1 | //===- CoroFrame.cpp - Builds and manipulates coroutine frame -------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // This file contains classes used to discover if for a particular value |
9 | // its definition precedes and its uses follow a suspend block. This is |
10 | // referred to as a suspend crossing value. |
11 | // |
12 | // Using the information discovered we form a Coroutine Frame structure to |
13 | // contain those values. All uses of those values are replaced with appropriate |
14 | // GEP + load from the coroutine frame. At the point of the definition we spill |
15 | // the value into the coroutine frame. |
16 | //===----------------------------------------------------------------------===// |
17 | |
18 | #include "CoroInternal.h" |
19 | #include "llvm/ADT/ScopeExit.h" |
20 | #include "llvm/ADT/SmallString.h" |
21 | #include "llvm/Analysis/StackLifetime.h" |
22 | #include "llvm/IR/DIBuilder.h" |
23 | #include "llvm/IR/DebugInfo.h" |
24 | #include "llvm/IR/Dominators.h" |
25 | #include "llvm/IR/IRBuilder.h" |
26 | #include "llvm/IR/InstIterator.h" |
27 | #include "llvm/IR/IntrinsicInst.h" |
28 | #include "llvm/IR/Module.h" |
29 | #include "llvm/Support/Compiler.h" |
30 | #include "llvm/Support/Debug.h" |
31 | #include "llvm/Support/OptimizedStructLayout.h" |
32 | #include "llvm/Transforms/Coroutines/ABI.h" |
33 | #include "llvm/Transforms/Coroutines/CoroInstr.h" |
34 | #include "llvm/Transforms/Coroutines/MaterializationUtils.h" |
35 | #include "llvm/Transforms/Coroutines/SpillUtils.h" |
36 | #include "llvm/Transforms/Coroutines/SuspendCrossingInfo.h" |
37 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
38 | #include "llvm/Transforms/Utils/Local.h" |
39 | #include "llvm/Transforms/Utils/PromoteMemToReg.h" |
40 | #include <algorithm> |
41 | #include <optional> |
42 | |
43 | using namespace llvm; |
44 | |
45 | #define DEBUG_TYPE "coro-frame" |
46 | |
47 | namespace { |
48 | class FrameTypeBuilder; |
49 | // Mapping from the to-be-spilled value to all the users that need reload. |
50 | struct FrameDataInfo { |
51 | // All the values (that are not allocas) that needs to be spilled to the |
52 | // frame. |
53 | coro::SpillInfo &Spills; |
54 | // Allocas contains all values defined as allocas that need to live in the |
55 | // frame. |
56 | SmallVectorImpl<coro::AllocaInfo> &Allocas; |
57 | |
58 | FrameDataInfo(coro::SpillInfo &Spills, |
59 | SmallVectorImpl<coro::AllocaInfo> &Allocas) |
60 | : Spills(Spills), Allocas(Allocas) {} |
61 | |
62 | SmallVector<Value *, 8> getAllDefs() const { |
63 | SmallVector<Value *, 8> Defs; |
64 | for (const auto &P : Spills) |
65 | Defs.push_back(Elt: P.first); |
66 | for (const auto &A : Allocas) |
67 | Defs.push_back(Elt: A.Alloca); |
68 | return Defs; |
69 | } |
70 | |
71 | uint32_t getFieldIndex(Value *V) const { |
72 | auto Itr = FieldIndexMap.find(Val: V); |
73 | assert(Itr != FieldIndexMap.end() && |
74 | "Value does not have a frame field index" ); |
75 | return Itr->second; |
76 | } |
77 | |
78 | void setFieldIndex(Value *V, uint32_t Index) { |
79 | assert((LayoutIndexUpdateStarted || FieldIndexMap.count(V) == 0) && |
80 | "Cannot set the index for the same field twice." ); |
81 | FieldIndexMap[V] = Index; |
82 | } |
83 | |
84 | Align getAlign(Value *V) const { |
85 | auto Iter = FieldAlignMap.find(Val: V); |
86 | assert(Iter != FieldAlignMap.end()); |
87 | return Iter->second; |
88 | } |
89 | |
90 | void setAlign(Value *V, Align AL) { |
91 | assert(FieldAlignMap.count(V) == 0); |
92 | FieldAlignMap.insert(KV: {V, AL}); |
93 | } |
94 | |
95 | uint64_t getDynamicAlign(Value *V) const { |
96 | auto Iter = FieldDynamicAlignMap.find(Val: V); |
97 | assert(Iter != FieldDynamicAlignMap.end()); |
98 | return Iter->second; |
99 | } |
100 | |
101 | void setDynamicAlign(Value *V, uint64_t Align) { |
102 | assert(FieldDynamicAlignMap.count(V) == 0); |
103 | FieldDynamicAlignMap.insert(KV: {V, Align}); |
104 | } |
105 | |
106 | uint64_t getOffset(Value *V) const { |
107 | auto Iter = FieldOffsetMap.find(Val: V); |
108 | assert(Iter != FieldOffsetMap.end()); |
109 | return Iter->second; |
110 | } |
111 | |
112 | void setOffset(Value *V, uint64_t Offset) { |
113 | assert(FieldOffsetMap.count(V) == 0); |
114 | FieldOffsetMap.insert(KV: {V, Offset}); |
115 | } |
116 | |
117 | // Remap the index of every field in the frame, using the final layout index. |
118 | void updateLayoutIndex(FrameTypeBuilder &B); |
119 | |
120 | private: |
121 | // LayoutIndexUpdateStarted is used to avoid updating the index of any field |
122 | // twice by mistake. |
123 | bool LayoutIndexUpdateStarted = false; |
124 | // Map from values to their slot indexes on the frame. They will be first set |
125 | // with their original insertion field index. After the frame is built, their |
126 | // indexes will be updated into the final layout index. |
127 | DenseMap<Value *, uint32_t> FieldIndexMap; |
128 | // Map from values to their alignment on the frame. They would be set after |
129 | // the frame is built. |
130 | DenseMap<Value *, Align> FieldAlignMap; |
131 | DenseMap<Value *, uint64_t> FieldDynamicAlignMap; |
132 | // Map from values to their offset on the frame. They would be set after |
133 | // the frame is built. |
134 | DenseMap<Value *, uint64_t> FieldOffsetMap; |
135 | }; |
136 | } // namespace |
137 | |
138 | #ifndef NDEBUG |
139 | static void dumpSpills(StringRef Title, const coro::SpillInfo &Spills) { |
140 | dbgs() << "------------- " << Title << " --------------\n" ; |
141 | for (const auto &E : Spills) { |
142 | E.first->dump(); |
143 | dbgs() << " user: " ; |
144 | for (auto *I : E.second) |
145 | I->dump(); |
146 | } |
147 | } |
148 | |
149 | static void dumpAllocas(const SmallVectorImpl<coro::AllocaInfo> &Allocas) { |
150 | dbgs() << "------------- Allocas --------------\n" ; |
151 | for (const auto &A : Allocas) { |
152 | A.Alloca->dump(); |
153 | } |
154 | } |
155 | #endif |
156 | |
157 | namespace { |
158 | using FieldIDType = size_t; |
159 | // We cannot rely solely on natural alignment of a type when building a |
160 | // coroutine frame and if the alignment specified on the Alloca instruction |
161 | // differs from the natural alignment of the alloca type we will need to insert |
162 | // padding. |
163 | class FrameTypeBuilder { |
164 | private: |
165 | struct Field { |
166 | uint64_t Size; |
167 | uint64_t Offset; |
168 | Type *Ty; |
169 | FieldIDType LayoutFieldIndex; |
170 | Align Alignment; |
171 | Align TyAlignment; |
172 | uint64_t DynamicAlignBuffer; |
173 | }; |
174 | |
175 | const DataLayout &DL; |
176 | LLVMContext &Context; |
177 | uint64_t StructSize = 0; |
178 | Align StructAlign; |
179 | bool IsFinished = false; |
180 | |
181 | std::optional<Align> MaxFrameAlignment; |
182 | |
183 | SmallVector<Field, 8> Fields; |
184 | DenseMap<Value*, unsigned> FieldIndexByKey; |
185 | |
186 | public: |
187 | FrameTypeBuilder(LLVMContext &Context, const DataLayout &DL, |
188 | std::optional<Align> MaxFrameAlignment) |
189 | : DL(DL), Context(Context), MaxFrameAlignment(MaxFrameAlignment) {} |
190 | |
191 | /// Add a field to this structure for the storage of an `alloca` |
192 | /// instruction. |
193 | [[nodiscard]] FieldIDType addFieldForAlloca(AllocaInst *AI, |
194 | bool = false) { |
195 | Type *Ty = AI->getAllocatedType(); |
196 | |
197 | // Make an array type if this is a static array allocation. |
198 | if (AI->isArrayAllocation()) { |
199 | if (auto *CI = dyn_cast<ConstantInt>(Val: AI->getArraySize())) |
200 | Ty = ArrayType::get(ElementType: Ty, NumElements: CI->getValue().getZExtValue()); |
201 | else |
202 | report_fatal_error(reason: "Coroutines cannot handle non static allocas yet" ); |
203 | } |
204 | |
205 | return addField(Ty, MaybeFieldAlignment: AI->getAlign(), IsHeader); |
206 | } |
207 | |
208 | /// We want to put the allocas whose lifetime-ranges are not overlapped |
209 | /// into one slot of coroutine frame. |
210 | /// Consider the example at:https://bugs.llvm.org/show_bug.cgi?id=45566 |
211 | /// |
212 | /// cppcoro::task<void> alternative_paths(bool cond) { |
213 | /// if (cond) { |
214 | /// big_structure a; |
215 | /// process(a); |
216 | /// co_await something(); |
217 | /// } else { |
218 | /// big_structure b; |
219 | /// process2(b); |
220 | /// co_await something(); |
221 | /// } |
222 | /// } |
223 | /// |
224 | /// We want to put variable a and variable b in the same slot to |
225 | /// reduce the size of coroutine frame. |
226 | /// |
227 | /// This function use StackLifetime algorithm to partition the AllocaInsts in |
228 | /// Spills to non-overlapped sets in order to put Alloca in the same |
229 | /// non-overlapped set into the same slot in the Coroutine Frame. Then add |
230 | /// field for the allocas in the same non-overlapped set by using the largest |
231 | /// type as the field type. |
232 | /// |
233 | /// Side Effects: Because We sort the allocas, the order of allocas in the |
234 | /// frame may be different with the order in the source code. |
235 | void addFieldForAllocas(const Function &F, FrameDataInfo &FrameData, |
236 | coro::Shape &Shape, bool OptimizeFrame); |
237 | |
238 | /// Add a field to this structure. |
239 | [[nodiscard]] FieldIDType addField(Type *Ty, MaybeAlign MaybeFieldAlignment, |
240 | bool = false, |
241 | bool IsSpillOfValue = false) { |
242 | assert(!IsFinished && "adding fields to a finished builder" ); |
243 | assert(Ty && "must provide a type for a field" ); |
244 | |
245 | // The field size is always the alloc size of the type. |
246 | uint64_t FieldSize = DL.getTypeAllocSize(Ty); |
247 | |
248 | // For an alloca with size=0, we don't need to add a field and they |
249 | // can just point to any index in the frame. Use index 0. |
250 | if (FieldSize == 0) { |
251 | return 0; |
252 | } |
253 | |
254 | // The field alignment might not be the type alignment, but we need |
255 | // to remember the type alignment anyway to build the type. |
256 | // If we are spilling values we don't need to worry about ABI alignment |
257 | // concerns. |
258 | Align ABIAlign = DL.getABITypeAlign(Ty); |
259 | Align TyAlignment = ABIAlign; |
260 | if (IsSpillOfValue && MaxFrameAlignment && *MaxFrameAlignment < ABIAlign) |
261 | TyAlignment = *MaxFrameAlignment; |
262 | Align FieldAlignment = MaybeFieldAlignment.value_or(u&: TyAlignment); |
263 | |
264 | // The field alignment could be bigger than the max frame case, in that case |
265 | // we request additional storage to be able to dynamically align the |
266 | // pointer. |
267 | uint64_t DynamicAlignBuffer = 0; |
268 | if (MaxFrameAlignment && (FieldAlignment > *MaxFrameAlignment)) { |
269 | DynamicAlignBuffer = |
270 | offsetToAlignment(Value: MaxFrameAlignment->value(), Alignment: FieldAlignment); |
271 | FieldAlignment = *MaxFrameAlignment; |
272 | FieldSize = FieldSize + DynamicAlignBuffer; |
273 | } |
274 | |
275 | // Lay out header fields immediately. |
276 | uint64_t Offset; |
277 | if (IsHeader) { |
278 | Offset = alignTo(Size: StructSize, A: FieldAlignment); |
279 | StructSize = Offset + FieldSize; |
280 | |
281 | // Everything else has a flexible offset. |
282 | } else { |
283 | Offset = OptimizedStructLayoutField::FlexibleOffset; |
284 | } |
285 | |
286 | Fields.push_back(Elt: {.Size: FieldSize, .Offset: Offset, .Ty: Ty, .LayoutFieldIndex: 0, .Alignment: FieldAlignment, .TyAlignment: TyAlignment, |
287 | .DynamicAlignBuffer: DynamicAlignBuffer}); |
288 | return Fields.size() - 1; |
