| 1 | //===- AggressiveInstCombine.cpp ------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the aggressive expression pattern combiner classes. |
| 10 | // Currently, it handles expression patterns for: |
| 11 | // * Truncate instruction |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h" |
| 16 | #include "AggressiveInstCombineInternal.h" |
| 17 | #include "llvm/ADT/Statistic.h" |
| 18 | #include "llvm/Analysis/AliasAnalysis.h" |
| 19 | #include "llvm/Analysis/AssumptionCache.h" |
| 20 | #include "llvm/Analysis/BasicAliasAnalysis.h" |
| 21 | #include "llvm/Analysis/ConstantFolding.h" |
| 22 | #include "llvm/Analysis/DomTreeUpdater.h" |
| 23 | #include "llvm/Analysis/GlobalsModRef.h" |
| 24 | #include "llvm/Analysis/TargetLibraryInfo.h" |
| 25 | #include "llvm/Analysis/TargetTransformInfo.h" |
| 26 | #include "llvm/Analysis/ValueTracking.h" |
| 27 | #include "llvm/IR/DataLayout.h" |
| 28 | #include "llvm/IR/Dominators.h" |
| 29 | #include "llvm/IR/Function.h" |
| 30 | #include "llvm/IR/IRBuilder.h" |
| 31 | #include "llvm/IR/PatternMatch.h" |
| 32 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 33 | #include "llvm/Transforms/Utils/BuildLibCalls.h" |
| 34 | #include "llvm/Transforms/Utils/Local.h" |
| 35 | |
| 36 | using namespace llvm; |
| 37 | using namespace PatternMatch; |
| 38 | |
| 39 | #define DEBUG_TYPE "aggressive-instcombine" |
| 40 | |
| 41 | STATISTIC(NumAnyOrAllBitsSet, "Number of any/all-bits-set patterns folded" ); |
| 42 | STATISTIC(NumGuardedRotates, |
| 43 | "Number of guarded rotates transformed into funnel shifts" ); |
| 44 | STATISTIC(NumGuardedFunnelShifts, |
| 45 | "Number of guarded funnel shifts transformed into funnel shifts" ); |
| 46 | STATISTIC(NumPopCountRecognized, "Number of popcount idioms recognized" ); |
| 47 | |
| 48 | static cl::opt<unsigned> MaxInstrsToScan( |
| 49 | "aggressive-instcombine-max-scan-instrs" , cl::init(Val: 64), cl::Hidden, |
| 50 | cl::desc("Max number of instructions to scan for aggressive instcombine." )); |
| 51 | |
| 52 | static cl::opt<unsigned> StrNCmpInlineThreshold( |
| 53 | "strncmp-inline-threshold" , cl::init(Val: 3), cl::Hidden, |
| 54 | cl::desc("The maximum length of a constant string for a builtin string cmp " |
| 55 | "call eligible for inlining. The default value is 3." )); |
| 56 | |
| 57 | static cl::opt<unsigned> |
| 58 | MemChrInlineThreshold("memchr-inline-threshold" , cl::init(Val: 3), cl::Hidden, |
| 59 | cl::desc("The maximum length of a constant string to " |
| 60 | "inline a memchr call." )); |
| 61 | |
| 62 | /// Match a pattern for a bitwise funnel/rotate operation that partially guards |
| 63 | /// against undefined behavior by branching around the funnel-shift/rotation |
| 64 | /// when the shift amount is 0. |
| 65 | static bool foldGuardedFunnelShift(Instruction &I, const DominatorTree &DT) { |
| 66 | if (I.getOpcode() != Instruction::PHI || I.getNumOperands() != 2) |
| 67 | return false; |
| 68 | |
| 69 | // As with the one-use checks below, this is not strictly necessary, but we |
| 70 | // are being cautious to avoid potential perf regressions on targets that |
| 71 | // do not actually have a funnel/rotate instruction (where the funnel shift |
| 72 | // would be expanded back into math/shift/logic ops). |
| 73 | if (!isPowerOf2_32(Value: I.getType()->getScalarSizeInBits())) |
| 74 | return false; |
| 75 | |
| 76 | // Match V to funnel shift left/right and capture the source operands and |
| 77 | // shift amount. |
| 78 | auto matchFunnelShift = [](Value *V, Value *&ShVal0, Value *&ShVal1, |
| 79 | Value *&ShAmt) { |
| 80 | unsigned Width = V->getType()->getScalarSizeInBits(); |
| 81 | |
| 82 | // fshl(ShVal0, ShVal1, ShAmt) |
| 83 | // == (ShVal0 << ShAmt) | (ShVal1 >> (Width -ShAmt)) |
| 84 | if (match(V, P: m_OneUse(SubPattern: m_c_Or( |
| 85 | L: m_Shl(L: m_Value(V&: ShVal0), R: m_Value(V&: ShAmt)), |
| 86 | R: m_LShr(L: m_Value(V&: ShVal1), |
| 87 | R: m_Sub(L: m_SpecificInt(V: Width), R: m_Deferred(V: ShAmt))))))) { |
| 88 | return Intrinsic::fshl; |
| 89 | } |
| 90 | |
| 91 | // fshr(ShVal0, ShVal1, ShAmt) |
| 92 | // == (ShVal0 >> ShAmt) | (ShVal1 << (Width - ShAmt)) |
| 93 | if (match(V, |
| 94 | P: m_OneUse(SubPattern: m_c_Or(L: m_Shl(L: m_Value(V&: ShVal0), R: m_Sub(L: m_SpecificInt(V: Width), |
| 95 | R: m_Value(V&: ShAmt))), |
| 96 | R: m_LShr(L: m_Value(V&: ShVal1), R: m_Deferred(V: ShAmt)))))) { |
| 97 | return Intrinsic::fshr; |
| 98 | } |
| 99 | |
| 100 | return Intrinsic::not_intrinsic; |
| 101 | }; |
| 102 | |
| 103 | // One phi operand must be a funnel/rotate operation, and the other phi |
| 104 | // operand must be the source value of that funnel/rotate operation: |
| 105 | // phi [ rotate(RotSrc, ShAmt), FunnelBB ], [ RotSrc, GuardBB ] |
| 106 | // phi [ fshl(ShVal0, ShVal1, ShAmt), FunnelBB ], [ ShVal0, GuardBB ] |
| 107 | // phi [ fshr(ShVal0, ShVal1, ShAmt), FunnelBB ], [ ShVal1, GuardBB ] |
| 108 | PHINode &Phi = cast<PHINode>(Val&: I); |
| 109 | unsigned FunnelOp = 0, GuardOp = 1; |
| 110 | Value *P0 = Phi.getOperand(i_nocapture: 0), *P1 = Phi.getOperand(i_nocapture: 1); |
| 111 | Value *ShVal0, *ShVal1, *ShAmt; |
| 112 | Intrinsic::ID IID = matchFunnelShift(P0, ShVal0, ShVal1, ShAmt); |
| 113 | if (IID == Intrinsic::not_intrinsic || |
| 114 | (IID == Intrinsic::fshl && ShVal0 != P1) || |
| 115 | (IID == Intrinsic::fshr && ShVal1 != P1)) { |
| 116 | IID = matchFunnelShift(P1, ShVal0, ShVal1, ShAmt); |
| 117 | if (IID == Intrinsic::not_intrinsic || |
| 118 | (IID == Intrinsic::fshl && ShVal0 != P0) || |
| 119 | (IID == Intrinsic::fshr && ShVal1 != P0)) |
| 120 | return false; |
| 121 | assert((IID == Intrinsic::fshl || IID == Intrinsic::fshr) && |
| 122 | "Pattern must match funnel shift left or right" ); |
| 123 | std::swap(a&: FunnelOp, b&: GuardOp); |
| 124 | } |
| 125 | |
| 126 | // The incoming block with our source operand must be the "guard" block. |
| 127 | // That must contain a cmp+branch to avoid the funnel/rotate when the shift |
| 128 | // amount is equal to 0. The other incoming block is the block with the |
| 129 | // funnel/rotate. |
| 130 | BasicBlock *GuardBB = Phi.getIncomingBlock(i: GuardOp); |
| 131 | BasicBlock *FunnelBB = Phi.getIncomingBlock(i: FunnelOp); |
| 132 | Instruction *TermI = GuardBB->getTerminator(); |
| 133 | |
| 134 | // Ensure that the shift values dominate each block. |
| 135 | if (!DT.dominates(Def: ShVal0, User: TermI) || !DT.dominates(Def: ShVal1, User: TermI)) |
| 136 | return false; |
| 137 | |
| 138 | BasicBlock *PhiBB = Phi.getParent(); |
| 139 | if (!match(V: TermI, P: m_Br(C: m_SpecificICmp(MatchPred: CmpInst::ICMP_EQ, L: m_Specific(V: ShAmt), |
| 140 | R: m_ZeroInt()), |
| 141 | T: m_SpecificBB(BB: PhiBB), F: m_SpecificBB(BB: FunnelBB)))) |
| 142 | return false; |
| 143 | |
| 144 | IRBuilder<> Builder(PhiBB, PhiBB->getFirstInsertionPt()); |
| 145 | |
| 146 | if (ShVal0 == ShVal1) |
| 147 | ++NumGuardedRotates; |
| 148 | else |
| 149 | ++NumGuardedFunnelShifts; |
| 150 | |
| 151 | // If this is not a rotate then the select was blocking poison from the |
| 152 | // 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it. |
| 153 | bool IsFshl = IID == Intrinsic::fshl; |
| 154 | if (ShVal0 != ShVal1) { |
| 155 | if (IsFshl && !llvm::isGuaranteedNotToBePoison(V: ShVal1)) |
| 156 | ShVal1 = Builder.CreateFreeze(V: ShVal1); |
| 157 | else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(V: ShVal0)) |
| 158 | ShVal0 = Builder.CreateFreeze(V: ShVal0); |
| 159 | } |
| 160 | |
| 161 | // We matched a variation of this IR pattern: |
| 162 | // GuardBB: |
| 163 | // %cmp = icmp eq i32 %ShAmt, 0 |
