| 1 | //===- AttributorAttributes.cpp - Attributes for Attributor deduction -----===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // See the Attributor.h file comment and the class descriptions in that file for |
| 10 | // more information. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "llvm/Transforms/IPO/Attributor.h" |
| 15 | |
| 16 | #include "llvm/ADT/APInt.h" |
| 17 | #include "llvm/ADT/ArrayRef.h" |
| 18 | #include "llvm/ADT/DenseMapInfo.h" |
| 19 | #include "llvm/ADT/MapVector.h" |
| 20 | #include "llvm/ADT/SCCIterator.h" |
| 21 | #include "llvm/ADT/STLExtras.h" |
| 22 | #include "llvm/ADT/SetOperations.h" |
| 23 | #include "llvm/ADT/SetVector.h" |
| 24 | #include "llvm/ADT/SmallPtrSet.h" |
| 25 | #include "llvm/ADT/SmallVector.h" |
| 26 | #include "llvm/ADT/Statistic.h" |
| 27 | #include "llvm/ADT/StringExtras.h" |
| 28 | #include "llvm/Analysis/AliasAnalysis.h" |
| 29 | #include "llvm/Analysis/AssumeBundleQueries.h" |
| 30 | #include "llvm/Analysis/AssumptionCache.h" |
| 31 | #include "llvm/Analysis/CaptureTracking.h" |
| 32 | #include "llvm/Analysis/CycleAnalysis.h" |
| 33 | #include "llvm/Analysis/InstructionSimplify.h" |
| 34 | #include "llvm/Analysis/LazyValueInfo.h" |
| 35 | #include "llvm/Analysis/MemoryBuiltins.h" |
| 36 | #include "llvm/Analysis/ScalarEvolution.h" |
| 37 | #include "llvm/Analysis/TargetTransformInfo.h" |
| 38 | #include "llvm/Analysis/ValueTracking.h" |
| 39 | #include "llvm/IR/Argument.h" |
| 40 | #include "llvm/IR/Assumptions.h" |
| 41 | #include "llvm/IR/Attributes.h" |
| 42 | #include "llvm/IR/BasicBlock.h" |
| 43 | #include "llvm/IR/Constant.h" |
| 44 | #include "llvm/IR/Constants.h" |
| 45 | #include "llvm/IR/DataLayout.h" |
| 46 | #include "llvm/IR/DerivedTypes.h" |
| 47 | #include "llvm/IR/GlobalValue.h" |
| 48 | #include "llvm/IR/IRBuilder.h" |
| 49 | #include "llvm/IR/InlineAsm.h" |
| 50 | #include "llvm/IR/InstrTypes.h" |
| 51 | #include "llvm/IR/Instruction.h" |
| 52 | #include "llvm/IR/Instructions.h" |
| 53 | #include "llvm/IR/IntrinsicInst.h" |
| 54 | #include "llvm/IR/IntrinsicsAMDGPU.h" |
| 55 | #include "llvm/IR/IntrinsicsNVPTX.h" |
| 56 | #include "llvm/IR/LLVMContext.h" |
| 57 | #include "llvm/IR/MDBuilder.h" |
| 58 | #include "llvm/IR/NoFolder.h" |
| 59 | #include "llvm/IR/Value.h" |
| 60 | #include "llvm/IR/ValueHandle.h" |
| 61 | #include "llvm/Support/Alignment.h" |
| 62 | #include "llvm/Support/Casting.h" |
| 63 | #include "llvm/Support/CommandLine.h" |
| 64 | #include "llvm/Support/ErrorHandling.h" |
| 65 | #include "llvm/Support/GraphWriter.h" |
| 66 | #include "llvm/Support/InterleavedRange.h" |
| 67 | #include "llvm/Support/KnownFPClass.h" |
| 68 | #include "llvm/Support/MathExtras.h" |
| 69 | #include "llvm/Support/TypeSize.h" |
| 70 | #include "llvm/Support/raw_ostream.h" |
| 71 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 72 | #include "llvm/Transforms/Utils/CallPromotionUtils.h" |
| 73 | #include "llvm/Transforms/Utils/Local.h" |
| 74 | #include "llvm/Transforms/Utils/ValueMapper.h" |
| 75 | #include <cassert> |
| 76 | #include <numeric> |
| 77 | #include <optional> |
| 78 | #include <string> |
| 79 | |
| 80 | using namespace llvm; |
| 81 | |
| 82 | #define DEBUG_TYPE "attributor" |
| 83 | |
| 84 | static cl::opt<bool> ManifestInternal( |
| 85 | "attributor-manifest-internal" , cl::Hidden, |
| 86 | cl::desc("Manifest Attributor internal string attributes." ), |
| 87 | cl::init(Val: false)); |
| 88 | |
| 89 | static cl::opt<int> MaxHeapToStackSize("max-heap-to-stack-size" , cl::init(Val: 128), |
| 90 | cl::Hidden); |
| 91 | |
| 92 | template <> |
| 93 | unsigned llvm::PotentialConstantIntValuesState::MaxPotentialValues = 0; |
| 94 | |
| 95 | template <> unsigned llvm::PotentialLLVMValuesState::MaxPotentialValues = -1; |
| 96 | |
| 97 | static cl::opt<unsigned, true> MaxPotentialValues( |
| 98 | "attributor-max-potential-values" , cl::Hidden, |
| 99 | cl::desc("Maximum number of potential values to be " |
| 100 | "tracked for each position." ), |
| 101 | cl::location(L&: llvm::PotentialConstantIntValuesState::MaxPotentialValues), |
| 102 | cl::init(Val: 7)); |
| 103 | |
| 104 | static cl::opt<int> MaxPotentialValuesIterations( |
| 105 | "attributor-max-potential-values-iterations" , cl::Hidden, |
| 106 | cl::desc( |
| 107 | "Maximum number of iterations we keep dismantling potential values." ), |
| 108 | cl::init(Val: 64)); |
| 109 | |
| 110 | STATISTIC(NumAAs, "Number of abstract attributes created" ); |
| 111 | STATISTIC(NumIndirectCallsPromoted, "Number of indirect calls promoted" ); |
| 112 | |
| 113 | // Some helper macros to deal with statistics tracking. |
| 114 | // |
| 115 | // Usage: |
| 116 | // For simple IR attribute tracking overload trackStatistics in the abstract |
| 117 | // attribute and choose the right STATS_DECLTRACK_********* macro, |
| 118 | // e.g.,: |
| 119 | // void trackStatistics() const override { |
| 120 | // STATS_DECLTRACK_ARG_ATTR(returned) |
| 121 | // } |
| 122 | // If there is a single "increment" side one can use the macro |
| 123 | // STATS_DECLTRACK with a custom message. If there are multiple increment |
| 124 | // sides, STATS_DECL and STATS_TRACK can also be used separately. |
| 125 | // |
| 126 | #define BUILD_STAT_MSG_IR_ATTR(TYPE, NAME) \ |
| 127 | ("Number of " #TYPE " marked '" #NAME "'") |
| 128 | #define BUILD_STAT_NAME(NAME, TYPE) NumIR##TYPE##_##NAME |
| 129 | #define STATS_DECL_(NAME, MSG) STATISTIC(NAME, MSG); |
| 130 | #define STATS_DECL(NAME, TYPE, MSG) \ |
| 131 | STATS_DECL_(BUILD_STAT_NAME(NAME, TYPE), MSG); |
| 132 | #define STATS_TRACK(NAME, TYPE) ++(BUILD_STAT_NAME(NAME, TYPE)); |
| 133 | #define STATS_DECLTRACK(NAME, TYPE, MSG) \ |
| 134 | {STATS_DECL(NAME, TYPE, MSG) STATS_TRACK(NAME, TYPE)} |
| 135 | #define STATS_DECLTRACK_ARG_ATTR(NAME) \ |
| 136 | STATS_DECLTRACK(NAME, Arguments, BUILD_STAT_MSG_IR_ATTR(arguments, NAME)) |
| 137 | #define STATS_DECLTRACK_CSARG_ATTR(NAME) \ |
| 138 | STATS_DECLTRACK(NAME, CSArguments, \ |
| 139 | BUILD_STAT_MSG_IR_ATTR(call site arguments, NAME)) |
| 140 | #define STATS_DECLTRACK_FN_ATTR(NAME) \ |
| 141 | STATS_DECLTRACK(NAME, Function, BUILD_STAT_MSG_IR_ATTR(functions, NAME)) |
| 142 | #define STATS_DECLTRACK_CS_ATTR(NAME) \ |
| 143 | STATS_DECLTRACK(NAME, CS, BUILD_STAT_MSG_IR_ATTR(call site, NAME)) |
| 144 | #define STATS_DECLTRACK_FNRET_ATTR(NAME) \ |
| 145 | STATS_DECLTRACK(NAME, FunctionReturn, \ |
| 146 | BUILD_STAT_MSG_IR_ATTR(function returns, NAME)) |
| 147 | #define STATS_DECLTRACK_CSRET_ATTR(NAME) \ |
| 148 | STATS_DECLTRACK(NAME, CSReturn, \ |
| 149 | BUILD_STAT_MSG_IR_ATTR(call site returns, NAME)) |
| 150 | #define STATS_DECLTRACK_FLOATING_ATTR(NAME) \ |
| 151 | STATS_DECLTRACK(NAME, Floating, \ |
| 152 | ("Number of floating values known to be '" #NAME "'")) |
| 153 | |
| 154 | // Specialization of the operator<< for abstract attributes subclasses. This |
| 155 | // disambiguates situations where multiple operators are applicable. |
| 156 | namespace llvm { |
| 157 | #define PIPE_OPERATOR(CLASS) \ |
| 158 | raw_ostream &operator<<(raw_ostream &OS, const CLASS &AA) { \ |
| 159 | return OS << static_cast<const AbstractAttribute &>(AA); \ |
| 160 | } |
| 161 | |
| 162 | PIPE_OPERATOR(AAIsDead) |
| 163 | PIPE_OPERATOR(AANoUnwind) |
| 164 | PIPE_OPERATOR(AANoSync) |
| 165 | PIPE_OPERATOR(AANoRecurse) |
| 166 | PIPE_OPERATOR(AANonConvergent) |
| 167 | PIPE_OPERATOR(AAWillReturn) |
| 168 | PIPE_OPERATOR(AANoReturn) |
| 169 | PIPE_OPERATOR(AANonNull) |
| 170 | PIPE_OPERATOR(AAMustProgress) |
| 171 | PIPE_OPERATOR(AANoAlias) |
| 172 | PIPE_OPERATOR(AADereferenceable) |
| 173 | PIPE_OPERATOR(AAAlign) |
| 174 | PIPE_OPERATOR(AAInstanceInfo) |
| 175 | PIPE_OPERATOR(AANoCapture) |
| 176 | PIPE_OPERATOR(AAValueSimplify) |
| 177 | PIPE_OPERATOR(AANoFree) |
| 178 | PIPE_OPERATOR(AAHeapToStack) |
| 179 | PIPE_OPERATOR(AAIntraFnReachability) |
| 180 | PIPE_OPERATOR(AAMemoryBehavior) |
| 181 | PIPE_OPERATOR(AAMemoryLocation) |
| 182 | PIPE_OPERATOR(AAValueConstantRange) |
| 183 | PIPE_OPERATOR(AAPrivatizablePtr) |
| 184 | PIPE_OPERATOR(AAUndefinedBehavior) |
| 185 | PIPE_OPERATOR(AAPotentialConstantValues) |
| 186 | PIPE_OPERATOR(AAPotentialValues) |
| 187 | PIPE_OPERATOR(AANoUndef) |
| 188 | PIPE_OPERATOR(AANoFPClass) |
| 189 | PIPE_OPERATOR(AACallEdges) |
| 190 | PIPE_OPERATOR(AAInterFnReachability) |
| 191 | PIPE_OPERATOR(AAPointerInfo) |
| 192 | PIPE_OPERATOR(AAAssumptionInfo) |
| 193 | PIPE_OPERATOR(AAUnderlyingObjects) |
| 194 | PIPE_OPERATOR(AAInvariantLoadPointer) |
| 195 | PIPE_OPERATOR(AAAddressSpace) |
| 196 | PIPE_OPERATOR(AAAllocationInfo) |
| 197 | PIPE_OPERATOR(AAIndirectCallInfo) |
| 198 | PIPE_OPERATOR(AAGlobalValueInfo) |
| 199 | PIPE_OPERATOR(AADenormalFPMath) |
| 200 | |
| 201 | #undef PIPE_OPERATOR |
| 202 | |
| 203 | template <> |
| 204 | ChangeStatus clampStateAndIndicateChange<DerefState>(DerefState &S, |
| 205 | const DerefState &R) { |
| 206 | ChangeStatus CS0 = |
| 207 | clampStateAndIndicateChange(S&: S.DerefBytesState, R: R.DerefBytesState); |
| 208 | ChangeStatus CS1 = clampStateAndIndicateChange(S&: S.GlobalState, R: R.GlobalState); |
| 209 | return CS0 | CS1; |
| 210 | } |
| 211 | |
| 212 | } // namespace llvm |
| 213 | |
| 214 | static bool mayBeInCycle(const CycleInfo *CI, const Instruction *I, |
| 215 | bool , Cycle **CPtr = nullptr) { |
| 216 | if (!CI) |
| 217 | return true; |
| 218 | auto *BB = I->getParent(); |
| 219 | auto *C = CI->getCycle(Block: BB); |
| 220 | if (!C) |
| 221 | return false; |
| 222 | if (CPtr) |
| 223 | *CPtr = C; |
| 224 | return !HeaderOnly || BB == C->getHeader(); |
| 225 | } |
| 226 | |
| 227 | /// Checks if a type could have padding bytes. |
| 228 | static bool isDenselyPacked(Type *Ty, const DataLayout &DL) { |
| 229 | // There is no size information, so be conservative. |
| 230 | if (!Ty->isSized()) |
| 231 | return false; |
| 232 | |
| 233 | // If the alloc size is not equal to the storage size, then there are padding |
| 234 | // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128. |
| 235 | if (DL.getTypeSizeInBits(Ty) != DL.getTypeAllocSizeInBits(Ty)) |
| 236 | return false; |
| 237 | |
| 238 | // FIXME: This isn't the right way to check for padding in vectors with |
| 239 | // non-byte-size elements. |
| 240 | if (VectorType *SeqTy = dyn_cast<VectorType>(Val: Ty)) |
| 241 | return isDenselyPacked(Ty: SeqTy->getElementType(), DL); |
| 242 | |
| 243 | // For array types, check for padding within members. |
| 244 | if (ArrayType *SeqTy = dyn_cast<ArrayType>(Val: Ty)) |
| 245 | return isDenselyPacked(Ty: SeqTy->getElementType(), DL); |
| 246 | |
| 247 | if (!isa<StructType>(Val: Ty)) |
| 248 | return true; |
| 249 | |
| 250 | // Check for padding within and between elements of a struct. |
| 251 | StructType *StructTy = cast<StructType>(Val: Ty); |
| 252 | const StructLayout *Layout = DL.getStructLayout(Ty: StructTy); |
| 253 | uint64_t StartPos = 0; |
| 254 | for (unsigned I = 0, E = StructTy->getNumElements(); I < E; ++I) { |
| 255 | Type *ElTy = StructTy->getElementType(N: I); |
| 256 | if (!isDenselyPacked(Ty: ElTy, DL)) |
| 257 | return false; |
| 258 | if (StartPos != Layout->getElementOffsetInBits(Idx: I)) |
| 259 | return false; |
| 260 | StartPos += DL.getTypeAllocSizeInBits(Ty: ElTy); |
| 261 | } |
| 262 | |
| 263 | return true; |
| 264 | } |
| 265 | |
| 266 | /// Get pointer operand of memory accessing instruction. If \p I is |
| 267 | /// not a memory accessing instruction, return nullptr. If \p AllowVolatile, |
| 268 | /// is set to false and the instruction is volatile, return nullptr. |
| 269 | static const Value *getPointerOperand(const Instruction *I, |
| 270 | bool AllowVolatile) { |
| 271 | if (!AllowVolatile && I->isVolatile()) |
| 272 | return nullptr; |
| 273 | |
| 274 | if (auto *LI = dyn_cast<LoadInst>(Val: I)) { |
| 275 | return LI->getPointerOperand(); |
| 276 | } |
| 277 | |
| 278 | if (auto *SI = dyn_cast<StoreInst>(Val: I)) { |
| 279 | return SI->getPointerOperand(); |
| 280 | } |
| 281 | |
| 282 | if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(Val: I)) { |
| 283 | return CXI->getPointerOperand(); |
| 284 | } |
| 285 | |
| 286 | if (auto *RMWI = dyn_cast<AtomicRMWInst>(Val: I)) { |
| 287 | return RMWI->getPointerOperand(); |
| 288 | } |
| 289 | |
| 290 | return nullptr; |
| 291 | } |
| 292 | |
| 293 | /// Helper function to create a pointer based on \p Ptr, and advanced by \p |
| 294 | /// Offset bytes. |
| 295 | static Value *constructPointer(Value *Ptr, int64_t Offset, |
| 296 | IRBuilder<NoFolder> &IRB) { |
| 297 | LLVM_DEBUG(dbgs() << "Construct pointer: " << *Ptr << " + " << Offset |
| 298 | << "-bytes\n" ); |
| 299 | |
| 300 | if (Offset) |
| 301 | Ptr = IRB.CreatePtrAdd(Ptr, Offset: IRB.getInt64(C: Offset), |
| 302 | Name: Ptr->getName() + ".b" + Twine(Offset)); |
| 303 | return Ptr; |
| 304 | } |
| 305 | |
| 306 | static const Value * |
| 307 | stripAndAccumulateOffsets(Attributor &A, const AbstractAttribute &QueryingAA, |
| 308 | const Value *Val, const DataLayout &DL, APInt &Offset, |
| 309 | bool GetMinOffset, bool AllowNonInbounds, |
| 310 | bool UseAssumed = false) { |
| 311 | |
| 312 | auto AttributorAnalysis = [&](Value &V, APInt &ROffset) -> bool { |
| 313 | const IRPosition &Pos = IRPosition::value(V); |
| 314 | // Only track dependence if we are going to use the assumed info. |
| 315 | const AAValueConstantRange *ValueConstantRangeAA = |
| 316 | A.getAAFor<AAValueConstantRange>(QueryingAA, IRP: Pos, |
| 317 | DepClass: UseAssumed ? DepClassTy::OPTIONAL |
| 318 | : DepClassTy::NONE); |
| 319 | if (!ValueConstantRangeAA) |
| 320 | return false; |
| 321 | ConstantRange Range = UseAssumed ? ValueConstantRangeAA->getAssumed() |
| 322 | : ValueConstantRangeAA->getKnown(); |
| 323 | if (Range.isFullSet()) |
| 324 | return false; |
| 325 | |
| 326 | // We can only use the lower part of the range because the upper part can |
| 327 | // be higher than what the value can really be. |
| 328 | if (GetMinOffset) |
| 329 | ROffset = Range.getSignedMin(); |
| 330 | else |
| 331 | ROffset = Range.getSignedMax(); |
| 332 | return true; |
| 333 | }; |
| 334 | |
| 335 | return Val->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds, |
| 336 | /* AllowInvariant */ AllowInvariantGroup: true, |
| 337 | ExternalAnalysis: AttributorAnalysis); |
| 338 | } |
| 339 | |
| 340 | static const Value * |
| 341 | getMinimalBaseOfPointer(Attributor &A, const AbstractAttribute &QueryingAA, |
| 342 | const Value *Ptr, int64_t &BytesOffset, |
| 343 | const DataLayout &DL, bool AllowNonInbounds = false) { |
| 344 | APInt OffsetAPInt(DL.getIndexTypeSizeInBits(Ty: Ptr->getType()), 0); |
| 345 | const Value *Base = |
| 346 | stripAndAccumulateOffsets(A, QueryingAA, Val: Ptr, DL, Offset&: OffsetAPInt, |
| 347 | /* GetMinOffset */ true, AllowNonInbounds); |
| 348 | |
| 349 | BytesOffset = OffsetAPInt.getSExtValue(); |
| 350 | return Base; |
| 351 | } |
| 352 | |
| 353 | /// Clamp the information known for all returned values of a function |
| 354 | /// (identified by \p QueryingAA) into \p S. |
| 355 | template <typename AAType, typename StateType = typename AAType::StateType, |
| 356 | Attribute::AttrKind IRAttributeKind = AAType::IRAttributeKind, |
| 357 | bool RecurseForSelectAndPHI = true> |
| 358 | static void clampReturnedValueStates( |
| 359 | Attributor &A, const AAType &QueryingAA, StateType &S, |
| 360 | const IRPosition::CallBaseContext *CBContext = nullptr) { |
| 361 | LLVM_DEBUG(dbgs() << "[Attributor] Clamp return value states for " |
| 362 | << QueryingAA << " into " << S << "\n" ); |
| 363 | |
| 364 | assert((QueryingAA.getIRPosition().getPositionKind() == |
| 365 | IRPosition::IRP_RETURNED || |
| 366 | QueryingAA.getIRPosition().getPositionKind() == |
| 367 | IRPosition::IRP_CALL_SITE_RETURNED) && |
| 368 | "Can only clamp returned value states for a function returned or call " |
| 369 | "site returned position!" ); |
| 370 | |
| 371 | // Use an optional state as there might not be any return values and we want |
| 372 | // to join (IntegerState::operator&) the state of all there are. |
| 373 | std::optional<StateType> T; |
| 374 | |
| 375 | // Callback for each possibly returned value. |
| 376 | auto CheckReturnValue = [&](Value &RV) -> bool { |
| 377 | const IRPosition &RVPos = IRPosition::value(V: RV, CBContext); |
| 378 | // If possible, use the hasAssumedIRAttr interface. |
| 379 | if (Attribute::isEnumAttrKind(Kind: IRAttributeKind)) { |
| 380 | bool IsKnown; |
| 381 | return AA::hasAssumedIRAttr<IRAttributeKind>( |
| 382 | A, &QueryingAA, RVPos, DepClassTy::REQUIRED, IsKnown); |
| 383 | } |
| 384 | |
| 385 | const AAType *AA = |
| 386 | A.getAAFor<AAType>(QueryingAA, RVPos, DepClassTy::REQUIRED); |
| 387 | if (!AA) |
| 388 | return false; |
| 389 | LLVM_DEBUG(dbgs() << "[Attributor] RV: " << RV |
| 390 | << " AA: " << AA->getAsStr(&A) << " @ " << RVPos << "\n" ); |
| 391 | const StateType &AAS = AA->getState(); |
| 392 | if (!T) |
| 393 | T = StateType::getBestState(AAS); |
| 394 | *T &= AAS; |
| 395 | LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " RV State: " << T |
| 396 | << "\n" ); |
| 397 | return T->isValidState(); |
| 398 | }; |
| 399 | |
| 400 | if (!A.checkForAllReturnedValues(Pred: CheckReturnValue, QueryingAA, |
| 401 | S: AA::ValueScope::Intraprocedural, |
| 402 | RecurseForSelectAndPHI)) |
| 403 | S.indicatePessimisticFixpoint(); |
| 404 | else if (T) |
| 405 | S ^= *T; |
| 406 | } |
| 407 | |
| 408 | namespace { |
| 409 | /// Helper class for generic deduction: return value -> returned position. |
| 410 | template <typename AAType, typename BaseType, |
| 411 | typename StateType = typename BaseType::StateType, |
| 412 | bool PropagateCallBaseContext = false, |
| 413 | Attribute::AttrKind IRAttributeKind = AAType::IRAttributeKind, |
| 414 | bool RecurseForSelectAndPHI = true> |
| 415 | struct AAReturnedFromReturnedValues : public BaseType { |
| 416 | AAReturnedFromReturnedValues(const IRPosition &IRP, Attributor &A) |
| 417 | : BaseType(IRP, A) {} |
| 418 | |
| 419 | /// See AbstractAttribute::updateImpl(...). |
| 420 | ChangeStatus updateImpl(Attributor &A) override { |
| 421 | StateType S(StateType::getBestState(this->getState())); |
| 422 | clampReturnedValueStates<AAType, StateType, IRAttributeKind, |
| 423 | RecurseForSelectAndPHI>( |
| 424 | A, *this, S, |
| 425 | PropagateCallBaseContext ? this->getCallBaseContext() : nullptr); |
| 426 | // TODO: If we know we visited all returned values, thus no are assumed |
| 427 | // dead, we can take the known information from the state T. |
| 428 | return clampStateAndIndicateChange<StateType>(this->getState(), S); |
| 429 | } |
| 430 | }; |
| 431 | |
| 432 | /// Clamp the information known at all call sites for a given argument |
| 433 | /// (identified by \p QueryingAA) into \p S. |
| 434 | template <typename AAType, typename StateType = typename AAType::StateType, |
| 435 | Attribute::AttrKind IRAttributeKind = AAType::IRAttributeKind> |
| 436 | static void clampCallSiteArgumentStates(Attributor &A, const AAType &QueryingAA, |
| 437 | StateType &S) { |
| 438 | LLVM_DEBUG(dbgs() << "[Attributor] Clamp call site argument states for " |
| 439 | << QueryingAA << " into " << S << "\n" ); |
| 440 | |
| 441 | assert(QueryingAA.getIRPosition().getPositionKind() == |
| 442 | IRPosition::IRP_ARGUMENT && |
| 443 | "Can only clamp call site argument states for an argument position!" ); |
| 444 | |
| 445 | // Use an optional state as there might not be any return values and we want |
| 446 | // to join (IntegerState::operator&) the state of all there are. |
| 447 | std::optional<StateType> T; |
| 448 | |
| 449 | // The argument number which is also the call site argument number. |
| 450 | unsigned ArgNo = QueryingAA.getIRPosition().getCallSiteArgNo(); |
| 451 | |
| 452 | auto CallSiteCheck = [&](AbstractCallSite ACS) { |
| 453 | const IRPosition &ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo); |
| 454 | // Check if a coresponding argument was found or if it is on not associated |
| 455 | // (which can happen for callback calls). |
| 456 | if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID) |
| 457 | return false; |
| 458 | |
| 459 | // If possible, use the hasAssumedIRAttr interface. |
| 460 | if (Attribute::isEnumAttrKind(Kind: IRAttributeKind)) { |
| 461 | bool IsKnown; |
| 462 | return AA::hasAssumedIRAttr<IRAttributeKind>( |
| 463 | A, &QueryingAA, ACSArgPos, DepClassTy::REQUIRED, IsKnown); |
| 464 | } |
| 465 | |
| 466 | const AAType *AA = |
| 467 | A.getAAFor<AAType>(QueryingAA, ACSArgPos, DepClassTy::REQUIRED); |
| 468 | if (!AA) |
| 469 | return false; |
| 470 | LLVM_DEBUG(dbgs() << "[Attributor] ACS: " << *ACS.getInstruction() |
| 471 | << " AA: " << AA->getAsStr(&A) << " @" << ACSArgPos |
| 472 | << "\n" ); |
| 473 | const StateType &AAS = AA->getState(); |
| 474 | if (!T) |
| 475 | T = StateType::getBestState(AAS); |
| 476 | *T &= AAS; |
| 477 | LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " CSA State: " << T |
| 478 | << "\n" ); |
| 479 | return T->isValidState(); |
| 480 | }; |
| 481 | |
| 482 | bool UsedAssumedInformation = false; |
| 483 | if (!A.checkForAllCallSites(CallSiteCheck, QueryingAA, true, |
| 484 | UsedAssumedInformation)) |
| 485 | S.indicatePessimisticFixpoint(); |
| 486 | else if (T) |
| 487 | S ^= *T; |
| 488 | } |
| 489 | |
| 490 | /// This function is the bridge between argument position and the call base |
| 491 | /// context. |
| 492 | template <typename AAType, typename BaseType, |
| 493 | typename StateType = typename AAType::StateType, |
| 494 | Attribute::AttrKind IRAttributeKind = AAType::IRAttributeKind> |
| 495 | bool getArgumentStateFromCallBaseContext(Attributor &A, |
| 496 | BaseType &QueryingAttribute, |
| 497 | IRPosition &Pos, StateType &State) { |
| 498 | assert((Pos.getPositionKind() == IRPosition::IRP_ARGUMENT) && |
| 499 | "Expected an 'argument' position !" ); |
| 500 | const CallBase *CBContext = Pos.getCallBaseContext(); |
| 501 | if (!CBContext) |
| 502 | return false; |
| 503 | |
| 504 | int ArgNo = Pos.getCallSiteArgNo(); |
| 505 | assert(ArgNo >= 0 && "Invalid Arg No!" ); |
| 506 | const IRPosition CBArgPos = IRPosition::callsite_argument(CB: *CBContext, ArgNo); |
| 507 | |
| 508 | // If possible, use the hasAssumedIRAttr interface. |
| 509 | if (Attribute::isEnumAttrKind(Kind: IRAttributeKind)) { |
| 510 | bool IsKnown; |
| 511 | return AA::hasAssumedIRAttr<IRAttributeKind>( |
| 512 | A, &QueryingAttribute, CBArgPos, DepClassTy::REQUIRED, IsKnown); |
| 513 | } |
| 514 | |
| 515 | const auto *AA = |
| 516 | A.getAAFor<AAType>(QueryingAttribute, CBArgPos, DepClassTy::REQUIRED); |
| 517 | if (!AA) |
| 518 | return false; |
| 519 | const StateType &CBArgumentState = |
| 520 | static_cast<const StateType &>(AA->getState()); |
| 521 | |
| 522 | LLVM_DEBUG(dbgs() << "[Attributor] Briding Call site context to argument" |
| 523 | << "Position:" << Pos << "CB Arg state:" << CBArgumentState |
| 524 | << "\n" ); |
| 525 | |
| 526 | // NOTE: If we want to do call site grouping it should happen here. |
| 527 | State ^= CBArgumentState; |
| 528 | return true; |
| 529 | } |
| 530 | |
| 531 | /// Helper class for generic deduction: call site argument -> argument position. |
| 532 | template <typename AAType, typename BaseType, |
| 533 | typename StateType = typename AAType::StateType, |
| 534 | bool BridgeCallBaseContext = false, |
| 535 | Attribute::AttrKind IRAttributeKind = AAType::IRAttributeKind> |
| 536 | struct AAArgumentFromCallSiteArguments : public BaseType { |
| 537 | AAArgumentFromCallSiteArguments(const IRPosition &IRP, Attributor &A) |
| 538 | : BaseType(IRP, A) {} |
| 539 | |
| 540 | /// See AbstractAttribute::updateImpl(...). |
| 541 | ChangeStatus updateImpl(Attributor &A) override { |
| 542 | StateType S = StateType::getBestState(this->getState()); |
| 543 | |
| 544 | if (BridgeCallBaseContext) { |
| 545 | bool Success = |
| 546 | getArgumentStateFromCallBaseContext<AAType, BaseType, StateType, |
| 547 | IRAttributeKind>( |
| 548 | A, *this, this->getIRPosition(), S); |
| 549 | if (Success) |
| 550 | return clampStateAndIndicateChange<StateType>(this->getState(), S); |
| 551 | } |
| 552 | clampCallSiteArgumentStates<AAType, StateType, IRAttributeKind>(A, *this, |
| 553 | S); |
| 554 | |
| 555 | // TODO: If we know we visited all incoming values, thus no are assumed |
| 556 | // dead, we can take the known information from the state T. |
| 557 | return clampStateAndIndicateChange<StateType>(this->getState(), S); |
| 558 | } |
| 559 | }; |
| 560 | |
| 561 | /// Helper class for generic replication: function returned -> cs returned. |
| 562 | template <typename AAType, typename BaseType, |
| 563 | typename StateType = typename BaseType::StateType, |
| 564 | bool IntroduceCallBaseContext = false, |
| 565 | Attribute::AttrKind IRAttributeKind = AAType::IRAttributeKind> |
| 566 | struct AACalleeToCallSite : public BaseType { |
| 567 | AACalleeToCallSite(const IRPosition &IRP, Attributor &A) : BaseType(IRP, A) {} |
| 568 | |
| 569 | /// See AbstractAttribute::updateImpl(...). |
| 570 | ChangeStatus updateImpl(Attributor &A) override { |
| 571 | auto IRPKind = this->getIRPosition().getPositionKind(); |
| 572 | assert((IRPKind == IRPosition::IRP_CALL_SITE_RETURNED || |
| 573 | IRPKind == IRPosition::IRP_CALL_SITE) && |
| 574 | "Can only wrap function returned positions for call site " |
| 575 | "returned positions!" ); |
| 576 | auto &S = this->getState(); |
| 577 | |
| 578 | CallBase &CB = cast<CallBase>(this->getAnchorValue()); |
| 579 | if (IntroduceCallBaseContext) |
| 580 | LLVM_DEBUG(dbgs() << "[Attributor] Introducing call base context:" << CB |
| 581 | << "\n" ); |
| 582 | |
| 583 | ChangeStatus Changed = ChangeStatus::UNCHANGED; |
| 584 | auto CalleePred = [&](ArrayRef<const Function *> Callees) { |
| 585 | for (const Function *Callee : Callees) { |
| 586 | IRPosition FnPos = |
| 587 | IRPKind == llvm::IRPosition::IRP_CALL_SITE_RETURNED |
| 588 | ? IRPosition::returned(F: *Callee, |
| 589 | CBContext: IntroduceCallBaseContext ? &CB : nullptr) |
| 590 | : IRPosition::function( |
| 591 | F: *Callee, CBContext: IntroduceCallBaseContext ? &CB : nullptr); |
| 592 | // If possible, use the hasAssumedIRAttr interface. |
| 593 | if (Attribute::isEnumAttrKind(Kind: IRAttributeKind)) { |
| 594 | bool IsKnown; |
| 595 | if (!AA::hasAssumedIRAttr<IRAttributeKind>( |
| 596 | A, this, FnPos, DepClassTy::REQUIRED, IsKnown)) |
| 597 | return false; |
| 598 | continue; |
| 599 | } |
| 600 | |
| 601 | const AAType *AA = |
| 602 | A.getAAFor<AAType>(*this, FnPos, DepClassTy::REQUIRED); |
| 603 | if (!AA) |
| 604 | return false; |
| 605 | Changed |= clampStateAndIndicateChange(S, AA->getState()); |
| 606 | if (S.isAtFixpoint()) |
| 607 | return S.isValidState(); |
| 608 | } |
| 609 | return true; |
| 610 | }; |
| 611 | if (!A.checkForAllCallees(Pred: CalleePred, QueryingAA: *this, CB)) |
| 612 | return S.indicatePessimisticFixpoint(); |
| 613 | return Changed; |
| 614 | } |
| 615 | }; |
| 616 | |
| 617 | /// Helper function to accumulate uses. |
| 618 | template <class AAType, typename StateType = typename AAType::StateType> |
| 619 | static void followUsesInContext(AAType &AA, Attributor &A, |
| 620 | MustBeExecutedContextExplorer &Explorer, |
| 621 | const Instruction *CtxI, |
| 622 | SetVector<const Use *> &Uses, |
| 623 | StateType &State) { |
| 624 | auto EIt = Explorer.begin(PP: CtxI), EEnd = Explorer.end(CtxI); |
| 625 | for (unsigned u = 0; u < Uses.size(); ++u) { |
| 626 | const Use *U = Uses[u]; |
| 627 | if (const Instruction *UserI = dyn_cast<Instruction>(Val: U->getUser())) { |
| 628 | bool Found = Explorer.findInContextOf(I: UserI, EIt, EEnd); |
| 629 | if (Found && AA.followUseInMBEC(A, U, UserI, State)) |
| 630 | Uses.insert_range(R: llvm::make_pointer_range(Range: UserI->uses())); |
| 631 | } |
| 632 | } |
| 633 | } |
| 634 | |
| 635 | /// Use the must-be-executed-context around \p I to add information into \p S. |
| 636 | /// The AAType class is required to have `followUseInMBEC` method with the |
| 637 | /// following signature and behaviour: |
| 638 | /// |
| 639 | /// bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I) |
| 640 | /// U - Underlying use. |
| 641 | /// I - The user of the \p U. |
| 642 | /// Returns true if the value should be tracked transitively. |
| 643 | /// |
| 644 | template <class AAType, typename StateType = typename AAType::StateType> |
| 645 | static void followUsesInMBEC(AAType &AA, Attributor &A, StateType &S, |
| 646 | Instruction &CtxI) { |
| 647 | const Value &Val = AA.getIRPosition().getAssociatedValue(); |
| 648 | if (isa<ConstantData>(Val)) |
| 649 | return; |
| 650 | |
| 651 | MustBeExecutedContextExplorer *Explorer = |
| 652 | A.getInfoCache().getMustBeExecutedContextExplorer(); |
| 653 | if (!Explorer) |
| 654 | return; |
| 655 | |
| 656 | // Container for (transitive) uses of the associated value. |
| 657 | SetVector<const Use *> Uses; |
| 658 | for (const Use &U : Val.uses()) |
| 659 | Uses.insert(X: &U); |
| 660 | |
| 661 | followUsesInContext<AAType>(AA, A, *Explorer, &CtxI, Uses, S); |
| 662 | |
| 663 | if (S.isAtFixpoint()) |
| 664 | return; |
| 665 | |
| 666 | SmallVector<const BranchInst *, 4> BrInsts; |
| 667 | auto Pred = [&](const Instruction *I) { |
| 668 | if (const BranchInst *Br = dyn_cast<BranchInst>(Val: I)) |
| 669 | if (Br->isConditional()) |
| 670 | BrInsts.push_back(Elt: Br); |
| 671 | return true; |
| 672 | }; |
| 673 | |
| 674 | // Here, accumulate conditional branch instructions in the context. We |
| 675 | // explore the child paths and collect the known states. The disjunction of |
| 676 | // those states can be merged to its own state. Let ParentState_i be a state |
| 677 | // to indicate the known information for an i-th branch instruction in the |
| 678 | // context. ChildStates are created for its successors respectively. |
| 679 | // |
| 680 | // ParentS_1 = ChildS_{1, 1} /\ ChildS_{1, 2} /\ ... /\ ChildS_{1, n_1} |
| 681 | // ParentS_2 = ChildS_{2, 1} /\ ChildS_{2, 2} /\ ... /\ ChildS_{2, n_2} |
| 682 | // ... |
| 683 | // ParentS_m = ChildS_{m, 1} /\ ChildS_{m, 2} /\ ... /\ ChildS_{m, n_m} |
| 684 | // |
| 685 | // Known State |= ParentS_1 \/ ParentS_2 \/... \/ ParentS_m |
| 686 | // |
| 687 | // FIXME: Currently, recursive branches are not handled. For example, we |
| 688 | // can't deduce that ptr must be dereferenced in below function. |
| 689 | // |
| 690 | // void f(int a, int c, int *ptr) { |
| 691 | // if(a) |
| 692 | // if (b) { |
| 693 | // *ptr = 0; |
| 694 | // } else { |
| 695 | // *ptr = 1; |
| 696 | // } |
| 697 | // else { |
| 698 | // if (b) { |
| 699 | // *ptr = 0; |
| 700 | // } else { |
| 701 | // *ptr = 1; |
| 702 | // } |
| 703 | // } |
| 704 | // } |
| 705 | |
| 706 | Explorer->checkForAllContext(PP: &CtxI, Pred); |
| 707 | for (const BranchInst *Br : BrInsts) { |
| 708 | StateType ParentState; |
| 709 | |
| 710 | // The known state of the parent state is a conjunction of children's |
| 711 | // known states so it is initialized with a best state. |
| 712 | ParentState.indicateOptimisticFixpoint(); |
| 713 | |
| 714 | for (const BasicBlock *BB : Br->successors()) { |
| 715 | StateType ChildState; |
| 716 | |
| 717 | size_t BeforeSize = Uses.size(); |
| 718 | followUsesInContext(AA, A, *Explorer, &BB->front(), Uses, ChildState); |
| 719 | |
| 720 | // Erase uses which only appear in the child. |
| 721 | for (auto It = Uses.begin() + BeforeSize; It != Uses.end();) |
| 722 | It = Uses.erase(I: It); |
| 723 | |
| 724 | ParentState &= ChildState; |
| 725 | } |
| 726 | |
| 727 | // Use only known state. |
| 728 | S += ParentState; |
| 729 | } |
| 730 | } |
| 731 | } // namespace |
| 732 | |
| 733 | /// ------------------------ PointerInfo --------------------------------------- |
| 734 | |
| 735 | namespace llvm { |
| 736 | namespace AA { |
| 737 | namespace PointerInfo { |
| 738 | |
| 739 | struct State; |
| 740 | |
| 741 | } // namespace PointerInfo |
| 742 | } // namespace AA |
| 743 | |
| 744 | /// Helper for AA::PointerInfo::Access DenseMap/Set usage. |
| 745 | template <> |
| 746 | struct DenseMapInfo<AAPointerInfo::Access> : DenseMapInfo<Instruction *> { |
| 747 | using Access = AAPointerInfo::Access; |
| 748 | static inline Access getEmptyKey(); |
| 749 | static inline Access getTombstoneKey(); |
| 750 | static unsigned getHashValue(const Access &A); |
| 751 | static bool isEqual(const Access &LHS, const Access &RHS); |
| 752 | }; |
| 753 | |
| 754 | /// Helper that allows RangeTy as a key in a DenseMap. |
| 755 | template <> struct DenseMapInfo<AA::RangeTy> { |
| 756 | static inline AA::RangeTy getEmptyKey() { |
| 757 | auto EmptyKey = DenseMapInfo<int64_t>::getEmptyKey(); |
| 758 | return AA::RangeTy{EmptyKey, EmptyKey}; |
| 759 | } |
| 760 | |
| 761 | static inline AA::RangeTy getTombstoneKey() { |
| 762 | auto TombstoneKey = DenseMapInfo<int64_t>::getTombstoneKey(); |
| 763 | return AA::RangeTy{TombstoneKey, TombstoneKey}; |
| 764 | } |
| 765 | |
| 766 | static unsigned getHashValue(const AA::RangeTy &Range) { |
| 767 | return detail::combineHashValue( |
| 768 | a: DenseMapInfo<int64_t>::getHashValue(Val: Range.Offset), |
| 769 | b: DenseMapInfo<int64_t>::getHashValue(Val: Range.Size)); |
| 770 | } |
| 771 | |
| 772 | static bool isEqual(const AA::RangeTy &A, const AA::RangeTy B) { |
| 773 | return A == B; |
| 774 | } |
| 775 | }; |
| 776 | |
| 777 | /// Helper for AA::PointerInfo::Access DenseMap/Set usage ignoring everythign |
| 778 | /// but the instruction |
| 779 | struct AccessAsInstructionInfo : DenseMapInfo<Instruction *> { |
| 780 | using Base = DenseMapInfo<Instruction *>; |
| 781 | using Access = AAPointerInfo::Access; |
| 782 | static inline Access getEmptyKey(); |
| 783 | static inline Access getTombstoneKey(); |
| 784 | static unsigned getHashValue(const Access &A); |
| 785 | static bool isEqual(const Access &LHS, const Access &RHS); |
| 786 | }; |
| 787 | |
| 788 | } // namespace llvm |
| 789 | |
| 790 | /// A type to track pointer/struct usage and accesses for AAPointerInfo. |
| 791 | struct AA::PointerInfo::State : public AbstractState { |
| 792 | /// Return the best possible representable state. |
| 793 | static State getBestState(const State &SIS) { return State(); } |
| 794 | |
| 795 | /// Return the worst possible representable state. |
| 796 | static State getWorstState(const State &SIS) { |
| 797 | State R; |
| 798 | R.indicatePessimisticFixpoint(); |
| 799 | return R; |
| 800 | } |
| 801 | |
| 802 | State() = default; |
| 803 | State(State &&SIS) = default; |
| 804 | |
| 805 | const State &getAssumed() const { return *this; } |
| 806 | |
| 807 | /// See AbstractState::isValidState(). |
| 808 | bool isValidState() const override { return BS.isValidState(); } |
| 809 | |
| 810 | /// See AbstractState::isAtFixpoint(). |
| 811 | bool isAtFixpoint() const override { return BS.isAtFixpoint(); } |
| 812 | |
| 813 | /// See AbstractState::indicateOptimisticFixpoint(). |
| 814 | ChangeStatus indicateOptimisticFixpoint() override { |
| 815 | BS.indicateOptimisticFixpoint(); |
| 816 | return ChangeStatus::UNCHANGED; |
| 817 | } |
| 818 | |
| 819 | /// See AbstractState::indicatePessimisticFixpoint(). |
| 820 | ChangeStatus indicatePessimisticFixpoint() override { |
| 821 | BS.indicatePessimisticFixpoint(); |
| 822 | return ChangeStatus::CHANGED; |
| 823 | } |
| 824 | |
| 825 | State &operator=(const State &R) { |
| 826 | if (this == &R) |
| 827 | return *this; |
| 828 | BS = R.BS; |
| 829 | AccessList = R.AccessList; |
| 830 | OffsetBins = R.OffsetBins; |
| 831 | RemoteIMap = R.RemoteIMap; |
| 832 | ReturnedOffsets = R.ReturnedOffsets; |
| 833 | return *this; |
| 834 | } |
| 835 | |
| 836 | State &operator=(State &&R) { |
| 837 | if (this == &R) |
| 838 | return *this; |
| 839 | std::swap(a&: BS, b&: R.BS); |
| 840 | std::swap(LHS&: AccessList, RHS&: R.AccessList); |
| 841 | std::swap(a&: OffsetBins, b&: R.OffsetBins); |
| 842 | std::swap(a&: RemoteIMap, b&: R.RemoteIMap); |
| 843 | std::swap(a&: ReturnedOffsets, b&: R.ReturnedOffsets); |
| 844 | return *this; |
| 845 | } |
| 846 | |
| 847 | /// Add a new Access to the state at offset \p Offset and with size \p Size. |
| 848 | /// The access is associated with \p I, writes \p Content (if anything), and |
| 849 | /// is of kind \p Kind. If an Access already exists for the same \p I and same |
| 850 | /// \p RemoteI, the two are combined, potentially losing information about |
| 851 | /// offset and size. The resulting access must now be moved from its original |
| 852 | /// OffsetBin to the bin for its new offset. |
| 853 | /// |
| 854 | /// \Returns CHANGED, if the state changed, UNCHANGED otherwise. |
| 855 | ChangeStatus addAccess(Attributor &A, const AAPointerInfo::RangeList &Ranges, |
| 856 | Instruction &I, std::optional<Value *> Content, |
| 857 | AAPointerInfo::AccessKind Kind, Type *Ty, |
| 858 | Instruction *RemoteI = nullptr); |
| 859 | |
| 860 | AAPointerInfo::const_bin_iterator begin() const { return OffsetBins.begin(); } |
| 861 | AAPointerInfo::const_bin_iterator end() const { return OffsetBins.end(); } |
| 862 | int64_t numOffsetBins() const { return OffsetBins.size(); } |
| 863 | |
| 864 | const AAPointerInfo::Access &getAccess(unsigned Index) const { |
| 865 | return AccessList[Index]; |
| 866 | } |
| 867 | |
| 868 | protected: |
| 869 | // Every memory instruction results in an Access object. We maintain a list of |
| 870 | // all Access objects that we own, along with the following maps: |
| 871 | // |
| 872 | // - OffsetBins: RangeTy -> { Access } |
| 873 | // - RemoteIMap: RemoteI x LocalI -> Access |
| 874 | // |
| 875 | // A RemoteI is any instruction that accesses memory. RemoteI is different |
| 876 | // from LocalI if and only if LocalI is a call; then RemoteI is some |
| 877 | // instruction in the callgraph starting from LocalI. Multiple paths in the |
| 878 | // callgraph from LocalI to RemoteI may produce multiple accesses, but these |
| 879 | // are all combined into a single Access object. This may result in loss of |
| 880 | // information in RangeTy in the Access object. |
| 881 | SmallVector<AAPointerInfo::Access> AccessList; |
| 882 | AAPointerInfo::OffsetBinsTy OffsetBins; |
| 883 | DenseMap<const Instruction *, SmallVector<unsigned>> RemoteIMap; |
| 884 | |
| 885 | /// Flag to determine if the underlying pointer is reaching a return statement |
| 886 | /// in the associated function or not. Returns in other functions cause |
| 887 | /// invalidation. |
| 888 | AAPointerInfo::OffsetInfo ReturnedOffsets; |
| 889 | |
| 890 | /// See AAPointerInfo::forallInterferingAccesses. |
| 891 | template <typename F> |
| 892 | bool forallInterferingAccesses(AA::RangeTy Range, F CB) const { |
| 893 | if (!isValidState() || !ReturnedOffsets.isUnassigned()) |
| 894 | return false; |
| 895 | |
| 896 | for (const auto &It : OffsetBins) { |
| 897 | AA::RangeTy ItRange = It.getFirst(); |
| 898 | if (!Range.mayOverlap(Range: ItRange)) |
| 899 | continue; |
| 900 | bool IsExact = Range == ItRange && !Range.offsetOrSizeAreUnknown(); |
| 901 | for (auto Index : It.getSecond()) { |
| 902 | auto &Access = AccessList[Index]; |
| 903 | if (!CB(Access, IsExact)) |
| 904 | return false; |
| 905 | } |
| 906 | } |
| 907 | return true; |
| 908 | } |
| 909 | |
| 910 | /// See AAPointerInfo::forallInterferingAccesses. |
| 911 | template <typename F> |
| 912 | bool forallInterferingAccesses(Instruction &I, F CB, |
| 913 | AA::RangeTy &Range) const { |
| 914 | if (!isValidState() || !ReturnedOffsets.isUnassigned()) |
| 915 | return false; |
| 916 | |
| 917 | auto LocalList = RemoteIMap.find(Val: &I); |
| 918 | if (LocalList == RemoteIMap.end()) { |
| 919 | return true; |
| 920 | } |
| 921 | |
| 922 | for (unsigned Index : LocalList->getSecond()) { |
| 923 | for (auto &R : AccessList[Index]) { |
| 924 | Range &= R; |
| 925 | if (Range.offsetAndSizeAreUnknown()) |
| 926 | break; |
| 927 | } |
| 928 | } |
| 929 | return forallInterferingAccesses(Range, CB); |
| 930 | } |
| 931 | |
| 932 | private: |
| 933 | /// State to track fixpoint and validity. |
| 934 | BooleanState BS; |
| 935 | }; |
| 936 | |
| 937 | ChangeStatus AA::PointerInfo::State::addAccess( |
| 938 | Attributor &A, const AAPointerInfo::RangeList &Ranges, Instruction &I, |
| 939 | std::optional<Value *> Content, AAPointerInfo::AccessKind Kind, Type *Ty, |
| 940 | Instruction *RemoteI) { |
| 941 | RemoteI = RemoteI ? RemoteI : &I; |
| 942 | |
| 943 | // Check if we have an access for this instruction, if not, simply add it. |
| 944 | auto &LocalList = RemoteIMap[RemoteI]; |
| 945 | bool AccExists = false; |
| 946 | unsigned AccIndex = AccessList.size(); |
| 947 | for (auto Index : LocalList) { |
| 948 | auto &A = AccessList[Index]; |
| 949 | if (A.getLocalInst() == &I) { |
| 950 | AccExists = true; |
| 951 | AccIndex = Index; |
| 952 | break; |
| 953 | } |
| 954 | } |
| 955 | |
| 956 | auto AddToBins = [&](const AAPointerInfo::RangeList &ToAdd) { |
| 957 | LLVM_DEBUG(if (ToAdd.size()) dbgs() |
| 958 | << "[AAPointerInfo] Inserting access in new offset bins\n" ;); |
| 959 | |
| 960 | for (auto Key : ToAdd) { |
| 961 | LLVM_DEBUG(dbgs() << " key " << Key << "\n" ); |
| 962 | OffsetBins[Key].insert(V: AccIndex); |
| 963 | } |
| 964 | }; |
| 965 | |
| 966 | if (!AccExists) { |
| 967 | AccessList.emplace_back(Args: &I, Args&: RemoteI, Args: Ranges, Args&: Content, Args&: Kind, Args&: Ty); |
| 968 | assert((AccessList.size() == AccIndex + 1) && |
| 969 | "New Access should have been at AccIndex" ); |
| 970 | LocalList.push_back(Elt: AccIndex); |
| 971 | AddToBins(AccessList[AccIndex].getRanges()); |
| 972 | return ChangeStatus::CHANGED; |
| 973 | } |
| 974 | |
| 975 | // Combine the new Access with the existing Access, and then update the |
| 976 | // mapping in the offset bins. |
| 977 | AAPointerInfo::Access Acc(&I, RemoteI, Ranges, Content, Kind, Ty); |
| 978 | auto &Current = AccessList[AccIndex]; |
| 979 | auto Before = Current; |
| 980 | Current &= Acc; |
| 981 | if (Current == Before) |
| 982 | return ChangeStatus::UNCHANGED; |
| 983 | |
| 984 | auto &ExistingRanges = Before.getRanges(); |
| 985 | auto &NewRanges = Current.getRanges(); |
| 986 | |
| 987 | // Ranges that are in the old access but not the new access need to be removed |
| 988 | // from the offset bins. |
| 989 | AAPointerInfo::RangeList ToRemove; |
| 990 | AAPointerInfo::RangeList::set_difference(L: ExistingRanges, R: NewRanges, D&: ToRemove); |
| 991 | LLVM_DEBUG(if (ToRemove.size()) dbgs() |
| 992 | << "[AAPointerInfo] Removing access from old offset bins\n" ;); |
| 993 | |
| 994 | for (auto Key : ToRemove) { |
| 995 | LLVM_DEBUG(dbgs() << " key " << Key << "\n" ); |
| 996 | assert(OffsetBins.count(Key) && "Existing Access must be in some bin." ); |
| 997 | auto &Bin = OffsetBins[Key]; |
| 998 | assert(Bin.count(AccIndex) && |
| 999 | "Expected bin to actually contain the Access." ); |
| 1000 | Bin.erase(V: AccIndex); |
| 1001 | } |
| 1002 | |
| 1003 | // Ranges that are in the new access but not the old access need to be added |
| 1004 | // to the offset bins. |
| 1005 | AAPointerInfo::RangeList ToAdd; |
| 1006 | AAPointerInfo::RangeList::set_difference(L: NewRanges, R: ExistingRanges, D&: ToAdd); |
| 1007 | AddToBins(ToAdd); |
| 1008 | return ChangeStatus::CHANGED; |
| 1009 | } |
| 1010 | |
| 1011 | namespace { |
| 1012 | |
| 1013 | #ifndef NDEBUG |
| 1014 | static raw_ostream &operator<<(raw_ostream &OS, |
| 1015 | const AAPointerInfo::OffsetInfo &OI) { |
