1 | //===-- X86SelectionDAGInfo.cpp - X86 SelectionDAG Info -------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the X86SelectionDAGInfo class. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "X86SelectionDAGInfo.h" |
14 | #include "X86ISelLowering.h" |
15 | #include "X86InstrInfo.h" |
16 | #include "X86RegisterInfo.h" |
17 | #include "X86Subtarget.h" |
18 | #include "llvm/CodeGen/MachineFrameInfo.h" |
19 | #include "llvm/CodeGen/SelectionDAG.h" |
20 | #include "llvm/CodeGen/TargetLowering.h" |
21 | |
22 | using namespace llvm; |
23 | |
24 | #define DEBUG_TYPE "x86-selectiondag-info" |
25 | |
26 | static cl::opt<bool> |
27 | UseFSRMForMemcpy("x86-use-fsrm-for-memcpy" , cl::Hidden, cl::init(Val: false), |
28 | cl::desc("Use fast short rep mov in memcpy lowering" )); |
29 | |
30 | bool X86SelectionDAGInfo::isTargetMemoryOpcode(unsigned Opcode) const { |
31 | return Opcode >= X86ISD::FIRST_MEMORY_OPCODE && |
32 | Opcode <= X86ISD::LAST_MEMORY_OPCODE; |
33 | } |
34 | |
35 | bool X86SelectionDAGInfo::isTargetStrictFPOpcode(unsigned Opcode) const { |
36 | return Opcode >= X86ISD::FIRST_STRICTFP_OPCODE && |
37 | Opcode <= X86ISD::LAST_STRICTFP_OPCODE; |
38 | } |
39 | |
40 | /// Returns the best type to use with repmovs/repstos depending on alignment. |
41 | static MVT getOptimalRepType(const X86Subtarget &Subtarget, Align Alignment) { |
42 | uint64_t Align = Alignment.value(); |
43 | assert((Align != 0) && "Align is normalized" ); |
44 | assert(isPowerOf2_64(Align) && "Align is a power of 2" ); |
45 | switch (Align) { |
46 | case 1: |
47 | return MVT::i8; |
48 | case 2: |
49 | return MVT::i16; |
50 | case 4: |
51 | return MVT::i32; |
52 | default: |
53 | return Subtarget.is64Bit() ? MVT::i64 : MVT::i32; |
54 | } |
55 | } |
56 | |
57 | bool X86SelectionDAGInfo::isBaseRegConflictPossible( |
58 | SelectionDAG &DAG, ArrayRef<MCPhysReg> ClobberSet) const { |
59 | // We cannot use TRI->hasBasePointer() until *after* we select all basic |
60 | // blocks. Legalization may introduce new stack temporaries with large |
61 | // alignment requirements. Fall back to generic code if there are any |
62 | // dynamic stack adjustments (hopefully rare) and the base pointer would |
63 | // conflict if we had to use it. |
64 | MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); |
65 | if (!MFI.hasVarSizedObjects() && !MFI.hasOpaqueSPAdjustment()) |
66 | return false; |
67 | |
68 | const X86RegisterInfo *TRI = static_cast<const X86RegisterInfo *>( |
69 | DAG.getSubtarget().getRegisterInfo()); |
70 | return llvm::is_contained(Range&: ClobberSet, Element: TRI->getBaseRegister()); |
71 | } |
72 | |
73 | /// Emit a single REP STOSB instruction for a particular constant size. |
74 | static SDValue emitRepstos(const X86Subtarget &Subtarget, SelectionDAG &DAG, |
75 | const SDLoc &dl, SDValue Chain, SDValue Dst, |
76 | SDValue Val, SDValue Size, MVT AVT) { |
77 | const bool Use64BitRegs = Subtarget.isTarget64BitLP64(); |
78 | unsigned AX = X86::AL; |
79 | switch (AVT.getSizeInBits()) { |
80 | case 8: |
81 | AX = X86::AL; |
82 | break; |
83 | case 16: |
84 | AX = X86::AX; |
85 | break; |
86 | case 32: |