| 164 | // br i1 %cmp, label %PhiBB, label %FunnelBB |
| 165 | // FunnelBB: |
| 166 | // %sub = sub i32 32, %ShAmt |
| 167 | // %shr = lshr i32 %ShVal1, %sub |
| 168 | // %shl = shl i32 %ShVal0, %ShAmt |
| 169 | // %fsh = or i32 %shr, %shl |
| 170 | // br label %PhiBB |
| 171 | // PhiBB: |
| 172 | // %cond = phi i32 [ %fsh, %FunnelBB ], [ %ShVal0, %GuardBB ] |
| 173 | // --> |
| 174 | // llvm.fshl.i32(i32 %ShVal0, i32 %ShVal1, i32 %ShAmt) |
| 175 | Phi.replaceAllUsesWith( |
| 176 | V: Builder.CreateIntrinsic(ID: IID, Types: Phi.getType(), Args: {ShVal0, ShVal1, ShAmt})); |
| 177 | return true; |
| 178 | } |
| 179 | |
| 180 | /// This is used by foldAnyOrAllBitsSet() to capture a source value (Root) and |
| 181 | /// the bit indexes (Mask) needed by a masked compare. If we're matching a chain |
| 182 | /// of 'and' ops, then we also need to capture the fact that we saw an |
| 183 | /// "and X, 1", so that's an extra return value for that case. |
| 184 | namespace { |
| 185 | struct MaskOps { |
| 186 | Value *Root = nullptr; |
| 187 | APInt Mask; |
| 188 | bool MatchAndChain; |
| 189 | bool FoundAnd1 = false; |
| 190 | |
| 191 | MaskOps(unsigned BitWidth, bool MatchAnds) |
| 192 | : Mask(APInt::getZero(numBits: BitWidth)), MatchAndChain(MatchAnds) {} |
| 193 | }; |
| 194 | } // namespace |
| 195 | |
| 196 | /// This is a recursive helper for foldAnyOrAllBitsSet() that walks through a |
| 197 | /// chain of 'and' or 'or' instructions looking for shift ops of a common source |
| 198 | /// value. Examples: |
| 199 | /// or (or (or X, (X >> 3)), (X >> 5)), (X >> 8) |
| 200 | /// returns { X, 0x129 } |
| 201 | /// and (and (X >> 1), 1), (X >> 4) |
| 202 | /// returns { X, 0x12 } |
| 203 | static bool matchAndOrChain(Value *V, MaskOps &MOps) { |
| 204 | Value *Op0, *Op1; |
| 205 | if (MOps.MatchAndChain) { |
| 206 | // Recurse through a chain of 'and' operands. This requires an extra check |
| 207 | // vs. the 'or' matcher: we must find an "and X, 1" instruction somewhere |
| 208 | // in the chain to know that all of the high bits are cleared. |
| 209 | if (match(V, P: m_And(L: m_Value(V&: Op0), R: m_One()))) { |
| 210 | MOps.FoundAnd1 = true; |
| 211 | return matchAndOrChain(V: Op0, MOps); |
| 212 | } |
| 213 | if (match(V, P: m_And(L: m_Value(V&: Op0), R: m_Value(V&: Op1)))) |
| 214 | return matchAndOrChain(V: Op0, MOps) && matchAndOrChain(V: Op1, MOps); |
| 215 | } else { |
| 216 | // Recurse through a chain of 'or' operands. |
| 217 | if (match(V, P: m_Or(L: m_Value(V&: Op0), R: m_Value(V&: Op1)))) |
| 218 | return matchAndOrChain(V: Op0, MOps) && matchAndOrChain(V: Op1, MOps); |
| 219 | } |
| 220 | |
| 221 | // We need a shift-right or a bare value representing a compare of bit 0 of |
| 222 | // the original source operand. |
| 223 | Value *Candidate; |
| 224 | const APInt *BitIndex = nullptr; |
| 225 | if (!match(V, P: m_LShr(L: m_Value(V&: Candidate), R: m_APInt(Res&: BitIndex)))) |
| 226 | Candidate = V; |
| 227 | |
| 228 | // Initialize result source operand. |
| 229 | if (!MOps.Root) |
| 230 | MOps.Root = Candidate; |
| 231 | |
| 232 | // The shift constant is out-of-range? This code hasn't been simplified. |
| 233 | if (BitIndex && BitIndex->uge(RHS: MOps.Mask.getBitWidth())) |
| 234 | return false; |
| 235 | |
| 236 | // Fill in the mask bit derived from the shift constant. |
| 237 | MOps.Mask.setBit(BitIndex ? BitIndex->getZExtValue() : 0); |
| 238 | return MOps.Root == Candidate; |
| 239 | } |
| 240 | |
| 241 | /// Match patterns that correspond to "any-bits-set" and "all-bits-set". |
| 242 | /// These will include a chain of 'or' or 'and'-shifted bits from a |
| 243 | /// common source value: |
| 244 | /// and (or (lshr X, C), ...), 1 --> (X & CMask) != 0 |
| 245 | /// and (and (lshr X, C), ...), 1 --> (X & CMask) == CMask |
| 246 | /// Note: "any-bits-clear" and "all-bits-clear" are variations of these patterns |
| 247 | /// that differ only with a final 'not' of the result. We expect that final |
| 248 | /// 'not' to be folded with the compare that we create here (invert predicate). |
| 249 | static bool foldAnyOrAllBitsSet(Instruction &I) { |
| 250 | // The 'any-bits-set' ('or' chain) pattern is simpler to match because the |
| 251 | // final "and X, 1" instruction must be the final op in the sequence. |
| 252 | bool MatchAllBitsSet; |
| 253 | if (match(V: &I, P: m_c_And(L: m_OneUse(SubPattern: m_And(L: m_Value(), R: m_Value())), R: m_Value()))) |
| 254 | MatchAllBitsSet = true; |
| 255 | else if (match(V: &I, P: m_And(L: m_OneUse(SubPattern: m_Or(L: m_Value(), R: m_Value())), R: m_One()))) |
| 256 | MatchAllBitsSet = false; |
| 257 | else |
| 258 | return false; |
| 259 | |
| 260 | MaskOps MOps(I.getType()->getScalarSizeInBits(), MatchAllBitsSet); |
| 261 | if (MatchAllBitsSet) { |
| 262 | if (!matchAndOrChain(V: cast<BinaryOperator>(Val: &I), MOps) || !MOps.FoundAnd1) |
| 263 | return false; |
| 264 | } else { |
| 265 | if (!matchAndOrChain(V: cast<BinaryOperator>(Val: &I)->getOperand(i_nocapture: 0), MOps)) |
| 266 | return false; |
| 267 | } |
| 268 | |
| 269 | // The pattern was found. Create a masked compare that replaces all of the |
| 270 | // shift and logic ops. |
| 271 | IRBuilder<> Builder(&I); |
| 272 | Constant *Mask = ConstantInt::get(Ty: I.getType(), V: MOps.Mask); |
| 273 | Value *And = Builder.CreateAnd(LHS: MOps.Root, RHS: Mask); |
| 274 | Value *Cmp = MatchAllBitsSet ? Builder.CreateICmpEQ(LHS: And, RHS: Mask) |
| 275 | : Builder.CreateIsNotNull(Arg: And); |
| 276 | Value *Zext = Builder.CreateZExt(V: Cmp, DestTy: I.getType()); |
| 277 | I.replaceAllUsesWith(V: Zext); |
| 278 | ++NumAnyOrAllBitsSet; |
| 279 | return true; |
| 280 | } |
| 281 | |
| 282 | // Try to recognize below function as popcount intrinsic. |
| 283 | // This is the "best" algorithm from |
| 284 | // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel |
| 285 | // Also used in TargetLowering::expandCTPOP(). |
| 286 | // |
| 287 | // int popcount(unsigned int i) { |
| 288 | // i = i - ((i >> 1) & 0x55555555); |
| 289 | // i = (i & 0x33333333) + ((i >> 2) & 0x33333333); |
| 290 | // i = ((i + (i >> 4)) & 0x0F0F0F0F); |
| 291 | // return (i * 0x01010101) >> 24; |
| 292 | // } |
| 293 | static bool tryToRecognizePopCount(Instruction &I) { |
| 294 | if (I.getOpcode() != Instruction::LShr) |
| 295 | return false; |
| 296 | |
| 297 | Type *Ty = I.getType(); |
| 298 | if (!Ty->isIntOrIntVectorTy()) |
| 299 | return false; |
| 300 | |
| 301 | unsigned Len = Ty->getScalarSizeInBits(); |
| 302 | // FIXME: fix Len == 8 and other irregular type lengths. |
| 303 | if (!(Len <= 128 && Len > 8 && Len % 8 == 0)) |
| 304 | return false; |
| 305 | |
| 306 | APInt Mask55 = APInt::getSplat(NewLen: Len, V: APInt(8, 0x55)); |
| 307 | APInt Mask33 = APInt::getSplat(NewLen: Len, V: APInt(8, 0x33)); |
| 308 | APInt Mask0F = APInt::getSplat(NewLen: Len, V: APInt(8, 0x0F)); |
| 309 | APInt Mask01 = APInt::getSplat(NewLen: Len, V: APInt(8, 0x01)); |
| 310 | APInt MaskShift = APInt(Len, Len - 8); |
| 311 | |
| 312 | Value *Op0 = I.getOperand(i: 0); |
| 313 | Value *Op1 = I.getOperand(i: 1); |
| 314 | Value *MulOp0; |
| 315 | // Matching "(i * 0x01010101...) >> 24". |
| 316 | if ((match(V: Op0, P: m_Mul(L: m_Value(V&: MulOp0), R: m_SpecificInt(V: Mask01)))) && |
| 317 | match(V: Op1, P: m_SpecificInt(V: MaskShift))) { |
| 318 | Value *ShiftOp0; |
| 319 | // Matching "((i + (i >> 4)) & 0x0F0F0F0F...)". |
| 320 | if (match(V: MulOp0, P: m_And(L: m_c_Add(L: m_LShr(L: m_Value(V&: ShiftOp0), R: m_SpecificInt(V: 4)), |
| 321 | R: m_Deferred(V: ShiftOp0)), |
| 322 | R: m_SpecificInt(V: Mask0F)))) { |
| 323 | Value *AndOp0; |
