And(Nand(A, B), C); |
| 892 | break; |
| 893 | case 0x2b: |
| 894 | if (ABCIsConst) |
| 895 | Res = Xor(Or(Xnor(A, B), Xor(A, C)), A); |
| 896 | break; |
| 897 | case 0x2c: |
| 898 | if (ABCIsConst) |
| 899 | Res = Nor(Xnor(A, B), Nor(B, C)); |
| 900 | break; |
| 901 | case 0x2d: |
| 902 | if (ABCIsConst) |
| 903 | Res = Xor(A, Or(B, Not(C))); |
| 904 | break; |
| 905 | case 0x2e: |
| 906 | if (ABCIsConst) |
| 907 | Res = Xor(A, Or(Xor(A, C), B)); |
| 908 | break; |
| 909 | case 0x2f: |
| 910 | if (ABCIsConst) |
| 911 | Res = Nand(A, Or(B, Not(C))); |
| 912 | break; |
| 913 | case 0x30: |
| 914 | if (ABIsConst) |
| 915 | Res = Nor(B, Not(A)); |
| 916 | break; |
| 917 | case 0x31: |
| 918 | if (ABCIsConst) |
| 919 | Res = Nor(Nor(A, Not(C)), B); |
| 920 | break; |
| 921 | case 0x32: |
| 922 | if (ABCIsConst) |
| 923 | Res = Nor(Nor(A, C), B); |
| 924 | break; |
| 925 | case 0x33: |
| 926 | Res = Not(B); |
| 927 | break; |
| 928 | case 0x34: |
| 929 | if (ABCIsConst) |
| 930 | Res = And(Xor(A, B), Nand(B, C)); |
| 931 | break; |
| 932 | case 0x35: |
| 933 | if (ABCIsConst) |
| 934 | Res = Xor(B, Or(A, Xnor(B, C))); |
| 935 | break; |
| 936 | case 0x36: |
| 937 | if (ABCIsConst) |
| 938 | Res = Xor(Or(A, C), B); |
| 939 | break; |
| 940 | case 0x37: |
| 941 | if (ABCIsConst) |
| 942 | Res = Nand(Or(A, C), B); |
| 943 | break; |
| 944 | case 0x38: |
| 945 | if (ABCIsConst) |
| 946 | Res = Nor(Xnor(A, B), Nor(A, C)); |
| 947 | break; |
| 948 | case 0x39: |
| 949 | if (ABCIsConst) |
| 950 | Res = Xor(Or(A, Not(C)), B); |
| 951 | break; |
| 952 | case 0x3a: |
| 953 | if (ABCIsConst) |
| 954 | Res = Xor(B, Or(A, Xor(B, C))); |
| 955 | break; |
| 956 | case 0x3b: |
| 957 | if (ABCIsConst) |
| 958 | Res = Nand(Or(A, Not(C)), B); |
| 959 | break; |
| 960 | case 0x3c: |
| 961 | Res = Xor(A, B); |
| 962 | break; |
| 963 | case 0x3d: |
| 964 | if (ABCIsConst) |
| 965 | Res = Xor(A, Or(Nor(A, C), B)); |
| 966 | break; |
| 967 | case 0x3e: |
| 968 | if (ABCIsConst) |
| 969 | Res = Xor(A, Or(Nor(A, Not(C)), B)); |
| 970 | break; |
| 971 | case 0x3f: |
| 972 | if (ABIsConst) |
| 973 | Res = Nand(A, B); |
| 974 | break; |
| 975 | case 0x40: |
| 976 | if (ABCIsConst) |
| 977 | Res = Nor(Nand(A, B), C); |
| 978 | break; |
| 979 | case 0x41: |
| 980 | if (ABCIsConst) |
| 981 | Res = Nor(Xor(A, B), C); |
| 982 | break; |
| 983 | case 0x42: |
| 984 | if (ABCIsConst) |
| 985 | Res = Nor(Xor(A, B), Xnor(A, C)); |
| 986 | break; |
| 987 | case 0x43: |
| 988 | if (ABCIsConst) |
| 989 | Res = Xor(A, Nand(Nand(A, C), B)); |
| 990 | break; |
| 991 | case 0x44: |
| 992 | if (BCIsConst) |
| 993 | Res = Nor(C, Not(B)); |
| 994 | break; |
| 995 | case 0x45: |
| 996 | if (ABCIsConst) |
| 997 | Res = Nor(Nor(B, Not(A)), C); |
| 998 | break; |
| 999 | case 0x46: |
| 1000 | if (ABCIsConst) |
| 1001 | Res = Xor(Or(And(A, C), B), C); |
| 1002 | break; |
| 1003 | case 0x47: |
| 1004 | if (ABCIsConst) |
| 1005 | Res = Xor(Or(Xnor(A, C), B), C); |
| 1006 | break; |
| 1007 | case 0x48: |
| 1008 | if (ABCIsConst) |
| 1009 | Res = And(Xor(A, C), B); |
| 1010 | break; |
| 1011 | case 0x49: |
| 1012 | if (ABCIsConst) |
| 1013 | Res = Xor(Or(Xnor(A, B), And(A, C)), C); |
| 1014 | break; |
| 1015 | case 0x4a: |
| 1016 | if (ABCIsConst) |
| 1017 | Res = Nor(Xnor(A, C), Nor(B, C)); |
| 1018 | break; |
| 1019 | case 0x4b: |
| 1020 | if (ABCIsConst) |
| 1021 | Res = Xor(A, Or(C, Not(B))); |
| 1022 | break; |
| 1023 | case 0x4c: |
| 1024 | if (ABCIsConst) |
| 1025 | Res = And(Nand(A, C), B); |
| 1026 | break; |
| 1027 | case 0x4d: |
| 1028 | if (ABCIsConst) |
| 1029 | Res = Xor(Or(Xor(A, B), Xnor(A, C)), A); |
| 1030 | break; |
| 1031 | case 0x4e: |
| 1032 | if (ABCIsConst) |
| 1033 | Res = Xor(A, Or(Xor(A, B), C)); |
| 1034 | break; |
| 1035 | case 0x4f: |
| 1036 | if (ABCIsConst) |
| 1037 | Res = Nand(A, Nand(B, Not(C))); |
| 1038 | break; |
| 1039 | case 0x50: |
| 1040 | if (ACIsConst) |
| 1041 | Res = Nor(C, Not(A)); |
| 1042 | break; |
| 1043 | case 0x51: |
| 1044 | if (ABCIsConst) |
| 1045 | Res = Nor(Nor(A, Not(B)), C); |
| 1046 | break; |
| 1047 | case 0x52: |
| 1048 | if (ABCIsConst) |
| 1049 | Res = And(Xor(A, C), Nand(B, C)); |
| 1050 | break; |
| 1051 | case 0x53: |
| 1052 | if (ABCIsConst) |
| 1053 | Res = Xor(Or(Xnor(B, C), A), C); |
| 1054 | break; |
| 1055 | case 0x54: |
| 1056 | if (ABCIsConst) |
| 1057 | Res = Nor(Nor(A, B), C); |
| 1058 | break; |
| 1059 | case 0x55: |
| 1060 | Res = Not(C); |
| 1061 | break; |
| 1062 | case 0x56: |
| 1063 | if (ABCIsConst) |
| 1064 | Res = Xor(Or(A, B), C); |
| 1065 | break; |
| 1066 | case 0x57: |
| 1067 | if (ABCIsConst) |
| 1068 | Res = Nand(Or(A, B), C); |
| 1069 | break; |
| 1070 | case 0x58: |
| 1071 | if (ABCIsConst) |
| 1072 | Res = Nor(Nor(A, B), Xnor(A, C)); |
| 1073 | break; |
| 1074 | case 0x59: |
| 1075 | if (ABCIsConst) |
| 1076 | Res = Xor(Or(A, Not(B)), C); |
| 1077 | break; |
| 1078 | case 0x5a: |
| 1079 | Res = Xor(A, C); |
| 1080 | break; |
| 1081 | case 0x5b: |
| 1082 | if (ABCIsConst) |
| 1083 | Res = Xor(A, Or(Nor(A, B), C)); |
| 1084 | break; |
| 1085 | case 0x5c: |
| 1086 | if (ABCIsConst) |
| 1087 | Res = Xor(Or(Xor(B, C), A), C); |
| 1088 | break; |
| 1089 | case 0x5d: |
| 1090 | if (ABCIsConst) |
| 1091 | Res = Nand(Or(A, Not(B)), C); |
| 1092 | break; |
| 1093 | case 0x5e: |
| 1094 | if (ABCIsConst) |
| 1095 | Res = Xor(A, Or(Nor(A, Not(B)), C)); |
| 1096 | break; |
| 1097 | case 0x5f: |
| 1098 | if (ACIsConst) |
| 1099 | Res = Nand(A, C); |
| 1100 | break; |
| 1101 | case 0x60: |
| 1102 | if (ABCIsConst) |
| 1103 | Res = And(A, Xor(B, C)); |
| 1104 | break; |
| 1105 | case 0x61: |
| 1106 | if (ABCIsConst) |
| 1107 | Res = Xor(Or(Xnor(A, B), And(B, C)), C); |
| 1108 | break; |
| 1109 | case 0x62: |
| 1110 | if (ABCIsConst) |
| 1111 | Res = Nor(Nor(A, C), Xnor(B, C)); |
| 1112 | break; |
| 1113 | case 0x63: |
| 1114 | if (ABCIsConst) |
| 1115 | Res = Xor(B, Or(C, Not(A))); |
| 1116 | break; |
| 1117 | case 0x64: |
| 1118 | if (ABCIsConst) |
| 1119 | Res = Nor(Nor(A, B), Xnor(B, C)); |
| 1120 | break; |
| 1121 | case 0x65: |
| 1122 | if (ABCIsConst) |
| 1123 | Res = Xor(Or(B, Not(A)), C); |
| 1124 | break; |
| 1125 | case 0x66: |
| 1126 | Res = Xor(B, C); |
| 1127 | break; |
| 1128 | case 0x67: |
| 1129 | if (ABCIsConst) |
| 1130 | Res = Or(Nor(A, B), Xor(B, C)); |
| 1131 | break; |
| 1132 | case 0x68: |
| 1133 | if (ABCIsConst) |
| 1134 | Res = Xor(Xor(A, B), Nor(Nor(A, B), C)); |
| 1135 | break; |
| 1136 | case 0x69: |
| 1137 | if (ABCIsConst) |
| 1138 | Res = Xor(Xnor(A, B), C); |
| 1139 | break; |
| 1140 | case 0x6a: |
| 1141 | if (ABCIsConst) |
| 1142 | Res = Xor(And(A, B), C); |
| 1143 | break; |
| 1144 | case 0x6b: |
| 1145 | if (ABCIsConst) |
| 1146 | Res = Or(Nor(A, B), Xor(Xnor(A, B), C)); |
| 1147 | break; |
| 1148 | case 0x6c: |
| 1149 | if (ABCIsConst) |
| 1150 | Res = Xor(And(A, C), B); |
| 1151 | break; |
| 1152 | case 0x6d: |
| 1153 | if (ABCIsConst) |
| 1154 | Res = Xor(Or(Xnor(A, B), Nor(A, C)), C); |
| 1155 | break; |
| 1156 | case 0x6e: |
| 1157 | if (ABCIsConst) |
| 1158 | Res = Or(Nor(A, Not(B)), Xor(B, C)); |
| 1159 | break; |
| 1160 | case 0x6f: |
| 1161 | if (ABCIsConst) |
| 1162 | Res = Nand(A, Xnor(B, C)); |
| 1163 | break; |
| 1164 | case 0x70: |
| 1165 | if (ABCIsConst) |
| 1166 | Res = And(A, Nand(B, C)); |
| 1167 | break; |
| 1168 | case 0x71: |
| 1169 | if (ABCIsConst) |
| 1170 | Res = Xor(Nor(Xor(A, B), Xor(A, C)), A); |
| 1171 | break; |
| 1172 | case 0x72: |
| 1173 | if (ABCIsConst) |
| 1174 | Res = Xor(Or(Xor(A, B), C), B); |
| 1175 | break; |
| 1176 | case 0x73: |
| 1177 | if (ABCIsConst) |
| 1178 | Res = Nand(Nand(A, Not(C)), B); |
| 1179 | break; |
| 1180 | case 0x74: |
| 1181 | if (ABCIsConst) |
| 1182 | Res = Xor(Or(Xor(A, C), B), C); |
| 1183 | break; |
| 1184 | case 0x75: |
| 1185 | if (ABCIsConst) |
| 1186 | Res = Nand(Nand(A, Not(B)), C); |
| 1187 | break; |
| 1188 | case 0x76: |
| 1189 | if (ABCIsConst) |
| 1190 | Res = Xor(B, Or(Nor(B, Not(A)), C)); |
| 1191 | break; |
| 1192 | case 0x77: |
| 1193 | if (BCIsConst) |
| 1194 | Res = Nand(B, C); |
| 1195 | break; |
| 1196 | case 0x78: |
| 1197 | if (ABCIsConst) |
| 1198 | Res = Xor(A, And(B, C)); |
| 1199 | break; |
| 1200 | case 0x79: |
| 1201 | if (ABCIsConst) |
| 1202 | Res = Xor(Or(Xnor(A, B), Nor(B, C)), C); |
| 1203 | break; |
| 1204 | case 0x7a: |
| 1205 | if (ABCIsConst) |
| 1206 | Res = Or(Xor(A, C), Nor(B, Not(A))); |
| 1207 | break; |
| 1208 | case 0x7b: |
| 1209 | if (ABCIsConst) |
| 1210 | Res = Nand(Xnor(A, C), B); |
| 1211 | break; |
| 1212 | case 0x7c: |
| 1213 | if (ABCIsConst) |
| 1214 | Res = Or(Xor(A, B), Nor(C, Not(A))); |
| 1215 | break; |
| 1216 | case 0x7d: |
| 1217 | if (ABCIsConst) |
| 1218 | Res = Nand(Xnor(A, B), C); |
| 1219 | break; |
| 1220 | case 0x7e: |
| 1221 | if (ABCIsConst) |
| 1222 | Res = Or(Xor(A, B), Xor(A, C)); |
| 1223 | break; |
| 1224 | case 0x7f: |
| 1225 | if (ABCIsConst) |
| 1226 | Res = Nand(And(A, B), C); |
| 1227 | break; |
| 1228 | case 0x80: |
| 1229 | if (ABCIsConst) |
| 1230 | Res = And(And(A, B), C); |
| 1231 | break; |
| 1232 | case 0x81: |
| 1233 | if (ABCIsConst) |
| 1234 | Res = Nor(Xor(A, B), Xor(A, C)); |
| 1235 | break; |
| 1236 | case 0x82: |
| 1237 | if (ABCIsConst) |
| 1238 | Res = And(Xnor(A, B), C); |
| 1239 | break; |
| 1240 | case 0x83: |
| 1241 | if (ABCIsConst) |
| 1242 | Res = Nor(Xor(A, B), Nor(C, Not(A))); |
| 1243 | break; |
| 1244 | case 0x84: |
| 1245 | if (ABCIsConst) |
| 1246 | Res = And(Xnor(A, C), B); |
| 1247 | break; |
| 1248 | case 0x85: |
| 1249 | if (ABCIsConst) |
| 1250 | Res = Nor(Xor(A, C), Nor(B, Not(A))); |
| 1251 | break; |
| 1252 | case 0x86: |
| 1253 | if (ABCIsConst) |
| 1254 | Res = Xor(Nor(Xnor(A, B), Nor(B, C)), C); |
| 1255 | break; |
| 1256 | case 0x87: |
| 1257 | if (ABCIsConst) |
| 1258 | Res = Xor(A, Nand(B, C)); |
| 1259 | break; |
| 1260 | case 0x88: |
| 1261 | Res = And(B, C); |
| 1262 | break; |
| 1263 | case 0x89: |
| 1264 | if (ABCIsConst) |
| 1265 | Res = Xor(B, Nor(Nor(B, Not(A)), C)); |
| 1266 | break; |
| 1267 | case 0x8a: |
| 1268 | if (ABCIsConst) |
| 1269 | Res = And(Nand(A, Not(B)), C); |
| 1270 | break; |
| 1271 | case 0x8b: |
| 1272 | if (ABCIsConst) |
| 1273 | Res = Xor(Nor(Xor(A, C), B), C); |
| 1274 | break; |
| 1275 | case 0x8c: |
| 1276 | if (ABCIsConst) |
| 1277 | Res = And(Nand(A, Not(C)), B); |
| 1278 | break; |
| 1279 | case 0x8d: |
| 1280 | if (ABCIsConst) |
| 1281 | Res = Xor(Nor(Xor(A, B), C), B); |
| 1282 | break; |
| 1283 | case 0x8e: |
| 1284 | if (ABCIsConst) |
| 1285 | Res = Xor(Or(Xor(A, B), Xor(A, C)), A); |
| 1286 | break; |
| 1287 | case 0x8f: |
| 1288 | if (ABCIsConst) |
| 1289 | Res = Nand(A, Nand(B, C)); |
| 1290 | break; |
| 1291 | case 0x90: |
| 1292 | if (ABCIsConst) |
| 1293 | Res = And(A, Xnor(B, C)); |
| 1294 | break; |
| 1295 | case 0x91: |
| 1296 | if (ABCIsConst) |
| 1297 | Res = Nor(Nor(A, Not(B)), Xor(B, C)); |
| 1298 | break; |
| 1299 | case 0x92: |
| 1300 | if (ABCIsConst) |
| 1301 | Res = Xor(Nor(Xnor(A, B), Nor(A, C)), C); |
| 1302 | break; |
| 1303 | case 0x93: |
| 1304 | if (ABCIsConst) |
| 1305 | Res = Xor(Nand(A, C), B); |
| 1306 | break; |
| 1307 | case 0x94: |
| 1308 | if (ABCIsConst) |
| 1309 | Res = Nor(Nor(A, B), Xor(Xnor(A, B), C)); |
| 1310 | break; |
| 1311 | case 0x95: |
| 1312 | if (ABCIsConst) |
| 1313 | Res = Xor(Nand(A, B), C); |
| 1314 | break; |
| 1315 | case 0x96: |
| 1316 | if (ABCIsConst) |
| 1317 | Res = Xor(Xor(A, B), C); |
| 1318 | break; |
| 1319 | case 0x97: |
| 1320 | if (ABCIsConst) |
| 1321 | Res = Xor(Xor(A, B), Or(Nor(A, B), C)); |
| 1322 | break; |
| 1323 | case 0x98: |
| 1324 | if (ABCIsConst) |
| 1325 | Res = Nor(Nor(A, B), Xor(B, C)); |
| 1326 | break; |
| 1327 | case 0x99: |
| 1328 | if (BCIsConst) |
| 1329 | Res = Xnor(B, C); |
| 1330 | break; |
| 1331 | case 0x9a: |
| 1332 | if (ABCIsConst) |
| 1333 | Res = Xor(Nor(B, Not(A)), C); |
| 1334 | break; |
| 1335 | case 0x9b: |
| 1336 | if (ABCIsConst) |
| 1337 | Res = Or(Nor(A, B), Xnor(B, C)); |
| 1338 | break; |
| 1339 | case 0x9c: |
| 1340 | if (ABCIsConst) |
| 1341 | Res = Xor(B, Nor(C, Not(A))); |
| 1342 | break; |
| 1343 | case 0x9d: |
| 1344 | if (ABCIsConst) |
| 1345 | Res = Or(Nor(A, C), Xnor(B, C)); |
| 1346 | break; |
| 1347 | case 0x9e: |
| 1348 | if (ABCIsConst) |
| 1349 | Res = Xor(And(Xor(A, B), Nand(B, C)), C); |
| 1350 | break; |