289 | } |
290 | |
291 | /// Finish the layout and create the struct type with the given name. |
292 | StructType *finish(StringRef Name); |
293 | |
294 | uint64_t getStructSize() const { |
295 | assert(IsFinished && "not yet finished!" ); |
296 | return StructSize; |
297 | } |
298 | |
299 | Align getStructAlign() const { |
300 | assert(IsFinished && "not yet finished!" ); |
301 | return StructAlign; |
302 | } |
303 | |
304 | FieldIDType getLayoutFieldIndex(FieldIDType Id) const { |
305 | assert(IsFinished && "not yet finished!" ); |
306 | return Fields[Id].LayoutFieldIndex; |
307 | } |
308 | |
309 | Field getLayoutField(FieldIDType Id) const { |
310 | assert(IsFinished && "not yet finished!" ); |
311 | return Fields[Id]; |
312 | } |
313 | }; |
314 | } // namespace |
315 | |
316 | void FrameDataInfo::updateLayoutIndex(FrameTypeBuilder &B) { |
317 | auto Updater = [&](Value *I) { |
318 | auto Field = B.getLayoutField(Id: getFieldIndex(V: I)); |
319 | setFieldIndex(V: I, Index: Field.LayoutFieldIndex); |
320 | setAlign(V: I, AL: Field.Alignment); |
321 | uint64_t dynamicAlign = |
322 | Field.DynamicAlignBuffer |
323 | ? Field.DynamicAlignBuffer + Field.Alignment.value() |
324 | : 0; |
325 | setDynamicAlign(V: I, Align: dynamicAlign); |
326 | setOffset(V: I, Offset: Field.Offset); |
327 | }; |
328 | LayoutIndexUpdateStarted = true; |
329 | for (auto &S : Spills) |
330 | Updater(S.first); |
331 | for (const auto &A : Allocas) |
332 | Updater(A.Alloca); |
333 | LayoutIndexUpdateStarted = false; |
334 | } |
335 | |
336 | void FrameTypeBuilder::addFieldForAllocas(const Function &F, |
337 | FrameDataInfo &FrameData, |
338 | coro::Shape &Shape, |
339 | bool OptimizeFrame) { |
340 | using AllocaSetType = SmallVector<AllocaInst *, 4>; |
341 | SmallVector<AllocaSetType, 4> NonOverlapedAllocas; |
342 | |
343 | // We need to add field for allocas at the end of this function. |
344 | auto AddFieldForAllocasAtExit = make_scope_exit(F: [&]() { |
345 | for (auto AllocaList : NonOverlapedAllocas) { |
346 | auto *LargestAI = *AllocaList.begin(); |
347 | FieldIDType Id = addFieldForAlloca(AI: LargestAI); |
348 | for (auto *Alloca : AllocaList) |
349 | FrameData.setFieldIndex(V: Alloca, Index: Id); |
350 | } |
351 | }); |
352 | |
353 | if (!OptimizeFrame) { |
354 | for (const auto &A : FrameData.Allocas) { |
355 | AllocaInst *Alloca = A.Alloca; |
356 | NonOverlapedAllocas.emplace_back(Args: AllocaSetType(1, Alloca)); |
357 | } |
358 | return; |
359 | } |
360 | |
361 | // Because there are paths from the lifetime.start to coro.end |
362 | // for each alloca, the liferanges for every alloca is overlaped |
363 | // in the blocks who contain coro.end and the successor blocks. |
364 | // So we choose to skip there blocks when we calculate the liferange |
365 | // for each alloca. It should be reasonable since there shouldn't be uses |
366 | // in these blocks and the coroutine frame shouldn't be used outside the |
367 | // coroutine body. |
368 | // |
369 | // Note that the user of coro.suspend may not be SwitchInst. However, this |
370 | // case seems too complex to handle. And it is harmless to skip these |
371 | // patterns since it just prevend putting the allocas to live in the same |
372 | // slot. |
373 | DenseMap<SwitchInst *, BasicBlock *> DefaultSuspendDest; |
374 | for (auto *CoroSuspendInst : Shape.CoroSuspends) { |
375 | for (auto *U : CoroSuspendInst->users()) { |
376 | if (auto *ConstSWI = dyn_cast<SwitchInst>(Val: U)) { |
377 | auto *SWI = const_cast<SwitchInst *>(ConstSWI); |
378 | DefaultSuspendDest[SWI] = SWI->getDefaultDest(); |
379 | SWI->setDefaultDest(SWI->getSuccessor(idx: 1)); |
380 | } |
381 | } |
382 | } |
383 | |
384 | auto = [&]() { |
385 | AllocaSetType Allocas; |
386 | Allocas.reserve(N: FrameData.Allocas.size()); |
387 | for (const auto &A : FrameData.Allocas) |
388 | Allocas.push_back(Elt: A.Alloca); |
389 | return Allocas; |
390 | }; |
391 | StackLifetime StackLifetimeAnalyzer(F, ExtractAllocas(), |
392 | StackLifetime::LivenessType::May); |
393 | StackLifetimeAnalyzer.run(); |
394 | auto DoAllocasInterfere = [&](const AllocaInst *AI1, const AllocaInst *AI2) { |
395 | return StackLifetimeAnalyzer.getLiveRange(AI: AI1).overlaps( |
396 | Other: StackLifetimeAnalyzer.getLiveRange(AI: AI2)); |
397 | }; |
398 | auto GetAllocaSize = [&](const coro::AllocaInfo &A) { |
399 | std::optional<TypeSize> RetSize = A.Alloca->getAllocationSize(DL); |
400 | assert(RetSize && "Variable Length Arrays (VLA) are not supported.\n" ); |
401 | assert(!RetSize->isScalable() && "Scalable vectors are not yet supported" ); |
402 | return RetSize->getFixedValue(); |
403 | }; |
404 | // Put larger allocas in the front. So the larger allocas have higher |
405 | // priority to merge, which can save more space potentially. Also each |
406 | // AllocaSet would be ordered. So we can get the largest Alloca in one |
407 | // AllocaSet easily. |
408 | sort(C&: FrameData.Allocas, Comp: [&](const auto &Iter1, const auto &Iter2) { |
409 | return GetAllocaSize(Iter1) > GetAllocaSize(Iter2); |
410 | }); |
411 | for (const auto &A : FrameData.Allocas) { |
412 | AllocaInst *Alloca = A.Alloca; |
413 | bool Merged = false; |
414 | // Try to find if the Alloca does not interfere with any existing |
415 | // NonOverlappedAllocaSet. If it is true, insert the alloca to that |
416 | // NonOverlappedAllocaSet. |
417 | for (auto &AllocaSet : NonOverlapedAllocas) { |
418 | assert(!AllocaSet.empty() && "Processing Alloca Set is not empty.\n" ); |
419 | bool NoInterference = none_of(Range&: AllocaSet, P: [&](auto Iter) { |
420 | return DoAllocasInterfere(Alloca, Iter); |
421 | }); |
422 | // If the alignment of A is multiple of the alignment of B, the address |
423 | // of A should satisfy the requirement for aligning for B. |
424 | // |
425 | // There may be other more fine-grained strategies to handle the alignment |
426 | // infomation during the merging process. But it seems hard to handle |
427 | // these strategies and benefit little. |
428 | bool Alignable = [&]() -> bool { |
429 | auto *LargestAlloca = *AllocaSet.begin(); |
430 | return LargestAlloca->getAlign().value() % Alloca->getAlign().value() == |
431 | 0; |
432 | }(); |
433 | bool CouldMerge = NoInterference && Alignable; |
434 | if (!CouldMerge) |
435 | continue; |
436 | AllocaSet.push_back(Elt: Alloca); |
437 | Merged = true; |
438 | break; |
439 | } |
440 | if (!Merged) { |
441 | NonOverlapedAllocas.emplace_back(Args: AllocaSetType(1, Alloca)); |
442 | } |
443 | } |
444 | // Recover the default target destination for each Switch statement |
445 | // reserved. |
446 | for (auto SwitchAndDefaultDest : DefaultSuspendDest) { |
447 | SwitchInst *SWI = SwitchAndDefaultDest.first; |
448 | BasicBlock *DestBB = SwitchAndDefaultDest.second; |
449 | SWI->setDefaultDest(DestBB); |
450 | } |
451 | // This Debug Info could tell us which allocas are merged into one slot. |
452 | LLVM_DEBUG(for (auto &AllocaSet |
453 | : NonOverlapedAllocas) { |
454 | if (AllocaSet.size() > 1) { |
455 | dbgs() << "In Function:" << F.getName() << "\n" ; |
456 | dbgs() << "Find Union Set " |
457 | << "\n" ; |
458 | dbgs() << "\tAllocas are \n" ; |
459 | for (auto Alloca : AllocaSet) |
460 | dbgs() << "\t\t" << *Alloca << "\n" ; |
461 | } |
462 | }); |
463 | } |
464 | |
465 | StructType *FrameTypeBuilder::finish(StringRef Name) { |
466 | assert(!IsFinished && "already finished!" ); |
467 | |
468 | // Prepare the optimal-layout field array. |
469 | // The Id in the layout field is a pointer to our Field for it. |
470 | SmallVector<OptimizedStructLayoutField, 8> LayoutFields; |
471 | LayoutFields.reserve(N: Fields.size()); |
472 | for (auto &Field : Fields) { |
473 | LayoutFields.emplace_back(Args: &Field, Args&: Field.Size, Args&: Field.Alignment, |
474 | Args&: Field.Offset); |
475 | } |
476 | |
477 | // Perform layout. |
478 | auto SizeAndAlign = performOptimizedStructLayout(Fields: LayoutFields); |
479 | StructSize = SizeAndAlign.first; |
480 | StructAlign = SizeAndAlign.second; |
481 | |
482 | auto getField = [](const OptimizedStructLayoutField &LayoutField) -> Field & { |
483 | return *static_cast<Field *>(const_cast<void*>(LayoutField.Id)); |
484 | }; |
485 | |
486 | // We need to produce a packed struct type if there's a field whose |
487 | // assigned offset isn't a multiple of its natural type alignment. |
488 | bool Packed = [&] { |
489 | for (auto &LayoutField : LayoutFields) { |
490 | auto &F = getField(LayoutField); |
491 | if (!isAligned(Lhs: F.TyAlignment, SizeInBytes: LayoutField.Offset)) |
492 | return true; |
493 | } |
494 | return false; |
495 | }(); |
496 | |
497 | // Build the struct body. |
498 | SmallVector<Type*, 16> FieldTypes; |
499 | FieldTypes.reserve(N: LayoutFields.size() * 3 / 2); |
500 | uint64_t LastOffset = 0; |
501 | for (auto &LayoutField : LayoutFields) { |
502 | auto &F = getField(LayoutField); |
503 | |
504 | auto Offset = LayoutField.Offset; |
505 | |
506 | // Add a padding field if there's a padding gap and we're either |
507 | // building a packed struct or the padding gap is more than we'd |
508 | // get from aligning to the field type's natural alignment. |
509 | assert(Offset >= LastOffset); |
510 | if (Offset != LastOffset) { |
511 | if (Packed || alignTo(Size: LastOffset, A: F.TyAlignment) != Offset) |
512 | FieldTypes.push_back(Elt: ArrayType::get(ElementType: Type::getInt8Ty(C&: Context), |
513 | NumElements: Offset - LastOffset)); |
514 | } |
515 | |
516 | F.Offset = Offset; |
517 | F.LayoutFieldIndex = FieldTypes.size(); |
518 | |
519 | FieldTypes.push_back(Elt: F.Ty); |
520 | if (F.DynamicAlignBuffer) { |
521 | FieldTypes.push_back( |
522 | Elt: ArrayType::get(ElementType: Type::getInt8Ty(C&: Context), NumElements: F.DynamicAlignBuffer)); |
523 | } |
524 | LastOffset = Offset + F.Size; |
525 | } |
526 | |
527 | StructType *Ty = StructType::create(Context, Elements: FieldTypes, Name, isPacked: Packed); |
528 | |
529 | #ifndef NDEBUG |
530 | // Check that the IR layout matches the offsets we expect. |
531 | auto Layout = DL.getStructLayout(Ty); |
532 | for (auto &F : Fields) { |
533 | assert(Ty->getElementType(F.LayoutFieldIndex) == F.Ty); |
534 | assert(Layout->getElementOffset(F.LayoutFieldIndex) == F.Offset); |
535 | } |
536 | #endif |
537 | |
538 | IsFinished = true; |
539 | |
540 | return Ty; |
541 | } |
542 | |
543 | static void cacheDIVar(FrameDataInfo &FrameData, |
544 | DenseMap<Value *, DILocalVariable *> &DIVarCache) { |
545 | for (auto *V : FrameData.getAllDefs()) { |
546 | if (DIVarCache.contains(Val: V)) |
547 | continue; |
548 | |
549 | auto CacheIt = [&DIVarCache, V](const auto &Container) { |
550 | auto *I = llvm::find_if(Container, [](auto *DDI) { |
551 | return DDI->getExpression()->getNumElements() == 0; |
552 | }); |
553 | if (I != Container.end()) |
554 | DIVarCache.insert({V, (*I)->getVariable()}); |
555 | }; |
556 | CacheIt(findDbgDeclares(V)); |
557 | CacheIt(findDVRDeclares(V)); |
558 | } |
559 | } |
560 | |
561 | /// Create name for Type. It uses MDString to store new created string to |
562 | /// avoid memory leak. |
563 | static StringRef solveTypeName(Type *Ty) { |
564 | if (Ty->isIntegerTy()) { |
565 | // The longest name in common may be '__int_128', which has 9 bits. |
566 | SmallString<16> Buffer; |
567 | raw_svector_ostream OS(Buffer); |
568 | OS << "__int_" << cast<IntegerType>(Val: Ty)->getBitWidth(); |
569 | auto *MDName = MDString::get(Context&: Ty->getContext(), Str: OS.str()); |
