| 1 | //===-- X86SelectionDAGInfo.cpp - X86 SelectionDAG Info -------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the X86SelectionDAGInfo class. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "X86SelectionDAGInfo.h" |
| 14 | #include "X86ISelLowering.h" |
| 15 | #include "X86InstrInfo.h" |
| 16 | #include "X86RegisterInfo.h" |
| 17 | #include "X86Subtarget.h" |
| 18 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 19 | #include "llvm/CodeGen/SelectionDAG.h" |
| 20 | #include "llvm/CodeGen/TargetLowering.h" |
| 21 | |
| 22 | using namespace llvm; |
| 23 | |
| 24 | #define DEBUG_TYPE "x86-selectiondag-info" |
| 25 | |
| 26 | static cl::opt<bool> |
| 27 | UseFSRMForMemcpy("x86-use-fsrm-for-memcpy" , cl::Hidden, cl::init(Val: false), |
| 28 | cl::desc("Use fast short rep mov in memcpy lowering" )); |
| 29 | |
| 30 | bool X86SelectionDAGInfo::isTargetMemoryOpcode(unsigned Opcode) const { |
| 31 | return Opcode >= X86ISD::FIRST_MEMORY_OPCODE && |
| 32 | Opcode <= X86ISD::LAST_MEMORY_OPCODE; |
| 33 | } |
| 34 | |
| 35 | bool X86SelectionDAGInfo::isTargetStrictFPOpcode(unsigned Opcode) const { |
| 36 | return Opcode >= X86ISD::FIRST_STRICTFP_OPCODE && |
| 37 | Opcode <= X86ISD::LAST_STRICTFP_OPCODE; |
| 38 | } |
| 39 | |
| 40 | /// Returns the best type to use with repmovs/repstos depending on alignment. |
| 41 | static MVT getOptimalRepType(const X86Subtarget &Subtarget, Align Alignment) { |
| 42 | uint64_t Align = Alignment.value(); |
| 43 | assert((Align != 0) && "Align is normalized" ); |
| 44 | assert(isPowerOf2_64(Align) && "Align is a power of 2" ); |
| 45 | switch (Align) { |
| 46 | case 1: |
| 47 | return MVT::i8; |
| 48 | case 2: |
| 49 | return MVT::i16; |
| 50 | case 4: |
| 51 | return MVT::i32; |
| 52 | default: |
| 53 | return Subtarget.is64Bit() ? MVT::i64 : MVT::i32; |
| 54 | } |
| 55 | } |
| 56 | |
| 57 | bool X86SelectionDAGInfo::isBaseRegConflictPossible( |
| 58 | SelectionDAG &DAG, ArrayRef<MCPhysReg> ClobberSet) const { |
| 59 | // We cannot use TRI->hasBasePointer() until *after* we select all basic |
| 60 | // blocks. Legalization may introduce new stack temporaries with large |
| 61 | // alignment requirements. Fall back to generic code if there are any |
| 62 | // dynamic stack adjustments (hopefully rare) and the base pointer would |
| 63 | // conflict if we had to use it. |
| 64 | MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); |
| 65 | if (!MFI.hasVarSizedObjects() && !MFI.hasOpaqueSPAdjustment()) |
| 66 | return false; |
| 67 | |
| 68 | const X86RegisterInfo *TRI = static_cast<const X86RegisterInfo *>( |
| 69 | DAG.getSubtarget().getRegisterInfo()); |
| 70 | return llvm::is_contained(Range&: ClobberSet, Element: TRI->getBaseRegister()); |
| 71 | } |
| 72 | |
| 73 | /// Emit a single REP STOSB instruction for a particular constant size. |
| 74 | static SDValue emitRepstos(const X86Subtarget &Subtarget, SelectionDAG &DAG, |
| 75 | const SDLoc &dl, SDValue Chain, SDValue Dst, |
| 76 | SDValue Val, SDValue Size, MVT AVT) { |
| 77 | const bool Use64BitRegs = Subtarget.isTarget64BitLP64(); |
| 78 | unsigned AX = X86::AL; |
| 79 | switch (AVT.getSizeInBits()) { |
| 80 | case 8: |
| 81 | AX = X86::AL; |
| 82 | break; |
| 83 | case 16: |
| 84 | AX = X86::AX; |
| 85 | break; |