| 1016 | OS << llvm::interleaved_array(OI); |
| 1017 | return OS; |
| 1018 | } |
| 1019 | #endif // NDEBUG |
| 1020 | |
| 1021 | struct AAPointerInfoImpl |
| 1022 | : public StateWrapper<AA::PointerInfo::State, AAPointerInfo> { |
| 1023 | using BaseTy = StateWrapper<AA::PointerInfo::State, AAPointerInfo>; |
| 1024 | AAPointerInfoImpl(const IRPosition &IRP, Attributor &A) : BaseTy(IRP) {} |
| 1025 | |
| 1026 | /// See AbstractAttribute::getAsStr(). |
| 1027 | const std::string getAsStr(Attributor *A) const override { |
| 1028 | return std::string("PointerInfo " ) + |
| 1029 | (isValidState() ? (std::string("#" ) + |
| 1030 | std::to_string(val: OffsetBins.size()) + " bins" ) |
| 1031 | : "<invalid>" ) + |
| 1032 | (reachesReturn() |
| 1033 | ? (" (returned:" + |
| 1034 | join(R: map_range(C: ReturnedOffsets, |
| 1035 | F: [](int64_t O) { return std::to_string(val: O); }), |
| 1036 | Separator: ", " ) + |
| 1037 | ")" ) |
| 1038 | : "" ); |
| 1039 | } |
| 1040 | |
| 1041 | /// See AbstractAttribute::manifest(...). |
| 1042 | ChangeStatus manifest(Attributor &A) override { |
| 1043 | return AAPointerInfo::manifest(A); |
| 1044 | } |
| 1045 | |
| 1046 | virtual const_bin_iterator begin() const override { return State::begin(); } |
| 1047 | virtual const_bin_iterator end() const override { return State::end(); } |
| 1048 | virtual int64_t numOffsetBins() const override { |
| 1049 | return State::numOffsetBins(); |
| 1050 | } |
| 1051 | virtual bool reachesReturn() const override { |
| 1052 | return !ReturnedOffsets.isUnassigned(); |
| 1053 | } |
| 1054 | virtual void addReturnedOffsetsTo(OffsetInfo &OI) const override { |
| 1055 | if (ReturnedOffsets.isUnknown()) { |
| 1056 | OI.setUnknown(); |
| 1057 | return; |
| 1058 | } |
| 1059 | |
| 1060 | OffsetInfo MergedOI; |
| 1061 | for (auto Offset : ReturnedOffsets) { |
| 1062 | OffsetInfo TmpOI = OI; |
| 1063 | TmpOI.addToAll(Inc: Offset); |
| 1064 | MergedOI.merge(R: TmpOI); |
| 1065 | } |
| 1066 | OI = std::move(MergedOI); |
| 1067 | } |
| 1068 | |
| 1069 | ChangeStatus setReachesReturn(const OffsetInfo &ReachedReturnedOffsets) { |
| 1070 | if (ReturnedOffsets.isUnknown()) |
| 1071 | return ChangeStatus::UNCHANGED; |
| 1072 | if (ReachedReturnedOffsets.isUnknown()) { |
| 1073 | ReturnedOffsets.setUnknown(); |
| 1074 | return ChangeStatus::CHANGED; |
| 1075 | } |
| 1076 | if (ReturnedOffsets.merge(R: ReachedReturnedOffsets)) |
| 1077 | return ChangeStatus::CHANGED; |
| 1078 | return ChangeStatus::UNCHANGED; |
| 1079 | } |
| 1080 | |
| 1081 | bool forallInterferingAccesses( |
| 1082 | AA::RangeTy Range, |
| 1083 | function_ref<bool(const AAPointerInfo::Access &, bool)> CB) |
| 1084 | const override { |
| 1085 | return State::forallInterferingAccesses(Range, CB); |
| 1086 | } |
| 1087 | |
| 1088 | bool forallInterferingAccesses( |
| 1089 | Attributor &A, const AbstractAttribute &QueryingAA, Instruction &I, |
| 1090 | bool FindInterferingWrites, bool FindInterferingReads, |
| 1091 | function_ref<bool(const Access &, bool)> UserCB, bool &HasBeenWrittenTo, |
| 1092 | AA::RangeTy &Range, |
| 1093 | function_ref<bool(const Access &)> SkipCB) const override { |
| 1094 | HasBeenWrittenTo = false; |
| 1095 | |
| 1096 | SmallPtrSet<const Access *, 8> DominatingWrites; |
| 1097 | SmallVector<std::pair<const Access *, bool>, 8> InterferingAccesses; |
| 1098 | |
| 1099 | Function &Scope = *I.getFunction(); |
| 1100 | bool IsKnownNoSync; |
| 1101 | bool IsAssumedNoSync = AA::hasAssumedIRAttr<Attribute::NoSync>( |
| 1102 | A, QueryingAA: &QueryingAA, IRP: IRPosition::function(F: Scope), DepClass: DepClassTy::OPTIONAL, |
| 1103 | IsKnown&: IsKnownNoSync); |
| 1104 | const auto *ExecDomainAA = A.lookupAAFor<AAExecutionDomain>( |
| 1105 | IRP: IRPosition::function(F: Scope), QueryingAA: &QueryingAA, DepClass: DepClassTy::NONE); |
| 1106 | bool AllInSameNoSyncFn = IsAssumedNoSync; |
| 1107 | bool InstIsExecutedByInitialThreadOnly = |
| 1108 | ExecDomainAA && ExecDomainAA->isExecutedByInitialThreadOnly(I); |
| 1109 | |
| 1110 | // If the function is not ending in aligned barriers, we need the stores to |
| 1111 | // be in aligned barriers. The load being in one is not sufficient since the |
| 1112 | // store might be executed by a thread that disappears after, causing the |
| 1113 | // aligned barrier guarding the load to unblock and the load to read a value |
| 1114 | // that has no CFG path to the load. |
| 1115 | bool InstIsExecutedInAlignedRegion = |
| 1116 | FindInterferingReads && ExecDomainAA && |
| 1117 | ExecDomainAA->isExecutedInAlignedRegion(A, I); |
| 1118 | |
| 1119 | if (InstIsExecutedInAlignedRegion || InstIsExecutedByInitialThreadOnly) |
| 1120 | A.recordDependence(FromAA: *ExecDomainAA, ToAA: QueryingAA, DepClass: DepClassTy::OPTIONAL); |
| 1121 | |
| 1122 | InformationCache &InfoCache = A.getInfoCache(); |
| 1123 | bool IsThreadLocalObj = |
| 1124 | AA::isAssumedThreadLocalObject(A, Obj&: getAssociatedValue(), QueryingAA: *this); |
| 1125 | |
| 1126 | // Helper to determine if we need to consider threading, which we cannot |
| 1127 | // right now. However, if the function is (assumed) nosync or the thread |
| 1128 | // executing all instructions is the main thread only we can ignore |
| 1129 | // threading. Also, thread-local objects do not require threading reasoning. |
| 1130 | // Finally, we can ignore threading if either access is executed in an |
| 1131 | // aligned region. |
| 1132 | auto CanIgnoreThreadingForInst = [&](const Instruction &I) -> bool { |
| 1133 | if (IsThreadLocalObj || AllInSameNoSyncFn) |
| 1134 | return true; |
| 1135 | const auto *FnExecDomainAA = |
| 1136 | I.getFunction() == &Scope |
| 1137 | ? ExecDomainAA |
| 1138 | : A.lookupAAFor<AAExecutionDomain>( |
| 1139 | IRP: IRPosition::function(F: *I.getFunction()), QueryingAA: &QueryingAA, |
| 1140 | DepClass: DepClassTy::NONE); |
| 1141 | if (!FnExecDomainAA) |
| 1142 | return false; |
| 1143 | if (InstIsExecutedInAlignedRegion || |
| 1144 | (FindInterferingWrites && |
| 1145 | FnExecDomainAA->isExecutedInAlignedRegion(A, I))) { |
| 1146 | A.recordDependence(FromAA: *FnExecDomainAA, ToAA: QueryingAA, DepClass: DepClassTy::OPTIONAL); |
| 1147 | return true; |
| 1148 | } |
| 1149 | if (InstIsExecutedByInitialThreadOnly && |
| 1150 | FnExecDomainAA->isExecutedByInitialThreadOnly(I)) { |
| 1151 | A.recordDependence(FromAA: *FnExecDomainAA, ToAA: QueryingAA, DepClass: DepClassTy::OPTIONAL); |
| 1152 | return true; |
| 1153 | } |
| 1154 | return false; |
| 1155 | }; |
| 1156 | |
| 1157 | // Helper to determine if the access is executed by the same thread as the |
| 1158 | // given instruction, for now it is sufficient to avoid any potential |
| 1159 | // threading effects as we cannot deal with them anyway. |
| 1160 | auto CanIgnoreThreading = [&](const Access &Acc) -> bool { |
| 1161 | return CanIgnoreThreadingForInst(*Acc.getRemoteInst()) || |
| 1162 | (Acc.getRemoteInst() != Acc.getLocalInst() && |
| 1163 | CanIgnoreThreadingForInst(*Acc.getLocalInst())); |
| 1164 | }; |
| 1165 | |
| 1166 | // TODO: Use inter-procedural reachability and dominance. |
| 1167 | bool IsKnownNoRecurse; |
| 1168 | AA::hasAssumedIRAttr<Attribute::NoRecurse>( |
| 1169 | A, QueryingAA: this, IRP: IRPosition::function(F: Scope), DepClass: DepClassTy::OPTIONAL, |
| 1170 | IsKnown&: IsKnownNoRecurse); |
| 1171 | |
| 1172 | // TODO: Use reaching kernels from AAKernelInfo (or move it to |
| 1173 | // AAExecutionDomain) such that we allow scopes other than kernels as long |
| 1174 | // as the reaching kernels are disjoint. |
| 1175 | bool InstInKernel = A.getInfoCache().isKernel(F: Scope); |
| 1176 | bool ObjHasKernelLifetime = false; |
| 1177 | const bool UseDominanceReasoning = |
| 1178 | FindInterferingWrites && IsKnownNoRecurse; |
| 1179 | const DominatorTree *DT = |
| 1180 | InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(F: Scope); |
| 1181 | |
| 1182 | // Helper to check if a value has "kernel lifetime", that is it will not |
| 1183 | // outlive a GPU kernel. This is true for shared, constant, and local |
| 1184 | // globals on AMD and NVIDIA GPUs. |
| 1185 | auto HasKernelLifetime = [&](Value *V, Module &M) { |
| 1186 | if (!AA::isGPU(M)) |
| 1187 | return false; |
| 1188 | switch (AA::GPUAddressSpace(V->getType()->getPointerAddressSpace())) { |
| 1189 | case AA::GPUAddressSpace::Shared: |
| 1190 | case AA::GPUAddressSpace::Constant: |
| 1191 | case AA::GPUAddressSpace::Local: |
| 1192 | return true; |
| 1193 | default: |
| 1194 | return false; |
| 1195 | }; |
| 1196 | }; |
| 1197 | |
| 1198 | // The IsLiveInCalleeCB will be used by the AA::isPotentiallyReachable query |
| 1199 | // to determine if we should look at reachability from the callee. For |
| 1200 | // certain pointers we know the lifetime and we do not have to step into the |
| 1201 | // callee to determine reachability as the pointer would be dead in the |
| 1202 | // callee. See the conditional initialization below. |
| 1203 | std::function<bool(const Function &)> IsLiveInCalleeCB; |
| 1204 | |
| 1205 | if (auto *AI = dyn_cast<AllocaInst>(Val: &getAssociatedValue())) { |
| 1206 | // If the alloca containing function is not recursive the alloca |
| 1207 | // must be dead in the callee. |
| 1208 | const Function *AIFn = AI->getFunction(); |
| 1209 | ObjHasKernelLifetime = A.getInfoCache().isKernel(F: *AIFn); |
| 1210 | bool IsKnownNoRecurse; |
| 1211 | if (AA::hasAssumedIRAttr<Attribute::NoRecurse>( |
| 1212 | A, QueryingAA: this, IRP: IRPosition::function(F: *AIFn), DepClass: DepClassTy::OPTIONAL, |
| 1213 | IsKnown&: IsKnownNoRecurse)) { |
| 1214 | IsLiveInCalleeCB = [AIFn](const Function &Fn) { return AIFn != &Fn; }; |
| 1215 | } |
| 1216 | } else if (auto *GV = dyn_cast<GlobalValue>(Val: &getAssociatedValue())) { |
| 1217 | // If the global has kernel lifetime we can stop if we reach a kernel |
| 1218 | // as it is "dead" in the (unknown) callees. |
| 1219 | ObjHasKernelLifetime = HasKernelLifetime(GV, *GV->getParent()); |
| 1220 | if (ObjHasKernelLifetime) |
| 1221 | IsLiveInCalleeCB = [&A](const Function &Fn) { |
| 1222 | return !A.getInfoCache().isKernel(F: Fn); |
| 1223 | }; |
| 1224 | } |
| 1225 | |
| 1226 | // Set of accesses/instructions that will overwrite the result and are |
| 1227 | // therefore blockers in the reachability traversal. |
| 1228 | AA::InstExclusionSetTy ExclusionSet; |
| 1229 | |
| 1230 | auto AccessCB = [&](const Access &Acc, bool Exact) { |
| 1231 | Function *AccScope = Acc.getRemoteInst()->getFunction(); |
| 1232 | bool AccInSameScope = AccScope == &Scope; |
| 1233 | |
| 1234 | // If the object has kernel lifetime we can ignore accesses only reachable |
| 1235 | // by other kernels. For now we only skip accesses *in* other kernels. |
| 1236 | if (InstInKernel && ObjHasKernelLifetime && !AccInSameScope && |
| 1237 | A.getInfoCache().isKernel(F: *AccScope)) |
| 1238 | return true; |
| 1239 | |
| 1240 | if (Exact && Acc.isMustAccess() && Acc.getRemoteInst() != &I) { |
| 1241 | if (Acc.isWrite() || (isa<LoadInst>(Val: I) && Acc.isWriteOrAssumption())) |
| 1242 | ExclusionSet.insert(Ptr: Acc.getRemoteInst()); |
| 1243 | } |
| 1244 | |
| 1245 | if ((!FindInterferingWrites || !Acc.isWriteOrAssumption()) && |
| 1246 | (!FindInterferingReads || !Acc.isRead())) |
| 1247 | return true; |
| 1248 | |
| 1249 | bool Dominates = FindInterferingWrites && DT && Exact && |
| 1250 | Acc.isMustAccess() && AccInSameScope && |
| 1251 | DT->dominates(Def: Acc.getRemoteInst(), User: &I); |
| 1252 | if (Dominates) |
| 1253 | DominatingWrites.insert(Ptr: &Acc); |
| 1254 | |
| 1255 | // Track if all interesting accesses are in the same `nosync` function as |
| 1256 | // the given instruction. |
| 1257 | AllInSameNoSyncFn &= Acc.getRemoteInst()->getFunction() == &Scope; |
| 1258 | |
| 1259 | InterferingAccesses.push_back(Elt: {&Acc, Exact}); |
| 1260 | return true; |
| 1261 | }; |
| 1262 | if (!State::forallInterferingAccesses(I, CB: AccessCB, Range)) |
| 1263 | return false; |
| 1264 | |
| 1265 | HasBeenWrittenTo = !DominatingWrites.empty(); |
| 1266 | |
| 1267 | // Dominating writes form a chain, find the least/lowest member. |
| 1268 | Instruction *LeastDominatingWriteInst = nullptr; |
| 1269 | for (const Access *Acc : DominatingWrites) { |
| 1270 | if (!LeastDominatingWriteInst) { |
| 1271 | LeastDominatingWriteInst = Acc->getRemoteInst(); |
| 1272 | } else if (DT->dominates(Def: LeastDominatingWriteInst, |
| 1273 | User: Acc->getRemoteInst())) { |
| 1274 | LeastDominatingWriteInst = Acc->getRemoteInst(); |
| 1275 | } |
| 1276 | } |
| 1277 | |
| 1278 | // Helper to determine if we can skip a specific write access. |
| 1279 | auto CanSkipAccess = [&](const Access &Acc, bool Exact) { |
| 1280 | if (SkipCB && SkipCB(Acc)) |
| 1281 | return true; |
| 1282 | if (!CanIgnoreThreading(Acc)) |
| 1283 | return false; |
| 1284 | |
| 1285 | // Check read (RAW) dependences and write (WAR) dependences as necessary. |
| 1286 | // If we successfully excluded all effects we are interested in, the |
| 1287 | // access can be skipped. |
| 1288 | bool ReadChecked = !FindInterferingReads; |
| 1289 | bool WriteChecked = !FindInterferingWrites; |
| 1290 | |
| 1291 | // If the instruction cannot reach the access, the former does not |
| 1292 | // interfere with what the access reads. |
| 1293 | if (!ReadChecked) { |
| 1294 | if (!AA::isPotentiallyReachable(A, FromI: I, ToI: *Acc.getRemoteInst(), QueryingAA, |
| 1295 | ExclusionSet: &ExclusionSet, GoBackwardsCB: IsLiveInCalleeCB)) |
| 1296 | ReadChecked = true; |
| 1297 | } |
| 1298 | // If the instruction cannot be reach from the access, the latter does not |
| 1299 | // interfere with what the instruction reads. |
| 1300 | if (!WriteChecked) { |
| 1301 | if (!AA::isPotentiallyReachable(A, FromI: *Acc.getRemoteInst(), ToI: I, QueryingAA, |
| 1302 | ExclusionSet: &ExclusionSet, GoBackwardsCB: IsLiveInCalleeCB)) |
| 1303 | WriteChecked = true; |
| 1304 | } |
| 1305 | |
| 1306 | // If we still might be affected by the write of the access but there are |
| 1307 | // dominating writes in the function of the instruction |
| 1308 | // (HasBeenWrittenTo), we can try to reason that the access is overwritten |
| 1309 | // by them. This would have happend above if they are all in the same |
| 1310 | // function, so we only check the inter-procedural case. Effectively, we |
| 1311 | // want to show that there is no call after the dominting write that might |
| 1312 | // reach the access, and when it returns reach the instruction with the |
| 1313 | // updated value. To this end, we iterate all call sites, check if they |
| 1314 | // might reach the instruction without going through another access |
| 1315 | // (ExclusionSet) and at the same time might reach the access. However, |
| 1316 | // that is all part of AAInterFnReachability. |
| 1317 | if (!WriteChecked && HasBeenWrittenTo && |
| 1318 | Acc.getRemoteInst()->getFunction() != &Scope) { |
| 1319 | |
| 1320 | const auto *FnReachabilityAA = A.getAAFor<AAInterFnReachability>( |
| 1321 | QueryingAA, IRP: IRPosition::function(F: Scope), DepClass: DepClassTy::OPTIONAL); |
| 1322 | if (FnReachabilityAA) { |
| 1323 | // Without going backwards in the call tree, can we reach the access |
| 1324 | // from the least dominating write. Do not allow to pass the |
| 1325 | // instruction itself either. |
| 1326 | bool Inserted = ExclusionSet.insert(Ptr: &I).second; |
| 1327 | |
| 1328 | if (!FnReachabilityAA->instructionCanReach( |
| 1329 | A, Inst: *LeastDominatingWriteInst, |
| 1330 | Fn: *Acc.getRemoteInst()->getFunction(), ExclusionSet: &ExclusionSet)) |
| 1331 | WriteChecked = true; |
| 1332 | |
| 1333 | if (Inserted) |
| 1334 | ExclusionSet.erase(Ptr: &I); |
| 1335 | } |
| 1336 | } |
| 1337 | |
| 1338 | if (ReadChecked && WriteChecked) |
| 1339 | return true; |
| 1340 | |
| 1341 | if (!DT || !UseDominanceReasoning) |
| 1342 | return false; |
| 1343 | if (!DominatingWrites.count(Ptr: &Acc)) |
| 1344 | return false; |
| 1345 | return LeastDominatingWriteInst != Acc.getRemoteInst(); |
| 1346 | }; |
| 1347 | |
| 1348 | // Run the user callback on all accesses we cannot skip and return if |
| 1349 | // that succeeded for all or not. |
| 1350 | for (auto &It : InterferingAccesses) { |
| 1351 | if ((!AllInSameNoSyncFn && !IsThreadLocalObj && !ExecDomainAA) || |
| 1352 | !CanSkipAccess(*It.first, It.second)) { |
| 1353 | if (!UserCB(*It.first, It.second)) |
| 1354 | return false; |
| 1355 | } |
| 1356 | } |
| 1357 | return true; |
| 1358 | } |
| 1359 | |
| 1360 | ChangeStatus translateAndAddStateFromCallee(Attributor &A, |
| 1361 | const AAPointerInfo &OtherAA, |
| 1362 | CallBase &CB) { |
| 1363 | using namespace AA::PointerInfo; |
| 1364 | if (!OtherAA.getState().isValidState() || !isValidState()) |
| 1365 | return indicatePessimisticFixpoint(); |
| 1366 | |
| 1367 | ChangeStatus Changed = ChangeStatus::UNCHANGED; |
| 1368 | const auto &OtherAAImpl = static_cast<const AAPointerInfoImpl &>(OtherAA); |
| 1369 | bool IsByval = OtherAAImpl.getAssociatedArgument()->hasByValAttr(); |
| 1370 | Changed |= setReachesReturn(OtherAAImpl.ReturnedOffsets); |
| 1371 | |
| 1372 | // Combine the accesses bin by bin. |
| 1373 | const auto &State = OtherAAImpl.getState(); |
| 1374 | for (const auto &It : State) { |
| 1375 | for (auto Index : It.getSecond()) { |
| 1376 | const auto &RAcc = State.getAccess(Index); |
| 1377 | if (IsByval && !RAcc.isRead()) |
| 1378 | continue; |
| 1379 | bool UsedAssumedInformation = false; |
| 1380 | AccessKind AK = RAcc.getKind(); |
| 1381 | auto Content = A.translateArgumentToCallSiteContent( |
| 1382 | V: RAcc.getContent(), CB, AA: *this, UsedAssumedInformation); |
| 1383 | AK = AccessKind(AK & (IsByval ? AccessKind::AK_R : AccessKind::AK_RW)); |
| 1384 | AK = AccessKind(AK | (RAcc.isMayAccess() ? AK_MAY : AK_MUST)); |
| 1385 | |
| 1386 | Changed |= addAccess(A, Ranges: RAcc.getRanges(), I&: CB, Content, Kind: AK, |
| 1387 | Ty: RAcc.getType(), RemoteI: RAcc.getRemoteInst()); |
| 1388 | } |
| 1389 | } |
| 1390 | return Changed; |
| 1391 | } |
| 1392 | |
| 1393 | ChangeStatus translateAndAddState(Attributor &A, const AAPointerInfo &OtherAA, |
| 1394 | const OffsetInfo &Offsets, CallBase &CB, |
| 1395 | bool IsMustAcc) { |
| 1396 | using namespace AA::PointerInfo; |
| 1397 | if (!OtherAA.getState().isValidState() || !isValidState()) |
| 1398 | return indicatePessimisticFixpoint(); |
| 1399 | |
| 1400 | const auto &OtherAAImpl = static_cast<const AAPointerInfoImpl &>(OtherAA); |
| 1401 | |
| 1402 | // Combine the accesses bin by bin. |
| 1403 | ChangeStatus Changed = ChangeStatus::UNCHANGED; |
| 1404 | const auto &State = OtherAAImpl.getState(); |
| 1405 | for (const auto &It : State) { |
| 1406 | for (auto Index : It.getSecond()) { |
| 1407 | const auto &RAcc = State.getAccess(Index); |
| 1408 | if (!IsMustAcc && RAcc.isAssumption()) |
| 1409 | continue; |
| 1410 | for (auto Offset : Offsets) { |
| 1411 | auto NewRanges = Offset == AA::RangeTy::Unknown |
| 1412 | ? AA::RangeTy::getUnknown() |
| 1413 | : RAcc.getRanges(); |
| 1414 | if (!NewRanges.isUnknown()) { |
| 1415 | NewRanges.addToAllOffsets(Inc: Offset); |
| 1416 | } |
| 1417 | AccessKind AK = RAcc.getKind(); |
| 1418 | if (!IsMustAcc) |
| 1419 | AK = AccessKind((AK & ~AK_MUST) | AK_MAY); |
| 1420 | Changed |= addAccess(A, Ranges: NewRanges, I&: CB, Content: RAcc.getContent(), Kind: AK, |
| 1421 | Ty: RAcc.getType(), RemoteI: RAcc.getRemoteInst()); |
| 1422 | } |
| 1423 | } |
| 1424 | } |
| 1425 | return Changed; |
| 1426 | } |
| 1427 | |
| 1428 | /// Statistic tracking for all AAPointerInfo implementations. |
| 1429 | /// See AbstractAttribute::trackStatistics(). |
| 1430 | void trackPointerInfoStatistics(const IRPosition &IRP) const {} |
| 1431 | |
| 1432 | /// Dump the state into \p O. |
| 1433 | void dumpState(raw_ostream &O) { |
| 1434 | for (auto &It : OffsetBins) { |
| 1435 | O << "[" << It.first.Offset << "-" << It.first.Offset + It.first.Size |
| 1436 | << "] : " << It.getSecond().size() << "\n" ; |
| 1437 | for (auto AccIndex : It.getSecond()) { |
| 1438 | auto &Acc = AccessList[AccIndex]; |
| 1439 | O << " - " << Acc.getKind() << " - " << *Acc.getLocalInst() << "\n" ; |
| 1440 | if (Acc.getLocalInst() != Acc.getRemoteInst()) |
| 1441 | O << " --> " << *Acc.getRemoteInst() |
| 1442 | << "\n" ; |
| 1443 | if (!Acc.isWrittenValueYetUndetermined()) { |
| 1444 | if (isa_and_nonnull<Function>(Val: Acc.getWrittenValue())) |
| 1445 | O << " - c: func " << Acc.getWrittenValue()->getName() |
| 1446 | << "\n" ; |
| 1447 | else if (Acc.getWrittenValue()) |
| 1448 | O << " - c: " << *Acc.getWrittenValue() << "\n" ; |
| 1449 | else |
| 1450 | O << " - c: <unknown>\n" ; |
| 1451 | } |
| 1452 | } |
| 1453 | } |
| 1454 | } |
| 1455 | }; |
| 1456 | |
| 1457 | struct AAPointerInfoFloating : public AAPointerInfoImpl { |
| 1458 | using AccessKind = AAPointerInfo::AccessKind; |
| 1459 | AAPointerInfoFloating(const IRPosition &IRP, Attributor &A) |
| 1460 | : AAPointerInfoImpl(IRP, A) {} |
| 1461 | |
| 1462 | /// Deal with an access and signal if it was handled successfully. |
| 1463 | bool handleAccess(Attributor &A, Instruction &I, |
| 1464 | std::optional<Value *> Content, AccessKind Kind, |
| 1465 | OffsetInfo::VecTy &Offsets, ChangeStatus &Changed, |
| 1466 | Type &Ty) { |
| 1467 | using namespace AA::PointerInfo; |
| 1468 | auto Size = AA::RangeTy::Unknown; |
| 1469 | const DataLayout &DL = A.getDataLayout(); |
| 1470 | TypeSize AccessSize = DL.getTypeStoreSize(Ty: &Ty); |
| 1471 | if (!AccessSize.isScalable()) |
| 1472 | Size = AccessSize.getFixedValue(); |
| 1473 | |
| 1474 | // Make a strictly ascending list of offsets as required by addAccess() |
| 1475 | SmallVector<int64_t> OffsetsSorted(Offsets.begin(), Offsets.end()); |
| 1476 | llvm::sort(C&: OffsetsSorted); |
| 1477 | |
| 1478 | VectorType *VT = dyn_cast<VectorType>(Val: &Ty); |
| 1479 | if (!VT || VT->getElementCount().isScalable() || |
| 1480 | !Content.value_or(u: nullptr) || !isa<Constant>(Val: *Content) || |
| 1481 | (*Content)->getType() != VT || |
| 1482 | DL.getTypeStoreSize(Ty: VT->getElementType()).isScalable()) { |
| 1483 | Changed = |
| 1484 | Changed | addAccess(A, Ranges: {OffsetsSorted, Size}, I, Content, Kind, Ty: &Ty); |
| 1485 | } else { |
| 1486 | // Handle vector stores with constant content element-wise. |
| 1487 | // TODO: We could look for the elements or create instructions |
| 1488 | // representing them. |
| 1489 | // TODO: We need to push the Content into the range abstraction |
| 1490 | // (AA::RangeTy) to allow different content values for different |
| 1491 | // ranges. ranges. Hence, support vectors storing different values. |
| 1492 | Type *ElementType = VT->getElementType(); |
| 1493 | int64_t ElementSize = DL.getTypeStoreSize(Ty: ElementType).getFixedValue(); |
| 1494 | auto *ConstContent = cast<Constant>(Val: *Content); |
| 1495 | Type *Int32Ty = Type::getInt32Ty(C&: ElementType->getContext()); |
| 1496 | SmallVector<int64_t> ElementOffsets(Offsets.begin(), Offsets.end()); |
| 1497 | |
| 1498 | for (int i = 0, e = VT->getElementCount().getFixedValue(); i != e; ++i) { |
| 1499 | Value *ElementContent = ConstantExpr::getExtractElement( |
| 1500 | Vec: ConstContent, Idx: ConstantInt::get(Ty: Int32Ty, V: i)); |
| 1501 | |
| 1502 | // Add the element access. |
| 1503 | Changed = Changed | addAccess(A, Ranges: {ElementOffsets, ElementSize}, I, |
| 1504 | Content: ElementContent, Kind, Ty: ElementType); |
| 1505 | |
| 1506 | // Advance the offsets for the next element. |
| 1507 | for (auto &ElementOffset : ElementOffsets) |
| 1508 | ElementOffset += ElementSize; |
| 1509 | } |
| 1510 | } |
| 1511 | return true; |
| 1512 | }; |
| 1513 | |
| 1514 | /// See AbstractAttribute::updateImpl(...). |
| 1515 | ChangeStatus updateImpl(Attributor &A) override; |
| 1516 | |
| 1517 | /// If the indices to \p GEP can be traced to constants, incorporate all |
| 1518 | /// of these into \p UsrOI. |
| 1519 | /// |
| 1520 | /// \return true iff \p UsrOI is updated. |
| 1521 | bool collectConstantsForGEP(Attributor &A, const DataLayout &DL, |
| 1522 | OffsetInfo &UsrOI, const OffsetInfo &PtrOI, |
| 1523 | const GEPOperator *GEP); |
| 1524 | |
| 1525 | /// See AbstractAttribute::trackStatistics() |
| 1526 | void trackStatistics() const override { |
| 1527 | AAPointerInfoImpl::trackPointerInfoStatistics(IRP: getIRPosition()); |
| 1528 | } |
| 1529 | }; |
| 1530 | |
| 1531 | bool AAPointerInfoFloating::collectConstantsForGEP(Attributor &A, |
| 1532 | const DataLayout &DL, |
| 1533 | OffsetInfo &UsrOI, |
| 1534 | const OffsetInfo &PtrOI, |
| 1535 | const GEPOperator *GEP) { |
| 1536 | unsigned BitWidth = DL.getIndexTypeSizeInBits(Ty: GEP->getType()); |
| 1537 | SmallMapVector<Value *, APInt, 4> VariableOffsets; |
| 1538 | APInt ConstantOffset(BitWidth, 0); |
| 1539 | |
| 1540 | assert(!UsrOI.isUnknown() && !PtrOI.isUnknown() && |
| 1541 | "Don't look for constant values if the offset has already been " |
| 1542 | "determined to be unknown." ); |
| 1543 | |
| 1544 | if (!GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) { |
| 1545 | UsrOI.setUnknown(); |
| 1546 | return true; |
| 1547 | } |
| 1548 | |
| 1549 | LLVM_DEBUG(dbgs() << "[AAPointerInfo] GEP offset is " |
| 1550 | << (VariableOffsets.empty() ? "" : "not" ) << " constant " |
| 1551 | << *GEP << "\n" ); |
| 1552 | |
| 1553 | auto Union = PtrOI; |
| 1554 | Union.addToAll(Inc: ConstantOffset.getSExtValue()); |
| 1555 | |
| 1556 | // Each VI in VariableOffsets has a set of potential constant values. Every |
| 1557 | // combination of elements, picked one each from these sets, is separately |
| 1558 | // added to the original set of offsets, thus resulting in more offsets. |
| 1559 | for (const auto &VI : VariableOffsets) { |
| 1560 | auto *PotentialConstantsAA = A.getAAFor<AAPotentialConstantValues>( |
| 1561 | QueryingAA: *this, IRP: IRPosition::value(V: *VI.first), DepClass: DepClassTy::OPTIONAL); |
| 1562 | if (!PotentialConstantsAA || !PotentialConstantsAA->isValidState()) { |
| 1563 | UsrOI.setUnknown(); |
| 1564 | return true; |
| 1565 | } |
| 1566 | |
| 1567 | // UndefValue is treated as a zero, which leaves Union as is. |
| 1568 | if (PotentialConstantsAA->undefIsContained()) |
| 1569 | continue; |
| 1570 | |
| 1571 | // We need at least one constant in every set to compute an actual offset. |
| 1572 | // Otherwise, we end up pessimizing AAPointerInfo by respecting offsets that |
| 1573 | // don't actually exist. In other words, the absence of constant values |
| 1574 | // implies that the operation can be assumed dead for now. |
| 1575 | auto &AssumedSet = PotentialConstantsAA->getAssumedSet(); |
| 1576 | if (AssumedSet.empty()) |
| 1577 | return false; |
| 1578 | |
| 1579 | OffsetInfo Product; |
| 1580 | for (const auto &ConstOffset : AssumedSet) { |
| 1581 | auto CopyPerOffset = Union; |
| 1582 | CopyPerOffset.addToAll(Inc: ConstOffset.getSExtValue() * |
| 1583 | VI.second.getZExtValue()); |
| 1584 | Product.merge(R: CopyPerOffset); |
| 1585 | } |
| 1586 | Union = Product; |
| 1587 | } |
| 1588 | |
| 1589 | UsrOI = std::move(Union); |
| 1590 | return true; |
| 1591 | } |
| 1592 | |
| 1593 | ChangeStatus AAPointerInfoFloating::updateImpl(Attributor &A) { |
| 1594 | using namespace AA::PointerInfo; |
| 1595 | ChangeStatus Changed = ChangeStatus::UNCHANGED; |
| 1596 | const DataLayout &DL = A.getDataLayout(); |
| 1597 | Value &AssociatedValue = getAssociatedValue(); |
| 1598 | |
| 1599 | DenseMap<Value *, OffsetInfo> OffsetInfoMap; |
| 1600 | OffsetInfoMap[&AssociatedValue].insert(Offset: 0); |
| 1601 | |
| 1602 | auto HandlePassthroughUser = [&](Value *Usr, Value *CurPtr, bool &Follow) { |
| 1603 | // One does not simply walk into a map and assign a reference to a possibly |
| 1604 | // new location. That can cause an invalidation before the assignment |
| 1605 | // happens, like so: |
| 1606 | // |
| 1607 | // OffsetInfoMap[Usr] = OffsetInfoMap[CurPtr]; /* bad idea! */ |
| 1608 | // |
| 1609 | // The RHS is a reference that may be invalidated by an insertion caused by |
| 1610 | // the LHS. So we ensure that the side-effect of the LHS happens first. |
| 1611 | |
| 1612 | assert(OffsetInfoMap.contains(CurPtr) && |
| 1613 | "CurPtr does not exist in the map!" ); |
| 1614 | |
| 1615 | auto &UsrOI = OffsetInfoMap[Usr]; |
| 1616 | auto &PtrOI = OffsetInfoMap[CurPtr]; |
| 1617 | assert(!PtrOI.isUnassigned() && |
| 1618 | "Cannot pass through if the input Ptr was not visited!" ); |
| 1619 | UsrOI.merge(R: PtrOI); |
| 1620 | Follow = true; |
| 1621 | return true; |
| 1622 | }; |
| 1623 | |
| 1624 | auto UsePred = [&](const Use &U, bool &Follow) -> bool { |
| 1625 | Value *CurPtr = U.get(); |
| 1626 | User *Usr = U.getUser(); |
| 1627 | LLVM_DEBUG(dbgs() << "[AAPointerInfo] Analyze " << *CurPtr << " in " << *Usr |
| 1628 | << "\n" ); |
| 1629 | assert(OffsetInfoMap.count(CurPtr) && |
| 1630 | "The current pointer offset should have been seeded!" ); |
| 1631 | assert(!OffsetInfoMap[CurPtr].isUnassigned() && |
| 1632 | "Current pointer should be assigned" ); |
| 1633 | |
| 1634 | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Val: Usr)) { |
| 1635 | if (CE->isCast()) |
| 1636 | return HandlePassthroughUser(Usr, CurPtr, Follow); |
| 1637 | if (!isa<GEPOperator>(Val: CE)) { |
| 1638 | LLVM_DEBUG(dbgs() << "[AAPointerInfo] Unhandled constant user " << *CE |
| 1639 | << "\n" ); |
| 1640 | return false; |
| 1641 | } |
| 1642 | } |
| 1643 | if (auto *GEP = dyn_cast<GEPOperator>(Val: Usr)) { |
| 1644 | // Note the order here, the Usr access might change the map, CurPtr is |
| 1645 | // already in it though. |
| 1646 | auto &UsrOI = OffsetInfoMap[Usr]; |
| 1647 | auto &PtrOI = OffsetInfoMap[CurPtr]; |
| 1648 | |
| 1649 | if (UsrOI.isUnknown()) |
| 1650 | return true; |
| 1651 | |
| 1652 | if (PtrOI.isUnknown()) { |
| 1653 | Follow = true; |
| 1654 | UsrOI.setUnknown(); |
| 1655 | return true; |
| 1656 | } |
| 1657 | |
| 1658 | Follow = collectConstantsForGEP(A, DL, UsrOI, PtrOI, GEP); |
| 1659 | return true; |
| 1660 | } |
| 1661 | if (isa<PtrToIntInst>(Val: Usr)) |
| 1662 | return false; |
| 1663 | if (isa<CastInst>(Val: Usr) || isa<SelectInst>(Val: Usr)) |
| 1664 | return HandlePassthroughUser(Usr, CurPtr, Follow); |
| 1665 | // Returns are allowed if they are in the associated functions. Users can |
| 1666 | // then check the call site return. Returns from other functions can't be |
| 1667 | // tracked and are cause for invalidation. |
| 1668 | if (auto *RI = dyn_cast<ReturnInst>(Val: Usr)) { |
| 1669 | if (RI->getFunction() == getAssociatedFunction()) { |
| 1670 | auto &PtrOI = OffsetInfoMap[CurPtr]; |
| 1671 | Changed |= setReachesReturn(PtrOI); |
| 1672 | return true; |
| 1673 | } |
| 1674 | return false; |
| 1675 | } |
| 1676 | |
| 1677 | // For PHIs we need to take care of the recurrence explicitly as the value |
| 1678 | // might change while we iterate through a loop. For now, we give up if |
| 1679 | // the PHI is not invariant. |
| 1680 | if (auto *PHI = dyn_cast<PHINode>(Val: Usr)) { |
| 1681 | // Note the order here, the Usr access might change the map, CurPtr is |
| 1682 | // already in it though. |
| 1683 | auto [PhiIt, IsFirstPHIUser] = OffsetInfoMap.try_emplace(Key: PHI); |
| 1684 | auto &UsrOI = PhiIt->second; |
| 1685 | auto &PtrOI = OffsetInfoMap[CurPtr]; |
| 1686 | |
| 1687 | // Check if the PHI operand has already an unknown offset as we can't |
| 1688 | // improve on that anymore. |
| 1689 | if (PtrOI.isUnknown()) { |
| 1690 | LLVM_DEBUG(dbgs() << "[AAPointerInfo] PHI operand offset unknown " |
| 1691 | << *CurPtr << " in " << *PHI << "\n" ); |
| 1692 | Follow = !UsrOI.isUnknown(); |
| 1693 | UsrOI.setUnknown(); |
| 1694 | return true; |
| 1695 | } |
| 1696 | |
| 1697 | // Check if the PHI is invariant (so far). |
| 1698 | if (UsrOI == PtrOI) { |
| 1699 | assert(!PtrOI.isUnassigned() && |
| 1700 | "Cannot assign if the current Ptr was not visited!" ); |
| 1701 | LLVM_DEBUG(dbgs() << "[AAPointerInfo] PHI is invariant (so far)" ); |
| 1702 | return true; |
| 1703 | } |
| 1704 | |
| 1705 | // Check if the PHI operand can be traced back to AssociatedValue. |
| 1706 | APInt Offset( |
| 1707 | DL.getIndexSizeInBits(AS: CurPtr->getType()->getPointerAddressSpace()), |
| 1708 | 0); |
| 1709 | Value *CurPtrBase = CurPtr->stripAndAccumulateConstantOffsets( |
| 1710 | DL, Offset, /* AllowNonInbounds */ true); |
| 1711 | auto It = OffsetInfoMap.find(Val: CurPtrBase); |
| 1712 | if (It == OffsetInfoMap.end()) { |
| 1713 | LLVM_DEBUG(dbgs() << "[AAPointerInfo] PHI operand is too complex " |
| 1714 | << *CurPtr << " in " << *PHI |
| 1715 | << " (base: " << *CurPtrBase << ")\n" ); |
| 1716 | UsrOI.setUnknown(); |
| 1717 | Follow = true; |
| 1718 | return true; |
| 1719 | } |
| 1720 | |
| 1721 | // Check if the PHI operand is not dependent on the PHI itself. Every |
| 1722 | // recurrence is a cyclic net of PHIs in the data flow, and has an |
| 1723 | // equivalent Cycle in the control flow. One of those PHIs must be in the |
| 1724 | // header of that control flow Cycle. This is independent of the choice of |
| 1725 | // Cycles reported by CycleInfo. It is sufficient to check the PHIs in |
| 1726 | // every Cycle header; if such a node is marked unknown, this will |
| 1727 | // eventually propagate through the whole net of PHIs in the recurrence. |
| 1728 | const auto *CI = |
| 1729 | A.getInfoCache().getAnalysisResultForFunction<CycleAnalysis>( |
| 1730 | F: *PHI->getFunction()); |
| 1731 | if (mayBeInCycle(CI, I: cast<Instruction>(Val: Usr), /* HeaderOnly */ true)) { |
| 1732 | auto BaseOI = It->getSecond(); |
| 1733 | BaseOI.addToAll(Inc: Offset.getZExtValue()); |
| 1734 | if (IsFirstPHIUser || BaseOI == UsrOI) { |
| 1735 | LLVM_DEBUG(dbgs() << "[AAPointerInfo] PHI is invariant " << *CurPtr |
| 1736 | << " in " << *Usr << "\n" ); |
| 1737 | return HandlePassthroughUser(Usr, CurPtr, Follow); |
| 1738 | } |
| 1739 | |
| 1740 | LLVM_DEBUG( |
| 1741 | dbgs() << "[AAPointerInfo] PHI operand pointer offset mismatch " |
| 1742 | << *CurPtr << " in " << *PHI << "\n" ); |
| 1743 | UsrOI.setUnknown(); |
| 1744 | Follow = true; |
| 1745 | return true; |
| 1746 | } |
| 1747 | |
| 1748 | UsrOI.merge(R: PtrOI); |
| 1749 | Follow = true; |
| 1750 | return true; |
| 1751 | } |
| 1752 | |
| 1753 | if (auto *LoadI = dyn_cast<LoadInst>(Val: Usr)) { |
| 1754 | // If the access is to a pointer that may or may not be the associated |
| 1755 | // value, e.g. due to a PHI, we cannot assume it will be read. |
| 1756 | AccessKind AK = AccessKind::AK_R; |
| 1757 | if (getUnderlyingObject(V: CurPtr) == &AssociatedValue) |
| 1758 | AK = AccessKind(AK | AccessKind::AK_MUST); |
| 1759 | else |
| 1760 | AK = AccessKind(AK | AccessKind::AK_MAY); |
| 1761 | if (!handleAccess(A, I&: *LoadI, /* Content */ nullptr, Kind: AK, |
| 1762 | Offsets&: OffsetInfoMap[CurPtr].Offsets, Changed, |
| 1763 | Ty&: *LoadI->getType())) |
| 1764 | return false; |
| 1765 | |
| 1766 | auto IsAssumption = [](Instruction &I) { |
| 1767 | if (auto *II = dyn_cast<IntrinsicInst>(Val: &I)) |
| 1768 | return II->isAssumeLikeIntrinsic(); |
| 1769 | return false; |
| 1770 | }; |
| 1771 | |
| 1772 | auto IsImpactedInRange = [&](Instruction *FromI, Instruction *ToI) { |
| 1773 | // Check if the assumption and the load are executed together without |
| 1774 | // memory modification. |
| 1775 | do { |
| 1776 | if (FromI->mayWriteToMemory() && !IsAssumption(*FromI)) |
| 1777 | return true; |
| 1778 | FromI = FromI->getNextNonDebugInstruction(); |
| 1779 | } while (FromI && FromI != ToI); |
| 1780 | return false; |
| 1781 | }; |
| 1782 | |
| 1783 | BasicBlock *BB = LoadI->getParent(); |
| 1784 | auto IsValidAssume = [&](IntrinsicInst &IntrI) { |
| 1785 | if (IntrI.getIntrinsicID() != Intrinsic::assume) |
| 1786 | return false; |
| 1787 | BasicBlock *IntrBB = IntrI.getParent(); |
| 1788 | if (IntrI.getParent() == BB) { |
| 1789 | if (IsImpactedInRange(LoadI->getNextNonDebugInstruction(), &IntrI)) |
| 1790 | return false; |
| 1791 | } else { |
| 1792 | auto PredIt = pred_begin(BB: IntrBB); |
| 1793 | if (PredIt == pred_end(BB: IntrBB)) |
| 1794 | return false; |
| 1795 | if ((*PredIt) != BB) |
| 1796 | return false; |
| 1797 | if (++PredIt != pred_end(BB: IntrBB)) |
| 1798 | return false; |
| 1799 | for (auto *SuccBB : successors(BB)) { |
| 1800 | if (SuccBB == IntrBB) |
| 1801 | continue; |
| 1802 | if (isa<UnreachableInst>(Val: SuccBB->getTerminator())) |
| 1803 | continue; |
| 1804 | return false; |
| 1805 | } |
| 1806 | if (IsImpactedInRange(LoadI->getNextNonDebugInstruction(), |
| 1807 | BB->getTerminator())) |
| 1808 | return false; |
| 1809 | if (IsImpactedInRange(&IntrBB->front(), &IntrI)) |
| 1810 | return false; |
| 1811 | } |
| 1812 | return true; |
| 1813 | }; |
| 1814 | |
| 1815 | std::pair<Value *, IntrinsicInst *> Assumption; |
| 1816 | for (const Use &LoadU : LoadI->uses()) { |
| 1817 | if (auto *CmpI = dyn_cast<CmpInst>(Val: LoadU.getUser())) { |
| 1818 | if (!CmpI->isEquality() || !CmpI->isTrueWhenEqual()) |
| 1819 | continue; |
| 1820 | for (const Use &CmpU : CmpI->uses()) { |
| 1821 | if (auto *IntrI = dyn_cast<IntrinsicInst>(Val: CmpU.getUser())) { |
| 1822 | if (!IsValidAssume(*IntrI)) |
| 1823 | continue; |
| 1824 | int Idx = CmpI->getOperandUse(i: 0) == LoadU; |
| 1825 | Assumption = {CmpI->getOperand(i_nocapture: Idx), IntrI}; |
| 1826 | break; |
| 1827 | } |
| 1828 | } |
| 1829 | } |
| 1830 | if (Assumption.first) |
| 1831 | break; |
| 1832 | } |
| 1833 | |
| 1834 | // Check if we found an assumption associated with this load. |
| 1835 | if (!Assumption.first || !Assumption.second) |
| 1836 | return true; |
| 1837 | |
| 1838 | LLVM_DEBUG(dbgs() << "[AAPointerInfo] Assumption found " |
| 1839 | << *Assumption.second << ": " << *LoadI |
| 1840 | << " == " << *Assumption.first << "\n" ); |
| 1841 | bool UsedAssumedInformation = false; |
| 1842 | std::optional<Value *> Content = nullptr; |
| 1843 | if (Assumption.first) |
| 1844 | Content = |
| 1845 | A.getAssumedSimplified(V: *Assumption.first, AA: *this, |
| 1846 | UsedAssumedInformation, S: AA::Interprocedural); |
| 1847 | return handleAccess( |
| 1848 | A, I&: *Assumption.second, Content, Kind: AccessKind::AK_ASSUMPTION, |
| 1849 | Offsets&: OffsetInfoMap[CurPtr].Offsets, Changed, Ty&: *LoadI->getType()); |
| 1850 | } |
| 1851 | |
| 1852 | auto HandleStoreLike = [&](Instruction &I, Value *ValueOp, Type &ValueTy, |
| 1853 | ArrayRef<Value *> OtherOps, AccessKind AK) { |
| 1854 | for (auto *OtherOp : OtherOps) { |
| 1855 | if (OtherOp == CurPtr) { |
| 1856 | LLVM_DEBUG( |
| 1857 | dbgs() |
| 1858 | << "[AAPointerInfo] Escaping use in store like instruction " << I |
| 1859 | << "\n" ); |
| 1860 | return false; |
| 1861 | } |
| 1862 | } |
| 1863 | |
| 1864 | // If the access is to a pointer that may or may not be the associated |
| 1865 | // value, e.g. due to a PHI, we cannot assume it will be written. |
| 1866 | if (getUnderlyingObject(V: CurPtr) == &AssociatedValue) |
| 1867 | AK = AccessKind(AK | AccessKind::AK_MUST); |
| 1868 | else |
| 1869 | AK = AccessKind(AK | AccessKind::AK_MAY); |
| 1870 | bool UsedAssumedInformation = false; |
| 1871 | std::optional<Value *> Content = nullptr; |
| 1872 | if (ValueOp) |
| 1873 | Content = A.getAssumedSimplified( |
| 1874 | V: *ValueOp, AA: *this, UsedAssumedInformation, S: AA::Interprocedural); |
| 1875 | return handleAccess(A, I, Content, Kind: AK, Offsets&: OffsetInfoMap[CurPtr].Offsets, |
| 1876 | Changed, Ty&: ValueTy); |
| 1877 | }; |
| 1878 | |
| 1879 | if (auto *StoreI = dyn_cast<StoreInst>(Val: Usr)) |
| 1880 | return HandleStoreLike(*StoreI, StoreI->getValueOperand(), |
| 1881 | *StoreI->getValueOperand()->getType(), |
| 1882 | {StoreI->getValueOperand()}, AccessKind::AK_W); |
| 1883 | if (auto *RMWI = dyn_cast<AtomicRMWInst>(Val: Usr)) |
| 1884 | return HandleStoreLike(*RMWI, nullptr, *RMWI->getValOperand()->getType(), |
| 1885 | {RMWI->getValOperand()}, AccessKind::AK_RW); |
| 1886 | if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(Val: Usr)) |
| 1887 | return HandleStoreLike( |
| 1888 | *CXI, nullptr, *CXI->getNewValOperand()->getType(), |
| 1889 | {CXI->getCompareOperand(), CXI->getNewValOperand()}, |
| 1890 | AccessKind::AK_RW); |
| 1891 | |
| 1892 | if (auto *CB = dyn_cast<CallBase>(Val: Usr)) { |
| 1893 | if (CB->isLifetimeStartOrEnd()) |
| 1894 | return true; |
| 1895 | const auto *TLI = |
| 1896 | A.getInfoCache().getTargetLibraryInfoForFunction(F: *CB->getFunction()); |
| 1897 | if (getFreedOperand(CB, TLI) == U) |
| 1898 | return true; |
| 1899 | if (CB->isArgOperand(U: &U)) { |
| 1900 | unsigned ArgNo = CB->getArgOperandNo(U: &U); |
| 1901 | const auto *CSArgPI = A.getAAFor<AAPointerInfo>( |
| 1902 | QueryingAA: *this, IRP: IRPosition::callsite_argument(CB: *CB, ArgNo), |
| 1903 | DepClass: DepClassTy::REQUIRED); |
| 1904 | if (!CSArgPI) |
| 1905 | return false; |
| 1906 | bool IsArgMustAcc = (getUnderlyingObject(V: CurPtr) == &AssociatedValue); |
| 1907 | Changed = translateAndAddState(A, OtherAA: *CSArgPI, Offsets: OffsetInfoMap[CurPtr], CB&: *CB, |
| 1908 | IsMustAcc: IsArgMustAcc) | |
| 1909 | Changed; |
| 1910 | if (!CSArgPI->reachesReturn()) |
| 1911 | return isValidState(); |
| 1912 | |
| 1913 | Function *Callee = CB->getCalledFunction(); |
| 1914 | if (!Callee || Callee->arg_size() <= ArgNo) |
| 1915 | return false; |
| 1916 | bool UsedAssumedInformation = false; |
| 1917 | auto ReturnedValue = A.getAssumedSimplified( |
| 1918 | IRP: IRPosition::returned(F: *Callee), AA: *this, UsedAssumedInformation, |
| 1919 | S: AA::ValueScope::Intraprocedural); |
| 1920 | auto *ReturnedArg = |
| 1921 | dyn_cast_or_null<Argument>(Val: ReturnedValue.value_or(u: nullptr)); |
| 1922 | auto *Arg = Callee->getArg(i: ArgNo); |
| 1923 | if (ReturnedArg && Arg != ReturnedArg) |
| 1924 | return true; |
| 1925 | bool IsRetMustAcc = IsArgMustAcc && (ReturnedArg == Arg); |
| 1926 | const auto *CSRetPI = A.getAAFor<AAPointerInfo>( |
| 1927 | QueryingAA: *this, IRP: IRPosition::callsite_returned(CB: *CB), DepClass: DepClassTy::REQUIRED); |
| 1928 | if (!CSRetPI) |
| 1929 | return false; |
| 1930 | OffsetInfo OI = OffsetInfoMap[CurPtr]; |
| 1931 | CSArgPI->addReturnedOffsetsTo(OI); |
| 1932 | Changed = |
| 1933 | translateAndAddState(A, OtherAA: *CSRetPI, Offsets: OI, CB&: *CB, IsMustAcc: IsRetMustAcc) | Changed; |
| 1934 | return isValidState(); |
| 1935 | } |
| 1936 | LLVM_DEBUG(dbgs() << "[AAPointerInfo] Call user not handled " << *CB |
| 1937 | << "\n" ); |
| 1938 | return false; |
| 1939 | } |
| 1940 | |
| 1941 | LLVM_DEBUG(dbgs() << "[AAPointerInfo] User not handled " << *Usr << "\n" ); |
| 1942 | return false; |
| 1943 | }; |
| 1944 | auto EquivalentUseCB = [&](const Use &OldU, const Use &NewU) { |
| 1945 | assert(OffsetInfoMap.count(OldU) && "Old use should be known already!" ); |
| 1946 | assert(!OffsetInfoMap[OldU].isUnassigned() && "Old use should be assinged" ); |
| 1947 | if (OffsetInfoMap.count(Val: NewU)) { |
| 1948 | LLVM_DEBUG({ |
| 1949 | if (!(OffsetInfoMap[NewU] == OffsetInfoMap[OldU])) { |
| 1950 | dbgs() << "[AAPointerInfo] Equivalent use callback failed: " |
| 1951 | << OffsetInfoMap[NewU] << " vs " << OffsetInfoMap[OldU] |
| 1952 | << "\n" ; |
| 1953 | } |
| 1954 | }); |
| 1955 | return OffsetInfoMap[NewU] == OffsetInfoMap[OldU]; |
| 1956 | } |
| 1957 | bool Unused; |
| 1958 | return HandlePassthroughUser(NewU.get(), OldU.get(), Unused); |
| 1959 | }; |
| 1960 | if (!A.checkForAllUses(Pred: UsePred, QueryingAA: *this, V: AssociatedValue, |
| 1961 | /* CheckBBLivenessOnly */ true, LivenessDepClass: DepClassTy::OPTIONAL, |