| 324 | // Matching "(i & 0x33333333...) + ((i >> 2) & 0x33333333...)". |
| 325 | if (match(V: ShiftOp0, |
| 326 | P: m_c_Add(L: m_And(L: m_Value(V&: AndOp0), R: m_SpecificInt(V: Mask33)), |
| 327 | R: m_And(L: m_LShr(L: m_Deferred(V: AndOp0), R: m_SpecificInt(V: 2)), |
| 328 | R: m_SpecificInt(V: Mask33))))) { |
| 329 | Value *Root, *SubOp1; |
| 330 | // Matching "i - ((i >> 1) & 0x55555555...)". |
| 331 | const APInt *AndMask; |
| 332 | if (match(V: AndOp0, P: m_Sub(L: m_Value(V&: Root), R: m_Value(V&: SubOp1))) && |
| 333 | match(V: SubOp1, P: m_And(L: m_LShr(L: m_Specific(V: Root), R: m_SpecificInt(V: 1)), |
| 334 | R: m_APInt(Res&: AndMask)))) { |
| 335 | auto CheckAndMask = [&]() { |
| 336 | if (*AndMask == Mask55) |
| 337 | return true; |
| 338 | |
| 339 | // Exact match failed, see if any bits are known to be 0 where we |
| 340 | // expect a 1 in the mask. |
| 341 | if (!AndMask->isSubsetOf(RHS: Mask55)) |
| 342 | return false; |
| 343 | |
| 344 | APInt NeededMask = Mask55 & ~*AndMask; |
| 345 | return MaskedValueIsZero(V: cast<Instruction>(Val: SubOp1)->getOperand(i: 0), |
| 346 | Mask: NeededMask, |
| 347 | SQ: SimplifyQuery(I.getDataLayout())); |
| 348 | }; |
| 349 | |
| 350 | if (CheckAndMask()) { |
| 351 | LLVM_DEBUG(dbgs() << "Recognized popcount intrinsic\n" ); |
| 352 | IRBuilder<> Builder(&I); |
| 353 | I.replaceAllUsesWith( |
| 354 | V: Builder.CreateIntrinsic(ID: Intrinsic::ctpop, Types: I.getType(), Args: {Root})); |
| 355 | ++NumPopCountRecognized; |
| 356 | return true; |
| 357 | } |
| 358 | } |
| 359 | } |
| 360 | } |
| 361 | } |
| 362 | |
| 363 | return false; |
| 364 | } |
| 365 | |
| 366 | /// Fold smin(smax(fptosi(x), C1), C2) to llvm.fptosi.sat(x), providing C1 and |
| 367 | /// C2 saturate the value of the fp conversion. The transform is not reversable |
| 368 | /// as the fptosi.sat is more defined than the input - all values produce a |
| 369 | /// valid value for the fptosi.sat, where as some produce poison for original |
| 370 | /// that were out of range of the integer conversion. The reversed pattern may |
| 371 | /// use fmax and fmin instead. As we cannot directly reverse the transform, and |
| 372 | /// it is not always profitable, we make it conditional on the cost being |
| 373 | /// reported as lower by TTI. |
| 374 | static bool tryToFPToSat(Instruction &I, TargetTransformInfo &TTI) { |
| 375 | // Look for min(max(fptosi, converting to fptosi_sat. |
| 376 | Value *In; |
| 377 | const APInt *MinC, *MaxC; |
| 378 | if (!match(V: &I, P: m_SMax(L: m_OneUse(SubPattern: m_SMin(L: m_OneUse(SubPattern: m_FPToSI(Op: m_Value(V&: In))), |
| 379 | R: m_APInt(Res&: MinC))), |
| 380 | R: m_APInt(Res&: MaxC))) && |
| 381 | !match(V: &I, P: m_SMin(L: m_OneUse(SubPattern: m_SMax(L: m_OneUse(SubPattern: m_FPToSI(Op: m_Value(V&: In))), |
| 382 | R: m_APInt(Res&: MaxC))), |
| 383 | R: m_APInt(Res&: MinC)))) |
| 384 | return false; |
| 385 | |
| 386 | // Check that the constants clamp a saturate. |
| 387 | if (!(*MinC + 1).isPowerOf2() || -*MaxC != *MinC + 1) |
| 388 | return false; |
| 389 | |
| 390 | Type *IntTy = I.getType(); |
| 391 | Type *FpTy = In->getType(); |
| 392 | Type *SatTy = |
| 393 | IntegerType::get(C&: IntTy->getContext(), NumBits: (*MinC + 1).exactLogBase2() + 1); |
| 394 | if (auto *VecTy = dyn_cast<VectorType>(Val: IntTy)) |
| 395 | SatTy = VectorType::get(ElementType: SatTy, EC: VecTy->getElementCount()); |
| 396 | |
| 397 | // Get the cost of the intrinsic, and check that against the cost of |
| 398 | // fptosi+smin+smax |
| 399 | InstructionCost SatCost = TTI.getIntrinsicInstrCost( |
| 400 | ICA: IntrinsicCostAttributes(Intrinsic::fptosi_sat, SatTy, {In}, {FpTy}), |
| 401 | CostKind: TTI::TCK_RecipThroughput); |
| 402 | SatCost += TTI.getCastInstrCost(Opcode: Instruction::SExt, Dst: IntTy, Src: SatTy, |
| 403 | CCH: TTI::CastContextHint::None, |
| 404 | CostKind: TTI::TCK_RecipThroughput); |
| 405 | |
| 406 | InstructionCost MinMaxCost = TTI.getCastInstrCost( |
| 407 | Opcode: Instruction::FPToSI, Dst: IntTy, Src: FpTy, CCH: TTI::CastContextHint::None, |
| 408 | CostKind: TTI::TCK_RecipThroughput); |
| 409 | MinMaxCost += TTI.getIntrinsicInstrCost( |
| 410 | ICA: IntrinsicCostAttributes(Intrinsic::smin, IntTy, {IntTy}), |
| 411 | CostKind: TTI::TCK_RecipThroughput); |
| 412 | MinMaxCost += TTI.getIntrinsicInstrCost( |
| 413 | ICA: IntrinsicCostAttributes(Intrinsic::smax, IntTy, {IntTy}), |
| 414 | CostKind: TTI::TCK_RecipThroughput); |
| 415 | |
| 416 | if (SatCost >= MinMaxCost) |
| 417 | return false; |
| 418 | |
| 419 | IRBuilder<> Builder(&I); |
| 420 | Value *Sat = |
| 421 | Builder.CreateIntrinsic(ID: Intrinsic::fptosi_sat, Types: {SatTy, FpTy}, Args: In); |
| 422 | I.replaceAllUsesWith(V: Builder.CreateSExt(V: Sat, DestTy: IntTy)); |
| 423 | return true; |
| 424 | } |
| 425 | |
| 426 | /// Try to replace a mathlib call to sqrt with the LLVM intrinsic. This avoids |
| 427 | /// pessimistic codegen that has to account for setting errno and can enable |
| 428 | /// vectorization. |
| 429 | static bool foldSqrt(CallInst *Call, LibFunc Func, TargetTransformInfo &TTI, |
| 430 | TargetLibraryInfo &TLI, AssumptionCache &AC, |
| 431 | DominatorTree &DT) { |
| 432 | // If (1) this is a sqrt libcall, (2) we can assume that NAN is not created |
| 433 | // (because NNAN or the operand arg must not be less than -0.0) and (2) we |
| 434 | // would not end up lowering to a libcall anyway (which could change the value |
| 435 | // of errno), then: |
| 436 | // (1) errno won't be set. |
| 437 | // (2) it is safe to convert this to an intrinsic call. |
| 438 | Type *Ty = Call->getType(); |
| 439 | Value *Arg = Call->getArgOperand(i: 0); |
| 440 | if (TTI.haveFastSqrt(Ty) && |
| 441 | (Call->hasNoNaNs() || |
| 442 | cannotBeOrderedLessThanZero( |
| 443 | V: Arg, SQ: SimplifyQuery(Call->getDataLayout(), &TLI, &DT, &AC, Call)))) { |
| 444 | IRBuilder<> Builder(Call); |
| 445 | Value *NewSqrt = |
| 446 | Builder.CreateIntrinsic(ID: Intrinsic::sqrt, Types: Ty, Args: Arg, FMFSource: Call, Name: "sqrt" ); |
| 447 | Call->replaceAllUsesWith(V: NewSqrt); |
| 448 | |
| 449 | // Explicitly erase the old call because a call with side effects is not |
| 450 | // trivially dead. |
| 451 | Call->eraseFromParent(); |
| 452 | return true; |
| 453 | } |
| 454 | |
| 455 | return false; |
| 456 | } |
| 457 | |
| 458 | // Check if this array of constants represents a cttz table. |
| 459 | // Iterate over the elements from \p Table by trying to find/match all |
| 460 | // the numbers from 0 to \p InputBits that should represent cttz results. |
| 461 | static bool isCTTZTable(const ConstantDataArray &Table, uint64_t Mul, |
| 462 | uint64_t Shift, uint64_t InputBits) { |
| 463 | unsigned Length = Table.getNumElements(); |
| 464 | if (Length < InputBits || Length > InputBits * 2) |
| 465 | return false; |
| 466 | |
| 467 | APInt Mask = APInt::getBitsSetFrom(numBits: InputBits, loBit: Shift); |
| 468 | unsigned Matched = 0; |
| 469 | |
| 470 | for (unsigned i = 0; i < Length; i++) { |
| 471 | uint64_t Element = Table.getElementAsInteger(i); |
| 472 | if (Element >= InputBits) |
| 473 | continue; |
| 474 | |
| 475 | // Check if \p Element matches a concrete answer. It could fail for some |
| 476 | // elements that are never accessed, so we keep iterating over each element |
| 477 | // from the table. The number of matched elements should be equal to the |
| 478 | // number of potential right answers which is \p InputBits actually. |
| 479 | if ((((Mul << Element) & Mask.getZExtValue()) >> Shift) == i) |
| 480 | Matched++; |
| 481 | } |
| 482 | |
| 483 | return Matched == InputBits; |
| 484 | } |
| 485 | |