| 86 | case 32: |
| 87 | AX = X86::EAX; |
| 88 | break; |
| 89 | default: |
| 90 | AX = X86::RAX; |
| 91 | break; |
| 92 | } |
| 93 | |
| 94 | const unsigned CX = Use64BitRegs ? X86::RCX : X86::ECX; |
| 95 | const unsigned DI = Use64BitRegs ? X86::RDI : X86::EDI; |
| 96 | |
| 97 | SDValue InGlue; |
| 98 | Chain = DAG.getCopyToReg(Chain, dl, Reg: AX, N: Val, Glue: InGlue); |
| 99 | InGlue = Chain.getValue(R: 1); |
| 100 | Chain = DAG.getCopyToReg(Chain, dl, Reg: CX, N: Size, Glue: InGlue); |
| 101 | InGlue = Chain.getValue(R: 1); |
| 102 | Chain = DAG.getCopyToReg(Chain, dl, Reg: DI, N: Dst, Glue: InGlue); |
| 103 | InGlue = Chain.getValue(R: 1); |
| 104 | |
| 105 | SDVTList Tys = DAG.getVTList(VT1: MVT::Other, VT2: MVT::Glue); |
| 106 | SDValue Ops[] = {Chain, DAG.getValueType(AVT), InGlue}; |
| 107 | return DAG.getNode(Opcode: X86ISD::REP_STOS, DL: dl, VTList: Tys, Ops); |
| 108 | } |
| 109 | |
| 110 | /// Emit a single REP STOSB instruction for a particular constant size. |
| 111 | static SDValue emitRepstosB(const X86Subtarget &Subtarget, SelectionDAG &DAG, |
| 112 | const SDLoc &dl, SDValue Chain, SDValue Dst, |
| 113 | SDValue Val, uint64_t Size) { |
| 114 | return emitRepstos(Subtarget, DAG, dl, Chain, Dst, Val, |
| 115 | Size: DAG.getIntPtrConstant(Val: Size, DL: dl), AVT: MVT::i8); |
| 116 | } |
| 117 | |
| 118 | /// Returns a REP STOS instruction, possibly with a few load/stores to implement |
| 119 | /// a constant size memory set. In some cases where we know REP MOVS is |
| 120 | /// inefficient we return an empty SDValue so the calling code can either |
| 121 | /// generate a store sequence or call the runtime memset function. |
| 122 | static SDValue emitConstantSizeRepstos(SelectionDAG &DAG, |
| 123 | const X86Subtarget &Subtarget, |
| 124 | const SDLoc &dl, SDValue Chain, |
| 125 | SDValue Dst, SDValue Val, uint64_t Size, |
| 126 | EVT SizeVT, Align Alignment, |
| 127 | bool isVolatile, bool AlwaysInline, |
| 128 | MachinePointerInfo DstPtrInfo) { |
| 129 | /// In case we optimize for size, we use repstosb even if it's less efficient |
| 130 | /// so we can save the loads/stores of the leftover. |
| 131 | if (DAG.getMachineFunction().getFunction().hasMinSize()) { |
| 132 | if (auto *ValC = dyn_cast<ConstantSDNode>(Val)) { |
| 133 | // Special case 0 because otherwise we get large literals, |
| 134 | // which causes larger encoding. |
| 135 | if ((Size & 31) == 0 && (ValC->getZExtValue() & 255) == 0) { |
| 136 | MVT BlockType = MVT::i32; |
| 137 | const uint64_t BlockBits = BlockType.getSizeInBits(); |
| 138 | const uint64_t BlockBytes = BlockBits / 8; |
| 139 | const uint64_t BlockCount = Size / BlockBytes; |
| 140 | |
| 141 | Val = DAG.getConstant(Val: 0, DL: dl, VT: BlockType); |
| 142 | // repstosd is same size as repstosb |
| 143 | return emitRepstos(Subtarget, DAG, dl, Chain, Dst, Val, |
| 144 | Size: DAG.getIntPtrConstant(Val: BlockCount, DL: dl), AVT: BlockType); |
| 145 | } |
| 146 | } |
| 147 | return emitRepstosB(Subtarget, DAG, dl, Chain, Dst, Val, Size); |
| 148 | } |
| 149 | |
| 150 | if (Size > Subtarget.getMaxInlineSizeThreshold()) |
| 151 | return SDValue(); |
| 152 | |
| 153 | // If not DWORD aligned or size is more than the threshold, call the library. |