| 1962 | /* IgnoreDroppableUses */ true, EquivalentUseCB)) { |
| 1963 | LLVM_DEBUG(dbgs() << "[AAPointerInfo] Check for all uses failed, abort!\n" ); |
| 1964 | return indicatePessimisticFixpoint(); |
| 1965 | } |
| 1966 | |
| 1967 | LLVM_DEBUG({ |
| 1968 | dbgs() << "Accesses by bin after update:\n" ; |
| 1969 | dumpState(dbgs()); |
| 1970 | }); |
| 1971 | |
| 1972 | return Changed; |
| 1973 | } |
| 1974 | |
| 1975 | struct AAPointerInfoReturned final : AAPointerInfoImpl { |
| 1976 | AAPointerInfoReturned(const IRPosition &IRP, Attributor &A) |
| 1977 | : AAPointerInfoImpl(IRP, A) {} |
| 1978 | |
| 1979 | /// See AbstractAttribute::updateImpl(...). |
| 1980 | ChangeStatus updateImpl(Attributor &A) override { |
| 1981 | return indicatePessimisticFixpoint(); |
| 1982 | } |
| 1983 | |
| 1984 | /// See AbstractAttribute::trackStatistics() |
| 1985 | void trackStatistics() const override { |
| 1986 | AAPointerInfoImpl::trackPointerInfoStatistics(IRP: getIRPosition()); |
| 1987 | } |
| 1988 | }; |
| 1989 | |
| 1990 | struct AAPointerInfoArgument final : AAPointerInfoFloating { |
| 1991 | AAPointerInfoArgument(const IRPosition &IRP, Attributor &A) |
| 1992 | : AAPointerInfoFloating(IRP, A) {} |
| 1993 | |
| 1994 | /// See AbstractAttribute::trackStatistics() |
| 1995 | void trackStatistics() const override { |
| 1996 | AAPointerInfoImpl::trackPointerInfoStatistics(IRP: getIRPosition()); |
| 1997 | } |
| 1998 | }; |
| 1999 | |
| 2000 | struct AAPointerInfoCallSiteArgument final : AAPointerInfoFloating { |
| 2001 | AAPointerInfoCallSiteArgument(const IRPosition &IRP, Attributor &A) |
| 2002 | : AAPointerInfoFloating(IRP, A) {} |
| 2003 | |
| 2004 | /// See AbstractAttribute::updateImpl(...). |
| 2005 | ChangeStatus updateImpl(Attributor &A) override { |
| 2006 | using namespace AA::PointerInfo; |
| 2007 | // We handle memory intrinsics explicitly, at least the first (= |
| 2008 | // destination) and second (=source) arguments as we know how they are |
| 2009 | // accessed. |
| 2010 | if (auto *MI = dyn_cast_or_null<MemIntrinsic>(Val: getCtxI())) { |
| 2011 | ConstantInt *Length = dyn_cast<ConstantInt>(Val: MI->getLength()); |
| 2012 | int64_t LengthVal = AA::RangeTy::Unknown; |
| 2013 | if (Length) |
| 2014 | LengthVal = Length->getSExtValue(); |
| 2015 | unsigned ArgNo = getIRPosition().getCallSiteArgNo(); |
| 2016 | ChangeStatus Changed = ChangeStatus::UNCHANGED; |
| 2017 | if (ArgNo > 1) { |
| 2018 | LLVM_DEBUG(dbgs() << "[AAPointerInfo] Unhandled memory intrinsic " |
| 2019 | << *MI << "\n" ); |
| 2020 | return indicatePessimisticFixpoint(); |
| 2021 | } else { |
| 2022 | auto Kind = |
| 2023 | ArgNo == 0 ? AccessKind::AK_MUST_WRITE : AccessKind::AK_MUST_READ; |
| 2024 | Changed = |
| 2025 | Changed | addAccess(A, Ranges: {0, LengthVal}, I&: *MI, Content: nullptr, Kind, Ty: nullptr); |
| 2026 | } |
| 2027 | LLVM_DEBUG({ |
| 2028 | dbgs() << "Accesses by bin after update:\n" ; |
| 2029 | dumpState(dbgs()); |
| 2030 | }); |
| 2031 | |
| 2032 | return Changed; |
| 2033 | } |
| 2034 | |
| 2035 | // TODO: Once we have call site specific value information we can provide |
| 2036 | // call site specific liveness information and then it makes |
| 2037 | // sense to specialize attributes for call sites arguments instead of |
| 2038 | // redirecting requests to the callee argument. |
| 2039 | Argument *Arg = getAssociatedArgument(); |
| 2040 | if (Arg) { |
| 2041 | const IRPosition &ArgPos = IRPosition::argument(Arg: *Arg); |
| 2042 | auto *ArgAA = |
| 2043 | A.getAAFor<AAPointerInfo>(QueryingAA: *this, IRP: ArgPos, DepClass: DepClassTy::REQUIRED); |
| 2044 | if (ArgAA && ArgAA->getState().isValidState()) |
| 2045 | return translateAndAddStateFromCallee(A, OtherAA: *ArgAA, |
| 2046 | CB&: *cast<CallBase>(Val: getCtxI())); |
| 2047 | if (!Arg->getParent()->isDeclaration()) |
| 2048 | return indicatePessimisticFixpoint(); |
| 2049 | } |
| 2050 | |
| 2051 | bool IsKnownNoCapture; |
| 2052 | if (!AA::hasAssumedIRAttr<Attribute::Captures>( |
| 2053 | A, QueryingAA: this, IRP: getIRPosition(), DepClass: DepClassTy::OPTIONAL, IsKnown&: IsKnownNoCapture)) |
| 2054 | return indicatePessimisticFixpoint(); |
| 2055 | |
| 2056 | bool IsKnown = false; |
| 2057 | if (AA::isAssumedReadNone(A, IRP: getIRPosition(), QueryingAA: *this, IsKnown)) |
| 2058 | return ChangeStatus::UNCHANGED; |
| 2059 | bool ReadOnly = AA::isAssumedReadOnly(A, IRP: getIRPosition(), QueryingAA: *this, IsKnown); |
| 2060 | auto Kind = |
| 2061 | ReadOnly ? AccessKind::AK_MAY_READ : AccessKind::AK_MAY_READ_WRITE; |
| 2062 | return addAccess(A, Ranges: AA::RangeTy::getUnknown(), I&: *getCtxI(), Content: nullptr, Kind, |
| 2063 | Ty: nullptr); |
| 2064 | } |
| 2065 | |
| 2066 | /// See AbstractAttribute::trackStatistics() |
| 2067 | void trackStatistics() const override { |
| 2068 | AAPointerInfoImpl::trackPointerInfoStatistics(IRP: getIRPosition()); |
| 2069 | } |
| 2070 | }; |
| 2071 | |
| 2072 | struct AAPointerInfoCallSiteReturned final : AAPointerInfoFloating { |
| 2073 | AAPointerInfoCallSiteReturned(const IRPosition &IRP, Attributor &A) |
| 2074 | : AAPointerInfoFloating(IRP, A) {} |
| 2075 | |
| 2076 | /// See AbstractAttribute::trackStatistics() |
| 2077 | void trackStatistics() const override { |
| 2078 | AAPointerInfoImpl::trackPointerInfoStatistics(IRP: getIRPosition()); |
| 2079 | } |
| 2080 | }; |
| 2081 | } // namespace |
| 2082 | |
| 2083 | /// -----------------------NoUnwind Function Attribute-------------------------- |
| 2084 | |
| 2085 | namespace { |
| 2086 | struct AANoUnwindImpl : AANoUnwind { |
| 2087 | AANoUnwindImpl(const IRPosition &IRP, Attributor &A) : AANoUnwind(IRP, A) {} |
| 2088 | |
| 2089 | /// See AbstractAttribute::initialize(...). |
| 2090 | void initialize(Attributor &A) override { |
| 2091 | bool IsKnown; |
| 2092 | assert(!AA::hasAssumedIRAttr<Attribute::NoUnwind>( |
| 2093 | A, nullptr, getIRPosition(), DepClassTy::NONE, IsKnown)); |
| 2094 | (void)IsKnown; |
| 2095 | } |
| 2096 | |
| 2097 | const std::string getAsStr(Attributor *A) const override { |
| 2098 | return getAssumed() ? "nounwind" : "may-unwind" ; |
| 2099 | } |
| 2100 | |
| 2101 | /// See AbstractAttribute::updateImpl(...). |
| 2102 | ChangeStatus updateImpl(Attributor &A) override { |
| 2103 | auto Opcodes = { |
| 2104 | (unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr, |
| 2105 | (unsigned)Instruction::Call, (unsigned)Instruction::CleanupRet, |
| 2106 | (unsigned)Instruction::CatchSwitch, (unsigned)Instruction::Resume}; |
| 2107 | |
| 2108 | auto CheckForNoUnwind = [&](Instruction &I) { |
| 2109 | if (!I.mayThrow(/* IncludePhaseOneUnwind */ true)) |
| 2110 | return true; |
| 2111 | |
| 2112 | if (const auto *CB = dyn_cast<CallBase>(Val: &I)) { |
| 2113 | bool IsKnownNoUnwind; |
| 2114 | return AA::hasAssumedIRAttr<Attribute::NoUnwind>( |
| 2115 | A, QueryingAA: this, IRP: IRPosition::callsite_function(CB: *CB), DepClass: DepClassTy::REQUIRED, |
| 2116 | IsKnown&: IsKnownNoUnwind); |
| 2117 | } |
| 2118 | return false; |
| 2119 | }; |
| 2120 | |
| 2121 | bool UsedAssumedInformation = false; |
| 2122 | if (!A.checkForAllInstructions(Pred: CheckForNoUnwind, QueryingAA: *this, Opcodes, |
| 2123 | UsedAssumedInformation)) |
| 2124 | return indicatePessimisticFixpoint(); |
| 2125 | |
| 2126 | return ChangeStatus::UNCHANGED; |
| 2127 | } |
| 2128 | }; |
| 2129 | |
| 2130 | struct AANoUnwindFunction final : public AANoUnwindImpl { |
| 2131 | AANoUnwindFunction(const IRPosition &IRP, Attributor &A) |
| 2132 | : AANoUnwindImpl(IRP, A) {} |
| 2133 | |
| 2134 | /// See AbstractAttribute::trackStatistics() |
| 2135 | void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nounwind) } |
| 2136 | }; |
| 2137 | |
| 2138 | /// NoUnwind attribute deduction for a call sites. |
| 2139 | struct AANoUnwindCallSite final |
| 2140 | : AACalleeToCallSite<AANoUnwind, AANoUnwindImpl> { |
| 2141 | AANoUnwindCallSite(const IRPosition &IRP, Attributor &A) |
| 2142 | : AACalleeToCallSite<AANoUnwind, AANoUnwindImpl>(IRP, A) {} |
| 2143 | |
| 2144 | /// See AbstractAttribute::trackStatistics() |
| 2145 | void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nounwind); } |
| 2146 | }; |
| 2147 | } // namespace |
| 2148 | |
| 2149 | /// ------------------------ NoSync Function Attribute ------------------------- |
| 2150 | |
| 2151 | bool AANoSync::isAlignedBarrier(const CallBase &CB, bool ExecutedAligned) { |
| 2152 | switch (CB.getIntrinsicID()) { |
| 2153 | case Intrinsic::nvvm_barrier_cta_sync_aligned_all: |
| 2154 | case Intrinsic::nvvm_barrier_cta_sync_aligned_count: |
| 2155 | case Intrinsic::nvvm_barrier0_and: |
| 2156 | case Intrinsic::nvvm_barrier0_or: |
| 2157 | case Intrinsic::nvvm_barrier0_popc: |
| 2158 | return true; |
| 2159 | case Intrinsic::amdgcn_s_barrier: |
| 2160 | if (ExecutedAligned) |
| 2161 | return true; |
| 2162 | break; |
| 2163 | default: |
| 2164 | break; |
| 2165 | } |
| 2166 | return hasAssumption(CB, AssumptionStr: KnownAssumptionString("ompx_aligned_barrier" )); |
| 2167 | } |
| 2168 | |
| 2169 | bool AANoSync::isNonRelaxedAtomic(const Instruction *I) { |
| 2170 | if (!I->isAtomic()) |
| 2171 | return false; |
| 2172 | |
| 2173 | if (auto *FI = dyn_cast<FenceInst>(Val: I)) |
| 2174 | // All legal orderings for fence are stronger than monotonic. |
| 2175 | return FI->getSyncScopeID() != SyncScope::SingleThread; |
| 2176 | if (auto *AI = dyn_cast<AtomicCmpXchgInst>(Val: I)) { |
| 2177 | // Unordered is not a legal ordering for cmpxchg. |
| 2178 | return (AI->getSuccessOrdering() != AtomicOrdering::Monotonic || |
| 2179 | AI->getFailureOrdering() != AtomicOrdering::Monotonic); |
| 2180 | } |
| 2181 | |
| 2182 | AtomicOrdering Ordering; |
| 2183 | switch (I->getOpcode()) { |
| 2184 | case Instruction::AtomicRMW: |
| 2185 | Ordering = cast<AtomicRMWInst>(Val: I)->getOrdering(); |
| 2186 | break; |
| 2187 | case Instruction::Store: |
| 2188 | Ordering = cast<StoreInst>(Val: I)->getOrdering(); |
| 2189 | break; |
| 2190 | case Instruction::Load: |
| 2191 | Ordering = cast<LoadInst>(Val: I)->getOrdering(); |
| 2192 | break; |
| 2193 | default: |
| 2194 | llvm_unreachable( |
| 2195 | "New atomic operations need to be known in the attributor." ); |
| 2196 | } |
| 2197 | |
| 2198 | return (Ordering != AtomicOrdering::Unordered && |
| 2199 | Ordering != AtomicOrdering::Monotonic); |
| 2200 | } |
| 2201 | |
| 2202 | /// Return true if this intrinsic is nosync. This is only used for intrinsics |
| 2203 | /// which would be nosync except that they have a volatile flag. All other |
| 2204 | /// intrinsics are simply annotated with the nosync attribute in Intrinsics.td. |
| 2205 | bool AANoSync::isNoSyncIntrinsic(const Instruction *I) { |
| 2206 | if (auto *MI = dyn_cast<MemIntrinsic>(Val: I)) |
| 2207 | return !MI->isVolatile(); |
| 2208 | return false; |
| 2209 | } |
| 2210 | |
| 2211 | namespace { |
| 2212 | struct AANoSyncImpl : AANoSync { |
| 2213 | AANoSyncImpl(const IRPosition &IRP, Attributor &A) : AANoSync(IRP, A) {} |
| 2214 | |
| 2215 | /// See AbstractAttribute::initialize(...). |
| 2216 | void initialize(Attributor &A) override { |
| 2217 | bool IsKnown; |
| 2218 | assert(!AA::hasAssumedIRAttr<Attribute::NoSync>(A, nullptr, getIRPosition(), |
| 2219 | DepClassTy::NONE, IsKnown)); |
| 2220 | (void)IsKnown; |
| 2221 | } |
| 2222 | |
| 2223 | const std::string getAsStr(Attributor *A) const override { |
| 2224 | return getAssumed() ? "nosync" : "may-sync" ; |
| 2225 | } |
| 2226 | |
| 2227 | /// See AbstractAttribute::updateImpl(...). |
| 2228 | ChangeStatus updateImpl(Attributor &A) override; |
| 2229 | }; |
| 2230 | |
| 2231 | ChangeStatus AANoSyncImpl::updateImpl(Attributor &A) { |
| 2232 | |
| 2233 | auto CheckRWInstForNoSync = [&](Instruction &I) { |
| 2234 | return AA::isNoSyncInst(A, I, QueryingAA: *this); |
| 2235 | }; |
| 2236 | |
| 2237 | auto CheckForNoSync = [&](Instruction &I) { |
| 2238 | // At this point we handled all read/write effects and they are all |
| 2239 | // nosync, so they can be skipped. |
| 2240 | if (I.mayReadOrWriteMemory()) |
| 2241 | return true; |
| 2242 | |
| 2243 | bool IsKnown; |
| 2244 | CallBase &CB = cast<CallBase>(Val&: I); |
| 2245 | if (AA::hasAssumedIRAttr<Attribute::NoSync>( |
| 2246 | A, QueryingAA: this, IRP: IRPosition::callsite_function(CB), DepClass: DepClassTy::OPTIONAL, |
| 2247 | IsKnown)) |
| 2248 | return true; |
| 2249 | |
| 2250 | // non-convergent and readnone imply nosync. |
| 2251 | return !CB.isConvergent(); |
| 2252 | }; |
| 2253 | |
| 2254 | bool UsedAssumedInformation = false; |
| 2255 | if (!A.checkForAllReadWriteInstructions(Pred: CheckRWInstForNoSync, QueryingAA&: *this, |
| 2256 | UsedAssumedInformation) || |
| 2257 | !A.checkForAllCallLikeInstructions(Pred: CheckForNoSync, QueryingAA: *this, |
| 2258 | UsedAssumedInformation)) |
| 2259 | return indicatePessimisticFixpoint(); |
| 2260 | |
| 2261 | return ChangeStatus::UNCHANGED; |
| 2262 | } |
| 2263 | |
| 2264 | struct AANoSyncFunction final : public AANoSyncImpl { |
| 2265 | AANoSyncFunction(const IRPosition &IRP, Attributor &A) |
| 2266 | : AANoSyncImpl(IRP, A) {} |
| 2267 | |
| 2268 | /// See AbstractAttribute::trackStatistics() |
| 2269 | void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nosync) } |
| 2270 | }; |
| 2271 | |
| 2272 | /// NoSync attribute deduction for a call sites. |
| 2273 | struct AANoSyncCallSite final : AACalleeToCallSite<AANoSync, AANoSyncImpl> { |
| 2274 | AANoSyncCallSite(const IRPosition &IRP, Attributor &A) |
| 2275 | : AACalleeToCallSite<AANoSync, AANoSyncImpl>(IRP, A) {} |
| 2276 | |
| 2277 | /// See AbstractAttribute::trackStatistics() |
| 2278 | void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nosync); } |
| 2279 | }; |
| 2280 | } // namespace |
| 2281 | |
| 2282 | /// ------------------------ No-Free Attributes ---------------------------- |
| 2283 | |
| 2284 | namespace { |
| 2285 | struct AANoFreeImpl : public AANoFree { |
| 2286 | AANoFreeImpl(const IRPosition &IRP, Attributor &A) : AANoFree(IRP, A) {} |
| 2287 | |
| 2288 | /// See AbstractAttribute::initialize(...). |
| 2289 | void initialize(Attributor &A) override { |
| 2290 | bool IsKnown; |
| 2291 | assert(!AA::hasAssumedIRAttr<Attribute::NoFree>(A, nullptr, getIRPosition(), |
| 2292 | DepClassTy::NONE, IsKnown)); |
| 2293 | (void)IsKnown; |
| 2294 | } |
| 2295 | |
| 2296 | /// See AbstractAttribute::updateImpl(...). |
| 2297 | ChangeStatus updateImpl(Attributor &A) override { |
| 2298 | auto CheckForNoFree = [&](Instruction &I) { |
| 2299 | bool IsKnown; |
| 2300 | return AA::hasAssumedIRAttr<Attribute::NoFree>( |
| 2301 | A, QueryingAA: this, IRP: IRPosition::callsite_function(CB: cast<CallBase>(Val&: I)), |
| 2302 | DepClass: DepClassTy::REQUIRED, IsKnown); |
| 2303 | }; |
| 2304 | |
| 2305 | bool UsedAssumedInformation = false; |
| 2306 | if (!A.checkForAllCallLikeInstructions(Pred: CheckForNoFree, QueryingAA: *this, |
| 2307 | UsedAssumedInformation)) |
| 2308 | return indicatePessimisticFixpoint(); |
| 2309 | return ChangeStatus::UNCHANGED; |
| 2310 | } |
| 2311 | |
| 2312 | /// See AbstractAttribute::getAsStr(). |
| 2313 | const std::string getAsStr(Attributor *A) const override { |
| 2314 | return getAssumed() ? "nofree" : "may-free" ; |
| 2315 | } |
| 2316 | }; |
| 2317 | |
| 2318 | struct AANoFreeFunction final : public AANoFreeImpl { |
| 2319 | AANoFreeFunction(const IRPosition &IRP, Attributor &A) |
| 2320 | : AANoFreeImpl(IRP, A) {} |
| 2321 | |
| 2322 | /// See AbstractAttribute::trackStatistics() |
| 2323 | void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nofree) } |
| 2324 | }; |
| 2325 | |
| 2326 | /// NoFree attribute deduction for a call sites. |
| 2327 | struct AANoFreeCallSite final : AACalleeToCallSite<AANoFree, AANoFreeImpl> { |
| 2328 | AANoFreeCallSite(const IRPosition &IRP, Attributor &A) |
| 2329 | : AACalleeToCallSite<AANoFree, AANoFreeImpl>(IRP, A) {} |
| 2330 | |
| 2331 | /// See AbstractAttribute::trackStatistics() |
| 2332 | void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nofree); } |
| 2333 | }; |
| 2334 | |
| 2335 | /// NoFree attribute for floating values. |
| 2336 | struct AANoFreeFloating : AANoFreeImpl { |
| 2337 | AANoFreeFloating(const IRPosition &IRP, Attributor &A) |
| 2338 | : AANoFreeImpl(IRP, A) {} |
| 2339 | |
| 2340 | /// See AbstractAttribute::trackStatistics() |
| 2341 | void trackStatistics() const override{STATS_DECLTRACK_FLOATING_ATTR(nofree)} |
| 2342 | |
| 2343 | /// See Abstract Attribute::updateImpl(...). |
| 2344 | ChangeStatus updateImpl(Attributor &A) override { |
| 2345 | const IRPosition &IRP = getIRPosition(); |
| 2346 | |
| 2347 | bool IsKnown; |
| 2348 | if (AA::hasAssumedIRAttr<Attribute::NoFree>(A, QueryingAA: this, |
| 2349 | IRP: IRPosition::function_scope(IRP), |
| 2350 | DepClass: DepClassTy::OPTIONAL, IsKnown)) |
| 2351 | return ChangeStatus::UNCHANGED; |
| 2352 | |
| 2353 | Value &AssociatedValue = getIRPosition().getAssociatedValue(); |
| 2354 | auto Pred = [&](const Use &U, bool &Follow) -> bool { |
| 2355 | Instruction *UserI = cast<Instruction>(Val: U.getUser()); |
| 2356 | if (auto *CB = dyn_cast<CallBase>(Val: UserI)) { |
| 2357 | if (CB->isBundleOperand(U: &U)) |
| 2358 | return false; |
| 2359 | if (!CB->isArgOperand(U: &U)) |
| 2360 | return true; |
| 2361 | unsigned ArgNo = CB->getArgOperandNo(U: &U); |
| 2362 | |
| 2363 | bool IsKnown; |
| 2364 | return AA::hasAssumedIRAttr<Attribute::NoFree>( |
| 2365 | A, QueryingAA: this, IRP: IRPosition::callsite_argument(CB: *CB, ArgNo), |
| 2366 | DepClass: DepClassTy::REQUIRED, IsKnown); |
| 2367 | } |
| 2368 | |
| 2369 | if (isa<GetElementPtrInst>(Val: UserI) || isa<PHINode>(Val: UserI) || |
| 2370 | isa<SelectInst>(Val: UserI)) { |
| 2371 | Follow = true; |
| 2372 | return true; |
| 2373 | } |
| 2374 | if (isa<StoreInst>(Val: UserI) || isa<LoadInst>(Val: UserI)) |
| 2375 | return true; |
| 2376 | |
| 2377 | if (isa<ReturnInst>(Val: UserI) && getIRPosition().isArgumentPosition()) |
| 2378 | return true; |
| 2379 | |
| 2380 | // Unknown user. |
| 2381 | return false; |
| 2382 | }; |
| 2383 | if (!A.checkForAllUses(Pred, QueryingAA: *this, V: AssociatedValue)) |
| 2384 | return indicatePessimisticFixpoint(); |
| 2385 | |
| 2386 | return ChangeStatus::UNCHANGED; |
| 2387 | } |
| 2388 | }; |
| 2389 | |
| 2390 | /// NoFree attribute for a call site argument. |
| 2391 | struct AANoFreeArgument final : AANoFreeFloating { |
| 2392 | AANoFreeArgument(const IRPosition &IRP, Attributor &A) |
| 2393 | : AANoFreeFloating(IRP, A) {} |
| 2394 | |
| 2395 | /// See AbstractAttribute::trackStatistics() |
| 2396 | void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nofree) } |
| 2397 | }; |
| 2398 | |
| 2399 | /// NoFree attribute for call site arguments. |
| 2400 | struct AANoFreeCallSiteArgument final : AANoFreeFloating { |
| 2401 | AANoFreeCallSiteArgument(const IRPosition &IRP, Attributor &A) |
| 2402 | : AANoFreeFloating(IRP, A) {} |
| 2403 | |
| 2404 | /// See AbstractAttribute::updateImpl(...). |
| 2405 | ChangeStatus updateImpl(Attributor &A) override { |
| 2406 | // TODO: Once we have call site specific value information we can provide |
| 2407 | // call site specific liveness information and then it makes |
| 2408 | // sense to specialize attributes for call sites arguments instead of |
| 2409 | // redirecting requests to the callee argument. |
| 2410 | Argument *Arg = getAssociatedArgument(); |
| 2411 | if (!Arg) |
| 2412 | return indicatePessimisticFixpoint(); |
| 2413 | const IRPosition &ArgPos = IRPosition::argument(Arg: *Arg); |
| 2414 | bool IsKnown; |
| 2415 | if (AA::hasAssumedIRAttr<Attribute::NoFree>(A, QueryingAA: this, IRP: ArgPos, |
| 2416 | DepClass: DepClassTy::REQUIRED, IsKnown)) |
| 2417 | return ChangeStatus::UNCHANGED; |
| 2418 | return indicatePessimisticFixpoint(); |
| 2419 | } |
| 2420 | |
| 2421 | /// See AbstractAttribute::trackStatistics() |
| 2422 | void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(nofree) }; |
| 2423 | }; |
| 2424 | |
| 2425 | /// NoFree attribute for function return value. |
| 2426 | struct AANoFreeReturned final : AANoFreeFloating { |
| 2427 | AANoFreeReturned(const IRPosition &IRP, Attributor &A) |
| 2428 | : AANoFreeFloating(IRP, A) { |
| 2429 | llvm_unreachable("NoFree is not applicable to function returns!" ); |
| 2430 | } |
| 2431 | |
| 2432 | /// See AbstractAttribute::initialize(...). |
| 2433 | void initialize(Attributor &A) override { |
| 2434 | llvm_unreachable("NoFree is not applicable to function returns!" ); |
| 2435 | } |
| 2436 | |
| 2437 | /// See AbstractAttribute::updateImpl(...). |
| 2438 | ChangeStatus updateImpl(Attributor &A) override { |
| 2439 | llvm_unreachable("NoFree is not applicable to function returns!" ); |
| 2440 | } |
| 2441 | |
| 2442 | /// See AbstractAttribute::trackStatistics() |
| 2443 | void trackStatistics() const override {} |
| 2444 | }; |
| 2445 | |
| 2446 | /// NoFree attribute deduction for a call site return value. |
| 2447 | struct AANoFreeCallSiteReturned final : AANoFreeFloating { |
| 2448 | AANoFreeCallSiteReturned(const IRPosition &IRP, Attributor &A) |
| 2449 | : AANoFreeFloating(IRP, A) {} |
| 2450 | |
| 2451 | ChangeStatus manifest(Attributor &A) override { |
| 2452 | return ChangeStatus::UNCHANGED; |
| 2453 | } |
| 2454 | /// See AbstractAttribute::trackStatistics() |
| 2455 | void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nofree) } |
| 2456 | }; |
| 2457 | } // namespace |
| 2458 | |
| 2459 | /// ------------------------ NonNull Argument Attribute ------------------------ |
| 2460 | |
| 2461 | bool AANonNull::isImpliedByIR(Attributor &A, const IRPosition &IRP, |
| 2462 | Attribute::AttrKind ImpliedAttributeKind, |
| 2463 | bool IgnoreSubsumingPositions) { |
| 2464 | SmallVector<Attribute::AttrKind, 2> AttrKinds; |
| 2465 | AttrKinds.push_back(Elt: Attribute::NonNull); |
| 2466 | if (!NullPointerIsDefined(F: IRP.getAnchorScope(), |
| 2467 | AS: IRP.getAssociatedType()->getPointerAddressSpace())) |
| 2468 | AttrKinds.push_back(Elt: Attribute::Dereferenceable); |
| 2469 | if (A.hasAttr(IRP, AKs: AttrKinds, IgnoreSubsumingPositions, ImpliedAttributeKind: Attribute::NonNull)) |
| 2470 | return true; |
| 2471 | |
| 2472 | DominatorTree *DT = nullptr; |
| 2473 | AssumptionCache *AC = nullptr; |
| 2474 | InformationCache &InfoCache = A.getInfoCache(); |
| 2475 | if (const Function *Fn = IRP.getAnchorScope()) { |
| 2476 | if (!Fn->isDeclaration()) { |
| 2477 | DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(F: *Fn); |
| 2478 | AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(F: *Fn); |
| 2479 | } |
| 2480 | } |
| 2481 | |
| 2482 | SmallVector<AA::ValueAndContext> Worklist; |
| 2483 | if (IRP.getPositionKind() != IRP_RETURNED) { |
| 2484 | Worklist.push_back(Elt: {IRP.getAssociatedValue(), IRP.getCtxI()}); |
| 2485 | } else { |
| 2486 | bool UsedAssumedInformation = false; |
| 2487 | if (!A.checkForAllInstructions( |
| 2488 | Pred: [&](Instruction &I) { |
| 2489 | Worklist.push_back(Elt: {*cast<ReturnInst>(Val&: I).getReturnValue(), &I}); |
| 2490 | return true; |
| 2491 | }, |
| 2492 | Fn: IRP.getAssociatedFunction(), QueryingAA: nullptr, Opcodes: {Instruction::Ret}, |
| 2493 | UsedAssumedInformation, CheckBBLivenessOnly: false, /*CheckPotentiallyDead=*/true)) |
| 2494 | return false; |
| 2495 | } |
| 2496 | |
| 2497 | if (llvm::any_of(Range&: Worklist, P: [&](AA::ValueAndContext VAC) { |
| 2498 | return !isKnownNonZero( |
| 2499 | V: VAC.getValue(), |
| 2500 | Q: SimplifyQuery(A.getDataLayout(), DT, AC, VAC.getCtxI())); |
| 2501 | })) |
| 2502 | return false; |
| 2503 | |
| 2504 | A.manifestAttrs(IRP, DeducedAttrs: {Attribute::get(Context&: IRP.getAnchorValue().getContext(), |
| 2505 | Kind: Attribute::NonNull)}); |
| 2506 | return true; |
| 2507 | } |
| 2508 | |
| 2509 | namespace { |
| 2510 | static int64_t getKnownNonNullAndDerefBytesForUse( |
| 2511 | Attributor &A, const AbstractAttribute &QueryingAA, Value &AssociatedValue, |
| 2512 | const Use *U, const Instruction *I, bool &IsNonNull, bool &TrackUse) { |
| 2513 | TrackUse = false; |
| 2514 | |
| 2515 | const Value *UseV = U->get(); |
| 2516 | if (!UseV->getType()->isPointerTy()) |
| 2517 | return 0; |
| 2518 | |
| 2519 | // We need to follow common pointer manipulation uses to the accesses they |
| 2520 | // feed into. We can try to be smart to avoid looking through things we do not |
| 2521 | // like for now, e.g., non-inbounds GEPs. |
| 2522 | if (isa<CastInst>(Val: I)) { |
| 2523 | TrackUse = true; |
| 2524 | return 0; |
| 2525 | } |
| 2526 | |
| 2527 | if (isa<GetElementPtrInst>(Val: I)) { |
| 2528 | TrackUse = true; |
| 2529 | return 0; |
| 2530 | } |
| 2531 | |
| 2532 | Type *PtrTy = UseV->getType(); |
| 2533 | const Function *F = I->getFunction(); |
| 2534 | bool NullPointerIsDefined = |
| 2535 | F ? llvm::NullPointerIsDefined(F, AS: PtrTy->getPointerAddressSpace()) : true; |
| 2536 | const DataLayout &DL = A.getInfoCache().getDL(); |
| 2537 | if (const auto *CB = dyn_cast<CallBase>(Val: I)) { |
| 2538 | if (CB->isBundleOperand(U)) { |
| 2539 | if (RetainedKnowledge RK = getKnowledgeFromUse( |
| 2540 | U, AttrKinds: {Attribute::NonNull, Attribute::Dereferenceable})) { |
| 2541 | IsNonNull |= |
| 2542 | (RK.AttrKind == Attribute::NonNull || !NullPointerIsDefined); |
| 2543 | return RK.ArgValue; |
| 2544 | } |
| 2545 | return 0; |
| 2546 | } |
| 2547 | |
| 2548 | if (CB->isCallee(U)) { |
| 2549 | IsNonNull |= !NullPointerIsDefined; |
| 2550 | return 0; |
| 2551 | } |
| 2552 | |
| 2553 | unsigned ArgNo = CB->getArgOperandNo(U); |
| 2554 | IRPosition IRP = IRPosition::callsite_argument(CB: *CB, ArgNo); |
| 2555 | // As long as we only use known information there is no need to track |
| 2556 | // dependences here. |
| 2557 | bool IsKnownNonNull; |
| 2558 | AA::hasAssumedIRAttr<Attribute::NonNull>(A, QueryingAA: &QueryingAA, IRP, |
| 2559 | DepClass: DepClassTy::NONE, IsKnown&: IsKnownNonNull); |
| 2560 | IsNonNull |= IsKnownNonNull; |
| 2561 | auto *DerefAA = |
| 2562 | A.getAAFor<AADereferenceable>(QueryingAA, IRP, DepClass: DepClassTy::NONE); |
| 2563 | return DerefAA ? DerefAA->getKnownDereferenceableBytes() : 0; |
| 2564 | } |
| 2565 | |
| 2566 | std::optional<MemoryLocation> Loc = MemoryLocation::getOrNone(Inst: I); |
| 2567 | if (!Loc || Loc->Ptr != UseV || !Loc->Size.isPrecise() || |
| 2568 | Loc->Size.isScalable() || I->isVolatile()) |
| 2569 | return 0; |
| 2570 | |
| 2571 | int64_t Offset; |
| 2572 | const Value *Base = |
| 2573 | getMinimalBaseOfPointer(A, QueryingAA, Ptr: Loc->Ptr, BytesOffset&: Offset, DL); |
| 2574 | if (Base && Base == &AssociatedValue) { |
| 2575 | int64_t DerefBytes = Loc->Size.getValue() + Offset; |
| 2576 | IsNonNull |= !NullPointerIsDefined; |
| 2577 | return std::max(a: int64_t(0), b: DerefBytes); |
| 2578 | } |
| 2579 | |
| 2580 | /// Corner case when an offset is 0. |
| 2581 | Base = GetPointerBaseWithConstantOffset(Ptr: Loc->Ptr, Offset, DL, |
| 2582 | /*AllowNonInbounds*/ true); |
| 2583 | if (Base && Base == &AssociatedValue && Offset == 0) { |
| 2584 | int64_t DerefBytes = Loc->Size.getValue(); |
| 2585 | IsNonNull |= !NullPointerIsDefined; |
| 2586 | return std::max(a: int64_t(0), b: DerefBytes); |
| 2587 | } |
| 2588 | |
| 2589 | return 0; |
| 2590 | } |
| 2591 | |
| 2592 | struct AANonNullImpl : AANonNull { |
| 2593 | AANonNullImpl(const IRPosition &IRP, Attributor &A) : AANonNull(IRP, A) {} |
| 2594 | |
| 2595 | /// See AbstractAttribute::initialize(...). |
| 2596 | void initialize(Attributor &A) override { |
| 2597 | Value &V = *getAssociatedValue().stripPointerCasts(); |
| 2598 | if (isa<ConstantPointerNull>(Val: V)) { |
| 2599 | indicatePessimisticFixpoint(); |
| 2600 | return; |
| 2601 | } |
| 2602 | |
| 2603 | if (Instruction *CtxI = getCtxI()) |
| 2604 | followUsesInMBEC(AA&: *this, A, S&: getState(), CtxI&: *CtxI); |
| 2605 | } |
| 2606 | |
| 2607 | /// See followUsesInMBEC |
| 2608 | bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I, |
| 2609 | AANonNull::StateType &State) { |
| 2610 | bool IsNonNull = false; |
| 2611 | bool TrackUse = false; |
| 2612 | getKnownNonNullAndDerefBytesForUse(A, QueryingAA: *this, AssociatedValue&: getAssociatedValue(), U, I, |
| 2613 | IsNonNull, TrackUse); |
| 2614 | State.setKnown(IsNonNull); |
| 2615 | return TrackUse; |
| 2616 | } |
| 2617 | |
| 2618 | /// See AbstractAttribute::getAsStr(). |
| 2619 | const std::string getAsStr(Attributor *A) const override { |
| 2620 | return getAssumed() ? "nonnull" : "may-null" ; |
| 2621 | } |
| 2622 | }; |
| 2623 | |
| 2624 | /// NonNull attribute for a floating value. |
| 2625 | struct AANonNullFloating : public AANonNullImpl { |
| 2626 | AANonNullFloating(const IRPosition &IRP, Attributor &A) |
| 2627 | : AANonNullImpl(IRP, A) {} |
| 2628 | |
| 2629 | /// See AbstractAttribute::updateImpl(...). |
| 2630 | ChangeStatus updateImpl(Attributor &A) override { |
| 2631 | auto CheckIRP = [&](const IRPosition &IRP) { |
| 2632 | bool IsKnownNonNull; |
| 2633 | return AA::hasAssumedIRAttr<Attribute::NonNull>( |
| 2634 | A, QueryingAA: *this, IRP, DepClass: DepClassTy::OPTIONAL, IsKnown&: IsKnownNonNull); |
| 2635 | }; |
| 2636 | |
| 2637 | bool Stripped; |
| 2638 | bool UsedAssumedInformation = false; |
| 2639 | Value *AssociatedValue = &getAssociatedValue(); |
| 2640 | SmallVector<AA::ValueAndContext> Values; |
| 2641 | if (!A.getAssumedSimplifiedValues(IRP: getIRPosition(), AA: *this, Values, |
| 2642 | S: AA::AnyScope, UsedAssumedInformation)) |
| 2643 | Stripped = false; |
| 2644 | else |
| 2645 | Stripped = |
| 2646 | Values.size() != 1 || Values.front().getValue() != AssociatedValue; |
| 2647 | |
| 2648 | if (!Stripped) { |
| 2649 | bool IsKnown; |
| 2650 | if (auto *PHI = dyn_cast<PHINode>(Val: AssociatedValue)) |
| 2651 | if (llvm::all_of(Range: PHI->incoming_values(), P: [&](Value *Op) { |
| 2652 | return AA::hasAssumedIRAttr<Attribute::NonNull>( |
| 2653 | A, QueryingAA: this, IRP: IRPosition::value(V: *Op), DepClass: DepClassTy::OPTIONAL, |
| 2654 | IsKnown); |
| 2655 | })) |
| 2656 | return ChangeStatus::UNCHANGED; |
| 2657 | if (auto *Select = dyn_cast<SelectInst>(Val: AssociatedValue)) |
| 2658 | if (AA::hasAssumedIRAttr<Attribute::NonNull>( |
| 2659 | A, QueryingAA: this, IRP: IRPosition::value(V: *Select->getFalseValue()), |
| 2660 | DepClass: DepClassTy::OPTIONAL, IsKnown) && |
| 2661 | AA::hasAssumedIRAttr<Attribute::NonNull>( |
| 2662 | A, QueryingAA: this, IRP: IRPosition::value(V: *Select->getTrueValue()), |
| 2663 | DepClass: DepClassTy::OPTIONAL, IsKnown)) |
| 2664 | return ChangeStatus::UNCHANGED; |
| 2665 | |
| 2666 | // If we haven't stripped anything we might still be able to use a |
| 2667 | // different AA, but only if the IRP changes. Effectively when we |
| 2668 | // interpret this not as a call site value but as a floating/argument |
| 2669 | // value. |
| 2670 | const IRPosition AVIRP = IRPosition::value(V: *AssociatedValue); |
| 2671 | if (AVIRP == getIRPosition() || !CheckIRP(AVIRP)) |
| 2672 | return indicatePessimisticFixpoint(); |
| 2673 | return ChangeStatus::UNCHANGED; |
| 2674 | } |
| 2675 | |
| 2676 | for (const auto &VAC : Values) |
| 2677 | if (!CheckIRP(IRPosition::value(V: *VAC.getValue()))) |
| 2678 | return indicatePessimisticFixpoint(); |
| 2679 | |
| 2680 | return ChangeStatus::UNCHANGED; |
| 2681 | } |
| 2682 | |
| 2683 | /// See AbstractAttribute::trackStatistics() |
| 2684 | void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) } |
| 2685 | }; |
| 2686 | |
| 2687 | /// NonNull attribute for function return value. |
| 2688 | struct AANonNullReturned final |
| 2689 | : AAReturnedFromReturnedValues<AANonNull, AANonNull, AANonNull::StateType, |
| 2690 | false, AANonNull::IRAttributeKind, false> { |
| 2691 | AANonNullReturned(const IRPosition &IRP, Attributor &A) |
| 2692 | : AAReturnedFromReturnedValues<AANonNull, AANonNull, AANonNull::StateType, |
| 2693 | false, Attribute::NonNull, false>(IRP, A) { |
| 2694 | } |
| 2695 | |
| 2696 | /// See AbstractAttribute::getAsStr(). |
| 2697 | const std::string getAsStr(Attributor *A) const override { |
| 2698 | return getAssumed() ? "nonnull" : "may-null" ; |
| 2699 | } |
| 2700 | |
| 2701 | /// See AbstractAttribute::trackStatistics() |
| 2702 | void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) } |
| 2703 | }; |
| 2704 | |
| 2705 | /// NonNull attribute for function argument. |
| 2706 | struct AANonNullArgument final |
| 2707 | : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl> { |
| 2708 | AANonNullArgument(const IRPosition &IRP, Attributor &A) |
| 2709 | : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl>(IRP, A) {} |
| 2710 | |
| 2711 | /// See AbstractAttribute::trackStatistics() |
| 2712 | void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nonnull) } |
| 2713 | }; |
| 2714 | |
| 2715 | struct AANonNullCallSiteArgument final : AANonNullFloating { |
| 2716 | AANonNullCallSiteArgument(const IRPosition &IRP, Attributor &A) |
| 2717 | : AANonNullFloating(IRP, A) {} |
| 2718 | |
| 2719 | /// See AbstractAttribute::trackStatistics() |
| 2720 | void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(nonnull) } |
| 2721 | }; |
| 2722 | |
| 2723 | /// NonNull attribute for a call site return position. |
| 2724 | struct AANonNullCallSiteReturned final |
| 2725 | : AACalleeToCallSite<AANonNull, AANonNullImpl> { |
| 2726 | AANonNullCallSiteReturned(const IRPosition &IRP, Attributor &A) |
| 2727 | : AACalleeToCallSite<AANonNull, AANonNullImpl>(IRP, A) {} |
| 2728 | |
| 2729 | /// See AbstractAttribute::trackStatistics() |
| 2730 | void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nonnull) } |
| 2731 | }; |
| 2732 | } // namespace |
| 2733 | |
| 2734 | /// ------------------------ Must-Progress Attributes -------------------------- |
| 2735 | namespace { |
| 2736 | struct AAMustProgressImpl : public AAMustProgress { |
| 2737 | AAMustProgressImpl(const IRPosition &IRP, Attributor &A) |
| 2738 | : AAMustProgress(IRP, A) {} |
| 2739 | |
| 2740 | /// See AbstractAttribute::initialize(...). |
| 2741 | void initialize(Attributor &A) override { |
| 2742 | bool IsKnown; |
| 2743 | assert(!AA::hasAssumedIRAttr<Attribute::MustProgress>( |
| 2744 | A, nullptr, getIRPosition(), DepClassTy::NONE, IsKnown)); |
| 2745 | (void)IsKnown; |
| 2746 | } |
| 2747 | |
| 2748 | /// See AbstractAttribute::getAsStr() |
| 2749 | const std::string getAsStr(Attributor *A) const override { |
| 2750 | return getAssumed() ? "mustprogress" : "may-not-progress" ; |
| 2751 | } |
| 2752 | }; |
| 2753 | |
| 2754 | struct AAMustProgressFunction final : AAMustProgressImpl { |
| 2755 | AAMustProgressFunction(const IRPosition &IRP, Attributor &A) |
| 2756 | : AAMustProgressImpl(IRP, A) {} |
| 2757 | |
| 2758 | /// See AbstractAttribute::updateImpl(...). |
| 2759 | ChangeStatus updateImpl(Attributor &A) override { |
| 2760 | bool IsKnown; |
| 2761 | if (AA::hasAssumedIRAttr<Attribute::WillReturn>( |
| 2762 | A, QueryingAA: this, IRP: getIRPosition(), DepClass: DepClassTy::OPTIONAL, IsKnown)) { |
| 2763 | if (IsKnown) |
| 2764 | return indicateOptimisticFixpoint(); |
| 2765 | return ChangeStatus::UNCHANGED; |
| 2766 | } |
| 2767 | |
| 2768 | auto CheckForMustProgress = [&](AbstractCallSite ACS) { |
| 2769 | IRPosition IPos = IRPosition::callsite_function(CB: *ACS.getInstruction()); |
| 2770 | bool IsKnownMustProgress; |
| 2771 | return AA::hasAssumedIRAttr<Attribute::MustProgress>( |
| 2772 | A, QueryingAA: this, IRP: IPos, DepClass: DepClassTy::REQUIRED, IsKnown&: IsKnownMustProgress, |
| 2773 | /* IgnoreSubsumingPositions */ true); |
| 2774 | }; |
| 2775 | |
| 2776 | bool AllCallSitesKnown = true; |
| 2777 | if (!A.checkForAllCallSites(Pred: CheckForMustProgress, QueryingAA: *this, |
| 2778 | /* RequireAllCallSites */ true, |
| 2779 | UsedAssumedInformation&: AllCallSitesKnown)) |
| 2780 | return indicatePessimisticFixpoint(); |
| 2781 | |
| 2782 | return ChangeStatus::UNCHANGED; |
| 2783 | } |
| 2784 | |
| 2785 | /// See AbstractAttribute::trackStatistics() |
| 2786 | void trackStatistics() const override { |
| 2787 | STATS_DECLTRACK_FN_ATTR(mustprogress) |
| 2788 | } |
| 2789 | }; |
| 2790 | |
| 2791 | /// MustProgress attribute deduction for a call sites. |
| 2792 | struct AAMustProgressCallSite final : AAMustProgressImpl { |
| 2793 | AAMustProgressCallSite(const IRPosition &IRP, Attributor &A) |
| 2794 | : AAMustProgressImpl(IRP, A) {} |
| 2795 | |
| 2796 | /// See AbstractAttribute::updateImpl(...). |
| 2797 | ChangeStatus updateImpl(Attributor &A) override { |
| 2798 | // TODO: Once we have call site specific value information we can provide |
| 2799 | // call site specific liveness information and then it makes |
| 2800 | // sense to specialize attributes for call sites arguments instead of |
| 2801 | // redirecting requests to the callee argument. |
| 2802 | const IRPosition &FnPos = IRPosition::function(F: *getAnchorScope()); |
| 2803 | bool IsKnownMustProgress; |
| 2804 | if (!AA::hasAssumedIRAttr<Attribute::MustProgress>( |
| 2805 | A, QueryingAA: this, IRP: FnPos, DepClass: DepClassTy::REQUIRED, IsKnown&: IsKnownMustProgress)) |
| 2806 | return indicatePessimisticFixpoint(); |
| 2807 | return ChangeStatus::UNCHANGED; |
| 2808 | } |
| 2809 | |
| 2810 | /// See AbstractAttribute::trackStatistics() |
| 2811 | void trackStatistics() const override { |
| 2812 | STATS_DECLTRACK_CS_ATTR(mustprogress); |
| 2813 | } |
| 2814 | }; |
| 2815 | } // namespace |
| 2816 | |
| 2817 | /// ------------------------ No-Recurse Attributes ---------------------------- |
| 2818 | |
| 2819 | namespace { |
| 2820 | struct AANoRecurseImpl : public AANoRecurse { |
| 2821 | AANoRecurseImpl(const IRPosition &IRP, Attributor &A) : AANoRecurse(IRP, A) {} |
| 2822 | |
| 2823 | /// See AbstractAttribute::initialize(...). |
| 2824 | void initialize(Attributor &A) override { |
| 2825 | bool IsKnown; |
| 2826 | assert(!AA::hasAssumedIRAttr<Attribute::NoRecurse>( |
| 2827 | A, nullptr, getIRPosition(), DepClassTy::NONE, IsKnown)); |
| 2828 | (void)IsKnown; |
| 2829 | } |
| 2830 | |
| 2831 | /// See AbstractAttribute::getAsStr() |
| 2832 | const std::string getAsStr(Attributor *A) const override { |
| 2833 | return getAssumed() ? "norecurse" : "may-recurse" ; |
| 2834 | } |
| 2835 | }; |
| 2836 | |
| 2837 | struct AANoRecurseFunction final : AANoRecurseImpl { |
| 2838 | AANoRecurseFunction(const IRPosition &IRP, Attributor &A) |
| 2839 | : AANoRecurseImpl(IRP, A) {} |
| 2840 | |
| 2841 | /// See AbstractAttribute::updateImpl(...). |
| 2842 | ChangeStatus updateImpl(Attributor &A) override { |
| 2843 | |
| 2844 | // If all live call sites are known to be no-recurse, we are as well. |
| 2845 | auto CallSitePred = [&](AbstractCallSite ACS) { |
| 2846 | bool IsKnownNoRecurse; |
| 2847 | if (!AA::hasAssumedIRAttr<Attribute::NoRecurse>( |
| 2848 | A, QueryingAA: this, |
| 2849 | IRP: IRPosition::function(F: *ACS.getInstruction()->getFunction()), |
| 2850 | DepClass: DepClassTy::NONE, IsKnown&: IsKnownNoRecurse)) |
| 2851 | return false; |
| 2852 | return IsKnownNoRecurse; |
| 2853 | }; |
| 2854 | bool UsedAssumedInformation = false; |
| 2855 | if (A.checkForAllCallSites(Pred: CallSitePred, QueryingAA: *this, RequireAllCallSites: true, |
| 2856 | UsedAssumedInformation)) { |
| 2857 | // If we know all call sites and all are known no-recurse, we are done. |
| 2858 | // If all known call sites, which might not be all that exist, are known |
| 2859 | // to be no-recurse, we are not done but we can continue to assume |
| 2860 | // no-recurse. If one of the call sites we have not visited will become |
| 2861 | // live, another update is triggered. |
| 2862 | if (!UsedAssumedInformation) |
| 2863 | indicateOptimisticFixpoint(); |
| 2864 | return ChangeStatus::UNCHANGED; |
| 2865 | } |
| 2866 | |
| 2867 | const AAInterFnReachability *EdgeReachability = |
| 2868 | A.getAAFor<AAInterFnReachability>(QueryingAA: *this, IRP: getIRPosition(), |
| 2869 | DepClass: DepClassTy::REQUIRED); |
| 2870 | if (EdgeReachability && EdgeReachability->canReach(A, Fn: *getAnchorScope())) |
| 2871 | return indicatePessimisticFixpoint(); |
| 2872 | return ChangeStatus::UNCHANGED; |
| 2873 | } |
| 2874 | |
| 2875 | void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(norecurse) } |
| 2876 | }; |
| 2877 | |
| 2878 | /// NoRecurse attribute deduction for a call sites. |
| 2879 | struct AANoRecurseCallSite final |
| 2880 | : AACalleeToCallSite<AANoRecurse, AANoRecurseImpl> { |
| 2881 | AANoRecurseCallSite(const IRPosition &IRP, Attributor &A) |
| 2882 | : AACalleeToCallSite<AANoRecurse, AANoRecurseImpl>(IRP, A) {} |
| 2883 | |
| 2884 | /// See AbstractAttribute::trackStatistics() |
| 2885 | void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(norecurse); } |
| 2886 | }; |
| 2887 | } // namespace |
| 2888 | |
| 2889 | /// ------------------------ No-Convergent Attribute -------------------------- |
| 2890 | |
| 2891 | namespace { |
| 2892 | struct AANonConvergentImpl : public AANonConvergent { |
| 2893 | AANonConvergentImpl(const IRPosition &IRP, Attributor &A) |
| 2894 | : AANonConvergent(IRP, A) {} |
| 2895 | |
| 2896 | /// See AbstractAttribute::getAsStr() |
| 2897 | const std::string getAsStr(Attributor *A) const override { |
| 2898 | return getAssumed() ? "non-convergent" : "may-be-convergent" ; |
| 2899 | } |
| 2900 | }; |
| 2901 | |
| 2902 | struct AANonConvergentFunction final : AANonConvergentImpl { |
| 2903 | AANonConvergentFunction(const IRPosition &IRP, Attributor &A) |
| 2904 | : AANonConvergentImpl(IRP, A) {} |
| 2905 | |
| 2906 | /// See AbstractAttribute::updateImpl(...). |
| 2907 | ChangeStatus updateImpl(Attributor &A) override { |
| 2908 | // If all function calls are known to not be convergent, we are not |
| 2909 | // convergent. |
| 2910 | auto CalleeIsNotConvergent = [&](Instruction &Inst) { |
| 2911 | CallBase &CB = cast<CallBase>(Val&: Inst); |
| 2912 | auto *Callee = dyn_cast_if_present<Function>(Val: CB.getCalledOperand()); |
| 2913 | if (!Callee || Callee->isIntrinsic()) { |
| 2914 | return false; |
| 2915 | } |
| 2916 | if (Callee->isDeclaration()) { |
| 2917 | return !Callee->hasFnAttribute(Kind: Attribute::Convergent); |
| 2918 | } |
| 2919 | const auto *ConvergentAA = A.getAAFor<AANonConvergent>( |
| 2920 | QueryingAA: *this, IRP: IRPosition::function(F: *Callee), DepClass: DepClassTy::REQUIRED); |
| 2921 | return ConvergentAA && ConvergentAA->isAssumedNotConvergent(); |
| 2922 | }; |
| 2923 | |
| 2924 | bool UsedAssumedInformation = false; |
| 2925 | if (!A.checkForAllCallLikeInstructions(Pred: CalleeIsNotConvergent, QueryingAA: *this, |
| 2926 | UsedAssumedInformation)) { |
| 2927 | return indicatePessimisticFixpoint(); |
| 2928 | } |
| 2929 | return ChangeStatus::UNCHANGED; |
| 2930 | } |
| 2931 | |
| 2932 | ChangeStatus manifest(Attributor &A) override { |
| 2933 | if (isKnownNotConvergent() && |
| 2934 | A.hasAttr(IRP: getIRPosition(), AKs: Attribute::Convergent)) { |
| 2935 | A.removeAttrs(IRP: getIRPosition(), AttrKinds: {Attribute::Convergent}); |
| 2936 | return ChangeStatus::CHANGED; |
| 2937 | } |
| 2938 | return ChangeStatus::UNCHANGED; |
| 2939 | } |
| 2940 | |
| 2941 | void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(convergent) } |
| 2942 | }; |
| 2943 | } // namespace |
| 2944 | |
| 2945 | /// -------------------- Undefined-Behavior Attributes ------------------------ |
| 2946 | |
| 2947 | namespace { |
| 2948 | struct AAUndefinedBehaviorImpl : public AAUndefinedBehavior { |
| 2949 | AAUndefinedBehaviorImpl(const IRPosition &IRP, Attributor &A) |
| 2950 | : AAUndefinedBehavior(IRP, A) {} |