87 | AX = X86::EAX; |
88 | break; |
89 | default: |
90 | AX = X86::RAX; |
91 | break; |
92 | } |
93 | |
94 | const unsigned CX = Use64BitRegs ? X86::RCX : X86::ECX; |
95 | const unsigned DI = Use64BitRegs ? X86::RDI : X86::EDI; |
96 | |
97 | SDValue InGlue; |
98 | Chain = DAG.getCopyToReg(Chain, dl, Reg: AX, N: Val, Glue: InGlue); |
99 | InGlue = Chain.getValue(R: 1); |
100 | Chain = DAG.getCopyToReg(Chain, dl, Reg: CX, N: Size, Glue: InGlue); |
101 | InGlue = Chain.getValue(R: 1); |
102 | Chain = DAG.getCopyToReg(Chain, dl, Reg: DI, N: Dst, Glue: InGlue); |
103 | InGlue = Chain.getValue(R: 1); |
104 | |
105 | SDVTList Tys = DAG.getVTList(VT1: MVT::Other, VT2: MVT::Glue); |
106 | SDValue Ops[] = {Chain, DAG.getValueType(AVT), InGlue}; |
107 | return DAG.getNode(Opcode: X86ISD::REP_STOS, DL: dl, VTList: Tys, Ops); |
108 | } |
109 | |
110 | /// Emit a single REP STOSB instruction for a particular constant size. |
111 | static SDValue emitRepstosB(const X86Subtarget &Subtarget, SelectionDAG &DAG, |
112 | const SDLoc &dl, SDValue Chain, SDValue Dst, |
113 | SDValue Val, uint64_t Size) { |
114 | return emitRepstos(Subtarget, DAG, dl, Chain, Dst, Val, |
115 | Size: DAG.getIntPtrConstant(Val: Size, DL: dl), AVT: MVT::i8); |
116 | } |
117 | |
118 | /// Returns a REP STOS instruction, possibly with a few load/stores to implement |
119 | /// a constant size memory set. In some cases where we know REP MOVS is |
120 | /// inefficient we return an empty SDValue so the calling code can either |
121 | /// generate a store sequence or call the runtime memset function. |
122 | static SDValue emitConstantSizeRepstos(SelectionDAG &DAG, |
123 | const X86Subtarget &Subtarget, |
124 | const SDLoc &dl, SDValue Chain, |
125 | SDValue Dst, SDValue Val, uint64_t Size, |
126 | EVT SizeVT, Align Alignment, |
127 | bool isVolatile, bool AlwaysInline, |
128 | MachinePointerInfo DstPtrInfo) { |
129 | /// In case we optimize for size, we use repstosb even if it's less efficient |
130 | /// so we can save the loads/stores of the leftover. |
131 | if (DAG.getMachineFunction().getFunction().hasMinSize()) { |
132 | if (auto *ValC = dyn_cast<ConstantSDNode>(Val)) { |
133 | // Special case 0 because otherwise we get large literals, |
134 | // which causes larger encoding. |
135 | if ((Size & 31) == 0 && (ValC->getZExtValue() & 255) == 0) { |
136 | MVT BlockType = MVT::i32; |
137 | const uint64_t BlockBits = BlockType.getSizeInBits(); |
138 | const uint64_t BlockBytes = BlockBits / 8; |
139 | const uint64_t BlockCount = Size / BlockBytes; |
140 | |
141 | Val = DAG.getConstant(Val: 0, DL: dl, VT: BlockType); |
142 | // repstosd is same size as repstosb |
143 | return emitRepstos(Subtarget, DAG, dl, Chain, Dst, Val, |
144 | Size: DAG.getIntPtrConstant(Val: BlockCount, DL: dl), AVT: BlockType); |
145 | } |
146 | } |
147 | return emitRepstosB(Subtarget, DAG, dl, Chain, Dst, Val, Size); |
148 | } |
149 | |
150 | if (Size > Subtarget.getMaxInlineSizeThreshold()) |
151 | return SDValue(); |
152 | |
153 | // If not DWORD aligned or size is more than the threshold, call the library. |
154 | // The libc version is likely to be faster for these cases. It can use the |