570 | return MDName->getString(); |
571 | } |
572 | |
573 | if (Ty->isFloatingPointTy()) { |
574 | if (Ty->isFloatTy()) |
575 | return "__float_" ; |
576 | if (Ty->isDoubleTy()) |
577 | return "__double_" ; |
578 | return "__floating_type_" ; |
579 | } |
580 | |
581 | if (Ty->isPointerTy()) |
582 | return "PointerType" ; |
583 | |
584 | if (Ty->isStructTy()) { |
585 | if (!cast<StructType>(Val: Ty)->hasName()) |
586 | return "__LiteralStructType_" ; |
587 | |
588 | auto Name = Ty->getStructName(); |
589 | |
590 | SmallString<16> Buffer(Name); |
591 | for (auto &Iter : Buffer) |
592 | if (Iter == '.' || Iter == ':') |
593 | Iter = '_'; |
594 | auto *MDName = MDString::get(Context&: Ty->getContext(), Str: Buffer.str()); |
595 | return MDName->getString(); |
596 | } |
597 | |
598 | return "UnknownType" ; |
599 | } |
600 | |
601 | static DIType *solveDIType(DIBuilder &Builder, Type *Ty, |
602 | const DataLayout &Layout, DIScope *Scope, |
603 | unsigned LineNum, |
604 | DenseMap<Type *, DIType *> &DITypeCache) { |
605 | if (DIType *DT = DITypeCache.lookup(Val: Ty)) |
606 | return DT; |
607 | |
608 | StringRef Name = solveTypeName(Ty); |
609 | |
610 | DIType *RetType = nullptr; |
611 | |
612 | if (Ty->isIntegerTy()) { |
613 | auto BitWidth = cast<IntegerType>(Val: Ty)->getBitWidth(); |
614 | RetType = Builder.createBasicType(Name, SizeInBits: BitWidth, Encoding: dwarf::DW_ATE_signed, |
615 | Flags: llvm::DINode::FlagArtificial); |
616 | } else if (Ty->isFloatingPointTy()) { |
617 | RetType = Builder.createBasicType(Name, SizeInBits: Layout.getTypeSizeInBits(Ty), |
618 | Encoding: dwarf::DW_ATE_float, |
619 | Flags: llvm::DINode::FlagArtificial); |
620 | } else if (Ty->isPointerTy()) { |
621 | // Construct PointerType points to null (aka void *) instead of exploring |
622 | // pointee type to avoid infinite search problem. For example, we would be |
623 | // in trouble if we traverse recursively: |
624 | // |
625 | // struct Node { |
626 | // Node* ptr; |
627 | // }; |
628 | RetType = |
629 | Builder.createPointerType(PointeeTy: nullptr, SizeInBits: Layout.getTypeSizeInBits(Ty), |
630 | AlignInBits: Layout.getABITypeAlign(Ty).value() * CHAR_BIT, |
631 | /*DWARFAddressSpace=*/std::nullopt, Name); |
632 | } else if (Ty->isStructTy()) { |
633 | auto *DIStruct = Builder.createStructType( |
634 | Scope, Name, File: Scope->getFile(), LineNumber: LineNum, SizeInBits: Layout.getTypeSizeInBits(Ty), |
635 | AlignInBits: Layout.getPrefTypeAlign(Ty).value() * CHAR_BIT, |
636 | Flags: llvm::DINode::FlagArtificial, DerivedFrom: nullptr, Elements: llvm::DINodeArray()); |
637 | |
638 | auto *StructTy = cast<StructType>(Val: Ty); |
639 | SmallVector<Metadata *, 16> Elements; |
640 | for (unsigned I = 0; I < StructTy->getNumElements(); I++) { |
641 | DIType *DITy = solveDIType(Builder, Ty: StructTy->getElementType(N: I), Layout, |
642 | Scope, LineNum, DITypeCache); |
643 | assert(DITy); |
644 | Elements.push_back(Elt: Builder.createMemberType( |
645 | Scope, Name: DITy->getName(), File: Scope->getFile(), LineNo: LineNum, |
646 | SizeInBits: DITy->getSizeInBits(), AlignInBits: DITy->getAlignInBits(), |
647 | OffsetInBits: Layout.getStructLayout(Ty: StructTy)->getElementOffsetInBits(Idx: I), |
648 | Flags: llvm::DINode::FlagArtificial, Ty: DITy)); |
649 | } |
650 | |
651 | Builder.replaceArrays(T&: DIStruct, Elements: Builder.getOrCreateArray(Elements)); |
652 | |
653 | RetType = DIStruct; |
654 | } else { |
655 | LLVM_DEBUG(dbgs() << "Unresolved Type: " << *Ty << "\n" ); |
656 | TypeSize Size = Layout.getTypeSizeInBits(Ty); |
657 | auto *CharSizeType = Builder.createBasicType( |
658 | Name, SizeInBits: 8, Encoding: dwarf::DW_ATE_unsigned_char, Flags: llvm::DINode::FlagArtificial); |
659 | |
660 | if (Size <= 8) |
661 | RetType = CharSizeType; |
662 | else { |
663 | if (Size % 8 != 0) |
664 | Size = TypeSize::getFixed(ExactSize: Size + 8 - (Size % 8)); |
665 | |
666 | RetType = Builder.createArrayType( |
667 | Size, AlignInBits: Layout.getPrefTypeAlign(Ty).value(), Ty: CharSizeType, |
668 | Subscripts: Builder.getOrCreateArray(Elements: Builder.getOrCreateSubrange(Lo: 0, Count: Size / 8))); |
669 | } |
670 | } |
671 | |
672 | DITypeCache.insert(KV: {Ty, RetType}); |
673 | return RetType; |
674 | } |
675 | |
676 | /// Build artificial debug info for C++ coroutine frames to allow users to |
677 | /// inspect the contents of the frame directly |
678 | /// |
679 | /// Create Debug information for coroutine frame with debug name "__coro_frame". |
680 | /// The debug information for the fields of coroutine frame is constructed from |
681 | /// the following way: |
682 | /// 1. For all the value in the Frame, we search the use of dbg.declare to find |
683 | /// the corresponding debug variables for the value. If we can find the |
684 | /// debug variable, we can get full and accurate debug information. |
685 | /// 2. If we can't get debug information in step 1 and 2, we could only try to |
686 | /// build the DIType by Type. We did this in solveDIType. We only handle |
687 | /// integer, float, double, integer type and struct type for now. |
688 | static void buildFrameDebugInfo(Function &F, coro::Shape &Shape, |
689 | FrameDataInfo &FrameData) { |
690 | DISubprogram *DIS = F.getSubprogram(); |
691 | // If there is no DISubprogram for F, it implies the function is compiled |
692 | // without debug info. So we also don't generate debug info for the frame. |
693 | if (!DIS || !DIS->getUnit() || |
694 | !dwarf::isCPlusPlus( |
695 | S: (dwarf::SourceLanguage)DIS->getUnit()->getSourceLanguage()) || |
696 | DIS->getUnit()->getEmissionKind() != DICompileUnit::DebugEmissionKind::FullDebug) |
697 | return; |
698 | |
699 | assert(Shape.ABI == coro::ABI::Switch && |
700 | "We could only build debug infomation for C++ coroutine now.\n" ); |
701 | |
702 | DIBuilder DBuilder(*F.getParent(), /*AllowUnresolved*/ false); |
703 | |
704 | assert(Shape.getPromiseAlloca() && |
705 | "Coroutine with switch ABI should own Promise alloca" ); |
706 | |
707 | DIFile *DFile = DIS->getFile(); |
708 | unsigned LineNum = DIS->getLine(); |
709 | |
710 | DICompositeType *FrameDITy = DBuilder.createStructType( |
711 | Scope: DIS->getUnit(), Name: Twine(F.getName() + ".coro_frame_ty" ).str(), |
712 | File: DFile, LineNumber: LineNum, SizeInBits: Shape.FrameSize * 8, |
713 | AlignInBits: Shape.FrameAlign.value() * 8, Flags: llvm::DINode::FlagArtificial, DerivedFrom: nullptr, |
714 | Elements: llvm::DINodeArray()); |
715 | StructType *FrameTy = Shape.FrameTy; |
716 | SmallVector<Metadata *, 16> Elements; |
717 | DataLayout Layout = F.getDataLayout(); |
718 | |
719 | DenseMap<Value *, DILocalVariable *> DIVarCache; |
720 | cacheDIVar(FrameData, DIVarCache); |
721 | |
722 | unsigned ResumeIndex = coro::Shape::SwitchFieldIndex::Resume; |
723 | unsigned DestroyIndex = coro::Shape::SwitchFieldIndex::Destroy; |
724 | unsigned IndexIndex = Shape.SwitchLowering.IndexField; |
725 | |
726 | DenseMap<unsigned, StringRef> NameCache; |
727 | NameCache.insert(KV: {ResumeIndex, "__resume_fn" }); |
728 | NameCache.insert(KV: {DestroyIndex, "__destroy_fn" }); |
729 | NameCache.insert(KV: {IndexIndex, "__coro_index" }); |
730 | |
731 | Type *ResumeFnTy = FrameTy->getElementType(N: ResumeIndex), |
732 | *DestroyFnTy = FrameTy->getElementType(N: DestroyIndex), |
733 | *IndexTy = FrameTy->getElementType(N: IndexIndex); |
734 | |
735 | DenseMap<unsigned, DIType *> TyCache; |
736 | TyCache.insert( |
737 | KV: {ResumeIndex, DBuilder.createPointerType( |
738 | PointeeTy: nullptr, SizeInBits: Layout.getTypeSizeInBits(Ty: ResumeFnTy))}); |
739 | TyCache.insert( |
740 | KV: {DestroyIndex, DBuilder.createPointerType( |
741 | PointeeTy: nullptr, SizeInBits: Layout.getTypeSizeInBits(Ty: DestroyFnTy))}); |
742 | |
743 | /// FIXME: If we fill the field `SizeInBits` with the actual size of |
744 | /// __coro_index in bits, then __coro_index wouldn't show in the debugger. |
745 | TyCache.insert(KV: {IndexIndex, DBuilder.createBasicType( |
746 | Name: "__coro_index" , |
747 | SizeInBits: (Layout.getTypeSizeInBits(Ty: IndexTy) < 8) |
748 | ? 8 |
749 | : Layout.getTypeSizeInBits(Ty: IndexTy), |
750 | Encoding: dwarf::DW_ATE_unsigned_char)}); |
751 | |
752 | for (auto *V : FrameData.getAllDefs()) { |
753 | auto It = DIVarCache.find(Val: V); |
754 | if (It == DIVarCache.end()) |
755 | continue; |
756 | |
757 | auto Index = FrameData.getFieldIndex(V); |
758 | |
759 | NameCache.insert(KV: {Index, It->second->getName()}); |
760 | TyCache.insert(KV: {Index, It->second->getType()}); |
761 | } |
762 | |
763 | // Cache from index to (Align, Offset Pair) |
764 | DenseMap<unsigned, std::pair<unsigned, unsigned>> OffsetCache; |
765 | // The Align and Offset of Resume function and Destroy function are fixed. |
766 | OffsetCache.insert(KV: {ResumeIndex, {8, 0}}); |
767 | OffsetCache.insert(KV: {DestroyIndex, {8, 8}}); |
768 | OffsetCache.insert( |
769 | KV: {IndexIndex, |
770 | {Shape.SwitchLowering.IndexAlign, Shape.SwitchLowering.IndexOffset}}); |
771 | |
772 | for (auto *V : FrameData.getAllDefs()) { |
773 | auto Index = FrameData.getFieldIndex(V); |
774 | |
775 | OffsetCache.insert( |
776 | KV: {Index, {FrameData.getAlign(V).value(), FrameData.getOffset(V)}}); |
777 | } |
778 | |
779 | DenseMap<Type *, DIType *> DITypeCache; |
780 | // This counter is used to avoid same type names. e.g., there would be |
781 | // many i32 and i64 types in one coroutine. And we would use i32_0 and |
782 | // i32_1 to avoid the same type. Since it makes no sense the name of the |
783 | // fields confilicts with each other. |
784 | unsigned UnknownTypeNum = 0; |
785 | for (unsigned Index = 0; Index < FrameTy->getNumElements(); Index++) { |
786 | auto OCIt = OffsetCache.find(Val: Index); |
787 | if (OCIt == OffsetCache.end()) |
788 | continue; |
789 | |
790 | std::string Name; |
791 | uint64_t SizeInBits; |
792 | uint32_t AlignInBits; |
793 | uint64_t OffsetInBits; |
794 | DIType *DITy = nullptr; |
795 | |
796 | Type *Ty = FrameTy->getElementType(N: Index); |
797 | assert(Ty->isSized() && "We can't handle type which is not sized.\n" ); |
798 | SizeInBits = Layout.getTypeSizeInBits(Ty).getFixedValue(); |
799 | AlignInBits = OCIt->second.first * 8; |
800 | OffsetInBits = OCIt->second.second * 8; |
801 | |
802 | if (auto It = NameCache.find(Val: Index); It != NameCache.end()) { |
803 | Name = It->second.str(); |
804 | DITy = TyCache[Index]; |
805 | } else { |
806 | DITy = solveDIType(Builder&: DBuilder, Ty, Layout, Scope: FrameDITy, LineNum, DITypeCache); |
807 | assert(DITy && "SolveDIType shouldn't return nullptr.\n" ); |
808 | Name = DITy->getName().str(); |
809 | Name += "_" + std::to_string(val: UnknownTypeNum); |
810 | UnknownTypeNum++; |
811 | } |
812 | |
813 | Elements.push_back(Elt: DBuilder.createMemberType( |
814 | Scope: FrameDITy, Name, File: DFile, LineNo: LineNum, SizeInBits, AlignInBits, OffsetInBits, |
815 | Flags: llvm::DINode::FlagArtificial, Ty: DITy)); |
816 | } |
817 | |
818 | DBuilder.replaceArrays(T&: FrameDITy, Elements: DBuilder.getOrCreateArray(Elements)); |
819 | |
820 | auto *FrameDIVar = |
821 | DBuilder.createAutoVariable(Scope: DIS, Name: "__coro_frame" , File: DFile, LineNo: LineNum, |
822 | Ty: FrameDITy, AlwaysPreserve: true, Flags: DINode::FlagArtificial); |
823 | |
824 | // Subprogram would have ContainedNodes field which records the debug |
825 | // variables it contained. So we need to add __coro_frame to the |