| 1351 | case 0x9f: |
| 1352 | if (ABCIsConst) |
| 1353 | Res = Nand(A, Xor(B, C)); |
| 1354 | break; |
| 1355 | case 0xa0: |
| 1356 | Res = And(A, C); |
| 1357 | break; |
| 1358 | case 0xa1: |
| 1359 | if (ABCIsConst) |
| 1360 | Res = Xor(A, Nor(Nor(A, Not(B)), C)); |
| 1361 | break; |
| 1362 | case 0xa2: |
| 1363 | if (ABCIsConst) |
| 1364 | Res = And(Or(A, Not(B)), C); |
| 1365 | break; |
| 1366 | case 0xa3: |
| 1367 | if (ABCIsConst) |
| 1368 | Res = Xor(Nor(Xor(B, C), A), C); |
| 1369 | break; |
| 1370 | case 0xa4: |
| 1371 | if (ABCIsConst) |
| 1372 | Res = Xor(A, Nor(Nor(A, B), C)); |
| 1373 | break; |
| 1374 | case 0xa5: |
| 1375 | if (ACIsConst) |
| 1376 | Res = Xnor(A, C); |
| 1377 | break; |
| 1378 | case 0xa6: |
| 1379 | if (ABCIsConst) |
| 1380 | Res = Xor(Nor(A, Not(B)), C); |
| 1381 | break; |
| 1382 | case 0xa7: |
| 1383 | if (ABCIsConst) |
| 1384 | Res = Or(Nor(A, B), Xnor(A, C)); |
| 1385 | break; |
| 1386 | case 0xa8: |
| 1387 | if (ABCIsConst) |
| 1388 | Res = And(Or(A, B), C); |
| 1389 | break; |
| 1390 | case 0xa9: |
| 1391 | if (ABCIsConst) |
| 1392 | Res = Xor(Nor(A, B), C); |
| 1393 | break; |
| 1394 | case 0xaa: |
| 1395 | Res = C; |
| 1396 | break; |
| 1397 | case 0xab: |
| 1398 | if (ABCIsConst) |
| 1399 | Res = Or(Nor(A, B), C); |
| 1400 | break; |
| 1401 | case 0xac: |
| 1402 | if (ABCIsConst) |
| 1403 | Res = Xor(Nor(Xnor(B, C), A), C); |
| 1404 | break; |
| 1405 | case 0xad: |
| 1406 | if (ABCIsConst) |
| 1407 | Res = Or(Xnor(A, C), And(B, C)); |
| 1408 | break; |
| 1409 | case 0xae: |
| 1410 | if (ABCIsConst) |
| 1411 | Res = Or(Nor(A, Not(B)), C); |
| 1412 | break; |
| 1413 | case 0xaf: |
| 1414 | if (ACIsConst) |
| 1415 | Res = Or(C, Not(A)); |
| 1416 | break; |
| 1417 | case 0xb0: |
| 1418 | if (ABCIsConst) |
| 1419 | Res = And(A, Nand(B, Not(C))); |
| 1420 | break; |
| 1421 | case 0xb1: |
| 1422 | if (ABCIsConst) |
| 1423 | Res = Xor(A, Nor(Xor(A, B), C)); |
| 1424 | break; |
| 1425 | case 0xb2: |
| 1426 | if (ABCIsConst) |
| 1427 | Res = Xor(Nor(Xor(A, B), Xnor(A, C)), A); |
| 1428 | break; |
| 1429 | case 0xb3: |
| 1430 | if (ABCIsConst) |
| 1431 | Res = Nand(Nand(A, C), B); |
| 1432 | break; |
| 1433 | case 0xb4: |
| 1434 | if (ABCIsConst) |
| 1435 | Res = Xor(A, Nor(C, Not(B))); |
| 1436 | break; |
| 1437 | case 0xb5: |
| 1438 | if (ABCIsConst) |
| 1439 | Res = Or(Xnor(A, C), Nor(B, C)); |
| 1440 | break; |
| 1441 | case 0xb6: |
| 1442 | if (ABCIsConst) |
| 1443 | Res = Xor(And(Xor(A, B), Nand(A, C)), C); |
| 1444 | break; |
| 1445 | case 0xb7: |
| 1446 | if (ABCIsConst) |
| 1447 | Res = Nand(Xor(A, C), B); |
| 1448 | break; |
| 1449 | case 0xb8: |
| 1450 | if (ABCIsConst) |
| 1451 | Res = Xor(Nor(Xnor(A, C), B), C); |
| 1452 | break; |
| 1453 | case 0xb9: |
| 1454 | if (ABCIsConst) |
| 1455 | Res = Xor(Nor(And(A, C), B), C); |
| 1456 | break; |
| 1457 | case 0xba: |
| 1458 | if (ABCIsConst) |
| 1459 | Res = Or(Nor(B, Not(A)), C); |
| 1460 | break; |
| 1461 | case 0xbb: |
| 1462 | if (BCIsConst) |
| 1463 | Res = Or(C, Not(B)); |
| 1464 | break; |
| 1465 | case 0xbc: |
| 1466 | if (ABCIsConst) |
| 1467 | Res = Xor(A, And(Nand(A, C), B)); |
| 1468 | break; |
| 1469 | case 0xbd: |
| 1470 | if (ABCIsConst) |
| 1471 | Res = Or(Xor(A, B), Xnor(A, C)); |
| 1472 | break; |
| 1473 | case 0xbe: |
| 1474 | if (ABCIsConst) |
| 1475 | Res = Or(Xor(A, B), C); |
| 1476 | break; |
| 1477 | case 0xbf: |
| 1478 | if (ABCIsConst) |
| 1479 | Res = Or(Nand(A, B), C); |
| 1480 | break; |
| 1481 | case 0xc0: |
| 1482 | Res = And(A, B); |
| 1483 | break; |
| 1484 | case 0xc1: |
| 1485 | if (ABCIsConst) |
| 1486 | Res = Xor(A, Nor(Nor(A, Not(C)), B)); |
| 1487 | break; |
| 1488 | case 0xc2: |
| 1489 | if (ABCIsConst) |
| 1490 | Res = Xor(A, Nor(Nor(A, C), B)); |
| 1491 | break; |
| 1492 | case 0xc3: |
| 1493 | if (ABIsConst) |
| 1494 | Res = Xnor(A, B); |
| 1495 | break; |
| 1496 | case 0xc4: |
| 1497 | if (ABCIsConst) |
| 1498 | Res = And(Or(A, Not(C)), B); |
| 1499 | break; |
| 1500 | case 0xc5: |
| 1501 | if (ABCIsConst) |
| 1502 | Res = Xor(B, Nor(A, Xor(B, C))); |
| 1503 | break; |
| 1504 | case 0xc6: |
| 1505 | if (ABCIsConst) |
| 1506 | Res = Xor(Nor(A, Not(C)), B); |
| 1507 | break; |
| 1508 | case 0xc7: |
| 1509 | if (ABCIsConst) |
| 1510 | Res = Or(Xnor(A, B), Nor(A, C)); |
| 1511 | break; |
| 1512 | case 0xc8: |
| 1513 | if (ABCIsConst) |
| 1514 | Res = And(Or(A, C), B); |
| 1515 | break; |
| 1516 | case 0xc9: |
| 1517 | if (ABCIsConst) |
| 1518 | Res = Xor(Nor(A, C), B); |
| 1519 | break; |
| 1520 | case 0xca: |
| 1521 | if (ABCIsConst) |
| 1522 | Res = Xor(B, Nor(A, Xnor(B, C))); |
| 1523 | break; |
| 1524 | case 0xcb: |
| 1525 | if (ABCIsConst) |
| 1526 | Res = Or(Xnor(A, B), And(B, C)); |
| 1527 | break; |
| 1528 | case 0xcc: |
| 1529 | Res = B; |
| 1530 | break; |
| 1531 | case 0xcd: |
| 1532 | if (ABCIsConst) |
| 1533 | Res = Or(Nor(A, C), B); |
| 1534 | break; |
| 1535 | case 0xce: |
| 1536 | if (ABCIsConst) |
| 1537 | Res = Or(Nor(A, Not(C)), B); |
| 1538 | break; |
| 1539 | case 0xcf: |
| 1540 | if (ABIsConst) |
| 1541 | Res = Or(B, Not(A)); |
| 1542 | break; |
| 1543 | case 0xd0: |
| 1544 | if (ABCIsConst) |
| 1545 | Res = And(A, Or(B, Not(C))); |
| 1546 | break; |
| 1547 | case 0xd1: |
| 1548 | if (ABCIsConst) |
| 1549 | Res = Xor(A, Nor(Xor(A, C), B)); |
| 1550 | break; |
| 1551 | case 0xd2: |
| 1552 | if (ABCIsConst) |
| 1553 | Res = Xor(A, Nor(B, Not(C))); |
| 1554 | break; |
| 1555 | case 0xd3: |
| 1556 | if (ABCIsConst) |
| 1557 | Res = Or(Xnor(A, B), Nor(B, C)); |
| 1558 | break; |
| 1559 | case 0xd4: |
| 1560 | if (ABCIsConst) |
| 1561 | Res = Xor(Nor(Xnor(A, B), Xor(A, C)), A); |
| 1562 | break; |
| 1563 | case 0xd5: |
| 1564 | if (ABCIsConst) |
| 1565 | Res = Nand(Nand(A, B), C); |
| 1566 | break; |
| 1567 | case 0xd6: |
| 1568 | if (ABCIsConst) |
| 1569 | Res = Xor(Xor(A, B), Or(And(A, B), C)); |
| 1570 | break; |
| 1571 | case 0xd7: |
| 1572 | if (ABCIsConst) |
| 1573 | Res = Nand(Xor(A, B), C); |
| 1574 | break; |
| 1575 | case 0xd8: |
| 1576 | if (ABCIsConst) |
| 1577 | Res = Xor(Nor(Xnor(A, B), C), B); |
| 1578 | break; |
| 1579 | case 0xd9: |
| 1580 | if (ABCIsConst) |
| 1581 | Res = Or(And(A, B), Xnor(B, C)); |
| 1582 | break; |
| 1583 | case 0xda: |
| 1584 | if (ABCIsConst) |
| 1585 | Res = Xor(A, And(Nand(A, B), C)); |
| 1586 | break; |
| 1587 | case 0xdb: |
| 1588 | if (ABCIsConst) |
| 1589 | Res = Or(Xnor(A, B), Xor(A, C)); |
| 1590 | break; |
| 1591 | case 0xdc: |
| 1592 | if (ABCIsConst) |
| 1593 | Res = Or(B, Nor(C, Not(A))); |
| 1594 | break; |
| 1595 | case 0xdd: |
| 1596 | if (BCIsConst) |
| 1597 | Res = Or(B, Not(C)); |
| 1598 | break; |
| 1599 | case 0xde: |
| 1600 | if (ABCIsConst) |
| 1601 | Res = Or(Xor(A, C), B); |
| 1602 | break; |
| 1603 | case 0xdf: |
| 1604 | if (ABCIsConst) |
| 1605 | Res = Or(Nand(A, C), B); |
| 1606 | break; |
| 1607 | case 0xe0: |
| 1608 | if (ABCIsConst) |
| 1609 | Res = And(A, Or(B, C)); |
| 1610 | break; |
| 1611 | case 0xe1: |
| 1612 | if (ABCIsConst) |
| 1613 | Res = Xor(A, Nor(B, C)); |
| 1614 | break; |
| 1615 | case 0xe2: |
| 1616 | if (ABCIsConst) |
| 1617 | Res = Xor(A, Nor(Xnor(A, C), B)); |
| 1618 | break; |
| 1619 | case 0xe3: |
| 1620 | if (ABCIsConst) |
| 1621 | Res = Xor(A, Nor(And(A, C), B)); |
| 1622 | break; |
| 1623 | case 0xe4: |
| 1624 | if (ABCIsConst) |
| 1625 | Res = Xor(A, Nor(Xnor(A, B), C)); |
| 1626 | break; |
| 1627 | case 0xe5: |
| 1628 | if (ABCIsConst) |
| 1629 | Res = Xor(A, Nor(And(A, B), C)); |
| 1630 | break; |
| 1631 | case 0xe6: |
| 1632 | if (ABCIsConst) |
| 1633 | Res = Or(And(A, B), Xor(B, C)); |
| 1634 | break; |
| 1635 | case 0xe7: |
| 1636 | if (ABCIsConst) |
| 1637 | Res = Or(Xnor(A, B), Xnor(A, C)); |
| 1638 | break; |
| 1639 | case 0xe8: |
| 1640 | if (ABCIsConst) |
| 1641 | Res = Xor(Or(A, B), Nor(Xnor(A, B), C)); |
| 1642 | break; |
| 1643 | case 0xe9: |
| 1644 | if (ABCIsConst) |
| 1645 | Res = Xor(Xor(A, B), Nand(Nand(A, B), C)); |
| 1646 | break; |
| 1647 | case 0xea: |
| 1648 | if (ABCIsConst) |
| 1649 | Res = Or(And(A, B), C); |
| 1650 | break; |
| 1651 | case 0xeb: |
| 1652 | if (ABCIsConst) |
| 1653 | Res = Or(Xnor(A, B), C); |
| 1654 | break; |
| 1655 | case 0xec: |
| 1656 | if (ABCIsConst) |
| 1657 | Res = Or(And(A, C), B); |
| 1658 | break; |
| 1659 | case 0xed: |
| 1660 | if (ABCIsConst) |
| 1661 | Res = Or(Xnor(A, C), B); |
| 1662 | break; |
| 1663 | case 0xee: |
| 1664 | Res = Or(B, C); |
| 1665 | break; |
| 1666 | case 0xef: |
| 1667 | if (ABCIsConst) |
| 1668 | Res = Nand(A, Nor(B, C)); |
| 1669 | break; |
| 1670 | case 0xf0: |
| 1671 | Res = A; |
| 1672 | break; |
| 1673 | case 0xf1: |
| 1674 | if (ABCIsConst) |
| 1675 | Res = Or(A, Nor(B, C)); |
| 1676 | break; |
| 1677 | case 0xf2: |
| 1678 | if (ABCIsConst) |
| 1679 | Res = Or(A, Nor(B, Not(C))); |
| 1680 | break; |
| 1681 | case 0xf3: |
| 1682 | if (ABIsConst) |
| 1683 | Res = Or(A, Not(B)); |
| 1684 | break; |
| 1685 | case 0xf4: |
| 1686 | if (ABCIsConst) |
| 1687 | Res = Or(A, Nor(C, Not(B))); |
| 1688 | break; |
| 1689 | case 0xf5: |
| 1690 | if (ACIsConst) |
| 1691 | Res = Or(A, Not(C)); |
| 1692 | break; |
| 1693 | case 0xf6: |
| 1694 | if (ABCIsConst) |
| 1695 | Res = Or(A, Xor(B, C)); |
| 1696 | break; |
| 1697 | case 0xf7: |
| 1698 | if (ABCIsConst) |
| 1699 | Res = Or(A, Nand(B, C)); |
| 1700 | break; |
| 1701 | case 0xf8: |
| 1702 | if (ABCIsConst) |
| 1703 | Res = Or(A, And(B, C)); |
| 1704 | break; |
| 1705 | case 0xf9: |
| 1706 | if (ABCIsConst) |
| 1707 | Res = Or(A, Xnor(B, C)); |
| 1708 | break; |
| 1709 | case 0xfa: |
| 1710 | Res = Or(A, C); |
| 1711 | break; |
| 1712 | case 0xfb: |
| 1713 | if (ABCIsConst) |
| 1714 | Res = Nand(Nor(A, C), B); |
| 1715 | break; |
| 1716 | case 0xfc: |
| 1717 | Res = Or(A, B); |
| 1718 | break; |
| 1719 | case 0xfd: |
| 1720 | if (ABCIsConst) |
| 1721 | Res = Nand(Nor(A, B), C); |
| 1722 | break; |
| 1723 | case 0xfe: |
| 1724 | if (ABCIsConst) |
| 1725 | Res = Or(Or(A, B), C); |
| 1726 | break; |
| 1727 | case 0xff: |
| 1728 | Res = {Constant::getAllOnesValue(Ty), 0xff}; |
| 1729 | break; |
| 1730 | } |
| 1731 | |
| 1732 | assert((Res.first == nullptr || Res.second == Imm) && |
| 1733 | "Simplification of ternary logic does not verify!" ); |
| 1734 | return Res.first; |
| 1735 | } |
| 1736 | |
| 1737 | static Value *simplifyX86insertps(const IntrinsicInst &II, |
| 1738 | InstCombiner::BuilderTy &Builder) { |
| 1739 | auto *CInt = dyn_cast<ConstantInt>(Val: II.getArgOperand(i: 2)); |
| 1740 | if (!CInt) |
| 1741 | return nullptr; |
| 1742 | |
| 1743 | auto *VecTy = cast<FixedVectorType>(Val: II.getType()); |
| 1744 | assert(VecTy->getNumElements() == 4 && "insertps with wrong vector type" ); |
| 1745 | |
| 1746 | // The immediate permute control byte looks like this: |
| 1747 | // [3:0] - zero mask for each 32-bit lane |
| 1748 | // [5:4] - select one 32-bit destination lane |
| 1749 | // [7:6] - select one 32-bit source lane |
| 1750 | |
| 1751 | uint8_t Imm = CInt->getZExtValue(); |
| 1752 | uint8_t ZMask = Imm & 0xf; |
| 1753 | uint8_t DestLane = (Imm >> 4) & 0x3; |
| 1754 | uint8_t SourceLane = (Imm >> 6) & 0x3; |
| 1755 | |
| 1756 | ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(Ty: VecTy); |
| 1757 | |
| 1758 | // If all zero mask bits are set, this was just a weird way to |
| 1759 | // generate a zero vector. |
| 1760 | if (ZMask == 0xf) |
| 1761 | return ZeroVector; |
| 1762 | |
| 1763 | // Initialize by passing all of the first source bits through. |
| 1764 | int ShuffleMask[4] = {0, 1, 2, 3}; |
| 1765 | |
| 1766 | // We may replace the second operand with the zero vector. |
| 1767 | Value *V1 = II.getArgOperand(i: 1); |
| 1768 | |
| 1769 | if (ZMask) { |
| 1770 | // If the zero mask is being used with a single input or the zero mask |
| 1771 | // overrides the destination lane, this is a shuffle with the zero vector. |
| 1772 | if ((II.getArgOperand(i: 0) == II.getArgOperand(i: 1)) || |
| 1773 | (ZMask & (1 << DestLane))) { |
| 1774 | V1 = ZeroVector; |
| 1775 | // We may still move 32-bits of the first source vector from one lane |
| 1776 | // to another. |
| 1777 | ShuffleMask[DestLane] = SourceLane; |
| 1778 | // The zero mask may override the previous insert operation. |
| 1779 | for (unsigned i = 0; i < 4; ++i) |
| 1780 | if ((ZMask >> i) & 0x1) |
| 1781 | ShuffleMask[i] = i + 4; |
| 1782 | } else { |