| 154 | // The libc version is likely to be faster for these cases. It can use the |
| 155 | // address value and run time information about the CPU. |
| 156 | if (Alignment < Align(4)) |
| 157 | return SDValue(); |
| 158 | |
| 159 | MVT BlockType = MVT::i8; |
| 160 | uint64_t BlockCount = Size; |
| 161 | uint64_t BytesLeft = 0; |
| 162 | |
| 163 | SDValue OriginalVal = Val; |
| 164 | if (auto *ValC = dyn_cast<ConstantSDNode>(Val)) { |
| 165 | BlockType = getOptimalRepType(Subtarget, Alignment); |
| 166 | uint64_t Value = ValC->getZExtValue() & 255; |
| 167 | const uint64_t BlockBits = BlockType.getSizeInBits(); |
| 168 | |
| 169 | if (BlockBits >= 16) |
| 170 | Value = (Value << 8) | Value; |
| 171 | |
| 172 | if (BlockBits >= 32) |
| 173 | Value = (Value << 16) | Value; |
| 174 | |
| 175 | if (BlockBits >= 64) |
| 176 | Value = (Value << 32) | Value; |
| 177 | |
| 178 | const uint64_t BlockBytes = BlockBits / 8; |
| 179 | BlockCount = Size / BlockBytes; |
| 180 | BytesLeft = Size % BlockBytes; |
| 181 | Val = DAG.getConstant(Val: Value, DL: dl, VT: BlockType); |
| 182 | } |
| 183 | |
| 184 | SDValue RepStos = |
| 185 | emitRepstos(Subtarget, DAG, dl, Chain, Dst, Val, |
| 186 | Size: DAG.getIntPtrConstant(Val: BlockCount, DL: dl), AVT: BlockType); |
| 187 | /// RepStos can process the whole length. |
| 188 | if (BytesLeft == 0) |
| 189 | return RepStos; |
| 190 | |
| 191 | // Handle the last 1 - 7 bytes. |
| 192 | SmallVector<SDValue, 4> Results; |
| 193 | Results.push_back(Elt: RepStos); |
| 194 | unsigned Offset = Size - BytesLeft; |
| 195 | EVT AddrVT = Dst.getValueType(); |
| 196 | |
| 197 | Results.push_back( |
| 198 | Elt: DAG.getMemset(Chain, dl, |
| 199 | Dst: DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: AddrVT, N1: Dst, |
| 200 | N2: DAG.getConstant(Val: Offset, DL: dl, VT: AddrVT)), |
| 201 | Src: OriginalVal, Size: DAG.getConstant(Val: BytesLeft, DL: dl, VT: SizeVT), |
| 202 | Alignment, isVol: isVolatile, AlwaysInline, |
| 203 | /* CI */ nullptr, DstPtrInfo: DstPtrInfo.getWithOffset(O: Offset))); |
| 204 | |
| 205 | return DAG.getNode(Opcode: ISD::TokenFactor, DL: dl, VT: MVT::Other, Ops: Results); |
| 206 | } |
| 207 | |
| 208 | SDValue X86SelectionDAGInfo::EmitTargetCodeForMemset( |
| 209 | SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Val, |
| 210 | SDValue Size, Align Alignment, bool isVolatile, bool AlwaysInline, |
| 211 | MachinePointerInfo DstPtrInfo) const { |
| 212 | // If to a segment-relative address space, use the default lowering. |
| 213 | if (DstPtrInfo.getAddrSpace() >= 256) |
| 214 | return SDValue(); |
| 215 | |
| 216 | // If the base register might conflict with our physical registers, bail out. |
| 217 | const MCPhysReg ClobberSet[] = {X86::RCX, X86::RAX, X86::RDI, |
| 218 | X86::ECX, X86::EAX, X86::EDI}; |
| 219 | if (isBaseRegConflictPossible(DAG, ClobberSet)) |
| 220 | return SDValue(); |
| 221 | |
| 222 | ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Val&: Size); |
| 223 | if (!ConstantSize) |
| 224 | return SDValue(); |
| 225 | |
| 226 | const X86Subtarget &Subtarget = |
| 227 | DAG.getMachineFunction().getSubtarget<X86Subtarget>(); |
| 228 | return emitConstantSizeRepstos( |
| 229 | DAG, Subtarget, dl, Chain, Dst, Val, Size: ConstantSize->getZExtValue(), |