826 | // ContainedNodes of it. |
827 | // |
828 | // If we don't add __coro_frame to the RetainedNodes, user may get |
829 | // `no symbol __coro_frame in context` rather than `__coro_frame` |
830 | // is optimized out, which is more precise. |
831 | auto RetainedNodes = DIS->getRetainedNodes(); |
832 | SmallVector<Metadata *, 32> RetainedNodesVec(RetainedNodes.begin(), |
833 | RetainedNodes.end()); |
834 | RetainedNodesVec.push_back(Elt: FrameDIVar); |
835 | DIS->replaceOperandWith(I: 7, New: (MDTuple::get(Context&: F.getContext(), MDs: RetainedNodesVec))); |
836 | |
837 | // Construct the location for the frame debug variable. The column number |
838 | // is fake but it should be fine. |
839 | DILocation *DILoc = |
840 | DILocation::get(Context&: DIS->getContext(), Line: LineNum, /*Column=*/1, Scope: DIS); |
841 | assert(FrameDIVar->isValidLocationForIntrinsic(DILoc)); |
842 | |
843 | DbgVariableRecord *NewDVR = |
844 | new DbgVariableRecord(ValueAsMetadata::get(V: Shape.FramePtr), FrameDIVar, |
845 | DBuilder.createExpression(), DILoc, |
846 | DbgVariableRecord::LocationType::Declare); |
847 | BasicBlock::iterator It = Shape.getInsertPtAfterFramePtr(); |
848 | It->getParent()->insertDbgRecordBefore(DR: NewDVR, Here: It); |
849 | } |
850 | |
851 | // Build a struct that will keep state for an active coroutine. |
852 | // struct f.frame { |
853 | // ResumeFnTy ResumeFnAddr; |
854 | // ResumeFnTy DestroyFnAddr; |
855 | // ... promise (if present) ... |
856 | // int ResumeIndex; |
857 | // ... spills ... |
858 | // }; |
859 | static StructType *buildFrameType(Function &F, coro::Shape &Shape, |
860 | FrameDataInfo &FrameData, |
861 | bool OptimizeFrame) { |
862 | LLVMContext &C = F.getContext(); |
863 | const DataLayout &DL = F.getDataLayout(); |
864 | |
865 | // We will use this value to cap the alignment of spilled values. |
866 | std::optional<Align> MaxFrameAlignment; |
867 | if (Shape.ABI == coro::ABI::Async) |
868 | MaxFrameAlignment = Shape.AsyncLowering.getContextAlignment(); |
869 | FrameTypeBuilder B(C, DL, MaxFrameAlignment); |
870 | |
871 | AllocaInst *PromiseAlloca = Shape.getPromiseAlloca(); |
872 | std::optional<FieldIDType> SwitchIndexFieldId; |
873 | |
874 | if (Shape.ABI == coro::ABI::Switch) { |
875 | auto *FnPtrTy = PointerType::getUnqual(C); |
876 | |
877 | // Add header fields for the resume and destroy functions. |
878 | // We can rely on these being perfectly packed. |
879 | (void)B.addField(Ty: FnPtrTy, MaybeFieldAlignment: std::nullopt, /*header*/ IsHeader: true); |
880 | (void)B.addField(Ty: FnPtrTy, MaybeFieldAlignment: std::nullopt, /*header*/ IsHeader: true); |
881 | |
882 | // PromiseAlloca field needs to be explicitly added here because it's |
883 | // a header field with a fixed offset based on its alignment. Hence it |
884 | // needs special handling and cannot be added to FrameData.Allocas. |
885 | if (PromiseAlloca) |
886 | FrameData.setFieldIndex( |
887 | V: PromiseAlloca, Index: B.addFieldForAlloca(AI: PromiseAlloca, /*header*/ IsHeader: true)); |
888 | |
889 | // Add a field to store the suspend index. This doesn't need to |
890 | // be in the header. |
891 | unsigned IndexBits = std::max(a: 1U, b: Log2_64_Ceil(Value: Shape.CoroSuspends.size())); |
892 | Type *IndexType = Type::getIntNTy(C, N: IndexBits); |
893 | |
894 | SwitchIndexFieldId = B.addField(Ty: IndexType, MaybeFieldAlignment: std::nullopt); |
895 | } else { |
896 | assert(PromiseAlloca == nullptr && "lowering doesn't support promises" ); |
897 | } |
898 | |
899 | // Because multiple allocas may own the same field slot, |
900 | // we add allocas to field here. |
901 | B.addFieldForAllocas(F, FrameData, Shape, OptimizeFrame); |
902 | // Add PromiseAlloca to Allocas list so that |
903 | // 1. updateLayoutIndex could update its index after |
904 | // `performOptimizedStructLayout` |
905 | // 2. it is processed in insertSpills. |
906 | if (Shape.ABI == coro::ABI::Switch && PromiseAlloca) |
907 | // We assume that the promise alloca won't be modified before |
908 | // CoroBegin and no alias will be create before CoroBegin. |
909 | FrameData.Allocas.emplace_back( |
910 | Args&: PromiseAlloca, Args: DenseMap<Instruction *, std::optional<APInt>>{}, Args: false); |
911 | // Create an entry for every spilled value. |
912 | for (auto &S : FrameData.Spills) { |
913 | Type *FieldType = S.first->getType(); |
914 | // For byval arguments, we need to store the pointed value in the frame, |
915 | // instead of the pointer itself. |
916 | if (const Argument *A = dyn_cast<Argument>(Val: S.first)) |
917 | if (A->hasByValAttr()) |
918 | FieldType = A->getParamByValType(); |
919 | FieldIDType Id = B.addField(Ty: FieldType, MaybeFieldAlignment: std::nullopt, IsHeader: false /*header*/, |
920 | IsSpillOfValue: true /*IsSpillOfValue*/); |
921 | FrameData.setFieldIndex(V: S.first, Index: Id); |
922 | } |
923 | |
924 | StructType *FrameTy = [&] { |
925 | SmallString<32> Name(F.getName()); |
926 | Name.append(RHS: ".Frame" ); |
927 | return B.finish(Name); |
928 | }(); |
929 | |
930 | FrameData.updateLayoutIndex(B); |
931 | Shape.FrameAlign = B.getStructAlign(); |
932 | Shape.FrameSize = B.getStructSize(); |
933 | |
934 | switch (Shape.ABI) { |
935 | case coro::ABI::Switch: { |
936 | // In the switch ABI, remember the switch-index field. |
937 | auto IndexField = B.getLayoutField(Id: *SwitchIndexFieldId); |
938 | Shape.SwitchLowering.IndexField = IndexField.LayoutFieldIndex; |
939 | Shape.SwitchLowering.IndexAlign = IndexField.Alignment.value(); |
940 | Shape.SwitchLowering.IndexOffset = IndexField.Offset; |
941 | |
942 | // Also round the frame size up to a multiple of its alignment, as is |
943 | // generally expected in C/C++. |
944 | Shape.FrameSize = alignTo(Size: Shape.FrameSize, A: Shape.FrameAlign); |
945 | break; |
946 | } |
947 | |
948 | // In the retcon ABI, remember whether the frame is inline in the storage. |
949 | case coro::ABI::Retcon: |
950 | case coro::ABI::RetconOnce: { |
951 | auto Id = Shape.getRetconCoroId(); |
952 | Shape.RetconLowering.IsFrameInlineInStorage |
953 | = (B.getStructSize() <= Id->getStorageSize() && |
954 | B.getStructAlign() <= Id->getStorageAlignment()); |
955 | break; |
956 | } |
957 | case coro::ABI::Async: { |
958 | Shape.AsyncLowering.FrameOffset = |
959 | alignTo(Size: Shape.AsyncLowering.ContextHeaderSize, A: Shape.FrameAlign); |
960 | // Also make the final context size a multiple of the context alignment to |
961 | // make allocation easier for allocators. |
962 | Shape.AsyncLowering.ContextSize = |
963 | alignTo(Size: Shape.AsyncLowering.FrameOffset + Shape.FrameSize, |
964 | A: Shape.AsyncLowering.getContextAlignment()); |
965 | if (Shape.AsyncLowering.getContextAlignment() < Shape.FrameAlign) { |
966 | report_fatal_error( |
967 | reason: "The alignment requirment of frame variables cannot be higher than " |
968 | "the alignment of the async function context" ); |
969 | } |
970 | break; |
971 | } |
972 | } |
973 | |
974 | return FrameTy; |
975 | } |
976 | |
977 | // Replace all alloca and SSA values that are accessed across suspend points |
978 | // with GetElementPointer from coroutine frame + loads and stores. Create an |
979 | // AllocaSpillBB that will become the new entry block for the resume parts of |
980 | // the coroutine: |
981 | // |
982 | // %hdl = coro.begin(...) |
983 | // whatever |
984 | // |
985 | // becomes: |
986 | // |
987 | // %hdl = coro.begin(...) |
988 | // br label %AllocaSpillBB |
989 | // |
990 | // AllocaSpillBB: |
991 | // ; geps corresponding to allocas that were moved to coroutine frame |
992 | // br label PostSpill |
993 | // |
994 | // PostSpill: |
995 | // whatever |
996 | // |
997 | // |
998 | static void insertSpills(const FrameDataInfo &FrameData, coro::Shape &Shape) { |
999 | LLVMContext &C = Shape.CoroBegin->getContext(); |
1000 | Function *F = Shape.CoroBegin->getFunction(); |
1001 | IRBuilder<> Builder(C); |
1002 | StructType *FrameTy = Shape.FrameTy; |
1003 | Value *FramePtr = Shape.FramePtr; |
1004 | DominatorTree DT(*F); |
1005 | SmallDenseMap<Argument *, AllocaInst *, 4> ArgToAllocaMap; |
1006 | |
1007 | // Create a GEP with the given index into the coroutine frame for the original |
1008 | // value Orig. Appends an extra 0 index for array-allocas, preserving the |
1009 | // original type. |
1010 | auto GetFramePointer = [&](Value *Orig) -> Value * { |
1011 | FieldIDType Index = FrameData.getFieldIndex(V: Orig); |
1012 | SmallVector<Value *, 3> Indices = { |
1013 | ConstantInt::get(Ty: Type::getInt32Ty(C), V: 0), |
1014 | ConstantInt::get(Ty: Type::getInt32Ty(C), V: Index), |
1015 | }; |
1016 | |
1017 | if (auto *AI = dyn_cast<AllocaInst>(Val: Orig)) { |
1018 | if (auto *CI = dyn_cast<ConstantInt>(Val: AI->getArraySize())) { |
1019 | auto Count = CI->getValue().getZExtValue(); |
1020 | if (Count > 1) { |
1021 | Indices.push_back(Elt: ConstantInt::get(Ty: Type::getInt32Ty(C), V: 0)); |
1022 | } |
1023 | } else { |
1024 | report_fatal_error(reason: "Coroutines cannot handle non static allocas yet" ); |
1025 | } |
1026 | } |
1027 | |
1028 | auto GEP = cast<GetElementPtrInst>( |
1029 | Val: Builder.CreateInBoundsGEP(Ty: FrameTy, Ptr: FramePtr, IdxList: Indices)); |
1030 | if (auto *AI = dyn_cast<AllocaInst>(Val: Orig)) { |
1031 | if (FrameData.getDynamicAlign(V: Orig) != 0) { |
1032 | assert(FrameData.getDynamicAlign(Orig) == AI->getAlign().value()); |
1033 | auto *M = AI->getModule(); |
1034 | auto *IntPtrTy = M->getDataLayout().getIntPtrType(AI->getType()); |
1035 | auto *PtrValue = Builder.CreatePtrToInt(V: GEP, DestTy: IntPtrTy); |
1036 | auto *AlignMask = |
1037 | ConstantInt::get(Ty: IntPtrTy, V: AI->getAlign().value() - 1); |
1038 | PtrValue = Builder.CreateAdd(LHS: PtrValue, RHS: AlignMask); |
1039 | PtrValue = Builder.CreateAnd(LHS: PtrValue, RHS: Builder.CreateNot(V: AlignMask)); |
1040 | return Builder.CreateIntToPtr(V: PtrValue, DestTy: AI->getType()); |
1041 | } |
1042 | // If the type of GEP is not equal to the type of AllocaInst, it implies |
1043 | // that the AllocaInst may be reused in the Frame slot of other |
1044 | // AllocaInst. So We cast GEP to the AllocaInst here to re-use |
1045 | // the Frame storage. |
1046 | // |
1047 | // Note: If we change the strategy dealing with alignment, we need to refine |
1048 | // this casting. |
1049 | if (GEP->getType() != Orig->getType()) |
1050 | return Builder.CreateAddrSpaceCast(V: GEP, DestTy: Orig->getType(), |
1051 | Name: Orig->getName() + Twine(".cast" )); |
1052 | } |
1053 | return GEP; |
1054 | }; |
1055 | |
1056 | for (auto const &E : FrameData.Spills) { |
1057 | Value *Def = E.first; |
1058 | auto SpillAlignment = Align(FrameData.getAlign(V: Def)); |
1059 | // Create a store instruction storing the value into the |
1060 | // coroutine frame. |
1061 | BasicBlock::iterator InsertPt = coro::getSpillInsertionPt(Shape, Def, DT); |
1062 | |
1063 | Type *ByValTy = nullptr; |
1064 | if (auto *Arg = dyn_cast<Argument>(Val: Def)) { |
1065 | // If we're spilling an Argument, make sure we clear 'captures' |
1066 | // from the coroutine function. |
1067 | Arg->getParent()->removeParamAttr(ArgNo: Arg->getArgNo(), Kind: Attribute::Captures); |
1068 | |
1069 | if (Arg->hasByValAttr()) |
1070 | ByValTy = Arg->getParamByValType(); |
1071 | } |
1072 | |
1073 | auto Index = FrameData.getFieldIndex(V: Def); |
1074 | Builder.SetInsertPoint(TheBB: InsertPt->getParent(), IP: InsertPt); |
1075 | auto *G = Builder.CreateConstInBoundsGEP2_32( |