| 1783 | // TODO: Model this case as 2 shuffles or a 'logical and' plus shuffle? |
| 1784 | return nullptr; |
| 1785 | } |
| 1786 | } else { |
| 1787 | // Replace the selected destination lane with the selected source lane. |
| 1788 | ShuffleMask[DestLane] = SourceLane + 4; |
| 1789 | } |
| 1790 | |
| 1791 | return Builder.CreateShuffleVector(V1: II.getArgOperand(i: 0), V2: V1, Mask: ShuffleMask); |
| 1792 | } |
| 1793 | |
| 1794 | /// Attempt to simplify SSE4A EXTRQ/EXTRQI instructions using constant folding |
| 1795 | /// or conversion to a shuffle vector. |
| 1796 | static Value *simplifyX86extrq(IntrinsicInst &II, Value *Op0, |
| 1797 | ConstantInt *CILength, ConstantInt *CIIndex, |
| 1798 | InstCombiner::BuilderTy &Builder) { |
| 1799 | auto LowConstantHighUndef = [&](uint64_t Val) { |
| 1800 | Type *IntTy64 = Type::getInt64Ty(C&: II.getContext()); |
| 1801 | Constant *Args[] = {ConstantInt::get(Ty: IntTy64, V: Val), |
| 1802 | UndefValue::get(T: IntTy64)}; |
| 1803 | return ConstantVector::get(V: Args); |
| 1804 | }; |
| 1805 | |
| 1806 | // See if we're dealing with constant values. |
| 1807 | auto *C0 = dyn_cast<Constant>(Val: Op0); |
| 1808 | auto *CI0 = |
| 1809 | C0 ? dyn_cast_or_null<ConstantInt>(Val: C0->getAggregateElement(Elt: (unsigned)0)) |
| 1810 | : nullptr; |
| 1811 | |
| 1812 | // Attempt to constant fold. |
| 1813 | if (CILength && CIIndex) { |
| 1814 | // From AMD documentation: "The bit index and field length are each six |
| 1815 | // bits in length other bits of the field are ignored." |
| 1816 | APInt APIndex = CIIndex->getValue().zextOrTrunc(width: 6); |
| 1817 | APInt APLength = CILength->getValue().zextOrTrunc(width: 6); |
| 1818 | |
| 1819 | unsigned Index = APIndex.getZExtValue(); |
| 1820 | |
| 1821 | // From AMD documentation: "a value of zero in the field length is |
| 1822 | // defined as length of 64". |
| 1823 | unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue(); |
| 1824 | |
| 1825 | // From AMD documentation: "If the sum of the bit index + length field |
| 1826 | // is greater than 64, the results are undefined". |
| 1827 | unsigned End = Index + Length; |
| 1828 | |
| 1829 | // Note that both field index and field length are 8-bit quantities. |
| 1830 | // Since variables 'Index' and 'Length' are unsigned values |
| 1831 | // obtained from zero-extending field index and field length |
| 1832 | // respectively, their sum should never wrap around. |
| 1833 | if (End > 64) |
| 1834 | return UndefValue::get(T: II.getType()); |
| 1835 | |
| 1836 | // If we are inserting whole bytes, we can convert this to a shuffle. |
| 1837 | // Lowering can recognize EXTRQI shuffle masks. |
| 1838 | if ((Length % 8) == 0 && (Index % 8) == 0) { |
| 1839 | // Convert bit indices to byte indices. |
| 1840 | Length /= 8; |
| 1841 | Index /= 8; |
| 1842 | |
| 1843 | Type *IntTy8 = Type::getInt8Ty(C&: II.getContext()); |
| 1844 | auto *ShufTy = FixedVectorType::get(ElementType: IntTy8, NumElts: 16); |
| 1845 | |
| 1846 | SmallVector<int, 16> ShuffleMask; |
| 1847 | for (int i = 0; i != (int)Length; ++i) |
| 1848 | ShuffleMask.push_back(Elt: i + Index); |
| 1849 | for (int i = Length; i != 8; ++i) |
| 1850 | ShuffleMask.push_back(Elt: i + 16); |
| 1851 | for (int i = 8; i != 16; ++i) |
| 1852 | ShuffleMask.push_back(Elt: -1); |
| 1853 | |
| 1854 | Value *SV = Builder.CreateShuffleVector( |
| 1855 | V1: Builder.CreateBitCast(V: Op0, DestTy: ShufTy), |
| 1856 | V2: ConstantAggregateZero::get(Ty: ShufTy), Mask: ShuffleMask); |
| 1857 | return Builder.CreateBitCast(V: SV, DestTy: II.getType()); |
| 1858 | } |
| 1859 | |
| 1860 | // Constant Fold - shift Index'th bit to lowest position and mask off |
| 1861 | // Length bits. |
| 1862 | if (CI0) { |
| 1863 | APInt Elt = CI0->getValue(); |
| 1864 | Elt.lshrInPlace(ShiftAmt: Index); |
| 1865 | Elt = Elt.zextOrTrunc(width: Length); |
| 1866 | return LowConstantHighUndef(Elt.getZExtValue()); |
| 1867 | } |
| 1868 | |
| 1869 | // If we were an EXTRQ call, we'll save registers if we convert to EXTRQI. |
| 1870 | if (II.getIntrinsicID() == Intrinsic::x86_sse4a_extrq) { |
| 1871 | Value *Args[] = {Op0, CILength, CIIndex}; |
| 1872 | return Builder.CreateIntrinsic(ID: Intrinsic::x86_sse4a_extrqi, Args); |
| 1873 | } |
| 1874 | } |
| 1875 | |
| 1876 | // Constant Fold - extraction from zero is always {zero, undef}. |
| 1877 | if (CI0 && CI0->isZero()) |
| 1878 | return LowConstantHighUndef(0); |
| 1879 | |
| 1880 | return nullptr; |
| 1881 | } |
| 1882 | |
| 1883 | /// Attempt to simplify SSE4A INSERTQ/INSERTQI instructions using constant |
| 1884 | /// folding or conversion to a shuffle vector. |
| 1885 | static Value *simplifyX86insertq(IntrinsicInst &II, Value *Op0, Value *Op1, |
| 1886 | APInt APLength, APInt APIndex, |
| 1887 | InstCombiner::BuilderTy &Builder) { |
| 1888 | // From AMD documentation: "The bit index and field length are each six bits |
| 1889 | // in length other bits of the field are ignored." |
| 1890 | APIndex = APIndex.zextOrTrunc(width: 6); |
| 1891 | APLength = APLength.zextOrTrunc(width: 6); |
| 1892 | |
| 1893 | // Attempt to constant fold. |
| 1894 | unsigned Index = APIndex.getZExtValue(); |
| 1895 | |
| 1896 | // From AMD documentation: "a value of zero in the field length is |
| 1897 | // defined as length of 64". |
| 1898 | unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue(); |
| 1899 | |
| 1900 | // From AMD documentation: "If the sum of the bit index + length field |
| 1901 | // is greater than 64, the results are undefined". |
| 1902 | unsigned End = Index + Length; |
| 1903 | |
| 1904 | // Note that both field index and field length are 8-bit quantities. |
| 1905 | // Since variables 'Index' and 'Length' are unsigned values |
| 1906 | // obtained from zero-extending field index and field length |
| 1907 | // respectively, their sum should never wrap around. |
| 1908 | if (End > 64) |
| 1909 | return UndefValue::get(T: II.getType()); |
| 1910 | |
| 1911 | // If we are inserting whole bytes, we can convert this to a shuffle. |
| 1912 | // Lowering can recognize INSERTQI shuffle masks. |
| 1913 | if ((Length % 8) == 0 && (Index % 8) == 0) { |
| 1914 | // Convert bit indices to byte indices. |
| 1915 | Length /= 8; |
| 1916 | Index /= 8; |
| 1917 | |
| 1918 | Type *IntTy8 = Type::getInt8Ty(C&: II.getContext()); |
| 1919 | auto *ShufTy = FixedVectorType::get(ElementType: IntTy8, NumElts: 16); |
| 1920 | |
| 1921 | SmallVector<int, 16> ShuffleMask; |
| 1922 | for (int i = 0; i != (int)Index; ++i) |
| 1923 | ShuffleMask.push_back(Elt: i); |
| 1924 | for (int i = 0; i != (int)Length; ++i) |
| 1925 | ShuffleMask.push_back(Elt: i + 16); |
| 1926 | for (int i = Index + Length; i != 8; ++i) |
| 1927 | ShuffleMask.push_back(Elt: i); |
| 1928 | for (int i = 8; i != 16; ++i) |
| 1929 | ShuffleMask.push_back(Elt: -1); |
| 1930 | |
| 1931 | Value *SV = Builder.CreateShuffleVector(V1: Builder.CreateBitCast(V: Op0, DestTy: ShufTy), |
| 1932 | V2: Builder.CreateBitCast(V: Op1, DestTy: ShufTy), |
| 1933 | Mask: ShuffleMask); |
| 1934 | return Builder.CreateBitCast(V: SV, DestTy: II.getType()); |
| 1935 | } |
| 1936 | |
| 1937 | // See if we're dealing with constant values. |
| 1938 | auto *C0 = dyn_cast<Constant>(Val: Op0); |
| 1939 | auto *C1 = dyn_cast<Constant>(Val: Op1); |
| 1940 | auto *CI00 = |
| 1941 | C0 ? dyn_cast_or_null<ConstantInt>(Val: C0->getAggregateElement(Elt: (unsigned)0)) |
| 1942 | : nullptr; |
| 1943 | auto *CI10 = |
| 1944 | C1 ? dyn_cast_or_null<ConstantInt>(Val: C1->getAggregateElement(Elt: (unsigned)0)) |
| 1945 | : nullptr; |
| 1946 | |
| 1947 | // Constant Fold - insert bottom Length bits starting at the Index'th bit. |
| 1948 | if (CI00 && CI10) { |
| 1949 | APInt V00 = CI00->getValue(); |
| 1950 | APInt V10 = CI10->getValue(); |
| 1951 | APInt Mask = APInt::getLowBitsSet(numBits: 64, loBitsSet: Length).shl(shiftAmt: Index); |
| 1952 | V00 = V00 & ~Mask; |
| 1953 | V10 = V10.zextOrTrunc(width: Length).zextOrTrunc(width: 64).shl(shiftAmt: Index); |
| 1954 | APInt Val = V00 | V10; |
| 1955 | Type *IntTy64 = Type::getInt64Ty(C&: II.getContext()); |
| 1956 | Constant *Args[] = {ConstantInt::get(Ty: IntTy64, V: Val.getZExtValue()), |
| 1957 | UndefValue::get(T: IntTy64)}; |
| 1958 | return ConstantVector::get(V: Args); |
| 1959 | } |
| 1960 | |
| 1961 | // If we were an INSERTQ call, we'll save demanded elements if we convert to |
| 1962 | // INSERTQI. |
| 1963 | if (II.getIntrinsicID() == Intrinsic::x86_sse4a_insertq) { |
| 1964 | Type *IntTy8 = Type::getInt8Ty(C&: II.getContext()); |
| 1965 | Constant *CILength = ConstantInt::get(Ty: IntTy8, V: Length, IsSigned: false); |
| 1966 | Constant *CIIndex = ConstantInt::get(Ty: IntTy8, V: Index, IsSigned: false); |
| 1967 | |
| 1968 | Value *Args[] = {Op0, Op1, CILength, CIIndex}; |
| 1969 | return Builder.CreateIntrinsic(ID: Intrinsic::x86_sse4a_insertqi, Args); |
| 1970 | } |
| 1971 | |
| 1972 | return nullptr; |
| 1973 | } |
| 1974 | |
| 1975 | /// Attempt to convert pshufb* to shufflevector if the mask is constant. |
| 1976 | static Value *simplifyX86pshufb(const IntrinsicInst &II, |
| 1977 | InstCombiner::BuilderTy &Builder) { |
| 1978 | auto *V = dyn_cast<Constant>(Val: II.getArgOperand(i: 1)); |
| 1979 | if (!V) |
| 1980 | return nullptr; |
| 1981 | |
| 1982 | auto *VecTy = cast<FixedVectorType>(Val: II.getType()); |
| 1983 | unsigned NumElts = VecTy->getNumElements(); |
| 1984 | assert((NumElts == 16 || NumElts == 32 || NumElts == 64) && |
| 1985 | "Unexpected number of elements in shuffle mask!" ); |
| 1986 | |
| 1987 | // Construct a shuffle mask from constant integers or UNDEFs. |
| 1988 | int Indexes[64]; |
| 1989 | |
| 1990 | // Each byte in the shuffle control mask forms an index to permute the |
| 1991 | // corresponding byte in the destination operand. |
| 1992 | for (unsigned I = 0; I < NumElts; ++I) { |
| 1993 | Constant *COp = V->getAggregateElement(Elt: I); |
| 1994 | if (!COp || (!isa<UndefValue>(Val: COp) && !isa<ConstantInt>(Val: COp))) |
| 1995 | return nullptr; |
| 1996 | |
| 1997 | if (isa<UndefValue>(Val: COp)) { |
| 1998 | Indexes[I] = -1; |
| 1999 | continue; |
| 2000 | } |
| 2001 | |
| 2002 | int8_t Index = cast<ConstantInt>(Val: COp)->getValue().getZExtValue(); |
| 2003 | |
| 2004 | // If the most significant bit (bit[7]) of each byte of the shuffle |
| 2005 | // control mask is set, then zero is written in the result byte. |
| 2006 | // The zero vector is in the right-hand side of the resulting |
| 2007 | // shufflevector. |
| 2008 | |
| 2009 | // The value of each index for the high 128-bit lane is the least |
| 2010 | // significant 4 bits of the respective shuffle control byte. |
| 2011 | Index = ((Index < 0) ? NumElts : Index & 0x0F) + (I & 0xF0); |
| 2012 | Indexes[I] = Index; |
| 2013 | } |
| 2014 | |
| 2015 | auto V1 = II.getArgOperand(i: 0); |
| 2016 | auto V2 = Constant::getNullValue(Ty: VecTy); |
| 2017 | return Builder.CreateShuffleVector(V1, V2, Mask: ArrayRef(Indexes, NumElts)); |
| 2018 | } |
| 2019 | |
| 2020 | /// Attempt to convert vpermilvar* to shufflevector if the mask is constant. |
| 2021 | static Value *simplifyX86vpermilvar(const IntrinsicInst &II, |
| 2022 | InstCombiner::BuilderTy &Builder) { |
| 2023 | auto *V = dyn_cast<Constant>(Val: II.getArgOperand(i: 1)); |
| 2024 | if (!V) |
| 2025 | return nullptr; |
| 2026 | |
| 2027 | auto *VecTy = cast<FixedVectorType>(Val: II.getType()); |
| 2028 | unsigned NumElts = VecTy->getNumElements(); |
| 2029 | bool IsPD = VecTy->getScalarType()->isDoubleTy(); |
| 2030 | unsigned NumLaneElts = IsPD ? 2 : 4; |
| 2031 | assert(NumElts == 16 || NumElts == 8 || NumElts == 4 || NumElts == 2); |
| 2032 | |
| 2033 | // Construct a shuffle mask from constant integers or UNDEFs. |
| 2034 | int Indexes[16]; |
| 2035 | |
| 2036 | // The intrinsics only read one or two bits, clear the rest. |
| 2037 | for (unsigned I = 0; I < NumElts; ++I) { |
| 2038 | Constant *COp = V->getAggregateElement(Elt: I); |
| 2039 | if (!COp || (!isa<UndefValue>(Val: COp) && !isa<ConstantInt>(Val: COp))) |
| 2040 | return nullptr; |
| 2041 | |
| 2042 | if (isa<UndefValue>(Val: COp)) { |
| 2043 | Indexes[I] = -1; |
| 2044 | continue; |
| 2045 | } |
| 2046 | |
| 2047 | APInt Index = cast<ConstantInt>(Val: COp)->getValue(); |
| 2048 | Index = Index.zextOrTrunc(width: 32).getLoBits(numBits: 2); |
| 2049 | |