| 486 | // Try to recognize table-based ctz implementation. |
| 487 | // E.g., an example in C (for more cases please see the llvm/tests): |
| 488 | // int f(unsigned x) { |
| 489 | // static const char table[32] = |
| 490 | // {0, 1, 28, 2, 29, 14, 24, 3, 30, |
| 491 | // 22, 20, 15, 25, 17, 4, 8, 31, 27, |
| 492 | // 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9}; |
| 493 | // return table[((unsigned)((x & -x) * 0x077CB531U)) >> 27]; |
| 494 | // } |
| 495 | // this can be lowered to `cttz` instruction. |
| 496 | // There is also a special case when the element is 0. |
| 497 | // |
| 498 | // Here are some examples or LLVM IR for a 64-bit target: |
| 499 | // |
| 500 | // CASE 1: |
| 501 | // %sub = sub i32 0, %x |
| 502 | // %and = and i32 %sub, %x |
| 503 | // %mul = mul i32 %and, 125613361 |
| 504 | // %shr = lshr i32 %mul, 27 |
| 505 | // %idxprom = zext i32 %shr to i64 |
| 506 | // %arrayidx = getelementptr inbounds [32 x i8], [32 x i8]* @ctz1.table, i64 0, |
| 507 | // i64 %idxprom |
| 508 | // %0 = load i8, i8* %arrayidx, align 1, !tbaa !8 |
| 509 | // |
| 510 | // CASE 2: |
| 511 | // %sub = sub i32 0, %x |
| 512 | // %and = and i32 %sub, %x |
| 513 | // %mul = mul i32 %and, 72416175 |
| 514 | // %shr = lshr i32 %mul, 26 |
| 515 | // %idxprom = zext i32 %shr to i64 |
| 516 | // %arrayidx = getelementptr inbounds [64 x i16], [64 x i16]* @ctz2.table, |
| 517 | // i64 0, i64 %idxprom |
| 518 | // %0 = load i16, i16* %arrayidx, align 2, !tbaa !8 |
| 519 | // |
| 520 | // CASE 3: |
| 521 | // %sub = sub i32 0, %x |
| 522 | // %and = and i32 %sub, %x |
| 523 | // %mul = mul i32 %and, 81224991 |
| 524 | // %shr = lshr i32 %mul, 27 |
| 525 | // %idxprom = zext i32 %shr to i64 |
| 526 | // %arrayidx = getelementptr inbounds [32 x i32], [32 x i32]* @ctz3.table, |
| 527 | // i64 0, i64 %idxprom |
| 528 | // %0 = load i32, i32* %arrayidx, align 4, !tbaa !8 |
| 529 | // |
| 530 | // CASE 4: |
| 531 | // %sub = sub i64 0, %x |
| 532 | // %and = and i64 %sub, %x |
| 533 | // %mul = mul i64 %and, 283881067100198605 |
| 534 | // %shr = lshr i64 %mul, 58 |
| 535 | // %arrayidx = getelementptr inbounds [64 x i8], [64 x i8]* @table, i64 0, |
| 536 | // i64 %shr |
| 537 | // %0 = load i8, i8* %arrayidx, align 1, !tbaa !8 |
| 538 | // |
| 539 | // All this can be lowered to @llvm.cttz.i32/64 intrinsic. |
| 540 | static bool tryToRecognizeTableBasedCttz(Instruction &I) { |
| 541 | LoadInst *LI = dyn_cast<LoadInst>(Val: &I); |
| 542 | if (!LI) |
| 543 | return false; |
| 544 | |
| 545 | Type *AccessType = LI->getType(); |
| 546 | if (!AccessType->isIntegerTy()) |
| 547 | return false; |
| 548 | |
| 549 | GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Val: LI->getPointerOperand()); |
| 550 | if (!GEP || !GEP->hasNoUnsignedSignedWrap() || GEP->getNumIndices() != 2) |
| 551 | return false; |
| 552 | |
| 553 | if (!GEP->getSourceElementType()->isArrayTy()) |
| 554 | return false; |
| 555 | |
| 556 | uint64_t ArraySize = GEP->getSourceElementType()->getArrayNumElements(); |
| 557 | if (ArraySize != 32 && ArraySize != 64) |
| 558 | return false; |
| 559 | |
| 560 | GlobalVariable *GVTable = dyn_cast<GlobalVariable>(Val: GEP->getPointerOperand()); |
| 561 | if (!GVTable || !GVTable->hasInitializer() || !GVTable->isConstant()) |
| 562 | return false; |
| 563 | |
| 564 | ConstantDataArray *ConstData = |
| 565 | dyn_cast<ConstantDataArray>(Val: GVTable->getInitializer()); |
| 566 | if (!ConstData) |
| 567 | return false; |
| 568 | |
| 569 | if (!match(V: GEP->idx_begin()->get(), P: m_ZeroInt())) |
| 570 | return false; |
| 571 | |
| 572 | Value *Idx2 = std::next(x: GEP->idx_begin())->get(); |
| 573 | Value *X1; |
| 574 | uint64_t MulConst, ShiftConst; |
| 575 | // FIXME: 64-bit targets have `i64` type for the GEP index, so this match will |
| 576 | // probably fail for other (e.g. 32-bit) targets. |
| 577 | if (!match(V: Idx2, P: m_ZExtOrSelf( |
| 578 | Op: m_LShr(L: m_Mul(L: m_c_And(L: m_Neg(V: m_Value(V&: X1)), R: m_Deferred(V: X1)), |
| 579 | R: m_ConstantInt(V&: MulConst)), |
| 580 | R: m_ConstantInt(V&: ShiftConst))))) |
| 581 | return false; |
| 582 | |
| 583 | unsigned InputBits = X1->getType()->getScalarSizeInBits(); |
| 584 | if (InputBits != 32 && InputBits != 64) |
| 585 | return false; |
| 586 | |
| 587 | // Shift should extract top 5..7 bits. |
| 588 | if (InputBits - Log2_32(Value: InputBits) != ShiftConst && |
| 589 | InputBits - Log2_32(Value: InputBits) - 1 != ShiftConst) |
| 590 | return false; |
| 591 | |
| 592 | if (!isCTTZTable(Table: *ConstData, Mul: MulConst, Shift: ShiftConst, InputBits)) |
| 593 | return false; |
| 594 | |
| 595 | auto ZeroTableElem = ConstData->getElementAsInteger(i: 0); |
| 596 | bool DefinedForZero = ZeroTableElem == InputBits; |
| 597 | |
| 598 | IRBuilder<> B(LI); |
| 599 | ConstantInt *BoolConst = B.getInt1(V: !DefinedForZero); |
| 600 | Type *XType = X1->getType(); |
| 601 | auto Cttz = B.CreateIntrinsic(ID: Intrinsic::cttz, Types: {XType}, Args: {X1, BoolConst}); |
| 602 | Value *ZExtOrTrunc = nullptr; |
| 603 | |
| 604 | if (DefinedForZero) { |
| 605 | ZExtOrTrunc = B.CreateZExtOrTrunc(V: Cttz, DestTy: AccessType); |
| 606 | } else { |
| 607 | // If the value in elem 0 isn't the same as InputBits, we still want to |
| 608 | // produce the value from the table. |
| 609 | auto Cmp = B.CreateICmpEQ(LHS: X1, RHS: ConstantInt::get(Ty: XType, V: 0)); |
| 610 | auto Select = |
| 611 | B.CreateSelect(C: Cmp, True: ConstantInt::get(Ty: XType, V: ZeroTableElem), False: Cttz); |
| 612 | |
| 613 | // NOTE: If the table[0] is 0, but the cttz(0) is defined by the Target |
| 614 | // it should be handled as: `cttz(x) & (typeSize - 1)`. |
| 615 | |
| 616 | ZExtOrTrunc = B.CreateZExtOrTrunc(V: Select, DestTy: AccessType); |
| 617 | } |
| 618 | |
| 619 | LI->replaceAllUsesWith(V: ZExtOrTrunc); |
| 620 | |
| 621 | return true; |
| 622 | } |
| 623 | |
| 624 | /// This is used by foldLoadsRecursive() to capture a Root Load node which is |
| 625 | /// of type or(load, load) and recursively build the wide load. Also capture the |
| 626 | /// shift amount, zero extend type and loadSize. |
| 627 | struct LoadOps { |
| 628 | LoadInst *Root = nullptr; |
| 629 | LoadInst *RootInsert = nullptr; |
| 630 | bool FoundRoot = false; |
| 631 | uint64_t LoadSize = 0; |
| 632 | const APInt *Shift = nullptr; |
| 633 | Type *ZextType; |
| 634 | AAMDNodes AATags; |
| 635 | }; |
| 636 | |
| 637 | // Identify and Merge consecutive loads recursively which is of the form |
| 638 | // (ZExt(L1) << shift1) | (ZExt(L2) << shift2) -> ZExt(L3) << shift1 |
| 639 | // (ZExt(L1) << shift1) | ZExt(L2) -> ZExt(L3) |
| 640 | static bool foldLoadsRecursive(Value *V, LoadOps &LOps, const DataLayout &DL, |
| 641 | AliasAnalysis &AA) { |
| 642 | const APInt *ShAmt2 = nullptr; |
| 643 | Value *X; |
| 644 | Instruction *L1, *L2; |
| 645 | |
| 646 | // Go to the last node with loads. |
| 647 | if (match(V, P: m_OneUse(SubPattern: m_c_Or( |
| 648 | L: m_Value(V&: X), |
| 649 | R: m_OneUse(SubPattern: m_Shl(L: m_OneUse(SubPattern: m_ZExt(Op: m_OneUse(SubPattern: m_Instruction(I&: L2)))), |
| 650 | R: m_APInt(Res&: ShAmt2)))))) || |
| 651 | match(V, P: m_OneUse(SubPattern: m_Or(L: m_Value(V&: X), |
| 652 | R: m_OneUse(SubPattern: m_ZExt(Op: m_OneUse(SubPattern: m_Instruction(I&: L2)))))))) { |
| 653 | if (!foldLoadsRecursive(V: X, LOps, DL, AA) && LOps.FoundRoot) |
| 654 | // Avoid Partial chain merge. |
| 655 | return false; |
| 656 | } else |
| 657 | return false; |
| 658 | |
| 659 | // Check if the pattern has loads |
| 660 | LoadInst *LI1 = LOps.Root; |
| 661 | const APInt *ShAmt1 = LOps.Shift; |