1076 | Ty: FrameTy, Ptr: FramePtr, Idx0: 0, Idx1: Index, Name: Def->getName() + Twine(".spill.addr" )); |
1077 | if (ByValTy) { |
1078 | // For byval arguments, we need to store the pointed value in the frame, |
1079 | // instead of the pointer itself. |
1080 | auto *Value = Builder.CreateLoad(Ty: ByValTy, Ptr: Def); |
1081 | Builder.CreateAlignedStore(Val: Value, Ptr: G, Align: SpillAlignment); |
1082 | } else { |
1083 | Builder.CreateAlignedStore(Val: Def, Ptr: G, Align: SpillAlignment); |
1084 | } |
1085 | |
1086 | BasicBlock *CurrentBlock = nullptr; |
1087 | Value *CurrentReload = nullptr; |
1088 | for (auto *U : E.second) { |
1089 | // If we have not seen the use block, create a load instruction to reload |
1090 | // the spilled value from the coroutine frame. Populates the Value pointer |
1091 | // reference provided with the frame GEP. |
1092 | if (CurrentBlock != U->getParent()) { |
1093 | CurrentBlock = U->getParent(); |
1094 | Builder.SetInsertPoint(TheBB: CurrentBlock, |
1095 | IP: CurrentBlock->getFirstInsertionPt()); |
1096 | |
1097 | auto *GEP = GetFramePointer(E.first); |
1098 | GEP->setName(E.first->getName() + Twine(".reload.addr" )); |
1099 | if (ByValTy) |
1100 | CurrentReload = GEP; |
1101 | else |
1102 | CurrentReload = Builder.CreateAlignedLoad( |
1103 | Ty: FrameTy->getElementType(N: FrameData.getFieldIndex(V: E.first)), Ptr: GEP, |
1104 | Align: SpillAlignment, Name: E.first->getName() + Twine(".reload" )); |
1105 | |
1106 | TinyPtrVector<DbgDeclareInst *> DIs = findDbgDeclares(V: Def); |
1107 | TinyPtrVector<DbgVariableRecord *> DVRs = findDVRDeclares(V: Def); |
1108 | // Try best to find dbg.declare. If the spill is a temp, there may not |
1109 | // be a direct dbg.declare. Walk up the load chain to find one from an |
1110 | // alias. |
1111 | if (F->getSubprogram()) { |
1112 | auto *CurDef = Def; |
1113 | while (DIs.empty() && DVRs.empty() && isa<LoadInst>(Val: CurDef)) { |
1114 | auto *LdInst = cast<LoadInst>(Val: CurDef); |
1115 | // Only consider ptr to ptr same type load. |
1116 | if (LdInst->getPointerOperandType() != LdInst->getType()) |
1117 | break; |
1118 | CurDef = LdInst->getPointerOperand(); |
1119 | if (!isa<AllocaInst, LoadInst>(Val: CurDef)) |
1120 | break; |
1121 | DIs = findDbgDeclares(V: CurDef); |
1122 | DVRs = findDVRDeclares(V: CurDef); |
1123 | } |
1124 | } |
1125 | |
1126 | auto SalvageOne = [&](auto *DDI) { |
1127 | // This dbg.declare is preserved for all coro-split function |
1128 | // fragments. It will be unreachable in the main function, and |
1129 | // processed by coro::salvageDebugInfo() by the Cloner. |
1130 | DbgVariableRecord *NewDVR = new DbgVariableRecord( |
1131 | ValueAsMetadata::get(V: CurrentReload), DDI->getVariable(), |
1132 | DDI->getExpression(), DDI->getDebugLoc(), |
1133 | DbgVariableRecord::LocationType::Declare); |
1134 | Builder.GetInsertPoint()->getParent()->insertDbgRecordBefore( |
1135 | DR: NewDVR, Here: Builder.GetInsertPoint()); |
1136 | // This dbg.declare is for the main function entry point. It |
1137 | // will be deleted in all coro-split functions. |
1138 | coro::salvageDebugInfo(ArgToAllocaMap, *DDI, false /*UseEntryValue*/); |
1139 | }; |
1140 | for_each(Range&: DIs, F: SalvageOne); |
1141 | for_each(Range&: DVRs, F: SalvageOne); |
1142 | } |
1143 | |
1144 | // If we have a single edge PHINode, remove it and replace it with a |
1145 | // reload from the coroutine frame. (We already took care of multi edge |
1146 | // PHINodes by normalizing them in the rewritePHIs function). |
1147 | if (auto *PN = dyn_cast<PHINode>(Val: U)) { |
1148 | assert(PN->getNumIncomingValues() == 1 && |
1149 | "unexpected number of incoming " |
1150 | "values in the PHINode" ); |
1151 | PN->replaceAllUsesWith(V: CurrentReload); |
1152 | PN->eraseFromParent(); |
1153 | continue; |
1154 | } |
1155 | |
1156 | // Replace all uses of CurrentValue in the current instruction with |
1157 | // reload. |
1158 | U->replaceUsesOfWith(From: Def, To: CurrentReload); |
1159 | // Instructions are added to Def's user list if the attached |
1160 | // debug records use Def. Update those now. |
1161 | for (DbgVariableRecord &DVR : filterDbgVars(R: U->getDbgRecordRange())) |
1162 | DVR.replaceVariableLocationOp(OldValue: Def, NewValue: CurrentReload, AllowEmpty: true); |
1163 | } |
1164 | } |
1165 | |
1166 | BasicBlock *FramePtrBB = Shape.getInsertPtAfterFramePtr()->getParent(); |
1167 | |
1168 | auto SpillBlock = FramePtrBB->splitBasicBlock( |
1169 | I: Shape.getInsertPtAfterFramePtr(), BBName: "AllocaSpillBB" ); |
1170 | SpillBlock->splitBasicBlock(I: &SpillBlock->front(), BBName: "PostSpill" ); |
1171 | Shape.AllocaSpillBlock = SpillBlock; |
1172 | |
1173 | // retcon and retcon.once lowering assumes all uses have been sunk. |
1174 | if (Shape.ABI == coro::ABI::Retcon || Shape.ABI == coro::ABI::RetconOnce || |
1175 | Shape.ABI == coro::ABI::Async) { |
1176 | // If we found any allocas, replace all of their remaining uses with Geps. |
1177 | Builder.SetInsertPoint(TheBB: SpillBlock, IP: SpillBlock->begin()); |
1178 | for (const auto &P : FrameData.Allocas) { |
1179 | AllocaInst *Alloca = P.Alloca; |
1180 | auto *G = GetFramePointer(Alloca); |
1181 | |
1182 | // We are not using ReplaceInstWithInst(P.first, cast<Instruction>(G)) |
1183 | // here, as we are changing location of the instruction. |
1184 | G->takeName(V: Alloca); |
1185 | Alloca->replaceAllUsesWith(V: G); |
1186 | Alloca->eraseFromParent(); |
1187 | } |
1188 | return; |
1189 | } |
1190 | |
1191 | // If we found any alloca, replace all of their remaining uses with GEP |
1192 | // instructions. To remain debugbility, we replace the uses of allocas for |
1193 | // dbg.declares and dbg.values with the reload from the frame. |
1194 | // Note: We cannot replace the alloca with GEP instructions indiscriminately, |
1195 | // as some of the uses may not be dominated by CoroBegin. |
1196 | Builder.SetInsertPoint(TheBB: Shape.AllocaSpillBlock, |
1197 | IP: Shape.AllocaSpillBlock->begin()); |
1198 | SmallVector<Instruction *, 4> UsersToUpdate; |
1199 | for (const auto &A : FrameData.Allocas) { |
1200 | AllocaInst *Alloca = A.Alloca; |
1201 | UsersToUpdate.clear(); |
1202 | for (User *U : make_early_inc_range(Range: Alloca->users())) { |
1203 | auto *I = cast<Instruction>(Val: U); |
1204 | // It is meaningless to retain the lifetime intrinsics refer for the |
1205 | // member of coroutine frames and the meaningless lifetime intrinsics |
1206 | // are possible to block further optimizations. |
1207 | if (I->isLifetimeStartOrEnd()) |
1208 | I->eraseFromParent(); |
1209 | else if (DT.dominates(Def: Shape.CoroBegin, User: I)) |
1210 | UsersToUpdate.push_back(Elt: I); |
1211 | } |
1212 | |
1213 | if (UsersToUpdate.empty()) |
1214 | continue; |
1215 | auto *G = GetFramePointer(Alloca); |
1216 | G->setName(Alloca->getName() + Twine(".reload.addr" )); |
1217 | |
1218 | SmallVector<DbgVariableIntrinsic *, 4> DIs; |
1219 | SmallVector<DbgVariableRecord *> DbgVariableRecords; |
1220 | findDbgUsers(DbgInsts&: DIs, V: Alloca, DbgVariableRecords: &DbgVariableRecords); |
1221 | for (auto *DVI : DIs) |
1222 | DVI->replaceUsesOfWith(From: Alloca, To: G); |
1223 | for (auto *DVR : DbgVariableRecords) |
1224 | DVR->replaceVariableLocationOp(OldValue: Alloca, NewValue: G); |
1225 | |
1226 | for (Instruction *I : UsersToUpdate) |
1227 | I->replaceUsesOfWith(From: Alloca, To: G); |
1228 | } |
1229 | Builder.SetInsertPoint(&*Shape.getInsertPtAfterFramePtr()); |
1230 | for (const auto &A : FrameData.Allocas) { |
1231 | AllocaInst *Alloca = A.Alloca; |
1232 | if (A.MayWriteBeforeCoroBegin) { |
1233 | // isEscaped really means potentially modified before CoroBegin. |
1234 | if (Alloca->isArrayAllocation()) |
1235 | report_fatal_error( |
1236 | reason: "Coroutines cannot handle copying of array allocas yet" ); |
1237 | |
1238 | auto *G = GetFramePointer(Alloca); |
1239 | auto *Value = Builder.CreateLoad(Ty: Alloca->getAllocatedType(), Ptr: Alloca); |
1240 | Builder.CreateStore(Val: Value, Ptr: G); |
1241 | } |
1242 | // For each alias to Alloca created before CoroBegin but used after |
1243 | // CoroBegin, we recreate them after CoroBegin by applying the offset |
1244 | // to the pointer in the frame. |
1245 | for (const auto &Alias : A.Aliases) { |
1246 | auto *FramePtr = GetFramePointer(Alloca); |
1247 | auto &Value = *Alias.second; |
1248 | auto ITy = IntegerType::get(C, NumBits: Value.getBitWidth()); |
1249 | auto *AliasPtr = |
1250 | Builder.CreatePtrAdd(Ptr: FramePtr, Offset: ConstantInt::get(Ty: ITy, V: Value)); |
1251 | Alias.first->replaceUsesWithIf( |
1252 | New: AliasPtr, ShouldReplace: [&](Use &U) { return DT.dominates(Def: Shape.CoroBegin, U); }); |
1253 | } |
1254 | } |
1255 | |
1256 | // PromiseAlloca is not collected in FrameData.Allocas. So we don't handle |
1257 | // the case that the PromiseAlloca may have writes before CoroBegin in the |
1258 | // above codes. And it may be problematic in edge cases. See |
1259 | // https://github.com/llvm/llvm-project/issues/57861 for an example. |
1260 | if (Shape.ABI == coro::ABI::Switch && Shape.SwitchLowering.PromiseAlloca) { |
1261 | AllocaInst *PA = Shape.SwitchLowering.PromiseAlloca; |
1262 | // If there is memory accessing to promise alloca before CoroBegin; |
1263 | bool HasAccessingPromiseBeforeCB = llvm::any_of(Range: PA->uses(), P: [&](Use &U) { |
1264 | auto *Inst = dyn_cast<Instruction>(Val: U.getUser()); |
1265 | if (!Inst || DT.dominates(Def: Shape.CoroBegin, User: Inst)) |
1266 | return false; |
1267 | |
1268 | if (auto *CI = dyn_cast<CallInst>(Val: Inst)) { |
1269 | // It is fine if the call wouldn't write to the Promise. |
1270 | // This is possible for @llvm.coro.id intrinsics, which |
1271 | // would take the promise as the second argument as a |
1272 | // marker. |
1273 | if (CI->onlyReadsMemory() || |
1274 | CI->onlyReadsMemory(OpNo: CI->getArgOperandNo(U: &U))) |
1275 | return false; |
1276 | return true; |
1277 | } |
1278 | |
1279 | return isa<StoreInst>(Val: Inst) || |
1280 | // It may take too much time to track the uses. |
1281 | // Be conservative about the case the use may escape. |
1282 | isa<GetElementPtrInst>(Val: Inst) || |
1283 | // There would always be a bitcast for the promise alloca |
1284 | // before we enabled Opaque pointers. And now given |
1285 | // opaque pointers are enabled by default. This should be |
1286 | // fine. |
1287 | isa<BitCastInst>(Val: Inst); |
1288 | }); |
1289 | if (HasAccessingPromiseBeforeCB) { |
1290 | Builder.SetInsertPoint(&*Shape.getInsertPtAfterFramePtr()); |
1291 | auto *G = GetFramePointer(PA); |
1292 | auto *Value = Builder.CreateLoad(Ty: PA->getAllocatedType(), Ptr: PA); |
1293 | Builder.CreateStore(Val: Value, Ptr: G); |
1294 | } |
1295 | } |
1296 | } |
1297 | |
1298 | // Moves the values in the PHIs in SuccBB that correspong to PredBB into a new |
1299 | // PHI in InsertedBB. |
1300 | static void movePHIValuesToInsertedBlock(BasicBlock *SuccBB, |
1301 | BasicBlock *InsertedBB, |
1302 | BasicBlock *PredBB, |
1303 | PHINode *UntilPHI = nullptr) { |
1304 | auto *PN = cast<PHINode>(Val: &SuccBB->front()); |
1305 | do { |
1306 | int Index = PN->getBasicBlockIndex(BB: InsertedBB); |
1307 | Value *V = PN->getIncomingValue(i: Index); |
1308 | PHINode *InputV = PHINode::Create( |
1309 | Ty: V->getType(), NumReservedValues: 1, NameStr: V->getName() + Twine("." ) + SuccBB->getName()); |
1310 | InputV->insertBefore(InsertPos: InsertedBB->begin()); |