| 2050 | // The PD variants uses bit 1 to select per-lane element index, so |
| 2051 | // shift down to convert to generic shuffle mask index. |
| 2052 | if (IsPD) |
| 2053 | Index.lshrInPlace(ShiftAmt: 1); |
| 2054 | |
| 2055 | // The _256 variants are a bit trickier since the mask bits always index |
| 2056 | // into the corresponding 128 half. In order to convert to a generic |
| 2057 | // shuffle, we have to make that explicit. |
| 2058 | Index += APInt(32, (I / NumLaneElts) * NumLaneElts); |
| 2059 | |
| 2060 | Indexes[I] = Index.getZExtValue(); |
| 2061 | } |
| 2062 | |
| 2063 | auto V1 = II.getArgOperand(i: 0); |
| 2064 | return Builder.CreateShuffleVector(V: V1, Mask: ArrayRef(Indexes, NumElts)); |
| 2065 | } |
| 2066 | |
| 2067 | /// Attempt to convert vpermd/vpermps to shufflevector if the mask is constant. |
| 2068 | static Value *simplifyX86vpermv(const IntrinsicInst &II, |
| 2069 | InstCombiner::BuilderTy &Builder) { |
| 2070 | auto *V = dyn_cast<Constant>(Val: II.getArgOperand(i: 1)); |
| 2071 | if (!V) |
| 2072 | return nullptr; |
| 2073 | |
| 2074 | auto *VecTy = cast<FixedVectorType>(Val: II.getType()); |
| 2075 | unsigned Size = VecTy->getNumElements(); |
| 2076 | assert((Size == 4 || Size == 8 || Size == 16 || Size == 32 || Size == 64) && |
| 2077 | "Unexpected shuffle mask size" ); |
| 2078 | |
| 2079 | // Construct a shuffle mask from constant integers or UNDEFs. |
| 2080 | int Indexes[64]; |
| 2081 | |
| 2082 | for (unsigned I = 0; I < Size; ++I) { |
| 2083 | Constant *COp = V->getAggregateElement(Elt: I); |
| 2084 | if (!COp || (!isa<UndefValue>(Val: COp) && !isa<ConstantInt>(Val: COp))) |
| 2085 | return nullptr; |
| 2086 | |
| 2087 | if (isa<UndefValue>(Val: COp)) { |
| 2088 | Indexes[I] = -1; |
| 2089 | continue; |
| 2090 | } |
| 2091 | |
| 2092 | uint32_t Index = cast<ConstantInt>(Val: COp)->getZExtValue(); |
| 2093 | Index &= Size - 1; |
| 2094 | Indexes[I] = Index; |
| 2095 | } |
| 2096 | |
| 2097 | auto V1 = II.getArgOperand(i: 0); |
| 2098 | return Builder.CreateShuffleVector(V: V1, Mask: ArrayRef(Indexes, Size)); |
| 2099 | } |
| 2100 | |
| 2101 | /// Attempt to convert vpermi2/vpermt2 to shufflevector if the mask is constant. |
| 2102 | static Value *simplifyX86vpermv3(const IntrinsicInst &II, |
| 2103 | InstCombiner::BuilderTy &Builder) { |
| 2104 | auto *V = dyn_cast<Constant>(Val: II.getArgOperand(i: 1)); |
| 2105 | if (!V) |
| 2106 | return nullptr; |
| 2107 | |
| 2108 | auto *VecTy = cast<FixedVectorType>(Val: II.getType()); |
| 2109 | unsigned Size = VecTy->getNumElements(); |
| 2110 | assert((Size == 2 || Size == 4 || Size == 8 || Size == 16 || Size == 32 || |
| 2111 | Size == 64) && |
| 2112 | "Unexpected shuffle mask size" ); |
| 2113 | |
| 2114 | // Construct a shuffle mask from constant integers or UNDEFs. |
| 2115 | int Indexes[64]; |
| 2116 | |
| 2117 | for (unsigned I = 0; I < Size; ++I) { |
| 2118 | Constant *COp = V->getAggregateElement(Elt: I); |
| 2119 | if (!COp || (!isa<UndefValue>(Val: COp) && !isa<ConstantInt>(Val: COp))) |
| 2120 | return nullptr; |
| 2121 | |
| 2122 | if (isa<UndefValue>(Val: COp)) { |
| 2123 | Indexes[I] = -1; |
| 2124 | continue; |
| 2125 | } |
| 2126 | |
| 2127 | uint32_t Index = cast<ConstantInt>(Val: COp)->getZExtValue(); |
| 2128 | Index &= (2 * Size) - 1; |
| 2129 | Indexes[I] = Index; |
| 2130 | } |
| 2131 | |
| 2132 | auto V1 = II.getArgOperand(i: 0); |
| 2133 | auto V2 = II.getArgOperand(i: 2); |
| 2134 | return Builder.CreateShuffleVector(V1, V2, Mask: ArrayRef(Indexes, Size)); |
| 2135 | } |
| 2136 | |
| 2137 | // Simplify VPERMV/VPERMV3 mask - only demand the active index bits. |
| 2138 | static bool simplifyX86VPERMMask(Instruction *II, bool IsBinary, |
| 2139 | InstCombiner &IC) { |
| 2140 | auto *VecTy = cast<FixedVectorType>(Val: II->getType()); |
| 2141 | unsigned EltSizeInBits = VecTy->getScalarSizeInBits(); |
| 2142 | unsigned NumElts = VecTy->getNumElements(); |
| 2143 | assert(isPowerOf2_32(NumElts) && isPowerOf2_32(EltSizeInBits) && |
| 2144 | "Unexpected shuffle mask size" ); |
| 2145 | |
| 2146 | unsigned IdxSizeInBits = Log2_32(Value: IsBinary ? (2 * NumElts) : NumElts); |
| 2147 | APInt DemandedMask = APInt::getLowBitsSet(numBits: EltSizeInBits, loBitsSet: IdxSizeInBits); |
| 2148 | |
| 2149 | KnownBits KnownMask(EltSizeInBits); |
| 2150 | return IC.SimplifyDemandedBits(I: II, /*OpNo=*/1, DemandedMask, Known&: KnownMask); |
| 2151 | } |
| 2152 | |
| 2153 | std::optional<Instruction *> |
| 2154 | X86TTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const { |
| 2155 | auto SimplifyDemandedVectorEltsLow = [&IC](Value *Op, unsigned Width, |
| 2156 | unsigned DemandedWidth) { |
| 2157 | APInt UndefElts(Width, 0); |
| 2158 | APInt DemandedElts = APInt::getLowBitsSet(numBits: Width, loBitsSet: DemandedWidth); |
| 2159 | return IC.SimplifyDemandedVectorElts(V: Op, DemandedElts, UndefElts); |
| 2160 | }; |
| 2161 | |
| 2162 | Intrinsic::ID IID = II.getIntrinsicID(); |
| 2163 | switch (IID) { |
| 2164 | case Intrinsic::x86_bmi_bextr_32: |
| 2165 | case Intrinsic::x86_bmi_bextr_64: |
| 2166 | case Intrinsic::x86_tbm_bextri_u32: |
| 2167 | case Intrinsic::x86_tbm_bextri_u64: |
| 2168 | // If the RHS is a constant we can try some simplifications. |
| 2169 | if (auto *C = dyn_cast<ConstantInt>(Val: II.getArgOperand(i: 1))) { |
| 2170 | uint64_t Shift = C->getZExtValue(); |
| 2171 | uint64_t Length = (Shift >> 8) & 0xff; |
| 2172 | Shift &= 0xff; |
| 2173 | unsigned BitWidth = II.getType()->getIntegerBitWidth(); |
| 2174 | // If the length is 0 or the shift is out of range, replace with zero. |
| 2175 | if (Length == 0 || Shift >= BitWidth) { |
| 2176 | return IC.replaceInstUsesWith(I&: II, V: ConstantInt::get(Ty: II.getType(), V: 0)); |
| 2177 | } |
| 2178 | // If the LHS is also a constant, we can completely constant fold this. |
| 2179 | if (auto *InC = dyn_cast<ConstantInt>(Val: II.getArgOperand(i: 0))) { |
| 2180 | uint64_t Result = InC->getZExtValue() >> Shift; |
| 2181 | if (Length > BitWidth) |
| 2182 | Length = BitWidth; |
| 2183 | Result &= maskTrailingOnes<uint64_t>(N: Length); |
| 2184 | return IC.replaceInstUsesWith(I&: II, |
| 2185 | V: ConstantInt::get(Ty: II.getType(), V: Result)); |
| 2186 | } |
| 2187 | // TODO should we turn this into 'and' if shift is 0? Or 'shl' if we |
| 2188 | // are only masking bits that a shift already cleared? |
| 2189 | } |
| 2190 | break; |
| 2191 | |
| 2192 | case Intrinsic::x86_bmi_bzhi_32: |
| 2193 | case Intrinsic::x86_bmi_bzhi_64: |
| 2194 | // If the RHS is a constant we can try some simplifications. |
| 2195 | if (auto *C = dyn_cast<ConstantInt>(Val: II.getArgOperand(i: 1))) { |
| 2196 | uint64_t Index = C->getZExtValue() & 0xff; |
| 2197 | unsigned BitWidth = II.getType()->getIntegerBitWidth(); |
| 2198 | if (Index >= BitWidth) { |
| 2199 | return IC.replaceInstUsesWith(I&: II, V: II.getArgOperand(i: 0)); |
| 2200 | } |
| 2201 | if (Index == 0) { |
| 2202 | return IC.replaceInstUsesWith(I&: II, V: ConstantInt::get(Ty: II.getType(), V: 0)); |
| 2203 | } |
| 2204 | // If the LHS is also a constant, we can completely constant fold this. |
| 2205 | if (auto *InC = dyn_cast<ConstantInt>(Val: II.getArgOperand(i: 0))) { |
| 2206 | uint64_t Result = InC->getZExtValue(); |
| 2207 | Result &= maskTrailingOnes<uint64_t>(N: Index); |
| 2208 | return IC.replaceInstUsesWith(I&: II, |
| 2209 | V: ConstantInt::get(Ty: II.getType(), V: Result)); |
| 2210 | } |
| 2211 | // TODO should we convert this to an AND if the RHS is constant? |
| 2212 | } |
| 2213 | break; |
| 2214 | case Intrinsic::x86_bmi_pext_32: |
| 2215 | case Intrinsic::x86_bmi_pext_64: |
| 2216 | if (auto *MaskC = dyn_cast<ConstantInt>(Val: II.getArgOperand(i: 1))) { |
| 2217 | if (MaskC->isNullValue()) { |
| 2218 | return IC.replaceInstUsesWith(I&: II, V: ConstantInt::get(Ty: II.getType(), V: 0)); |
| 2219 | } |
| 2220 | if (MaskC->isAllOnesValue()) { |
| 2221 | return IC.replaceInstUsesWith(I&: II, V: II.getArgOperand(i: 0)); |
| 2222 | } |
| 2223 | |
| 2224 | unsigned MaskIdx, MaskLen; |
| 2225 | if (MaskC->getValue().isShiftedMask(MaskIdx, MaskLen)) { |
| 2226 | // any single contingous sequence of 1s anywhere in the mask simply |
| 2227 | // describes a subset of the input bits shifted to the appropriate |
| 2228 | // position. Replace with the straight forward IR. |
| 2229 | Value *Input = II.getArgOperand(i: 0); |
| 2230 | Value *Masked = IC.Builder.CreateAnd(LHS: Input, RHS: II.getArgOperand(i: 1)); |
| 2231 | Value *ShiftAmt = ConstantInt::get(Ty: II.getType(), V: MaskIdx); |
| 2232 | Value *Shifted = IC.Builder.CreateLShr(LHS: Masked, RHS: ShiftAmt); |
| 2233 | return IC.replaceInstUsesWith(I&: II, V: Shifted); |
| 2234 | } |
| 2235 | |
| 2236 | if (auto *SrcC = dyn_cast<ConstantInt>(Val: II.getArgOperand(i: 0))) { |
| 2237 | uint64_t Src = SrcC->getZExtValue(); |
| 2238 | uint64_t Mask = MaskC->getZExtValue(); |
| 2239 | uint64_t Result = 0; |
| 2240 | uint64_t BitToSet = 1; |
| 2241 | |
| 2242 | while (Mask) { |
| 2243 | // Isolate lowest set bit. |
| 2244 | uint64_t BitToTest = Mask & -Mask; |
| 2245 | if (BitToTest & Src) |
| 2246 | Result |= BitToSet; |
| 2247 | |
| 2248 | BitToSet <<= 1; |
| 2249 | // Clear lowest set bit. |
| 2250 | Mask &= Mask - 1; |
| 2251 | } |
| 2252 | |
| 2253 | return IC.replaceInstUsesWith(I&: II, |
| 2254 | V: ConstantInt::get(Ty: II.getType(), V: Result)); |
| 2255 | } |
| 2256 | } |
| 2257 | break; |
| 2258 | case Intrinsic::x86_bmi_pdep_32: |
| 2259 | case Intrinsic::x86_bmi_pdep_64: |
| 2260 | if (auto *MaskC = dyn_cast<ConstantInt>(Val: II.getArgOperand(i: 1))) { |
| 2261 | if (MaskC->isNullValue()) { |
| 2262 | return IC.replaceInstUsesWith(I&: II, V: ConstantInt::get(Ty: II.getType(), V: 0)); |
| 2263 | } |
| 2264 | if (MaskC->isAllOnesValue()) { |
| 2265 | return IC.replaceInstUsesWith(I&: II, V: II.getArgOperand(i: 0)); |
| 2266 | } |
| 2267 | |
| 2268 | unsigned MaskIdx, MaskLen; |
| 2269 | if (MaskC->getValue().isShiftedMask(MaskIdx, MaskLen)) { |
| 2270 | // any single contingous sequence of 1s anywhere in the mask simply |
| 2271 | // describes a subset of the input bits shifted to the appropriate |
| 2272 | // position. Replace with the straight forward IR. |
| 2273 | Value *Input = II.getArgOperand(i: 0); |
| 2274 | Value *ShiftAmt = ConstantInt::get(Ty: II.getType(), V: MaskIdx); |
| 2275 | Value *Shifted = IC.Builder.CreateShl(LHS: Input, RHS: ShiftAmt); |
| 2276 | Value *Masked = IC.Builder.CreateAnd(LHS: Shifted, RHS: II.getArgOperand(i: 1)); |
| 2277 | return IC.replaceInstUsesWith(I&: II, V: Masked); |
| 2278 | } |
| 2279 | |
| 2280 | if (auto *SrcC = dyn_cast<ConstantInt>(Val: II.getArgOperand(i: 0))) { |
| 2281 | uint64_t Src = SrcC->getZExtValue(); |
| 2282 | uint64_t Mask = MaskC->getZExtValue(); |
| 2283 | uint64_t Result = 0; |
| 2284 | uint64_t BitToTest = 1; |
| 2285 | |
| 2286 | while (Mask) { |
| 2287 | // Isolate lowest set bit. |
| 2288 | uint64_t BitToSet = Mask & -Mask; |
| 2289 | if (BitToTest & Src) |
| 2290 | Result |= BitToSet; |
| 2291 | |
| 2292 | BitToTest <<= 1; |
| 2293 | // Clear lowest set bit; |
| 2294 | Mask &= Mask - 1; |
| 2295 | } |
| 2296 | |
| 2297 | return IC.replaceInstUsesWith(I&: II, |
| 2298 | V: ConstantInt::get(Ty: II.getType(), V: Result)); |
| 2299 | } |
| 2300 | } |
| 2301 | break; |
| 2302 | |
| 2303 | case Intrinsic::x86_sse_cvtss2si: |
| 2304 | case Intrinsic::x86_sse_cvtss2si64: |
| 2305 | case Intrinsic::x86_sse_cvttss2si: |
| 2306 | case Intrinsic::x86_sse_cvttss2si64: |
| 2307 | case Intrinsic::x86_sse2_cvtsd2si: |
| 2308 | case Intrinsic::x86_sse2_cvtsd2si64: |
| 2309 | case Intrinsic::x86_sse2_cvttsd2si: |
| 2310 | case Intrinsic::x86_sse2_cvttsd2si64: |
| 2311 | case Intrinsic::x86_avx512_vcvtss2si32: |
| 2312 | case Intrinsic::x86_avx512_vcvtss2si64: |
| 2313 | case Intrinsic::x86_avx512_vcvtss2usi32: |
| 2314 | case Intrinsic::x86_avx512_vcvtss2usi64: |
| 2315 | case Intrinsic::x86_avx512_vcvtsd2si32: |
| 2316 | case Intrinsic::x86_avx512_vcvtsd2si64: |
| 2317 | case Intrinsic::x86_avx512_vcvtsd2usi32: |
| 2318 | case Intrinsic::x86_avx512_vcvtsd2usi64: |
| 2319 | case Intrinsic::x86_avx512_cvttss2si: |
| 2320 | case Intrinsic::x86_avx512_cvttss2si64: |
| 2321 | case Intrinsic::x86_avx512_cvttss2usi: |
| 2322 | case Intrinsic::x86_avx512_cvttss2usi64: |
| 2323 | case Intrinsic::x86_avx512_cvttsd2si: |
| 2324 | case Intrinsic::x86_avx512_cvttsd2si64: |