| 2951 | |
| 2952 | /// See AbstractAttribute::updateImpl(...). |
| 2953 | // through a pointer (i.e. also branches etc.) |
| 2954 | ChangeStatus updateImpl(Attributor &A) override { |
| 2955 | const size_t UBPrevSize = KnownUBInsts.size(); |
| 2956 | const size_t NoUBPrevSize = AssumedNoUBInsts.size(); |
| 2957 | |
| 2958 | auto InspectMemAccessInstForUB = [&](Instruction &I) { |
| 2959 | // Lang ref now states volatile store is not UB, let's skip them. |
| 2960 | if (I.isVolatile() && I.mayWriteToMemory()) |
| 2961 | return true; |
| 2962 | |
| 2963 | // Skip instructions that are already saved. |
| 2964 | if (AssumedNoUBInsts.count(Ptr: &I) || KnownUBInsts.count(Ptr: &I)) |
| 2965 | return true; |
| 2966 | |
| 2967 | // If we reach here, we know we have an instruction |
| 2968 | // that accesses memory through a pointer operand, |
| 2969 | // for which getPointerOperand() should give it to us. |
| 2970 | Value *PtrOp = |
| 2971 | const_cast<Value *>(getPointerOperand(I: &I, /* AllowVolatile */ true)); |
| 2972 | assert(PtrOp && |
| 2973 | "Expected pointer operand of memory accessing instruction" ); |
| 2974 | |
| 2975 | // Either we stopped and the appropriate action was taken, |
| 2976 | // or we got back a simplified value to continue. |
| 2977 | std::optional<Value *> SimplifiedPtrOp = |
| 2978 | stopOnUndefOrAssumed(A, V: PtrOp, I: &I); |
| 2979 | if (!SimplifiedPtrOp || !*SimplifiedPtrOp) |
| 2980 | return true; |
| 2981 | const Value *PtrOpVal = *SimplifiedPtrOp; |
| 2982 | |
| 2983 | // A memory access through a pointer is considered UB |
| 2984 | // only if the pointer has constant null value. |
| 2985 | // TODO: Expand it to not only check constant values. |
| 2986 | if (!isa<ConstantPointerNull>(Val: PtrOpVal)) { |
| 2987 | AssumedNoUBInsts.insert(Ptr: &I); |
| 2988 | return true; |
| 2989 | } |
| 2990 | const Type *PtrTy = PtrOpVal->getType(); |
| 2991 | |
| 2992 | // Because we only consider instructions inside functions, |
| 2993 | // assume that a parent function exists. |
| 2994 | const Function *F = I.getFunction(); |
| 2995 | |
| 2996 | // A memory access using constant null pointer is only considered UB |
| 2997 | // if null pointer is _not_ defined for the target platform. |
| 2998 | if (llvm::NullPointerIsDefined(F, AS: PtrTy->getPointerAddressSpace())) |
| 2999 | AssumedNoUBInsts.insert(Ptr: &I); |
| 3000 | else |
| 3001 | KnownUBInsts.insert(Ptr: &I); |
| 3002 | return true; |
| 3003 | }; |
| 3004 | |
| 3005 | auto InspectBrInstForUB = [&](Instruction &I) { |
| 3006 | // A conditional branch instruction is considered UB if it has `undef` |
| 3007 | // condition. |
| 3008 | |
| 3009 | // Skip instructions that are already saved. |
| 3010 | if (AssumedNoUBInsts.count(Ptr: &I) || KnownUBInsts.count(Ptr: &I)) |
| 3011 | return true; |
| 3012 | |
| 3013 | // We know we have a branch instruction. |
| 3014 | auto *BrInst = cast<BranchInst>(Val: &I); |
| 3015 | |
| 3016 | // Unconditional branches are never considered UB. |
| 3017 | if (BrInst->isUnconditional()) |
| 3018 | return true; |
| 3019 | |
| 3020 | // Either we stopped and the appropriate action was taken, |
| 3021 | // or we got back a simplified value to continue. |
| 3022 | std::optional<Value *> SimplifiedCond = |
| 3023 | stopOnUndefOrAssumed(A, V: BrInst->getCondition(), I: BrInst); |
| 3024 | if (!SimplifiedCond || !*SimplifiedCond) |
| 3025 | return true; |
| 3026 | AssumedNoUBInsts.insert(Ptr: &I); |
| 3027 | return true; |
| 3028 | }; |
| 3029 | |
| 3030 | auto InspectCallSiteForUB = [&](Instruction &I) { |
| 3031 | // Check whether a callsite always cause UB or not |
| 3032 | |
| 3033 | // Skip instructions that are already saved. |
| 3034 | if (AssumedNoUBInsts.count(Ptr: &I) || KnownUBInsts.count(Ptr: &I)) |
| 3035 | return true; |
| 3036 | |
| 3037 | // Check nonnull and noundef argument attribute violation for each |
| 3038 | // callsite. |
| 3039 | CallBase &CB = cast<CallBase>(Val&: I); |
| 3040 | auto *Callee = dyn_cast_if_present<Function>(Val: CB.getCalledOperand()); |
| 3041 | if (!Callee) |
| 3042 | return true; |
| 3043 | for (unsigned idx = 0; idx < CB.arg_size(); idx++) { |
| 3044 | // If current argument is known to be simplified to null pointer and the |
| 3045 | // corresponding argument position is known to have nonnull attribute, |
| 3046 | // the argument is poison. Furthermore, if the argument is poison and |
| 3047 | // the position is known to have noundef attriubte, this callsite is |
| 3048 | // considered UB. |
| 3049 | if (idx >= Callee->arg_size()) |
| 3050 | break; |
| 3051 | Value *ArgVal = CB.getArgOperand(i: idx); |
| 3052 | if (!ArgVal) |
| 3053 | continue; |
| 3054 | // Here, we handle three cases. |
| 3055 | // (1) Not having a value means it is dead. (we can replace the value |
| 3056 | // with undef) |
| 3057 | // (2) Simplified to undef. The argument violate noundef attriubte. |
| 3058 | // (3) Simplified to null pointer where known to be nonnull. |
| 3059 | // The argument is a poison value and violate noundef attribute. |
| 3060 | IRPosition CalleeArgumentIRP = IRPosition::callsite_argument(CB, ArgNo: idx); |
| 3061 | bool IsKnownNoUndef; |
| 3062 | AA::hasAssumedIRAttr<Attribute::NoUndef>( |
| 3063 | A, QueryingAA: this, IRP: CalleeArgumentIRP, DepClass: DepClassTy::NONE, IsKnown&: IsKnownNoUndef); |
| 3064 | if (!IsKnownNoUndef) |
| 3065 | continue; |
| 3066 | bool UsedAssumedInformation = false; |
| 3067 | std::optional<Value *> SimplifiedVal = |
| 3068 | A.getAssumedSimplified(IRP: IRPosition::value(V: *ArgVal), AA: *this, |
| 3069 | UsedAssumedInformation, S: AA::Interprocedural); |
| 3070 | if (UsedAssumedInformation) |
| 3071 | continue; |
| 3072 | if (SimplifiedVal && !*SimplifiedVal) |
| 3073 | return true; |
| 3074 | if (!SimplifiedVal || isa<UndefValue>(Val: **SimplifiedVal)) { |
| 3075 | KnownUBInsts.insert(Ptr: &I); |
| 3076 | continue; |
| 3077 | } |
| 3078 | if (!ArgVal->getType()->isPointerTy() || |
| 3079 | !isa<ConstantPointerNull>(Val: **SimplifiedVal)) |
| 3080 | continue; |
| 3081 | bool IsKnownNonNull; |
| 3082 | AA::hasAssumedIRAttr<Attribute::NonNull>( |
| 3083 | A, QueryingAA: this, IRP: CalleeArgumentIRP, DepClass: DepClassTy::NONE, IsKnown&: IsKnownNonNull); |
| 3084 | if (IsKnownNonNull) |
| 3085 | KnownUBInsts.insert(Ptr: &I); |
| 3086 | } |
| 3087 | return true; |
| 3088 | }; |
| 3089 | |
| 3090 | auto InspectReturnInstForUB = [&](Instruction &I) { |
| 3091 | auto &RI = cast<ReturnInst>(Val&: I); |
| 3092 | // Either we stopped and the appropriate action was taken, |
| 3093 | // or we got back a simplified return value to continue. |
| 3094 | std::optional<Value *> SimplifiedRetValue = |
| 3095 | stopOnUndefOrAssumed(A, V: RI.getReturnValue(), I: &I); |
| 3096 | if (!SimplifiedRetValue || !*SimplifiedRetValue) |
| 3097 | return true; |
| 3098 | |
| 3099 | // Check if a return instruction always cause UB or not |
| 3100 | // Note: It is guaranteed that the returned position of the anchor |
| 3101 | // scope has noundef attribute when this is called. |
| 3102 | // We also ensure the return position is not "assumed dead" |
| 3103 | // because the returned value was then potentially simplified to |
| 3104 | // `undef` in AAReturnedValues without removing the `noundef` |
| 3105 | // attribute yet. |
| 3106 | |
| 3107 | // When the returned position has noundef attriubte, UB occurs in the |
| 3108 | // following cases. |
| 3109 | // (1) Returned value is known to be undef. |
| 3110 | // (2) The value is known to be a null pointer and the returned |
| 3111 | // position has nonnull attribute (because the returned value is |
| 3112 | // poison). |
| 3113 | if (isa<ConstantPointerNull>(Val: *SimplifiedRetValue)) { |
| 3114 | bool IsKnownNonNull; |
| 3115 | AA::hasAssumedIRAttr<Attribute::NonNull>( |
| 3116 | A, QueryingAA: this, IRP: IRPosition::returned(F: *getAnchorScope()), DepClass: DepClassTy::NONE, |
| 3117 | IsKnown&: IsKnownNonNull); |
| 3118 | if (IsKnownNonNull) |
| 3119 | KnownUBInsts.insert(Ptr: &I); |
| 3120 | } |
| 3121 | |
| 3122 | return true; |
| 3123 | }; |
| 3124 | |
| 3125 | bool UsedAssumedInformation = false; |
| 3126 | A.checkForAllInstructions(Pred: InspectMemAccessInstForUB, QueryingAA: *this, |
| 3127 | Opcodes: {Instruction::Load, Instruction::Store, |
| 3128 | Instruction::AtomicCmpXchg, |
| 3129 | Instruction::AtomicRMW}, |
| 3130 | UsedAssumedInformation, |
| 3131 | /* CheckBBLivenessOnly */ true); |
| 3132 | A.checkForAllInstructions(Pred: InspectBrInstForUB, QueryingAA: *this, Opcodes: {Instruction::Br}, |
| 3133 | UsedAssumedInformation, |
| 3134 | /* CheckBBLivenessOnly */ true); |
| 3135 | A.checkForAllCallLikeInstructions(Pred: InspectCallSiteForUB, QueryingAA: *this, |
| 3136 | UsedAssumedInformation); |
| 3137 | |
| 3138 | // If the returned position of the anchor scope has noundef attriubte, check |
| 3139 | // all returned instructions. |
| 3140 | if (!getAnchorScope()->getReturnType()->isVoidTy()) { |
| 3141 | const IRPosition &ReturnIRP = IRPosition::returned(F: *getAnchorScope()); |
| 3142 | if (!A.isAssumedDead(IRP: ReturnIRP, QueryingAA: this, FnLivenessAA: nullptr, UsedAssumedInformation)) { |
| 3143 | bool IsKnownNoUndef; |
| 3144 | AA::hasAssumedIRAttr<Attribute::NoUndef>( |
| 3145 | A, QueryingAA: this, IRP: ReturnIRP, DepClass: DepClassTy::NONE, IsKnown&: IsKnownNoUndef); |
| 3146 | if (IsKnownNoUndef) |
| 3147 | A.checkForAllInstructions(Pred: InspectReturnInstForUB, QueryingAA: *this, |
| 3148 | Opcodes: {Instruction::Ret}, UsedAssumedInformation, |
| 3149 | /* CheckBBLivenessOnly */ true); |
| 3150 | } |
| 3151 | } |
| 3152 | |
| 3153 | if (NoUBPrevSize != AssumedNoUBInsts.size() || |
| 3154 | UBPrevSize != KnownUBInsts.size()) |
| 3155 | return ChangeStatus::CHANGED; |
| 3156 | return ChangeStatus::UNCHANGED; |
| 3157 | } |
| 3158 | |
| 3159 | bool isKnownToCauseUB(Instruction *I) const override { |
| 3160 | return KnownUBInsts.count(Ptr: I); |
| 3161 | } |
| 3162 | |
| 3163 | bool isAssumedToCauseUB(Instruction *I) const override { |
| 3164 | // In simple words, if an instruction is not in the assumed to _not_ |
| 3165 | // cause UB, then it is assumed UB (that includes those |
| 3166 | // in the KnownUBInsts set). The rest is boilerplate |
| 3167 | // is to ensure that it is one of the instructions we test |
| 3168 | // for UB. |
| 3169 | |
| 3170 | switch (I->getOpcode()) { |
| 3171 | case Instruction::Load: |
| 3172 | case Instruction::Store: |
| 3173 | case Instruction::AtomicCmpXchg: |
| 3174 | case Instruction::AtomicRMW: |
| 3175 | return !AssumedNoUBInsts.count(Ptr: I); |
| 3176 | case Instruction::Br: { |
| 3177 | auto *BrInst = cast<BranchInst>(Val: I); |
| 3178 | if (BrInst->isUnconditional()) |
| 3179 | return false; |
| 3180 | return !AssumedNoUBInsts.count(Ptr: I); |
| 3181 | } break; |
| 3182 | default: |
| 3183 | return false; |
| 3184 | } |
| 3185 | return false; |
| 3186 | } |
| 3187 | |
| 3188 | ChangeStatus manifest(Attributor &A) override { |
| 3189 | if (KnownUBInsts.empty()) |
| 3190 | return ChangeStatus::UNCHANGED; |
| 3191 | for (Instruction *I : KnownUBInsts) |
| 3192 | A.changeToUnreachableAfterManifest(I); |
| 3193 | return ChangeStatus::CHANGED; |
| 3194 | } |
| 3195 | |
| 3196 | /// See AbstractAttribute::getAsStr() |
| 3197 | const std::string getAsStr(Attributor *A) const override { |
| 3198 | return getAssumed() ? "undefined-behavior" : "no-ub" ; |
| 3199 | } |
| 3200 | |
| 3201 | /// Note: The correctness of this analysis depends on the fact that the |
| 3202 | /// following 2 sets will stop changing after some point. |
| 3203 | /// "Change" here means that their size changes. |
| 3204 | /// The size of each set is monotonically increasing |
| 3205 | /// (we only add items to them) and it is upper bounded by the number of |
| 3206 | /// instructions in the processed function (we can never save more |
| 3207 | /// elements in either set than this number). Hence, at some point, |
| 3208 | /// they will stop increasing. |
| 3209 | /// Consequently, at some point, both sets will have stopped |
| 3210 | /// changing, effectively making the analysis reach a fixpoint. |
| 3211 | |
| 3212 | /// Note: These 2 sets are disjoint and an instruction can be considered |
| 3213 | /// one of 3 things: |
| 3214 | /// 1) Known to cause UB (AAUndefinedBehavior could prove it) and put it in |
| 3215 | /// the KnownUBInsts set. |
| 3216 | /// 2) Assumed to cause UB (in every updateImpl, AAUndefinedBehavior |
| 3217 | /// has a reason to assume it). |
| 3218 | /// 3) Assumed to not cause UB. very other instruction - AAUndefinedBehavior |
| 3219 | /// could not find a reason to assume or prove that it can cause UB, |
| 3220 | /// hence it assumes it doesn't. We have a set for these instructions |
| 3221 | /// so that we don't reprocess them in every update. |
| 3222 | /// Note however that instructions in this set may cause UB. |
| 3223 | |
| 3224 | protected: |
| 3225 | /// A set of all live instructions _known_ to cause UB. |
| 3226 | SmallPtrSet<Instruction *, 8> KnownUBInsts; |
| 3227 | |
| 3228 | private: |
| 3229 | /// A set of all the (live) instructions that are assumed to _not_ cause UB. |
| 3230 | SmallPtrSet<Instruction *, 8> AssumedNoUBInsts; |
| 3231 | |
| 3232 | // Should be called on updates in which if we're processing an instruction |
| 3233 | // \p I that depends on a value \p V, one of the following has to happen: |
| 3234 | // - If the value is assumed, then stop. |
| 3235 | // - If the value is known but undef, then consider it UB. |
| 3236 | // - Otherwise, do specific processing with the simplified value. |
| 3237 | // We return std::nullopt in the first 2 cases to signify that an appropriate |
| 3238 | // action was taken and the caller should stop. |
| 3239 | // Otherwise, we return the simplified value that the caller should |
| 3240 | // use for specific processing. |
| 3241 | std::optional<Value *> stopOnUndefOrAssumed(Attributor &A, Value *V, |
| 3242 | Instruction *I) { |
| 3243 | bool UsedAssumedInformation = false; |
| 3244 | std::optional<Value *> SimplifiedV = |
| 3245 | A.getAssumedSimplified(IRP: IRPosition::value(V: *V), AA: *this, |
| 3246 | UsedAssumedInformation, S: AA::Interprocedural); |
| 3247 | if (!UsedAssumedInformation) { |
| 3248 | // Don't depend on assumed values. |
| 3249 | if (!SimplifiedV) { |
| 3250 | // If it is known (which we tested above) but it doesn't have a value, |
| 3251 | // then we can assume `undef` and hence the instruction is UB. |
| 3252 | KnownUBInsts.insert(Ptr: I); |
| 3253 | return std::nullopt; |
| 3254 | } |
| 3255 | if (!*SimplifiedV) |
| 3256 | return nullptr; |
| 3257 | V = *SimplifiedV; |
| 3258 | } |
| 3259 | if (isa<UndefValue>(Val: V)) { |
| 3260 | KnownUBInsts.insert(Ptr: I); |
| 3261 | return std::nullopt; |
| 3262 | } |
| 3263 | return V; |
| 3264 | } |
| 3265 | }; |
| 3266 | |
| 3267 | struct AAUndefinedBehaviorFunction final : AAUndefinedBehaviorImpl { |
| 3268 | AAUndefinedBehaviorFunction(const IRPosition &IRP, Attributor &A) |
| 3269 | : AAUndefinedBehaviorImpl(IRP, A) {} |
| 3270 | |
| 3271 | /// See AbstractAttribute::trackStatistics() |
| 3272 | void trackStatistics() const override { |
| 3273 | STATS_DECL(UndefinedBehaviorInstruction, Instruction, |
| 3274 | "Number of instructions known to have UB" ); |
| 3275 | BUILD_STAT_NAME(UndefinedBehaviorInstruction, Instruction) += |
| 3276 | KnownUBInsts.size(); |
| 3277 | } |
| 3278 | }; |
| 3279 | } // namespace |
| 3280 | |
| 3281 | /// ------------------------ Will-Return Attributes ---------------------------- |
| 3282 | |
| 3283 | namespace { |
| 3284 | // Helper function that checks whether a function has any cycle which we don't |
| 3285 | // know if it is bounded or not. |
| 3286 | // Loops with maximum trip count are considered bounded, any other cycle not. |
| 3287 | static bool mayContainUnboundedCycle(Function &F, Attributor &A) { |
| 3288 | ScalarEvolution *SE = |
| 3289 | A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(F); |
| 3290 | LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(F); |
| 3291 | // If either SCEV or LoopInfo is not available for the function then we assume |
| 3292 | // any cycle to be unbounded cycle. |
| 3293 | // We use scc_iterator which uses Tarjan algorithm to find all the maximal |
| 3294 | // SCCs.To detect if there's a cycle, we only need to find the maximal ones. |
| 3295 | if (!SE || !LI) { |
| 3296 | for (scc_iterator<Function *> SCCI = scc_begin(G: &F); !SCCI.isAtEnd(); ++SCCI) |
| 3297 | if (SCCI.hasCycle()) |
| 3298 | return true; |
| 3299 | return false; |
| 3300 | } |
| 3301 | |
| 3302 | // If there's irreducible control, the function may contain non-loop cycles. |
| 3303 | if (mayContainIrreducibleControl(F, LI)) |
| 3304 | return true; |
| 3305 | |
| 3306 | // Any loop that does not have a max trip count is considered unbounded cycle. |
| 3307 | for (auto *L : LI->getLoopsInPreorder()) { |
| 3308 | if (!SE->getSmallConstantMaxTripCount(L)) |
| 3309 | return true; |
| 3310 | } |
| 3311 | return false; |
| 3312 | } |
| 3313 | |
| 3314 | struct AAWillReturnImpl : public AAWillReturn { |
| 3315 | AAWillReturnImpl(const IRPosition &IRP, Attributor &A) |
| 3316 | : AAWillReturn(IRP, A) {} |
| 3317 | |
| 3318 | /// See AbstractAttribute::initialize(...). |
| 3319 | void initialize(Attributor &A) override { |
| 3320 | bool IsKnown; |
| 3321 | assert(!AA::hasAssumedIRAttr<Attribute::WillReturn>( |
| 3322 | A, nullptr, getIRPosition(), DepClassTy::NONE, IsKnown)); |
| 3323 | (void)IsKnown; |
| 3324 | } |
| 3325 | |
| 3326 | /// Check for `mustprogress` and `readonly` as they imply `willreturn`. |
| 3327 | bool isImpliedByMustprogressAndReadonly(Attributor &A, bool KnownOnly) { |
| 3328 | if (!A.hasAttr(IRP: getIRPosition(), AKs: {Attribute::MustProgress})) |
| 3329 | return false; |
| 3330 | |
| 3331 | bool IsKnown; |
| 3332 | if (AA::isAssumedReadOnly(A, IRP: getIRPosition(), QueryingAA: *this, IsKnown)) |
| 3333 | return IsKnown || !KnownOnly; |
| 3334 | return false; |
| 3335 | } |
| 3336 | |
| 3337 | /// See AbstractAttribute::updateImpl(...). |
| 3338 | ChangeStatus updateImpl(Attributor &A) override { |
| 3339 | if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ false)) |
| 3340 | return ChangeStatus::UNCHANGED; |
| 3341 | |
| 3342 | auto CheckForWillReturn = [&](Instruction &I) { |
| 3343 | IRPosition IPos = IRPosition::callsite_function(CB: cast<CallBase>(Val&: I)); |
| 3344 | bool IsKnown; |
| 3345 | if (AA::hasAssumedIRAttr<Attribute::WillReturn>( |
| 3346 | A, QueryingAA: this, IRP: IPos, DepClass: DepClassTy::REQUIRED, IsKnown)) { |
| 3347 | if (IsKnown) |
| 3348 | return true; |
| 3349 | } else { |
| 3350 | return false; |
| 3351 | } |
| 3352 | bool IsKnownNoRecurse; |
| 3353 | return AA::hasAssumedIRAttr<Attribute::NoRecurse>( |
| 3354 | A, QueryingAA: this, IRP: IPos, DepClass: DepClassTy::REQUIRED, IsKnown&: IsKnownNoRecurse); |
| 3355 | }; |
| 3356 | |
| 3357 | bool UsedAssumedInformation = false; |
| 3358 | if (!A.checkForAllCallLikeInstructions(Pred: CheckForWillReturn, QueryingAA: *this, |
| 3359 | UsedAssumedInformation)) |
| 3360 | return indicatePessimisticFixpoint(); |
| 3361 | |
| 3362 | return ChangeStatus::UNCHANGED; |
| 3363 | } |
| 3364 | |
| 3365 | /// See AbstractAttribute::getAsStr() |
| 3366 | const std::string getAsStr(Attributor *A) const override { |
| 3367 | return getAssumed() ? "willreturn" : "may-noreturn" ; |
| 3368 | } |
| 3369 | }; |
| 3370 | |
| 3371 | struct AAWillReturnFunction final : AAWillReturnImpl { |
| 3372 | AAWillReturnFunction(const IRPosition &IRP, Attributor &A) |
| 3373 | : AAWillReturnImpl(IRP, A) {} |
| 3374 | |
| 3375 | /// See AbstractAttribute::initialize(...). |
| 3376 | void initialize(Attributor &A) override { |
| 3377 | AAWillReturnImpl::initialize(A); |
| 3378 | |
| 3379 | Function *F = getAnchorScope(); |
| 3380 | assert(F && "Did expect an anchor function" ); |
| 3381 | if (F->isDeclaration() || mayContainUnboundedCycle(F&: *F, A)) |
| 3382 | indicatePessimisticFixpoint(); |
| 3383 | } |
| 3384 | |
| 3385 | /// See AbstractAttribute::trackStatistics() |
| 3386 | void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(willreturn) } |
| 3387 | }; |
| 3388 | |
| 3389 | /// WillReturn attribute deduction for a call sites. |
| 3390 | struct AAWillReturnCallSite final |
| 3391 | : AACalleeToCallSite<AAWillReturn, AAWillReturnImpl> { |
| 3392 | AAWillReturnCallSite(const IRPosition &IRP, Attributor &A) |
| 3393 | : AACalleeToCallSite<AAWillReturn, AAWillReturnImpl>(IRP, A) {} |
| 3394 | |
| 3395 | /// See AbstractAttribute::updateImpl(...). |
| 3396 | ChangeStatus updateImpl(Attributor &A) override { |
| 3397 | if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ false)) |
| 3398 | return ChangeStatus::UNCHANGED; |
| 3399 | |
| 3400 | return AACalleeToCallSite::updateImpl(A); |
| 3401 | } |
| 3402 | |
| 3403 | /// See AbstractAttribute::trackStatistics() |
| 3404 | void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(willreturn); } |
| 3405 | }; |
| 3406 | } // namespace |
| 3407 | |
| 3408 | /// -------------------AAIntraFnReachability Attribute-------------------------- |
| 3409 | |
| 3410 | /// All information associated with a reachability query. This boilerplate code |
| 3411 | /// is used by both AAIntraFnReachability and AAInterFnReachability, with |
| 3412 | /// different \p ToTy values. |
| 3413 | template <typename ToTy> struct ReachabilityQueryInfo { |
| 3414 | enum class Reachable { |
| 3415 | No, |
| 3416 | Yes, |
| 3417 | }; |
| 3418 | |
| 3419 | /// Start here, |
| 3420 | const Instruction *From = nullptr; |
| 3421 | /// reach this place, |
| 3422 | const ToTy *To = nullptr; |
| 3423 | /// without going through any of these instructions, |
| 3424 | const AA::InstExclusionSetTy *ExclusionSet = nullptr; |
| 3425 | /// and remember if it worked: |
| 3426 | Reachable Result = Reachable::No; |
| 3427 | |
| 3428 | /// Precomputed hash for this RQI. |
| 3429 | unsigned Hash = 0; |
| 3430 | |
| 3431 | unsigned computeHashValue() const { |
| 3432 | assert(Hash == 0 && "Computed hash twice!" ); |
| 3433 | using InstSetDMI = DenseMapInfo<const AA::InstExclusionSetTy *>; |
| 3434 | using PairDMI = DenseMapInfo<std::pair<const Instruction *, const ToTy *>>; |
| 3435 | return const_cast<ReachabilityQueryInfo<ToTy> *>(this)->Hash = |
| 3436 | detail::combineHashValue(a: PairDMI ::getHashValue({From, To}), |
| 3437 | b: InstSetDMI::getHashValue(BES: ExclusionSet)); |
| 3438 | } |
| 3439 | |
| 3440 | ReachabilityQueryInfo(const Instruction *From, const ToTy *To) |
| 3441 | : From(From), To(To) {} |
| 3442 | |
| 3443 | /// Constructor replacement to ensure unique and stable sets are used for the |
| 3444 | /// cache. |
| 3445 | ReachabilityQueryInfo(Attributor &A, const Instruction &From, const ToTy &To, |
| 3446 | const AA::InstExclusionSetTy *ES, bool MakeUnique) |
| 3447 | : From(&From), To(&To), ExclusionSet(ES) { |
| 3448 | |
| 3449 | if (!ES || ES->empty()) { |
| 3450 | ExclusionSet = nullptr; |
| 3451 | } else if (MakeUnique) { |
| 3452 | ExclusionSet = A.getInfoCache().getOrCreateUniqueBlockExecutionSet(BES: ES); |
| 3453 | } |
| 3454 | } |
| 3455 | |
| 3456 | ReachabilityQueryInfo(const ReachabilityQueryInfo &RQI) |
| 3457 | : From(RQI.From), To(RQI.To), ExclusionSet(RQI.ExclusionSet) {} |
| 3458 | }; |
| 3459 | |
| 3460 | namespace llvm { |
| 3461 | template <typename ToTy> struct DenseMapInfo<ReachabilityQueryInfo<ToTy> *> { |
| 3462 | using InstSetDMI = DenseMapInfo<const AA::InstExclusionSetTy *>; |
| 3463 | using PairDMI = DenseMapInfo<std::pair<const Instruction *, const ToTy *>>; |
| 3464 | |
| 3465 | static ReachabilityQueryInfo<ToTy> EmptyKey; |
| 3466 | static ReachabilityQueryInfo<ToTy> TombstoneKey; |
| 3467 | |
| 3468 | static inline ReachabilityQueryInfo<ToTy> *getEmptyKey() { return &EmptyKey; } |
| 3469 | static inline ReachabilityQueryInfo<ToTy> *getTombstoneKey() { |
| 3470 | return &TombstoneKey; |
| 3471 | } |
| 3472 | static unsigned getHashValue(const ReachabilityQueryInfo<ToTy> *RQI) { |
| 3473 | return RQI->Hash ? RQI->Hash : RQI->computeHashValue(); |
| 3474 | } |
| 3475 | static bool isEqual(const ReachabilityQueryInfo<ToTy> *LHS, |
| 3476 | const ReachabilityQueryInfo<ToTy> *RHS) { |
| 3477 | if (!PairDMI::isEqual({LHS->From, LHS->To}, {RHS->From, RHS->To})) |
| 3478 | return false; |
| 3479 | return InstSetDMI::isEqual(LHS: LHS->ExclusionSet, RHS: RHS->ExclusionSet); |
| 3480 | } |
| 3481 | }; |
| 3482 | |
| 3483 | #define DefineKeys(ToTy) \ |
| 3484 | template <> \ |
| 3485 | ReachabilityQueryInfo<ToTy> \ |
| 3486 | DenseMapInfo<ReachabilityQueryInfo<ToTy> *>::EmptyKey = \ |
| 3487 | ReachabilityQueryInfo<ToTy>( \ |
| 3488 | DenseMapInfo<const Instruction *>::getEmptyKey(), \ |
| 3489 | DenseMapInfo<const ToTy *>::getEmptyKey()); \ |
| 3490 | template <> \ |
| 3491 | ReachabilityQueryInfo<ToTy> \ |
| 3492 | DenseMapInfo<ReachabilityQueryInfo<ToTy> *>::TombstoneKey = \ |
| 3493 | ReachabilityQueryInfo<ToTy>( \ |
| 3494 | DenseMapInfo<const Instruction *>::getTombstoneKey(), \ |
| 3495 | DenseMapInfo<const ToTy *>::getTombstoneKey()); |
| 3496 | |
| 3497 | DefineKeys(Instruction) DefineKeys(Function) |
| 3498 | #undef DefineKeys |
| 3499 | |
| 3500 | } // namespace llvm |
| 3501 | |
| 3502 | namespace { |
| 3503 | |
| 3504 | template <typename BaseTy, typename ToTy> |
| 3505 | struct CachedReachabilityAA : public BaseTy { |
| 3506 | using RQITy = ReachabilityQueryInfo<ToTy>; |
| 3507 | |
| 3508 | CachedReachabilityAA(const IRPosition &IRP, Attributor &A) : BaseTy(IRP, A) {} |
| 3509 | |
| 3510 | /// See AbstractAttribute::isQueryAA. |
| 3511 | bool isQueryAA() const override { return true; } |
| 3512 | |
| 3513 | /// See AbstractAttribute::updateImpl(...). |
| 3514 | ChangeStatus updateImpl(Attributor &A) override { |
| 3515 | ChangeStatus Changed = ChangeStatus::UNCHANGED; |
| 3516 | for (unsigned u = 0, e = QueryVector.size(); u < e; ++u) { |
| 3517 | RQITy *RQI = QueryVector[u]; |
| 3518 | if (RQI->Result == RQITy::Reachable::No && |
| 3519 | isReachableImpl(A, RQI&: *RQI, /*IsTemporaryRQI=*/false)) |
| 3520 | Changed = ChangeStatus::CHANGED; |
| 3521 | } |
| 3522 | return Changed; |
| 3523 | } |
| 3524 | |
| 3525 | virtual bool isReachableImpl(Attributor &A, RQITy &RQI, |
| 3526 | bool IsTemporaryRQI) = 0; |
| 3527 | |
| 3528 | bool rememberResult(Attributor &A, typename RQITy::Reachable Result, |
| 3529 | RQITy &RQI, bool UsedExclusionSet, bool IsTemporaryRQI) { |
| 3530 | RQI.Result = Result; |
| 3531 | |
| 3532 | // Remove the temporary RQI from the cache. |
| 3533 | if (IsTemporaryRQI) |
| 3534 | QueryCache.erase(&RQI); |
| 3535 | |
| 3536 | // Insert a plain RQI (w/o exclusion set) if that makes sense. Two options: |
| 3537 | // 1) If it is reachable, it doesn't matter if we have an exclusion set for |
| 3538 | // this query. 2) We did not use the exclusion set, potentially because |
| 3539 | // there is none. |
| 3540 | if (Result == RQITy::Reachable::Yes || !UsedExclusionSet) { |
| 3541 | RQITy PlainRQI(RQI.From, RQI.To); |
| 3542 | if (!QueryCache.count(&PlainRQI)) { |
| 3543 | RQITy *RQIPtr = new (A.Allocator) RQITy(RQI.From, RQI.To); |
| 3544 | RQIPtr->Result = Result; |
| 3545 | QueryVector.push_back(RQIPtr); |
| 3546 | QueryCache.insert(RQIPtr); |
| 3547 | } |
| 3548 | } |
| 3549 | |
| 3550 | // Check if we need to insert a new permanent RQI with the exclusion set. |
| 3551 | if (IsTemporaryRQI && Result != RQITy::Reachable::Yes && UsedExclusionSet) { |
| 3552 | assert((!RQI.ExclusionSet || !RQI.ExclusionSet->empty()) && |
| 3553 | "Did not expect empty set!" ); |
| 3554 | RQITy *RQIPtr = new (A.Allocator) |
| 3555 | RQITy(A, *RQI.From, *RQI.To, RQI.ExclusionSet, true); |
| 3556 | assert(RQIPtr->Result == RQITy::Reachable::No && "Already reachable?" ); |
| 3557 | RQIPtr->Result = Result; |
| 3558 | assert(!QueryCache.count(RQIPtr)); |
| 3559 | QueryVector.push_back(RQIPtr); |
| 3560 | QueryCache.insert(RQIPtr); |
| 3561 | } |
| 3562 | |
| 3563 | if (Result == RQITy::Reachable::No && IsTemporaryRQI) |
| 3564 | A.registerForUpdate(AA&: *this); |
| 3565 | return Result == RQITy::Reachable::Yes; |
| 3566 | } |
| 3567 | |
| 3568 | const std::string getAsStr(Attributor *A) const override { |
| 3569 | // TODO: Return the number of reachable queries. |
| 3570 | return "#queries(" + std::to_string(QueryVector.size()) + ")" ; |
| 3571 | } |
| 3572 | |
| 3573 | bool checkQueryCache(Attributor &A, RQITy &StackRQI, |
| 3574 | typename RQITy::Reachable &Result) { |
| 3575 | if (!this->getState().isValidState()) { |
| 3576 | Result = RQITy::Reachable::Yes; |
| 3577 | return true; |
| 3578 | } |
| 3579 | |
| 3580 | // If we have an exclusion set we might be able to find our answer by |
| 3581 | // ignoring it first. |
| 3582 | if (StackRQI.ExclusionSet) { |
| 3583 | RQITy PlainRQI(StackRQI.From, StackRQI.To); |
| 3584 | auto It = QueryCache.find(&PlainRQI); |
| 3585 | if (It != QueryCache.end() && (*It)->Result == RQITy::Reachable::No) { |
| 3586 | Result = RQITy::Reachable::No; |
| 3587 | return true; |
| 3588 | } |
| 3589 | } |
| 3590 | |
| 3591 | auto It = QueryCache.find(&StackRQI); |
| 3592 | if (It != QueryCache.end()) { |
| 3593 | Result = (*It)->Result; |
| 3594 | return true; |
| 3595 | } |
| 3596 | |
| 3597 | // Insert a temporary for recursive queries. We will replace it with a |
| 3598 | // permanent entry later. |
| 3599 | QueryCache.insert(&StackRQI); |
| 3600 | return false; |
| 3601 | } |
| 3602 | |
| 3603 | private: |
| 3604 | SmallVector<RQITy *> QueryVector; |
| 3605 | DenseSet<RQITy *> QueryCache; |
| 3606 | }; |
| 3607 | |
| 3608 | struct AAIntraFnReachabilityFunction final |
| 3609 | : public CachedReachabilityAA<AAIntraFnReachability, Instruction> { |
| 3610 | using Base = CachedReachabilityAA<AAIntraFnReachability, Instruction>; |
| 3611 | AAIntraFnReachabilityFunction(const IRPosition &IRP, Attributor &A) |
| 3612 | : Base(IRP, A) { |
| 3613 | DT = A.getInfoCache().getAnalysisResultForFunction<DominatorTreeAnalysis>( |
| 3614 | F: *IRP.getAssociatedFunction()); |
| 3615 | } |
| 3616 | |
| 3617 | bool isAssumedReachable( |
| 3618 | Attributor &A, const Instruction &From, const Instruction &To, |
| 3619 | const AA::InstExclusionSetTy *ExclusionSet) const override { |
| 3620 | auto *NonConstThis = const_cast<AAIntraFnReachabilityFunction *>(this); |
| 3621 | if (&From == &To) |
| 3622 | return true; |
| 3623 | |
| 3624 | RQITy StackRQI(A, From, To, ExclusionSet, false); |
| 3625 | typename RQITy::Reachable Result; |
| 3626 | if (!NonConstThis->checkQueryCache(A, StackRQI, Result)) |
| 3627 | return NonConstThis->isReachableImpl(A, RQI&: StackRQI, |
| 3628 | /*IsTemporaryRQI=*/true); |
| 3629 | return Result == RQITy::Reachable::Yes; |
| 3630 | } |
| 3631 | |
| 3632 | ChangeStatus updateImpl(Attributor &A) override { |
| 3633 | // We only depend on liveness. DeadEdges is all we care about, check if any |
| 3634 | // of them changed. |
| 3635 | auto *LivenessAA = |
| 3636 | A.getAAFor<AAIsDead>(QueryingAA: *this, IRP: getIRPosition(), DepClass: DepClassTy::OPTIONAL); |
| 3637 | if (LivenessAA && |
| 3638 | llvm::all_of(Range&: DeadEdges, |
| 3639 | P: [&](const auto &DeadEdge) { |
| 3640 | return LivenessAA->isEdgeDead(From: DeadEdge.first, |
| 3641 | To: DeadEdge.second); |
| 3642 | }) && |
| 3643 | llvm::all_of(Range&: DeadBlocks, P: [&](const BasicBlock *BB) { |
| 3644 | return LivenessAA->isAssumedDead(BB); |
| 3645 | })) { |
| 3646 | return ChangeStatus::UNCHANGED; |
| 3647 | } |
| 3648 | DeadEdges.clear(); |
| 3649 | DeadBlocks.clear(); |
| 3650 | return Base::updateImpl(A); |
| 3651 | } |
| 3652 | |
| 3653 | bool isReachableImpl(Attributor &A, RQITy &RQI, |
| 3654 | bool IsTemporaryRQI) override { |
| 3655 | const Instruction *Origin = RQI.From; |
| 3656 | bool UsedExclusionSet = false; |
| 3657 | |
| 3658 | auto WillReachInBlock = [&](const Instruction &From, const Instruction &To, |
| 3659 | const AA::InstExclusionSetTy *ExclusionSet) { |
| 3660 | const Instruction *IP = &From; |
| 3661 | while (IP && IP != &To) { |
| 3662 | if (ExclusionSet && IP != Origin && ExclusionSet->count(Ptr: IP)) { |
| 3663 | UsedExclusionSet = true; |
| 3664 | break; |
| 3665 | } |
| 3666 | IP = IP->getNextNode(); |
| 3667 | } |
| 3668 | return IP == &To; |
| 3669 | }; |
| 3670 | |
| 3671 | const BasicBlock *FromBB = RQI.From->getParent(); |
| 3672 | const BasicBlock *ToBB = RQI.To->getParent(); |
| 3673 | assert(FromBB->getParent() == ToBB->getParent() && |
| 3674 | "Not an intra-procedural query!" ); |
| 3675 | |
| 3676 | // Check intra-block reachability, however, other reaching paths are still |
| 3677 | // possible. |
| 3678 | if (FromBB == ToBB && |
| 3679 | WillReachInBlock(*RQI.From, *RQI.To, RQI.ExclusionSet)) |
| 3680 | return rememberResult(A, Result: RQITy::Reachable::Yes, RQI, UsedExclusionSet, |
| 3681 | IsTemporaryRQI); |
| 3682 | |
| 3683 | // Check if reaching the ToBB block is sufficient or if even that would not |
| 3684 | // ensure reaching the target. In the latter case we are done. |
| 3685 | if (!WillReachInBlock(ToBB->front(), *RQI.To, RQI.ExclusionSet)) |
| 3686 | return rememberResult(A, Result: RQITy::Reachable::No, RQI, UsedExclusionSet, |
| 3687 | IsTemporaryRQI); |
| 3688 | |
| 3689 | const Function *Fn = FromBB->getParent(); |
| 3690 | SmallPtrSet<const BasicBlock *, 16> ExclusionBlocks; |
| 3691 | if (RQI.ExclusionSet) |
| 3692 | for (auto *I : *RQI.ExclusionSet) |
| 3693 | if (I->getFunction() == Fn) |
| 3694 | ExclusionBlocks.insert(Ptr: I->getParent()); |
| 3695 | |
| 3696 | // Check if we make it out of the FromBB block at all. |
| 3697 | if (ExclusionBlocks.count(Ptr: FromBB) && |
| 3698 | !WillReachInBlock(*RQI.From, *FromBB->getTerminator(), |
| 3699 | RQI.ExclusionSet)) |
| 3700 | return rememberResult(A, Result: RQITy::Reachable::No, RQI, UsedExclusionSet: true, IsTemporaryRQI); |
| 3701 | |
| 3702 | auto *LivenessAA = |
| 3703 | A.getAAFor<AAIsDead>(QueryingAA: *this, IRP: getIRPosition(), DepClass: DepClassTy::OPTIONAL); |
| 3704 | if (LivenessAA && LivenessAA->isAssumedDead(BB: ToBB)) { |
| 3705 | DeadBlocks.insert(V: ToBB); |
| 3706 | return rememberResult(A, Result: RQITy::Reachable::No, RQI, UsedExclusionSet, |
| 3707 | IsTemporaryRQI); |
| 3708 | } |
| 3709 | |
| 3710 | SmallPtrSet<const BasicBlock *, 16> Visited; |
| 3711 | SmallVector<const BasicBlock *, 16> Worklist; |
| 3712 | Worklist.push_back(Elt: FromBB); |
| 3713 | |
| 3714 | DenseSet<std::pair<const BasicBlock *, const BasicBlock *>> LocalDeadEdges; |
| 3715 | while (!Worklist.empty()) { |
| 3716 | const BasicBlock *BB = Worklist.pop_back_val(); |
| 3717 | if (!Visited.insert(Ptr: BB).second) |
| 3718 | continue; |
| 3719 | for (const BasicBlock *SuccBB : successors(BB)) { |
| 3720 | if (LivenessAA && LivenessAA->isEdgeDead(From: BB, To: SuccBB)) { |
| 3721 | LocalDeadEdges.insert(V: {BB, SuccBB}); |
| 3722 | continue; |
| 3723 | } |
| 3724 | // We checked before if we just need to reach the ToBB block. |
| 3725 | if (SuccBB == ToBB) |
| 3726 | return rememberResult(A, Result: RQITy::Reachable::Yes, RQI, UsedExclusionSet, |
| 3727 | IsTemporaryRQI); |
| 3728 | if (DT && ExclusionBlocks.empty() && DT->dominates(A: BB, B: ToBB)) |
| 3729 | return rememberResult(A, Result: RQITy::Reachable::Yes, RQI, UsedExclusionSet, |
| 3730 | IsTemporaryRQI); |
| 3731 | |
| 3732 | if (ExclusionBlocks.count(Ptr: SuccBB)) { |
| 3733 | UsedExclusionSet = true; |
| 3734 | continue; |
| 3735 | } |
| 3736 | Worklist.push_back(Elt: SuccBB); |
| 3737 | } |
| 3738 | } |
| 3739 | |
| 3740 | DeadEdges.insert_range(R&: LocalDeadEdges); |
| 3741 | return rememberResult(A, Result: RQITy::Reachable::No, RQI, UsedExclusionSet, |
| 3742 | IsTemporaryRQI); |
| 3743 | } |
| 3744 | |
| 3745 | /// See AbstractAttribute::trackStatistics() |
| 3746 | void trackStatistics() const override {} |
| 3747 | |
| 3748 | private: |
| 3749 | // Set of assumed dead blocks we used in the last query. If any changes we |
| 3750 | // update the state. |
| 3751 | DenseSet<const BasicBlock *> DeadBlocks; |
| 3752 | |
| 3753 | // Set of assumed dead edges we used in the last query. If any changes we |
| 3754 | // update the state. |
| 3755 | DenseSet<std::pair<const BasicBlock *, const BasicBlock *>> DeadEdges; |
| 3756 | |
| 3757 | /// The dominator tree of the function to short-circuit reasoning. |
| 3758 | const DominatorTree *DT = nullptr; |
| 3759 | }; |
| 3760 | } // namespace |
| 3761 | |
| 3762 | /// ------------------------ NoAlias Argument Attribute ------------------------ |
| 3763 | |
| 3764 | bool AANoAlias::isImpliedByIR(Attributor &A, const IRPosition &IRP, |
| 3765 | Attribute::AttrKind ImpliedAttributeKind, |
| 3766 | bool IgnoreSubsumingPositions) { |
| 3767 | assert(ImpliedAttributeKind == Attribute::NoAlias && |
| 3768 | "Unexpected attribute kind" ); |
| 3769 | Value *Val = &IRP.getAssociatedValue(); |
| 3770 | if (IRP.getPositionKind() != IRP_CALL_SITE_ARGUMENT) { |
| 3771 | if (isa<AllocaInst>(Val)) |
| 3772 | return true; |
| 3773 | } else { |
| 3774 | IgnoreSubsumingPositions = true; |
| 3775 | } |
| 3776 | |
| 3777 | if (isa<UndefValue>(Val)) |
| 3778 | return true; |
| 3779 | |
| 3780 | if (isa<ConstantPointerNull>(Val) && |
| 3781 | !NullPointerIsDefined(F: IRP.getAnchorScope(), |
| 3782 | AS: Val->getType()->getPointerAddressSpace())) |
| 3783 | return true; |
| 3784 | |
| 3785 | if (A.hasAttr(IRP, AKs: {Attribute::ByVal, Attribute::NoAlias}, |
| 3786 | IgnoreSubsumingPositions, ImpliedAttributeKind: Attribute::NoAlias)) |
| 3787 | return true; |
| 3788 | |
| 3789 | return false; |
| 3790 | } |
| 3791 | |
| 3792 | namespace { |
| 3793 | struct AANoAliasImpl : AANoAlias { |
| 3794 | AANoAliasImpl(const IRPosition &IRP, Attributor &A) : AANoAlias(IRP, A) { |
| 3795 | assert(getAssociatedType()->isPointerTy() && |
| 3796 | "Noalias is a pointer attribute" ); |
| 3797 | } |
| 3798 | |
| 3799 | const std::string getAsStr(Attributor *A) const override { |
| 3800 | return getAssumed() ? "noalias" : "may-alias" ; |
| 3801 | } |
| 3802 | }; |
| 3803 | |
| 3804 | /// NoAlias attribute for a floating value. |
| 3805 | struct AANoAliasFloating final : AANoAliasImpl { |
| 3806 | AANoAliasFloating(const IRPosition &IRP, Attributor &A) |
| 3807 | : AANoAliasImpl(IRP, A) {} |
| 3808 | |
| 3809 | /// See AbstractAttribute::updateImpl(...). |
| 3810 | ChangeStatus updateImpl(Attributor &A) override { |
| 3811 | // TODO: Implement this. |
| 3812 | return indicatePessimisticFixpoint(); |
| 3813 | } |
| 3814 | |
| 3815 | /// See AbstractAttribute::trackStatistics() |
| 3816 | void trackStatistics() const override { |
| 3817 | STATS_DECLTRACK_FLOATING_ATTR(noalias) |
| 3818 | } |
| 3819 | }; |
| 3820 | |
| 3821 | /// NoAlias attribute for an argument. |
| 3822 | struct AANoAliasArgument final |
| 3823 | : AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl> { |
| 3824 | using Base = AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl>; |
| 3825 | AANoAliasArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {} |
| 3826 | |
| 3827 | /// See AbstractAttribute::update(...). |
| 3828 | ChangeStatus updateImpl(Attributor &A) override { |
| 3829 | // We have to make sure no-alias on the argument does not break |
| 3830 | // synchronization when this is a callback argument, see also [1] below. |
| 3831 | // If synchronization cannot be affected, we delegate to the base updateImpl |
| 3832 | // function, otherwise we give up for now. |
| 3833 | |
| 3834 | // If the function is no-sync, no-alias cannot break synchronization. |
| 3835 | bool IsKnownNoSycn; |
| 3836 | if (AA::hasAssumedIRAttr<Attribute::NoSync>( |
| 3837 | A, QueryingAA: this, IRP: IRPosition::function_scope(IRP: getIRPosition()), |
| 3838 | DepClass: DepClassTy::OPTIONAL, IsKnown&: IsKnownNoSycn)) |
| 3839 | return Base::updateImpl(A); |
| 3840 | |
| 3841 | // If the argument is read-only, no-alias cannot break synchronization. |
| 3842 | bool IsKnown; |
| 3843 | if (AA::isAssumedReadOnly(A, IRP: getIRPosition(), QueryingAA: *this, IsKnown)) |
| 3844 | return Base::updateImpl(A); |
| 3845 | |
| 3846 | // If the argument is never passed through callbacks, no-alias cannot break |
| 3847 | // synchronization. |
| 3848 | bool UsedAssumedInformation = false; |
| 3849 | if (A.checkForAllCallSites( |
| 3850 | Pred: [](AbstractCallSite ACS) { return !ACS.isCallbackCall(); }, QueryingAA: *this, |
| 3851 | RequireAllCallSites: true, UsedAssumedInformation)) |
| 3852 | return Base::updateImpl(A); |
| 3853 | |
| 3854 | // TODO: add no-alias but make sure it doesn't break synchronization by |
| 3855 | // introducing fake uses. See: |
| 3856 | // [1] Compiler Optimizations for OpenMP, J. Doerfert and H. Finkel, |
| 3857 | // International Workshop on OpenMP 2018, |
| 3858 | // http://compilers.cs.uni-saarland.de/people/doerfert/par_opt18.pdf |
| 3859 | |
| 3860 | return indicatePessimisticFixpoint(); |
| 3861 | } |
| 3862 | |
| 3863 | /// See AbstractAttribute::trackStatistics() |
| 3864 | void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noalias) } |
| 3865 | }; |
| 3866 | |
| 3867 | struct AANoAliasCallSiteArgument final : AANoAliasImpl { |
| 3868 | AANoAliasCallSiteArgument(const IRPosition &IRP, Attributor &A) |
| 3869 | : AANoAliasImpl(IRP, A) {} |
| 3870 | |
| 3871 | /// Determine if the underlying value may alias with the call site argument |
| 3872 | /// \p OtherArgNo of \p ICS (= the underlying call site). |
| 3873 | bool mayAliasWithArgument(Attributor &A, AAResults *&AAR, |
| 3874 | const AAMemoryBehavior &MemBehaviorAA, |
| 3875 | const CallBase &CB, unsigned OtherArgNo) { |
| 3876 | // We do not need to worry about aliasing with the underlying IRP. |
| 3877 | if (this->getCalleeArgNo() == (int)OtherArgNo) |
| 3878 | return false; |
| 3879 | |
| 3880 | // If it is not a pointer or pointer vector we do not alias. |
| 3881 | const Value *ArgOp = CB.getArgOperand(i: OtherArgNo); |
| 3882 | if (!ArgOp->getType()->isPtrOrPtrVectorTy()) |
| 3883 | return false; |
| 3884 | |
| 3885 | auto *CBArgMemBehaviorAA = A.getAAFor<AAMemoryBehavior>( |
| 3886 | QueryingAA: *this, IRP: IRPosition::callsite_argument(CB, ArgNo: OtherArgNo), DepClass: DepClassTy::NONE); |
| 3887 | |
| 3888 | // If the argument is readnone, there is no read-write aliasing. |
| 3889 | if (CBArgMemBehaviorAA && CBArgMemBehaviorAA->isAssumedReadNone()) { |
| 3890 | A.recordDependence(FromAA: *CBArgMemBehaviorAA, ToAA: *this, DepClass: DepClassTy::OPTIONAL); |
| 3891 | return false; |
| 3892 | } |
| 3893 | |
| 3894 | // If the argument is readonly and the underlying value is readonly, there |
| 3895 | // is no read-write aliasing. |
| 3896 | bool IsReadOnly = MemBehaviorAA.isAssumedReadOnly(); |
| 3897 | if (CBArgMemBehaviorAA && CBArgMemBehaviorAA->isAssumedReadOnly() && |
| 3898 | IsReadOnly) { |
| 3899 | A.recordDependence(FromAA: MemBehaviorAA, ToAA: *this, DepClass: DepClassTy::OPTIONAL); |
| 3900 | A.recordDependence(FromAA: *CBArgMemBehaviorAA, ToAA: *this, DepClass: DepClassTy::OPTIONAL); |
| 3901 | return false; |
| 3902 | } |
| 3903 | |
| 3904 | // We have to utilize actual alias analysis queries so we need the object. |
| 3905 | if (!AAR) |
| 3906 | AAR = A.getInfoCache().getAnalysisResultForFunction<AAManager>( |
| 3907 | F: *getAnchorScope()); |
| 3908 | |
| 3909 | // Try to rule it out at the call site. |
| 3910 | bool IsAliasing = !AAR || !AAR->isNoAlias(V1: &getAssociatedValue(), V2: ArgOp); |
| 3911 | LLVM_DEBUG(dbgs() << "[NoAliasCSArg] Check alias between " |