| 230 | SizeVT: Size.getValueType(), Alignment, isVolatile, AlwaysInline, DstPtrInfo); |
| 231 | } |
| 232 | |
| 233 | /// Emit a single REP MOVS{B,W,D,Q} instruction. |
| 234 | static SDValue emitRepmovs(const X86Subtarget &Subtarget, SelectionDAG &DAG, |
| 235 | const SDLoc &dl, SDValue Chain, SDValue Dst, |
| 236 | SDValue Src, SDValue Size, MVT AVT) { |
| 237 | const bool Use64BitRegs = Subtarget.isTarget64BitLP64(); |
| 238 | const unsigned CX = Use64BitRegs ? X86::RCX : X86::ECX; |
| 239 | const unsigned DI = Use64BitRegs ? X86::RDI : X86::EDI; |
| 240 | const unsigned SI = Use64BitRegs ? X86::RSI : X86::ESI; |
| 241 | |
| 242 | SDValue InGlue; |
| 243 | Chain = DAG.getCopyToReg(Chain, dl, Reg: CX, N: Size, Glue: InGlue); |
| 244 | InGlue = Chain.getValue(R: 1); |
| 245 | Chain = DAG.getCopyToReg(Chain, dl, Reg: DI, N: Dst, Glue: InGlue); |
| 246 | InGlue = Chain.getValue(R: 1); |
| 247 | Chain = DAG.getCopyToReg(Chain, dl, Reg: SI, N: Src, Glue: InGlue); |
| 248 | InGlue = Chain.getValue(R: 1); |
| 249 | |
| 250 | SDVTList Tys = DAG.getVTList(VT1: MVT::Other, VT2: MVT::Glue); |
| 251 | SDValue Ops[] = {Chain, DAG.getValueType(AVT), InGlue}; |
| 252 | return DAG.getNode(Opcode: X86ISD::REP_MOVS, DL: dl, VTList: Tys, Ops); |
| 253 | } |
| 254 | |
| 255 | /// Emit a single REP MOVSB instruction for a particular constant size. |
| 256 | static SDValue emitRepmovsB(const X86Subtarget &Subtarget, SelectionDAG &DAG, |
| 257 | const SDLoc &dl, SDValue Chain, SDValue Dst, |
| 258 | SDValue Src, uint64_t Size) { |
| 259 | return emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src, |
| 260 | Size: DAG.getIntPtrConstant(Val: Size, DL: dl), AVT: MVT::i8); |
| 261 | } |
| 262 | |
| 263 | /// Returns a REP MOVS instruction, possibly with a few load/stores to implement |
| 264 | /// a constant size memory copy. In some cases where we know REP MOVS is |
| 265 | /// inefficient we return an empty SDValue so the calling code can either |
| 266 | /// generate a load/store sequence or call the runtime memcpy function. |
| 267 | static SDValue emitConstantSizeRepmov( |
| 268 | SelectionDAG &DAG, const X86Subtarget &Subtarget, const SDLoc &dl, |
| 269 | SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, EVT SizeVT, |
| 270 | Align Alignment, bool isVolatile, bool AlwaysInline, |
| 271 | MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) { |
| 272 | /// In case we optimize for size, we use repmovsb even if it's less efficient |
| 273 | /// so we can save the loads/stores of the leftover. |
| 274 | if (DAG.getMachineFunction().getFunction().hasMinSize()) |
| 275 | return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size); |
| 276 | |
| 277 | /// TODO: Revisit next line: big copy with ERMSB on march >= haswell are very |
| 278 | /// efficient. |
| 279 | if (!AlwaysInline && Size > Subtarget.getMaxInlineSizeThreshold()) |
| 280 | return SDValue(); |
| 281 | |
| 282 | /// If we have enhanced repmovs we use it. |
| 283 | if (Subtarget.hasERMSB()) |
| 284 | return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size); |
| 285 | |
| 286 | assert(!Subtarget.hasERMSB() && "No efficient RepMovs" ); |
| 287 | /// We assume runtime memcpy will do a better job for unaligned copies when |
| 288 | /// ERMS is not present. |