| 2325 | case Intrinsic::x86_avx512_cvttsd2usi: |
| 2326 | case Intrinsic::x86_avx512_cvttsd2usi64: { |
| 2327 | // These intrinsics only demand the 0th element of their input vectors. If |
| 2328 | // we can simplify the input based on that, do so now. |
| 2329 | Value *Arg = II.getArgOperand(i: 0); |
| 2330 | unsigned VWidth = cast<FixedVectorType>(Val: Arg->getType())->getNumElements(); |
| 2331 | if (Value *V = SimplifyDemandedVectorEltsLow(Arg, VWidth, 1)) { |
| 2332 | return IC.replaceOperand(I&: II, OpNum: 0, V); |
| 2333 | } |
| 2334 | break; |
| 2335 | } |
| 2336 | |
| 2337 | case Intrinsic::x86_mmx_pmovmskb: |
| 2338 | case Intrinsic::x86_sse_movmsk_ps: |
| 2339 | case Intrinsic::x86_sse2_movmsk_pd: |
| 2340 | case Intrinsic::x86_sse2_pmovmskb_128: |
| 2341 | case Intrinsic::x86_avx_movmsk_pd_256: |
| 2342 | case Intrinsic::x86_avx_movmsk_ps_256: |
| 2343 | case Intrinsic::x86_avx2_pmovmskb: |
| 2344 | if (Value *V = simplifyX86movmsk(II, Builder&: IC.Builder)) { |
| 2345 | return IC.replaceInstUsesWith(I&: II, V); |
| 2346 | } |
| 2347 | break; |
| 2348 | |
| 2349 | case Intrinsic::x86_sse_comieq_ss: |
| 2350 | case Intrinsic::x86_sse_comige_ss: |
| 2351 | case Intrinsic::x86_sse_comigt_ss: |
| 2352 | case Intrinsic::x86_sse_comile_ss: |
| 2353 | case Intrinsic::x86_sse_comilt_ss: |
| 2354 | case Intrinsic::x86_sse_comineq_ss: |
| 2355 | case Intrinsic::x86_sse_ucomieq_ss: |
| 2356 | case Intrinsic::x86_sse_ucomige_ss: |
| 2357 | case Intrinsic::x86_sse_ucomigt_ss: |
| 2358 | case Intrinsic::x86_sse_ucomile_ss: |
| 2359 | case Intrinsic::x86_sse_ucomilt_ss: |
| 2360 | case Intrinsic::x86_sse_ucomineq_ss: |
| 2361 | case Intrinsic::x86_sse2_comieq_sd: |
| 2362 | case Intrinsic::x86_sse2_comige_sd: |
| 2363 | case Intrinsic::x86_sse2_comigt_sd: |
| 2364 | case Intrinsic::x86_sse2_comile_sd: |
| 2365 | case Intrinsic::x86_sse2_comilt_sd: |
| 2366 | case Intrinsic::x86_sse2_comineq_sd: |
| 2367 | case Intrinsic::x86_sse2_ucomieq_sd: |
| 2368 | case Intrinsic::x86_sse2_ucomige_sd: |
| 2369 | case Intrinsic::x86_sse2_ucomigt_sd: |
| 2370 | case Intrinsic::x86_sse2_ucomile_sd: |
| 2371 | case Intrinsic::x86_sse2_ucomilt_sd: |
| 2372 | case Intrinsic::x86_sse2_ucomineq_sd: |
| 2373 | case Intrinsic::x86_avx512_vcomi_ss: |
| 2374 | case Intrinsic::x86_avx512_vcomi_sd: |
| 2375 | case Intrinsic::x86_avx512_mask_cmp_ss: |
| 2376 | case Intrinsic::x86_avx512_mask_cmp_sd: { |
| 2377 | // These intrinsics only demand the 0th element of their input vectors. If |
| 2378 | // we can simplify the input based on that, do so now. |
| 2379 | bool MadeChange = false; |
| 2380 | Value *Arg0 = II.getArgOperand(i: 0); |
| 2381 | Value *Arg1 = II.getArgOperand(i: 1); |
| 2382 | unsigned VWidth = cast<FixedVectorType>(Val: Arg0->getType())->getNumElements(); |
| 2383 | if (Value *V = SimplifyDemandedVectorEltsLow(Arg0, VWidth, 1)) { |
| 2384 | IC.replaceOperand(I&: II, OpNum: 0, V); |
| 2385 | MadeChange = true; |
| 2386 | } |
| 2387 | if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, 1)) { |
| 2388 | IC.replaceOperand(I&: II, OpNum: 1, V); |
| 2389 | MadeChange = true; |
| 2390 | } |
| 2391 | if (MadeChange) { |
| 2392 | return &II; |
| 2393 | } |
| 2394 | break; |
| 2395 | } |
| 2396 | |
| 2397 | case Intrinsic::x86_avx512_add_ps_512: |
| 2398 | case Intrinsic::x86_avx512_div_ps_512: |
| 2399 | case Intrinsic::x86_avx512_mul_ps_512: |
| 2400 | case Intrinsic::x86_avx512_sub_ps_512: |
| 2401 | case Intrinsic::x86_avx512_add_pd_512: |
| 2402 | case Intrinsic::x86_avx512_div_pd_512: |
| 2403 | case Intrinsic::x86_avx512_mul_pd_512: |
| 2404 | case Intrinsic::x86_avx512_sub_pd_512: |
| 2405 | // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular |
| 2406 | // IR operations. |
| 2407 | if (auto *R = dyn_cast<ConstantInt>(Val: II.getArgOperand(i: 2))) { |
| 2408 | if (R->getValue() == 4) { |
| 2409 | Value *Arg0 = II.getArgOperand(i: 0); |
| 2410 | Value *Arg1 = II.getArgOperand(i: 1); |
| 2411 | |
| 2412 | Value *V; |
| 2413 | switch (IID) { |
| 2414 | default: |
| 2415 | llvm_unreachable("Case stmts out of sync!" ); |
| 2416 | case Intrinsic::x86_avx512_add_ps_512: |
| 2417 | case Intrinsic::x86_avx512_add_pd_512: |
| 2418 | V = IC.Builder.CreateFAdd(L: Arg0, R: Arg1); |
| 2419 | break; |
| 2420 | case Intrinsic::x86_avx512_sub_ps_512: |
| 2421 | case Intrinsic::x86_avx512_sub_pd_512: |
| 2422 | V = IC.Builder.CreateFSub(L: Arg0, R: Arg1); |
| 2423 | break; |
| 2424 | case Intrinsic::x86_avx512_mul_ps_512: |
| 2425 | case Intrinsic::x86_avx512_mul_pd_512: |
| 2426 | V = IC.Builder.CreateFMul(L: Arg0, R: Arg1); |
| 2427 | break; |
| 2428 | case Intrinsic::x86_avx512_div_ps_512: |
| 2429 | case Intrinsic::x86_avx512_div_pd_512: |
| 2430 | V = IC.Builder.CreateFDiv(L: Arg0, R: Arg1); |
| 2431 | break; |
| 2432 | } |
| 2433 | |
| 2434 | return IC.replaceInstUsesWith(I&: II, V); |
| 2435 | } |
| 2436 | } |
| 2437 | break; |
| 2438 | |
| 2439 | case Intrinsic::x86_avx512_mask_add_ss_round: |
| 2440 | case Intrinsic::x86_avx512_mask_div_ss_round: |
| 2441 | case Intrinsic::x86_avx512_mask_mul_ss_round: |
| 2442 | case Intrinsic::x86_avx512_mask_sub_ss_round: |
| 2443 | case Intrinsic::x86_avx512_mask_add_sd_round: |
| 2444 | case Intrinsic::x86_avx512_mask_div_sd_round: |
| 2445 | case Intrinsic::x86_avx512_mask_mul_sd_round: |
| 2446 | case Intrinsic::x86_avx512_mask_sub_sd_round: |
| 2447 | // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular |
| 2448 | // IR operations. |
| 2449 | if (auto *R = dyn_cast<ConstantInt>(Val: II.getArgOperand(i: 4))) { |
| 2450 | if (R->getValue() == 4) { |
| 2451 | // Extract the element as scalars. |
| 2452 | Value *Arg0 = II.getArgOperand(i: 0); |
| 2453 | Value *Arg1 = II.getArgOperand(i: 1); |
| 2454 | Value *LHS = IC.Builder.CreateExtractElement(Vec: Arg0, Idx: (uint64_t)0); |
| 2455 | Value *RHS = IC.Builder.CreateExtractElement(Vec: Arg1, Idx: (uint64_t)0); |
| 2456 | |
| 2457 | Value *V; |
| 2458 | switch (IID) { |
| 2459 | default: |
| 2460 | llvm_unreachable("Case stmts out of sync!" ); |
| 2461 | case Intrinsic::x86_avx512_mask_add_ss_round: |
| 2462 | case Intrinsic::x86_avx512_mask_add_sd_round: |
| 2463 | V = IC.Builder.CreateFAdd(L: LHS, R: RHS); |
| 2464 | break; |
| 2465 | case Intrinsic::x86_avx512_mask_sub_ss_round: |
| 2466 | case Intrinsic::x86_avx512_mask_sub_sd_round: |
| 2467 | V = IC.Builder.CreateFSub(L: LHS, R: RHS); |
| 2468 | break; |
| 2469 | case Intrinsic::x86_avx512_mask_mul_ss_round: |
| 2470 | case Intrinsic::x86_avx512_mask_mul_sd_round: |
| 2471 | V = IC.Builder.CreateFMul(L: LHS, R: RHS); |
| 2472 | break; |
| 2473 | case Intrinsic::x86_avx512_mask_div_ss_round: |
| 2474 | case Intrinsic::x86_avx512_mask_div_sd_round: |
| 2475 | V = IC.Builder.CreateFDiv(L: LHS, R: RHS); |
| 2476 | break; |
| 2477 | } |
| 2478 | |
| 2479 | // Handle the masking aspect of the intrinsic. |
| 2480 | Value *Mask = II.getArgOperand(i: 3); |
| 2481 | auto *C = dyn_cast<ConstantInt>(Val: Mask); |
| 2482 | // We don't need a select if we know the mask bit is a 1. |
| 2483 | if (!C || !C->getValue()[0]) { |
| 2484 | // Cast the mask to an i1 vector and then extract the lowest element. |
| 2485 | auto *MaskTy = FixedVectorType::get( |
| 2486 | ElementType: IC.Builder.getInt1Ty(), |
| 2487 | NumElts: cast<IntegerType>(Val: Mask->getType())->getBitWidth()); |
| 2488 | Mask = IC.Builder.CreateBitCast(V: Mask, DestTy: MaskTy); |
| 2489 | Mask = IC.Builder.CreateExtractElement(Vec: Mask, Idx: (uint64_t)0); |
| 2490 | // Extract the lowest element from the passthru operand. |
| 2491 | Value *Passthru = |
| 2492 | IC.Builder.CreateExtractElement(Vec: II.getArgOperand(i: 2), Idx: (uint64_t)0); |
| 2493 | V = IC.Builder.CreateSelect(C: Mask, True: V, False: Passthru); |
| 2494 | } |
| 2495 | |
| 2496 | // Insert the result back into the original argument 0. |
| 2497 | V = IC.Builder.CreateInsertElement(Vec: Arg0, NewElt: V, Idx: (uint64_t)0); |
| 2498 | |
| 2499 | return IC.replaceInstUsesWith(I&: II, V); |
| 2500 | } |
| 2501 | } |
| 2502 | break; |
| 2503 | |
| 2504 | // Constant fold ashr( <A x Bi>, Ci ). |
| 2505 | // Constant fold lshr( <A x Bi>, Ci ). |
| 2506 | // Constant fold shl( <A x Bi>, Ci ). |
| 2507 | case Intrinsic::x86_sse2_psrai_d: |
| 2508 | case Intrinsic::x86_sse2_psrai_w: |
| 2509 | case Intrinsic::x86_avx2_psrai_d: |
| 2510 | case Intrinsic::x86_avx2_psrai_w: |
| 2511 | case Intrinsic::x86_avx512_psrai_q_128: |
| 2512 | case Intrinsic::x86_avx512_psrai_q_256: |
| 2513 | case Intrinsic::x86_avx512_psrai_d_512: |
| 2514 | case Intrinsic::x86_avx512_psrai_q_512: |
| 2515 | case Intrinsic::x86_avx512_psrai_w_512: |
| 2516 | case Intrinsic::x86_sse2_psrli_d: |
| 2517 | case Intrinsic::x86_sse2_psrli_q: |
| 2518 | case Intrinsic::x86_sse2_psrli_w: |
| 2519 | case Intrinsic::x86_avx2_psrli_d: |
| 2520 | case Intrinsic::x86_avx2_psrli_q: |
| 2521 | case Intrinsic::x86_avx2_psrli_w: |
| 2522 | case Intrinsic::x86_avx512_psrli_d_512: |
| 2523 | case Intrinsic::x86_avx512_psrli_q_512: |
| 2524 | case Intrinsic::x86_avx512_psrli_w_512: |
| 2525 | case Intrinsic::x86_sse2_pslli_d: |
| 2526 | case Intrinsic::x86_sse2_pslli_q: |
| 2527 | case Intrinsic::x86_sse2_pslli_w: |
| 2528 | case Intrinsic::x86_avx2_pslli_d: |
| 2529 | case Intrinsic::x86_avx2_pslli_q: |
| 2530 | case Intrinsic::x86_avx2_pslli_w: |
| 2531 | case Intrinsic::x86_avx512_pslli_d_512: |
| 2532 | case Intrinsic::x86_avx512_pslli_q_512: |
| 2533 | case Intrinsic::x86_avx512_pslli_w_512: |
| 2534 | if (Value *V = simplifyX86immShift(II, Builder&: IC.Builder)) { |
| 2535 | return IC.replaceInstUsesWith(I&: II, V); |
| 2536 | } |
| 2537 | break; |
| 2538 | |
| 2539 | case Intrinsic::x86_sse2_psra_d: |
| 2540 | case Intrinsic::x86_sse2_psra_w: |
| 2541 | case Intrinsic::x86_avx2_psra_d: |
| 2542 | case Intrinsic::x86_avx2_psra_w: |
| 2543 | case Intrinsic::x86_avx512_psra_q_128: |
| 2544 | case Intrinsic::x86_avx512_psra_q_256: |
| 2545 | case Intrinsic::x86_avx512_psra_d_512: |
| 2546 | case Intrinsic::x86_avx512_psra_q_512: |
| 2547 | case Intrinsic::x86_avx512_psra_w_512: |
| 2548 | case Intrinsic::x86_sse2_psrl_d: |
| 2549 | case Intrinsic::x86_sse2_psrl_q: |
| 2550 | case Intrinsic::x86_sse2_psrl_w: |
| 2551 | case Intrinsic::x86_avx2_psrl_d: |
| 2552 | case Intrinsic::x86_avx2_psrl_q: |
| 2553 | case Intrinsic::x86_avx2_psrl_w: |
| 2554 | case Intrinsic::x86_avx512_psrl_d_512: |
| 2555 | case Intrinsic::x86_avx512_psrl_q_512: |
| 2556 | case Intrinsic::x86_avx512_psrl_w_512: |
| 2557 | case Intrinsic::x86_sse2_psll_d: |
| 2558 | case Intrinsic::x86_sse2_psll_q: |
| 2559 | case Intrinsic::x86_sse2_psll_w: |
| 2560 | case Intrinsic::x86_avx2_psll_d: |
| 2561 | case Intrinsic::x86_avx2_psll_q: |
| 2562 | case Intrinsic::x86_avx2_psll_w: |
| 2563 | case Intrinsic::x86_avx512_psll_d_512: |
| 2564 | case Intrinsic::x86_avx512_psll_q_512: |
| 2565 | case Intrinsic::x86_avx512_psll_w_512: { |
| 2566 | if (Value *V = simplifyX86immShift(II, Builder&: IC.Builder)) { |
| 2567 | return IC.replaceInstUsesWith(I&: II, V); |
| 2568 | } |
| 2569 | |
| 2570 | // SSE2/AVX2 uses only the first 64-bits of the 128-bit vector |
| 2571 | // operand to compute the shift amount. |
| 2572 | Value *Arg1 = II.getArgOperand(i: 1); |
| 2573 | assert(Arg1->getType()->getPrimitiveSizeInBits() == 128 && |
| 2574 | "Unexpected packed shift size" ); |
| 2575 | unsigned VWidth = cast<FixedVectorType>(Val: Arg1->getType())->getNumElements(); |
| 2576 | |
| 2577 | if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, VWidth / 2)) { |
| 2578 | return IC.replaceOperand(I&: II, OpNum: 1, V); |
| 2579 | } |
| 2580 | break; |
| 2581 | } |
| 2582 | |
| 2583 | case Intrinsic::x86_avx2_psllv_d: |
| 2584 | case Intrinsic::x86_avx2_psllv_d_256: |
| 2585 | case Intrinsic::x86_avx2_psllv_q: |
| 2586 | case Intrinsic::x86_avx2_psllv_q_256: |
| 2587 | case Intrinsic::x86_avx512_psllv_d_512: |
| 2588 | case Intrinsic::x86_avx512_psllv_q_512: |
| 2589 | case Intrinsic::x86_avx512_psllv_w_128: |
| 2590 | case Intrinsic::x86_avx512_psllv_w_256: |
| 2591 | case Intrinsic::x86_avx512_psllv_w_512: |
| 2592 | case Intrinsic::x86_avx2_psrav_d: |
| 2593 | case Intrinsic::x86_avx2_psrav_d_256: |
| 2594 | case Intrinsic::x86_avx512_psrav_q_128: |
| 2595 | case Intrinsic::x86_avx512_psrav_q_256: |
| 2596 | case Intrinsic::x86_avx512_psrav_d_512: |