| 3912 | "callsite arguments: " |
| 3913 | << getAssociatedValue() << " " << *ArgOp << " => " |
| 3914 | << (IsAliasing ? "" : "no-" ) << "alias \n" ); |
| 3915 | |
| 3916 | return IsAliasing; |
| 3917 | } |
| 3918 | |
| 3919 | bool isKnownNoAliasDueToNoAliasPreservation( |
| 3920 | Attributor &A, AAResults *&AAR, const AAMemoryBehavior &MemBehaviorAA) { |
| 3921 | // We can deduce "noalias" if the following conditions hold. |
| 3922 | // (i) Associated value is assumed to be noalias in the definition. |
| 3923 | // (ii) Associated value is assumed to be no-capture in all the uses |
| 3924 | // possibly executed before this callsite. |
| 3925 | // (iii) There is no other pointer argument which could alias with the |
| 3926 | // value. |
| 3927 | |
| 3928 | const IRPosition &VIRP = IRPosition::value(V: getAssociatedValue()); |
| 3929 | const Function *ScopeFn = VIRP.getAnchorScope(); |
| 3930 | // Check whether the value is captured in the scope using AANoCapture. |
| 3931 | // Look at CFG and check only uses possibly executed before this |
| 3932 | // callsite. |
| 3933 | auto UsePred = [&](const Use &U, bool &Follow) -> bool { |
| 3934 | Instruction *UserI = cast<Instruction>(Val: U.getUser()); |
| 3935 | |
| 3936 | // If UserI is the curr instruction and there is a single potential use of |
| 3937 | // the value in UserI we allow the use. |
| 3938 | // TODO: We should inspect the operands and allow those that cannot alias |
| 3939 | // with the value. |
| 3940 | if (UserI == getCtxI() && UserI->getNumOperands() == 1) |
| 3941 | return true; |
| 3942 | |
| 3943 | if (ScopeFn) { |
| 3944 | if (auto *CB = dyn_cast<CallBase>(Val: UserI)) { |
| 3945 | if (CB->isArgOperand(U: &U)) { |
| 3946 | |
| 3947 | unsigned ArgNo = CB->getArgOperandNo(U: &U); |
| 3948 | |
| 3949 | bool IsKnownNoCapture; |
| 3950 | if (AA::hasAssumedIRAttr<Attribute::Captures>( |
| 3951 | A, QueryingAA: this, IRP: IRPosition::callsite_argument(CB: *CB, ArgNo), |
| 3952 | DepClass: DepClassTy::OPTIONAL, IsKnown&: IsKnownNoCapture)) |
| 3953 | return true; |
| 3954 | } |
| 3955 | } |
| 3956 | |
| 3957 | if (!AA::isPotentiallyReachable( |
| 3958 | A, FromI: *UserI, ToI: *getCtxI(), QueryingAA: *this, /* ExclusionSet */ nullptr, |
| 3959 | GoBackwardsCB: [ScopeFn](const Function &Fn) { return &Fn != ScopeFn; })) |
| 3960 | return true; |
| 3961 | } |
| 3962 | |
| 3963 | // TODO: We should track the capturing uses in AANoCapture but the problem |
| 3964 | // is CGSCC runs. For those we would need to "allow" AANoCapture for |
| 3965 | // a value in the module slice. |
| 3966 | // TODO(captures): Make this more precise. |
| 3967 | UseCaptureInfo CI = DetermineUseCaptureKind(U, /*Base=*/nullptr); |
| 3968 | if (capturesNothing(CC: CI)) |
| 3969 | return true; |
| 3970 | if (CI.isPassthrough()) { |
| 3971 | Follow = true; |
| 3972 | return true; |
| 3973 | } |
| 3974 | LLVM_DEBUG(dbgs() << "[AANoAliasCSArg] Unknown user: " << *UserI << "\n" ); |
| 3975 | return false; |
| 3976 | }; |
| 3977 | |
| 3978 | bool IsKnownNoCapture; |
| 3979 | const AANoCapture *NoCaptureAA = nullptr; |
| 3980 | bool IsAssumedNoCapture = AA::hasAssumedIRAttr<Attribute::Captures>( |
| 3981 | A, QueryingAA: this, IRP: VIRP, DepClass: DepClassTy::NONE, IsKnown&: IsKnownNoCapture, IgnoreSubsumingPositions: false, AAPtr: &NoCaptureAA); |
| 3982 | if (!IsAssumedNoCapture && |
| 3983 | (!NoCaptureAA || !NoCaptureAA->isAssumedNoCaptureMaybeReturned())) { |
| 3984 | if (!A.checkForAllUses(Pred: UsePred, QueryingAA: *this, V: getAssociatedValue())) { |
| 3985 | LLVM_DEBUG( |
| 3986 | dbgs() << "[AANoAliasCSArg] " << getAssociatedValue() |
| 3987 | << " cannot be noalias as it is potentially captured\n" ); |
| 3988 | return false; |
| 3989 | } |
| 3990 | } |
| 3991 | if (NoCaptureAA) |
| 3992 | A.recordDependence(FromAA: *NoCaptureAA, ToAA: *this, DepClass: DepClassTy::OPTIONAL); |
| 3993 | |
| 3994 | // Check there is no other pointer argument which could alias with the |
| 3995 | // value passed at this call site. |
| 3996 | // TODO: AbstractCallSite |
| 3997 | const auto &CB = cast<CallBase>(Val&: getAnchorValue()); |
| 3998 | for (unsigned OtherArgNo = 0; OtherArgNo < CB.arg_size(); OtherArgNo++) |
| 3999 | if (mayAliasWithArgument(A, AAR, MemBehaviorAA, CB, OtherArgNo)) |
| 4000 | return false; |
| 4001 | |
| 4002 | return true; |
| 4003 | } |
| 4004 | |
| 4005 | /// See AbstractAttribute::updateImpl(...). |
| 4006 | ChangeStatus updateImpl(Attributor &A) override { |
| 4007 | // If the argument is readnone we are done as there are no accesses via the |
| 4008 | // argument. |
| 4009 | auto *MemBehaviorAA = |
| 4010 | A.getAAFor<AAMemoryBehavior>(QueryingAA: *this, IRP: getIRPosition(), DepClass: DepClassTy::NONE); |
| 4011 | if (MemBehaviorAA && MemBehaviorAA->isAssumedReadNone()) { |
| 4012 | A.recordDependence(FromAA: *MemBehaviorAA, ToAA: *this, DepClass: DepClassTy::OPTIONAL); |
| 4013 | return ChangeStatus::UNCHANGED; |
| 4014 | } |
| 4015 | |
| 4016 | bool IsKnownNoAlias; |
| 4017 | const IRPosition &VIRP = IRPosition::value(V: getAssociatedValue()); |
| 4018 | if (!AA::hasAssumedIRAttr<Attribute::NoAlias>( |
| 4019 | A, QueryingAA: this, IRP: VIRP, DepClass: DepClassTy::REQUIRED, IsKnown&: IsKnownNoAlias)) { |
| 4020 | LLVM_DEBUG(dbgs() << "[AANoAlias] " << getAssociatedValue() |
| 4021 | << " is not no-alias at the definition\n" ); |
| 4022 | return indicatePessimisticFixpoint(); |
| 4023 | } |
| 4024 | |
| 4025 | AAResults *AAR = nullptr; |
| 4026 | if (MemBehaviorAA && |
| 4027 | isKnownNoAliasDueToNoAliasPreservation(A, AAR, MemBehaviorAA: *MemBehaviorAA)) { |
| 4028 | LLVM_DEBUG( |
| 4029 | dbgs() << "[AANoAlias] No-Alias deduced via no-alias preservation\n" ); |
| 4030 | return ChangeStatus::UNCHANGED; |
| 4031 | } |
| 4032 | |
| 4033 | return indicatePessimisticFixpoint(); |
| 4034 | } |
| 4035 | |
| 4036 | /// See AbstractAttribute::trackStatistics() |
| 4037 | void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noalias) } |
| 4038 | }; |
| 4039 | |
| 4040 | /// NoAlias attribute for function return value. |
| 4041 | struct AANoAliasReturned final : AANoAliasImpl { |
| 4042 | AANoAliasReturned(const IRPosition &IRP, Attributor &A) |
| 4043 | : AANoAliasImpl(IRP, A) {} |
| 4044 | |
| 4045 | /// See AbstractAttribute::updateImpl(...). |
| 4046 | ChangeStatus updateImpl(Attributor &A) override { |
| 4047 | |
| 4048 | auto CheckReturnValue = [&](Value &RV) -> bool { |
| 4049 | if (Constant *C = dyn_cast<Constant>(Val: &RV)) |
| 4050 | if (C->isNullValue() || isa<UndefValue>(Val: C)) |
| 4051 | return true; |
| 4052 | |
| 4053 | /// For now, we can only deduce noalias if we have call sites. |
| 4054 | /// FIXME: add more support. |
| 4055 | if (!isa<CallBase>(Val: &RV)) |
| 4056 | return false; |
| 4057 | |
| 4058 | const IRPosition &RVPos = IRPosition::value(V: RV); |
| 4059 | bool IsKnownNoAlias; |
| 4060 | if (!AA::hasAssumedIRAttr<Attribute::NoAlias>( |
| 4061 | A, QueryingAA: this, IRP: RVPos, DepClass: DepClassTy::REQUIRED, IsKnown&: IsKnownNoAlias)) |
| 4062 | return false; |
| 4063 | |
| 4064 | bool IsKnownNoCapture; |
| 4065 | const AANoCapture *NoCaptureAA = nullptr; |
| 4066 | bool IsAssumedNoCapture = AA::hasAssumedIRAttr<Attribute::Captures>( |
| 4067 | A, QueryingAA: this, IRP: RVPos, DepClass: DepClassTy::REQUIRED, IsKnown&: IsKnownNoCapture, IgnoreSubsumingPositions: false, |
| 4068 | AAPtr: &NoCaptureAA); |
| 4069 | return IsAssumedNoCapture || |
| 4070 | (NoCaptureAA && NoCaptureAA->isAssumedNoCaptureMaybeReturned()); |
| 4071 | }; |
| 4072 | |
| 4073 | if (!A.checkForAllReturnedValues(Pred: CheckReturnValue, QueryingAA: *this)) |
| 4074 | return indicatePessimisticFixpoint(); |
| 4075 | |
| 4076 | return ChangeStatus::UNCHANGED; |
| 4077 | } |
| 4078 | |
| 4079 | /// See AbstractAttribute::trackStatistics() |
| 4080 | void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noalias) } |
| 4081 | }; |
| 4082 | |
| 4083 | /// NoAlias attribute deduction for a call site return value. |
| 4084 | struct AANoAliasCallSiteReturned final |
| 4085 | : AACalleeToCallSite<AANoAlias, AANoAliasImpl> { |
| 4086 | AANoAliasCallSiteReturned(const IRPosition &IRP, Attributor &A) |
| 4087 | : AACalleeToCallSite<AANoAlias, AANoAliasImpl>(IRP, A) {} |
| 4088 | |
| 4089 | /// See AbstractAttribute::trackStatistics() |
| 4090 | void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noalias); } |
| 4091 | }; |
| 4092 | } // namespace |
| 4093 | |
| 4094 | /// -------------------AAIsDead Function Attribute----------------------- |
| 4095 | |
| 4096 | namespace { |
| 4097 | struct AAIsDeadValueImpl : public AAIsDead { |
| 4098 | AAIsDeadValueImpl(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {} |
| 4099 | |
| 4100 | /// See AAIsDead::isAssumedDead(). |
| 4101 | bool isAssumedDead() const override { return isAssumed(BitsEncoding: IS_DEAD); } |
| 4102 | |
| 4103 | /// See AAIsDead::isKnownDead(). |
| 4104 | bool isKnownDead() const override { return isKnown(BitsEncoding: IS_DEAD); } |
| 4105 | |
| 4106 | /// See AAIsDead::isAssumedDead(BasicBlock *). |
| 4107 | bool isAssumedDead(const BasicBlock *BB) const override { return false; } |
| 4108 | |
| 4109 | /// See AAIsDead::isKnownDead(BasicBlock *). |
| 4110 | bool isKnownDead(const BasicBlock *BB) const override { return false; } |
| 4111 | |
| 4112 | /// See AAIsDead::isAssumedDead(Instruction *I). |
| 4113 | bool isAssumedDead(const Instruction *I) const override { |
| 4114 | return I == getCtxI() && isAssumedDead(); |
| 4115 | } |
| 4116 | |
| 4117 | /// See AAIsDead::isKnownDead(Instruction *I). |
| 4118 | bool isKnownDead(const Instruction *I) const override { |
| 4119 | return isAssumedDead(I) && isKnownDead(); |
| 4120 | } |
| 4121 | |
| 4122 | /// See AbstractAttribute::getAsStr(). |
| 4123 | const std::string getAsStr(Attributor *A) const override { |
| 4124 | return isAssumedDead() ? "assumed-dead" : "assumed-live" ; |
| 4125 | } |
| 4126 | |
| 4127 | /// Check if all uses are assumed dead. |
| 4128 | bool areAllUsesAssumedDead(Attributor &A, Value &V) { |
| 4129 | // Callers might not check the type, void has no uses. |
| 4130 | if (V.getType()->isVoidTy() || V.use_empty()) |
| 4131 | return true; |
| 4132 | |
| 4133 | // If we replace a value with a constant there are no uses left afterwards. |
| 4134 | if (!isa<Constant>(Val: V)) { |
| 4135 | if (auto *I = dyn_cast<Instruction>(Val: &V)) |
| 4136 | if (!A.isRunOn(Fn&: *I->getFunction())) |
| 4137 | return false; |
| 4138 | bool UsedAssumedInformation = false; |
| 4139 | std::optional<Constant *> C = |
| 4140 | A.getAssumedConstant(V, AA: *this, UsedAssumedInformation); |
| 4141 | if (!C || *C) |
| 4142 | return true; |
| 4143 | } |
| 4144 | |
| 4145 | auto UsePred = [&](const Use &U, bool &Follow) { return false; }; |
| 4146 | // Explicitly set the dependence class to required because we want a long |
| 4147 | // chain of N dependent instructions to be considered live as soon as one is |
| 4148 | // without going through N update cycles. This is not required for |
| 4149 | // correctness. |
| 4150 | return A.checkForAllUses(Pred: UsePred, QueryingAA: *this, V, /* CheckBBLivenessOnly */ false, |
| 4151 | LivenessDepClass: DepClassTy::REQUIRED, |
| 4152 | /* IgnoreDroppableUses */ false); |
| 4153 | } |
| 4154 | |
| 4155 | /// Determine if \p I is assumed to be side-effect free. |
| 4156 | bool isAssumedSideEffectFree(Attributor &A, Instruction *I) { |
| 4157 | if (!I || wouldInstructionBeTriviallyDead(I)) |
| 4158 | return true; |
| 4159 | |
| 4160 | auto *CB = dyn_cast<CallBase>(Val: I); |
| 4161 | if (!CB || isa<IntrinsicInst>(Val: CB)) |
| 4162 | return false; |
| 4163 | |
| 4164 | const IRPosition &CallIRP = IRPosition::callsite_function(CB: *CB); |
| 4165 | |
| 4166 | bool IsKnownNoUnwind; |
| 4167 | if (!AA::hasAssumedIRAttr<Attribute::NoUnwind>( |
| 4168 | A, QueryingAA: this, IRP: CallIRP, DepClass: DepClassTy::OPTIONAL, IsKnown&: IsKnownNoUnwind)) |
| 4169 | return false; |
| 4170 | |
| 4171 | bool IsKnown; |
| 4172 | return AA::isAssumedReadOnly(A, IRP: CallIRP, QueryingAA: *this, IsKnown); |
| 4173 | } |
| 4174 | }; |
| 4175 | |
| 4176 | struct AAIsDeadFloating : public AAIsDeadValueImpl { |
| 4177 | AAIsDeadFloating(const IRPosition &IRP, Attributor &A) |
| 4178 | : AAIsDeadValueImpl(IRP, A) {} |
| 4179 | |
| 4180 | /// See AbstractAttribute::initialize(...). |
| 4181 | void initialize(Attributor &A) override { |
| 4182 | AAIsDeadValueImpl::initialize(A); |
| 4183 | |
| 4184 | if (isa<UndefValue>(Val: getAssociatedValue())) { |
| 4185 | indicatePessimisticFixpoint(); |
| 4186 | return; |
| 4187 | } |
| 4188 | |
| 4189 | Instruction *I = dyn_cast<Instruction>(Val: &getAssociatedValue()); |
| 4190 | if (!isAssumedSideEffectFree(A, I)) { |
| 4191 | if (!isa_and_nonnull<StoreInst>(Val: I) && !isa_and_nonnull<FenceInst>(Val: I)) |
| 4192 | indicatePessimisticFixpoint(); |
| 4193 | else |
| 4194 | removeAssumedBits(BitsEncoding: HAS_NO_EFFECT); |
| 4195 | } |
| 4196 | } |
| 4197 | |
| 4198 | bool isDeadFence(Attributor &A, FenceInst &FI) { |
| 4199 | const auto *ExecDomainAA = A.lookupAAFor<AAExecutionDomain>( |
| 4200 | IRP: IRPosition::function(F: *FI.getFunction()), QueryingAA: *this, DepClass: DepClassTy::NONE); |
| 4201 | if (!ExecDomainAA || !ExecDomainAA->isNoOpFence(FI)) |
| 4202 | return false; |
| 4203 | A.recordDependence(FromAA: *ExecDomainAA, ToAA: *this, DepClass: DepClassTy::OPTIONAL); |
| 4204 | return true; |
| 4205 | } |
| 4206 | |
| 4207 | bool isDeadStore(Attributor &A, StoreInst &SI, |
| 4208 | SmallSetVector<Instruction *, 8> *AssumeOnlyInst = nullptr) { |
| 4209 | // Lang ref now states volatile store is not UB/dead, let's skip them. |
| 4210 | if (SI.isVolatile()) |
| 4211 | return false; |
| 4212 | |
| 4213 | // If we are collecting assumes to be deleted we are in the manifest stage. |
| 4214 | // It's problematic to collect the potential copies again now so we use the |
| 4215 | // cached ones. |
| 4216 | bool UsedAssumedInformation = false; |
| 4217 | if (!AssumeOnlyInst) { |
| 4218 | PotentialCopies.clear(); |
| 4219 | if (!AA::getPotentialCopiesOfStoredValue(A, SI, PotentialCopies, QueryingAA: *this, |
| 4220 | UsedAssumedInformation)) { |
| 4221 | LLVM_DEBUG( |
| 4222 | dbgs() |
| 4223 | << "[AAIsDead] Could not determine potential copies of store!\n" ); |
| 4224 | return false; |
| 4225 | } |
| 4226 | } |
| 4227 | LLVM_DEBUG(dbgs() << "[AAIsDead] Store has " << PotentialCopies.size() |
| 4228 | << " potential copies.\n" ); |
| 4229 | |
| 4230 | InformationCache &InfoCache = A.getInfoCache(); |
| 4231 | return llvm::all_of(Range&: PotentialCopies, P: [&](Value *V) { |
| 4232 | if (A.isAssumedDead(IRP: IRPosition::value(V: *V), QueryingAA: this, FnLivenessAA: nullptr, |
| 4233 | UsedAssumedInformation)) |
| 4234 | return true; |
| 4235 | if (auto *LI = dyn_cast<LoadInst>(Val: V)) { |
| 4236 | if (llvm::all_of(Range: LI->uses(), P: [&](const Use &U) { |
| 4237 | auto &UserI = cast<Instruction>(Val&: *U.getUser()); |
| 4238 | if (InfoCache.isOnlyUsedByAssume(I: UserI)) { |
| 4239 | if (AssumeOnlyInst) |
| 4240 | AssumeOnlyInst->insert(X: &UserI); |
| 4241 | return true; |
| 4242 | } |
| 4243 | return A.isAssumedDead(U, QueryingAA: this, FnLivenessAA: nullptr, UsedAssumedInformation); |
| 4244 | })) { |
| 4245 | return true; |
| 4246 | } |
| 4247 | } |
| 4248 | LLVM_DEBUG(dbgs() << "[AAIsDead] Potential copy " << *V |
| 4249 | << " is assumed live!\n" ); |
| 4250 | return false; |
| 4251 | }); |
| 4252 | } |
| 4253 | |
| 4254 | /// See AbstractAttribute::getAsStr(). |
| 4255 | const std::string getAsStr(Attributor *A) const override { |
| 4256 | Instruction *I = dyn_cast<Instruction>(Val: &getAssociatedValue()); |
| 4257 | if (isa_and_nonnull<StoreInst>(Val: I)) |
| 4258 | if (isValidState()) |
| 4259 | return "assumed-dead-store" ; |
| 4260 | if (isa_and_nonnull<FenceInst>(Val: I)) |
| 4261 | if (isValidState()) |
| 4262 | return "assumed-dead-fence" ; |
| 4263 | return AAIsDeadValueImpl::getAsStr(A); |
| 4264 | } |
| 4265 | |
| 4266 | /// See AbstractAttribute::updateImpl(...). |
| 4267 | ChangeStatus updateImpl(Attributor &A) override { |
| 4268 | Instruction *I = dyn_cast<Instruction>(Val: &getAssociatedValue()); |
| 4269 | if (auto *SI = dyn_cast_or_null<StoreInst>(Val: I)) { |
| 4270 | if (!isDeadStore(A, SI&: *SI)) |
| 4271 | return indicatePessimisticFixpoint(); |
| 4272 | } else if (auto *FI = dyn_cast_or_null<FenceInst>(Val: I)) { |
| 4273 | if (!isDeadFence(A, FI&: *FI)) |
| 4274 | return indicatePessimisticFixpoint(); |
| 4275 | } else { |
| 4276 | if (!isAssumedSideEffectFree(A, I)) |
| 4277 | return indicatePessimisticFixpoint(); |
| 4278 | if (!areAllUsesAssumedDead(A, V&: getAssociatedValue())) |
| 4279 | return indicatePessimisticFixpoint(); |
| 4280 | } |
| 4281 | return ChangeStatus::UNCHANGED; |
| 4282 | } |
| 4283 | |
| 4284 | bool isRemovableStore() const override { |
| 4285 | return isAssumed(BitsEncoding: IS_REMOVABLE) && isa<StoreInst>(Val: &getAssociatedValue()); |
| 4286 | } |
| 4287 | |
| 4288 | /// See AbstractAttribute::manifest(...). |
| 4289 | ChangeStatus manifest(Attributor &A) override { |
| 4290 | Value &V = getAssociatedValue(); |
| 4291 | if (auto *I = dyn_cast<Instruction>(Val: &V)) { |
| 4292 | // If we get here we basically know the users are all dead. We check if |
| 4293 | // isAssumedSideEffectFree returns true here again because it might not be |
| 4294 | // the case and only the users are dead but the instruction (=call) is |
| 4295 | // still needed. |
| 4296 | if (auto *SI = dyn_cast<StoreInst>(Val: I)) { |
| 4297 | SmallSetVector<Instruction *, 8> AssumeOnlyInst; |
| 4298 | bool IsDead = isDeadStore(A, SI&: *SI, AssumeOnlyInst: &AssumeOnlyInst); |
| 4299 | (void)IsDead; |
| 4300 | assert(IsDead && "Store was assumed to be dead!" ); |
| 4301 | A.deleteAfterManifest(I&: *I); |
| 4302 | for (size_t i = 0; i < AssumeOnlyInst.size(); ++i) { |
| 4303 | Instruction *AOI = AssumeOnlyInst[i]; |
| 4304 | for (auto *Usr : AOI->users()) |
| 4305 | AssumeOnlyInst.insert(X: cast<Instruction>(Val: Usr)); |
| 4306 | A.deleteAfterManifest(I&: *AOI); |
| 4307 | } |
| 4308 | return ChangeStatus::CHANGED; |
| 4309 | } |
| 4310 | if (auto *FI = dyn_cast<FenceInst>(Val: I)) { |
| 4311 | assert(isDeadFence(A, *FI)); |
| 4312 | A.deleteAfterManifest(I&: *FI); |
| 4313 | return ChangeStatus::CHANGED; |
| 4314 | } |
| 4315 | if (isAssumedSideEffectFree(A, I) && !isa<InvokeInst>(Val: I)) { |
| 4316 | A.deleteAfterManifest(I&: *I); |
| 4317 | return ChangeStatus::CHANGED; |
| 4318 | } |
| 4319 | } |
| 4320 | return ChangeStatus::UNCHANGED; |
| 4321 | } |
| 4322 | |
| 4323 | /// See AbstractAttribute::trackStatistics() |
| 4324 | void trackStatistics() const override { |
| 4325 | STATS_DECLTRACK_FLOATING_ATTR(IsDead) |
| 4326 | } |
| 4327 | |
| 4328 | private: |
| 4329 | // The potential copies of a dead store, used for deletion during manifest. |
| 4330 | SmallSetVector<Value *, 4> PotentialCopies; |
| 4331 | }; |
| 4332 | |
| 4333 | struct AAIsDeadArgument : public AAIsDeadFloating { |
| 4334 | AAIsDeadArgument(const IRPosition &IRP, Attributor &A) |
| 4335 | : AAIsDeadFloating(IRP, A) {} |
| 4336 | |
| 4337 | /// See AbstractAttribute::manifest(...). |
| 4338 | ChangeStatus manifest(Attributor &A) override { |
| 4339 | Argument &Arg = *getAssociatedArgument(); |
| 4340 | if (A.isValidFunctionSignatureRewrite(Arg, /* ReplacementTypes */ {})) |
| 4341 | if (A.registerFunctionSignatureRewrite( |
| 4342 | Arg, /* ReplacementTypes */ {}, |
| 4343 | CalleeRepairCB: Attributor::ArgumentReplacementInfo::CalleeRepairCBTy{}, |
| 4344 | ACSRepairCB: Attributor::ArgumentReplacementInfo::ACSRepairCBTy{})) { |
| 4345 | return ChangeStatus::CHANGED; |
| 4346 | } |
| 4347 | return ChangeStatus::UNCHANGED; |
| 4348 | } |
| 4349 | |
| 4350 | /// See AbstractAttribute::trackStatistics() |
| 4351 | void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(IsDead) } |
| 4352 | }; |
| 4353 | |
| 4354 | struct AAIsDeadCallSiteArgument : public AAIsDeadValueImpl { |
| 4355 | AAIsDeadCallSiteArgument(const IRPosition &IRP, Attributor &A) |
| 4356 | : AAIsDeadValueImpl(IRP, A) {} |
| 4357 | |
| 4358 | /// See AbstractAttribute::initialize(...). |
| 4359 | void initialize(Attributor &A) override { |
| 4360 | AAIsDeadValueImpl::initialize(A); |
| 4361 | if (isa<UndefValue>(Val: getAssociatedValue())) |
| 4362 | indicatePessimisticFixpoint(); |
| 4363 | } |
| 4364 | |
| 4365 | /// See AbstractAttribute::updateImpl(...). |
| 4366 | ChangeStatus updateImpl(Attributor &A) override { |
| 4367 | // TODO: Once we have call site specific value information we can provide |
| 4368 | // call site specific liveness information and then it makes |
| 4369 | // sense to specialize attributes for call sites arguments instead of |
| 4370 | // redirecting requests to the callee argument. |
| 4371 | Argument *Arg = getAssociatedArgument(); |
| 4372 | if (!Arg) |
| 4373 | return indicatePessimisticFixpoint(); |
| 4374 | const IRPosition &ArgPos = IRPosition::argument(Arg: *Arg); |
| 4375 | auto *ArgAA = A.getAAFor<AAIsDead>(QueryingAA: *this, IRP: ArgPos, DepClass: DepClassTy::REQUIRED); |
| 4376 | if (!ArgAA) |
| 4377 | return indicatePessimisticFixpoint(); |
| 4378 | return clampStateAndIndicateChange(S&: getState(), R: ArgAA->getState()); |
| 4379 | } |
| 4380 | |
| 4381 | /// See AbstractAttribute::manifest(...). |
| 4382 | ChangeStatus manifest(Attributor &A) override { |
| 4383 | CallBase &CB = cast<CallBase>(Val&: getAnchorValue()); |
| 4384 | Use &U = CB.getArgOperandUse(i: getCallSiteArgNo()); |
| 4385 | assert(!isa<UndefValue>(U.get()) && |
| 4386 | "Expected undef values to be filtered out!" ); |
| 4387 | UndefValue &UV = *UndefValue::get(T: U->getType()); |
| 4388 | if (A.changeUseAfterManifest(U, NV&: UV)) |
| 4389 | return ChangeStatus::CHANGED; |
| 4390 | return ChangeStatus::UNCHANGED; |
| 4391 | } |
| 4392 | |
| 4393 | /// See AbstractAttribute::trackStatistics() |
| 4394 | void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(IsDead) } |
| 4395 | }; |
| 4396 | |
| 4397 | struct AAIsDeadCallSiteReturned : public AAIsDeadFloating { |
| 4398 | AAIsDeadCallSiteReturned(const IRPosition &IRP, Attributor &A) |
| 4399 | : AAIsDeadFloating(IRP, A) {} |
| 4400 | |
| 4401 | /// See AAIsDead::isAssumedDead(). |
| 4402 | bool isAssumedDead() const override { |
| 4403 | return AAIsDeadFloating::isAssumedDead() && IsAssumedSideEffectFree; |
| 4404 | } |
| 4405 | |
| 4406 | /// See AbstractAttribute::initialize(...). |
| 4407 | void initialize(Attributor &A) override { |
| 4408 | AAIsDeadFloating::initialize(A); |
| 4409 | if (isa<UndefValue>(Val: getAssociatedValue())) { |
| 4410 | indicatePessimisticFixpoint(); |
| 4411 | return; |
| 4412 | } |
| 4413 | |
| 4414 | // We track this separately as a secondary state. |
| 4415 | IsAssumedSideEffectFree = isAssumedSideEffectFree(A, I: getCtxI()); |
| 4416 | } |
| 4417 | |
| 4418 | /// See AbstractAttribute::updateImpl(...). |
| 4419 | ChangeStatus updateImpl(Attributor &A) override { |
| 4420 | ChangeStatus Changed = ChangeStatus::UNCHANGED; |
| 4421 | if (IsAssumedSideEffectFree && !isAssumedSideEffectFree(A, I: getCtxI())) { |
| 4422 | IsAssumedSideEffectFree = false; |
| 4423 | Changed = ChangeStatus::CHANGED; |
| 4424 | } |
| 4425 | if (!areAllUsesAssumedDead(A, V&: getAssociatedValue())) |
| 4426 | return indicatePessimisticFixpoint(); |
| 4427 | return Changed; |
| 4428 | } |
| 4429 | |
| 4430 | /// See AbstractAttribute::trackStatistics() |
| 4431 | void trackStatistics() const override { |
| 4432 | if (IsAssumedSideEffectFree) |
| 4433 | STATS_DECLTRACK_CSRET_ATTR(IsDead) |
| 4434 | else |
| 4435 | STATS_DECLTRACK_CSRET_ATTR(UnusedResult) |
| 4436 | } |
| 4437 | |
| 4438 | /// See AbstractAttribute::getAsStr(). |
| 4439 | const std::string getAsStr(Attributor *A) const override { |
| 4440 | return isAssumedDead() |
| 4441 | ? "assumed-dead" |
| 4442 | : (getAssumed() ? "assumed-dead-users" : "assumed-live" ); |
| 4443 | } |
| 4444 | |
| 4445 | private: |
| 4446 | bool IsAssumedSideEffectFree = true; |
| 4447 | }; |
| 4448 | |
| 4449 | struct AAIsDeadReturned : public AAIsDeadValueImpl { |
| 4450 | AAIsDeadReturned(const IRPosition &IRP, Attributor &A) |
| 4451 | : AAIsDeadValueImpl(IRP, A) {} |
| 4452 | |
| 4453 | /// See AbstractAttribute::updateImpl(...). |
| 4454 | ChangeStatus updateImpl(Attributor &A) override { |
| 4455 | |
| 4456 | bool UsedAssumedInformation = false; |
| 4457 | A.checkForAllInstructions(Pred: [](Instruction &) { return true; }, QueryingAA: *this, |
| 4458 | Opcodes: {Instruction::Ret}, UsedAssumedInformation); |
| 4459 | |
| 4460 | auto PredForCallSite = [&](AbstractCallSite ACS) { |
| 4461 | if (ACS.isCallbackCall() || !ACS.getInstruction()) |
| 4462 | return false; |
| 4463 | return areAllUsesAssumedDead(A, V&: *ACS.getInstruction()); |
| 4464 | }; |
| 4465 | |
| 4466 | if (!A.checkForAllCallSites(Pred: PredForCallSite, QueryingAA: *this, RequireAllCallSites: true, |
| 4467 | UsedAssumedInformation)) |
| 4468 | return indicatePessimisticFixpoint(); |
| 4469 | |
| 4470 | return ChangeStatus::UNCHANGED; |
| 4471 | } |
| 4472 | |
| 4473 | /// See AbstractAttribute::manifest(...). |
| 4474 | ChangeStatus manifest(Attributor &A) override { |
| 4475 | // TODO: Rewrite the signature to return void? |
| 4476 | bool AnyChange = false; |
| 4477 | UndefValue &UV = *UndefValue::get(T: getAssociatedFunction()->getReturnType()); |
| 4478 | auto RetInstPred = [&](Instruction &I) { |
| 4479 | ReturnInst &RI = cast<ReturnInst>(Val&: I); |
| 4480 | if (!isa<UndefValue>(Val: RI.getReturnValue())) |
| 4481 | AnyChange |= A.changeUseAfterManifest(U&: RI.getOperandUse(i: 0), NV&: UV); |
| 4482 | return true; |
| 4483 | }; |
| 4484 | bool UsedAssumedInformation = false; |
| 4485 | A.checkForAllInstructions(Pred: RetInstPred, QueryingAA: *this, Opcodes: {Instruction::Ret}, |
| 4486 | UsedAssumedInformation); |
| 4487 | return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED; |
| 4488 | } |
| 4489 | |
| 4490 | /// See AbstractAttribute::trackStatistics() |
| 4491 | void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(IsDead) } |
| 4492 | }; |
| 4493 | |
| 4494 | struct AAIsDeadFunction : public AAIsDead { |
| 4495 | AAIsDeadFunction(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {} |
| 4496 | |
| 4497 | /// See AbstractAttribute::initialize(...). |
| 4498 | void initialize(Attributor &A) override { |
| 4499 | Function *F = getAnchorScope(); |
| 4500 | assert(F && "Did expect an anchor function" ); |
| 4501 | if (!isAssumedDeadInternalFunction(A)) { |
| 4502 | ToBeExploredFrom.insert(X: &F->getEntryBlock().front()); |
| 4503 | assumeLive(A, BB: F->getEntryBlock()); |
| 4504 | } |
| 4505 | } |
| 4506 | |
| 4507 | bool isAssumedDeadInternalFunction(Attributor &A) { |
| 4508 | if (!getAnchorScope()->hasLocalLinkage()) |
| 4509 | return false; |
| 4510 | bool UsedAssumedInformation = false; |
| 4511 | return A.checkForAllCallSites(Pred: [](AbstractCallSite) { return false; }, QueryingAA: *this, |
| 4512 | RequireAllCallSites: true, UsedAssumedInformation); |
| 4513 | } |
| 4514 | |
| 4515 | /// See AbstractAttribute::getAsStr(). |
| 4516 | const std::string getAsStr(Attributor *A) const override { |
| 4517 | return "Live[#BB " + std::to_string(val: AssumedLiveBlocks.size()) + "/" + |
| 4518 | std::to_string(val: getAnchorScope()->size()) + "][#TBEP " + |
| 4519 | std::to_string(val: ToBeExploredFrom.size()) + "][#KDE " + |
| 4520 | std::to_string(val: KnownDeadEnds.size()) + "]" ; |
| 4521 | } |
| 4522 | |
| 4523 | /// See AbstractAttribute::manifest(...). |
| 4524 | ChangeStatus manifest(Attributor &A) override { |
| 4525 | assert(getState().isValidState() && |
| 4526 | "Attempted to manifest an invalid state!" ); |
| 4527 | |
| 4528 | ChangeStatus HasChanged = ChangeStatus::UNCHANGED; |
| 4529 | Function &F = *getAnchorScope(); |
| 4530 | |
| 4531 | if (AssumedLiveBlocks.empty()) { |
| 4532 | A.deleteAfterManifest(F); |
| 4533 | return ChangeStatus::CHANGED; |
| 4534 | } |
| 4535 | |
| 4536 | // Flag to determine if we can change an invoke to a call assuming the |
| 4537 | // callee is nounwind. This is not possible if the personality of the |
| 4538 | // function allows to catch asynchronous exceptions. |
| 4539 | bool Invoke2CallAllowed = !mayCatchAsynchronousExceptions(F); |
| 4540 | |
| 4541 | KnownDeadEnds.set_union(ToBeExploredFrom); |
| 4542 | for (const Instruction *DeadEndI : KnownDeadEnds) { |
| 4543 | auto *CB = dyn_cast<CallBase>(Val: DeadEndI); |
| 4544 | if (!CB) |
| 4545 | continue; |
| 4546 | bool IsKnownNoReturn; |
| 4547 | bool MayReturn = !AA::hasAssumedIRAttr<Attribute::NoReturn>( |
| 4548 | A, QueryingAA: this, IRP: IRPosition::callsite_function(CB: *CB), DepClass: DepClassTy::OPTIONAL, |
| 4549 | IsKnown&: IsKnownNoReturn); |
| 4550 | if (MayReturn && (!Invoke2CallAllowed || !isa<InvokeInst>(Val: CB))) |
| 4551 | continue; |
| 4552 | |
| 4553 | if (auto *II = dyn_cast<InvokeInst>(Val: DeadEndI)) |
| 4554 | A.registerInvokeWithDeadSuccessor(II&: const_cast<InvokeInst &>(*II)); |
| 4555 | else |
| 4556 | A.changeToUnreachableAfterManifest( |
| 4557 | I: const_cast<Instruction *>(DeadEndI->getNextNode())); |
| 4558 | HasChanged = ChangeStatus::CHANGED; |
| 4559 | } |
| 4560 | |
| 4561 | STATS_DECL(AAIsDead, BasicBlock, "Number of dead basic blocks deleted." ); |
| 4562 | for (BasicBlock &BB : F) |
| 4563 | if (!AssumedLiveBlocks.count(V: &BB)) { |
| 4564 | A.deleteAfterManifest(BB); |
| 4565 | ++BUILD_STAT_NAME(AAIsDead, BasicBlock); |
| 4566 | HasChanged = ChangeStatus::CHANGED; |
| 4567 | } |
| 4568 | |
| 4569 | return HasChanged; |
| 4570 | } |
| 4571 | |
| 4572 | /// See AbstractAttribute::updateImpl(...). |
| 4573 | ChangeStatus updateImpl(Attributor &A) override; |
| 4574 | |
| 4575 | bool isEdgeDead(const BasicBlock *From, const BasicBlock *To) const override { |
| 4576 | assert(From->getParent() == getAnchorScope() && |
| 4577 | To->getParent() == getAnchorScope() && |
| 4578 | "Used AAIsDead of the wrong function" ); |
| 4579 | return isValidState() && !AssumedLiveEdges.count(V: std::make_pair(x&: From, y&: To)); |
| 4580 | } |
| 4581 | |
| 4582 | /// See AbstractAttribute::trackStatistics() |
| 4583 | void trackStatistics() const override {} |
| 4584 | |
| 4585 | /// Returns true if the function is assumed dead. |
| 4586 | bool isAssumedDead() const override { return false; } |
| 4587 | |
| 4588 | /// See AAIsDead::isKnownDead(). |
| 4589 | bool isKnownDead() const override { return false; } |
| 4590 | |
| 4591 | /// See AAIsDead::isAssumedDead(BasicBlock *). |
| 4592 | bool isAssumedDead(const BasicBlock *BB) const override { |
| 4593 | assert(BB->getParent() == getAnchorScope() && |
| 4594 | "BB must be in the same anchor scope function." ); |
| 4595 | |
| 4596 | if (!getAssumed()) |
| 4597 | return false; |
| 4598 | return !AssumedLiveBlocks.count(V: BB); |
| 4599 | } |
| 4600 | |
| 4601 | /// See AAIsDead::isKnownDead(BasicBlock *). |
| 4602 | bool isKnownDead(const BasicBlock *BB) const override { |
| 4603 | return getKnown() && isAssumedDead(BB); |
| 4604 | } |
| 4605 | |
| 4606 | /// See AAIsDead::isAssumed(Instruction *I). |
| 4607 | bool isAssumedDead(const Instruction *I) const override { |
| 4608 | assert(I->getParent()->getParent() == getAnchorScope() && |
| 4609 | "Instruction must be in the same anchor scope function." ); |
| 4610 | |
| 4611 | if (!getAssumed()) |
| 4612 | return false; |
| 4613 | |
| 4614 | // If it is not in AssumedLiveBlocks then it for sure dead. |
| 4615 | // Otherwise, it can still be after noreturn call in a live block. |
| 4616 | if (!AssumedLiveBlocks.count(V: I->getParent())) |
| 4617 | return true; |
| 4618 | |
| 4619 | // If it is not after a liveness barrier it is live. |
| 4620 | const Instruction *PrevI = I->getPrevNode(); |
| 4621 | while (PrevI) { |
| 4622 | if (KnownDeadEnds.count(key: PrevI) || ToBeExploredFrom.count(key: PrevI)) |
| 4623 | return true; |
| 4624 | PrevI = PrevI->getPrevNode(); |
| 4625 | } |
| 4626 | return false; |
| 4627 | } |
| 4628 | |
| 4629 | /// See AAIsDead::isKnownDead(Instruction *I). |
| 4630 | bool isKnownDead(const Instruction *I) const override { |
| 4631 | return getKnown() && isAssumedDead(I); |
| 4632 | } |
| 4633 | |
| 4634 | /// Assume \p BB is (partially) live now and indicate to the Attributor \p A |
| 4635 | /// that internal function called from \p BB should now be looked at. |
| 4636 | bool assumeLive(Attributor &A, const BasicBlock &BB) { |
| 4637 | if (!AssumedLiveBlocks.insert(V: &BB).second) |
| 4638 | return false; |
| 4639 | |
| 4640 | // We assume that all of BB is (probably) live now and if there are calls to |
| 4641 | // internal functions we will assume that those are now live as well. This |
| 4642 | // is a performance optimization for blocks with calls to a lot of internal |
| 4643 | // functions. It can however cause dead functions to be treated as live. |
| 4644 | for (const Instruction &I : BB) |
| 4645 | if (const auto *CB = dyn_cast<CallBase>(Val: &I)) |
| 4646 | if (auto *F = dyn_cast_if_present<Function>(Val: CB->getCalledOperand())) |
| 4647 | if (F->hasLocalLinkage()) |
| 4648 | A.markLiveInternalFunction(F: *F); |
| 4649 | return true; |
| 4650 | } |
| 4651 | |
| 4652 | /// Collection of instructions that need to be explored again, e.g., we |
| 4653 | /// did assume they do not transfer control to (one of their) successors. |
| 4654 | SmallSetVector<const Instruction *, 8> ToBeExploredFrom; |
| 4655 | |
| 4656 | /// Collection of instructions that are known to not transfer control. |
| 4657 | SmallSetVector<const Instruction *, 8> KnownDeadEnds; |
| 4658 | |
| 4659 | /// Collection of all assumed live edges |
| 4660 | DenseSet<std::pair<const BasicBlock *, const BasicBlock *>> AssumedLiveEdges; |
| 4661 | |
| 4662 | /// Collection of all assumed live BasicBlocks. |
| 4663 | DenseSet<const BasicBlock *> AssumedLiveBlocks; |
| 4664 | }; |
| 4665 | |
| 4666 | static bool |
| 4667 | identifyAliveSuccessors(Attributor &A, const CallBase &CB, |
| 4668 | AbstractAttribute &AA, |
| 4669 | SmallVectorImpl<const Instruction *> &AliveSuccessors) { |
| 4670 | const IRPosition &IPos = IRPosition::callsite_function(CB); |
| 4671 | |
| 4672 | bool IsKnownNoReturn; |
| 4673 | if (AA::hasAssumedIRAttr<Attribute::NoReturn>( |
| 4674 | A, QueryingAA: &AA, IRP: IPos, DepClass: DepClassTy::OPTIONAL, IsKnown&: IsKnownNoReturn)) |
| 4675 | return !IsKnownNoReturn; |
| 4676 | if (CB.isTerminator()) |
| 4677 | AliveSuccessors.push_back(Elt: &CB.getSuccessor(Idx: 0)->front()); |
| 4678 | else |
| 4679 | AliveSuccessors.push_back(Elt: CB.getNextNode()); |
| 4680 | return false; |
| 4681 | } |
| 4682 | |
| 4683 | static bool |
| 4684 | identifyAliveSuccessors(Attributor &A, const InvokeInst &II, |
| 4685 | AbstractAttribute &AA, |
| 4686 | SmallVectorImpl<const Instruction *> &AliveSuccessors) { |
| 4687 | bool UsedAssumedInformation = |
| 4688 | identifyAliveSuccessors(A, CB: cast<CallBase>(Val: II), AA, AliveSuccessors); |
| 4689 | |
| 4690 | // First, determine if we can change an invoke to a call assuming the |
| 4691 | // callee is nounwind. This is not possible if the personality of the |
| 4692 | // function allows to catch asynchronous exceptions. |
| 4693 | if (AAIsDeadFunction::mayCatchAsynchronousExceptions(F: *II.getFunction())) { |
| 4694 | AliveSuccessors.push_back(Elt: &II.getUnwindDest()->front()); |
| 4695 | } else { |
| 4696 | const IRPosition &IPos = IRPosition::callsite_function(CB: II); |
| 4697 | |
| 4698 | bool IsKnownNoUnwind; |
| 4699 | if (AA::hasAssumedIRAttr<Attribute::NoUnwind>( |
| 4700 | A, QueryingAA: &AA, IRP: IPos, DepClass: DepClassTy::OPTIONAL, IsKnown&: IsKnownNoUnwind)) { |
| 4701 | UsedAssumedInformation |= !IsKnownNoUnwind; |
| 4702 | } else { |
| 4703 | AliveSuccessors.push_back(Elt: &II.getUnwindDest()->front()); |
| 4704 | } |
| 4705 | } |
| 4706 | return UsedAssumedInformation; |
| 4707 | } |
| 4708 | |
| 4709 | static bool |
| 4710 | identifyAliveSuccessors(Attributor &A, const BranchInst &BI, |
| 4711 | AbstractAttribute &AA, |
| 4712 | SmallVectorImpl<const Instruction *> &AliveSuccessors) { |
| 4713 | bool UsedAssumedInformation = false; |
| 4714 | if (BI.getNumSuccessors() == 1) { |
| 4715 | AliveSuccessors.push_back(Elt: &BI.getSuccessor(i: 0)->front()); |
| 4716 | } else { |
| 4717 | std::optional<Constant *> C = |
| 4718 | A.getAssumedConstant(V: *BI.getCondition(), AA, UsedAssumedInformation); |
| 4719 | if (!C || isa_and_nonnull<UndefValue>(Val: *C)) { |
| 4720 | // No value yet, assume both edges are dead. |
| 4721 | } else if (isa_and_nonnull<ConstantInt>(Val: *C)) { |
| 4722 | const BasicBlock *SuccBB = |
| 4723 | BI.getSuccessor(i: 1 - cast<ConstantInt>(Val: *C)->getValue().getZExtValue()); |
| 4724 | AliveSuccessors.push_back(Elt: &SuccBB->front()); |
| 4725 | } else { |
| 4726 | AliveSuccessors.push_back(Elt: &BI.getSuccessor(i: 0)->front()); |
| 4727 | AliveSuccessors.push_back(Elt: &BI.getSuccessor(i: 1)->front()); |
| 4728 | UsedAssumedInformation = false; |
| 4729 | } |
| 4730 | } |
| 4731 | return UsedAssumedInformation; |
| 4732 | } |
| 4733 | |
| 4734 | static bool |
| 4735 | identifyAliveSuccessors(Attributor &A, const SwitchInst &SI, |
| 4736 | AbstractAttribute &AA, |
| 4737 | SmallVectorImpl<const Instruction *> &AliveSuccessors) { |
| 4738 | bool UsedAssumedInformation = false; |
| 4739 | SmallVector<AA::ValueAndContext> Values; |
| 4740 | if (!A.getAssumedSimplifiedValues(IRP: IRPosition::value(V: *SI.getCondition()), AA: &AA, |
| 4741 | Values, S: AA::AnyScope, |
| 4742 | UsedAssumedInformation)) { |
| 4743 | // Something went wrong, assume all successors are live. |
| 4744 | for (const BasicBlock *SuccBB : successors(BB: SI.getParent())) |
| 4745 | AliveSuccessors.push_back(Elt: &SuccBB->front()); |
| 4746 | return false; |
| 4747 | } |
| 4748 | |
| 4749 | if (Values.empty() || |
| 4750 | (Values.size() == 1 && |
| 4751 | isa_and_nonnull<UndefValue>(Val: Values.front().getValue()))) { |
| 4752 | // No valid value yet, assume all edges are dead. |
| 4753 | return UsedAssumedInformation; |
| 4754 | } |
| 4755 | |
| 4756 | Type &Ty = *SI.getCondition()->getType(); |
| 4757 | SmallPtrSet<ConstantInt *, 8> Constants; |
| 4758 | auto CheckForConstantInt = [&](Value *V) { |
| 4759 | if (auto *CI = dyn_cast_if_present<ConstantInt>(Val: AA::getWithType(V&: *V, Ty))) { |
| 4760 | Constants.insert(Ptr: CI); |
| 4761 | return true; |
| 4762 | } |
| 4763 | return false; |
| 4764 | }; |
| 4765 | |
| 4766 | if (!all_of(Range&: Values, P: [&](AA::ValueAndContext &VAC) { |
| 4767 | return CheckForConstantInt(VAC.getValue()); |
| 4768 | })) { |
| 4769 | for (const BasicBlock *SuccBB : successors(BB: SI.getParent())) |
| 4770 | AliveSuccessors.push_back(Elt: &SuccBB->front()); |
| 4771 | return UsedAssumedInformation; |
| 4772 | } |
| 4773 | |
| 4774 | unsigned MatchedCases = 0; |
| 4775 | for (const auto &CaseIt : SI.cases()) { |
| 4776 | if (Constants.count(Ptr: CaseIt.getCaseValue())) { |
| 4777 | ++MatchedCases; |
| 4778 | AliveSuccessors.push_back(Elt: &CaseIt.getCaseSuccessor()->front()); |
| 4779 | } |
| 4780 | } |
| 4781 | |
| 4782 | // If all potential values have been matched, we will not visit the default |
| 4783 | // case. |
| 4784 | if (MatchedCases < Constants.size()) |
| 4785 | AliveSuccessors.push_back(Elt: &SI.getDefaultDest()->front()); |
| 4786 | return UsedAssumedInformation; |
| 4787 | } |
| 4788 | |
| 4789 | ChangeStatus AAIsDeadFunction::updateImpl(Attributor &A) { |
| 4790 | ChangeStatus Change = ChangeStatus::UNCHANGED; |
| 4791 | |
| 4792 | if (AssumedLiveBlocks.empty()) { |
| 4793 | if (isAssumedDeadInternalFunction(A)) |
| 4794 | return ChangeStatus::UNCHANGED; |
| 4795 | |
| 4796 | Function *F = getAnchorScope(); |
| 4797 | ToBeExploredFrom.insert(X: &F->getEntryBlock().front()); |
| 4798 | assumeLive(A, BB: F->getEntryBlock()); |
| 4799 | Change = ChangeStatus::CHANGED; |
| 4800 | } |
| 4801 | |
| 4802 | LLVM_DEBUG(dbgs() << "[AAIsDead] Live [" << AssumedLiveBlocks.size() << "/" |
| 4803 | << getAnchorScope()->size() << "] BBs and " |
| 4804 | << ToBeExploredFrom.size() << " exploration points and " |
| 4805 | << KnownDeadEnds.size() << " known dead ends\n" ); |
| 4806 | |
| 4807 | // Copy and clear the list of instructions we need to explore from. It is |
| 4808 | // refilled with instructions the next update has to look at. |
| 4809 | SmallVector<const Instruction *, 8> Worklist(ToBeExploredFrom.begin(), |
| 4810 | ToBeExploredFrom.end()); |
| 4811 | decltype(ToBeExploredFrom) NewToBeExploredFrom; |
| 4812 | |
| 4813 | SmallVector<const Instruction *, 8> AliveSuccessors; |
| 4814 | while (!Worklist.empty()) { |
| 4815 | const Instruction *I = Worklist.pop_back_val(); |
| 4816 | LLVM_DEBUG(dbgs() << "[AAIsDead] Exploration inst: " << *I << "\n" ); |
| 4817 | |
| 4818 | // Fast forward for uninteresting instructions. We could look for UB here |
| 4819 | // though. |
| 4820 | while (!I->isTerminator() && !isa<CallBase>(Val: I)) |
| 4821 | I = I->getNextNode(); |
| 4822 | |
| 4823 | AliveSuccessors.clear(); |
| 4824 | |
| 4825 | bool UsedAssumedInformation = false; |
| 4826 | switch (I->getOpcode()) { |
| 4827 | // TODO: look for (assumed) UB to backwards propagate "deadness". |
| 4828 | default: |
| 4829 | assert(I->isTerminator() && |
| 4830 | "Expected non-terminators to be handled already!" ); |
| 4831 | for (const BasicBlock *SuccBB : successors(BB: I->getParent())) |
| 4832 | AliveSuccessors.push_back(Elt: &SuccBB->front()); |
| 4833 | break; |
| 4834 | case Instruction::Call: |
| 4835 | UsedAssumedInformation = identifyAliveSuccessors(A, CB: cast<CallInst>(Val: *I), |
| 4836 | AA&: *this, AliveSuccessors); |
| 4837 | break; |
| 4838 | case Instruction::Invoke: |
| 4839 | UsedAssumedInformation = identifyAliveSuccessors(A, II: cast<InvokeInst>(Val: *I), |
| 4840 | AA&: *this, AliveSuccessors); |
| 4841 | break; |
| 4842 | case Instruction::Br: |
| 4843 | UsedAssumedInformation = identifyAliveSuccessors(A, BI: cast<BranchInst>(Val: *I), |
| 4844 | AA&: *this, AliveSuccessors); |
| 4845 | break; |
| 4846 | case Instruction::Switch: |
| 4847 | UsedAssumedInformation = identifyAliveSuccessors(A, SI: cast<SwitchInst>(Val: *I), |
| 4848 | AA&: *this, AliveSuccessors); |
| 4849 | break; |
| 4850 | } |
| 4851 | |
| 4852 | if (UsedAssumedInformation) { |
| 4853 | NewToBeExploredFrom.insert(X: I); |
| 4854 | } else if (AliveSuccessors.empty() || |
| 4855 | (I->isTerminator() && |
| 4856 | AliveSuccessors.size() < I->getNumSuccessors())) { |
| 4857 | if (KnownDeadEnds.insert(X: I)) |
| 4858 | Change = ChangeStatus::CHANGED; |
| 4859 | } |
| 4860 | |
| 4861 | LLVM_DEBUG(dbgs() << "[AAIsDead] #AliveSuccessors: " |
| 4862 | << AliveSuccessors.size() << " UsedAssumedInformation: " |
| 4863 | << UsedAssumedInformation << "\n" ); |
| 4864 | |
| 4865 | for (const Instruction *AliveSuccessor : AliveSuccessors) { |
| 4866 | if (!I->isTerminator()) { |
| 4867 | assert(AliveSuccessors.size() == 1 && |
| 4868 | "Non-terminator expected to have a single successor!" ); |
| 4869 | Worklist.push_back(Elt: AliveSuccessor); |
| 4870 | } else { |
| 4871 | // record the assumed live edge |
| 4872 | auto Edge = std::make_pair(x: I->getParent(), y: AliveSuccessor->getParent()); |
| 4873 | if (AssumedLiveEdges.insert(V: Edge).second) |
| 4874 | Change = ChangeStatus::CHANGED; |
| 4875 | if (assumeLive(A, BB: *AliveSuccessor->getParent())) |
| 4876 | Worklist.push_back(Elt: AliveSuccessor); |