| 662 | if (LOps.FoundRoot == false && |
| 663 | (match(V: X, P: m_OneUse(SubPattern: m_ZExt(Op: m_Instruction(I&: L1)))) || |
| 664 | match(V: X, P: m_OneUse(SubPattern: m_Shl(L: m_OneUse(SubPattern: m_ZExt(Op: m_OneUse(SubPattern: m_Instruction(I&: L1)))), |
| 665 | R: m_APInt(Res&: ShAmt1)))))) { |
| 666 | LI1 = dyn_cast<LoadInst>(Val: L1); |
| 667 | } |
| 668 | LoadInst *LI2 = dyn_cast<LoadInst>(Val: L2); |
| 669 | |
| 670 | // Check if loads are same, atomic, volatile and having same address space. |
| 671 | if (LI1 == LI2 || !LI1 || !LI2 || !LI1->isSimple() || !LI2->isSimple() || |
| 672 | LI1->getPointerAddressSpace() != LI2->getPointerAddressSpace()) |
| 673 | return false; |
| 674 | |
| 675 | // Check if Loads come from same BB. |
| 676 | if (LI1->getParent() != LI2->getParent()) |
| 677 | return false; |
| 678 | |
| 679 | // Find the data layout |
| 680 | bool IsBigEndian = DL.isBigEndian(); |
| 681 | |
| 682 | // Check if loads are consecutive and same size. |
| 683 | Value *Load1Ptr = LI1->getPointerOperand(); |
| 684 | APInt Offset1(DL.getIndexTypeSizeInBits(Ty: Load1Ptr->getType()), 0); |
| 685 | Load1Ptr = |
| 686 | Load1Ptr->stripAndAccumulateConstantOffsets(DL, Offset&: Offset1, |
| 687 | /* AllowNonInbounds */ true); |
| 688 | |
| 689 | Value *Load2Ptr = LI2->getPointerOperand(); |
| 690 | APInt Offset2(DL.getIndexTypeSizeInBits(Ty: Load2Ptr->getType()), 0); |
| 691 | Load2Ptr = |
| 692 | Load2Ptr->stripAndAccumulateConstantOffsets(DL, Offset&: Offset2, |
| 693 | /* AllowNonInbounds */ true); |
| 694 | |
| 695 | // Verify if both loads have same base pointers |
| 696 | uint64_t LoadSize1 = LI1->getType()->getPrimitiveSizeInBits(); |
| 697 | uint64_t LoadSize2 = LI2->getType()->getPrimitiveSizeInBits(); |
| 698 | if (Load1Ptr != Load2Ptr) |
| 699 | return false; |
| 700 | |
| 701 | // Make sure that there are no padding bits. |
| 702 | if (!DL.typeSizeEqualsStoreSize(Ty: LI1->getType()) || |
| 703 | !DL.typeSizeEqualsStoreSize(Ty: LI2->getType())) |
| 704 | return false; |
| 705 | |
| 706 | // Alias Analysis to check for stores b/w the loads. |
| 707 | LoadInst *Start = LOps.FoundRoot ? LOps.RootInsert : LI1, *End = LI2; |
| 708 | MemoryLocation Loc; |
| 709 | if (!Start->comesBefore(Other: End)) { |
| 710 | std::swap(a&: Start, b&: End); |
| 711 | Loc = MemoryLocation::get(LI: End); |
| 712 | if (LOps.FoundRoot) |
| 713 | Loc = Loc.getWithNewSize(NewSize: LOps.LoadSize); |
| 714 | } else |
| 715 | Loc = MemoryLocation::get(LI: End); |
| 716 | unsigned NumScanned = 0; |
| 717 | for (Instruction &Inst : |
| 718 | make_range(x: Start->getIterator(), y: End->getIterator())) { |
| 719 | if (Inst.mayWriteToMemory() && isModSet(MRI: AA.getModRefInfo(I: &Inst, OptLoc: Loc))) |
| 720 | return false; |
| 721 | |
| 722 | if (++NumScanned > MaxInstrsToScan) |
| 723 | return false; |
| 724 | } |
| 725 | |
| 726 | // Make sure Load with lower Offset is at LI1 |
| 727 | bool Reverse = false; |
| 728 | if (Offset2.slt(RHS: Offset1)) { |
| 729 | std::swap(a&: LI1, b&: LI2); |
| 730 | std::swap(a&: ShAmt1, b&: ShAmt2); |
| 731 | std::swap(a&: Offset1, b&: Offset2); |
| 732 | std::swap(a&: Load1Ptr, b&: Load2Ptr); |
| 733 | std::swap(a&: LoadSize1, b&: LoadSize2); |
| 734 | Reverse = true; |
| 735 | } |
| 736 | |
| 737 | // Big endian swap the shifts |
| 738 | if (IsBigEndian) |
| 739 | std::swap(a&: ShAmt1, b&: ShAmt2); |
| 740 | |
| 741 | // Find Shifts values. |
| 742 | uint64_t Shift1 = 0, Shift2 = 0; |
| 743 | if (ShAmt1) |
| 744 | Shift1 = ShAmt1->getZExtValue(); |
| 745 | if (ShAmt2) |
| 746 | Shift2 = ShAmt2->getZExtValue(); |
| 747 | |
| 748 | // First load is always LI1. This is where we put the new load. |
| 749 | // Use the merged load size available from LI1 for forward loads. |
| 750 | if (LOps.FoundRoot) { |
| 751 | if (!Reverse) |
| 752 | LoadSize1 = LOps.LoadSize; |
| 753 | else |
| 754 | LoadSize2 = LOps.LoadSize; |
| 755 | } |
| 756 | |
| 757 | // Verify if shift amount and load index aligns and verifies that loads |
| 758 | // are consecutive. |
| 759 | uint64_t ShiftDiff = IsBigEndian ? LoadSize2 : LoadSize1; |
| 760 | uint64_t PrevSize = |
| 761 | DL.getTypeStoreSize(Ty: IntegerType::get(C&: LI1->getContext(), NumBits: LoadSize1)); |
| 762 | if ((Shift2 - Shift1) != ShiftDiff || (Offset2 - Offset1) != PrevSize) |
| 763 | return false; |
| 764 | |
| 765 | // Update LOps |
| 766 | AAMDNodes AATags1 = LOps.AATags; |
| 767 | AAMDNodes AATags2 = LI2->getAAMetadata(); |
| 768 | if (LOps.FoundRoot == false) { |
| 769 | LOps.FoundRoot = true; |
| 770 | AATags1 = LI1->getAAMetadata(); |
| 771 | } |
| 772 | LOps.LoadSize = LoadSize1 + LoadSize2; |
| 773 | LOps.RootInsert = Start; |
| 774 | |
| 775 | // Concatenate the AATags of the Merged Loads. |
| 776 | LOps.AATags = AATags1.concat(Other: AATags2); |
| 777 | |
| 778 | LOps.Root = LI1; |
| 779 | LOps.Shift = ShAmt1; |
| 780 | LOps.ZextType = X->getType(); |
| 781 | return true; |
| 782 | } |
| 783 | |
| 784 | // For a given BB instruction, evaluate all loads in the chain that form a |
| 785 | // pattern which suggests that the loads can be combined. The one and only use |
| 786 | // of the loads is to form a wider load. |
| 787 | static bool foldConsecutiveLoads(Instruction &I, const DataLayout &DL, |
| 788 | TargetTransformInfo &TTI, AliasAnalysis &AA, |
| 789 | const DominatorTree &DT) { |
| 790 | // Only consider load chains of scalar values. |
| 791 | if (isa<VectorType>(Val: I.getType())) |
| 792 | return false; |
| 793 | |
| 794 | LoadOps LOps; |
| 795 | if (!foldLoadsRecursive(V: &I, LOps, DL, AA) || !LOps.FoundRoot) |
| 796 | return false; |
| 797 | |
| 798 | IRBuilder<> Builder(&I); |
| 799 | LoadInst *NewLoad = nullptr, *LI1 = LOps.Root; |
| 800 | |
| 801 | IntegerType *WiderType = IntegerType::get(C&: I.getContext(), NumBits: LOps.LoadSize); |
| 802 | // TTI based checks if we want to proceed with wider load |
| 803 | bool Allowed = TTI.isTypeLegal(Ty: WiderType); |
| 804 | if (!Allowed) |
| 805 | return false; |
| 806 | |
| 807 | unsigned AS = LI1->getPointerAddressSpace(); |
| 808 | unsigned Fast = 0; |
| 809 | Allowed = TTI.allowsMisalignedMemoryAccesses(Context&: I.getContext(), BitWidth: LOps.LoadSize, |
| 810 | AddressSpace: AS, Alignment: LI1->getAlign(), Fast: &Fast); |
| 811 | if (!Allowed || !Fast) |
| 812 | return false; |
| 813 | |
| 814 | // Get the Index and Ptr for the new GEP. |
| 815 | Value *Load1Ptr = LI1->getPointerOperand(); |
| 816 | Builder.SetInsertPoint(LOps.RootInsert); |
| 817 | if (!DT.dominates(Def: Load1Ptr, User: LOps.RootInsert)) { |
| 818 | APInt Offset1(DL.getIndexTypeSizeInBits(Ty: Load1Ptr->getType()), 0); |
| 819 | Load1Ptr = Load1Ptr->stripAndAccumulateConstantOffsets( |
| 820 | DL, Offset&: Offset1, /* AllowNonInbounds */ true); |
| 821 | Load1Ptr = Builder.CreatePtrAdd(Ptr: Load1Ptr, Offset: Builder.getInt(AI: Offset1)); |
| 822 | } |
| 823 | // Generate wider load. |
| 824 | NewLoad = Builder.CreateAlignedLoad(Ty: WiderType, Ptr: Load1Ptr, Align: LI1->getAlign(), |
| 825 | isVolatile: LI1->isVolatile(), Name: "" ); |
| 826 | NewLoad->takeName(V: LI1); |
| 827 | // Set the New Load AATags Metadata. |
| 828 | if (LOps.AATags) |
| 829 | NewLoad->setAAMetadata(LOps.AATags); |
| 830 | |
| 831 | Value *NewOp = NewLoad; |
| 832 | // Check if zero extend needed. |
| 833 | if (LOps.ZextType) |
| 834 | NewOp = Builder.CreateZExt(V: NewOp, DestTy: LOps.ZextType); |
| 835 | |
| 836 | // Check if shift needed. We need to shift with the amount of load1 |
| 837 | // shift if not zero. |
| 838 | if (LOps.Shift) |
| 839 | NewOp = Builder.CreateShl(LHS: NewOp, RHS: ConstantInt::get(Context&: I.getContext(), V: *LOps.Shift)); |