| 2597 | case Intrinsic::x86_avx512_psrav_q_512: |
| 2598 | case Intrinsic::x86_avx512_psrav_w_128: |
| 2599 | case Intrinsic::x86_avx512_psrav_w_256: |
| 2600 | case Intrinsic::x86_avx512_psrav_w_512: |
| 2601 | case Intrinsic::x86_avx2_psrlv_d: |
| 2602 | case Intrinsic::x86_avx2_psrlv_d_256: |
| 2603 | case Intrinsic::x86_avx2_psrlv_q: |
| 2604 | case Intrinsic::x86_avx2_psrlv_q_256: |
| 2605 | case Intrinsic::x86_avx512_psrlv_d_512: |
| 2606 | case Intrinsic::x86_avx512_psrlv_q_512: |
| 2607 | case Intrinsic::x86_avx512_psrlv_w_128: |
| 2608 | case Intrinsic::x86_avx512_psrlv_w_256: |
| 2609 | case Intrinsic::x86_avx512_psrlv_w_512: |
| 2610 | if (Value *V = simplifyX86varShift(II, Builder&: IC.Builder)) { |
| 2611 | return IC.replaceInstUsesWith(I&: II, V); |
| 2612 | } |
| 2613 | break; |
| 2614 | |
| 2615 | case Intrinsic::x86_sse2_packssdw_128: |
| 2616 | case Intrinsic::x86_sse2_packsswb_128: |
| 2617 | case Intrinsic::x86_avx2_packssdw: |
| 2618 | case Intrinsic::x86_avx2_packsswb: |
| 2619 | case Intrinsic::x86_avx512_packssdw_512: |
| 2620 | case Intrinsic::x86_avx512_packsswb_512: |
| 2621 | if (Value *V = simplifyX86pack(II, Builder&: IC.Builder, IsSigned: true)) { |
| 2622 | return IC.replaceInstUsesWith(I&: II, V); |
| 2623 | } |
| 2624 | break; |
| 2625 | |
| 2626 | case Intrinsic::x86_sse2_packuswb_128: |
| 2627 | case Intrinsic::x86_sse41_packusdw: |
| 2628 | case Intrinsic::x86_avx2_packusdw: |
| 2629 | case Intrinsic::x86_avx2_packuswb: |
| 2630 | case Intrinsic::x86_avx512_packusdw_512: |
| 2631 | case Intrinsic::x86_avx512_packuswb_512: |
| 2632 | if (Value *V = simplifyX86pack(II, Builder&: IC.Builder, IsSigned: false)) { |
| 2633 | return IC.replaceInstUsesWith(I&: II, V); |
| 2634 | } |
| 2635 | break; |
| 2636 | |
| 2637 | case Intrinsic::x86_sse2_pmulh_w: |
| 2638 | case Intrinsic::x86_avx2_pmulh_w: |
| 2639 | case Intrinsic::x86_avx512_pmulh_w_512: |
| 2640 | if (Value *V = simplifyX86pmulh(II, Builder&: IC.Builder, IsSigned: true, IsRounding: false)) { |
| 2641 | return IC.replaceInstUsesWith(I&: II, V); |
| 2642 | } |
| 2643 | break; |
| 2644 | |
| 2645 | case Intrinsic::x86_sse2_pmulhu_w: |
| 2646 | case Intrinsic::x86_avx2_pmulhu_w: |
| 2647 | case Intrinsic::x86_avx512_pmulhu_w_512: |
| 2648 | if (Value *V = simplifyX86pmulh(II, Builder&: IC.Builder, IsSigned: false, IsRounding: false)) { |
| 2649 | return IC.replaceInstUsesWith(I&: II, V); |
| 2650 | } |
| 2651 | break; |
| 2652 | |
| 2653 | case Intrinsic::x86_ssse3_pmul_hr_sw_128: |
| 2654 | case Intrinsic::x86_avx2_pmul_hr_sw: |
| 2655 | case Intrinsic::x86_avx512_pmul_hr_sw_512: |
| 2656 | if (Value *V = simplifyX86pmulh(II, Builder&: IC.Builder, IsSigned: true, IsRounding: true)) { |
| 2657 | return IC.replaceInstUsesWith(I&: II, V); |
| 2658 | } |
| 2659 | break; |
| 2660 | |
| 2661 | case Intrinsic::x86_sse2_pmadd_wd: |
| 2662 | case Intrinsic::x86_avx2_pmadd_wd: |
| 2663 | case Intrinsic::x86_avx512_pmaddw_d_512: |
| 2664 | if (Value *V = simplifyX86pmadd(II, Builder&: IC.Builder, IsPMADDWD: true)) { |
| 2665 | return IC.replaceInstUsesWith(I&: II, V); |
| 2666 | } |
| 2667 | break; |
| 2668 | |
| 2669 | case Intrinsic::x86_ssse3_pmadd_ub_sw_128: |
| 2670 | case Intrinsic::x86_avx2_pmadd_ub_sw: |
| 2671 | case Intrinsic::x86_avx512_pmaddubs_w_512: |
| 2672 | if (Value *V = simplifyX86pmadd(II, Builder&: IC.Builder, IsPMADDWD: false)) { |
| 2673 | return IC.replaceInstUsesWith(I&: II, V); |
| 2674 | } |
| 2675 | break; |
| 2676 | |
| 2677 | case Intrinsic::x86_pclmulqdq: |
| 2678 | case Intrinsic::x86_pclmulqdq_256: |
| 2679 | case Intrinsic::x86_pclmulqdq_512: { |
| 2680 | if (auto *C = dyn_cast<ConstantInt>(Val: II.getArgOperand(i: 2))) { |
| 2681 | unsigned Imm = C->getZExtValue(); |
| 2682 | |
| 2683 | bool MadeChange = false; |
| 2684 | Value *Arg0 = II.getArgOperand(i: 0); |
| 2685 | Value *Arg1 = II.getArgOperand(i: 1); |
| 2686 | unsigned VWidth = |
| 2687 | cast<FixedVectorType>(Val: Arg0->getType())->getNumElements(); |
| 2688 | |
| 2689 | APInt UndefElts1(VWidth, 0); |
| 2690 | APInt DemandedElts1 = |
| 2691 | APInt::getSplat(NewLen: VWidth, V: APInt(2, (Imm & 0x01) ? 2 : 1)); |
| 2692 | if (Value *V = |
| 2693 | IC.SimplifyDemandedVectorElts(V: Arg0, DemandedElts: DemandedElts1, UndefElts&: UndefElts1)) { |
| 2694 | IC.replaceOperand(I&: II, OpNum: 0, V); |
| 2695 | MadeChange = true; |
| 2696 | } |
| 2697 | |
| 2698 | APInt UndefElts2(VWidth, 0); |
| 2699 | APInt DemandedElts2 = |
| 2700 | APInt::getSplat(NewLen: VWidth, V: APInt(2, (Imm & 0x10) ? 2 : 1)); |
| 2701 | if (Value *V = |
| 2702 | IC.SimplifyDemandedVectorElts(V: Arg1, DemandedElts: DemandedElts2, UndefElts&: UndefElts2)) { |
| 2703 | IC.replaceOperand(I&: II, OpNum: 1, V); |
| 2704 | MadeChange = true; |
| 2705 | } |
| 2706 | |
| 2707 | // If either input elements are undef, the result is zero. |
| 2708 | if (DemandedElts1.isSubsetOf(RHS: UndefElts1) || |
| 2709 | DemandedElts2.isSubsetOf(RHS: UndefElts2)) { |
| 2710 | return IC.replaceInstUsesWith(I&: II, |
| 2711 | V: ConstantAggregateZero::get(Ty: II.getType())); |
| 2712 | } |
| 2713 | |
| 2714 | if (MadeChange) { |
| 2715 | return &II; |
| 2716 | } |
| 2717 | } |
| 2718 | break; |
| 2719 | } |
| 2720 | |
| 2721 | case Intrinsic::x86_sse41_insertps: |
| 2722 | if (Value *V = simplifyX86insertps(II, Builder&: IC.Builder)) { |
| 2723 | return IC.replaceInstUsesWith(I&: II, V); |
| 2724 | } |
| 2725 | break; |
| 2726 | |
| 2727 | case Intrinsic::x86_sse4a_extrq: { |
| 2728 | Value *Op0 = II.getArgOperand(i: 0); |
| 2729 | Value *Op1 = II.getArgOperand(i: 1); |
| 2730 | unsigned VWidth0 = cast<FixedVectorType>(Val: Op0->getType())->getNumElements(); |
| 2731 | unsigned VWidth1 = cast<FixedVectorType>(Val: Op1->getType())->getNumElements(); |
| 2732 | assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && |
| 2733 | Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 && |
| 2734 | VWidth1 == 16 && "Unexpected operand sizes" ); |
| 2735 | |
| 2736 | // See if we're dealing with constant values. |
| 2737 | auto *C1 = dyn_cast<Constant>(Val: Op1); |
| 2738 | auto *CILength = |
| 2739 | C1 ? dyn_cast_or_null<ConstantInt>(Val: C1->getAggregateElement(Elt: (unsigned)0)) |
| 2740 | : nullptr; |
| 2741 | auto *CIIndex = |
| 2742 | C1 ? dyn_cast_or_null<ConstantInt>(Val: C1->getAggregateElement(Elt: (unsigned)1)) |
| 2743 | : nullptr; |
| 2744 | |
| 2745 | // Attempt to simplify to a constant, shuffle vector or EXTRQI call. |
| 2746 | if (Value *V = simplifyX86extrq(II, Op0, CILength, CIIndex, Builder&: IC.Builder)) { |
| 2747 | return IC.replaceInstUsesWith(I&: II, V); |
| 2748 | } |
| 2749 | |
| 2750 | // EXTRQ only uses the lowest 64-bits of the first 128-bit vector |
| 2751 | // operands and the lowest 16-bits of the second. |
| 2752 | bool MadeChange = false; |
| 2753 | if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) { |
| 2754 | IC.replaceOperand(I&: II, OpNum: 0, V); |
| 2755 | MadeChange = true; |
| 2756 | } |
| 2757 | if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 2)) { |
| 2758 | IC.replaceOperand(I&: II, OpNum: 1, V); |
| 2759 | MadeChange = true; |
| 2760 | } |
| 2761 | if (MadeChange) { |
| 2762 | return &II; |
| 2763 | } |
| 2764 | break; |
| 2765 | } |
| 2766 | |
| 2767 | case Intrinsic::x86_sse4a_extrqi: { |
| 2768 | // EXTRQI: Extract Length bits starting from Index. Zero pad the remaining |
| 2769 | // bits of the lower 64-bits. The upper 64-bits are undefined. |
| 2770 | Value *Op0 = II.getArgOperand(i: 0); |
| 2771 | unsigned VWidth = cast<FixedVectorType>(Val: Op0->getType())->getNumElements(); |
| 2772 | assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 && |
| 2773 | "Unexpected operand size" ); |
| 2774 | |
| 2775 | // See if we're dealing with constant values. |
| 2776 | auto *CILength = dyn_cast<ConstantInt>(Val: II.getArgOperand(i: 1)); |
| 2777 | auto *CIIndex = dyn_cast<ConstantInt>(Val: II.getArgOperand(i: 2)); |
| 2778 | |
| 2779 | // Attempt to simplify to a constant or shuffle vector. |
| 2780 | if (Value *V = simplifyX86extrq(II, Op0, CILength, CIIndex, Builder&: IC.Builder)) { |
| 2781 | return IC.replaceInstUsesWith(I&: II, V); |
| 2782 | } |
| 2783 | |
| 2784 | // EXTRQI only uses the lowest 64-bits of the first 128-bit vector |
| 2785 | // operand. |
| 2786 | if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) { |
| 2787 | return IC.replaceOperand(I&: II, OpNum: 0, V); |
| 2788 | } |
| 2789 | break; |
| 2790 | } |
| 2791 | |
| 2792 | case Intrinsic::x86_sse4a_insertq: { |
| 2793 | Value *Op0 = II.getArgOperand(i: 0); |
| 2794 | Value *Op1 = II.getArgOperand(i: 1); |
| 2795 | unsigned VWidth = cast<FixedVectorType>(Val: Op0->getType())->getNumElements(); |
| 2796 | assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && |
| 2797 | Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 && |
| 2798 | cast<FixedVectorType>(Op1->getType())->getNumElements() == 2 && |
| 2799 | "Unexpected operand size" ); |
| 2800 | |
| 2801 | // See if we're dealing with constant values. |
| 2802 | auto *C1 = dyn_cast<Constant>(Val: Op1); |
| 2803 | auto *CI11 = |
| 2804 | C1 ? dyn_cast_or_null<ConstantInt>(Val: C1->getAggregateElement(Elt: (unsigned)1)) |
| 2805 | : nullptr; |
| 2806 | |
| 2807 | // Attempt to simplify to a constant, shuffle vector or INSERTQI call. |
| 2808 | if (CI11) { |
| 2809 | const APInt &V11 = CI11->getValue(); |
| 2810 | APInt Len = V11.zextOrTrunc(width: 6); |
| 2811 | APInt Idx = V11.lshr(shiftAmt: 8).zextOrTrunc(width: 6); |
| 2812 | if (Value *V = simplifyX86insertq(II, Op0, Op1, APLength: Len, APIndex: Idx, Builder&: IC.Builder)) { |
| 2813 | return IC.replaceInstUsesWith(I&: II, V); |
| 2814 | } |
| 2815 | } |
| 2816 | |
| 2817 | // INSERTQ only uses the lowest 64-bits of the first 128-bit vector |
| 2818 | // operand. |
| 2819 | if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) { |
| 2820 | return IC.replaceOperand(I&: II, OpNum: 0, V); |
| 2821 | } |
| 2822 | break; |
| 2823 | } |
| 2824 | |
| 2825 | case Intrinsic::x86_sse4a_insertqi: { |
| 2826 | // INSERTQI: Extract lowest Length bits from lower half of second source and |
| 2827 | // insert over first source starting at Index bit. The upper 64-bits are |
| 2828 | // undefined. |
| 2829 | Value *Op0 = II.getArgOperand(i: 0); |
| 2830 | Value *Op1 = II.getArgOperand(i: 1); |
| 2831 | unsigned VWidth0 = cast<FixedVectorType>(Val: Op0->getType())->getNumElements(); |
| 2832 | unsigned VWidth1 = cast<FixedVectorType>(Val: Op1->getType())->getNumElements(); |
| 2833 | assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && |
| 2834 | Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 && |
| 2835 | VWidth1 == 2 && "Unexpected operand sizes" ); |
| 2836 | |
| 2837 | // See if we're dealing with constant values. |
| 2838 | auto *CILength = dyn_cast<ConstantInt>(Val: II.getArgOperand(i: 2)); |
| 2839 | auto *CIIndex = dyn_cast<ConstantInt>(Val: II.getArgOperand(i: 3)); |
| 2840 | |
| 2841 | // Attempt to simplify to a constant or shuffle vector. |
| 2842 | if (CILength && CIIndex) { |
| 2843 | APInt Len = CILength->getValue().zextOrTrunc(width: 6); |
| 2844 | APInt Idx = CIIndex->getValue().zextOrTrunc(width: 6); |
| 2845 | if (Value *V = simplifyX86insertq(II, Op0, Op1, APLength: Len, APIndex: Idx, Builder&: IC.Builder)) { |
| 2846 | return IC.replaceInstUsesWith(I&: II, V); |
| 2847 | } |
| 2848 | } |
| 2849 | |
| 2850 | // INSERTQI only uses the lowest 64-bits of the first two 128-bit vector |
| 2851 | // operands. |
| 2852 | bool MadeChange = false; |
| 2853 | if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) { |
| 2854 | IC.replaceOperand(I&: II, OpNum: 0, V); |
| 2855 | MadeChange = true; |
| 2856 | } |
| 2857 | if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 1)) { |
| 2858 | IC.replaceOperand(I&: II, OpNum: 1, V); |
| 2859 | MadeChange = true; |
| 2860 | } |
| 2861 | if (MadeChange) { |
| 2862 | return &II; |
| 2863 | } |
| 2864 | break; |
| 2865 | } |
| 2866 | |
| 2867 | case Intrinsic::x86_sse41_pblendvb: |
| 2868 | case Intrinsic::x86_sse41_blendvps: |
| 2869 | case Intrinsic::x86_sse41_blendvpd: |
| 2870 | case Intrinsic::x86_avx_blendv_ps_256: |
| 2871 | case Intrinsic::x86_avx_blendv_pd_256: |
| 2872 | case Intrinsic::x86_avx2_pblendvb: { |
| 2873 | // fold (blend A, A, Mask) -> A |
| 2874 | Value *Op0 = II.getArgOperand(i: 0); |