| 4877 | } |
| 4878 | } |
| 4879 | } |
| 4880 | |
| 4881 | // Check if the content of ToBeExploredFrom changed, ignore the order. |
| 4882 | if (NewToBeExploredFrom.size() != ToBeExploredFrom.size() || |
| 4883 | llvm::any_of(Range&: NewToBeExploredFrom, P: [&](const Instruction *I) { |
| 4884 | return !ToBeExploredFrom.count(key: I); |
| 4885 | })) { |
| 4886 | Change = ChangeStatus::CHANGED; |
| 4887 | ToBeExploredFrom = std::move(NewToBeExploredFrom); |
| 4888 | } |
| 4889 | |
| 4890 | // If we know everything is live there is no need to query for liveness. |
| 4891 | // Instead, indicating a pessimistic fixpoint will cause the state to be |
| 4892 | // "invalid" and all queries to be answered conservatively without lookups. |
| 4893 | // To be in this state we have to (1) finished the exploration and (3) not |
| 4894 | // discovered any non-trivial dead end and (2) not ruled unreachable code |
| 4895 | // dead. |
| 4896 | if (ToBeExploredFrom.empty() && |
| 4897 | getAnchorScope()->size() == AssumedLiveBlocks.size() && |
| 4898 | llvm::all_of(Range&: KnownDeadEnds, P: [](const Instruction *DeadEndI) { |
| 4899 | return DeadEndI->isTerminator() && DeadEndI->getNumSuccessors() == 0; |
| 4900 | })) |
| 4901 | return indicatePessimisticFixpoint(); |
| 4902 | return Change; |
| 4903 | } |
| 4904 | |
| 4905 | /// Liveness information for a call sites. |
| 4906 | struct AAIsDeadCallSite final : AAIsDeadFunction { |
| 4907 | AAIsDeadCallSite(const IRPosition &IRP, Attributor &A) |
| 4908 | : AAIsDeadFunction(IRP, A) {} |
| 4909 | |
| 4910 | /// See AbstractAttribute::initialize(...). |
| 4911 | void initialize(Attributor &A) override { |
| 4912 | // TODO: Once we have call site specific value information we can provide |
| 4913 | // call site specific liveness information and then it makes |
| 4914 | // sense to specialize attributes for call sites instead of |
| 4915 | // redirecting requests to the callee. |
| 4916 | llvm_unreachable("Abstract attributes for liveness are not " |
| 4917 | "supported for call sites yet!" ); |
| 4918 | } |
| 4919 | |
| 4920 | /// See AbstractAttribute::updateImpl(...). |
| 4921 | ChangeStatus updateImpl(Attributor &A) override { |
| 4922 | return indicatePessimisticFixpoint(); |
| 4923 | } |
| 4924 | |
| 4925 | /// See AbstractAttribute::trackStatistics() |
| 4926 | void trackStatistics() const override {} |
| 4927 | }; |
| 4928 | } // namespace |
| 4929 | |
| 4930 | /// -------------------- Dereferenceable Argument Attribute -------------------- |
| 4931 | |
| 4932 | namespace { |
| 4933 | struct AADereferenceableImpl : AADereferenceable { |
| 4934 | AADereferenceableImpl(const IRPosition &IRP, Attributor &A) |
| 4935 | : AADereferenceable(IRP, A) {} |
| 4936 | using StateType = DerefState; |
| 4937 | |
| 4938 | /// See AbstractAttribute::initialize(...). |
| 4939 | void initialize(Attributor &A) override { |
| 4940 | Value &V = *getAssociatedValue().stripPointerCasts(); |
| 4941 | SmallVector<Attribute, 4> Attrs; |
| 4942 | A.getAttrs(IRP: getIRPosition(), |
| 4943 | AKs: {Attribute::Dereferenceable, Attribute::DereferenceableOrNull}, |
| 4944 | Attrs, /* IgnoreSubsumingPositions */ false); |
| 4945 | for (const Attribute &Attr : Attrs) |
| 4946 | takeKnownDerefBytesMaximum(Bytes: Attr.getValueAsInt()); |
| 4947 | |
| 4948 | // Ensure we initialize the non-null AA (if necessary). |
| 4949 | bool IsKnownNonNull; |
| 4950 | AA::hasAssumedIRAttr<Attribute::NonNull>( |
| 4951 | A, QueryingAA: this, IRP: getIRPosition(), DepClass: DepClassTy::OPTIONAL, IsKnown&: IsKnownNonNull); |
| 4952 | |
| 4953 | bool CanBeNull, CanBeFreed; |
| 4954 | takeKnownDerefBytesMaximum(Bytes: V.getPointerDereferenceableBytes( |
| 4955 | DL: A.getDataLayout(), CanBeNull, CanBeFreed)); |
| 4956 | |
| 4957 | if (Instruction *CtxI = getCtxI()) |
| 4958 | followUsesInMBEC(AA&: *this, A, S&: getState(), CtxI&: *CtxI); |
| 4959 | } |
| 4960 | |
| 4961 | /// See AbstractAttribute::getState() |
| 4962 | /// { |
| 4963 | StateType &getState() override { return *this; } |
| 4964 | const StateType &getState() const override { return *this; } |
| 4965 | /// } |
| 4966 | |
| 4967 | /// Helper function for collecting accessed bytes in must-be-executed-context |
| 4968 | void addAccessedBytesForUse(Attributor &A, const Use *U, const Instruction *I, |
| 4969 | DerefState &State) { |
| 4970 | const Value *UseV = U->get(); |
| 4971 | if (!UseV->getType()->isPointerTy()) |
| 4972 | return; |
| 4973 | |
| 4974 | std::optional<MemoryLocation> Loc = MemoryLocation::getOrNone(Inst: I); |
| 4975 | if (!Loc || Loc->Ptr != UseV || !Loc->Size.isPrecise() || I->isVolatile()) |
| 4976 | return; |
| 4977 | |
| 4978 | int64_t Offset; |
| 4979 | const Value *Base = GetPointerBaseWithConstantOffset( |
| 4980 | Ptr: Loc->Ptr, Offset, DL: A.getDataLayout(), /*AllowNonInbounds*/ true); |
| 4981 | if (Base && Base == &getAssociatedValue()) |
| 4982 | State.addAccessedBytes(Offset, Size: Loc->Size.getValue()); |
| 4983 | } |
| 4984 | |
| 4985 | /// See followUsesInMBEC |
| 4986 | bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I, |
| 4987 | AADereferenceable::StateType &State) { |
| 4988 | bool IsNonNull = false; |
| 4989 | bool TrackUse = false; |
| 4990 | int64_t DerefBytes = getKnownNonNullAndDerefBytesForUse( |
| 4991 | A, QueryingAA: *this, AssociatedValue&: getAssociatedValue(), U, I, IsNonNull, TrackUse); |
| 4992 | LLVM_DEBUG(dbgs() << "[AADereferenceable] Deref bytes: " << DerefBytes |
| 4993 | << " for instruction " << *I << "\n" ); |
| 4994 | |
| 4995 | addAccessedBytesForUse(A, U, I, State); |
| 4996 | State.takeKnownDerefBytesMaximum(Bytes: DerefBytes); |
| 4997 | return TrackUse; |
| 4998 | } |
| 4999 | |
| 5000 | /// See AbstractAttribute::manifest(...). |
| 5001 | ChangeStatus manifest(Attributor &A) override { |
| 5002 | ChangeStatus Change = AADereferenceable::manifest(A); |
| 5003 | bool IsKnownNonNull; |
| 5004 | bool IsAssumedNonNull = AA::hasAssumedIRAttr<Attribute::NonNull>( |
| 5005 | A, QueryingAA: this, IRP: getIRPosition(), DepClass: DepClassTy::NONE, IsKnown&: IsKnownNonNull); |
| 5006 | if (IsAssumedNonNull && |
| 5007 | A.hasAttr(IRP: getIRPosition(), AKs: Attribute::DereferenceableOrNull)) { |
| 5008 | A.removeAttrs(IRP: getIRPosition(), AttrKinds: {Attribute::DereferenceableOrNull}); |
| 5009 | return ChangeStatus::CHANGED; |
| 5010 | } |
| 5011 | return Change; |
| 5012 | } |
| 5013 | |
| 5014 | void getDeducedAttributes(Attributor &A, LLVMContext &Ctx, |
| 5015 | SmallVectorImpl<Attribute> &Attrs) const override { |
| 5016 | // TODO: Add *_globally support |
| 5017 | bool IsKnownNonNull; |
| 5018 | bool IsAssumedNonNull = AA::hasAssumedIRAttr<Attribute::NonNull>( |
| 5019 | A, QueryingAA: this, IRP: getIRPosition(), DepClass: DepClassTy::NONE, IsKnown&: IsKnownNonNull); |
| 5020 | if (IsAssumedNonNull) |
| 5021 | Attrs.emplace_back(Args: Attribute::getWithDereferenceableBytes( |
| 5022 | Context&: Ctx, Bytes: getAssumedDereferenceableBytes())); |
| 5023 | else |
| 5024 | Attrs.emplace_back(Args: Attribute::getWithDereferenceableOrNullBytes( |
| 5025 | Context&: Ctx, Bytes: getAssumedDereferenceableBytes())); |
| 5026 | } |
| 5027 | |
| 5028 | /// See AbstractAttribute::getAsStr(). |
| 5029 | const std::string getAsStr(Attributor *A) const override { |
| 5030 | if (!getAssumedDereferenceableBytes()) |
| 5031 | return "unknown-dereferenceable" ; |
| 5032 | bool IsKnownNonNull; |
| 5033 | bool IsAssumedNonNull = false; |
| 5034 | if (A) |
| 5035 | IsAssumedNonNull = AA::hasAssumedIRAttr<Attribute::NonNull>( |
| 5036 | A&: *A, QueryingAA: this, IRP: getIRPosition(), DepClass: DepClassTy::NONE, IsKnown&: IsKnownNonNull); |
| 5037 | return std::string("dereferenceable" ) + |
| 5038 | (IsAssumedNonNull ? "" : "_or_null" ) + |
| 5039 | (isAssumedGlobal() ? "_globally" : "" ) + "<" + |
| 5040 | std::to_string(val: getKnownDereferenceableBytes()) + "-" + |
| 5041 | std::to_string(val: getAssumedDereferenceableBytes()) + ">" + |
| 5042 | (!A ? " [non-null is unknown]" : "" ); |
| 5043 | } |
| 5044 | }; |
| 5045 | |
| 5046 | /// Dereferenceable attribute for a floating value. |
| 5047 | struct AADereferenceableFloating : AADereferenceableImpl { |
| 5048 | AADereferenceableFloating(const IRPosition &IRP, Attributor &A) |
| 5049 | : AADereferenceableImpl(IRP, A) {} |
| 5050 | |
| 5051 | /// See AbstractAttribute::updateImpl(...). |
| 5052 | ChangeStatus updateImpl(Attributor &A) override { |
| 5053 | bool Stripped; |
| 5054 | bool UsedAssumedInformation = false; |
| 5055 | SmallVector<AA::ValueAndContext> Values; |
| 5056 | if (!A.getAssumedSimplifiedValues(IRP: getIRPosition(), AA: *this, Values, |
| 5057 | S: AA::AnyScope, UsedAssumedInformation)) { |
| 5058 | Values.push_back(Elt: {getAssociatedValue(), getCtxI()}); |
| 5059 | Stripped = false; |
| 5060 | } else { |
| 5061 | Stripped = Values.size() != 1 || |
| 5062 | Values.front().getValue() != &getAssociatedValue(); |
| 5063 | } |
| 5064 | |
| 5065 | const DataLayout &DL = A.getDataLayout(); |
| 5066 | DerefState T; |
| 5067 | |
| 5068 | auto VisitValueCB = [&](const Value &V) -> bool { |
| 5069 | unsigned IdxWidth = |
| 5070 | DL.getIndexSizeInBits(AS: V.getType()->getPointerAddressSpace()); |
| 5071 | APInt Offset(IdxWidth, 0); |
| 5072 | const Value *Base = stripAndAccumulateOffsets( |
| 5073 | A, QueryingAA: *this, Val: &V, DL, Offset, /* GetMinOffset */ false, |
| 5074 | /* AllowNonInbounds */ true); |
| 5075 | |
| 5076 | const auto *AA = A.getAAFor<AADereferenceable>( |
| 5077 | QueryingAA: *this, IRP: IRPosition::value(V: *Base), DepClass: DepClassTy::REQUIRED); |
| 5078 | int64_t DerefBytes = 0; |
| 5079 | if (!AA || (!Stripped && this == AA)) { |
| 5080 | // Use IR information if we did not strip anything. |
| 5081 | // TODO: track globally. |
| 5082 | bool CanBeNull, CanBeFreed; |
| 5083 | DerefBytes = |
| 5084 | Base->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed); |
| 5085 | T.GlobalState.indicatePessimisticFixpoint(); |
| 5086 | } else { |
| 5087 | const DerefState &DS = AA->getState(); |
| 5088 | DerefBytes = DS.DerefBytesState.getAssumed(); |
| 5089 | T.GlobalState &= DS.GlobalState; |
| 5090 | } |
| 5091 | |
| 5092 | // For now we do not try to "increase" dereferenceability due to negative |
| 5093 | // indices as we first have to come up with code to deal with loops and |
| 5094 | // for overflows of the dereferenceable bytes. |
| 5095 | int64_t OffsetSExt = Offset.getSExtValue(); |
| 5096 | if (OffsetSExt < 0) |
| 5097 | OffsetSExt = 0; |
| 5098 | |
| 5099 | T.takeAssumedDerefBytesMinimum( |
| 5100 | Bytes: std::max(a: int64_t(0), b: DerefBytes - OffsetSExt)); |
| 5101 | |
| 5102 | if (this == AA) { |
| 5103 | if (!Stripped) { |
| 5104 | // If nothing was stripped IR information is all we got. |
| 5105 | T.takeKnownDerefBytesMaximum( |
| 5106 | Bytes: std::max(a: int64_t(0), b: DerefBytes - OffsetSExt)); |
| 5107 | T.indicatePessimisticFixpoint(); |
| 5108 | } else if (OffsetSExt > 0) { |
| 5109 | // If something was stripped but there is circular reasoning we look |
| 5110 | // for the offset. If it is positive we basically decrease the |
| 5111 | // dereferenceable bytes in a circular loop now, which will simply |
| 5112 | // drive them down to the known value in a very slow way which we |
| 5113 | // can accelerate. |
| 5114 | T.indicatePessimisticFixpoint(); |
| 5115 | } |
| 5116 | } |
| 5117 | |
| 5118 | return T.isValidState(); |
| 5119 | }; |
| 5120 | |
| 5121 | for (const auto &VAC : Values) |
| 5122 | if (!VisitValueCB(*VAC.getValue())) |
| 5123 | return indicatePessimisticFixpoint(); |
| 5124 | |
| 5125 | return clampStateAndIndicateChange(S&: getState(), R: T); |
| 5126 | } |
| 5127 | |
| 5128 | /// See AbstractAttribute::trackStatistics() |
| 5129 | void trackStatistics() const override { |
| 5130 | STATS_DECLTRACK_FLOATING_ATTR(dereferenceable) |
| 5131 | } |
| 5132 | }; |
| 5133 | |
| 5134 | /// Dereferenceable attribute for a return value. |
| 5135 | struct AADereferenceableReturned final |
| 5136 | : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl> { |
| 5137 | using Base = |
| 5138 | AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl>; |
| 5139 | AADereferenceableReturned(const IRPosition &IRP, Attributor &A) |
| 5140 | : Base(IRP, A) {} |
| 5141 | |
| 5142 | /// See AbstractAttribute::trackStatistics() |
| 5143 | void trackStatistics() const override { |
| 5144 | STATS_DECLTRACK_FNRET_ATTR(dereferenceable) |
| 5145 | } |
| 5146 | }; |
| 5147 | |
| 5148 | /// Dereferenceable attribute for an argument |
| 5149 | struct AADereferenceableArgument final |
| 5150 | : AAArgumentFromCallSiteArguments<AADereferenceable, |
| 5151 | AADereferenceableImpl> { |
| 5152 | using Base = |
| 5153 | AAArgumentFromCallSiteArguments<AADereferenceable, AADereferenceableImpl>; |
| 5154 | AADereferenceableArgument(const IRPosition &IRP, Attributor &A) |
| 5155 | : Base(IRP, A) {} |
| 5156 | |
| 5157 | /// See AbstractAttribute::trackStatistics() |
| 5158 | void trackStatistics() const override { |
| 5159 | STATS_DECLTRACK_ARG_ATTR(dereferenceable) |
| 5160 | } |
| 5161 | }; |
| 5162 | |
| 5163 | /// Dereferenceable attribute for a call site argument. |
| 5164 | struct AADereferenceableCallSiteArgument final : AADereferenceableFloating { |
| 5165 | AADereferenceableCallSiteArgument(const IRPosition &IRP, Attributor &A) |
| 5166 | : AADereferenceableFloating(IRP, A) {} |
| 5167 | |
| 5168 | /// See AbstractAttribute::trackStatistics() |
| 5169 | void trackStatistics() const override { |
| 5170 | STATS_DECLTRACK_CSARG_ATTR(dereferenceable) |
| 5171 | } |
| 5172 | }; |
| 5173 | |
| 5174 | /// Dereferenceable attribute deduction for a call site return value. |
| 5175 | struct AADereferenceableCallSiteReturned final |
| 5176 | : AACalleeToCallSite<AADereferenceable, AADereferenceableImpl> { |
| 5177 | using Base = AACalleeToCallSite<AADereferenceable, AADereferenceableImpl>; |
| 5178 | AADereferenceableCallSiteReturned(const IRPosition &IRP, Attributor &A) |
| 5179 | : Base(IRP, A) {} |
| 5180 | |
| 5181 | /// See AbstractAttribute::trackStatistics() |
| 5182 | void trackStatistics() const override { |
| 5183 | STATS_DECLTRACK_CS_ATTR(dereferenceable); |
| 5184 | } |
| 5185 | }; |
| 5186 | } // namespace |
| 5187 | |
| 5188 | // ------------------------ Align Argument Attribute ------------------------ |
| 5189 | |
| 5190 | namespace { |
| 5191 | static unsigned getKnownAlignForUse(Attributor &A, AAAlign &QueryingAA, |
| 5192 | Value &AssociatedValue, const Use *U, |
| 5193 | const Instruction *I, bool &TrackUse) { |
| 5194 | // We need to follow common pointer manipulation uses to the accesses they |
| 5195 | // feed into. |
| 5196 | if (isa<CastInst>(Val: I)) { |
| 5197 | // Follow all but ptr2int casts. |
| 5198 | TrackUse = !isa<PtrToIntInst>(Val: I); |
| 5199 | return 0; |
| 5200 | } |
| 5201 | if (auto *GEP = dyn_cast<GetElementPtrInst>(Val: I)) { |
| 5202 | if (GEP->hasAllConstantIndices()) |
| 5203 | TrackUse = true; |
| 5204 | return 0; |
| 5205 | } |
| 5206 | |
| 5207 | MaybeAlign MA; |
| 5208 | if (const auto *CB = dyn_cast<CallBase>(Val: I)) { |
| 5209 | if (CB->isBundleOperand(U) || CB->isCallee(U)) |
| 5210 | return 0; |
| 5211 | |
| 5212 | unsigned ArgNo = CB->getArgOperandNo(U); |
| 5213 | IRPosition IRP = IRPosition::callsite_argument(CB: *CB, ArgNo); |
| 5214 | // As long as we only use known information there is no need to track |
| 5215 | // dependences here. |
| 5216 | auto *AlignAA = A.getAAFor<AAAlign>(QueryingAA, IRP, DepClass: DepClassTy::NONE); |
| 5217 | if (AlignAA) |
| 5218 | MA = MaybeAlign(AlignAA->getKnownAlign()); |
| 5219 | } |
| 5220 | |
| 5221 | const DataLayout &DL = A.getDataLayout(); |
| 5222 | const Value *UseV = U->get(); |
| 5223 | if (auto *SI = dyn_cast<StoreInst>(Val: I)) { |
| 5224 | if (SI->getPointerOperand() == UseV) |
| 5225 | MA = SI->getAlign(); |
| 5226 | } else if (auto *LI = dyn_cast<LoadInst>(Val: I)) { |
| 5227 | if (LI->getPointerOperand() == UseV) |
| 5228 | MA = LI->getAlign(); |
| 5229 | } else if (auto *AI = dyn_cast<AtomicRMWInst>(Val: I)) { |
| 5230 | if (AI->getPointerOperand() == UseV) |
| 5231 | MA = AI->getAlign(); |
| 5232 | } else if (auto *AI = dyn_cast<AtomicCmpXchgInst>(Val: I)) { |
| 5233 | if (AI->getPointerOperand() == UseV) |
| 5234 | MA = AI->getAlign(); |
| 5235 | } |
| 5236 | |
| 5237 | if (!MA || *MA <= QueryingAA.getKnownAlign()) |
| 5238 | return 0; |
| 5239 | |
| 5240 | unsigned Alignment = MA->value(); |
| 5241 | int64_t Offset; |
| 5242 | |
| 5243 | if (const Value *Base = GetPointerBaseWithConstantOffset(Ptr: UseV, Offset, DL)) { |
| 5244 | if (Base == &AssociatedValue) { |
| 5245 | // BasePointerAddr + Offset = Alignment * Q for some integer Q. |
| 5246 | // So we can say that the maximum power of two which is a divisor of |
| 5247 | // gcd(Offset, Alignment) is an alignment. |
| 5248 | |
| 5249 | uint32_t gcd = std::gcd(m: uint32_t(abs(x: (int32_t)Offset)), n: Alignment); |
| 5250 | Alignment = llvm::bit_floor(Value: gcd); |
| 5251 | } |
| 5252 | } |
| 5253 | |
| 5254 | return Alignment; |
| 5255 | } |
| 5256 | |
| 5257 | struct AAAlignImpl : AAAlign { |
| 5258 | AAAlignImpl(const IRPosition &IRP, Attributor &A) : AAAlign(IRP, A) {} |
| 5259 | |
| 5260 | /// See AbstractAttribute::initialize(...). |
| 5261 | void initialize(Attributor &A) override { |
| 5262 | SmallVector<Attribute, 4> Attrs; |
| 5263 | A.getAttrs(IRP: getIRPosition(), AKs: {Attribute::Alignment}, Attrs); |
| 5264 | for (const Attribute &Attr : Attrs) |
| 5265 | takeKnownMaximum(Value: Attr.getValueAsInt()); |
| 5266 | |
| 5267 | Value &V = *getAssociatedValue().stripPointerCasts(); |
| 5268 | takeKnownMaximum(Value: V.getPointerAlignment(DL: A.getDataLayout()).value()); |
| 5269 | |
| 5270 | if (Instruction *CtxI = getCtxI()) |
| 5271 | followUsesInMBEC(AA&: *this, A, S&: getState(), CtxI&: *CtxI); |
| 5272 | } |
| 5273 | |
| 5274 | /// See AbstractAttribute::manifest(...). |
| 5275 | ChangeStatus manifest(Attributor &A) override { |
| 5276 | ChangeStatus InstrChanged = ChangeStatus::UNCHANGED; |
| 5277 | |
| 5278 | // Check for users that allow alignment annotations. |
| 5279 | Value &AssociatedValue = getAssociatedValue(); |
| 5280 | if (isa<ConstantData>(Val: AssociatedValue)) |
| 5281 | return ChangeStatus::UNCHANGED; |
| 5282 | |
| 5283 | for (const Use &U : AssociatedValue.uses()) { |
| 5284 | if (auto *SI = dyn_cast<StoreInst>(Val: U.getUser())) { |
| 5285 | if (SI->getPointerOperand() == &AssociatedValue) |
| 5286 | if (SI->getAlign() < getAssumedAlign()) { |
| 5287 | STATS_DECLTRACK(AAAlign, Store, |
| 5288 | "Number of times alignment added to a store" ); |
| 5289 | SI->setAlignment(getAssumedAlign()); |
| 5290 | InstrChanged = ChangeStatus::CHANGED; |
| 5291 | } |
| 5292 | } else if (auto *LI = dyn_cast<LoadInst>(Val: U.getUser())) { |
| 5293 | if (LI->getPointerOperand() == &AssociatedValue) |
| 5294 | if (LI->getAlign() < getAssumedAlign()) { |
| 5295 | LI->setAlignment(getAssumedAlign()); |
| 5296 | STATS_DECLTRACK(AAAlign, Load, |
| 5297 | "Number of times alignment added to a load" ); |
| 5298 | InstrChanged = ChangeStatus::CHANGED; |
| 5299 | } |
| 5300 | } else if (auto *RMW = dyn_cast<AtomicRMWInst>(Val: U.getUser())) { |
| 5301 | if (RMW->getPointerOperand() == &AssociatedValue) { |
| 5302 | if (RMW->getAlign() < getAssumedAlign()) { |
| 5303 | STATS_DECLTRACK(AAAlign, AtomicRMW, |
| 5304 | "Number of times alignment added to atomicrmw" ); |
| 5305 | |
| 5306 | RMW->setAlignment(getAssumedAlign()); |
| 5307 | InstrChanged = ChangeStatus::CHANGED; |
| 5308 | } |
| 5309 | } |
| 5310 | } else if (auto *CAS = dyn_cast<AtomicCmpXchgInst>(Val: U.getUser())) { |
| 5311 | if (CAS->getPointerOperand() == &AssociatedValue) { |
| 5312 | if (CAS->getAlign() < getAssumedAlign()) { |
| 5313 | STATS_DECLTRACK(AAAlign, AtomicCmpXchg, |
| 5314 | "Number of times alignment added to cmpxchg" ); |
| 5315 | CAS->setAlignment(getAssumedAlign()); |
| 5316 | InstrChanged = ChangeStatus::CHANGED; |
| 5317 | } |
| 5318 | } |
| 5319 | } |
| 5320 | } |
| 5321 | |
| 5322 | ChangeStatus Changed = AAAlign::manifest(A); |
| 5323 | |
| 5324 | Align InheritAlign = |
| 5325 | getAssociatedValue().getPointerAlignment(DL: A.getDataLayout()); |
| 5326 | if (InheritAlign >= getAssumedAlign()) |
| 5327 | return InstrChanged; |
| 5328 | return Changed | InstrChanged; |
| 5329 | } |
| 5330 | |
| 5331 | // TODO: Provide a helper to determine the implied ABI alignment and check in |
| 5332 | // the existing manifest method and a new one for AAAlignImpl that value |
| 5333 | // to avoid making the alignment explicit if it did not improve. |
| 5334 | |
| 5335 | /// See AbstractAttribute::getDeducedAttributes |
| 5336 | void getDeducedAttributes(Attributor &A, LLVMContext &Ctx, |
| 5337 | SmallVectorImpl<Attribute> &Attrs) const override { |
| 5338 | if (getAssumedAlign() > 1) |
| 5339 | Attrs.emplace_back( |
| 5340 | Args: Attribute::getWithAlignment(Context&: Ctx, Alignment: Align(getAssumedAlign()))); |
| 5341 | } |
| 5342 | |
| 5343 | /// See followUsesInMBEC |
| 5344 | bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I, |
| 5345 | AAAlign::StateType &State) { |
| 5346 | bool TrackUse = false; |
| 5347 | |
| 5348 | unsigned int KnownAlign = |
| 5349 | getKnownAlignForUse(A, QueryingAA&: *this, AssociatedValue&: getAssociatedValue(), U, I, TrackUse); |
| 5350 | State.takeKnownMaximum(Value: KnownAlign); |
| 5351 | |
| 5352 | return TrackUse; |
| 5353 | } |
| 5354 | |
| 5355 | /// See AbstractAttribute::getAsStr(). |
| 5356 | const std::string getAsStr(Attributor *A) const override { |
| 5357 | return "align<" + std::to_string(val: getKnownAlign().value()) + "-" + |
| 5358 | std::to_string(val: getAssumedAlign().value()) + ">" ; |
| 5359 | } |
| 5360 | }; |
| 5361 | |
| 5362 | /// Align attribute for a floating value. |
| 5363 | struct AAAlignFloating : AAAlignImpl { |
| 5364 | AAAlignFloating(const IRPosition &IRP, Attributor &A) : AAAlignImpl(IRP, A) {} |
| 5365 | |
| 5366 | /// See AbstractAttribute::updateImpl(...). |
| 5367 | ChangeStatus updateImpl(Attributor &A) override { |
| 5368 | const DataLayout &DL = A.getDataLayout(); |
| 5369 | |
| 5370 | bool Stripped; |
| 5371 | bool UsedAssumedInformation = false; |
| 5372 | SmallVector<AA::ValueAndContext> Values; |
| 5373 | if (!A.getAssumedSimplifiedValues(IRP: getIRPosition(), AA: *this, Values, |
| 5374 | S: AA::AnyScope, UsedAssumedInformation)) { |
| 5375 | Values.push_back(Elt: {getAssociatedValue(), getCtxI()}); |
| 5376 | Stripped = false; |
| 5377 | } else { |
| 5378 | Stripped = Values.size() != 1 || |
| 5379 | Values.front().getValue() != &getAssociatedValue(); |
| 5380 | } |
| 5381 | |
| 5382 | StateType T; |
| 5383 | auto VisitValueCB = [&](Value &V) -> bool { |
| 5384 | if (isa<UndefValue>(Val: V) || isa<ConstantPointerNull>(Val: V)) |
| 5385 | return true; |
| 5386 | const auto *AA = A.getAAFor<AAAlign>(QueryingAA: *this, IRP: IRPosition::value(V), |
| 5387 | DepClass: DepClassTy::REQUIRED); |
| 5388 | if (!AA || (!Stripped && this == AA)) { |
| 5389 | int64_t Offset; |
| 5390 | unsigned Alignment = 1; |
| 5391 | if (const Value *Base = |
| 5392 | GetPointerBaseWithConstantOffset(Ptr: &V, Offset, DL)) { |
| 5393 | // TODO: Use AAAlign for the base too. |
| 5394 | Align PA = Base->getPointerAlignment(DL); |
| 5395 | // BasePointerAddr + Offset = Alignment * Q for some integer Q. |
| 5396 | // So we can say that the maximum power of two which is a divisor of |
| 5397 | // gcd(Offset, Alignment) is an alignment. |
| 5398 | |
| 5399 | uint32_t gcd = |
| 5400 | std::gcd(m: uint32_t(abs(x: (int32_t)Offset)), n: uint32_t(PA.value())); |
| 5401 | Alignment = llvm::bit_floor(Value: gcd); |
| 5402 | } else { |
| 5403 | Alignment = V.getPointerAlignment(DL).value(); |
| 5404 | } |
| 5405 | // Use only IR information if we did not strip anything. |
| 5406 | T.takeKnownMaximum(Value: Alignment); |
| 5407 | T.indicatePessimisticFixpoint(); |
| 5408 | } else { |
| 5409 | // Use abstract attribute information. |
| 5410 | const AAAlign::StateType &DS = AA->getState(); |
| 5411 | T ^= DS; |
| 5412 | } |
| 5413 | return T.isValidState(); |
| 5414 | }; |
| 5415 | |
| 5416 | for (const auto &VAC : Values) { |
| 5417 | if (!VisitValueCB(*VAC.getValue())) |
| 5418 | return indicatePessimisticFixpoint(); |
| 5419 | } |
| 5420 | |
| 5421 | // TODO: If we know we visited all incoming values, thus no are assumed |
| 5422 | // dead, we can take the known information from the state T. |
| 5423 | return clampStateAndIndicateChange(S&: getState(), R: T); |
| 5424 | } |
| 5425 | |
| 5426 | /// See AbstractAttribute::trackStatistics() |
| 5427 | void trackStatistics() const override { STATS_DECLTRACK_FLOATING_ATTR(align) } |
| 5428 | }; |
| 5429 | |
| 5430 | /// Align attribute for function return value. |
| 5431 | struct AAAlignReturned final |
| 5432 | : AAReturnedFromReturnedValues<AAAlign, AAAlignImpl> { |
| 5433 | using Base = AAReturnedFromReturnedValues<AAAlign, AAAlignImpl>; |
| 5434 | AAAlignReturned(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {} |
| 5435 | |
| 5436 | /// See AbstractAttribute::trackStatistics() |
| 5437 | void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(aligned) } |
| 5438 | }; |
| 5439 | |
| 5440 | /// Align attribute for function argument. |
| 5441 | struct AAAlignArgument final |
| 5442 | : AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl> { |
| 5443 | using Base = AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl>; |
| 5444 | AAAlignArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {} |
| 5445 | |
| 5446 | /// See AbstractAttribute::manifest(...). |
| 5447 | ChangeStatus manifest(Attributor &A) override { |
| 5448 | // If the associated argument is involved in a must-tail call we give up |
| 5449 | // because we would need to keep the argument alignments of caller and |
| 5450 | // callee in-sync. Just does not seem worth the trouble right now. |
| 5451 | if (A.getInfoCache().isInvolvedInMustTailCall(Arg: *getAssociatedArgument())) |
| 5452 | return ChangeStatus::UNCHANGED; |
| 5453 | return Base::manifest(A); |
| 5454 | } |
| 5455 | |
| 5456 | /// See AbstractAttribute::trackStatistics() |
| 5457 | void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(aligned) } |
| 5458 | }; |
| 5459 | |
| 5460 | struct AAAlignCallSiteArgument final : AAAlignFloating { |
| 5461 | AAAlignCallSiteArgument(const IRPosition &IRP, Attributor &A) |
| 5462 | : AAAlignFloating(IRP, A) {} |
| 5463 | |
| 5464 | /// See AbstractAttribute::manifest(...). |
| 5465 | ChangeStatus manifest(Attributor &A) override { |
| 5466 | // If the associated argument is involved in a must-tail call we give up |
| 5467 | // because we would need to keep the argument alignments of caller and |
| 5468 | // callee in-sync. Just does not seem worth the trouble right now. |
| 5469 | if (Argument *Arg = getAssociatedArgument()) |
| 5470 | if (A.getInfoCache().isInvolvedInMustTailCall(Arg: *Arg)) |
| 5471 | return ChangeStatus::UNCHANGED; |
| 5472 | ChangeStatus Changed = AAAlignImpl::manifest(A); |
| 5473 | Align InheritAlign = |
| 5474 | getAssociatedValue().getPointerAlignment(DL: A.getDataLayout()); |
| 5475 | if (InheritAlign >= getAssumedAlign()) |
| 5476 | Changed = ChangeStatus::UNCHANGED; |
| 5477 | return Changed; |
| 5478 | } |
| 5479 | |
| 5480 | /// See AbstractAttribute::updateImpl(Attributor &A). |
| 5481 | ChangeStatus updateImpl(Attributor &A) override { |
| 5482 | ChangeStatus Changed = AAAlignFloating::updateImpl(A); |
| 5483 | if (Argument *Arg = getAssociatedArgument()) { |
| 5484 | // We only take known information from the argument |
| 5485 | // so we do not need to track a dependence. |
| 5486 | const auto *ArgAlignAA = A.getAAFor<AAAlign>( |
| 5487 | QueryingAA: *this, IRP: IRPosition::argument(Arg: *Arg), DepClass: DepClassTy::NONE); |
| 5488 | if (ArgAlignAA) |
| 5489 | takeKnownMaximum(Value: ArgAlignAA->getKnownAlign().value()); |
| 5490 | } |
| 5491 | return Changed; |
| 5492 | } |
| 5493 | |
| 5494 | /// See AbstractAttribute::trackStatistics() |
| 5495 | void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(aligned) } |
| 5496 | }; |
| 5497 | |
| 5498 | /// Align attribute deduction for a call site return value. |
| 5499 | struct AAAlignCallSiteReturned final |
| 5500 | : AACalleeToCallSite<AAAlign, AAAlignImpl> { |
| 5501 | using Base = AACalleeToCallSite<AAAlign, AAAlignImpl>; |
| 5502 | AAAlignCallSiteReturned(const IRPosition &IRP, Attributor &A) |
| 5503 | : Base(IRP, A) {} |
| 5504 | |
| 5505 | /// See AbstractAttribute::trackStatistics() |
| 5506 | void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(align); } |
| 5507 | }; |
| 5508 | } // namespace |
| 5509 | |
| 5510 | /// ------------------ Function No-Return Attribute ---------------------------- |
| 5511 | namespace { |
| 5512 | struct AANoReturnImpl : public AANoReturn { |
| 5513 | AANoReturnImpl(const IRPosition &IRP, Attributor &A) : AANoReturn(IRP, A) {} |
| 5514 | |
| 5515 | /// See AbstractAttribute::initialize(...). |
| 5516 | void initialize(Attributor &A) override { |
| 5517 | bool IsKnown; |
| 5518 | assert(!AA::hasAssumedIRAttr<Attribute::NoReturn>( |
| 5519 | A, nullptr, getIRPosition(), DepClassTy::NONE, IsKnown)); |
| 5520 | (void)IsKnown; |
| 5521 | } |
| 5522 | |
| 5523 | /// See AbstractAttribute::getAsStr(). |
| 5524 | const std::string getAsStr(Attributor *A) const override { |
| 5525 | return getAssumed() ? "noreturn" : "may-return" ; |
| 5526 | } |
| 5527 | |
| 5528 | /// See AbstractAttribute::updateImpl(Attributor &A). |
| 5529 | ChangeStatus updateImpl(Attributor &A) override { |
| 5530 | auto CheckForNoReturn = [](Instruction &) { return false; }; |
| 5531 | bool UsedAssumedInformation = false; |
| 5532 | if (!A.checkForAllInstructions(Pred: CheckForNoReturn, QueryingAA: *this, |
| 5533 | Opcodes: {(unsigned)Instruction::Ret}, |
| 5534 | UsedAssumedInformation)) |
| 5535 | return indicatePessimisticFixpoint(); |
| 5536 | return ChangeStatus::UNCHANGED; |
| 5537 | } |
| 5538 | }; |
| 5539 | |
| 5540 | struct AANoReturnFunction final : AANoReturnImpl { |
| 5541 | AANoReturnFunction(const IRPosition &IRP, Attributor &A) |
| 5542 | : AANoReturnImpl(IRP, A) {} |
| 5543 | |
| 5544 | /// See AbstractAttribute::trackStatistics() |
| 5545 | void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(noreturn) } |
| 5546 | }; |
| 5547 | |
| 5548 | /// NoReturn attribute deduction for a call sites. |
| 5549 | struct AANoReturnCallSite final |
| 5550 | : AACalleeToCallSite<AANoReturn, AANoReturnImpl> { |
| 5551 | AANoReturnCallSite(const IRPosition &IRP, Attributor &A) |
| 5552 | : AACalleeToCallSite<AANoReturn, AANoReturnImpl>(IRP, A) {} |
| 5553 | |
| 5554 | /// See AbstractAttribute::trackStatistics() |
| 5555 | void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(noreturn); } |
| 5556 | }; |
| 5557 | } // namespace |
| 5558 | |
| 5559 | /// ----------------------- Instance Info --------------------------------- |
| 5560 | |
| 5561 | namespace { |
| 5562 | /// A class to hold the state of for no-capture attributes. |
| 5563 | struct AAInstanceInfoImpl : public AAInstanceInfo { |
| 5564 | AAInstanceInfoImpl(const IRPosition &IRP, Attributor &A) |
| 5565 | : AAInstanceInfo(IRP, A) {} |
| 5566 | |
| 5567 | /// See AbstractAttribute::initialize(...). |
| 5568 | void initialize(Attributor &A) override { |
| 5569 | Value &V = getAssociatedValue(); |
| 5570 | if (auto *C = dyn_cast<Constant>(Val: &V)) { |
| 5571 | if (C->isThreadDependent()) |
| 5572 | indicatePessimisticFixpoint(); |
| 5573 | else |
| 5574 | indicateOptimisticFixpoint(); |
| 5575 | return; |
| 5576 | } |
| 5577 | if (auto *CB = dyn_cast<CallBase>(Val: &V)) |
| 5578 | if (CB->arg_size() == 0 && !CB->mayHaveSideEffects() && |
| 5579 | !CB->mayReadFromMemory()) { |
| 5580 | indicateOptimisticFixpoint(); |
| 5581 | return; |
| 5582 | } |
| 5583 | if (auto *I = dyn_cast<Instruction>(Val: &V)) { |
| 5584 | const auto *CI = |
| 5585 | A.getInfoCache().getAnalysisResultForFunction<CycleAnalysis>( |
| 5586 | F: *I->getFunction()); |
| 5587 | if (mayBeInCycle(CI, I, /* HeaderOnly */ false)) { |
| 5588 | indicatePessimisticFixpoint(); |
| 5589 | return; |
| 5590 | } |
| 5591 | } |
| 5592 | } |
| 5593 | |
| 5594 | /// See AbstractAttribute::updateImpl(...). |
| 5595 | ChangeStatus updateImpl(Attributor &A) override { |
| 5596 | ChangeStatus Changed = ChangeStatus::UNCHANGED; |
| 5597 | |
| 5598 | Value &V = getAssociatedValue(); |
| 5599 | const Function *Scope = nullptr; |
| 5600 | if (auto *I = dyn_cast<Instruction>(Val: &V)) |
| 5601 | Scope = I->getFunction(); |
| 5602 | if (auto *A = dyn_cast<Argument>(Val: &V)) { |
| 5603 | Scope = A->getParent(); |
| 5604 | if (!Scope->hasLocalLinkage()) |
| 5605 | return Changed; |
| 5606 | } |
| 5607 | if (!Scope) |
| 5608 | return indicateOptimisticFixpoint(); |
| 5609 | |
| 5610 | bool IsKnownNoRecurse; |
| 5611 | if (AA::hasAssumedIRAttr<Attribute::NoRecurse>( |
| 5612 | A, QueryingAA: this, IRP: IRPosition::function(F: *Scope), DepClass: DepClassTy::OPTIONAL, |
| 5613 | IsKnown&: IsKnownNoRecurse)) |
| 5614 | return Changed; |
| 5615 | |
| 5616 | auto UsePred = [&](const Use &U, bool &Follow) { |
| 5617 | const Instruction *UserI = dyn_cast<Instruction>(Val: U.getUser()); |
| 5618 | if (!UserI || isa<GetElementPtrInst>(Val: UserI) || isa<CastInst>(Val: UserI) || |
| 5619 | isa<PHINode>(Val: UserI) || isa<SelectInst>(Val: UserI)) { |
| 5620 | Follow = true; |
| 5621 | return true; |
| 5622 | } |
| 5623 | if (isa<LoadInst>(Val: UserI) || isa<CmpInst>(Val: UserI) || |
| 5624 | (isa<StoreInst>(Val: UserI) && |
| 5625 | cast<StoreInst>(Val: UserI)->getValueOperand() != U.get())) |
| 5626 | return true; |
| 5627 | if (auto *CB = dyn_cast<CallBase>(Val: UserI)) { |
| 5628 | // This check is not guaranteeing uniqueness but for now that we cannot |
| 5629 | // end up with two versions of \p U thinking it was one. |
| 5630 | auto *Callee = dyn_cast_if_present<Function>(Val: CB->getCalledOperand()); |
| 5631 | if (!Callee || !Callee->hasLocalLinkage()) |
| 5632 | return true; |
| 5633 | if (!CB->isArgOperand(U: &U)) |
| 5634 | return false; |
| 5635 | const auto *ArgInstanceInfoAA = A.getAAFor<AAInstanceInfo>( |
| 5636 | QueryingAA: *this, IRP: IRPosition::callsite_argument(CB: *CB, ArgNo: CB->getArgOperandNo(U: &U)), |
| 5637 | DepClass: DepClassTy::OPTIONAL); |
| 5638 | if (!ArgInstanceInfoAA || |
| 5639 | !ArgInstanceInfoAA->isAssumedUniqueForAnalysis()) |
| 5640 | return false; |
| 5641 | // If this call base might reach the scope again we might forward the |
| 5642 | // argument back here. This is very conservative. |
| 5643 | if (AA::isPotentiallyReachable( |
| 5644 | A, FromI: *CB, ToFn: *Scope, QueryingAA: *this, /* ExclusionSet */ nullptr, |
| 5645 | GoBackwardsCB: [Scope](const Function &Fn) { return &Fn != Scope; })) |
| 5646 | return false; |
| 5647 | return true; |
| 5648 | } |
| 5649 | return false; |
| 5650 | }; |
| 5651 | |
| 5652 | auto EquivalentUseCB = [&](const Use &OldU, const Use &NewU) { |
| 5653 | if (auto *SI = dyn_cast<StoreInst>(Val: OldU.getUser())) { |
| 5654 | auto *Ptr = SI->getPointerOperand()->stripPointerCasts(); |
| 5655 | if ((isa<AllocaInst>(Val: Ptr) || isNoAliasCall(V: Ptr)) && |
| 5656 | AA::isDynamicallyUnique(A, QueryingAA: *this, V: *Ptr)) |
| 5657 | return true; |
| 5658 | } |
| 5659 | return false; |
| 5660 | }; |
| 5661 | |
| 5662 | if (!A.checkForAllUses(Pred: UsePred, QueryingAA: *this, V, /* CheckBBLivenessOnly */ true, |
| 5663 | LivenessDepClass: DepClassTy::OPTIONAL, |
| 5664 | /* IgnoreDroppableUses */ true, EquivalentUseCB)) |
| 5665 | return indicatePessimisticFixpoint(); |
| 5666 | |
| 5667 | return Changed; |
| 5668 | } |
| 5669 | |
| 5670 | /// See AbstractState::getAsStr(). |
| 5671 | const std::string getAsStr(Attributor *A) const override { |
| 5672 | return isAssumedUniqueForAnalysis() ? "<unique [fAa]>" : "<unknown>" ; |
| 5673 | } |
| 5674 | |
| 5675 | /// See AbstractAttribute::trackStatistics() |
| 5676 | void trackStatistics() const override {} |
| 5677 | }; |
| 5678 | |
| 5679 | /// InstanceInfo attribute for floating values. |
| 5680 | struct AAInstanceInfoFloating : AAInstanceInfoImpl { |
| 5681 | AAInstanceInfoFloating(const IRPosition &IRP, Attributor &A) |
| 5682 | : AAInstanceInfoImpl(IRP, A) {} |
| 5683 | }; |
| 5684 | |
| 5685 | /// NoCapture attribute for function arguments. |
| 5686 | struct AAInstanceInfoArgument final : AAInstanceInfoFloating { |
| 5687 | AAInstanceInfoArgument(const IRPosition &IRP, Attributor &A) |
| 5688 | : AAInstanceInfoFloating(IRP, A) {} |
| 5689 | }; |
| 5690 | |
| 5691 | /// InstanceInfo attribute for call site arguments. |
| 5692 | struct AAInstanceInfoCallSiteArgument final : AAInstanceInfoImpl { |
| 5693 | AAInstanceInfoCallSiteArgument(const IRPosition &IRP, Attributor &A) |
| 5694 | : AAInstanceInfoImpl(IRP, A) {} |
| 5695 | |
| 5696 | /// See AbstractAttribute::updateImpl(...). |
| 5697 | ChangeStatus updateImpl(Attributor &A) override { |
| 5698 | // TODO: Once we have call site specific value information we can provide |
| 5699 | // call site specific liveness information and then it makes |
| 5700 | // sense to specialize attributes for call sites arguments instead of |
| 5701 | // redirecting requests to the callee argument. |
| 5702 | Argument *Arg = getAssociatedArgument(); |
| 5703 | if (!Arg) |
| 5704 | return indicatePessimisticFixpoint(); |
| 5705 | const IRPosition &ArgPos = IRPosition::argument(Arg: *Arg); |
| 5706 | auto *ArgAA = |
| 5707 | A.getAAFor<AAInstanceInfo>(QueryingAA: *this, IRP: ArgPos, DepClass: DepClassTy::REQUIRED); |
| 5708 | if (!ArgAA) |
| 5709 | return indicatePessimisticFixpoint(); |
| 5710 | return clampStateAndIndicateChange(S&: getState(), R: ArgAA->getState()); |
| 5711 | } |
| 5712 | }; |
| 5713 | |
| 5714 | /// InstanceInfo attribute for function return value. |
| 5715 | struct AAInstanceInfoReturned final : AAInstanceInfoImpl { |
| 5716 | AAInstanceInfoReturned(const IRPosition &IRP, Attributor &A) |
| 5717 | : AAInstanceInfoImpl(IRP, A) { |
| 5718 | llvm_unreachable("InstanceInfo is not applicable to function returns!" ); |
| 5719 | } |
| 5720 | |
| 5721 | /// See AbstractAttribute::initialize(...). |
| 5722 | void initialize(Attributor &A) override { |
| 5723 | llvm_unreachable("InstanceInfo is not applicable to function returns!" ); |
| 5724 | } |
| 5725 | |
| 5726 | /// See AbstractAttribute::updateImpl(...). |
| 5727 | ChangeStatus updateImpl(Attributor &A) override { |
| 5728 | llvm_unreachable("InstanceInfo is not applicable to function returns!" ); |
| 5729 | } |
| 5730 | }; |
| 5731 | |
| 5732 | /// InstanceInfo attribute deduction for a call site return value. |
| 5733 | struct AAInstanceInfoCallSiteReturned final : AAInstanceInfoFloating { |
| 5734 | AAInstanceInfoCallSiteReturned(const IRPosition &IRP, Attributor &A) |
| 5735 | : AAInstanceInfoFloating(IRP, A) {} |
| 5736 | }; |
| 5737 | } // namespace |
| 5738 | |
| 5739 | /// ----------------------- Variable Capturing --------------------------------- |
| 5740 | bool AANoCapture::isImpliedByIR(Attributor &A, const IRPosition &IRP, |
| 5741 | Attribute::AttrKind ImpliedAttributeKind, |
| 5742 | bool IgnoreSubsumingPositions) { |
| 5743 | assert(ImpliedAttributeKind == Attribute::Captures && |
| 5744 | "Unexpected attribute kind" ); |
| 5745 | Value &V = IRP.getAssociatedValue(); |
| 5746 | if (!isa<Constant>(Val: V) && !IRP.isArgumentPosition()) |
| 5747 | return V.use_empty(); |
| 5748 | |
| 5749 | // You cannot "capture" null in the default address space. |
| 5750 | // |
| 5751 | // FIXME: This should use NullPointerIsDefined to account for the function |
| 5752 | // attribute. |
| 5753 | if (isa<UndefValue>(Val: V) || (isa<ConstantPointerNull>(Val: V) && |
| 5754 | V.getType()->getPointerAddressSpace() == 0)) { |
| 5755 | return true; |
| 5756 | } |
| 5757 | |
| 5758 | SmallVector<Attribute, 1> Attrs; |
| 5759 | A.getAttrs(IRP, AKs: {Attribute::Captures}, Attrs, |
| 5760 | /* IgnoreSubsumingPositions */ true); |
| 5761 | for (const Attribute &Attr : Attrs) |
| 5762 | if (capturesNothing(CC: Attr.getCaptureInfo())) |
| 5763 | return true; |
| 5764 | |
| 5765 | if (IRP.getPositionKind() == IRP_CALL_SITE_ARGUMENT) |
| 5766 | if (Argument *Arg = IRP.getAssociatedArgument()) { |
| 5767 | SmallVector<Attribute, 1> Attrs; |
| 5768 | A.getAttrs(IRP: IRPosition::argument(Arg: *Arg), |
| 5769 | AKs: {Attribute::Captures, Attribute::ByVal}, Attrs, |
| 5770 | /* IgnoreSubsumingPositions */ true); |
| 5771 | bool ArgNoCapture = any_of(Range&: Attrs, P: [](Attribute Attr) { |
| 5772 | return Attr.getKindAsEnum() == Attribute::ByVal || |
| 5773 | capturesNothing(CC: Attr.getCaptureInfo()); |
| 5774 | }); |
| 5775 | if (ArgNoCapture) { |
| 5776 | A.manifestAttrs(IRP, DeducedAttrs: Attribute::getWithCaptureInfo( |
| 5777 | Context&: V.getContext(), CI: CaptureInfo::none())); |
| 5778 | return true; |
| 5779 | } |
| 5780 | } |
| 5781 | |
| 5782 | if (const Function *F = IRP.getAssociatedFunction()) { |
| 5783 | // Check what state the associated function can actually capture. |
| 5784 | AANoCapture::StateType State; |
| 5785 | determineFunctionCaptureCapabilities(IRP, F: *F, State); |
| 5786 | if (State.isKnown(BitsEncoding: NO_CAPTURE)) { |
| 5787 | A.manifestAttrs(IRP, DeducedAttrs: Attribute::getWithCaptureInfo(Context&: V.getContext(), |
| 5788 | CI: CaptureInfo::none())); |
| 5789 | return true; |
| 5790 | } |
| 5791 | } |
| 5792 | |
| 5793 | return false; |
| 5794 | } |
| 5795 | |
| 5796 | /// Set the NOT_CAPTURED_IN_MEM and NOT_CAPTURED_IN_RET bits in \p Known |
| 5797 | /// depending on the ability of the function associated with \p IRP to capture |
| 5798 | /// state in memory and through "returning/throwing", respectively. |
| 5799 | void AANoCapture::determineFunctionCaptureCapabilities(const IRPosition &IRP, |
| 5800 | const Function &F, |
| 5801 | BitIntegerState &State) { |
| 5802 | // TODO: Once we have memory behavior attributes we should use them here. |
| 5803 | |
| 5804 | // If we know we cannot communicate or write to memory, we do not care about |
| 5805 | // ptr2int anymore. |
| 5806 | bool ReadOnly = F.onlyReadsMemory(); |
| 5807 | bool NoThrow = F.doesNotThrow(); |
| 5808 | bool IsVoidReturn = F.getReturnType()->isVoidTy(); |
| 5809 | if (ReadOnly && NoThrow && IsVoidReturn) { |
| 5810 | State.addKnownBits(Bits: NO_CAPTURE); |
| 5811 | return; |
| 5812 | } |
| 5813 | |
| 5814 | // A function cannot capture state in memory if it only reads memory, it can |
| 5815 | // however return/throw state and the state might be influenced by the |
| 5816 | // pointer value, e.g., loading from a returned pointer might reveal a bit. |
| 5817 | if (ReadOnly) |
| 5818 | State.addKnownBits(Bits: NOT_CAPTURED_IN_MEM); |
| 5819 | |
| 5820 | // A function cannot communicate state back if it does not through |
| 5821 | // exceptions and doesn not return values. |
| 5822 | if (NoThrow && IsVoidReturn) |
| 5823 | State.addKnownBits(Bits: NOT_CAPTURED_IN_RET); |
| 5824 | |
| 5825 | // Check existing "returned" attributes. |
| 5826 | int ArgNo = IRP.getCalleeArgNo(); |
| 5827 | if (!NoThrow || ArgNo < 0 || |
| 5828 | !F.getAttributes().hasAttrSomewhere(Kind: Attribute::Returned)) |
| 5829 | return; |
| 5830 | |
| 5831 | for (unsigned U = 0, E = F.arg_size(); U < E; ++U) |
| 5832 | if (F.hasParamAttribute(ArgNo: U, Kind: Attribute::Returned)) { |
| 5833 | if (U == unsigned(ArgNo)) |