| 289 | if (!AlwaysInline && (Alignment < Align(4))) |
| 290 | return SDValue(); |
| 291 | |
| 292 | const MVT BlockType = getOptimalRepType(Subtarget, Alignment); |
| 293 | const uint64_t BlockBytes = BlockType.getSizeInBits() / 8; |
| 294 | const uint64_t BlockCount = Size / BlockBytes; |
| 295 | const uint64_t BytesLeft = Size % BlockBytes; |
| 296 | SDValue RepMovs = |
| 297 | emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src, |
| 298 | Size: DAG.getIntPtrConstant(Val: BlockCount, DL: dl), AVT: BlockType); |
| 299 | |
| 300 | /// RepMov can process the whole length. |
| 301 | if (BytesLeft == 0) |
| 302 | return RepMovs; |
| 303 | |
| 304 | assert(BytesLeft && "We have leftover at this point" ); |
| 305 | |
| 306 | // Handle the last 1 - 7 bytes. |
| 307 | SmallVector<SDValue, 4> Results; |
| 308 | Results.push_back(Elt: RepMovs); |
| 309 | unsigned Offset = Size - BytesLeft; |
| 310 | EVT DstVT = Dst.getValueType(); |
| 311 | EVT SrcVT = Src.getValueType(); |
| 312 | Results.push_back(Elt: DAG.getMemcpy( |
| 313 | Chain, dl, |
| 314 | Dst: DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: DstVT, N1: Dst, N2: DAG.getConstant(Val: Offset, DL: dl, VT: DstVT)), |
| 315 | Src: DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: SrcVT, N1: Src, N2: DAG.getConstant(Val: Offset, DL: dl, VT: SrcVT)), |
| 316 | Size: DAG.getConstant(Val: BytesLeft, DL: dl, VT: SizeVT), Alignment, isVol: isVolatile, |
| 317 | /*AlwaysInline*/ true, /*CI=*/nullptr, OverrideTailCall: std::nullopt, |
| 318 | DstPtrInfo: DstPtrInfo.getWithOffset(O: Offset), SrcPtrInfo: SrcPtrInfo.getWithOffset(O: Offset))); |
| 319 | return DAG.getNode(Opcode: ISD::TokenFactor, DL: dl, VT: MVT::Other, Ops: Results); |
| 320 | } |
| 321 | |
| 322 | SDValue X86SelectionDAGInfo::EmitTargetCodeForMemcpy( |
| 323 | SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, |
| 324 | SDValue Size, Align Alignment, bool isVolatile, bool AlwaysInline, |
| 325 | MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) const { |
| 326 | // If to a segment-relative address space, use the default lowering. |
| 327 | if (DstPtrInfo.getAddrSpace() >= 256 || SrcPtrInfo.getAddrSpace() >= 256) |
| 328 | return SDValue(); |
| 329 | |
| 330 | // If the base registers conflict with our physical registers, use the default |
| 331 | // lowering. |
| 332 | const MCPhysReg ClobberSet[] = {X86::RCX, X86::RSI, X86::RDI, |
| 333 | X86::ECX, X86::ESI, X86::EDI}; |
| 334 | if (isBaseRegConflictPossible(DAG, ClobberSet)) |
| 335 | return SDValue(); |
| 336 | |
| 337 | const X86Subtarget &Subtarget = |
| 338 | DAG.getMachineFunction().getSubtarget<X86Subtarget>(); |
| 339 | |
| 340 | // If enabled and available, use fast short rep mov. |
| 341 | if (UseFSRMForMemcpy && Subtarget.hasFSRM()) |
| 342 | return emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src, Size, AVT: MVT::i8); |
| 343 | |
| 344 | /// Handle constant sizes |
| 345 | if (ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Val&: Size)) |
| 346 | return emitConstantSizeRepmov(DAG, Subtarget, dl, Chain, Dst, Src, |
| 347 | Size: ConstantSize->getZExtValue(), |
| 348 | SizeVT: Size.getValueType(), Alignment, isVolatile, |
| 349 | AlwaysInline, DstPtrInfo, SrcPtrInfo); |
| 350 | |
| 351 | return SDValue(); |
| 352 | } |
| 353 | |