155 | // address value and run time information about the CPU. |
156 | if (Alignment < Align(4)) |
157 | return SDValue(); |
158 | |
159 | MVT BlockType = MVT::i8; |
160 | uint64_t BlockCount = Size; |
161 | uint64_t BytesLeft = 0; |
162 | |
163 | SDValue OriginalVal = Val; |
164 | if (auto *ValC = dyn_cast<ConstantSDNode>(Val)) { |
165 | BlockType = getOptimalRepType(Subtarget, Alignment); |
166 | uint64_t Value = ValC->getZExtValue() & 255; |
167 | const uint64_t BlockBits = BlockType.getSizeInBits(); |
168 | |
169 | if (BlockBits >= 16) |
170 | Value = (Value << 8) | Value; |
171 | |
172 | if (BlockBits >= 32) |
173 | Value = (Value << 16) | Value; |
174 | |
175 | if (BlockBits >= 64) |
176 | Value = (Value << 32) | Value; |
177 | |
178 | const uint64_t BlockBytes = BlockBits / 8; |
179 | BlockCount = Size / BlockBytes; |
180 | BytesLeft = Size % BlockBytes; |
181 | Val = DAG.getConstant(Val: Value, DL: dl, VT: BlockType); |
182 | } |
183 | |
184 | SDValue RepStos = |
185 | emitRepstos(Subtarget, DAG, dl, Chain, Dst, Val, |
186 | Size: DAG.getIntPtrConstant(Val: BlockCount, DL: dl), AVT: BlockType); |
187 | /// RepStos can process the whole length. |
188 | if (BytesLeft == 0) |
189 | return RepStos; |
190 | |
191 | // Handle the last 1 - 7 bytes. |
192 | SmallVector<SDValue, 4> Results; |
193 | Results.push_back(Elt: RepStos); |
194 | unsigned Offset = Size - BytesLeft; |
195 | EVT AddrVT = Dst.getValueType(); |
196 | |
197 | Results.push_back( |
198 | Elt: DAG.getMemset(Chain, dl, |
199 | Dst: DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: AddrVT, N1: Dst, |
200 | N2: DAG.getConstant(Val: Offset, DL: dl, VT: AddrVT)), |
201 | Src: OriginalVal, Size: DAG.getConstant(Val: BytesLeft, DL: dl, VT: SizeVT), |
202 | Alignment, isVol: isVolatile, AlwaysInline, |
203 | /* CI */ nullptr, DstPtrInfo: DstPtrInfo.getWithOffset(O: Offset))); |
204 | |
205 | return DAG.getNode(Opcode: ISD::TokenFactor, DL: dl, VT: MVT::Other, Ops: Results); |
206 | } |
207 | |
208 | SDValue X86SelectionDAGInfo::EmitTargetCodeForMemset( |
209 | SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Val, |
210 | SDValue Size, Align Alignment, bool isVolatile, bool AlwaysInline, |
211 | MachinePointerInfo DstPtrInfo) const { |
212 | // If to a segment-relative address space, use the default lowering. |
213 | if (DstPtrInfo.getAddrSpace() >= 256) |
214 | return SDValue(); |
215 | |
216 | // If the base register might conflict with our physical registers, bail out. |
217 | const MCPhysReg ClobberSet[] = {X86::RCX, X86::RAX, X86::RDI, |
218 | X86::ECX, X86::EAX, X86::EDI}; |
219 | if (isBaseRegConflictPossible(DAG, ClobberSet)) |
220 | return SDValue(); |
221 | |
222 | ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Val&: Size); |
223 | if (!ConstantSize) |
224 | return SDValue(); |
225 | |
226 | const X86Subtarget &Subtarget = |
227 | DAG.getMachineFunction().getSubtarget<X86Subtarget>(); |
228 | return emitConstantSizeRepstos( |
229 | DAG, Subtarget, dl, Chain, Dst, Val, Size: ConstantSize->getZExtValue(), |
230 | SizeVT: Size.getValueType(), Alignment, isVolatile, AlwaysInline, DstPtrInfo); |