| 5834 | State.removeAssumedBits(BitsEncoding: NOT_CAPTURED_IN_RET); |
| 5835 | else if (ReadOnly) |
| 5836 | State.addKnownBits(Bits: NO_CAPTURE); |
| 5837 | else |
| 5838 | State.addKnownBits(Bits: NOT_CAPTURED_IN_RET); |
| 5839 | break; |
| 5840 | } |
| 5841 | } |
| 5842 | |
| 5843 | namespace { |
| 5844 | /// A class to hold the state of for no-capture attributes. |
| 5845 | struct AANoCaptureImpl : public AANoCapture { |
| 5846 | AANoCaptureImpl(const IRPosition &IRP, Attributor &A) : AANoCapture(IRP, A) {} |
| 5847 | |
| 5848 | /// See AbstractAttribute::initialize(...). |
| 5849 | void initialize(Attributor &A) override { |
| 5850 | bool IsKnown; |
| 5851 | assert(!AA::hasAssumedIRAttr<Attribute::Captures>( |
| 5852 | A, nullptr, getIRPosition(), DepClassTy::NONE, IsKnown)); |
| 5853 | (void)IsKnown; |
| 5854 | } |
| 5855 | |
| 5856 | /// See AbstractAttribute::updateImpl(...). |
| 5857 | ChangeStatus updateImpl(Attributor &A) override; |
| 5858 | |
| 5859 | /// see AbstractAttribute::isAssumedNoCaptureMaybeReturned(...). |
| 5860 | void getDeducedAttributes(Attributor &A, LLVMContext &Ctx, |
| 5861 | SmallVectorImpl<Attribute> &Attrs) const override { |
| 5862 | if (!isAssumedNoCaptureMaybeReturned()) |
| 5863 | return; |
| 5864 | |
| 5865 | if (isArgumentPosition()) { |
| 5866 | if (isAssumedNoCapture()) |
| 5867 | Attrs.emplace_back(Args: Attribute::get(Context&: Ctx, Kind: Attribute::Captures)); |
| 5868 | else if (ManifestInternal) |
| 5869 | Attrs.emplace_back(Args: Attribute::get(Context&: Ctx, Kind: "no-capture-maybe-returned" )); |
| 5870 | } |
| 5871 | } |
| 5872 | |
| 5873 | /// See AbstractState::getAsStr(). |
| 5874 | const std::string getAsStr(Attributor *A) const override { |
| 5875 | if (isKnownNoCapture()) |
| 5876 | return "known not-captured" ; |
| 5877 | if (isAssumedNoCapture()) |
| 5878 | return "assumed not-captured" ; |
| 5879 | if (isKnownNoCaptureMaybeReturned()) |
| 5880 | return "known not-captured-maybe-returned" ; |
| 5881 | if (isAssumedNoCaptureMaybeReturned()) |
| 5882 | return "assumed not-captured-maybe-returned" ; |
| 5883 | return "assumed-captured" ; |
| 5884 | } |
| 5885 | |
| 5886 | /// Check the use \p U and update \p State accordingly. Return true if we |
| 5887 | /// should continue to update the state. |
| 5888 | bool checkUse(Attributor &A, AANoCapture::StateType &State, const Use &U, |
| 5889 | bool &Follow) { |
| 5890 | Instruction *UInst = cast<Instruction>(Val: U.getUser()); |
| 5891 | LLVM_DEBUG(dbgs() << "[AANoCapture] Check use: " << *U.get() << " in " |
| 5892 | << *UInst << "\n" ); |
| 5893 | |
| 5894 | // Deal with ptr2int by following uses. |
| 5895 | if (isa<PtrToIntInst>(Val: UInst)) { |
| 5896 | LLVM_DEBUG(dbgs() << " - ptr2int assume the worst!\n" ); |
| 5897 | return isCapturedIn(State, /* Memory */ CapturedInMem: true, /* Integer */ CapturedInInt: true, |
| 5898 | /* Return */ CapturedInRet: true); |
| 5899 | } |
| 5900 | |
| 5901 | // For stores we already checked if we can follow them, if they make it |
| 5902 | // here we give up. |
| 5903 | if (isa<StoreInst>(Val: UInst)) |
| 5904 | return isCapturedIn(State, /* Memory */ CapturedInMem: true, /* Integer */ CapturedInInt: true, |
| 5905 | /* Return */ CapturedInRet: true); |
| 5906 | |
| 5907 | // Explicitly catch return instructions. |
| 5908 | if (isa<ReturnInst>(Val: UInst)) { |
| 5909 | if (UInst->getFunction() == getAnchorScope()) |
| 5910 | return isCapturedIn(State, /* Memory */ CapturedInMem: false, /* Integer */ CapturedInInt: false, |
| 5911 | /* Return */ CapturedInRet: true); |
| 5912 | return isCapturedIn(State, /* Memory */ CapturedInMem: true, /* Integer */ CapturedInInt: true, |
| 5913 | /* Return */ CapturedInRet: true); |
| 5914 | } |
| 5915 | |
| 5916 | // For now we only use special logic for call sites. However, the tracker |
| 5917 | // itself knows about a lot of other non-capturing cases already. |
| 5918 | auto *CB = dyn_cast<CallBase>(Val: UInst); |
| 5919 | if (!CB || !CB->isArgOperand(U: &U)) |
| 5920 | return isCapturedIn(State, /* Memory */ CapturedInMem: true, /* Integer */ CapturedInInt: true, |
| 5921 | /* Return */ CapturedInRet: true); |
| 5922 | |
| 5923 | unsigned ArgNo = CB->getArgOperandNo(U: &U); |
| 5924 | const IRPosition &CSArgPos = IRPosition::callsite_argument(CB: *CB, ArgNo); |
| 5925 | // If we have a abstract no-capture attribute for the argument we can use |
| 5926 | // it to justify a non-capture attribute here. This allows recursion! |
| 5927 | bool IsKnownNoCapture; |
| 5928 | const AANoCapture *ArgNoCaptureAA = nullptr; |
| 5929 | bool IsAssumedNoCapture = AA::hasAssumedIRAttr<Attribute::Captures>( |
| 5930 | A, QueryingAA: this, IRP: CSArgPos, DepClass: DepClassTy::REQUIRED, IsKnown&: IsKnownNoCapture, IgnoreSubsumingPositions: false, |
| 5931 | AAPtr: &ArgNoCaptureAA); |
| 5932 | if (IsAssumedNoCapture) |
| 5933 | return isCapturedIn(State, /* Memory */ CapturedInMem: false, /* Integer */ CapturedInInt: false, |
| 5934 | /* Return */ CapturedInRet: false); |
| 5935 | if (ArgNoCaptureAA && ArgNoCaptureAA->isAssumedNoCaptureMaybeReturned()) { |
| 5936 | Follow = true; |
| 5937 | return isCapturedIn(State, /* Memory */ CapturedInMem: false, /* Integer */ CapturedInInt: false, |
| 5938 | /* Return */ CapturedInRet: false); |
| 5939 | } |
| 5940 | |
| 5941 | // Lastly, we could not find a reason no-capture can be assumed so we don't. |
| 5942 | return isCapturedIn(State, /* Memory */ CapturedInMem: true, /* Integer */ CapturedInInt: true, |
| 5943 | /* Return */ CapturedInRet: true); |
| 5944 | } |
| 5945 | |
| 5946 | /// Update \p State according to \p CapturedInMem, \p CapturedInInt, and |
| 5947 | /// \p CapturedInRet, then return true if we should continue updating the |
| 5948 | /// state. |
| 5949 | static bool isCapturedIn(AANoCapture::StateType &State, bool CapturedInMem, |
| 5950 | bool CapturedInInt, bool CapturedInRet) { |
| 5951 | LLVM_DEBUG(dbgs() << " - captures [Mem " << CapturedInMem << "|Int " |
| 5952 | << CapturedInInt << "|Ret " << CapturedInRet << "]\n" ); |
| 5953 | if (CapturedInMem) |
| 5954 | State.removeAssumedBits(BitsEncoding: AANoCapture::NOT_CAPTURED_IN_MEM); |
| 5955 | if (CapturedInInt) |
| 5956 | State.removeAssumedBits(BitsEncoding: AANoCapture::NOT_CAPTURED_IN_INT); |
| 5957 | if (CapturedInRet) |
| 5958 | State.removeAssumedBits(BitsEncoding: AANoCapture::NOT_CAPTURED_IN_RET); |
| 5959 | return State.isAssumed(BitsEncoding: AANoCapture::NO_CAPTURE_MAYBE_RETURNED); |
| 5960 | } |
| 5961 | }; |
| 5962 | |
| 5963 | ChangeStatus AANoCaptureImpl::updateImpl(Attributor &A) { |
| 5964 | const IRPosition &IRP = getIRPosition(); |
| 5965 | Value *V = isArgumentPosition() ? IRP.getAssociatedArgument() |
| 5966 | : &IRP.getAssociatedValue(); |
| 5967 | if (!V) |
| 5968 | return indicatePessimisticFixpoint(); |
| 5969 | |
| 5970 | const Function *F = |
| 5971 | isArgumentPosition() ? IRP.getAssociatedFunction() : IRP.getAnchorScope(); |
| 5972 | |
| 5973 | // TODO: Is the checkForAllUses below useful for constants? |
| 5974 | if (!F) |
| 5975 | return indicatePessimisticFixpoint(); |
| 5976 | |
| 5977 | AANoCapture::StateType T; |
| 5978 | const IRPosition &FnPos = IRPosition::function(F: *F); |
| 5979 | |
| 5980 | // Readonly means we cannot capture through memory. |
| 5981 | bool IsKnown; |
| 5982 | if (AA::isAssumedReadOnly(A, IRP: FnPos, QueryingAA: *this, IsKnown)) { |
| 5983 | T.addKnownBits(Bits: NOT_CAPTURED_IN_MEM); |
| 5984 | if (IsKnown) |
| 5985 | addKnownBits(Bits: NOT_CAPTURED_IN_MEM); |
| 5986 | } |
| 5987 | |
| 5988 | // Make sure all returned values are different than the underlying value. |
| 5989 | // TODO: we could do this in a more sophisticated way inside |
| 5990 | // AAReturnedValues, e.g., track all values that escape through returns |
| 5991 | // directly somehow. |
| 5992 | auto CheckReturnedArgs = [&](bool &UsedAssumedInformation) { |
| 5993 | SmallVector<AA::ValueAndContext> Values; |
| 5994 | if (!A.getAssumedSimplifiedValues(IRP: IRPosition::returned(F: *F), AA: this, Values, |
| 5995 | S: AA::ValueScope::Intraprocedural, |
| 5996 | UsedAssumedInformation)) |
| 5997 | return false; |
| 5998 | bool SeenConstant = false; |
| 5999 | for (const AA::ValueAndContext &VAC : Values) { |
| 6000 | if (isa<Constant>(Val: VAC.getValue())) { |
| 6001 | if (SeenConstant) |
| 6002 | return false; |
| 6003 | SeenConstant = true; |
| 6004 | } else if (!isa<Argument>(Val: VAC.getValue()) || |
| 6005 | VAC.getValue() == getAssociatedArgument()) |
| 6006 | return false; |
| 6007 | } |
| 6008 | return true; |
| 6009 | }; |
| 6010 | |
| 6011 | bool IsKnownNoUnwind; |
| 6012 | if (AA::hasAssumedIRAttr<Attribute::NoUnwind>( |
| 6013 | A, QueryingAA: this, IRP: FnPos, DepClass: DepClassTy::OPTIONAL, IsKnown&: IsKnownNoUnwind)) { |
| 6014 | bool IsVoidTy = F->getReturnType()->isVoidTy(); |
| 6015 | bool UsedAssumedInformation = false; |
| 6016 | if (IsVoidTy || CheckReturnedArgs(UsedAssumedInformation)) { |
| 6017 | T.addKnownBits(Bits: NOT_CAPTURED_IN_RET); |
| 6018 | if (T.isKnown(BitsEncoding: NOT_CAPTURED_IN_MEM)) |
| 6019 | return ChangeStatus::UNCHANGED; |
| 6020 | if (IsKnownNoUnwind && (IsVoidTy || !UsedAssumedInformation)) { |
| 6021 | addKnownBits(Bits: NOT_CAPTURED_IN_RET); |
| 6022 | if (isKnown(BitsEncoding: NOT_CAPTURED_IN_MEM)) |
| 6023 | return indicateOptimisticFixpoint(); |
| 6024 | } |
| 6025 | } |
| 6026 | } |
| 6027 | |
| 6028 | auto UseCheck = [&](const Use &U, bool &Follow) -> bool { |
| 6029 | // TODO(captures): Make this more precise. |
| 6030 | UseCaptureInfo CI = DetermineUseCaptureKind(U, /*Base=*/nullptr); |
| 6031 | if (capturesNothing(CC: CI)) |
| 6032 | return true; |
| 6033 | if (CI.isPassthrough()) { |
| 6034 | Follow = true; |
| 6035 | return true; |
| 6036 | } |
| 6037 | return checkUse(A, State&: T, U, Follow); |
| 6038 | }; |
| 6039 | |
| 6040 | if (!A.checkForAllUses(Pred: UseCheck, QueryingAA: *this, V: *V)) |
| 6041 | return indicatePessimisticFixpoint(); |
| 6042 | |
| 6043 | AANoCapture::StateType &S = getState(); |
| 6044 | auto Assumed = S.getAssumed(); |
| 6045 | S.intersectAssumedBits(BitsEncoding: T.getAssumed()); |
| 6046 | if (!isAssumedNoCaptureMaybeReturned()) |
| 6047 | return indicatePessimisticFixpoint(); |
| 6048 | return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED |
| 6049 | : ChangeStatus::CHANGED; |
| 6050 | } |
| 6051 | |
| 6052 | /// NoCapture attribute for function arguments. |
| 6053 | struct AANoCaptureArgument final : AANoCaptureImpl { |
| 6054 | AANoCaptureArgument(const IRPosition &IRP, Attributor &A) |
| 6055 | : AANoCaptureImpl(IRP, A) {} |
| 6056 | |
| 6057 | /// See AbstractAttribute::trackStatistics() |
| 6058 | void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nocapture) } |
| 6059 | }; |
| 6060 | |
| 6061 | /// NoCapture attribute for call site arguments. |
| 6062 | struct AANoCaptureCallSiteArgument final : AANoCaptureImpl { |
| 6063 | AANoCaptureCallSiteArgument(const IRPosition &IRP, Attributor &A) |
| 6064 | : AANoCaptureImpl(IRP, A) {} |
| 6065 | |
| 6066 | /// See AbstractAttribute::updateImpl(...). |
| 6067 | ChangeStatus updateImpl(Attributor &A) override { |
| 6068 | // TODO: Once we have call site specific value information we can provide |
| 6069 | // call site specific liveness information and then it makes |
| 6070 | // sense to specialize attributes for call sites arguments instead of |
| 6071 | // redirecting requests to the callee argument. |
| 6072 | Argument *Arg = getAssociatedArgument(); |
| 6073 | if (!Arg) |
| 6074 | return indicatePessimisticFixpoint(); |
| 6075 | const IRPosition &ArgPos = IRPosition::argument(Arg: *Arg); |
| 6076 | bool IsKnownNoCapture; |
| 6077 | const AANoCapture *ArgAA = nullptr; |
| 6078 | if (AA::hasAssumedIRAttr<Attribute::Captures>( |
| 6079 | A, QueryingAA: this, IRP: ArgPos, DepClass: DepClassTy::REQUIRED, IsKnown&: IsKnownNoCapture, IgnoreSubsumingPositions: false, |
| 6080 | AAPtr: &ArgAA)) |
| 6081 | return ChangeStatus::UNCHANGED; |
| 6082 | if (!ArgAA || !ArgAA->isAssumedNoCaptureMaybeReturned()) |
| 6083 | return indicatePessimisticFixpoint(); |
| 6084 | return clampStateAndIndicateChange(S&: getState(), R: ArgAA->getState()); |
| 6085 | } |
| 6086 | |
| 6087 | /// See AbstractAttribute::trackStatistics() |
| 6088 | void trackStatistics() const override { |
| 6089 | STATS_DECLTRACK_CSARG_ATTR(nocapture) |
| 6090 | }; |
| 6091 | }; |
| 6092 | |
| 6093 | /// NoCapture attribute for floating values. |
| 6094 | struct AANoCaptureFloating final : AANoCaptureImpl { |
| 6095 | AANoCaptureFloating(const IRPosition &IRP, Attributor &A) |
| 6096 | : AANoCaptureImpl(IRP, A) {} |
| 6097 | |
| 6098 | /// See AbstractAttribute::trackStatistics() |
| 6099 | void trackStatistics() const override { |
| 6100 | STATS_DECLTRACK_FLOATING_ATTR(nocapture) |
| 6101 | } |
| 6102 | }; |
| 6103 | |
| 6104 | /// NoCapture attribute for function return value. |
| 6105 | struct AANoCaptureReturned final : AANoCaptureImpl { |
| 6106 | AANoCaptureReturned(const IRPosition &IRP, Attributor &A) |
| 6107 | : AANoCaptureImpl(IRP, A) { |
| 6108 | llvm_unreachable("NoCapture is not applicable to function returns!" ); |
| 6109 | } |
| 6110 | |
| 6111 | /// See AbstractAttribute::initialize(...). |
| 6112 | void initialize(Attributor &A) override { |
| 6113 | llvm_unreachable("NoCapture is not applicable to function returns!" ); |
| 6114 | } |
| 6115 | |
| 6116 | /// See AbstractAttribute::updateImpl(...). |
| 6117 | ChangeStatus updateImpl(Attributor &A) override { |
| 6118 | llvm_unreachable("NoCapture is not applicable to function returns!" ); |
| 6119 | } |
| 6120 | |
| 6121 | /// See AbstractAttribute::trackStatistics() |
| 6122 | void trackStatistics() const override {} |
| 6123 | }; |
| 6124 | |
| 6125 | /// NoCapture attribute deduction for a call site return value. |
| 6126 | struct AANoCaptureCallSiteReturned final : AANoCaptureImpl { |
| 6127 | AANoCaptureCallSiteReturned(const IRPosition &IRP, Attributor &A) |
| 6128 | : AANoCaptureImpl(IRP, A) {} |
| 6129 | |
| 6130 | /// See AbstractAttribute::initialize(...). |
| 6131 | void initialize(Attributor &A) override { |
| 6132 | const Function *F = getAnchorScope(); |
| 6133 | // Check what state the associated function can actually capture. |
| 6134 | determineFunctionCaptureCapabilities(IRP: getIRPosition(), F: *F, State&: *this); |
| 6135 | } |
| 6136 | |
| 6137 | /// See AbstractAttribute::trackStatistics() |
| 6138 | void trackStatistics() const override { |
| 6139 | STATS_DECLTRACK_CSRET_ATTR(nocapture) |
| 6140 | } |
| 6141 | }; |
| 6142 | } // namespace |
| 6143 | |
| 6144 | /// ------------------ Value Simplify Attribute ---------------------------- |
| 6145 | |
| 6146 | bool ValueSimplifyStateType::unionAssumed(std::optional<Value *> Other) { |
| 6147 | // FIXME: Add a typecast support. |
| 6148 | SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice( |
| 6149 | A: SimplifiedAssociatedValue, B: Other, Ty); |
| 6150 | if (SimplifiedAssociatedValue == std::optional<Value *>(nullptr)) |
| 6151 | return false; |
| 6152 | |
| 6153 | LLVM_DEBUG({ |
| 6154 | if (SimplifiedAssociatedValue) |
| 6155 | dbgs() << "[ValueSimplify] is assumed to be " |
| 6156 | << **SimplifiedAssociatedValue << "\n" ; |
| 6157 | else |
| 6158 | dbgs() << "[ValueSimplify] is assumed to be <none>\n" ; |
| 6159 | }); |
| 6160 | return true; |
| 6161 | } |
| 6162 | |
| 6163 | namespace { |
| 6164 | struct AAValueSimplifyImpl : AAValueSimplify { |
| 6165 | AAValueSimplifyImpl(const IRPosition &IRP, Attributor &A) |
| 6166 | : AAValueSimplify(IRP, A) {} |
| 6167 | |
| 6168 | /// See AbstractAttribute::initialize(...). |
| 6169 | void initialize(Attributor &A) override { |
| 6170 | if (getAssociatedValue().getType()->isVoidTy()) |
| 6171 | indicatePessimisticFixpoint(); |
| 6172 | if (A.hasSimplificationCallback(IRP: getIRPosition())) |
| 6173 | indicatePessimisticFixpoint(); |
| 6174 | } |
| 6175 | |
| 6176 | /// See AbstractAttribute::getAsStr(). |
| 6177 | const std::string getAsStr(Attributor *A) const override { |
| 6178 | LLVM_DEBUG({ |
| 6179 | dbgs() << "SAV: " << (bool)SimplifiedAssociatedValue << " " ; |
| 6180 | if (SimplifiedAssociatedValue && *SimplifiedAssociatedValue) |
| 6181 | dbgs() << "SAV: " << **SimplifiedAssociatedValue << " " ; |
| 6182 | }); |
| 6183 | return isValidState() ? (isAtFixpoint() ? "simplified" : "maybe-simple" ) |
| 6184 | : "not-simple" ; |
| 6185 | } |
| 6186 | |
| 6187 | /// See AbstractAttribute::trackStatistics() |
| 6188 | void trackStatistics() const override {} |
| 6189 | |
| 6190 | /// See AAValueSimplify::getAssumedSimplifiedValue() |
| 6191 | std::optional<Value *> |
| 6192 | getAssumedSimplifiedValue(Attributor &A) const override { |
| 6193 | return SimplifiedAssociatedValue; |
| 6194 | } |
| 6195 | |
| 6196 | /// Ensure the return value is \p V with type \p Ty, if not possible return |
| 6197 | /// nullptr. If \p Check is true we will only verify such an operation would |
| 6198 | /// suceed and return a non-nullptr value if that is the case. No IR is |
| 6199 | /// generated or modified. |
| 6200 | static Value *ensureType(Attributor &A, Value &V, Type &Ty, Instruction *CtxI, |
| 6201 | bool Check) { |
| 6202 | if (auto *TypedV = AA::getWithType(V, Ty)) |
| 6203 | return TypedV; |
| 6204 | if (CtxI && V.getType()->canLosslesslyBitCastTo(Ty: &Ty)) |
| 6205 | return Check ? &V |
| 6206 | : BitCastInst::CreatePointerBitCastOrAddrSpaceCast( |
| 6207 | S: &V, Ty: &Ty, Name: "" , InsertBefore: CtxI->getIterator()); |
| 6208 | return nullptr; |
| 6209 | } |
| 6210 | |
| 6211 | /// Reproduce \p I with type \p Ty or return nullptr if that is not posisble. |
| 6212 | /// If \p Check is true we will only verify such an operation would suceed and |
| 6213 | /// return a non-nullptr value if that is the case. No IR is generated or |
| 6214 | /// modified. |
| 6215 | static Value *reproduceInst(Attributor &A, |
| 6216 | const AbstractAttribute &QueryingAA, |
| 6217 | Instruction &I, Type &Ty, Instruction *CtxI, |
| 6218 | bool Check, ValueToValueMapTy &VMap) { |
| 6219 | assert(CtxI && "Cannot reproduce an instruction without context!" ); |
| 6220 | if (Check && (I.mayReadFromMemory() || |
| 6221 | !isSafeToSpeculativelyExecute(I: &I, CtxI, /* DT */ AC: nullptr, |
| 6222 | /* TLI */ DT: nullptr))) |
| 6223 | return nullptr; |
| 6224 | for (Value *Op : I.operands()) { |
| 6225 | Value *NewOp = reproduceValue(A, QueryingAA, V&: *Op, Ty, CtxI, Check, VMap); |
| 6226 | if (!NewOp) { |
| 6227 | assert(Check && "Manifest of new value unexpectedly failed!" ); |
| 6228 | return nullptr; |
| 6229 | } |
| 6230 | if (!Check) |
| 6231 | VMap[Op] = NewOp; |
| 6232 | } |
| 6233 | if (Check) |
| 6234 | return &I; |
| 6235 | |
| 6236 | Instruction *CloneI = I.clone(); |
| 6237 | // TODO: Try to salvage debug information here. |
| 6238 | CloneI->setDebugLoc(DebugLoc()); |
| 6239 | VMap[&I] = CloneI; |
| 6240 | CloneI->insertBefore(InsertPos: CtxI->getIterator()); |
| 6241 | RemapInstruction(I: CloneI, VM&: VMap); |
| 6242 | return CloneI; |
| 6243 | } |
| 6244 | |
| 6245 | /// Reproduce \p V with type \p Ty or return nullptr if that is not posisble. |
| 6246 | /// If \p Check is true we will only verify such an operation would suceed and |
| 6247 | /// return a non-nullptr value if that is the case. No IR is generated or |
| 6248 | /// modified. |
| 6249 | static Value *reproduceValue(Attributor &A, |
| 6250 | const AbstractAttribute &QueryingAA, Value &V, |
| 6251 | Type &Ty, Instruction *CtxI, bool Check, |
| 6252 | ValueToValueMapTy &VMap) { |
| 6253 | if (const auto &NewV = VMap.lookup(Val: &V)) |
| 6254 | return NewV; |
| 6255 | bool UsedAssumedInformation = false; |
| 6256 | std::optional<Value *> SimpleV = A.getAssumedSimplified( |
| 6257 | V, AA: QueryingAA, UsedAssumedInformation, S: AA::Interprocedural); |
| 6258 | if (!SimpleV.has_value()) |
| 6259 | return PoisonValue::get(T: &Ty); |
| 6260 | Value *EffectiveV = &V; |
| 6261 | if (*SimpleV) |
| 6262 | EffectiveV = *SimpleV; |
| 6263 | if (auto *C = dyn_cast<Constant>(Val: EffectiveV)) |
| 6264 | return C; |
| 6265 | if (CtxI && AA::isValidAtPosition(VAC: AA::ValueAndContext(*EffectiveV, *CtxI), |
| 6266 | InfoCache&: A.getInfoCache())) |
| 6267 | return ensureType(A, V&: *EffectiveV, Ty, CtxI, Check); |
| 6268 | if (auto *I = dyn_cast<Instruction>(Val: EffectiveV)) |
| 6269 | if (Value *NewV = reproduceInst(A, QueryingAA, I&: *I, Ty, CtxI, Check, VMap)) |
| 6270 | return ensureType(A, V&: *NewV, Ty, CtxI, Check); |
| 6271 | return nullptr; |
| 6272 | } |
| 6273 | |
| 6274 | /// Return a value we can use as replacement for the associated one, or |
| 6275 | /// nullptr if we don't have one that makes sense. |
| 6276 | Value *manifestReplacementValue(Attributor &A, Instruction *CtxI) const { |
| 6277 | Value *NewV = SimplifiedAssociatedValue |
| 6278 | ? *SimplifiedAssociatedValue |
| 6279 | : UndefValue::get(T: getAssociatedType()); |
| 6280 | if (NewV && NewV != &getAssociatedValue()) { |
| 6281 | ValueToValueMapTy VMap; |
| 6282 | // First verify we can reprduce the value with the required type at the |
| 6283 | // context location before we actually start modifying the IR. |
| 6284 | if (reproduceValue(A, QueryingAA: *this, V&: *NewV, Ty&: *getAssociatedType(), CtxI, |
| 6285 | /* CheckOnly */ Check: true, VMap)) |
| 6286 | return reproduceValue(A, QueryingAA: *this, V&: *NewV, Ty&: *getAssociatedType(), CtxI, |
| 6287 | /* CheckOnly */ Check: false, VMap); |
| 6288 | } |
| 6289 | return nullptr; |
| 6290 | } |
| 6291 | |
| 6292 | /// Helper function for querying AAValueSimplify and updating candidate. |
| 6293 | /// \param IRP The value position we are trying to unify with SimplifiedValue |
| 6294 | bool checkAndUpdate(Attributor &A, const AbstractAttribute &QueryingAA, |
| 6295 | const IRPosition &IRP, bool Simplify = true) { |
| 6296 | bool UsedAssumedInformation = false; |
| 6297 | std::optional<Value *> QueryingValueSimplified = &IRP.getAssociatedValue(); |
| 6298 | if (Simplify) |
| 6299 | QueryingValueSimplified = A.getAssumedSimplified( |
| 6300 | IRP, AA: QueryingAA, UsedAssumedInformation, S: AA::Interprocedural); |
| 6301 | return unionAssumed(Other: QueryingValueSimplified); |
| 6302 | } |
| 6303 | |
| 6304 | /// Returns a candidate is found or not |
| 6305 | template <typename AAType> bool askSimplifiedValueFor(Attributor &A) { |
| 6306 | if (!getAssociatedValue().getType()->isIntegerTy()) |
| 6307 | return false; |
| 6308 | |
| 6309 | // This will also pass the call base context. |
| 6310 | const auto *AA = |
| 6311 | A.getAAFor<AAType>(*this, getIRPosition(), DepClassTy::NONE); |
| 6312 | if (!AA) |
| 6313 | return false; |
| 6314 | |
| 6315 | std::optional<Constant *> COpt = AA->getAssumedConstant(A); |
| 6316 | |
| 6317 | if (!COpt) { |
| 6318 | SimplifiedAssociatedValue = std::nullopt; |
| 6319 | A.recordDependence(FromAA: *AA, ToAA: *this, DepClass: DepClassTy::OPTIONAL); |
| 6320 | return true; |
| 6321 | } |
| 6322 | if (auto *C = *COpt) { |
| 6323 | SimplifiedAssociatedValue = C; |
| 6324 | A.recordDependence(FromAA: *AA, ToAA: *this, DepClass: DepClassTy::OPTIONAL); |
| 6325 | return true; |
| 6326 | } |
| 6327 | return false; |
| 6328 | } |
| 6329 | |
| 6330 | bool askSimplifiedValueForOtherAAs(Attributor &A) { |
| 6331 | if (askSimplifiedValueFor<AAValueConstantRange>(A)) |
| 6332 | return true; |
| 6333 | if (askSimplifiedValueFor<AAPotentialConstantValues>(A)) |
| 6334 | return true; |
| 6335 | return false; |
| 6336 | } |
| 6337 | |
| 6338 | /// See AbstractAttribute::manifest(...). |
| 6339 | ChangeStatus manifest(Attributor &A) override { |
| 6340 | ChangeStatus Changed = ChangeStatus::UNCHANGED; |
| 6341 | for (auto &U : getAssociatedValue().uses()) { |
| 6342 | // Check if we need to adjust the insertion point to make sure the IR is |
| 6343 | // valid. |
| 6344 | Instruction *IP = dyn_cast<Instruction>(Val: U.getUser()); |
| 6345 | if (auto *PHI = dyn_cast_or_null<PHINode>(Val: IP)) |
| 6346 | IP = PHI->getIncomingBlock(U)->getTerminator(); |
| 6347 | if (auto *NewV = manifestReplacementValue(A, CtxI: IP)) { |
| 6348 | LLVM_DEBUG(dbgs() << "[ValueSimplify] " << getAssociatedValue() |
| 6349 | << " -> " << *NewV << " :: " << *this << "\n" ); |
| 6350 | if (A.changeUseAfterManifest(U, NV&: *NewV)) |
| 6351 | Changed = ChangeStatus::CHANGED; |
| 6352 | } |
| 6353 | } |
| 6354 | |
| 6355 | return Changed | AAValueSimplify::manifest(A); |
| 6356 | } |
| 6357 | |
| 6358 | /// See AbstractState::indicatePessimisticFixpoint(...). |
| 6359 | ChangeStatus indicatePessimisticFixpoint() override { |
| 6360 | SimplifiedAssociatedValue = &getAssociatedValue(); |
| 6361 | return AAValueSimplify::indicatePessimisticFixpoint(); |
| 6362 | } |
| 6363 | }; |
| 6364 | |
| 6365 | struct AAValueSimplifyArgument final : AAValueSimplifyImpl { |
| 6366 | AAValueSimplifyArgument(const IRPosition &IRP, Attributor &A) |
| 6367 | : AAValueSimplifyImpl(IRP, A) {} |
| 6368 | |
| 6369 | void initialize(Attributor &A) override { |
| 6370 | AAValueSimplifyImpl::initialize(A); |
| 6371 | if (A.hasAttr(IRP: getIRPosition(), |
| 6372 | AKs: {Attribute::InAlloca, Attribute::Preallocated, |
| 6373 | Attribute::StructRet, Attribute::Nest, Attribute::ByVal}, |
| 6374 | /* IgnoreSubsumingPositions */ true)) |
| 6375 | indicatePessimisticFixpoint(); |
| 6376 | } |
| 6377 | |
| 6378 | /// See AbstractAttribute::updateImpl(...). |
| 6379 | ChangeStatus updateImpl(Attributor &A) override { |
| 6380 | // Byval is only replacable if it is readonly otherwise we would write into |
| 6381 | // the replaced value and not the copy that byval creates implicitly. |
| 6382 | Argument *Arg = getAssociatedArgument(); |
| 6383 | if (Arg->hasByValAttr()) { |
| 6384 | // TODO: We probably need to verify synchronization is not an issue, e.g., |
| 6385 | // there is no race by not copying a constant byval. |
| 6386 | bool IsKnown; |
| 6387 | if (!AA::isAssumedReadOnly(A, IRP: getIRPosition(), QueryingAA: *this, IsKnown)) |
| 6388 | return indicatePessimisticFixpoint(); |
| 6389 | } |
| 6390 | |
| 6391 | auto Before = SimplifiedAssociatedValue; |
| 6392 | |
| 6393 | auto PredForCallSite = [&](AbstractCallSite ACS) { |
| 6394 | const IRPosition &ACSArgPos = |
| 6395 | IRPosition::callsite_argument(ACS, ArgNo: getCallSiteArgNo()); |
| 6396 | // Check if a coresponding argument was found or if it is on not |
| 6397 | // associated (which can happen for callback calls). |
| 6398 | if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID) |
| 6399 | return false; |
| 6400 | |
| 6401 | // Simplify the argument operand explicitly and check if the result is |
| 6402 | // valid in the current scope. This avoids refering to simplified values |
| 6403 | // in other functions, e.g., we don't want to say a an argument in a |
| 6404 | // static function is actually an argument in a different function. |
| 6405 | bool UsedAssumedInformation = false; |
| 6406 | std::optional<Constant *> SimpleArgOp = |
| 6407 | A.getAssumedConstant(IRP: ACSArgPos, AA: *this, UsedAssumedInformation); |
| 6408 | if (!SimpleArgOp) |
| 6409 | return true; |
| 6410 | if (!*SimpleArgOp) |
| 6411 | return false; |
| 6412 | if (!AA::isDynamicallyUnique(A, QueryingAA: *this, V: **SimpleArgOp)) |
| 6413 | return false; |
| 6414 | return unionAssumed(Other: *SimpleArgOp); |
| 6415 | }; |
| 6416 | |
| 6417 | // Generate a answer specific to a call site context. |
| 6418 | bool Success; |
| 6419 | bool UsedAssumedInformation = false; |
| 6420 | if (hasCallBaseContext() && |
| 6421 | getCallBaseContext()->getCalledOperand() == Arg->getParent()) |
| 6422 | Success = PredForCallSite( |
| 6423 | AbstractCallSite(&getCallBaseContext()->getCalledOperandUse())); |
| 6424 | else |
| 6425 | Success = A.checkForAllCallSites(Pred: PredForCallSite, QueryingAA: *this, RequireAllCallSites: true, |
| 6426 | UsedAssumedInformation); |
| 6427 | |
| 6428 | if (!Success) |
| 6429 | if (!askSimplifiedValueForOtherAAs(A)) |
| 6430 | return indicatePessimisticFixpoint(); |
| 6431 | |
| 6432 | // If a candidate was found in this update, return CHANGED. |
| 6433 | return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED |
| 6434 | : ChangeStatus ::CHANGED; |
| 6435 | } |
| 6436 | |
| 6437 | /// See AbstractAttribute::trackStatistics() |
| 6438 | void trackStatistics() const override { |
| 6439 | STATS_DECLTRACK_ARG_ATTR(value_simplify) |
| 6440 | } |
| 6441 | }; |
| 6442 | |
| 6443 | struct AAValueSimplifyReturned : AAValueSimplifyImpl { |
| 6444 | AAValueSimplifyReturned(const IRPosition &IRP, Attributor &A) |
| 6445 | : AAValueSimplifyImpl(IRP, A) {} |
| 6446 | |
| 6447 | /// See AAValueSimplify::getAssumedSimplifiedValue() |
| 6448 | std::optional<Value *> |
| 6449 | getAssumedSimplifiedValue(Attributor &A) const override { |
| 6450 | if (!isValidState()) |
| 6451 | return nullptr; |
| 6452 | return SimplifiedAssociatedValue; |
| 6453 | } |
| 6454 | |
| 6455 | /// See AbstractAttribute::updateImpl(...). |
| 6456 | ChangeStatus updateImpl(Attributor &A) override { |
| 6457 | auto Before = SimplifiedAssociatedValue; |
| 6458 | |
| 6459 | auto ReturnInstCB = [&](Instruction &I) { |
| 6460 | auto &RI = cast<ReturnInst>(Val&: I); |
| 6461 | return checkAndUpdate( |
| 6462 | A, QueryingAA: *this, |
| 6463 | IRP: IRPosition::value(V: *RI.getReturnValue(), CBContext: getCallBaseContext())); |
| 6464 | }; |
| 6465 | |
| 6466 | bool UsedAssumedInformation = false; |
| 6467 | if (!A.checkForAllInstructions(Pred: ReturnInstCB, QueryingAA: *this, Opcodes: {Instruction::Ret}, |
| 6468 | UsedAssumedInformation)) |
| 6469 | if (!askSimplifiedValueForOtherAAs(A)) |
| 6470 | return indicatePessimisticFixpoint(); |
| 6471 | |
| 6472 | // If a candidate was found in this update, return CHANGED. |
| 6473 | return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED |
| 6474 | : ChangeStatus ::CHANGED; |
| 6475 | } |
| 6476 | |
| 6477 | ChangeStatus manifest(Attributor &A) override { |
| 6478 | // We queried AAValueSimplify for the returned values so they will be |
| 6479 | // replaced if a simplified form was found. Nothing to do here. |
| 6480 | return ChangeStatus::UNCHANGED; |
| 6481 | } |
| 6482 | |
| 6483 | /// See AbstractAttribute::trackStatistics() |
| 6484 | void trackStatistics() const override { |
| 6485 | STATS_DECLTRACK_FNRET_ATTR(value_simplify) |
| 6486 | } |
| 6487 | }; |
| 6488 | |
| 6489 | struct AAValueSimplifyFloating : AAValueSimplifyImpl { |
| 6490 | AAValueSimplifyFloating(const IRPosition &IRP, Attributor &A) |
| 6491 | : AAValueSimplifyImpl(IRP, A) {} |
| 6492 | |
| 6493 | /// See AbstractAttribute::initialize(...). |
| 6494 | void initialize(Attributor &A) override { |
| 6495 | AAValueSimplifyImpl::initialize(A); |
| 6496 | Value &V = getAnchorValue(); |
| 6497 | |
| 6498 | // TODO: add other stuffs |
| 6499 | if (isa<Constant>(Val: V)) |
| 6500 | indicatePessimisticFixpoint(); |
| 6501 | } |
| 6502 | |
| 6503 | /// See AbstractAttribute::updateImpl(...). |
| 6504 | ChangeStatus updateImpl(Attributor &A) override { |
| 6505 | auto Before = SimplifiedAssociatedValue; |
| 6506 | if (!askSimplifiedValueForOtherAAs(A)) |
| 6507 | return indicatePessimisticFixpoint(); |
| 6508 | |
| 6509 | // If a candidate was found in this update, return CHANGED. |
| 6510 | return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED |
| 6511 | : ChangeStatus ::CHANGED; |
| 6512 | } |
| 6513 | |
| 6514 | /// See AbstractAttribute::trackStatistics() |
| 6515 | void trackStatistics() const override { |
| 6516 | STATS_DECLTRACK_FLOATING_ATTR(value_simplify) |
| 6517 | } |
| 6518 | }; |
| 6519 | |
| 6520 | struct AAValueSimplifyFunction : AAValueSimplifyImpl { |
| 6521 | AAValueSimplifyFunction(const IRPosition &IRP, Attributor &A) |
| 6522 | : AAValueSimplifyImpl(IRP, A) {} |
| 6523 | |
| 6524 | /// See AbstractAttribute::initialize(...). |
| 6525 | void initialize(Attributor &A) override { |
| 6526 | SimplifiedAssociatedValue = nullptr; |
| 6527 | indicateOptimisticFixpoint(); |
| 6528 | } |
| 6529 | /// See AbstractAttribute::initialize(...). |
| 6530 | ChangeStatus updateImpl(Attributor &A) override { |
| 6531 | llvm_unreachable( |
| 6532 | "AAValueSimplify(Function|CallSite)::updateImpl will not be called" ); |
| 6533 | } |
| 6534 | /// See AbstractAttribute::trackStatistics() |
| 6535 | void trackStatistics() const override { |
| 6536 | STATS_DECLTRACK_FN_ATTR(value_simplify) |
| 6537 | } |
| 6538 | }; |
| 6539 | |
| 6540 | struct AAValueSimplifyCallSite : AAValueSimplifyFunction { |
| 6541 | AAValueSimplifyCallSite(const IRPosition &IRP, Attributor &A) |
| 6542 | : AAValueSimplifyFunction(IRP, A) {} |
| 6543 | /// See AbstractAttribute::trackStatistics() |
| 6544 | void trackStatistics() const override { |
| 6545 | STATS_DECLTRACK_CS_ATTR(value_simplify) |
| 6546 | } |
| 6547 | }; |
| 6548 | |
| 6549 | struct AAValueSimplifyCallSiteReturned : AAValueSimplifyImpl { |
| 6550 | AAValueSimplifyCallSiteReturned(const IRPosition &IRP, Attributor &A) |
| 6551 | : AAValueSimplifyImpl(IRP, A) {} |
| 6552 | |
| 6553 | void initialize(Attributor &A) override { |
| 6554 | AAValueSimplifyImpl::initialize(A); |
| 6555 | Function *Fn = getAssociatedFunction(); |
| 6556 | assert(Fn && "Did expect an associted function" ); |
| 6557 | for (Argument &Arg : Fn->args()) { |
| 6558 | if (Arg.hasReturnedAttr()) { |
| 6559 | auto IRP = IRPosition::callsite_argument(CB: *cast<CallBase>(Val: getCtxI()), |
| 6560 | ArgNo: Arg.getArgNo()); |
| 6561 | if (IRP.getPositionKind() == IRPosition::IRP_CALL_SITE_ARGUMENT && |
| 6562 | checkAndUpdate(A, QueryingAA: *this, IRP)) |
| 6563 | indicateOptimisticFixpoint(); |
| 6564 | else |
| 6565 | indicatePessimisticFixpoint(); |
| 6566 | return; |
| 6567 | } |
| 6568 | } |
| 6569 | } |
| 6570 | |
| 6571 | /// See AbstractAttribute::updateImpl(...). |
| 6572 | ChangeStatus updateImpl(Attributor &A) override { |
| 6573 | return indicatePessimisticFixpoint(); |
| 6574 | } |
| 6575 | |
| 6576 | void trackStatistics() const override { |
| 6577 | STATS_DECLTRACK_CSRET_ATTR(value_simplify) |
| 6578 | } |
| 6579 | }; |
| 6580 | |
| 6581 | struct AAValueSimplifyCallSiteArgument : AAValueSimplifyFloating { |
| 6582 | AAValueSimplifyCallSiteArgument(const IRPosition &IRP, Attributor &A) |
| 6583 | : AAValueSimplifyFloating(IRP, A) {} |
| 6584 | |
| 6585 | /// See AbstractAttribute::manifest(...). |
| 6586 | ChangeStatus manifest(Attributor &A) override { |
| 6587 | ChangeStatus Changed = ChangeStatus::UNCHANGED; |
| 6588 | // TODO: We should avoid simplification duplication to begin with. |
| 6589 | auto *FloatAA = A.lookupAAFor<AAValueSimplify>( |
| 6590 | IRP: IRPosition::value(V: getAssociatedValue()), QueryingAA: this, DepClass: DepClassTy::NONE); |
| 6591 | if (FloatAA && FloatAA->getState().isValidState()) |
| 6592 | return Changed; |
| 6593 | |
| 6594 | if (auto *NewV = manifestReplacementValue(A, CtxI: getCtxI())) { |
| 6595 | Use &U = cast<CallBase>(Val: &getAnchorValue()) |
| 6596 | ->getArgOperandUse(i: getCallSiteArgNo()); |
| 6597 | if (A.changeUseAfterManifest(U, NV&: *NewV)) |
| 6598 | Changed = ChangeStatus::CHANGED; |
| 6599 | } |
| 6600 | |
| 6601 | return Changed | AAValueSimplify::manifest(A); |
| 6602 | } |
| 6603 | |
| 6604 | void trackStatistics() const override { |
| 6605 | STATS_DECLTRACK_CSARG_ATTR(value_simplify) |
| 6606 | } |
| 6607 | }; |
| 6608 | } // namespace |
| 6609 | |
| 6610 | /// ----------------------- Heap-To-Stack Conversion --------------------------- |
| 6611 | namespace { |
| 6612 | struct AAHeapToStackFunction final : public AAHeapToStack { |
| 6613 | |
| 6614 | struct AllocationInfo { |
| 6615 | /// The call that allocates the memory. |
| 6616 | CallBase *const CB; |
| 6617 | |
| 6618 | /// The library function id for the allocation. |
| 6619 | LibFunc LibraryFunctionId = NotLibFunc; |
| 6620 | |
| 6621 | /// The status wrt. a rewrite. |
| 6622 | enum { |
| 6623 | STACK_DUE_TO_USE, |
| 6624 | STACK_DUE_TO_FREE, |
| 6625 | INVALID, |
| 6626 | } Status = STACK_DUE_TO_USE; |
| 6627 | |
| 6628 | /// Flag to indicate if we encountered a use that might free this allocation |
| 6629 | /// but which is not in the deallocation infos. |
| 6630 | bool HasPotentiallyFreeingUnknownUses = false; |
| 6631 | |
| 6632 | /// Flag to indicate that we should place the new alloca in the function |
| 6633 | /// entry block rather than where the call site (CB) is. |
| 6634 | bool MoveAllocaIntoEntry = true; |
| 6635 | |
| 6636 | /// The set of free calls that use this allocation. |
| 6637 | SmallSetVector<CallBase *, 1> PotentialFreeCalls{}; |
| 6638 | }; |
| 6639 | |
| 6640 | struct DeallocationInfo { |
| 6641 | /// The call that deallocates the memory. |
| 6642 | CallBase *const CB; |
| 6643 | /// The value freed by the call. |
| 6644 | Value *FreedOp; |
| 6645 | |
| 6646 | /// Flag to indicate if we don't know all objects this deallocation might |
| 6647 | /// free. |
| 6648 | bool MightFreeUnknownObjects = false; |
| 6649 | |
| 6650 | /// The set of allocation calls that are potentially freed. |
| 6651 | SmallSetVector<CallBase *, 1> PotentialAllocationCalls{}; |
| 6652 | }; |
| 6653 | |
| 6654 | AAHeapToStackFunction(const IRPosition &IRP, Attributor &A) |
| 6655 | : AAHeapToStack(IRP, A) {} |
| 6656 | |
| 6657 | ~AAHeapToStackFunction() { |
| 6658 | // Ensure we call the destructor so we release any memory allocated in the |
| 6659 | // sets. |
| 6660 | for (auto &It : AllocationInfos) |
| 6661 | It.second->~AllocationInfo(); |
| 6662 | for (auto &It : DeallocationInfos) |
| 6663 | It.second->~DeallocationInfo(); |
| 6664 | } |
| 6665 | |
| 6666 | void initialize(Attributor &A) override { |
| 6667 | AAHeapToStack::initialize(A); |
| 6668 | |
| 6669 | const Function *F = getAnchorScope(); |
| 6670 | const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(F: *F); |
| 6671 | |
| 6672 | auto AllocationIdentifierCB = [&](Instruction &I) { |
| 6673 | CallBase *CB = dyn_cast<CallBase>(Val: &I); |
| 6674 | if (!CB) |
| 6675 | return true; |
| 6676 | if (Value *FreedOp = getFreedOperand(CB, TLI)) { |
| 6677 | DeallocationInfos[CB] = new (A.Allocator) DeallocationInfo{.CB: CB, .FreedOp: FreedOp}; |
| 6678 | return true; |
| 6679 | } |
| 6680 | // To do heap to stack, we need to know that the allocation itself is |
| 6681 | // removable once uses are rewritten, and that we can initialize the |
| 6682 | // alloca to the same pattern as the original allocation result. |
| 6683 | if (isRemovableAlloc(V: CB, TLI)) { |
| 6684 | auto *I8Ty = Type::getInt8Ty(C&: CB->getParent()->getContext()); |
| 6685 | if (nullptr != getInitialValueOfAllocation(V: CB, TLI, Ty: I8Ty)) { |
| 6686 | AllocationInfo *AI = new (A.Allocator) AllocationInfo{.CB: CB}; |
| 6687 | AllocationInfos[CB] = AI; |
| 6688 | if (TLI) |
| 6689 | TLI->getLibFunc(CB: *CB, F&: AI->LibraryFunctionId); |
| 6690 | } |
| 6691 | } |
| 6692 | return true; |
| 6693 | }; |
| 6694 | |
| 6695 | bool UsedAssumedInformation = false; |
| 6696 | bool Success = A.checkForAllCallLikeInstructions( |
| 6697 | Pred: AllocationIdentifierCB, QueryingAA: *this, UsedAssumedInformation, |
| 6698 | /* CheckBBLivenessOnly */ false, |
| 6699 | /* CheckPotentiallyDead */ true); |
| 6700 | (void)Success; |
| 6701 | assert(Success && "Did not expect the call base visit callback to fail!" ); |
| 6702 | |
| 6703 | Attributor::SimplifictionCallbackTy SCB = |
| 6704 | [](const IRPosition &, const AbstractAttribute *, |
| 6705 | bool &) -> std::optional<Value *> { return nullptr; }; |
| 6706 | for (const auto &It : AllocationInfos) |
| 6707 | A.registerSimplificationCallback(IRP: IRPosition::callsite_returned(CB: *It.first), |
| 6708 | CB: SCB); |
| 6709 | for (const auto &It : DeallocationInfos) |
| 6710 | A.registerSimplificationCallback(IRP: IRPosition::callsite_returned(CB: *It.first), |
| 6711 | CB: SCB); |
| 6712 | } |
| 6713 | |
| 6714 | const std::string getAsStr(Attributor *A) const override { |
| 6715 | unsigned NumH2SMallocs = 0, NumInvalidMallocs = 0; |
| 6716 | for (const auto &It : AllocationInfos) { |
| 6717 | if (It.second->Status == AllocationInfo::INVALID) |
| 6718 | ++NumInvalidMallocs; |
| 6719 | else |
| 6720 | ++NumH2SMallocs; |
| 6721 | } |
| 6722 | return "[H2S] Mallocs Good/Bad: " + std::to_string(val: NumH2SMallocs) + "/" + |
| 6723 | std::to_string(val: NumInvalidMallocs); |
| 6724 | } |
| 6725 | |
| 6726 | /// See AbstractAttribute::trackStatistics(). |
| 6727 | void trackStatistics() const override { |
| 6728 | STATS_DECL( |
| 6729 | MallocCalls, Function, |
| 6730 | "Number of malloc/calloc/aligned_alloc calls converted to allocas" ); |
| 6731 | for (const auto &It : AllocationInfos) |
| 6732 | if (It.second->Status != AllocationInfo::INVALID) |
| 6733 | ++BUILD_STAT_NAME(MallocCalls, Function); |
| 6734 | } |
| 6735 | |
| 6736 | bool isAssumedHeapToStack(const CallBase &CB) const override { |
| 6737 | if (isValidState()) |
| 6738 | if (AllocationInfo *AI = |
| 6739 | AllocationInfos.lookup(Key: const_cast<CallBase *>(&CB))) |
| 6740 | return AI->Status != AllocationInfo::INVALID; |
| 6741 | return false; |
| 6742 | } |
| 6743 | |
| 6744 | bool isAssumedHeapToStackRemovedFree(CallBase &CB) const override { |
| 6745 | if (!isValidState()) |
| 6746 | return false; |
| 6747 | |
| 6748 | for (const auto &It : AllocationInfos) { |
| 6749 | AllocationInfo &AI = *It.second; |
| 6750 | if (AI.Status == AllocationInfo::INVALID) |
| 6751 | continue; |
| 6752 | |
| 6753 | if (AI.PotentialFreeCalls.count(key: &CB)) |
| 6754 | return true; |
| 6755 | } |
| 6756 | |
| 6757 | return false; |
| 6758 | } |
| 6759 | |
| 6760 | ChangeStatus manifest(Attributor &A) override { |
| 6761 | assert(getState().isValidState() && |
| 6762 | "Attempted to manifest an invalid state!" ); |
| 6763 | |
| 6764 | ChangeStatus HasChanged = ChangeStatus::UNCHANGED; |
| 6765 | Function *F = getAnchorScope(); |
| 6766 | const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(F: *F); |
| 6767 | |
| 6768 | for (auto &It : AllocationInfos) { |
| 6769 | AllocationInfo &AI = *It.second; |
| 6770 | if (AI.Status == AllocationInfo::INVALID) |
| 6771 | continue; |
| 6772 | |
| 6773 | for (CallBase *FreeCall : AI.PotentialFreeCalls) { |
| 6774 | LLVM_DEBUG(dbgs() << "H2S: Removing free call: " << *FreeCall << "\n" ); |
| 6775 | A.deleteAfterManifest(I&: *FreeCall); |
| 6776 | HasChanged = ChangeStatus::CHANGED; |
| 6777 | } |
| 6778 | |
| 6779 | LLVM_DEBUG(dbgs() << "H2S: Removing malloc-like call: " << *AI.CB |
| 6780 | << "\n" ); |
| 6781 | |
| 6782 | auto = [&](OptimizationRemark OR) { |
| 6783 | LibFunc IsAllocShared; |
| 6784 | if (TLI->getLibFunc(CB: *AI.CB, F&: IsAllocShared)) |
| 6785 | if (IsAllocShared == LibFunc___kmpc_alloc_shared) |
| 6786 | return OR << "Moving globalized variable to the stack." ; |
| 6787 | return OR << "Moving memory allocation from the heap to the stack." ; |
| 6788 | }; |
| 6789 | if (AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared) |
| 6790 | A.emitRemark<OptimizationRemark>(I: AI.CB, RemarkName: "OMP110" , RemarkCB&: Remark); |
| 6791 | else |
| 6792 | A.emitRemark<OptimizationRemark>(I: AI.CB, RemarkName: "HeapToStack" , RemarkCB&: Remark); |
| 6793 | |
| 6794 | const DataLayout &DL = A.getInfoCache().getDL(); |
| 6795 | Value *Size; |
| 6796 | std::optional<APInt> SizeAPI = getSize(A, AA: *this, AI); |
| 6797 | if (SizeAPI) { |
| 6798 | Size = ConstantInt::get(Context&: AI.CB->getContext(), V: *SizeAPI); |
| 6799 | } else { |
| 6800 | LLVMContext &Ctx = AI.CB->getContext(); |
| 6801 | ObjectSizeOpts Opts; |