| 840 | I.replaceAllUsesWith(V: NewOp); |
| 841 | |
| 842 | return true; |
| 843 | } |
| 844 | |
| 845 | /// Combine away instructions providing they are still equivalent when compared |
| 846 | /// against 0. i.e do they have any bits set. |
| 847 | static Value *optimizeShiftInOrChain(Value *V, IRBuilder<> &Builder) { |
| 848 | auto *I = dyn_cast<Instruction>(Val: V); |
| 849 | if (!I || I->getOpcode() != Instruction::Or || !I->hasOneUse()) |
| 850 | return nullptr; |
| 851 | |
| 852 | Value *A; |
| 853 | |
| 854 | // Look deeper into the chain of or's, combining away shl (so long as they are |
| 855 | // nuw or nsw). |
| 856 | Value *Op0 = I->getOperand(i: 0); |
| 857 | if (match(V: Op0, P: m_CombineOr(L: m_NSWShl(L: m_Value(V&: A), R: m_Value()), |
| 858 | R: m_NUWShl(L: m_Value(V&: A), R: m_Value())))) |
| 859 | Op0 = A; |
| 860 | else if (auto *NOp = optimizeShiftInOrChain(V: Op0, Builder)) |
| 861 | Op0 = NOp; |
| 862 | |
| 863 | Value *Op1 = I->getOperand(i: 1); |
| 864 | if (match(V: Op1, P: m_CombineOr(L: m_NSWShl(L: m_Value(V&: A), R: m_Value()), |
| 865 | R: m_NUWShl(L: m_Value(V&: A), R: m_Value())))) |
| 866 | Op1 = A; |
| 867 | else if (auto *NOp = optimizeShiftInOrChain(V: Op1, Builder)) |
| 868 | Op1 = NOp; |
| 869 | |
| 870 | if (Op0 != I->getOperand(i: 0) || Op1 != I->getOperand(i: 1)) |
| 871 | return Builder.CreateOr(LHS: Op0, RHS: Op1); |
| 872 | return nullptr; |
| 873 | } |
| 874 | |
| 875 | static bool foldICmpOrChain(Instruction &I, const DataLayout &DL, |
| 876 | TargetTransformInfo &TTI, AliasAnalysis &AA, |
| 877 | const DominatorTree &DT) { |
| 878 | CmpPredicate Pred; |
| 879 | Value *Op0; |
| 880 | if (!match(V: &I, P: m_ICmp(Pred, L: m_Value(V&: Op0), R: m_Zero())) || |
| 881 | !ICmpInst::isEquality(P: Pred)) |
| 882 | return false; |
| 883 | |
| 884 | // If the chain or or's matches a load, combine to that before attempting to |
| 885 | // remove shifts. |
| 886 | if (auto OpI = dyn_cast<Instruction>(Val: Op0)) |
| 887 | if (OpI->getOpcode() == Instruction::Or) |
| 888 | if (foldConsecutiveLoads(I&: *OpI, DL, TTI, AA, DT)) |
| 889 | return true; |
| 890 | |
| 891 | IRBuilder<> Builder(&I); |
| 892 | // icmp eq/ne or(shl(a), b), 0 -> icmp eq/ne or(a, b), 0 |
| 893 | if (auto *Res = optimizeShiftInOrChain(V: Op0, Builder)) { |
| 894 | I.replaceAllUsesWith(V: Builder.CreateICmp(P: Pred, LHS: Res, RHS: I.getOperand(i: 1))); |
| 895 | return true; |
| 896 | } |
| 897 | |
| 898 | return false; |
| 899 | } |
| 900 | |
| 901 | // Calculate GEP Stride and accumulated const ModOffset. Return Stride and |
| 902 | // ModOffset |
| 903 | static std::pair<APInt, APInt> |
| 904 | getStrideAndModOffsetOfGEP(Value *PtrOp, const DataLayout &DL) { |
| 905 | unsigned BW = DL.getIndexTypeSizeInBits(Ty: PtrOp->getType()); |
| 906 | std::optional<APInt> Stride; |
| 907 | APInt ModOffset(BW, 0); |
| 908 | // Return a minimum gep stride, greatest common divisor of consective gep |
| 909 | // index scales(c.f. Bézout's identity). |
| 910 | while (auto *GEP = dyn_cast<GEPOperator>(Val: PtrOp)) { |
| 911 | SmallMapVector<Value *, APInt, 4> VarOffsets; |
| 912 | if (!GEP->collectOffset(DL, BitWidth: BW, VariableOffsets&: VarOffsets, ConstantOffset&: ModOffset)) |
| 913 | break; |
| 914 | |
| 915 | for (auto [V, Scale] : VarOffsets) { |
| 916 | // Only keep a power of two factor for non-inbounds |
| 917 | if (!GEP->hasNoUnsignedSignedWrap()) |
| 918 | Scale = APInt::getOneBitSet(numBits: Scale.getBitWidth(), BitNo: Scale.countr_zero()); |
| 919 | |
| 920 | if (!Stride) |
| 921 | Stride = Scale; |
| 922 | else |
| 923 | Stride = APIntOps::GreatestCommonDivisor(A: *Stride, B: Scale); |
| 924 | } |
| 925 | |
| 926 | PtrOp = GEP->getPointerOperand(); |
| 927 | } |
| 928 | |
| 929 | // Check whether pointer arrives back at Global Variable via at least one GEP. |
| 930 | // Even if it doesn't, we can check by alignment. |
| 931 | if (!isa<GlobalVariable>(Val: PtrOp) || !Stride) |
| 932 | return {APInt(BW, 1), APInt(BW, 0)}; |
| 933 | |
| 934 | // In consideration of signed GEP indices, non-negligible offset become |
| 935 | // remainder of division by minimum GEP stride. |
| 936 | ModOffset = ModOffset.srem(RHS: *Stride); |
| 937 | if (ModOffset.isNegative()) |
| 938 | ModOffset += *Stride; |
| 939 | |
| 940 | return {*Stride, ModOffset}; |
| 941 | } |
| 942 | |
| 943 | /// If C is a constant patterned array and all valid loaded results for given |
| 944 | /// alignment are same to a constant, return that constant. |
| 945 | static bool foldPatternedLoads(Instruction &I, const DataLayout &DL) { |
| 946 | auto *LI = dyn_cast<LoadInst>(Val: &I); |
| 947 | if (!LI || LI->isVolatile()) |
| 948 | return false; |
| 949 | |
| 950 | // We can only fold the load if it is from a constant global with definitive |
| 951 | // initializer. Skip expensive logic if this is not the case. |
| 952 | auto *PtrOp = LI->getPointerOperand(); |
| 953 | auto *GV = dyn_cast<GlobalVariable>(Val: getUnderlyingObject(V: PtrOp)); |
| 954 | if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) |
| 955 | return false; |
| 956 | |
| 957 | // Bail for large initializers in excess of 4K to avoid too many scans. |
| 958 | Constant *C = GV->getInitializer(); |
| 959 | uint64_t GVSize = DL.getTypeAllocSize(Ty: C->getType()); |
| 960 | if (!GVSize || 4096 < GVSize) |
| 961 | return false; |
| 962 | |
| 963 | Type *LoadTy = LI->getType(); |
| 964 | unsigned BW = DL.getIndexTypeSizeInBits(Ty: PtrOp->getType()); |
| 965 | auto [Stride, ConstOffset] = getStrideAndModOffsetOfGEP(PtrOp, DL); |
| 966 | |
| 967 | // Any possible offset could be multiple of GEP stride. And any valid |
| 968 | // offset is multiple of load alignment, so checking only multiples of bigger |
| 969 | // one is sufficient to say results' equality. |
| 970 | if (auto LA = LI->getAlign(); |
| 971 | LA <= GV->getAlign().valueOrOne() && Stride.getZExtValue() < LA.value()) { |
| 972 | ConstOffset = APInt(BW, 0); |
| 973 | Stride = APInt(BW, LA.value()); |
| 974 | } |
| 975 | |
| 976 | Constant *Ca = ConstantFoldLoadFromConst(C, Ty: LoadTy, Offset: ConstOffset, DL); |
| 977 | if (!Ca) |
| 978 | return false; |
| 979 | |
| 980 | unsigned E = GVSize - DL.getTypeStoreSize(Ty: LoadTy); |
| 981 | for (; ConstOffset.getZExtValue() <= E; ConstOffset += Stride) |
| 982 | if (Ca != ConstantFoldLoadFromConst(C, Ty: LoadTy, Offset: ConstOffset, DL)) |
| 983 | return false; |
| 984 | |
| 985 | I.replaceAllUsesWith(V: Ca); |
| 986 | |
| 987 | return true; |
| 988 | } |
| 989 | |
| 990 | namespace { |
| 991 | class StrNCmpInliner { |
| 992 | public: |
| 993 | StrNCmpInliner(CallInst *CI, LibFunc Func, DomTreeUpdater *DTU, |
| 994 | const DataLayout &DL) |
| 995 | : CI(CI), Func(Func), DTU(DTU), DL(DL) {} |
| 996 | |
| 997 | bool optimizeStrNCmp(); |
| 998 | |
| 999 | private: |
| 1000 | void inlineCompare(Value *LHS, StringRef RHS, uint64_t N, bool Swapped); |
| 1001 | |
| 1002 | CallInst *CI; |
| 1003 | LibFunc Func; |
| 1004 | DomTreeUpdater *DTU; |
| 1005 | const DataLayout &DL; |
| 1006 | }; |
| 1007 | |
| 1008 | } // namespace |
| 1009 | |
| 1010 | /// First we normalize calls to strncmp/strcmp to the form of |
| 1011 | /// compare(s1, s2, N), which means comparing first N bytes of s1 and s2 |
| 1012 | /// (without considering '\0'). |
| 1013 | /// |
| 1014 | /// Examples: |
| 1015 | /// |
| 1016 | /// \code |
| 1017 | /// strncmp(s, "a", 3) -> compare(s, "a", 2) |
| 1018 | /// strncmp(s, "abc", 3) -> compare(s, "abc", 3) |
| 1019 | /// strncmp(s, "a\0b", 3) -> compare(s, "a\0b", 2) |
| 1020 | /// strcmp(s, "a") -> compare(s, "a", 2) |
| 1021 | /// |