1311 | InputV->addIncoming(V, BB: PredBB); |
1312 | PN->setIncomingValue(i: Index, V: InputV); |
1313 | PN = dyn_cast<PHINode>(Val: PN->getNextNode()); |
1314 | } while (PN != UntilPHI); |
1315 | } |
1316 | |
1317 | // Rewrites the PHI Nodes in a cleanuppad. |
1318 | static void rewritePHIsForCleanupPad(BasicBlock *CleanupPadBB, |
1319 | CleanupPadInst *CleanupPad) { |
1320 | // For every incoming edge to a CleanupPad we will create a new block holding |
1321 | // all incoming values in single-value PHI nodes. We will then create another |
1322 | // block to act as a dispather (as all unwind edges for related EH blocks |
1323 | // must be the same). |
1324 | // |
1325 | // cleanuppad: |
1326 | // %2 = phi i32[%0, %catchswitch], [%1, %catch.1] |
1327 | // %3 = cleanuppad within none [] |
1328 | // |
1329 | // It will create: |
1330 | // |
1331 | // cleanuppad.corodispatch |
1332 | // %2 = phi i8[0, %catchswitch], [1, %catch.1] |
1333 | // %3 = cleanuppad within none [] |
1334 | // switch i8 % 2, label %unreachable |
1335 | // [i8 0, label %cleanuppad.from.catchswitch |
1336 | // i8 1, label %cleanuppad.from.catch.1] |
1337 | // cleanuppad.from.catchswitch: |
1338 | // %4 = phi i32 [%0, %catchswitch] |
1339 | // br %label cleanuppad |
1340 | // cleanuppad.from.catch.1: |
1341 | // %6 = phi i32 [%1, %catch.1] |
1342 | // br %label cleanuppad |
1343 | // cleanuppad: |
1344 | // %8 = phi i32 [%4, %cleanuppad.from.catchswitch], |
1345 | // [%6, %cleanuppad.from.catch.1] |
1346 | |
1347 | // Unreachable BB, in case switching on an invalid value in the dispatcher. |
1348 | auto *UnreachBB = BasicBlock::Create( |
1349 | Context&: CleanupPadBB->getContext(), Name: "unreachable" , Parent: CleanupPadBB->getParent()); |
1350 | IRBuilder<> Builder(UnreachBB); |
1351 | Builder.CreateUnreachable(); |
1352 | |
1353 | // Create a new cleanuppad which will be the dispatcher. |
1354 | auto *NewCleanupPadBB = |
1355 | BasicBlock::Create(Context&: CleanupPadBB->getContext(), |
1356 | Name: CleanupPadBB->getName() + Twine(".corodispatch" ), |
1357 | Parent: CleanupPadBB->getParent(), InsertBefore: CleanupPadBB); |
1358 | Builder.SetInsertPoint(NewCleanupPadBB); |
1359 | auto *SwitchType = Builder.getInt8Ty(); |
1360 | auto *SetDispatchValuePN = |
1361 | Builder.CreatePHI(Ty: SwitchType, NumReservedValues: pred_size(BB: CleanupPadBB)); |
1362 | CleanupPad->removeFromParent(); |
1363 | CleanupPad->insertAfter(InsertPos: SetDispatchValuePN->getIterator()); |
1364 | auto *SwitchOnDispatch = Builder.CreateSwitch(V: SetDispatchValuePN, Dest: UnreachBB, |
1365 | NumCases: pred_size(BB: CleanupPadBB)); |
1366 | |
1367 | int SwitchIndex = 0; |
1368 | SmallVector<BasicBlock *, 8> Preds(predecessors(BB: CleanupPadBB)); |
1369 | for (BasicBlock *Pred : Preds) { |
1370 | // Create a new cleanuppad and move the PHI values to there. |
1371 | auto *CaseBB = BasicBlock::Create(Context&: CleanupPadBB->getContext(), |
1372 | Name: CleanupPadBB->getName() + |
1373 | Twine(".from." ) + Pred->getName(), |
1374 | Parent: CleanupPadBB->getParent(), InsertBefore: CleanupPadBB); |
1375 | updatePhiNodes(DestBB: CleanupPadBB, OldPred: Pred, NewPred: CaseBB); |
1376 | CaseBB->setName(CleanupPadBB->getName() + Twine(".from." ) + |
1377 | Pred->getName()); |
1378 | Builder.SetInsertPoint(CaseBB); |
1379 | Builder.CreateBr(Dest: CleanupPadBB); |
1380 | movePHIValuesToInsertedBlock(SuccBB: CleanupPadBB, InsertedBB: CaseBB, PredBB: NewCleanupPadBB); |
1381 | |
1382 | // Update this Pred to the new unwind point. |
1383 | setUnwindEdgeTo(TI: Pred->getTerminator(), Succ: NewCleanupPadBB); |
1384 | |
1385 | // Setup the switch in the dispatcher. |
1386 | auto *SwitchConstant = ConstantInt::get(Ty: SwitchType, V: SwitchIndex); |
1387 | SetDispatchValuePN->addIncoming(V: SwitchConstant, BB: Pred); |
1388 | SwitchOnDispatch->addCase(OnVal: SwitchConstant, Dest: CaseBB); |
1389 | SwitchIndex++; |
1390 | } |
1391 | } |
1392 | |
1393 | static void cleanupSinglePredPHIs(Function &F) { |
1394 | SmallVector<PHINode *, 32> Worklist; |
1395 | for (auto &BB : F) { |
1396 | for (auto &Phi : BB.phis()) { |
1397 | if (Phi.getNumIncomingValues() == 1) { |
1398 | Worklist.push_back(Elt: &Phi); |
1399 | } else |
1400 | break; |
1401 | } |
1402 | } |
1403 | while (!Worklist.empty()) { |
1404 | auto *Phi = Worklist.pop_back_val(); |
1405 | auto *OriginalValue = Phi->getIncomingValue(i: 0); |
1406 | Phi->replaceAllUsesWith(V: OriginalValue); |
1407 | } |
1408 | } |
1409 | |
1410 | static void rewritePHIs(BasicBlock &BB) { |
1411 | // For every incoming edge we will create a block holding all |
1412 | // incoming values in a single PHI nodes. |
1413 | // |
1414 | // loop: |
1415 | // %n.val = phi i32[%n, %entry], [%inc, %loop] |
1416 | // |
1417 | // It will create: |
1418 | // |
1419 | // loop.from.entry: |
1420 | // %n.loop.pre = phi i32 [%n, %entry] |
1421 | // br %label loop |
1422 | // loop.from.loop: |
1423 | // %inc.loop.pre = phi i32 [%inc, %loop] |
1424 | // br %label loop |
1425 | // |
1426 | // After this rewrite, further analysis will ignore any phi nodes with more |
1427 | // than one incoming edge. |
1428 | |
1429 | // TODO: Simplify PHINodes in the basic block to remove duplicate |
1430 | // predecessors. |
1431 | |
1432 | // Special case for CleanupPad: all EH blocks must have the same unwind edge |
1433 | // so we need to create an additional "dispatcher" block. |
1434 | if (!BB.empty()) { |
1435 | if (auto *CleanupPad = |
1436 | dyn_cast_or_null<CleanupPadInst>(Val: BB.getFirstNonPHIIt())) { |
1437 | SmallVector<BasicBlock *, 8> Preds(predecessors(BB: &BB)); |
1438 | for (BasicBlock *Pred : Preds) { |
1439 | if (CatchSwitchInst *CS = |
1440 | dyn_cast<CatchSwitchInst>(Val: Pred->getTerminator())) { |
1441 | // CleanupPad with a CatchSwitch predecessor: therefore this is an |
1442 | // unwind destination that needs to be handle specially. |
1443 | assert(CS->getUnwindDest() == &BB); |
1444 | (void)CS; |
1445 | rewritePHIsForCleanupPad(CleanupPadBB: &BB, CleanupPad); |
1446 | return; |
1447 | } |
1448 | } |
1449 | } |
1450 | } |
1451 | |
1452 | LandingPadInst *LandingPad = nullptr; |
1453 | PHINode *ReplPHI = nullptr; |
1454 | if (!BB.empty()) { |
1455 | if ((LandingPad = |
1456 | dyn_cast_or_null<LandingPadInst>(Val: BB.getFirstNonPHIIt()))) { |
1457 | // ehAwareSplitEdge will clone the LandingPad in all the edge blocks. |
1458 | // We replace the original landing pad with a PHINode that will collect the |
1459 | // results from all of them. |
1460 | ReplPHI = PHINode::Create(Ty: LandingPad->getType(), NumReservedValues: 1, NameStr: "" ); |
1461 | ReplPHI->insertBefore(InsertPos: LandingPad->getIterator()); |
1462 | ReplPHI->takeName(V: LandingPad); |
1463 | LandingPad->replaceAllUsesWith(V: ReplPHI); |
1464 | // We will erase the original landing pad at the end of this function after |
1465 | // ehAwareSplitEdge cloned it in the transition blocks. |
1466 | } |
1467 | } |
1468 | |
1469 | SmallVector<BasicBlock *, 8> Preds(predecessors(BB: &BB)); |
1470 | for (BasicBlock *Pred : Preds) { |
1471 | auto *IncomingBB = ehAwareSplitEdge(BB: Pred, Succ: &BB, OriginalPad: LandingPad, LandingPadReplacement: ReplPHI); |
1472 | IncomingBB->setName(BB.getName() + Twine(".from." ) + Pred->getName()); |
1473 | |
1474 | // Stop the moving of values at ReplPHI, as this is either null or the PHI |
1475 | // that replaced the landing pad. |
1476 | movePHIValuesToInsertedBlock(SuccBB: &BB, InsertedBB: IncomingBB, PredBB: Pred, UntilPHI: ReplPHI); |
1477 | } |
1478 | |
1479 | if (LandingPad) { |
1480 | // Calls to ehAwareSplitEdge function cloned the original lading pad. |
1481 | // No longer need it. |
1482 | LandingPad->eraseFromParent(); |
1483 | } |
1484 | } |
1485 | |
1486 | static void rewritePHIs(Function &F) { |
1487 | SmallVector<BasicBlock *, 8> WorkList; |
1488 | |
1489 | for (BasicBlock &BB : F) |
1490 | if (auto *PN = dyn_cast<PHINode>(Val: &BB.front())) |
1491 | if (PN->getNumIncomingValues() > 1) |
1492 | WorkList.push_back(Elt: &BB); |
1493 | |
1494 | for (BasicBlock *BB : WorkList) |
1495 | rewritePHIs(BB&: *BB); |
1496 | } |
1497 | |
1498 | // Splits the block at a particular instruction unless it is the first |
1499 | // instruction in the block with a single predecessor. |
1500 | static BasicBlock *splitBlockIfNotFirst(Instruction *I, const Twine &Name) { |
1501 | auto *BB = I->getParent(); |
1502 | if (&BB->front() == I) { |
1503 | if (BB->getSinglePredecessor()) { |
1504 | BB->setName(Name); |
1505 | return BB; |
1506 | } |
1507 | } |
1508 | return BB->splitBasicBlock(I, BBName: Name); |
1509 | } |
1510 | |
1511 | // Split above and below a particular instruction so that it |
1512 | // will be all alone by itself in a block. |
1513 | static void splitAround(Instruction *I, const Twine &Name) { |
1514 | splitBlockIfNotFirst(I, Name); |
1515 | splitBlockIfNotFirst(I: I->getNextNode(), Name: "After" + Name); |
1516 | } |
1517 | |
1518 | /// After we split the coroutine, will the given basic block be along |
1519 | /// an obvious exit path for the resumption function? |
1520 | static bool willLeaveFunctionImmediatelyAfter(BasicBlock *BB, |
1521 | unsigned depth = 3) { |
1522 | // If we've bottomed out our depth count, stop searching and assume |
1523 | // that the path might loop back. |
1524 | if (depth == 0) return false; |
1525 | |
1526 | // If this is a suspend block, we're about to exit the resumption function. |
1527 | if (coro::isSuspendBlock(BB)) |
1528 | return true; |
1529 | |
1530 | // Recurse into the successors. |
1531 | for (auto *Succ : successors(BB)) { |
1532 | if (!willLeaveFunctionImmediatelyAfter(BB: Succ, depth: depth - 1)) |
1533 | return false; |
1534 | } |
1535 | |
1536 | // If none of the successors leads back in a loop, we're on an exit/abort. |
1537 | return true; |
1538 | } |
1539 | |
1540 | static bool localAllocaNeedsStackSave(CoroAllocaAllocInst *AI) { |
1541 | // Look for a free that isn't sufficiently obviously followed by |
1542 | // either a suspend or a termination, i.e. something that will leave |
1543 | // the coro resumption frame. |
1544 | for (auto *U : AI->users()) { |
1545 | auto FI = dyn_cast<CoroAllocaFreeInst>(Val: U); |
1546 | if (!FI) continue; |
1547 | |
1548 | if (!willLeaveFunctionImmediatelyAfter(BB: FI->getParent())) |
1549 | return true; |
1550 | } |
1551 | |
1552 | // If we never found one, we don't need a stack save. |
1553 | return false; |
1554 | } |
1555 | |
1556 | /// Turn each of the given local allocas into a normal (dynamic) alloca |
1557 | /// instruction. |
1558 | static void lowerLocalAllocas(ArrayRef<CoroAllocaAllocInst*> LocalAllocas, |
1559 | SmallVectorImpl<Instruction*> &DeadInsts) { |
1560 | for (auto *AI : LocalAllocas) { |
1561 | IRBuilder<> Builder(AI); |
1562 | |
1563 | // Save the stack depth. Try to avoid doing this if the stackrestore |
1564 | // is going to immediately precede a return or something. |
1565 | Value *StackSave = nullptr; |
1566 | if (localAllocaNeedsStackSave(AI)) |
1567 | StackSave = Builder.CreateStackSave(); |
1568 | |
1569 | // Allocate memory. |
1570 | auto Alloca = Builder.CreateAlloca(Ty: Builder.getInt8Ty(), ArraySize: AI->getSize()); |
1571 | Alloca->setAlignment(AI->getAlignment()); |
1572 | |
1573 | for (auto *U : AI->users()) { |
1574 | // Replace gets with the allocation. |
1575 | if (isa<CoroAllocaGetInst>(Val: U)) { |
1576 | U->replaceAllUsesWith(V: Alloca); |
1577 | |