231 | } |
232 | |
233 | /// Emit a single REP MOVS{B,W,D,Q} instruction. |
234 | static SDValue emitRepmovs(const X86Subtarget &Subtarget, SelectionDAG &DAG, |
235 | const SDLoc &dl, SDValue Chain, SDValue Dst, |
236 | SDValue Src, SDValue Size, MVT AVT) { |
237 | const bool Use64BitRegs = Subtarget.isTarget64BitLP64(); |
238 | const unsigned CX = Use64BitRegs ? X86::RCX : X86::ECX; |
239 | const unsigned DI = Use64BitRegs ? X86::RDI : X86::EDI; |
240 | const unsigned SI = Use64BitRegs ? X86::RSI : X86::ESI; |
241 | |
242 | SDValue InGlue; |
243 | Chain = DAG.getCopyToReg(Chain, dl, Reg: CX, N: Size, Glue: InGlue); |
244 | InGlue = Chain.getValue(R: 1); |
245 | Chain = DAG.getCopyToReg(Chain, dl, Reg: DI, N: Dst, Glue: InGlue); |
246 | InGlue = Chain.getValue(R: 1); |
247 | Chain = DAG.getCopyToReg(Chain, dl, Reg: SI, N: Src, Glue: InGlue); |
248 | InGlue = Chain.getValue(R: 1); |
249 | |
250 | SDVTList Tys = DAG.getVTList(VT1: MVT::Other, VT2: MVT::Glue); |
251 | SDValue Ops[] = {Chain, DAG.getValueType(AVT), InGlue}; |
252 | return DAG.getNode(Opcode: X86ISD::REP_MOVS, DL: dl, VTList: Tys, Ops); |
253 | } |
254 | |
255 | /// Emit a single REP MOVSB instruction for a particular constant size. |
256 | static SDValue emitRepmovsB(const X86Subtarget &Subtarget, SelectionDAG &DAG, |
257 | const SDLoc &dl, SDValue Chain, SDValue Dst, |
258 | SDValue Src, uint64_t Size) { |
259 | return emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src, |
260 | Size: DAG.getIntPtrConstant(Val: Size, DL: dl), AVT: MVT::i8); |
261 | } |
262 | |
263 | /// Returns a REP MOVS instruction, possibly with a few load/stores to implement |
264 | /// a constant size memory copy. In some cases where we know REP MOVS is |
265 | /// inefficient we return an empty SDValue so the calling code can either |
266 | /// generate a load/store sequence or call the runtime memcpy function. |
267 | static SDValue emitConstantSizeRepmov( |
268 | SelectionDAG &DAG, const X86Subtarget &Subtarget, const SDLoc &dl, |
269 | SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, EVT SizeVT, |
270 | Align Alignment, bool isVolatile, bool AlwaysInline, |
271 | MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) { |
272 | /// In case we optimize for size, we use repmovsb even if it's less efficient |
273 | /// so we can save the loads/stores of the leftover. |
274 | if (DAG.getMachineFunction().getFunction().hasMinSize()) |
275 | return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size); |
276 | |
277 | /// TODO: Revisit next line: big copy with ERMSB on march >= haswell are very |
278 | /// efficient. |
279 | if (!AlwaysInline && Size > Subtarget.getMaxInlineSizeThreshold()) |
280 | return SDValue(); |
281 | |
282 | /// If we have enhanced repmovs we use it. |
283 | if (Subtarget.hasERMSB()) |
284 | return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size); |
285 | |
286 | assert(!Subtarget.hasERMSB() && "No efficient RepMovs" ); |
287 | /// We assume runtime memcpy will do a better job for unaligned copies when |
288 | /// ERMS is not present. |
289 | if (!AlwaysInline && (Alignment < Align(4))) |