| 1022 | /// char s2[] = {'a'} |
| 1023 | /// strncmp(s, s2, 3) -> compare(s, s2, 3) |
| 1024 | /// |
| 1025 | /// char s2[] = {'a', 'b', 'c', 'd'} |
| 1026 | /// strncmp(s, s2, 3) -> compare(s, s2, 3) |
| 1027 | /// \endcode |
| 1028 | /// |
| 1029 | /// We only handle cases where N and exactly one of s1 and s2 are constant. |
| 1030 | /// Cases that s1 and s2 are both constant are already handled by the |
| 1031 | /// instcombine pass. |
| 1032 | /// |
| 1033 | /// We do not handle cases where N > StrNCmpInlineThreshold. |
| 1034 | /// |
| 1035 | /// We also do not handles cases where N < 2, which are already |
| 1036 | /// handled by the instcombine pass. |
| 1037 | /// |
| 1038 | bool StrNCmpInliner::optimizeStrNCmp() { |
| 1039 | if (StrNCmpInlineThreshold < 2) |
| 1040 | return false; |
| 1041 | |
| 1042 | if (!isOnlyUsedInZeroComparison(CxtI: CI)) |
| 1043 | return false; |
| 1044 | |
| 1045 | Value *Str1P = CI->getArgOperand(i: 0); |
| 1046 | Value *Str2P = CI->getArgOperand(i: 1); |
| 1047 | // Should be handled elsewhere. |
| 1048 | if (Str1P == Str2P) |
| 1049 | return false; |
| 1050 | |
| 1051 | StringRef Str1, Str2; |
| 1052 | bool HasStr1 = getConstantStringInfo(V: Str1P, Str&: Str1, /*TrimAtNul=*/false); |
| 1053 | bool HasStr2 = getConstantStringInfo(V: Str2P, Str&: Str2, /*TrimAtNul=*/false); |
| 1054 | if (HasStr1 == HasStr2) |
| 1055 | return false; |
| 1056 | |
| 1057 | // Note that '\0' and characters after it are not trimmed. |
| 1058 | StringRef Str = HasStr1 ? Str1 : Str2; |
| 1059 | Value *StrP = HasStr1 ? Str2P : Str1P; |
| 1060 | |
| 1061 | size_t Idx = Str.find(C: '\0'); |
| 1062 | uint64_t N = Idx == StringRef::npos ? UINT64_MAX : Idx + 1; |
| 1063 | if (Func == LibFunc_strncmp) { |
| 1064 | if (auto *ConstInt = dyn_cast<ConstantInt>(Val: CI->getArgOperand(i: 2))) |
| 1065 | N = std::min(a: N, b: ConstInt->getZExtValue()); |
| 1066 | else |
| 1067 | return false; |
| 1068 | } |
| 1069 | // Now N means how many bytes we need to compare at most. |
| 1070 | if (N > Str.size() || N < 2 || N > StrNCmpInlineThreshold) |
| 1071 | return false; |
| 1072 | |
| 1073 | // Cases where StrP has two or more dereferenceable bytes might be better |
| 1074 | // optimized elsewhere. |
| 1075 | bool CanBeNull = false, CanBeFreed = false; |
| 1076 | if (StrP->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed) > 1) |
| 1077 | return false; |
| 1078 | inlineCompare(LHS: StrP, RHS: Str, N, Swapped: HasStr1); |
| 1079 | return true; |
| 1080 | } |
| 1081 | |
| 1082 | /// Convert |
| 1083 | /// |
| 1084 | /// \code |
| 1085 | /// ret = compare(s1, s2, N) |
| 1086 | /// \endcode |
| 1087 | /// |
| 1088 | /// into |
| 1089 | /// |
| 1090 | /// \code |
| 1091 | /// ret = (int)s1[0] - (int)s2[0] |
| 1092 | /// if (ret != 0) |
| 1093 | /// goto NE |
| 1094 | /// ... |
| 1095 | /// ret = (int)s1[N-2] - (int)s2[N-2] |
| 1096 | /// if (ret != 0) |
| 1097 | /// goto NE |
| 1098 | /// ret = (int)s1[N-1] - (int)s2[N-1] |
| 1099 | /// NE: |
| 1100 | /// \endcode |
| 1101 | /// |
| 1102 | /// CFG before and after the transformation: |
| 1103 | /// |
| 1104 | /// (before) |
| 1105 | /// BBCI |
| 1106 | /// |
| 1107 | /// (after) |
| 1108 | /// BBCI -> BBSubs[0] (sub,icmp) --NE-> BBNE -> BBTail |
| 1109 | /// | ^ |
| 1110 | /// E | |
| 1111 | /// | | |
| 1112 | /// BBSubs[1] (sub,icmp) --NE-----+ |
| 1113 | /// ... | |
| 1114 | /// BBSubs[N-1] (sub) ---------+ |
| 1115 | /// |
| 1116 | void StrNCmpInliner::inlineCompare(Value *LHS, StringRef RHS, uint64_t N, |
| 1117 | bool Swapped) { |
| 1118 | auto &Ctx = CI->getContext(); |
| 1119 | IRBuilder<> B(Ctx); |
| 1120 | // We want these instructions to be recognized as inlined instructions for the |
| 1121 | // compare call, but we don't have a source location for the definition of |
| 1122 | // that function, since we're generating that code now. Because the generated |
| 1123 | // code is a viable point for a memory access error, we make the pragmatic |
| 1124 | // choice here to directly use CI's location so that we have useful |
| 1125 | // attribution for the generated code. |
| 1126 | B.SetCurrentDebugLocation(CI->getDebugLoc()); |
| 1127 | |
| 1128 | BasicBlock *BBCI = CI->getParent(); |
| 1129 | BasicBlock *BBTail = |
| 1130 | SplitBlock(Old: BBCI, SplitPt: CI, DTU, LI: nullptr, MSSAU: nullptr, BBName: BBCI->getName() + ".tail" ); |
| 1131 | |
| 1132 | SmallVector<BasicBlock *> BBSubs; |
| 1133 | for (uint64_t I = 0; I < N; ++I) |
| 1134 | BBSubs.push_back( |
| 1135 | Elt: BasicBlock::Create(Context&: Ctx, Name: "sub_" + Twine(I), Parent: BBCI->getParent(), InsertBefore: BBTail)); |
| 1136 | BasicBlock *BBNE = BasicBlock::Create(Context&: Ctx, Name: "ne" , Parent: BBCI->getParent(), InsertBefore: BBTail); |
| 1137 | |
| 1138 | cast<BranchInst>(Val: BBCI->getTerminator())->setSuccessor(idx: 0, NewSucc: BBSubs[0]); |
| 1139 | |
| 1140 | B.SetInsertPoint(BBNE); |
| 1141 | PHINode *Phi = B.CreatePHI(Ty: CI->getType(), NumReservedValues: N); |
| 1142 | B.CreateBr(Dest: BBTail); |
| 1143 | |
| 1144 | Value *Base = LHS; |
| 1145 | for (uint64_t i = 0; i < N; ++i) { |
| 1146 | B.SetInsertPoint(BBSubs[i]); |
| 1147 | Value *VL = |
| 1148 | B.CreateZExt(V: B.CreateLoad(Ty: B.getInt8Ty(), |
| 1149 | Ptr: B.CreateInBoundsPtrAdd(Ptr: Base, Offset: B.getInt64(C: i))), |
| 1150 | DestTy: CI->getType()); |
| 1151 | Value *VR = |
| 1152 | ConstantInt::get(Ty: CI->getType(), V: static_cast<unsigned char>(RHS[i])); |
| 1153 | Value *Sub = Swapped ? B.CreateSub(LHS: VR, RHS: VL) : B.CreateSub(LHS: VL, RHS: VR); |
| 1154 | if (i < N - 1) |
| 1155 | B.CreateCondBr(Cond: B.CreateICmpNE(LHS: Sub, RHS: ConstantInt::get(Ty: CI->getType(), V: 0)), |
| 1156 | True: BBNE, False: BBSubs[i + 1]); |
| 1157 | else |
| 1158 | B.CreateBr(Dest: BBNE); |
| 1159 | |
| 1160 | Phi->addIncoming(V: Sub, BB: BBSubs[i]); |
| 1161 | } |
| 1162 | |
| 1163 | CI->replaceAllUsesWith(V: Phi); |
| 1164 | CI->eraseFromParent(); |
| 1165 | |
| 1166 | if (DTU) { |
| 1167 | SmallVector<DominatorTree::UpdateType, 8> Updates; |
| 1168 | Updates.push_back(Elt: {DominatorTree::Insert, BBCI, BBSubs[0]}); |
| 1169 | for (uint64_t i = 0; i < N; ++i) { |
| 1170 | if (i < N - 1) |
| 1171 | Updates.push_back(Elt: {DominatorTree::Insert, BBSubs[i], BBSubs[i + 1]}); |
| 1172 | Updates.push_back(Elt: {DominatorTree::Insert, BBSubs[i], BBNE}); |
| 1173 | } |
| 1174 | Updates.push_back(Elt: {DominatorTree::Insert, BBNE, BBTail}); |
| 1175 | Updates.push_back(Elt: {DominatorTree::Delete, BBCI, BBTail}); |
| 1176 | DTU->applyUpdates(Updates); |
| 1177 | } |
| 1178 | } |
| 1179 | |
| 1180 | /// Convert memchr with a small constant string into a switch |
| 1181 | static bool foldMemChr(CallInst *Call, DomTreeUpdater *DTU, |
| 1182 | const DataLayout &DL) { |
| 1183 | if (isa<Constant>(Val: Call->getArgOperand(i: 1))) |
| 1184 | return false; |
| 1185 | |
| 1186 | StringRef Str; |
| 1187 | Value *Base = Call->getArgOperand(i: 0); |
| 1188 | if (!getConstantStringInfo(V: Base, Str, /*TrimAtNul=*/false)) |
| 1189 | return false; |
| 1190 | |
| 1191 | uint64_t N = Str.size(); |
| 1192 | if (auto *ConstInt = dyn_cast<ConstantInt>(Val: Call->getArgOperand(i: 2))) { |
| 1193 | uint64_t Val = ConstInt->getZExtValue(); |
| 1194 | // Ignore the case that n is larger than the size of string. |
| 1195 | if (Val > N) |
| 1196 | return false; |
| 1197 | N = Val; |
| 1198 | } else |
| 1199 | return false; |
| 1200 | |
| 1201 | if (N > MemChrInlineThreshold) |
| 1202 | return false; |
| 1203 | |
| 1204 | BasicBlock *BB = Call->getParent(); |
| 1205 | BasicBlock *BBNext = SplitBlock(Old: BB, SplitPt: Call, DTU); |