1578 | // Replace frees with stackrestores. This is safe because |
1579 | // alloca.alloc is required to obey a stack discipline, although we |
1580 | // don't enforce that structurally. |
1581 | } else { |
1582 | auto FI = cast<CoroAllocaFreeInst>(Val: U); |
1583 | if (StackSave) { |
1584 | Builder.SetInsertPoint(FI); |
1585 | Builder.CreateStackRestore(Ptr: StackSave); |
1586 | } |
1587 | } |
1588 | DeadInsts.push_back(Elt: cast<Instruction>(Val: U)); |
1589 | } |
1590 | |
1591 | DeadInsts.push_back(Elt: AI); |
1592 | } |
1593 | } |
1594 | |
1595 | /// Get the current swifterror value. |
1596 | static Value *emitGetSwiftErrorValue(IRBuilder<> &Builder, Type *ValueTy, |
1597 | coro::Shape &Shape) { |
1598 | // Make a fake function pointer as a sort of intrinsic. |
1599 | auto FnTy = FunctionType::get(Result: ValueTy, Params: {}, isVarArg: false); |
1600 | auto Fn = ConstantPointerNull::get(T: Builder.getPtrTy()); |
1601 | |
1602 | auto Call = Builder.CreateCall(FTy: FnTy, Callee: Fn, Args: {}); |
1603 | Shape.SwiftErrorOps.push_back(Elt: Call); |
1604 | |
1605 | return Call; |
1606 | } |
1607 | |
1608 | /// Set the given value as the current swifterror value. |
1609 | /// |
1610 | /// Returns a slot that can be used as a swifterror slot. |
1611 | static Value *emitSetSwiftErrorValue(IRBuilder<> &Builder, Value *V, |
1612 | coro::Shape &Shape) { |
1613 | // Make a fake function pointer as a sort of intrinsic. |
1614 | auto FnTy = FunctionType::get(Result: Builder.getPtrTy(), |
1615 | Params: {V->getType()}, isVarArg: false); |
1616 | auto Fn = ConstantPointerNull::get(T: Builder.getPtrTy()); |
1617 | |
1618 | auto Call = Builder.CreateCall(FTy: FnTy, Callee: Fn, Args: { V }); |
1619 | Shape.SwiftErrorOps.push_back(Elt: Call); |
1620 | |
1621 | return Call; |
1622 | } |
1623 | |
1624 | /// Set the swifterror value from the given alloca before a call, |
1625 | /// then put in back in the alloca afterwards. |
1626 | /// |
1627 | /// Returns an address that will stand in for the swifterror slot |
1628 | /// until splitting. |
1629 | static Value *emitSetAndGetSwiftErrorValueAround(Instruction *Call, |
1630 | AllocaInst *Alloca, |
1631 | coro::Shape &Shape) { |
1632 | auto ValueTy = Alloca->getAllocatedType(); |
1633 | IRBuilder<> Builder(Call); |
1634 | |
1635 | // Load the current value from the alloca and set it as the |
1636 | // swifterror value. |
1637 | auto ValueBeforeCall = Builder.CreateLoad(Ty: ValueTy, Ptr: Alloca); |
1638 | auto Addr = emitSetSwiftErrorValue(Builder, V: ValueBeforeCall, Shape); |
1639 | |
1640 | // Move to after the call. Since swifterror only has a guaranteed |
1641 | // value on normal exits, we can ignore implicit and explicit unwind |
1642 | // edges. |
1643 | if (isa<CallInst>(Val: Call)) { |
1644 | Builder.SetInsertPoint(Call->getNextNode()); |
1645 | } else { |
1646 | auto Invoke = cast<InvokeInst>(Val: Call); |
1647 | Builder.SetInsertPoint(Invoke->getNormalDest()->getFirstNonPHIOrDbg()); |
1648 | } |
1649 | |
1650 | // Get the current swifterror value and store it to the alloca. |
1651 | auto ValueAfterCall = emitGetSwiftErrorValue(Builder, ValueTy, Shape); |
1652 | Builder.CreateStore(Val: ValueAfterCall, Ptr: Alloca); |
1653 | |
1654 | return Addr; |
1655 | } |
1656 | |
1657 | /// Eliminate a formerly-swifterror alloca by inserting the get/set |
1658 | /// intrinsics and attempting to MemToReg the alloca away. |
1659 | static void eliminateSwiftErrorAlloca(Function &F, AllocaInst *Alloca, |
1660 | coro::Shape &Shape) { |
1661 | for (Use &Use : llvm::make_early_inc_range(Range: Alloca->uses())) { |
1662 | // swifterror values can only be used in very specific ways. |
1663 | // We take advantage of that here. |
1664 | auto User = Use.getUser(); |
1665 | if (isa<LoadInst>(Val: User) || isa<StoreInst>(Val: User)) |
1666 | continue; |
1667 | |
1668 | assert(isa<CallInst>(User) || isa<InvokeInst>(User)); |
1669 | auto Call = cast<Instruction>(Val: User); |
1670 | |
1671 | auto Addr = emitSetAndGetSwiftErrorValueAround(Call, Alloca, Shape); |
1672 | |
1673 | // Use the returned slot address as the call argument. |
1674 | Use.set(Addr); |
1675 | } |
1676 | |
1677 | // All the uses should be loads and stores now. |
1678 | assert(isAllocaPromotable(Alloca)); |
1679 | } |
1680 | |
1681 | /// "Eliminate" a swifterror argument by reducing it to the alloca case |
1682 | /// and then loading and storing in the prologue and epilog. |
1683 | /// |
1684 | /// The argument keeps the swifterror flag. |
1685 | static void eliminateSwiftErrorArgument(Function &F, Argument &Arg, |
1686 | coro::Shape &Shape, |
1687 | SmallVectorImpl<AllocaInst*> &AllocasToPromote) { |
1688 | IRBuilder<> Builder(&F.getEntryBlock(), |
1689 | F.getEntryBlock().getFirstNonPHIOrDbg()); |
1690 | |
1691 | auto ArgTy = cast<PointerType>(Val: Arg.getType()); |
1692 | auto ValueTy = PointerType::getUnqual(C&: F.getContext()); |
1693 | |
1694 | // Reduce to the alloca case: |
1695 | |
1696 | // Create an alloca and replace all uses of the arg with it. |
1697 | auto Alloca = Builder.CreateAlloca(Ty: ValueTy, AddrSpace: ArgTy->getAddressSpace()); |
1698 | Arg.replaceAllUsesWith(V: Alloca); |
1699 | |
1700 | // Set an initial value in the alloca. swifterror is always null on entry. |
1701 | auto InitialValue = Constant::getNullValue(Ty: ValueTy); |
1702 | Builder.CreateStore(Val: InitialValue, Ptr: Alloca); |
1703 | |
1704 | // Find all the suspends in the function and save and restore around them. |
1705 | for (auto *Suspend : Shape.CoroSuspends) { |
1706 | (void) emitSetAndGetSwiftErrorValueAround(Call: Suspend, Alloca, Shape); |
1707 | } |
1708 | |
1709 | // Find all the coro.ends in the function and restore the error value. |
1710 | for (auto *End : Shape.CoroEnds) { |
1711 | Builder.SetInsertPoint(End); |
1712 | auto FinalValue = Builder.CreateLoad(Ty: ValueTy, Ptr: Alloca); |
1713 | (void) emitSetSwiftErrorValue(Builder, V: FinalValue, Shape); |
1714 | } |
1715 | |
1716 | // Now we can use the alloca logic. |
1717 | AllocasToPromote.push_back(Elt: Alloca); |
1718 | eliminateSwiftErrorAlloca(F, Alloca, Shape); |
1719 | } |
1720 | |
1721 | /// Eliminate all problematic uses of swifterror arguments and allocas |
1722 | /// from the function. We'll fix them up later when splitting the function. |
1723 | static void eliminateSwiftError(Function &F, coro::Shape &Shape) { |
1724 | SmallVector<AllocaInst*, 4> AllocasToPromote; |
1725 | |
1726 | // Look for a swifterror argument. |
1727 | for (auto &Arg : F.args()) { |
1728 | if (!Arg.hasSwiftErrorAttr()) continue; |
1729 | |
1730 | eliminateSwiftErrorArgument(F, Arg, Shape, AllocasToPromote); |
1731 | break; |
1732 | } |
1733 | |
1734 | // Look for swifterror allocas. |
1735 | for (auto &Inst : F.getEntryBlock()) { |
1736 | auto Alloca = dyn_cast<AllocaInst>(Val: &Inst); |
1737 | if (!Alloca || !Alloca->isSwiftError()) continue; |
1738 | |
1739 | // Clear the swifterror flag. |
1740 | Alloca->setSwiftError(false); |
1741 | |
1742 | AllocasToPromote.push_back(Elt: Alloca); |
1743 | eliminateSwiftErrorAlloca(F, Alloca, Shape); |
1744 | } |
1745 | |
1746 | // If we have any allocas to promote, compute a dominator tree and |
1747 | // promote them en masse. |
1748 | if (!AllocasToPromote.empty()) { |
1749 | DominatorTree DT(F); |
1750 | PromoteMemToReg(Allocas: AllocasToPromote, DT); |
1751 | } |
1752 | } |
1753 | |
1754 | /// For each local variable that all of its user are only used inside one of |
1755 | /// suspended region, we sink their lifetime.start markers to the place where |
1756 | /// after the suspend block. Doing so minimizes the lifetime of each variable, |
1757 | /// hence minimizing the amount of data we end up putting on the frame. |
1758 | static void sinkLifetimeStartMarkers(Function &F, coro::Shape &Shape, |
1759 | SuspendCrossingInfo &Checker, |
1760 | const DominatorTree &DT) { |
1761 | if (F.hasOptNone()) |
1762 | return; |
1763 | |
1764 | // Collect all possible basic blocks which may dominate all uses of allocas. |
1765 | SmallPtrSet<BasicBlock *, 4> DomSet; |
1766 | DomSet.insert(Ptr: &F.getEntryBlock()); |
1767 | for (auto *CSI : Shape.CoroSuspends) { |
1768 | BasicBlock *SuspendBlock = CSI->getParent(); |
1769 | assert(coro::isSuspendBlock(SuspendBlock) && |
1770 | SuspendBlock->getSingleSuccessor() && |
1771 | "should have split coro.suspend into its own block" ); |
1772 | DomSet.insert(Ptr: SuspendBlock->getSingleSuccessor()); |
1773 | } |
1774 | |
1775 | for (Instruction &I : instructions(F)) { |
1776 | AllocaInst* AI = dyn_cast<AllocaInst>(Val: &I); |
1777 | if (!AI) |
1778 | continue; |
1779 | |
1780 | for (BasicBlock *DomBB : DomSet) { |
1781 | bool Valid = true; |
1782 | SmallVector<Instruction *, 1> Lifetimes; |
1783 | |
1784 | auto isLifetimeStart = [](Instruction* I) { |
1785 | if (auto* II = dyn_cast<IntrinsicInst>(Val: I)) |
1786 | return II->getIntrinsicID() == Intrinsic::lifetime_start; |
1787 | return false; |
1788 | }; |
1789 | |
1790 | auto collectLifetimeStart = [&](Instruction *U, AllocaInst *AI) { |
1791 | if (isLifetimeStart(U)) { |
1792 | Lifetimes.push_back(Elt: U); |
1793 | return true; |
1794 | } |
1795 | if (!U->hasOneUse() || U->stripPointerCasts() != AI) |
1796 | return false; |
1797 | if (isLifetimeStart(U->user_back())) { |
1798 | Lifetimes.push_back(Elt: U->user_back()); |
1799 | return true; |
1800 | } |
1801 | return false; |
1802 | }; |
1803 | |
1804 | for (User *U : AI->users()) { |
1805 | Instruction *UI = cast<Instruction>(Val: U); |
1806 | // For all users except lifetime.start markers, if they are all |
1807 | // dominated by one of the basic blocks and do not cross |
1808 | // suspend points as well, then there is no need to spill the |
1809 | // instruction. |
1810 | if (!DT.dominates(A: DomBB, B: UI->getParent()) || |
1811 | Checker.isDefinitionAcrossSuspend(DefBB: DomBB, U: UI)) { |
1812 | // Skip lifetime.start, GEP and bitcast used by lifetime.start |
1813 | // markers. |
1814 | if (collectLifetimeStart(UI, AI)) |
1815 | continue; |
1816 | Valid = false; |
1817 | break; |
1818 | } |
1819 | } |
1820 | // Sink lifetime.start markers to dominate block when they are |
1821 | // only used outside the region. |
1822 | if (Valid && Lifetimes.size() != 0) { |
1823 | auto *NewLifetime = Lifetimes[0]->clone(); |
1824 | NewLifetime->replaceUsesOfWith(From: NewLifetime->getOperand(i: 1), To: AI); |
1825 | NewLifetime->insertBefore(InsertPos: DomBB->getTerminator()->getIterator()); |
1826 | |
1827 | // All the outsided lifetime.start markers are no longer necessary. |
1828 | for (Instruction *S : Lifetimes) |
1829 | S->eraseFromParent(); |
1830 | |
1831 | break; |
1832 | } |
1833 | } |
1834 | } |
1835 | } |
1836 | |
1837 | static std::optional<std::pair<Value &, DIExpression &>> |
1838 | salvageDebugInfoImpl(SmallDenseMap<Argument *, AllocaInst *, 4> &ArgToAllocaMap, |
1839 | bool UseEntryValue, Function *F, Value *Storage, |
1840 | DIExpression *Expr, bool SkipOutermostLoad) { |
1841 | IRBuilder<> Builder(F->getContext()); |
1842 | auto InsertPt = F->getEntryBlock().getFirstInsertionPt(); |
1843 | while (isa<IntrinsicInst>(Val: InsertPt)) |
1844 | ++InsertPt; |
1845 | Builder.SetInsertPoint(TheBB: &F->getEntryBlock(), IP: InsertPt); |
1846 | |
1847 | while (auto *Inst = dyn_cast_or_null<Instruction>(Val: Storage)) { |
1848 | if (auto *LdInst = dyn_cast<LoadInst>(Val: Inst)) { |
1849 | Storage = LdInst->getPointerOperand(); |
1850 | // FIXME: This is a heuristic that works around the fact that |