290 | return SDValue(); |
291 | |
292 | const MVT BlockType = getOptimalRepType(Subtarget, Alignment); |
293 | const uint64_t BlockBytes = BlockType.getSizeInBits() / 8; |
294 | const uint64_t BlockCount = Size / BlockBytes; |
295 | const uint64_t BytesLeft = Size % BlockBytes; |
296 | SDValue RepMovs = |
297 | emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src, |
298 | Size: DAG.getIntPtrConstant(Val: BlockCount, DL: dl), AVT: BlockType); |
299 | |
300 | /// RepMov can process the whole length. |
301 | if (BytesLeft == 0) |
302 | return RepMovs; |
303 | |
304 | assert(BytesLeft && "We have leftover at this point" ); |
305 | |
306 | // Handle the last 1 - 7 bytes. |
307 | SmallVector<SDValue, 4> Results; |
308 | Results.push_back(Elt: RepMovs); |
309 | unsigned Offset = Size - BytesLeft; |
310 | EVT DstVT = Dst.getValueType(); |
311 | EVT SrcVT = Src.getValueType(); |
312 | Results.push_back(Elt: DAG.getMemcpy( |
313 | Chain, dl, |
314 | Dst: DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: DstVT, N1: Dst, N2: DAG.getConstant(Val: Offset, DL: dl, VT: DstVT)), |
315 | Src: DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: SrcVT, N1: Src, N2: DAG.getConstant(Val: Offset, DL: dl, VT: SrcVT)), |
316 | Size: DAG.getConstant(Val: BytesLeft, DL: dl, VT: SizeVT), Alignment, isVol: isVolatile, |
317 | /*AlwaysInline*/ true, /*CI=*/nullptr, OverrideTailCall: std::nullopt, |
318 | DstPtrInfo: DstPtrInfo.getWithOffset(O: Offset), SrcPtrInfo: SrcPtrInfo.getWithOffset(O: Offset))); |
319 | return DAG.getNode(Opcode: ISD::TokenFactor, DL: dl, VT: MVT::Other, Ops: Results); |
320 | } |
321 | |
322 | SDValue X86SelectionDAGInfo::EmitTargetCodeForMemcpy( |
323 | SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, |
324 | SDValue Size, Align Alignment, bool isVolatile, bool AlwaysInline, |
325 | MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) const { |
326 | // If to a segment-relative address space, use the default lowering. |
327 | if (DstPtrInfo.getAddrSpace() >= 256 || SrcPtrInfo.getAddrSpace() >= 256) |
328 | return SDValue(); |
329 | |
330 | // If the base registers conflict with our physical registers, use the default |
331 | // lowering. |
332 | const MCPhysReg ClobberSet[] = {X86::RCX, X86::RSI, X86::RDI, |
333 | X86::ECX, X86::ESI, X86::EDI}; |
334 | if (isBaseRegConflictPossible(DAG, ClobberSet)) |
335 | return SDValue(); |
336 | |
337 | const X86Subtarget &Subtarget = |
338 | DAG.getMachineFunction().getSubtarget<X86Subtarget>(); |
339 | |
340 | // If enabled and available, use fast short rep mov. |
341 | if (UseFSRMForMemcpy && Subtarget.hasFSRM()) |
342 | return emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src, Size, AVT: MVT::i8); |
343 | |
344 | /// Handle constant sizes |
345 | if (ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Val&: Size)) |
346 | return emitConstantSizeRepmov(DAG, Subtarget, dl, Chain, Dst, Src, |
347 | Size: ConstantSize->getZExtValue(), |
348 | SizeVT: Size.getValueType(), Alignment, isVolatile, |
349 | AlwaysInline, DstPtrInfo, SrcPtrInfo); |
350 | |
351 | return SDValue(); |
352 | } |
353 | |