| 1206 | IRBuilder<> IRB(BB); |
| 1207 | IRB.SetCurrentDebugLocation(Call->getDebugLoc()); |
| 1208 | IntegerType *ByteTy = IRB.getInt8Ty(); |
| 1209 | BB->getTerminator()->eraseFromParent(); |
| 1210 | SwitchInst *SI = IRB.CreateSwitch( |
| 1211 | V: IRB.CreateTrunc(V: Call->getArgOperand(i: 1), DestTy: ByteTy), Dest: BBNext, NumCases: N); |
| 1212 | Type *IndexTy = DL.getIndexType(PtrTy: Call->getType()); |
| 1213 | SmallVector<DominatorTree::UpdateType, 8> Updates; |
| 1214 | |
| 1215 | BasicBlock *BBSuccess = BasicBlock::Create( |
| 1216 | Context&: Call->getContext(), Name: "memchr.success" , Parent: BB->getParent(), InsertBefore: BBNext); |
| 1217 | IRB.SetInsertPoint(BBSuccess); |
| 1218 | PHINode *IndexPHI = IRB.CreatePHI(Ty: IndexTy, NumReservedValues: N, Name: "memchr.idx" ); |
| 1219 | Value *FirstOccursLocation = IRB.CreateInBoundsPtrAdd(Ptr: Base, Offset: IndexPHI); |
| 1220 | IRB.CreateBr(Dest: BBNext); |
| 1221 | if (DTU) |
| 1222 | Updates.push_back(Elt: {DominatorTree::Insert, BBSuccess, BBNext}); |
| 1223 | |
| 1224 | SmallPtrSet<ConstantInt *, 4> Cases; |
| 1225 | for (uint64_t I = 0; I < N; ++I) { |
| 1226 | ConstantInt *CaseVal = ConstantInt::get(Ty: ByteTy, V: Str[I]); |
| 1227 | if (!Cases.insert(Ptr: CaseVal).second) |
| 1228 | continue; |
| 1229 | |
| 1230 | BasicBlock *BBCase = BasicBlock::Create(Context&: Call->getContext(), Name: "memchr.case" , |
| 1231 | Parent: BB->getParent(), InsertBefore: BBSuccess); |
| 1232 | SI->addCase(OnVal: CaseVal, Dest: BBCase); |
| 1233 | IRB.SetInsertPoint(BBCase); |
| 1234 | IndexPHI->addIncoming(V: ConstantInt::get(Ty: IndexTy, V: I), BB: BBCase); |
| 1235 | IRB.CreateBr(Dest: BBSuccess); |
| 1236 | if (DTU) { |
| 1237 | Updates.push_back(Elt: {DominatorTree::Insert, BB, BBCase}); |
| 1238 | Updates.push_back(Elt: {DominatorTree::Insert, BBCase, BBSuccess}); |
| 1239 | } |
| 1240 | } |
| 1241 | |
| 1242 | PHINode *PHI = |
| 1243 | PHINode::Create(Ty: Call->getType(), NumReservedValues: 2, NameStr: Call->getName(), InsertBefore: BBNext->begin()); |
| 1244 | PHI->addIncoming(V: Constant::getNullValue(Ty: Call->getType()), BB); |
| 1245 | PHI->addIncoming(V: FirstOccursLocation, BB: BBSuccess); |
| 1246 | |
| 1247 | Call->replaceAllUsesWith(V: PHI); |
| 1248 | Call->eraseFromParent(); |
| 1249 | |
| 1250 | if (DTU) |
| 1251 | DTU->applyUpdates(Updates); |
| 1252 | |
| 1253 | return true; |
| 1254 | } |
| 1255 | |
| 1256 | static bool foldLibCalls(Instruction &I, TargetTransformInfo &TTI, |
| 1257 | TargetLibraryInfo &TLI, AssumptionCache &AC, |
| 1258 | DominatorTree &DT, const DataLayout &DL, |
| 1259 | bool &MadeCFGChange) { |
| 1260 | |
| 1261 | auto *CI = dyn_cast<CallInst>(Val: &I); |
| 1262 | if (!CI || CI->isNoBuiltin()) |
| 1263 | return false; |
| 1264 | |
| 1265 | Function *CalledFunc = CI->getCalledFunction(); |
| 1266 | if (!CalledFunc) |
| 1267 | return false; |
| 1268 | |
| 1269 | LibFunc LF; |
| 1270 | if (!TLI.getLibFunc(FDecl: *CalledFunc, F&: LF) || |
| 1271 | !isLibFuncEmittable(M: CI->getModule(), TLI: &TLI, TheLibFunc: LF)) |
| 1272 | return false; |
| 1273 | |
| 1274 | DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Lazy); |
| 1275 | |
| 1276 | switch (LF) { |
| 1277 | case LibFunc_sqrt: |
| 1278 | case LibFunc_sqrtf: |
| 1279 | case LibFunc_sqrtl: |
| 1280 | return foldSqrt(Call: CI, Func: LF, TTI, TLI, AC, DT); |
| 1281 | case LibFunc_strcmp: |
| 1282 | case LibFunc_strncmp: |
| 1283 | if (StrNCmpInliner(CI, LF, &DTU, DL).optimizeStrNCmp()) { |
| 1284 | MadeCFGChange = true; |
| 1285 | return true; |
| 1286 | } |
| 1287 | break; |
| 1288 | case LibFunc_memchr: |
| 1289 | if (foldMemChr(Call: CI, DTU: &DTU, DL)) { |
| 1290 | MadeCFGChange = true; |
| 1291 | return true; |
| 1292 | } |
| 1293 | break; |
| 1294 | default:; |
| 1295 | } |
| 1296 | return false; |
| 1297 | } |
| 1298 | |
| 1299 | /// This is the entry point for folds that could be implemented in regular |
| 1300 | /// InstCombine, but they are separated because they are not expected to |
| 1301 | /// occur frequently and/or have more than a constant-length pattern match. |
| 1302 | static bool foldUnusualPatterns(Function &F, DominatorTree &DT, |
| 1303 | TargetTransformInfo &TTI, |
| 1304 | TargetLibraryInfo &TLI, AliasAnalysis &AA, |
| 1305 | AssumptionCache &AC, bool &MadeCFGChange) { |
| 1306 | bool MadeChange = false; |
| 1307 | for (BasicBlock &BB : F) { |
| 1308 | // Ignore unreachable basic blocks. |
| 1309 | if (!DT.isReachableFromEntry(A: &BB)) |
| 1310 | continue; |
| 1311 | |
| 1312 | const DataLayout &DL = F.getDataLayout(); |
| 1313 | |
| 1314 | // Walk the block backwards for efficiency. We're matching a chain of |
| 1315 | // use->defs, so we're more likely to succeed by starting from the bottom. |
| 1316 | // Also, we want to avoid matching partial patterns. |
| 1317 | // TODO: It would be more efficient if we removed dead instructions |
| 1318 | // iteratively in this loop rather than waiting until the end. |
| 1319 | for (Instruction &I : make_early_inc_range(Range: llvm::reverse(C&: BB))) { |
| 1320 | MadeChange |= foldAnyOrAllBitsSet(I); |
| 1321 | MadeChange |= foldGuardedFunnelShift(I, DT); |
| 1322 | MadeChange |= tryToRecognizePopCount(I); |
| 1323 | MadeChange |= tryToFPToSat(I, TTI); |
| 1324 | MadeChange |= tryToRecognizeTableBasedCttz(I); |
| 1325 | MadeChange |= foldConsecutiveLoads(I, DL, TTI, AA, DT); |
| 1326 | MadeChange |= foldPatternedLoads(I, DL); |
| 1327 | MadeChange |= foldICmpOrChain(I, DL, TTI, AA, DT); |
| 1328 | // NOTE: This function introduces erasing of the instruction `I`, so it |
| 1329 | // needs to be called at the end of this sequence, otherwise we may make |
| 1330 | // bugs. |
| 1331 | MadeChange |= foldLibCalls(I, TTI, TLI, AC, DT, DL, MadeCFGChange); |
| 1332 | } |
| 1333 | } |
| 1334 | |
| 1335 | // We're done with transforms, so remove dead instructions. |
| 1336 | if (MadeChange) |
| 1337 | for (BasicBlock &BB : F) |
| 1338 | SimplifyInstructionsInBlock(BB: &BB); |
| 1339 | |
| 1340 | return MadeChange; |
| 1341 | } |
| 1342 | |
| 1343 | /// This is the entry point for all transforms. Pass manager differences are |
| 1344 | /// handled in the callers of this function. |
| 1345 | static bool runImpl(Function &F, AssumptionCache &AC, TargetTransformInfo &TTI, |
| 1346 | TargetLibraryInfo &TLI, DominatorTree &DT, |
| 1347 | AliasAnalysis &AA, bool &MadeCFGChange) { |
| 1348 | bool MadeChange = false; |
| 1349 | const DataLayout &DL = F.getDataLayout(); |
| 1350 | TruncInstCombine TIC(AC, TLI, DL, DT); |
| 1351 | MadeChange |= TIC.run(F); |
| 1352 | MadeChange |= foldUnusualPatterns(F, DT, TTI, TLI, AA, AC, MadeCFGChange); |
| 1353 | return MadeChange; |
| 1354 | } |
| 1355 | |
| 1356 | PreservedAnalyses AggressiveInstCombinePass::run(Function &F, |
| 1357 | FunctionAnalysisManager &AM) { |
| 1358 | auto &AC = AM.getResult<AssumptionAnalysis>(IR&: F); |
| 1359 | auto &TLI = AM.getResult<TargetLibraryAnalysis>(IR&: F); |
| 1360 | auto &DT = AM.getResult<DominatorTreeAnalysis>(IR&: F); |
| 1361 | auto &TTI = AM.getResult<TargetIRAnalysis>(IR&: F); |
| 1362 | auto &AA = AM.getResult<AAManager>(IR&: F); |
| 1363 | bool MadeCFGChange = false; |
| 1364 | if (!runImpl(F, AC, TTI, TLI, DT, AA, MadeCFGChange)) { |
| 1365 | // No changes, all analyses are preserved. |
| 1366 | return PreservedAnalyses::all(); |
| 1367 | } |
| 1368 | // Mark all the analyses that instcombine updates as preserved. |
| 1369 | PreservedAnalyses PA; |
| 1370 | if (MadeCFGChange) |
| 1371 | PA.preserve<DominatorTreeAnalysis>(); |
| 1372 | else |
| 1373 | PA.preserveSet<CFGAnalyses>(); |
| 1374 | return PA; |
| 1375 | } |
| 1376 | |