| 2875 | Value *Op1 = II.getArgOperand(i: 1); |
| 2876 | Value *Mask = II.getArgOperand(i: 2); |
| 2877 | if (Op0 == Op1) { |
| 2878 | return IC.replaceInstUsesWith(I&: II, V: Op0); |
| 2879 | } |
| 2880 | |
| 2881 | // Zero Mask - select 1st argument. |
| 2882 | if (isa<ConstantAggregateZero>(Val: Mask)) { |
| 2883 | return IC.replaceInstUsesWith(I&: II, V: Op0); |
| 2884 | } |
| 2885 | |
| 2886 | // Constant Mask - select 1st/2nd argument lane based on top bit of mask. |
| 2887 | if (auto *ConstantMask = dyn_cast<ConstantDataVector>(Val: Mask)) { |
| 2888 | Constant *NewSelector = |
| 2889 | getNegativeIsTrueBoolVec(V: ConstantMask, DL: IC.getDataLayout()); |
| 2890 | return SelectInst::Create(C: NewSelector, S1: Op1, S2: Op0, NameStr: "blendv" ); |
| 2891 | } |
| 2892 | |
| 2893 | Mask = InstCombiner::peekThroughBitcast(V: Mask); |
| 2894 | |
| 2895 | // Peek through a one-use shuffle - VectorCombine should have simplified |
| 2896 | // this for cases where we're splitting wider vectors to use blendv |
| 2897 | // intrinsics. |
| 2898 | Value *MaskSrc = nullptr; |
| 2899 | ArrayRef<int> ShuffleMask; |
| 2900 | if (match(V: Mask, P: m_OneUse(SubPattern: m_Shuffle(v1: m_Value(V&: MaskSrc), v2: m_Undef(), |
| 2901 | mask: m_Mask(ShuffleMask))))) { |
| 2902 | // Bail if the shuffle was irregular or contains undefs. |
| 2903 | int NumElts = cast<FixedVectorType>(Val: MaskSrc->getType())->getNumElements(); |
| 2904 | if (NumElts < (int)ShuffleMask.size() || !isPowerOf2_32(Value: NumElts) || |
| 2905 | any_of(Range&: ShuffleMask, |
| 2906 | P: [NumElts](int M) { return M < 0 || M >= NumElts; })) |
| 2907 | break; |
| 2908 | Mask = InstCombiner::peekThroughBitcast(V: MaskSrc); |
| 2909 | } |
| 2910 | |
| 2911 | // Convert to a vector select if we can bypass casts and find a boolean |
| 2912 | // vector condition value. |
| 2913 | Value *BoolVec; |
| 2914 | if (match(V: Mask, P: m_SExt(Op: m_Value(V&: BoolVec))) && |
| 2915 | BoolVec->getType()->isVectorTy() && |
| 2916 | BoolVec->getType()->getScalarSizeInBits() == 1) { |
| 2917 | auto *MaskTy = cast<FixedVectorType>(Val: Mask->getType()); |
| 2918 | auto *OpTy = cast<FixedVectorType>(Val: II.getType()); |
| 2919 | unsigned NumMaskElts = MaskTy->getNumElements(); |
| 2920 | unsigned NumOperandElts = OpTy->getNumElements(); |
| 2921 | |
| 2922 | // If we peeked through a shuffle, reapply the shuffle to the bool vector. |
| 2923 | if (MaskSrc) { |
| 2924 | unsigned NumMaskSrcElts = |
| 2925 | cast<FixedVectorType>(Val: MaskSrc->getType())->getNumElements(); |
| 2926 | NumMaskElts = (ShuffleMask.size() * NumMaskElts) / NumMaskSrcElts; |
| 2927 | // Multiple mask bits maps to the same operand element - bail out. |
| 2928 | if (NumMaskElts > NumOperandElts) |
| 2929 | break; |
| 2930 | SmallVector<int> ScaledMask; |
| 2931 | if (!llvm::scaleShuffleMaskElts(NumDstElts: NumMaskElts, Mask: ShuffleMask, ScaledMask)) |
| 2932 | break; |
| 2933 | BoolVec = IC.Builder.CreateShuffleVector(V: BoolVec, Mask: ScaledMask); |
| 2934 | MaskTy = FixedVectorType::get(ElementType: MaskTy->getElementType(), NumElts: NumMaskElts); |
| 2935 | } |
| 2936 | assert(MaskTy->getPrimitiveSizeInBits() == |
| 2937 | OpTy->getPrimitiveSizeInBits() && |
| 2938 | "Not expecting mask and operands with different sizes" ); |
| 2939 | |
| 2940 | if (NumMaskElts == NumOperandElts) { |
| 2941 | return SelectInst::Create(C: BoolVec, S1: Op1, S2: Op0); |
| 2942 | } |
| 2943 | |
| 2944 | // If the mask has less elements than the operands, each mask bit maps to |
| 2945 | // multiple elements of the operands. Bitcast back and forth. |
| 2946 | if (NumMaskElts < NumOperandElts) { |
| 2947 | Value *CastOp0 = IC.Builder.CreateBitCast(V: Op0, DestTy: MaskTy); |
| 2948 | Value *CastOp1 = IC.Builder.CreateBitCast(V: Op1, DestTy: MaskTy); |
| 2949 | Value *Sel = IC.Builder.CreateSelect(C: BoolVec, True: CastOp1, False: CastOp0); |
| 2950 | return new BitCastInst(Sel, II.getType()); |
| 2951 | } |
| 2952 | } |
| 2953 | |
| 2954 | break; |
| 2955 | } |
| 2956 | |
| 2957 | case Intrinsic::x86_ssse3_pshuf_b_128: |
| 2958 | case Intrinsic::x86_avx2_pshuf_b: |
| 2959 | case Intrinsic::x86_avx512_pshuf_b_512: { |
| 2960 | if (Value *V = simplifyX86pshufb(II, Builder&: IC.Builder)) { |
| 2961 | return IC.replaceInstUsesWith(I&: II, V); |
| 2962 | } |
| 2963 | |
| 2964 | KnownBits KnownMask(8); |
| 2965 | if (IC.SimplifyDemandedBits(I: &II, OpNo: 1, DemandedMask: APInt(8, 0b10001111), Known&: KnownMask)) |
| 2966 | return &II; |
| 2967 | break; |
| 2968 | } |
| 2969 | |
| 2970 | case Intrinsic::x86_avx_vpermilvar_ps: |
| 2971 | case Intrinsic::x86_avx_vpermilvar_ps_256: |
| 2972 | case Intrinsic::x86_avx512_vpermilvar_ps_512: { |
| 2973 | if (Value *V = simplifyX86vpermilvar(II, Builder&: IC.Builder)) { |
| 2974 | return IC.replaceInstUsesWith(I&: II, V); |
| 2975 | } |
| 2976 | |
| 2977 | KnownBits KnownMask(32); |
| 2978 | if (IC.SimplifyDemandedBits(I: &II, OpNo: 1, DemandedMask: APInt(32, 0b00011), Known&: KnownMask)) |
| 2979 | return &II; |
| 2980 | break; |
| 2981 | } |
| 2982 | |
| 2983 | case Intrinsic::x86_avx_vpermilvar_pd: |
| 2984 | case Intrinsic::x86_avx_vpermilvar_pd_256: |
| 2985 | case Intrinsic::x86_avx512_vpermilvar_pd_512: { |
| 2986 | if (Value *V = simplifyX86vpermilvar(II, Builder&: IC.Builder)) { |
| 2987 | return IC.replaceInstUsesWith(I&: II, V); |
| 2988 | } |
| 2989 | |
| 2990 | KnownBits KnownMask(64); |
| 2991 | if (IC.SimplifyDemandedBits(I: &II, OpNo: 1, DemandedMask: APInt(64, 0b00010), Known&: KnownMask)) |
| 2992 | return &II; |
| 2993 | break; |
| 2994 | } |
| 2995 | |
| 2996 | case Intrinsic::x86_avx2_permd: |
| 2997 | case Intrinsic::x86_avx2_permps: |
| 2998 | case Intrinsic::x86_avx512_permvar_df_256: |
| 2999 | case Intrinsic::x86_avx512_permvar_df_512: |
| 3000 | case Intrinsic::x86_avx512_permvar_di_256: |
| 3001 | case Intrinsic::x86_avx512_permvar_di_512: |
| 3002 | case Intrinsic::x86_avx512_permvar_hi_128: |
| 3003 | case Intrinsic::x86_avx512_permvar_hi_256: |
| 3004 | case Intrinsic::x86_avx512_permvar_hi_512: |
| 3005 | case Intrinsic::x86_avx512_permvar_qi_128: |
| 3006 | case Intrinsic::x86_avx512_permvar_qi_256: |
| 3007 | case Intrinsic::x86_avx512_permvar_qi_512: |
| 3008 | case Intrinsic::x86_avx512_permvar_sf_512: |
| 3009 | case Intrinsic::x86_avx512_permvar_si_512: |
| 3010 | if (Value *V = simplifyX86vpermv(II, Builder&: IC.Builder)) { |
| 3011 | return IC.replaceInstUsesWith(I&: II, V); |
| 3012 | } |
| 3013 | if (simplifyX86VPERMMask(II: &II, /*IsBinary=*/false, IC)) |
| 3014 | return &II; |
| 3015 | break; |
| 3016 | |
| 3017 | case Intrinsic::x86_avx512_vpermi2var_d_128: |
| 3018 | case Intrinsic::x86_avx512_vpermi2var_d_256: |
| 3019 | case Intrinsic::x86_avx512_vpermi2var_d_512: |
| 3020 | case Intrinsic::x86_avx512_vpermi2var_hi_128: |
| 3021 | case Intrinsic::x86_avx512_vpermi2var_hi_256: |
| 3022 | case Intrinsic::x86_avx512_vpermi2var_hi_512: |
| 3023 | case Intrinsic::x86_avx512_vpermi2var_pd_128: |
| 3024 | case Intrinsic::x86_avx512_vpermi2var_pd_256: |
| 3025 | case Intrinsic::x86_avx512_vpermi2var_pd_512: |
| 3026 | case Intrinsic::x86_avx512_vpermi2var_ps_128: |
| 3027 | case Intrinsic::x86_avx512_vpermi2var_ps_256: |
| 3028 | case Intrinsic::x86_avx512_vpermi2var_ps_512: |
| 3029 | case Intrinsic::x86_avx512_vpermi2var_q_128: |
| 3030 | case Intrinsic::x86_avx512_vpermi2var_q_256: |
| 3031 | case Intrinsic::x86_avx512_vpermi2var_q_512: |
| 3032 | case Intrinsic::x86_avx512_vpermi2var_qi_128: |
| 3033 | case Intrinsic::x86_avx512_vpermi2var_qi_256: |
| 3034 | case Intrinsic::x86_avx512_vpermi2var_qi_512: |
| 3035 | if (Value *V = simplifyX86vpermv3(II, Builder&: IC.Builder)) { |
| 3036 | return IC.replaceInstUsesWith(I&: II, V); |
| 3037 | } |
| 3038 | if (simplifyX86VPERMMask(II: &II, /*IsBinary=*/true, IC)) |
| 3039 | return &II; |
| 3040 | break; |
| 3041 | |
| 3042 | case Intrinsic::x86_avx_maskload_ps: |
| 3043 | case Intrinsic::x86_avx_maskload_pd: |
| 3044 | case Intrinsic::x86_avx_maskload_ps_256: |
| 3045 | case Intrinsic::x86_avx_maskload_pd_256: |
| 3046 | case Intrinsic::x86_avx2_maskload_d: |
| 3047 | case Intrinsic::x86_avx2_maskload_q: |
| 3048 | case Intrinsic::x86_avx2_maskload_d_256: |
| 3049 | case Intrinsic::x86_avx2_maskload_q_256: |
| 3050 | if (Instruction *I = simplifyX86MaskedLoad(II, IC)) { |
| 3051 | return I; |
| 3052 | } |
| 3053 | break; |
| 3054 | |
| 3055 | case Intrinsic::x86_sse2_maskmov_dqu: |
| 3056 | case Intrinsic::x86_avx_maskstore_ps: |
| 3057 | case Intrinsic::x86_avx_maskstore_pd: |
| 3058 | case Intrinsic::x86_avx_maskstore_ps_256: |
| 3059 | case Intrinsic::x86_avx_maskstore_pd_256: |
| 3060 | case Intrinsic::x86_avx2_maskstore_d: |
| 3061 | case Intrinsic::x86_avx2_maskstore_q: |
| 3062 | case Intrinsic::x86_avx2_maskstore_d_256: |
| 3063 | case Intrinsic::x86_avx2_maskstore_q_256: |
| 3064 | if (simplifyX86MaskedStore(II, IC)) { |
| 3065 | return nullptr; |
| 3066 | } |
| 3067 | break; |
| 3068 | |
| 3069 | case Intrinsic::x86_addcarry_32: |
| 3070 | case Intrinsic::x86_addcarry_64: |
| 3071 | if (Value *V = simplifyX86addcarry(II, Builder&: IC.Builder)) { |
| 3072 | return IC.replaceInstUsesWith(I&: II, V); |
| 3073 | } |
| 3074 | break; |
| 3075 | |
| 3076 | case Intrinsic::x86_avx512_pternlog_d_128: |
| 3077 | case Intrinsic::x86_avx512_pternlog_d_256: |
| 3078 | case Intrinsic::x86_avx512_pternlog_d_512: |
| 3079 | case Intrinsic::x86_avx512_pternlog_q_128: |
| 3080 | case Intrinsic::x86_avx512_pternlog_q_256: |
| 3081 | case Intrinsic::x86_avx512_pternlog_q_512: |
| 3082 | if (Value *V = simplifyTernarylogic(II, Builder&: IC.Builder)) { |
| 3083 | return IC.replaceInstUsesWith(I&: II, V); |
| 3084 | } |
| 3085 | break; |
| 3086 | default: |
| 3087 | break; |
| 3088 | } |
| 3089 | return std::nullopt; |
| 3090 | } |
| 3091 | |
| 3092 | std::optional<Value *> X86TTIImpl::simplifyDemandedUseBitsIntrinsic( |
| 3093 | InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, |
| 3094 | bool &KnownBitsComputed) const { |
| 3095 | switch (II.getIntrinsicID()) { |
| 3096 | default: |
| 3097 | break; |
| 3098 | case Intrinsic::x86_mmx_pmovmskb: |
| 3099 | case Intrinsic::x86_sse_movmsk_ps: |
| 3100 | case Intrinsic::x86_sse2_movmsk_pd: |
| 3101 | case Intrinsic::x86_sse2_pmovmskb_128: |
| 3102 | case Intrinsic::x86_avx_movmsk_ps_256: |
| 3103 | case Intrinsic::x86_avx_movmsk_pd_256: |
| 3104 | case Intrinsic::x86_avx2_pmovmskb: { |
| 3105 | // MOVMSK copies the vector elements' sign bits to the low bits |
| 3106 | // and zeros the high bits. |
| 3107 | unsigned ArgWidth; |
| 3108 | if (II.getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) { |
| 3109 | ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>. |
| 3110 | } else { |
| 3111 | auto *ArgType = cast<FixedVectorType>(Val: II.getArgOperand(i: 0)->getType()); |
| 3112 | ArgWidth = ArgType->getNumElements(); |
| 3113 | } |
| 3114 | |
| 3115 | // If we don't need any of low bits then return zero, |
| 3116 | // we know that DemandedMask is non-zero already. |
| 3117 | APInt DemandedElts = DemandedMask.zextOrTrunc(width: ArgWidth); |
| 3118 | Type *VTy = II.getType(); |
| 3119 | if (DemandedElts.isZero()) { |
| 3120 | return ConstantInt::getNullValue(Ty: VTy); |
| 3121 | } |
| 3122 | |
| 3123 | // We know that the upper bits are set to zero. |
| 3124 | Known.Zero.setBitsFrom(ArgWidth); |
| 3125 | KnownBitsComputed = true; |
| 3126 | break; |
| 3127 | } |
| 3128 | } |
| 3129 | return std::nullopt; |
| 3130 | } |
| 3131 | |
| 3132 | std::optional<Value *> X86TTIImpl::simplifyDemandedVectorEltsIntrinsic( |
| 3133 | InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, |
| 3134 | APInt &UndefElts2, APInt &UndefElts3, |
| 3135 | std::function<void(Instruction *, unsigned, APInt, APInt &)> |
| 3136 | simplifyAndSetOp) const { |
| 3137 | unsigned VWidth = cast<FixedVectorType>(Val: II.getType())->getNumElements(); |
| 3138 | switch (II.getIntrinsicID()) { |
| 3139 | default: |
| 3140 | break; |
| 3141 | case Intrinsic::x86_xop_vfrcz_ss: |
| 3142 | case Intrinsic::x86_xop_vfrcz_sd: |
| 3143 | // The instructions for these intrinsics are speced to zero upper bits not |
| 3144 | // pass them through like other scalar intrinsics. So we shouldn't just |
| 3145 | // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics. |
| 3146 | // Instead we should return a zero vector. |