1851 | // LLVM IR debug intrinsics cannot yet distinguish between |
1852 | // memory and value locations: Because a dbg.declare(alloca) is |
1853 | // implicitly a memory location no DW_OP_deref operation for the |
1854 | // last direct load from an alloca is necessary. This condition |
1855 | // effectively drops the *last* DW_OP_deref in the expression. |
1856 | if (!SkipOutermostLoad) |
1857 | Expr = DIExpression::prepend(Expr, Flags: DIExpression::DerefBefore); |
1858 | } else if (auto *StInst = dyn_cast<StoreInst>(Val: Inst)) { |
1859 | Storage = StInst->getValueOperand(); |
1860 | } else { |
1861 | SmallVector<uint64_t, 16> Ops; |
1862 | SmallVector<Value *, 0> AdditionalValues; |
1863 | Value *Op = llvm::salvageDebugInfoImpl( |
1864 | I&: *Inst, CurrentLocOps: Expr ? Expr->getNumLocationOperands() : 0, Ops, |
1865 | AdditionalValues); |
1866 | if (!Op || !AdditionalValues.empty()) { |
1867 | // If salvaging failed or salvaging produced more than one location |
1868 | // operand, give up. |
1869 | break; |
1870 | } |
1871 | Storage = Op; |
1872 | Expr = DIExpression::appendOpsToArg(Expr, Ops, ArgNo: 0, /*StackValue*/ false); |
1873 | } |
1874 | SkipOutermostLoad = false; |
1875 | } |
1876 | if (!Storage) |
1877 | return std::nullopt; |
1878 | |
1879 | auto *StorageAsArg = dyn_cast<Argument>(Val: Storage); |
1880 | const bool IsSwiftAsyncArg = |
1881 | StorageAsArg && StorageAsArg->hasAttribute(Kind: Attribute::SwiftAsync); |
1882 | |
1883 | // Swift async arguments are described by an entry value of the ABI-defined |
1884 | // register containing the coroutine context. |
1885 | // Entry values in variadic expressions are not supported. |
1886 | if (IsSwiftAsyncArg && UseEntryValue && !Expr->isEntryValue() && |
1887 | Expr->isSingleLocationExpression()) |
1888 | Expr = DIExpression::prepend(Expr, Flags: DIExpression::EntryValue); |
1889 | |
1890 | // If the coroutine frame is an Argument, store it in an alloca to improve |
1891 | // its availability (e.g. registers may be clobbered). |
1892 | // Avoid this if the value is guaranteed to be available through other means |
1893 | // (e.g. swift ABI guarantees). |
1894 | if (StorageAsArg && !IsSwiftAsyncArg) { |
1895 | auto &Cached = ArgToAllocaMap[StorageAsArg]; |
1896 | if (!Cached) { |
1897 | Cached = Builder.CreateAlloca(Ty: Storage->getType(), AddrSpace: 0, ArraySize: nullptr, |
1898 | Name: Storage->getName() + ".debug" ); |
1899 | Builder.CreateStore(Val: Storage, Ptr: Cached); |
1900 | } |
1901 | Storage = Cached; |
1902 | // FIXME: LLVM lacks nuanced semantics to differentiate between |
1903 | // memory and direct locations at the IR level. The backend will |
1904 | // turn a dbg.declare(alloca, ..., DIExpression()) into a memory |
1905 | // location. Thus, if there are deref and offset operations in the |
1906 | // expression, we need to add a DW_OP_deref at the *start* of the |
1907 | // expression to first load the contents of the alloca before |
1908 | // adjusting it with the expression. |
1909 | Expr = DIExpression::prepend(Expr, Flags: DIExpression::DerefBefore); |
1910 | } |
1911 | |
1912 | Expr = Expr->foldConstantMath(); |
1913 | return {{*Storage, *Expr}}; |
1914 | } |
1915 | |
1916 | void coro::salvageDebugInfo( |
1917 | SmallDenseMap<Argument *, AllocaInst *, 4> &ArgToAllocaMap, |
1918 | DbgVariableIntrinsic &DVI, bool UseEntryValue) { |
1919 | |
1920 | Function *F = DVI.getFunction(); |
1921 | // Follow the pointer arithmetic all the way to the incoming |
1922 | // function argument and convert into a DIExpression. |
1923 | bool SkipOutermostLoad = !isa<DbgValueInst>(Val: DVI); |
1924 | Value *OriginalStorage = DVI.getVariableLocationOp(OpIdx: 0); |
1925 | |
1926 | auto SalvagedInfo = |
1927 | ::salvageDebugInfoImpl(ArgToAllocaMap, UseEntryValue, F, Storage: OriginalStorage, |
1928 | Expr: DVI.getExpression(), SkipOutermostLoad); |
1929 | if (!SalvagedInfo) |
1930 | return; |
1931 | |
1932 | Value *Storage = &SalvagedInfo->first; |
1933 | DIExpression *Expr = &SalvagedInfo->second; |
1934 | |
1935 | DVI.replaceVariableLocationOp(OldValue: OriginalStorage, NewValue: Storage); |
1936 | DVI.setExpression(Expr); |
1937 | // We only hoist dbg.declare today since it doesn't make sense to hoist |
1938 | // dbg.value since it does not have the same function wide guarantees that |
1939 | // dbg.declare does. |
1940 | if (isa<DbgDeclareInst>(Val: DVI)) { |
1941 | std::optional<BasicBlock::iterator> InsertPt; |
1942 | if (auto *I = dyn_cast<Instruction>(Val: Storage)) { |
1943 | InsertPt = I->getInsertionPointAfterDef(); |
1944 | // Update DILocation only if variable was not inlined. |
1945 | DebugLoc ILoc = I->getDebugLoc(); |
1946 | DebugLoc DVILoc = DVI.getDebugLoc(); |
1947 | if (ILoc && DVILoc && |
1948 | DVILoc->getScope()->getSubprogram() == |
1949 | ILoc->getScope()->getSubprogram()) |
1950 | DVI.setDebugLoc(I->getDebugLoc()); |
1951 | } else if (isa<Argument>(Val: Storage)) |
1952 | InsertPt = F->getEntryBlock().begin(); |
1953 | if (InsertPt) |
1954 | DVI.moveBefore(BB&: *(*InsertPt)->getParent(), I: *InsertPt); |
1955 | } |
1956 | } |
1957 | |
1958 | void coro::salvageDebugInfo( |
1959 | SmallDenseMap<Argument *, AllocaInst *, 4> &ArgToAllocaMap, |
1960 | DbgVariableRecord &DVR, bool UseEntryValue) { |
1961 | |
1962 | Function *F = DVR.getFunction(); |
1963 | // Follow the pointer arithmetic all the way to the incoming |
1964 | // function argument and convert into a DIExpression. |
1965 | bool SkipOutermostLoad = DVR.isDbgDeclare(); |
1966 | Value *OriginalStorage = DVR.getVariableLocationOp(OpIdx: 0); |
1967 | |
1968 | auto SalvagedInfo = |
1969 | ::salvageDebugInfoImpl(ArgToAllocaMap, UseEntryValue, F, Storage: OriginalStorage, |
1970 | Expr: DVR.getExpression(), SkipOutermostLoad); |
1971 | if (!SalvagedInfo) |
1972 | return; |
1973 | |
1974 | Value *Storage = &SalvagedInfo->first; |
1975 | DIExpression *Expr = &SalvagedInfo->second; |
1976 | |
1977 | DVR.replaceVariableLocationOp(OldValue: OriginalStorage, NewValue: Storage); |
1978 | DVR.setExpression(Expr); |
1979 | // We only hoist dbg.declare today since it doesn't make sense to hoist |
1980 | // dbg.value since it does not have the same function wide guarantees that |
1981 | // dbg.declare does. |
1982 | if (DVR.getType() == DbgVariableRecord::LocationType::Declare) { |
1983 | std::optional<BasicBlock::iterator> InsertPt; |
1984 | if (auto *I = dyn_cast<Instruction>(Val: Storage)) { |
1985 | InsertPt = I->getInsertionPointAfterDef(); |
1986 | // Update DILocation only if variable was not inlined. |
1987 | DebugLoc ILoc = I->getDebugLoc(); |
1988 | DebugLoc DVRLoc = DVR.getDebugLoc(); |
1989 | if (ILoc && DVRLoc && |
1990 | DVRLoc->getScope()->getSubprogram() == |
1991 | ILoc->getScope()->getSubprogram()) |
1992 | DVR.setDebugLoc(ILoc); |
1993 | } else if (isa<Argument>(Val: Storage)) |
1994 | InsertPt = F->getEntryBlock().begin(); |
1995 | if (InsertPt) { |
1996 | DVR.removeFromParent(); |
1997 | (*InsertPt)->getParent()->insertDbgRecordBefore(DR: &DVR, Here: *InsertPt); |
1998 | } |
1999 | } |
2000 | } |
2001 | |
2002 | void coro::normalizeCoroutine(Function &F, coro::Shape &Shape, |
2003 | TargetTransformInfo &TTI) { |
2004 | // Don't eliminate swifterror in async functions that won't be split. |
2005 | if (Shape.ABI != coro::ABI::Async || !Shape.CoroSuspends.empty()) |
2006 | eliminateSwiftError(F, Shape); |
2007 | |
2008 | if (Shape.ABI == coro::ABI::Switch && |
2009 | Shape.SwitchLowering.PromiseAlloca) { |
2010 | Shape.getSwitchCoroId()->clearPromise(); |
2011 | } |
2012 | |
2013 | // Make sure that all coro.save, coro.suspend and the fallthrough coro.end |
2014 | // intrinsics are in their own blocks to simplify the logic of building up |
2015 | // SuspendCrossing data. |
2016 | for (auto *CSI : Shape.CoroSuspends) { |
2017 | if (auto *Save = CSI->getCoroSave()) |
2018 | splitAround(I: Save, Name: "CoroSave" ); |
2019 | splitAround(I: CSI, Name: "CoroSuspend" ); |
2020 | } |
2021 | |
2022 | // Put CoroEnds into their own blocks. |
2023 | for (AnyCoroEndInst *CE : Shape.CoroEnds) { |
2024 | splitAround(I: CE, Name: "CoroEnd" ); |
2025 | |
2026 | // Emit the musttail call function in a new block before the CoroEnd. |
2027 | // We do this here so that the right suspend crossing info is computed for |
2028 | // the uses of the musttail call function call. (Arguments to the coro.end |
2029 | // instructions would be ignored) |
2030 | if (auto *AsyncEnd = dyn_cast<CoroAsyncEndInst>(Val: CE)) { |
2031 | auto *MustTailCallFn = AsyncEnd->getMustTailCallFunction(); |
2032 | if (!MustTailCallFn) |
2033 | continue; |
2034 | IRBuilder<> Builder(AsyncEnd); |
2035 | SmallVector<Value *, 8> Args(AsyncEnd->args()); |
2036 | auto Arguments = ArrayRef<Value *>(Args).drop_front(N: 3); |
2037 | auto *Call = coro::createMustTailCall( |
2038 | Loc: AsyncEnd->getDebugLoc(), MustTailCallFn, TTI, Arguments, Builder); |
2039 | splitAround(I: Call, Name: "MustTailCall.Before.CoroEnd" ); |
2040 | } |
2041 | } |
2042 | |
2043 | // Later code makes structural assumptions about single predecessors phis e.g |
2044 | // that they are not live across a suspend point. |
2045 | cleanupSinglePredPHIs(F); |
2046 | |
2047 | // Transforms multi-edge PHI Nodes, so that any value feeding into a PHI will |
2048 | // never have its definition separated from the PHI by the suspend point. |
2049 | rewritePHIs(F); |
2050 | } |
2051 | |
2052 | void coro::BaseABI::buildCoroutineFrame(bool OptimizeFrame) { |
2053 | SuspendCrossingInfo Checker(F, Shape.CoroSuspends, Shape.CoroEnds); |
2054 | doRematerializations(F, Checker, IsMaterializable); |
2055 | |
2056 | const DominatorTree DT(F); |
2057 | if (Shape.ABI != coro::ABI::Async && Shape.ABI != coro::ABI::Retcon && |
2058 | Shape.ABI != coro::ABI::RetconOnce) |
2059 | sinkLifetimeStartMarkers(F, Shape, Checker, DT); |
2060 | |
2061 | // All values (that are not allocas) that needs to be spilled to the frame. |
2062 | coro::SpillInfo Spills; |
2063 | // All values defined as allocas that need to live in the frame. |
2064 | SmallVector<coro::AllocaInfo, 8> Allocas; |
2065 | |
2066 | // Collect the spills for arguments and other not-materializable values. |
2067 | coro::collectSpillsFromArgs(Spills, F, Checker); |
2068 | SmallVector<Instruction *, 4> DeadInstructions; |
2069 | SmallVector<CoroAllocaAllocInst *, 4> LocalAllocas; |
2070 | coro::collectSpillsAndAllocasFromInsts(Spills, Allocas, DeadInstructions, |
2071 | LocalAllocas, F, Checker, DT, Shape); |
2072 | coro::collectSpillsFromDbgInfo(Spills, F, Checker); |
2073 | |
2074 | LLVM_DEBUG(dumpAllocas(Allocas)); |
2075 | LLVM_DEBUG(dumpSpills("Spills" , Spills)); |
2076 | |
2077 | if (Shape.ABI == coro::ABI::Retcon || Shape.ABI == coro::ABI::RetconOnce || |
2078 | Shape.ABI == coro::ABI::Async) |
2079 | sinkSpillUsesAfterCoroBegin(DT, CoroBegin: Shape.CoroBegin, Spills, Allocas); |
2080 | |
2081 | // Build frame |
2082 | FrameDataInfo FrameData(Spills, Allocas); |
2083 | Shape.FrameTy = buildFrameType(F, Shape, FrameData, OptimizeFrame); |
2084 | Shape.FramePtr = Shape.CoroBegin; |
2085 | // For now, this works for C++ programs only. |
2086 | buildFrameDebugInfo(F, Shape, FrameData); |
2087 | // Insert spills and reloads |
2088 | insertSpills(FrameData, Shape); |
2089 | lowerLocalAllocas(LocalAllocas, DeadInsts&: DeadInstructions); |
2090 | |
2091 | for (auto *I : DeadInstructions) |
2092 | I->eraseFromParent(); |
2093 | } |
2094 | |