| 3147 | if (!DemandedElts[0]) { |
| 3148 | IC.addToWorklist(I: &II); |
| 3149 | return ConstantAggregateZero::get(Ty: II.getType()); |
| 3150 | } |
| 3151 | |
| 3152 | // Only the lower element is used. |
| 3153 | DemandedElts = 1; |
| 3154 | simplifyAndSetOp(&II, 0, DemandedElts, UndefElts); |
| 3155 | |
| 3156 | // Only the lower element is undefined. The high elements are zero. |
| 3157 | UndefElts = UndefElts[0]; |
| 3158 | break; |
| 3159 | |
| 3160 | // Unary scalar-as-vector operations that work column-wise. |
| 3161 | case Intrinsic::x86_sse_rcp_ss: |
| 3162 | case Intrinsic::x86_sse_rsqrt_ss: |
| 3163 | simplifyAndSetOp(&II, 0, DemandedElts, UndefElts); |
| 3164 | |
| 3165 | // If lowest element of a scalar op isn't used then use Arg0. |
| 3166 | if (!DemandedElts[0]) { |
| 3167 | IC.addToWorklist(I: &II); |
| 3168 | return II.getArgOperand(i: 0); |
| 3169 | } |
| 3170 | // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions |
| 3171 | // checks). |
| 3172 | break; |
| 3173 | |
| 3174 | // Binary scalar-as-vector operations that work column-wise. The high |
| 3175 | // elements come from operand 0. The low element is a function of both |
| 3176 | // operands. |
| 3177 | case Intrinsic::x86_sse_min_ss: |
| 3178 | case Intrinsic::x86_sse_max_ss: |
| 3179 | case Intrinsic::x86_sse_cmp_ss: |
| 3180 | case Intrinsic::x86_sse2_min_sd: |
| 3181 | case Intrinsic::x86_sse2_max_sd: |
| 3182 | case Intrinsic::x86_sse2_cmp_sd: { |
| 3183 | simplifyAndSetOp(&II, 0, DemandedElts, UndefElts); |
| 3184 | |
| 3185 | // If lowest element of a scalar op isn't used then use Arg0. |
| 3186 | if (!DemandedElts[0]) { |
| 3187 | IC.addToWorklist(I: &II); |
| 3188 | return II.getArgOperand(i: 0); |
| 3189 | } |
| 3190 | |
| 3191 | // Only lower element is used for operand 1. |
| 3192 | DemandedElts = 1; |
| 3193 | simplifyAndSetOp(&II, 1, DemandedElts, UndefElts2); |
| 3194 | |
| 3195 | // Lower element is undefined if both lower elements are undefined. |
| 3196 | // Consider things like undef&0. The result is known zero, not undef. |
| 3197 | if (!UndefElts2[0]) |
| 3198 | UndefElts.clearBit(BitPosition: 0); |
| 3199 | |
| 3200 | break; |
| 3201 | } |
| 3202 | |
| 3203 | // Binary scalar-as-vector operations that work column-wise. The high |
| 3204 | // elements come from operand 0 and the low element comes from operand 1. |
| 3205 | case Intrinsic::x86_sse41_round_ss: |
| 3206 | case Intrinsic::x86_sse41_round_sd: { |
| 3207 | // Don't use the low element of operand 0. |
| 3208 | APInt DemandedElts2 = DemandedElts; |
| 3209 | DemandedElts2.clearBit(BitPosition: 0); |
| 3210 | simplifyAndSetOp(&II, 0, DemandedElts2, UndefElts); |
| 3211 | |
| 3212 | // If lowest element of a scalar op isn't used then use Arg0. |
| 3213 | if (!DemandedElts[0]) { |
| 3214 | IC.addToWorklist(I: &II); |
| 3215 | return II.getArgOperand(i: 0); |
| 3216 | } |
| 3217 | |
| 3218 | // Only lower element is used for operand 1. |
| 3219 | DemandedElts = 1; |
| 3220 | simplifyAndSetOp(&II, 1, DemandedElts, UndefElts2); |
| 3221 | |
| 3222 | // Take the high undef elements from operand 0 and take the lower element |
| 3223 | // from operand 1. |
| 3224 | UndefElts.clearBit(BitPosition: 0); |
| 3225 | UndefElts |= UndefElts2[0]; |
| 3226 | break; |
| 3227 | } |
| 3228 | |
| 3229 | // Three input scalar-as-vector operations that work column-wise. The high |
| 3230 | // elements come from operand 0 and the low element is a function of all |
| 3231 | // three inputs. |
| 3232 | case Intrinsic::x86_avx512_mask_add_ss_round: |
| 3233 | case Intrinsic::x86_avx512_mask_div_ss_round: |
| 3234 | case Intrinsic::x86_avx512_mask_mul_ss_round: |
| 3235 | case Intrinsic::x86_avx512_mask_sub_ss_round: |
| 3236 | case Intrinsic::x86_avx512_mask_max_ss_round: |
| 3237 | case Intrinsic::x86_avx512_mask_min_ss_round: |
| 3238 | case Intrinsic::x86_avx512_mask_add_sd_round: |
| 3239 | case Intrinsic::x86_avx512_mask_div_sd_round: |
| 3240 | case Intrinsic::x86_avx512_mask_mul_sd_round: |
| 3241 | case Intrinsic::x86_avx512_mask_sub_sd_round: |
| 3242 | case Intrinsic::x86_avx512_mask_max_sd_round: |
| 3243 | case Intrinsic::x86_avx512_mask_min_sd_round: |
| 3244 | simplifyAndSetOp(&II, 0, DemandedElts, UndefElts); |
| 3245 | |
| 3246 | // If lowest element of a scalar op isn't used then use Arg0. |
| 3247 | if (!DemandedElts[0]) { |
| 3248 | IC.addToWorklist(I: &II); |
| 3249 | return II.getArgOperand(i: 0); |
| 3250 | } |
| 3251 | |
| 3252 | // Only lower element is used for operand 1 and 2. |
| 3253 | DemandedElts = 1; |
| 3254 | simplifyAndSetOp(&II, 1, DemandedElts, UndefElts2); |
| 3255 | simplifyAndSetOp(&II, 2, DemandedElts, UndefElts3); |
| 3256 | |
| 3257 | // Lower element is undefined if all three lower elements are undefined. |
| 3258 | // Consider things like undef&0. The result is known zero, not undef. |
| 3259 | if (!UndefElts2[0] || !UndefElts3[0]) |
| 3260 | UndefElts.clearBit(BitPosition: 0); |
| 3261 | break; |
| 3262 | |
| 3263 | // TODO: Add fmaddsub support? |
| 3264 | case Intrinsic::x86_sse3_addsub_pd: |
| 3265 | case Intrinsic::x86_sse3_addsub_ps: |
| 3266 | case Intrinsic::x86_avx_addsub_pd_256: |
| 3267 | case Intrinsic::x86_avx_addsub_ps_256: { |
| 3268 | // If none of the even or none of the odd lanes are required, turn this |
| 3269 | // into a generic FP math instruction. |
| 3270 | APInt SubMask = APInt::getSplat(NewLen: VWidth, V: APInt(2, 0x1)); |
| 3271 | APInt AddMask = APInt::getSplat(NewLen: VWidth, V: APInt(2, 0x2)); |
| 3272 | bool IsSubOnly = DemandedElts.isSubsetOf(RHS: SubMask); |
| 3273 | bool IsAddOnly = DemandedElts.isSubsetOf(RHS: AddMask); |
| 3274 | if (IsSubOnly || IsAddOnly) { |
| 3275 | assert((IsSubOnly ^ IsAddOnly) && "Can't be both add-only and sub-only" ); |
| 3276 | IRBuilderBase::InsertPointGuard Guard(IC.Builder); |
| 3277 | IC.Builder.SetInsertPoint(&II); |
| 3278 | Value *Arg0 = II.getArgOperand(i: 0), *Arg1 = II.getArgOperand(i: 1); |
| 3279 | return IC.Builder.CreateBinOp( |
| 3280 | Opc: IsSubOnly ? Instruction::FSub : Instruction::FAdd, LHS: Arg0, RHS: Arg1); |
| 3281 | } |
| 3282 | |
| 3283 | simplifyAndSetOp(&II, 0, DemandedElts, UndefElts); |
| 3284 | simplifyAndSetOp(&II, 1, DemandedElts, UndefElts2); |
| 3285 | UndefElts &= UndefElts2; |
| 3286 | break; |
| 3287 | } |
| 3288 | |
| 3289 | // General per-element vector operations. |
| 3290 | case Intrinsic::x86_avx2_psllv_d: |
| 3291 | case Intrinsic::x86_avx2_psllv_d_256: |
| 3292 | case Intrinsic::x86_avx2_psllv_q: |
| 3293 | case Intrinsic::x86_avx2_psllv_q_256: |
| 3294 | case Intrinsic::x86_avx2_psrlv_d: |
| 3295 | case Intrinsic::x86_avx2_psrlv_d_256: |
| 3296 | case Intrinsic::x86_avx2_psrlv_q: |
| 3297 | case Intrinsic::x86_avx2_psrlv_q_256: |
| 3298 | case Intrinsic::x86_avx2_psrav_d: |
| 3299 | case Intrinsic::x86_avx2_psrav_d_256: { |
| 3300 | simplifyAndSetOp(&II, 0, DemandedElts, UndefElts); |
| 3301 | simplifyAndSetOp(&II, 1, DemandedElts, UndefElts2); |
| 3302 | UndefElts &= UndefElts2; |
| 3303 | break; |
| 3304 | } |
| 3305 | |
| 3306 | case Intrinsic::x86_sse2_pmulh_w: |
| 3307 | case Intrinsic::x86_avx2_pmulh_w: |
| 3308 | case Intrinsic::x86_avx512_pmulh_w_512: |
| 3309 | case Intrinsic::x86_sse2_pmulhu_w: |
| 3310 | case Intrinsic::x86_avx2_pmulhu_w: |
| 3311 | case Intrinsic::x86_avx512_pmulhu_w_512: |
| 3312 | case Intrinsic::x86_ssse3_pmul_hr_sw_128: |
| 3313 | case Intrinsic::x86_avx2_pmul_hr_sw: |
| 3314 | case Intrinsic::x86_avx512_pmul_hr_sw_512: { |
| 3315 | simplifyAndSetOp(&II, 0, DemandedElts, UndefElts); |
| 3316 | simplifyAndSetOp(&II, 1, DemandedElts, UndefElts2); |
| 3317 | // NOTE: mulh(undef,undef) != undef. |
| 3318 | break; |
| 3319 | } |
| 3320 | |
| 3321 | case Intrinsic::x86_sse2_packssdw_128: |
| 3322 | case Intrinsic::x86_sse2_packsswb_128: |
| 3323 | case Intrinsic::x86_sse2_packuswb_128: |
| 3324 | case Intrinsic::x86_sse41_packusdw: |
| 3325 | case Intrinsic::x86_avx2_packssdw: |
| 3326 | case Intrinsic::x86_avx2_packsswb: |
| 3327 | case Intrinsic::x86_avx2_packusdw: |
| 3328 | case Intrinsic::x86_avx2_packuswb: |
| 3329 | case Intrinsic::x86_avx512_packssdw_512: |
| 3330 | case Intrinsic::x86_avx512_packsswb_512: |
| 3331 | case Intrinsic::x86_avx512_packusdw_512: |
| 3332 | case Intrinsic::x86_avx512_packuswb_512: { |
| 3333 | auto *Ty0 = II.getArgOperand(i: 0)->getType(); |
| 3334 | unsigned InnerVWidth = cast<FixedVectorType>(Val: Ty0)->getNumElements(); |
| 3335 | assert(VWidth == (InnerVWidth * 2) && "Unexpected input size" ); |
| 3336 | |
| 3337 | unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128; |
| 3338 | unsigned VWidthPerLane = VWidth / NumLanes; |
| 3339 | unsigned InnerVWidthPerLane = InnerVWidth / NumLanes; |
| 3340 | |
| 3341 | // Per lane, pack the elements of the first input and then the second. |
| 3342 | // e.g. |
| 3343 | // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3]) |
| 3344 | // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15]) |
| 3345 | for (int OpNum = 0; OpNum != 2; ++OpNum) { |
| 3346 | APInt OpDemandedElts(InnerVWidth, 0); |
| 3347 | for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { |
| 3348 | unsigned LaneIdx = Lane * VWidthPerLane; |
| 3349 | for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) { |
| 3350 | unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum; |
| 3351 | if (DemandedElts[Idx]) |
| 3352 | OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt); |
| 3353 | } |
| 3354 | } |
| 3355 | |
| 3356 | // Demand elements from the operand. |
| 3357 | APInt OpUndefElts(InnerVWidth, 0); |
| 3358 | simplifyAndSetOp(&II, OpNum, OpDemandedElts, OpUndefElts); |
| 3359 | |
| 3360 | // Pack the operand's UNDEF elements, one lane at a time. |
| 3361 | OpUndefElts = OpUndefElts.zext(width: VWidth); |
| 3362 | for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { |
| 3363 | APInt LaneElts = OpUndefElts.lshr(shiftAmt: InnerVWidthPerLane * Lane); |
| 3364 | LaneElts = LaneElts.getLoBits(numBits: InnerVWidthPerLane); |
| 3365 | LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum); |
| 3366 | UndefElts |= LaneElts; |
| 3367 | } |
| 3368 | } |
| 3369 | break; |
| 3370 | } |
| 3371 | |
| 3372 | case Intrinsic::x86_sse2_pmadd_wd: |
| 3373 | case Intrinsic::x86_avx2_pmadd_wd: |
| 3374 | case Intrinsic::x86_avx512_pmaddw_d_512: |
| 3375 | case Intrinsic::x86_ssse3_pmadd_ub_sw_128: |
| 3376 | case Intrinsic::x86_avx2_pmadd_ub_sw: |
| 3377 | case Intrinsic::x86_avx512_pmaddubs_w_512: { |
| 3378 | // PMADD - demand both src elements that map to each dst element. |
| 3379 | auto *ArgTy = II.getArgOperand(i: 0)->getType(); |
| 3380 | unsigned InnerVWidth = cast<FixedVectorType>(Val: ArgTy)->getNumElements(); |
| 3381 | assert((VWidth * 2) == InnerVWidth && "Unexpected input size" ); |
| 3382 | APInt OpDemandedElts = APIntOps::ScaleBitMask(A: DemandedElts, NewBitWidth: InnerVWidth); |
| 3383 | APInt Op0UndefElts(InnerVWidth, 0); |
| 3384 | APInt Op1UndefElts(InnerVWidth, 0); |
| 3385 | simplifyAndSetOp(&II, 0, OpDemandedElts, Op0UndefElts); |
| 3386 | simplifyAndSetOp(&II, 1, OpDemandedElts, Op1UndefElts); |
| 3387 | // NOTE: madd(undef,undef) != undef. |
| 3388 | break; |
| 3389 | } |
| 3390 | |
| 3391 | // PSHUFB |
| 3392 | case Intrinsic::x86_ssse3_pshuf_b_128: |
| 3393 | case Intrinsic::x86_avx2_pshuf_b: |
| 3394 | case Intrinsic::x86_avx512_pshuf_b_512: |
| 3395 | // PERMILVAR |
| 3396 | case Intrinsic::x86_avx_vpermilvar_ps: |
| 3397 | case Intrinsic::x86_avx_vpermilvar_ps_256: |
| 3398 | case Intrinsic::x86_avx512_vpermilvar_ps_512: |
| 3399 | case Intrinsic::x86_avx_vpermilvar_pd: |
| 3400 | case Intrinsic::x86_avx_vpermilvar_pd_256: |
| 3401 | case Intrinsic::x86_avx512_vpermilvar_pd_512: |
| 3402 | // PERMV |
| 3403 | case Intrinsic::x86_avx2_permd: |
| 3404 | case Intrinsic::x86_avx2_permps: { |
| 3405 | simplifyAndSetOp(&II, 1, DemandedElts, UndefElts); |
| 3406 | break; |
| 3407 | } |
| 3408 | |
| 3409 | // SSE4A instructions leave the upper 64-bits of the 128-bit result |
| 3410 | // in an undefined state. |
| 3411 | case Intrinsic::x86_sse4a_extrq: |
| 3412 | case Intrinsic::x86_sse4a_extrqi: |
| 3413 | case Intrinsic::x86_sse4a_insertq: |
| 3414 | case Intrinsic::x86_sse4a_insertqi: |
| 3415 | UndefElts.setHighBits(VWidth / 2); |
| 3416 | break; |
| 3417 | } |
| 3418 | return std::nullopt; |
| 3419 | } |
| 3420 | |