| 6802 | ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, Opts); |
| 6803 | SizeOffsetValue SizeOffsetPair = Eval.compute(V: AI.CB); |
| 6804 | assert(SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown() && |
| 6805 | cast<ConstantInt>(SizeOffsetPair.Offset)->isZero()); |
| 6806 | Size = SizeOffsetPair.Size; |
| 6807 | } |
| 6808 | |
| 6809 | BasicBlock::iterator IP = AI.MoveAllocaIntoEntry |
| 6810 | ? F->getEntryBlock().begin() |
| 6811 | : AI.CB->getIterator(); |
| 6812 | |
| 6813 | Align Alignment(1); |
| 6814 | if (MaybeAlign RetAlign = AI.CB->getRetAlign()) |
| 6815 | Alignment = std::max(a: Alignment, b: *RetAlign); |
| 6816 | if (Value *Align = getAllocAlignment(V: AI.CB, TLI)) { |
| 6817 | std::optional<APInt> AlignmentAPI = getAPInt(A, AA: *this, V&: *Align); |
| 6818 | assert(AlignmentAPI && AlignmentAPI->getZExtValue() > 0 && |
| 6819 | "Expected an alignment during manifest!" ); |
| 6820 | Alignment = |
| 6821 | std::max(a: Alignment, b: assumeAligned(Value: AlignmentAPI->getZExtValue())); |
| 6822 | } |
| 6823 | |
| 6824 | // TODO: Hoist the alloca towards the function entry. |
| 6825 | unsigned AS = DL.getAllocaAddrSpace(); |
| 6826 | Instruction *Alloca = |
| 6827 | new AllocaInst(Type::getInt8Ty(C&: F->getContext()), AS, Size, Alignment, |
| 6828 | AI.CB->getName() + ".h2s" , IP); |
| 6829 | |
| 6830 | if (Alloca->getType() != AI.CB->getType()) |
| 6831 | Alloca = BitCastInst::CreatePointerBitCastOrAddrSpaceCast( |
| 6832 | S: Alloca, Ty: AI.CB->getType(), Name: "malloc_cast" , InsertBefore: AI.CB->getIterator()); |
| 6833 | |
| 6834 | auto *I8Ty = Type::getInt8Ty(C&: F->getContext()); |
| 6835 | auto *InitVal = getInitialValueOfAllocation(V: AI.CB, TLI, Ty: I8Ty); |
| 6836 | assert(InitVal && |
| 6837 | "Must be able to materialize initial memory state of allocation" ); |
| 6838 | |
| 6839 | A.changeAfterManifest(IRP: IRPosition::inst(I: *AI.CB), NV&: *Alloca); |
| 6840 | |
| 6841 | if (auto *II = dyn_cast<InvokeInst>(Val: AI.CB)) { |
| 6842 | auto *NBB = II->getNormalDest(); |
| 6843 | BranchInst::Create(IfTrue: NBB, InsertBefore: AI.CB->getParent()); |
| 6844 | A.deleteAfterManifest(I&: *AI.CB); |
| 6845 | } else { |
| 6846 | A.deleteAfterManifest(I&: *AI.CB); |
| 6847 | } |
| 6848 | |
| 6849 | // Initialize the alloca with the same value as used by the allocation |
| 6850 | // function. We can skip undef as the initial value of an alloc is |
| 6851 | // undef, and the memset would simply end up being DSEd. |
| 6852 | if (!isa<UndefValue>(Val: InitVal)) { |
| 6853 | IRBuilder<> Builder(Alloca->getNextNode()); |
| 6854 | // TODO: Use alignment above if align!=1 |
| 6855 | Builder.CreateMemSet(Ptr: Alloca, Val: InitVal, Size, Align: std::nullopt); |
| 6856 | } |
| 6857 | HasChanged = ChangeStatus::CHANGED; |
| 6858 | } |
| 6859 | |
| 6860 | return HasChanged; |
| 6861 | } |
| 6862 | |
| 6863 | std::optional<APInt> getAPInt(Attributor &A, const AbstractAttribute &AA, |
| 6864 | Value &V) { |
| 6865 | bool UsedAssumedInformation = false; |
| 6866 | std::optional<Constant *> SimpleV = |
| 6867 | A.getAssumedConstant(V, AA, UsedAssumedInformation); |
| 6868 | if (!SimpleV) |
| 6869 | return APInt(64, 0); |
| 6870 | if (auto *CI = dyn_cast_or_null<ConstantInt>(Val: *SimpleV)) |
| 6871 | return CI->getValue(); |
| 6872 | return std::nullopt; |
| 6873 | } |
| 6874 | |
| 6875 | std::optional<APInt> getSize(Attributor &A, const AbstractAttribute &AA, |
| 6876 | AllocationInfo &AI) { |
| 6877 | auto Mapper = [&](const Value *V) -> const Value * { |
| 6878 | bool UsedAssumedInformation = false; |
| 6879 | if (std::optional<Constant *> SimpleV = |
| 6880 | A.getAssumedConstant(V: *V, AA, UsedAssumedInformation)) |
| 6881 | if (*SimpleV) |
| 6882 | return *SimpleV; |
| 6883 | return V; |
| 6884 | }; |
| 6885 | |
| 6886 | const Function *F = getAnchorScope(); |
| 6887 | const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(F: *F); |
| 6888 | return getAllocSize(CB: AI.CB, TLI, Mapper); |
| 6889 | } |
| 6890 | |
| 6891 | /// Collection of all malloc-like calls in a function with associated |
| 6892 | /// information. |
| 6893 | MapVector<CallBase *, AllocationInfo *> AllocationInfos; |
| 6894 | |
| 6895 | /// Collection of all free-like calls in a function with associated |
| 6896 | /// information. |
| 6897 | MapVector<CallBase *, DeallocationInfo *> DeallocationInfos; |
| 6898 | |
| 6899 | ChangeStatus updateImpl(Attributor &A) override; |
| 6900 | }; |
| 6901 | |
| 6902 | ChangeStatus AAHeapToStackFunction::updateImpl(Attributor &A) { |
| 6903 | ChangeStatus Changed = ChangeStatus::UNCHANGED; |
| 6904 | const Function *F = getAnchorScope(); |
| 6905 | const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(F: *F); |
| 6906 | |
| 6907 | const auto *LivenessAA = |
| 6908 | A.getAAFor<AAIsDead>(QueryingAA: *this, IRP: IRPosition::function(F: *F), DepClass: DepClassTy::NONE); |
| 6909 | |
| 6910 | MustBeExecutedContextExplorer *Explorer = |
| 6911 | A.getInfoCache().getMustBeExecutedContextExplorer(); |
| 6912 | |
| 6913 | bool StackIsAccessibleByOtherThreads = |
| 6914 | A.getInfoCache().stackIsAccessibleByOtherThreads(); |
| 6915 | |
| 6916 | LoopInfo *LI = |
| 6917 | A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(F: *F); |
| 6918 | std::optional<bool> MayContainIrreducibleControl; |
| 6919 | auto IsInLoop = [&](BasicBlock &BB) { |
| 6920 | if (&F->getEntryBlock() == &BB) |
| 6921 | return false; |
| 6922 | if (!MayContainIrreducibleControl.has_value()) |
| 6923 | MayContainIrreducibleControl = mayContainIrreducibleControl(F: *F, LI); |
| 6924 | if (*MayContainIrreducibleControl) |
| 6925 | return true; |
| 6926 | if (!LI) |
| 6927 | return true; |
| 6928 | return LI->getLoopFor(BB: &BB) != nullptr; |
| 6929 | }; |
| 6930 | |
| 6931 | // Flag to ensure we update our deallocation information at most once per |
| 6932 | // updateImpl call and only if we use the free check reasoning. |
| 6933 | bool HasUpdatedFrees = false; |
| 6934 | |
| 6935 | auto UpdateFrees = [&]() { |
| 6936 | HasUpdatedFrees = true; |
| 6937 | |
| 6938 | for (auto &It : DeallocationInfos) { |
| 6939 | DeallocationInfo &DI = *It.second; |
| 6940 | // For now we cannot use deallocations that have unknown inputs, skip |
| 6941 | // them. |
| 6942 | if (DI.MightFreeUnknownObjects) |
| 6943 | continue; |
| 6944 | |
| 6945 | // No need to analyze dead calls, ignore them instead. |
| 6946 | bool UsedAssumedInformation = false; |
| 6947 | if (A.isAssumedDead(I: *DI.CB, QueryingAA: this, LivenessAA, UsedAssumedInformation, |
| 6948 | /* CheckBBLivenessOnly */ true)) |
| 6949 | continue; |
| 6950 | |
| 6951 | // Use the non-optimistic version to get the freed object. |
| 6952 | Value *Obj = getUnderlyingObject(V: DI.FreedOp); |
| 6953 | if (!Obj) { |
| 6954 | LLVM_DEBUG(dbgs() << "[H2S] Unknown underlying object for free!\n" ); |
| 6955 | DI.MightFreeUnknownObjects = true; |
| 6956 | continue; |
| 6957 | } |
| 6958 | |
| 6959 | // Free of null and undef can be ignored as no-ops (or UB in the latter |
| 6960 | // case). |
| 6961 | if (isa<ConstantPointerNull>(Val: Obj) || isa<UndefValue>(Val: Obj)) |
| 6962 | continue; |
| 6963 | |
| 6964 | CallBase *ObjCB = dyn_cast<CallBase>(Val: Obj); |
| 6965 | if (!ObjCB) { |
| 6966 | LLVM_DEBUG(dbgs() << "[H2S] Free of a non-call object: " << *Obj |
| 6967 | << "\n" ); |
| 6968 | DI.MightFreeUnknownObjects = true; |
| 6969 | continue; |
| 6970 | } |
| 6971 | |
| 6972 | AllocationInfo *AI = AllocationInfos.lookup(Key: ObjCB); |
| 6973 | if (!AI) { |
| 6974 | LLVM_DEBUG(dbgs() << "[H2S] Free of a non-allocation object: " << *Obj |
| 6975 | << "\n" ); |
| 6976 | DI.MightFreeUnknownObjects = true; |
| 6977 | continue; |
| 6978 | } |
| 6979 | |
| 6980 | DI.PotentialAllocationCalls.insert(X: ObjCB); |
| 6981 | } |
| 6982 | }; |
| 6983 | |
| 6984 | auto FreeCheck = [&](AllocationInfo &AI) { |
| 6985 | // If the stack is not accessible by other threads, the "must-free" logic |
| 6986 | // doesn't apply as the pointer could be shared and needs to be places in |
| 6987 | // "shareable" memory. |
| 6988 | if (!StackIsAccessibleByOtherThreads) { |
| 6989 | bool IsKnownNoSycn; |
| 6990 | if (!AA::hasAssumedIRAttr<Attribute::NoSync>( |
| 6991 | A, QueryingAA: this, IRP: getIRPosition(), DepClass: DepClassTy::OPTIONAL, IsKnown&: IsKnownNoSycn)) { |
| 6992 | LLVM_DEBUG( |
| 6993 | dbgs() << "[H2S] found an escaping use, stack is not accessible by " |
| 6994 | "other threads and function is not nosync:\n" ); |
| 6995 | return false; |
| 6996 | } |
| 6997 | } |
| 6998 | if (!HasUpdatedFrees) |
| 6999 | UpdateFrees(); |
| 7000 | |
| 7001 | // TODO: Allow multi exit functions that have different free calls. |
| 7002 | if (AI.PotentialFreeCalls.size() != 1) { |
| 7003 | LLVM_DEBUG(dbgs() << "[H2S] did not find one free call but " |
| 7004 | << AI.PotentialFreeCalls.size() << "\n" ); |
| 7005 | return false; |
| 7006 | } |
| 7007 | CallBase *UniqueFree = *AI.PotentialFreeCalls.begin(); |
| 7008 | DeallocationInfo *DI = DeallocationInfos.lookup(Key: UniqueFree); |
| 7009 | if (!DI) { |
| 7010 | LLVM_DEBUG( |
| 7011 | dbgs() << "[H2S] unique free call was not known as deallocation call " |
| 7012 | << *UniqueFree << "\n" ); |
| 7013 | return false; |
| 7014 | } |
| 7015 | if (DI->MightFreeUnknownObjects) { |
| 7016 | LLVM_DEBUG( |
| 7017 | dbgs() << "[H2S] unique free call might free unknown allocations\n" ); |
| 7018 | return false; |
| 7019 | } |
| 7020 | if (DI->PotentialAllocationCalls.empty()) |
| 7021 | return true; |
| 7022 | if (DI->PotentialAllocationCalls.size() > 1) { |
| 7023 | LLVM_DEBUG(dbgs() << "[H2S] unique free call might free " |
| 7024 | << DI->PotentialAllocationCalls.size() |
| 7025 | << " different allocations\n" ); |
| 7026 | return false; |
| 7027 | } |
| 7028 | if (*DI->PotentialAllocationCalls.begin() != AI.CB) { |
| 7029 | LLVM_DEBUG( |
| 7030 | dbgs() |
| 7031 | << "[H2S] unique free call not known to free this allocation but " |
| 7032 | << **DI->PotentialAllocationCalls.begin() << "\n" ); |
| 7033 | return false; |
| 7034 | } |
| 7035 | |
| 7036 | // __kmpc_alloc_shared and __kmpc_alloc_free are by construction matched. |
| 7037 | if (AI.LibraryFunctionId != LibFunc___kmpc_alloc_shared) { |
| 7038 | Instruction *CtxI = isa<InvokeInst>(Val: AI.CB) ? AI.CB : AI.CB->getNextNode(); |
| 7039 | if (!Explorer || !Explorer->findInContextOf(I: UniqueFree, PP: CtxI)) { |
| 7040 | LLVM_DEBUG(dbgs() << "[H2S] unique free call might not be executed " |
| 7041 | "with the allocation " |
| 7042 | << *UniqueFree << "\n" ); |
| 7043 | return false; |
| 7044 | } |
| 7045 | } |
| 7046 | return true; |
| 7047 | }; |
| 7048 | |
| 7049 | auto UsesCheck = [&](AllocationInfo &AI) { |
| 7050 | bool ValidUsesOnly = true; |
| 7051 | |
| 7052 | auto Pred = [&](const Use &U, bool &Follow) -> bool { |
| 7053 | Instruction *UserI = cast<Instruction>(Val: U.getUser()); |
| 7054 | if (isa<LoadInst>(Val: UserI)) |
| 7055 | return true; |
| 7056 | if (auto *SI = dyn_cast<StoreInst>(Val: UserI)) { |
| 7057 | if (SI->getValueOperand() == U.get()) { |
| 7058 | LLVM_DEBUG(dbgs() |
| 7059 | << "[H2S] escaping store to memory: " << *UserI << "\n" ); |
| 7060 | ValidUsesOnly = false; |
| 7061 | } else { |
| 7062 | // A store into the malloc'ed memory is fine. |
| 7063 | } |
| 7064 | return true; |
| 7065 | } |
| 7066 | if (auto *CB = dyn_cast<CallBase>(Val: UserI)) { |
| 7067 | if (!CB->isArgOperand(U: &U) || CB->isLifetimeStartOrEnd()) |
| 7068 | return true; |
| 7069 | if (DeallocationInfos.count(Key: CB)) { |
| 7070 | AI.PotentialFreeCalls.insert(X: CB); |
| 7071 | return true; |
| 7072 | } |
| 7073 | |
| 7074 | unsigned ArgNo = CB->getArgOperandNo(U: &U); |
| 7075 | auto CBIRP = IRPosition::callsite_argument(CB: *CB, ArgNo); |
| 7076 | |
| 7077 | bool IsKnownNoCapture; |
| 7078 | bool IsAssumedNoCapture = AA::hasAssumedIRAttr<Attribute::Captures>( |
| 7079 | A, QueryingAA: this, IRP: CBIRP, DepClass: DepClassTy::OPTIONAL, IsKnown&: IsKnownNoCapture); |
| 7080 | |
| 7081 | // If a call site argument use is nofree, we are fine. |
| 7082 | bool IsKnownNoFree; |
| 7083 | bool IsAssumedNoFree = AA::hasAssumedIRAttr<Attribute::NoFree>( |
| 7084 | A, QueryingAA: this, IRP: CBIRP, DepClass: DepClassTy::OPTIONAL, IsKnown&: IsKnownNoFree); |
| 7085 | |
| 7086 | if (!IsAssumedNoCapture || |
| 7087 | (AI.LibraryFunctionId != LibFunc___kmpc_alloc_shared && |
| 7088 | !IsAssumedNoFree)) { |
| 7089 | AI.HasPotentiallyFreeingUnknownUses |= !IsAssumedNoFree; |
| 7090 | |
| 7091 | // Emit a missed remark if this is missed OpenMP globalization. |
| 7092 | auto = [&](OptimizationRemarkMissed ORM) { |
| 7093 | return ORM |
| 7094 | << "Could not move globalized variable to the stack. " |
| 7095 | "Variable is potentially captured in call. Mark " |
| 7096 | "parameter as `__attribute__((noescape))` to override." ; |
| 7097 | }; |
| 7098 | |
| 7099 | if (ValidUsesOnly && |
| 7100 | AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared) |
| 7101 | A.emitRemark<OptimizationRemarkMissed>(I: CB, RemarkName: "OMP113" , RemarkCB&: Remark); |
| 7102 | |
| 7103 | LLVM_DEBUG(dbgs() << "[H2S] Bad user: " << *UserI << "\n" ); |
| 7104 | ValidUsesOnly = false; |
| 7105 | } |
| 7106 | return true; |
| 7107 | } |
| 7108 | |
| 7109 | if (isa<GetElementPtrInst>(Val: UserI) || isa<BitCastInst>(Val: UserI) || |
| 7110 | isa<PHINode>(Val: UserI) || isa<SelectInst>(Val: UserI)) { |
| 7111 | Follow = true; |
| 7112 | return true; |
| 7113 | } |
| 7114 | // Unknown user for which we can not track uses further (in a way that |
| 7115 | // makes sense). |
| 7116 | LLVM_DEBUG(dbgs() << "[H2S] Unknown user: " << *UserI << "\n" ); |
| 7117 | ValidUsesOnly = false; |
| 7118 | return true; |
| 7119 | }; |
| 7120 | if (!A.checkForAllUses(Pred, QueryingAA: *this, V: *AI.CB, /* CheckBBLivenessOnly */ false, |
| 7121 | LivenessDepClass: DepClassTy::OPTIONAL, /* IgnoreDroppableUses */ true, |
| 7122 | EquivalentUseCB: [&](const Use &OldU, const Use &NewU) { |
| 7123 | auto *SI = dyn_cast<StoreInst>(Val: OldU.getUser()); |
| 7124 | return !SI || StackIsAccessibleByOtherThreads || |
| 7125 | AA::isAssumedThreadLocalObject( |
| 7126 | A, Obj&: *SI->getPointerOperand(), QueryingAA: *this); |
| 7127 | })) |
| 7128 | return false; |
| 7129 | return ValidUsesOnly; |
| 7130 | }; |
| 7131 | |
| 7132 | // The actual update starts here. We look at all allocations and depending on |
| 7133 | // their status perform the appropriate check(s). |
| 7134 | for (auto &It : AllocationInfos) { |
| 7135 | AllocationInfo &AI = *It.second; |
| 7136 | if (AI.Status == AllocationInfo::INVALID) |
| 7137 | continue; |
| 7138 | |
| 7139 | if (Value *Align = getAllocAlignment(V: AI.CB, TLI)) { |
| 7140 | std::optional<APInt> APAlign = getAPInt(A, AA: *this, V&: *Align); |
| 7141 | if (!APAlign) { |
| 7142 | // Can't generate an alloca which respects the required alignment |
| 7143 | // on the allocation. |
| 7144 | LLVM_DEBUG(dbgs() << "[H2S] Unknown allocation alignment: " << *AI.CB |
| 7145 | << "\n" ); |
| 7146 | AI.Status = AllocationInfo::INVALID; |
| 7147 | Changed = ChangeStatus::CHANGED; |
| 7148 | continue; |
| 7149 | } |
| 7150 | if (APAlign->ugt(RHS: llvm::Value::MaximumAlignment) || |
| 7151 | !APAlign->isPowerOf2()) { |
| 7152 | LLVM_DEBUG(dbgs() << "[H2S] Invalid allocation alignment: " << APAlign |
| 7153 | << "\n" ); |
| 7154 | AI.Status = AllocationInfo::INVALID; |
| 7155 | Changed = ChangeStatus::CHANGED; |
| 7156 | continue; |
| 7157 | } |
| 7158 | } |
| 7159 | |
| 7160 | std::optional<APInt> Size = getSize(A, AA: *this, AI); |
| 7161 | if (AI.LibraryFunctionId != LibFunc___kmpc_alloc_shared && |
| 7162 | MaxHeapToStackSize != -1) { |
| 7163 | if (!Size || Size->ugt(RHS: MaxHeapToStackSize)) { |
| 7164 | LLVM_DEBUG({ |
| 7165 | if (!Size) |
| 7166 | dbgs() << "[H2S] Unknown allocation size: " << *AI.CB << "\n" ; |
| 7167 | else |
| 7168 | dbgs() << "[H2S] Allocation size too large: " << *AI.CB << " vs. " |
| 7169 | << MaxHeapToStackSize << "\n" ; |
| 7170 | }); |
| 7171 | |
| 7172 | AI.Status = AllocationInfo::INVALID; |
| 7173 | Changed = ChangeStatus::CHANGED; |
| 7174 | continue; |
| 7175 | } |
| 7176 | } |
| 7177 | |
| 7178 | switch (AI.Status) { |
| 7179 | case AllocationInfo::STACK_DUE_TO_USE: |
| 7180 | if (UsesCheck(AI)) |
| 7181 | break; |
| 7182 | AI.Status = AllocationInfo::STACK_DUE_TO_FREE; |
| 7183 | [[fallthrough]]; |
| 7184 | case AllocationInfo::STACK_DUE_TO_FREE: |
| 7185 | if (FreeCheck(AI)) |
| 7186 | break; |
| 7187 | AI.Status = AllocationInfo::INVALID; |
| 7188 | Changed = ChangeStatus::CHANGED; |
| 7189 | break; |
| 7190 | case AllocationInfo::INVALID: |
| 7191 | llvm_unreachable("Invalid allocations should never reach this point!" ); |
| 7192 | }; |
| 7193 | |
| 7194 | // Check if we still think we can move it into the entry block. If the |
| 7195 | // alloca comes from a converted __kmpc_alloc_shared then we can usually |
| 7196 | // ignore the potential compilations associated with loops. |
| 7197 | bool IsGlobalizedLocal = |
| 7198 | AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared; |
| 7199 | if (AI.MoveAllocaIntoEntry && |
| 7200 | (!Size.has_value() || |
| 7201 | (!IsGlobalizedLocal && IsInLoop(*AI.CB->getParent())))) |
| 7202 | AI.MoveAllocaIntoEntry = false; |
| 7203 | } |
| 7204 | |
| 7205 | return Changed; |
| 7206 | } |
| 7207 | } // namespace |
| 7208 | |
| 7209 | /// ----------------------- Privatizable Pointers ------------------------------ |
| 7210 | namespace { |
| 7211 | struct AAPrivatizablePtrImpl : public AAPrivatizablePtr { |
| 7212 | AAPrivatizablePtrImpl(const IRPosition &IRP, Attributor &A) |
| 7213 | : AAPrivatizablePtr(IRP, A), PrivatizableType(std::nullopt) {} |
| 7214 | |
| 7215 | ChangeStatus indicatePessimisticFixpoint() override { |
| 7216 | AAPrivatizablePtr::indicatePessimisticFixpoint(); |
| 7217 | PrivatizableType = nullptr; |
| 7218 | return ChangeStatus::CHANGED; |
| 7219 | } |
| 7220 | |
| 7221 | /// Identify the type we can chose for a private copy of the underlying |
| 7222 | /// argument. std::nullopt means it is not clear yet, nullptr means there is |
| 7223 | /// none. |
| 7224 | virtual std::optional<Type *> identifyPrivatizableType(Attributor &A) = 0; |
| 7225 | |
| 7226 | /// Return a privatizable type that encloses both T0 and T1. |
| 7227 | /// TODO: This is merely a stub for now as we should manage a mapping as well. |
| 7228 | std::optional<Type *> combineTypes(std::optional<Type *> T0, |
| 7229 | std::optional<Type *> T1) { |
| 7230 | if (!T0) |
| 7231 | return T1; |
| 7232 | if (!T1) |
| 7233 | return T0; |
| 7234 | if (T0 == T1) |
| 7235 | return T0; |
| 7236 | return nullptr; |
| 7237 | } |
| 7238 | |
| 7239 | std::optional<Type *> getPrivatizableType() const override { |
| 7240 | return PrivatizableType; |
| 7241 | } |
| 7242 | |
| 7243 | const std::string getAsStr(Attributor *A) const override { |
| 7244 | return isAssumedPrivatizablePtr() ? "[priv]" : "[no-priv]" ; |
| 7245 | } |
| 7246 | |
| 7247 | protected: |
| 7248 | std::optional<Type *> PrivatizableType; |
| 7249 | }; |
| 7250 | |
| 7251 | // TODO: Do this for call site arguments (probably also other values) as well. |
| 7252 | |
| 7253 | struct AAPrivatizablePtrArgument final : public AAPrivatizablePtrImpl { |
| 7254 | AAPrivatizablePtrArgument(const IRPosition &IRP, Attributor &A) |
| 7255 | : AAPrivatizablePtrImpl(IRP, A) {} |
| 7256 | |
| 7257 | /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...) |
| 7258 | std::optional<Type *> identifyPrivatizableType(Attributor &A) override { |
| 7259 | // If this is a byval argument and we know all the call sites (so we can |
| 7260 | // rewrite them), there is no need to check them explicitly. |
| 7261 | bool UsedAssumedInformation = false; |
| 7262 | SmallVector<Attribute, 1> Attrs; |
| 7263 | A.getAttrs(IRP: getIRPosition(), AKs: {Attribute::ByVal}, Attrs, |
| 7264 | /* IgnoreSubsumingPositions */ true); |
| 7265 | if (!Attrs.empty() && |
| 7266 | A.checkForAllCallSites(Pred: [](AbstractCallSite ACS) { return true; }, QueryingAA: *this, |
| 7267 | RequireAllCallSites: true, UsedAssumedInformation)) |
| 7268 | return Attrs[0].getValueAsType(); |
| 7269 | |
| 7270 | std::optional<Type *> Ty; |
| 7271 | unsigned ArgNo = getIRPosition().getCallSiteArgNo(); |
| 7272 | |
| 7273 | // Make sure the associated call site argument has the same type at all call |
| 7274 | // sites and it is an allocation we know is safe to privatize, for now that |
| 7275 | // means we only allow alloca instructions. |
| 7276 | // TODO: We can additionally analyze the accesses in the callee to create |
| 7277 | // the type from that information instead. That is a little more |
| 7278 | // involved and will be done in a follow up patch. |
| 7279 | auto CallSiteCheck = [&](AbstractCallSite ACS) { |
| 7280 | IRPosition ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo); |
| 7281 | // Check if a coresponding argument was found or if it is one not |
| 7282 | // associated (which can happen for callback calls). |
| 7283 | if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID) |
| 7284 | return false; |
| 7285 | |
| 7286 | // Check that all call sites agree on a type. |
| 7287 | auto *PrivCSArgAA = |
| 7288 | A.getAAFor<AAPrivatizablePtr>(QueryingAA: *this, IRP: ACSArgPos, DepClass: DepClassTy::REQUIRED); |
| 7289 | if (!PrivCSArgAA) |
| 7290 | return false; |
| 7291 | std::optional<Type *> CSTy = PrivCSArgAA->getPrivatizableType(); |
| 7292 | |
| 7293 | LLVM_DEBUG({ |
| 7294 | dbgs() << "[AAPrivatizablePtr] ACSPos: " << ACSArgPos << ", CSTy: " ; |
| 7295 | if (CSTy && *CSTy) |
| 7296 | (*CSTy)->print(dbgs()); |
| 7297 | else if (CSTy) |
| 7298 | dbgs() << "<nullptr>" ; |
| 7299 | else |
| 7300 | dbgs() << "<none>" ; |
| 7301 | }); |
| 7302 | |
| 7303 | Ty = combineTypes(T0: Ty, T1: CSTy); |
| 7304 | |
| 7305 | LLVM_DEBUG({ |
| 7306 | dbgs() << " : New Type: " ; |
| 7307 | if (Ty && *Ty) |
| 7308 | (*Ty)->print(dbgs()); |
| 7309 | else if (Ty) |
| 7310 | dbgs() << "<nullptr>" ; |
| 7311 | else |
| 7312 | dbgs() << "<none>" ; |
| 7313 | dbgs() << "\n" ; |
| 7314 | }); |
| 7315 | |
| 7316 | return !Ty || *Ty; |
| 7317 | }; |
| 7318 | |
| 7319 | if (!A.checkForAllCallSites(Pred: CallSiteCheck, QueryingAA: *this, RequireAllCallSites: true, |
| 7320 | UsedAssumedInformation)) |
| 7321 | return nullptr; |
| 7322 | return Ty; |
| 7323 | } |
| 7324 | |
| 7325 | /// See AbstractAttribute::updateImpl(...). |
| 7326 | ChangeStatus updateImpl(Attributor &A) override { |
| 7327 | PrivatizableType = identifyPrivatizableType(A); |
| 7328 | if (!PrivatizableType) |
| 7329 | return ChangeStatus::UNCHANGED; |
| 7330 | if (!*PrivatizableType) |
| 7331 | return indicatePessimisticFixpoint(); |
| 7332 | |
| 7333 | // The dependence is optional so we don't give up once we give up on the |
| 7334 | // alignment. |
| 7335 | A.getAAFor<AAAlign>(QueryingAA: *this, IRP: IRPosition::value(V: getAssociatedValue()), |
| 7336 | DepClass: DepClassTy::OPTIONAL); |
| 7337 | |
| 7338 | // Avoid arguments with padding for now. |
| 7339 | if (!A.hasAttr(IRP: getIRPosition(), AKs: Attribute::ByVal) && |
| 7340 | !isDenselyPacked(Ty: *PrivatizableType, DL: A.getInfoCache().getDL())) { |
| 7341 | LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Padding detected\n" ); |
| 7342 | return indicatePessimisticFixpoint(); |
| 7343 | } |
| 7344 | |
| 7345 | // Collect the types that will replace the privatizable type in the function |
| 7346 | // signature. |
| 7347 | SmallVector<Type *, 16> ReplacementTypes; |
| 7348 | identifyReplacementTypes(PrivType: *PrivatizableType, ReplacementTypes); |
| 7349 | |
| 7350 | // Verify callee and caller agree on how the promoted argument would be |
| 7351 | // passed. |
| 7352 | Function &Fn = *getIRPosition().getAnchorScope(); |
| 7353 | const auto *TTI = |
| 7354 | A.getInfoCache().getAnalysisResultForFunction<TargetIRAnalysis>(F: Fn); |
| 7355 | if (!TTI) { |
| 7356 | LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Missing TTI for function " |
| 7357 | << Fn.getName() << "\n" ); |
| 7358 | return indicatePessimisticFixpoint(); |
| 7359 | } |
| 7360 | |
| 7361 | auto CallSiteCheck = [&](AbstractCallSite ACS) { |
| 7362 | CallBase *CB = ACS.getInstruction(); |
| 7363 | return TTI->areTypesABICompatible( |
| 7364 | Caller: CB->getCaller(), |
| 7365 | Callee: dyn_cast_if_present<Function>(Val: CB->getCalledOperand()), |
| 7366 | Types: ReplacementTypes); |
| 7367 | }; |
| 7368 | bool UsedAssumedInformation = false; |
| 7369 | if (!A.checkForAllCallSites(Pred: CallSiteCheck, QueryingAA: *this, RequireAllCallSites: true, |
| 7370 | UsedAssumedInformation)) { |
| 7371 | LLVM_DEBUG( |
| 7372 | dbgs() << "[AAPrivatizablePtr] ABI incompatibility detected for " |
| 7373 | << Fn.getName() << "\n" ); |
| 7374 | return indicatePessimisticFixpoint(); |
| 7375 | } |
| 7376 | |
| 7377 | // Register a rewrite of the argument. |
| 7378 | Argument *Arg = getAssociatedArgument(); |
| 7379 | if (!A.isValidFunctionSignatureRewrite(Arg&: *Arg, ReplacementTypes)) { |
| 7380 | LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Rewrite not valid\n" ); |
| 7381 | return indicatePessimisticFixpoint(); |
| 7382 | } |
| 7383 | |
| 7384 | unsigned ArgNo = Arg->getArgNo(); |
| 7385 | |
| 7386 | // Helper to check if for the given call site the associated argument is |
| 7387 | // passed to a callback where the privatization would be different. |
| 7388 | auto IsCompatiblePrivArgOfCallback = [&](CallBase &CB) { |
| 7389 | SmallVector<const Use *, 4> CallbackUses; |
| 7390 | AbstractCallSite::getCallbackUses(CB, CallbackUses); |
| 7391 | for (const Use *U : CallbackUses) { |
| 7392 | AbstractCallSite CBACS(U); |
| 7393 | assert(CBACS && CBACS.isCallbackCall()); |
| 7394 | for (Argument &CBArg : CBACS.getCalledFunction()->args()) { |
| 7395 | int CBArgNo = CBACS.getCallArgOperandNo(Arg&: CBArg); |
| 7396 | |
| 7397 | LLVM_DEBUG({ |
| 7398 | dbgs() |
| 7399 | << "[AAPrivatizablePtr] Argument " << *Arg |
| 7400 | << "check if can be privatized in the context of its parent (" |
| 7401 | << Arg->getParent()->getName() |
| 7402 | << ")\n[AAPrivatizablePtr] because it is an argument in a " |
| 7403 | "callback (" |
| 7404 | << CBArgNo << "@" << CBACS.getCalledFunction()->getName() |
| 7405 | << ")\n[AAPrivatizablePtr] " << CBArg << " : " |
| 7406 | << CBACS.getCallArgOperand(CBArg) << " vs " |
| 7407 | << CB.getArgOperand(ArgNo) << "\n" |
| 7408 | << "[AAPrivatizablePtr] " << CBArg << " : " |
| 7409 | << CBACS.getCallArgOperandNo(CBArg) << " vs " << ArgNo << "\n" ; |
| 7410 | }); |
| 7411 | |
| 7412 | if (CBArgNo != int(ArgNo)) |
| 7413 | continue; |
| 7414 | const auto *CBArgPrivAA = A.getAAFor<AAPrivatizablePtr>( |
| 7415 | QueryingAA: *this, IRP: IRPosition::argument(Arg: CBArg), DepClass: DepClassTy::REQUIRED); |
| 7416 | if (CBArgPrivAA && CBArgPrivAA->isValidState()) { |
| 7417 | auto CBArgPrivTy = CBArgPrivAA->getPrivatizableType(); |
| 7418 | if (!CBArgPrivTy) |
| 7419 | continue; |
| 7420 | if (*CBArgPrivTy == PrivatizableType) |
| 7421 | continue; |
| 7422 | } |
| 7423 | |
| 7424 | LLVM_DEBUG({ |
| 7425 | dbgs() << "[AAPrivatizablePtr] Argument " << *Arg |
| 7426 | << " cannot be privatized in the context of its parent (" |
| 7427 | << Arg->getParent()->getName() |
| 7428 | << ")\n[AAPrivatizablePtr] because it is an argument in a " |
| 7429 | "callback (" |
| 7430 | << CBArgNo << "@" << CBACS.getCalledFunction()->getName() |
| 7431 | << ").\n[AAPrivatizablePtr] for which the argument " |
| 7432 | "privatization is not compatible.\n" ; |
| 7433 | }); |
| 7434 | return false; |
| 7435 | } |
| 7436 | } |
| 7437 | return true; |
| 7438 | }; |
| 7439 | |
| 7440 | // Helper to check if for the given call site the associated argument is |
| 7441 | // passed to a direct call where the privatization would be different. |
| 7442 | auto IsCompatiblePrivArgOfDirectCS = [&](AbstractCallSite ACS) { |
| 7443 | CallBase *DC = cast<CallBase>(Val: ACS.getInstruction()); |
| 7444 | int DCArgNo = ACS.getCallArgOperandNo(ArgNo); |
| 7445 | assert(DCArgNo >= 0 && unsigned(DCArgNo) < DC->arg_size() && |
| 7446 | "Expected a direct call operand for callback call operand" ); |
| 7447 | |
| 7448 | Function *DCCallee = |
| 7449 | dyn_cast_if_present<Function>(Val: DC->getCalledOperand()); |
| 7450 | LLVM_DEBUG({ |
| 7451 | dbgs() << "[AAPrivatizablePtr] Argument " << *Arg |
| 7452 | << " check if be privatized in the context of its parent (" |
| 7453 | << Arg->getParent()->getName() |
| 7454 | << ")\n[AAPrivatizablePtr] because it is an argument in a " |
| 7455 | "direct call of (" |
| 7456 | << DCArgNo << "@" << DCCallee->getName() << ").\n" ; |
| 7457 | }); |
| 7458 | |
| 7459 | if (unsigned(DCArgNo) < DCCallee->arg_size()) { |
| 7460 | const auto *DCArgPrivAA = A.getAAFor<AAPrivatizablePtr>( |
| 7461 | QueryingAA: *this, IRP: IRPosition::argument(Arg: *DCCallee->getArg(i: DCArgNo)), |
| 7462 | DepClass: DepClassTy::REQUIRED); |
| 7463 | if (DCArgPrivAA && DCArgPrivAA->isValidState()) { |
| 7464 | auto DCArgPrivTy = DCArgPrivAA->getPrivatizableType(); |
| 7465 | if (!DCArgPrivTy) |
| 7466 | return true; |
| 7467 | if (*DCArgPrivTy == PrivatizableType) |
| 7468 | return true; |
| 7469 | } |
| 7470 | } |
| 7471 | |
| 7472 | LLVM_DEBUG({ |
| 7473 | dbgs() << "[AAPrivatizablePtr] Argument " << *Arg |
| 7474 | << " cannot be privatized in the context of its parent (" |
| 7475 | << Arg->getParent()->getName() |
| 7476 | << ")\n[AAPrivatizablePtr] because it is an argument in a " |
| 7477 | "direct call of (" |
| 7478 | << ACS.getInstruction()->getCalledOperand()->getName() |
| 7479 | << ").\n[AAPrivatizablePtr] for which the argument " |
| 7480 | "privatization is not compatible.\n" ; |
| 7481 | }); |
| 7482 | return false; |
| 7483 | }; |
| 7484 | |
| 7485 | // Helper to check if the associated argument is used at the given abstract |
| 7486 | // call site in a way that is incompatible with the privatization assumed |
| 7487 | // here. |
| 7488 | auto IsCompatiblePrivArgOfOtherCallSite = [&](AbstractCallSite ACS) { |
| 7489 | if (ACS.isDirectCall()) |
| 7490 | return IsCompatiblePrivArgOfCallback(*ACS.getInstruction()); |
| 7491 | if (ACS.isCallbackCall()) |
| 7492 | return IsCompatiblePrivArgOfDirectCS(ACS); |
| 7493 | return false; |
| 7494 | }; |
| 7495 | |
| 7496 | if (!A.checkForAllCallSites(Pred: IsCompatiblePrivArgOfOtherCallSite, QueryingAA: *this, RequireAllCallSites: true, |
| 7497 | UsedAssumedInformation)) |
| 7498 | return indicatePessimisticFixpoint(); |
| 7499 | |
| 7500 | return ChangeStatus::UNCHANGED; |
| 7501 | } |
| 7502 | |
| 7503 | /// Given a type to private \p PrivType, collect the constituates (which are |
| 7504 | /// used) in \p ReplacementTypes. |
| 7505 | static void |
| 7506 | identifyReplacementTypes(Type *PrivType, |
| 7507 | SmallVectorImpl<Type *> &ReplacementTypes) { |
| 7508 | // TODO: For now we expand the privatization type to the fullest which can |
| 7509 | // lead to dead arguments that need to be removed later. |
| 7510 | assert(PrivType && "Expected privatizable type!" ); |
| 7511 | |
| 7512 | // Traverse the type, extract constituate types on the outermost level. |
| 7513 | if (auto *PrivStructType = dyn_cast<StructType>(Val: PrivType)) { |
| 7514 | for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) |
| 7515 | ReplacementTypes.push_back(Elt: PrivStructType->getElementType(N: u)); |
| 7516 | } else if (auto *PrivArrayType = dyn_cast<ArrayType>(Val: PrivType)) { |
| 7517 | ReplacementTypes.append(NumInputs: PrivArrayType->getNumElements(), |
| 7518 | Elt: PrivArrayType->getElementType()); |
| 7519 | } else { |
| 7520 | ReplacementTypes.push_back(Elt: PrivType); |
| 7521 | } |
| 7522 | } |
| 7523 | |
| 7524 | /// Initialize \p Base according to the type \p PrivType at position \p IP. |
| 7525 | /// The values needed are taken from the arguments of \p F starting at |
| 7526 | /// position \p ArgNo. |
| 7527 | static void createInitialization(Type *PrivType, Value &Base, Function &F, |
| 7528 | unsigned ArgNo, BasicBlock::iterator IP) { |
| 7529 | assert(PrivType && "Expected privatizable type!" ); |
| 7530 | |
| 7531 | IRBuilder<NoFolder> IRB(IP->getParent(), IP); |
| 7532 | const DataLayout &DL = F.getDataLayout(); |
| 7533 | |
| 7534 | // Traverse the type, build GEPs and stores. |
| 7535 | if (auto *PrivStructType = dyn_cast<StructType>(Val: PrivType)) { |
| 7536 | const StructLayout *PrivStructLayout = DL.getStructLayout(Ty: PrivStructType); |
| 7537 | for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) { |
| 7538 | Value *Ptr = |
| 7539 | constructPointer(Ptr: &Base, Offset: PrivStructLayout->getElementOffset(Idx: u), IRB); |
| 7540 | new StoreInst(F.getArg(i: ArgNo + u), Ptr, IP); |
| 7541 | } |
| 7542 | } else if (auto *PrivArrayType = dyn_cast<ArrayType>(Val: PrivType)) { |
| 7543 | Type *PointeeTy = PrivArrayType->getElementType(); |
| 7544 | uint64_t PointeeTySize = DL.getTypeStoreSize(Ty: PointeeTy); |
| 7545 | for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) { |
| 7546 | Value *Ptr = constructPointer(Ptr: &Base, Offset: u * PointeeTySize, IRB); |
| 7547 | new StoreInst(F.getArg(i: ArgNo + u), Ptr, IP); |
| 7548 | } |
| 7549 | } else { |
| 7550 | new StoreInst(F.getArg(i: ArgNo), &Base, IP); |
| 7551 | } |
| 7552 | } |
| 7553 | |
| 7554 | /// Extract values from \p Base according to the type \p PrivType at the |
| 7555 | /// call position \p ACS. The values are appended to \p ReplacementValues. |
| 7556 | void createReplacementValues(Align Alignment, Type *PrivType, |
| 7557 | AbstractCallSite ACS, Value *Base, |
| 7558 | SmallVectorImpl<Value *> &ReplacementValues) { |
| 7559 | assert(Base && "Expected base value!" ); |
| 7560 | assert(PrivType && "Expected privatizable type!" ); |
| 7561 | Instruction *IP = ACS.getInstruction(); |
| 7562 | |
| 7563 | IRBuilder<NoFolder> IRB(IP); |
| 7564 | const DataLayout &DL = IP->getDataLayout(); |
| 7565 | |
| 7566 | // Traverse the type, build GEPs and loads. |
| 7567 | if (auto *PrivStructType = dyn_cast<StructType>(Val: PrivType)) { |
| 7568 | const StructLayout *PrivStructLayout = DL.getStructLayout(Ty: PrivStructType); |
| 7569 | for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) { |
| 7570 | Type *PointeeTy = PrivStructType->getElementType(N: u); |
| 7571 | Value *Ptr = |
| 7572 | constructPointer(Ptr: Base, Offset: PrivStructLayout->getElementOffset(Idx: u), IRB); |
| 7573 | LoadInst *L = new LoadInst(PointeeTy, Ptr, "" , IP->getIterator()); |
| 7574 | L->setAlignment(Alignment); |
| 7575 | ReplacementValues.push_back(Elt: L); |
| 7576 | } |
| 7577 | } else if (auto *PrivArrayType = dyn_cast<ArrayType>(Val: PrivType)) { |
| 7578 | Type *PointeeTy = PrivArrayType->getElementType(); |
| 7579 | uint64_t PointeeTySize = DL.getTypeStoreSize(Ty: PointeeTy); |
| 7580 | for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) { |
| 7581 | Value *Ptr = constructPointer(Ptr: Base, Offset: u * PointeeTySize, IRB); |
| 7582 | LoadInst *L = new LoadInst(PointeeTy, Ptr, "" , IP->getIterator()); |
| 7583 | L->setAlignment(Alignment); |
| 7584 | ReplacementValues.push_back(Elt: L); |
| 7585 | } |
| 7586 | } else { |
| 7587 | LoadInst *L = new LoadInst(PrivType, Base, "" , IP->getIterator()); |
| 7588 | L->setAlignment(Alignment); |
| 7589 | ReplacementValues.push_back(Elt: L); |
| 7590 | } |
| 7591 | } |
| 7592 | |
| 7593 | /// See AbstractAttribute::manifest(...) |
| 7594 | ChangeStatus manifest(Attributor &A) override { |
| 7595 | if (!PrivatizableType) |
| 7596 | return ChangeStatus::UNCHANGED; |
| 7597 | assert(*PrivatizableType && "Expected privatizable type!" ); |
| 7598 | |
| 7599 | // Collect all tail calls in the function as we cannot allow new allocas to |
| 7600 | // escape into tail recursion. |
| 7601 | // TODO: Be smarter about new allocas escaping into tail calls. |
| 7602 | SmallVector<CallInst *, 16> TailCalls; |
| 7603 | bool UsedAssumedInformation = false; |
| 7604 | if (!A.checkForAllInstructions( |
| 7605 | Pred: [&](Instruction &I) { |
| 7606 | CallInst &CI = cast<CallInst>(Val&: I); |
| 7607 | if (CI.isTailCall()) |
| 7608 | TailCalls.push_back(Elt: &CI); |
| 7609 | return true; |
| 7610 | }, |
| 7611 | QueryingAA: *this, Opcodes: {Instruction::Call}, UsedAssumedInformation)) |
| 7612 | return ChangeStatus::UNCHANGED; |
| 7613 | |
| 7614 | Argument *Arg = getAssociatedArgument(); |
| 7615 | // Query AAAlign attribute for alignment of associated argument to |
| 7616 | // determine the best alignment of loads. |
| 7617 | const auto *AlignAA = |
| 7618 | A.getAAFor<AAAlign>(QueryingAA: *this, IRP: IRPosition::value(V: *Arg), DepClass: DepClassTy::NONE); |
| 7619 | |
| 7620 | // Callback to repair the associated function. A new alloca is placed at the |
| 7621 | // beginning and initialized with the values passed through arguments. The |
| 7622 | // new alloca replaces the use of the old pointer argument. |
| 7623 | Attributor::ArgumentReplacementInfo::CalleeRepairCBTy FnRepairCB = |
| 7624 | [=](const Attributor::ArgumentReplacementInfo &ARI, |
| 7625 | Function &ReplacementFn, Function::arg_iterator ArgIt) { |
| 7626 | BasicBlock &EntryBB = ReplacementFn.getEntryBlock(); |
| 7627 | BasicBlock::iterator IP = EntryBB.getFirstInsertionPt(); |
| 7628 | const DataLayout &DL = IP->getDataLayout(); |
| 7629 | unsigned AS = DL.getAllocaAddrSpace(); |
| 7630 | Instruction *AI = new AllocaInst(*PrivatizableType, AS, |
| 7631 | Arg->getName() + ".priv" , IP); |
| 7632 | createInitialization(PrivType: *PrivatizableType, Base&: *AI, F&: ReplacementFn, |
| 7633 | ArgNo: ArgIt->getArgNo(), IP); |
| 7634 | |
| 7635 | if (AI->getType() != Arg->getType()) |
| 7636 | AI = BitCastInst::CreatePointerBitCastOrAddrSpaceCast( |
| 7637 | S: AI, Ty: Arg->getType(), Name: "" , InsertBefore: IP); |
| 7638 | Arg->replaceAllUsesWith(V: AI); |
| 7639 | |
| 7640 | for (CallInst *CI : TailCalls) |
| 7641 | CI->setTailCall(false); |
| 7642 | }; |
| 7643 | |
| 7644 | // Callback to repair a call site of the associated function. The elements |
| 7645 | // of the privatizable type are loaded prior to the call and passed to the |
| 7646 | // new function version. |
| 7647 | Attributor::ArgumentReplacementInfo::ACSRepairCBTy ACSRepairCB = |
| 7648 | [=](const Attributor::ArgumentReplacementInfo &ARI, |
| 7649 | AbstractCallSite ACS, SmallVectorImpl<Value *> &NewArgOperands) { |
| 7650 | // When no alignment is specified for the load instruction, |
| 7651 | // natural alignment is assumed. |
| 7652 | createReplacementValues( |
| 7653 | Alignment: AlignAA ? AlignAA->getAssumedAlign() : Align(0), |
| 7654 | PrivType: *PrivatizableType, ACS, |
| 7655 | Base: ACS.getCallArgOperand(ArgNo: ARI.getReplacedArg().getArgNo()), |
| 7656 | ReplacementValues&: NewArgOperands); |
| 7657 | }; |
| 7658 | |
| 7659 | // Collect the types that will replace the privatizable type in the function |
| 7660 | // signature. |
| 7661 | SmallVector<Type *, 16> ReplacementTypes; |
| 7662 | identifyReplacementTypes(PrivType: *PrivatizableType, ReplacementTypes); |
| 7663 | |
| 7664 | // Register a rewrite of the argument. |
| 7665 | if (A.registerFunctionSignatureRewrite(Arg&: *Arg, ReplacementTypes, |
| 7666 | CalleeRepairCB: std::move(FnRepairCB), |
| 7667 | ACSRepairCB: std::move(ACSRepairCB))) |
| 7668 | return ChangeStatus::CHANGED; |
| 7669 | return ChangeStatus::UNCHANGED; |
| 7670 | } |
| 7671 | |
| 7672 | /// See AbstractAttribute::trackStatistics() |
| 7673 | void trackStatistics() const override { |
| 7674 | STATS_DECLTRACK_ARG_ATTR(privatizable_ptr); |
| 7675 | } |
| 7676 | }; |
| 7677 | |
| 7678 | struct AAPrivatizablePtrFloating : public AAPrivatizablePtrImpl { |
| 7679 | AAPrivatizablePtrFloating(const IRPosition &IRP, Attributor &A) |
| 7680 | : AAPrivatizablePtrImpl(IRP, A) {} |
| 7681 | |
| 7682 | /// See AbstractAttribute::initialize(...). |
| 7683 | void initialize(Attributor &A) override { |
| 7684 | // TODO: We can privatize more than arguments. |
| 7685 | indicatePessimisticFixpoint(); |
| 7686 | } |
| 7687 | |
| 7688 | ChangeStatus updateImpl(Attributor &A) override { |
| 7689 | llvm_unreachable("AAPrivatizablePtr(Floating|Returned|CallSiteReturned)::" |
| 7690 | "updateImpl will not be called" ); |
| 7691 | } |
| 7692 | |
| 7693 | /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...) |
| 7694 | std::optional<Type *> identifyPrivatizableType(Attributor &A) override { |
| 7695 | Value *Obj = getUnderlyingObject(V: &getAssociatedValue()); |
| 7696 | if (!Obj) { |
| 7697 | LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] No underlying object found!\n" ); |
| 7698 | return nullptr; |
| 7699 | } |
| 7700 | |
| 7701 | if (auto *AI = dyn_cast<AllocaInst>(Val: Obj)) |
| 7702 | if (auto *CI = dyn_cast<ConstantInt>(Val: AI->getArraySize())) |
| 7703 | if (CI->isOne()) |
| 7704 | return AI->getAllocatedType(); |
| 7705 | if (auto *Arg = dyn_cast<Argument>(Val: Obj)) { |
| 7706 | auto *PrivArgAA = A.getAAFor<AAPrivatizablePtr>( |
| 7707 | QueryingAA: *this, IRP: IRPosition::argument(Arg: *Arg), DepClass: DepClassTy::REQUIRED); |
| 7708 | if (PrivArgAA && PrivArgAA->isAssumedPrivatizablePtr()) |
| 7709 | return PrivArgAA->getPrivatizableType(); |
| 7710 | } |
| 7711 | |
| 7712 | LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Underlying object neither valid " |
| 7713 | "alloca nor privatizable argument: " |
| 7714 | << *Obj << "!\n" ); |
| 7715 | return nullptr; |
| 7716 | } |
| 7717 | |
| 7718 | /// See AbstractAttribute::trackStatistics() |
| 7719 | void trackStatistics() const override { |
| 7720 | STATS_DECLTRACK_FLOATING_ATTR(privatizable_ptr); |
| 7721 | } |
| 7722 | }; |
| 7723 | |
| 7724 | struct AAPrivatizablePtrCallSiteArgument final |
| 7725 | : public AAPrivatizablePtrFloating { |
| 7726 | AAPrivatizablePtrCallSiteArgument(const IRPosition &IRP, Attributor &A) |
| 7727 | : AAPrivatizablePtrFloating(IRP, A) {} |
| 7728 | |
| 7729 | /// See AbstractAttribute::initialize(...). |
| 7730 | void initialize(Attributor &A) override { |
| 7731 | if (A.hasAttr(IRP: getIRPosition(), AKs: Attribute::ByVal)) |
| 7732 | indicateOptimisticFixpoint(); |
| 7733 | } |
| 7734 | |
| 7735 | /// See AbstractAttribute::updateImpl(...). |
| 7736 | ChangeStatus updateImpl(Attributor &A) override { |
| 7737 | PrivatizableType = identifyPrivatizableType(A); |
| 7738 | if (!PrivatizableType) |
| 7739 | return ChangeStatus::UNCHANGED; |
| 7740 | if (!*PrivatizableType) |
| 7741 | return indicatePessimisticFixpoint(); |
| 7742 | |
| 7743 | const IRPosition &IRP = getIRPosition(); |
| 7744 | bool IsKnownNoCapture; |
| 7745 | bool IsAssumedNoCapture = AA::hasAssumedIRAttr<Attribute::Captures>( |
| 7746 | A, QueryingAA: this, IRP, DepClass: DepClassTy::REQUIRED, IsKnown&: IsKnownNoCapture); |
| 7747 | if (!IsAssumedNoCapture) { |
| 7748 | LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might be captured!\n" ); |
| 7749 | return indicatePessimisticFixpoint(); |
| 7750 | } |
| 7751 | |
| 7752 | bool IsKnownNoAlias; |
| 7753 | if (!AA::hasAssumedIRAttr<Attribute::NoAlias>( |
| 7754 | A, QueryingAA: this, IRP, DepClass: DepClassTy::REQUIRED, IsKnown&: IsKnownNoAlias)) { |
| 7755 | LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might alias!\n" ); |
| 7756 | return indicatePessimisticFixpoint(); |
| 7757 | } |
| 7758 | |
| 7759 | bool IsKnown; |
| 7760 | if (!AA::isAssumedReadOnly(A, IRP, QueryingAA: *this, IsKnown)) { |
| 7761 | LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer is written!\n" ); |
| 7762 | return indicatePessimisticFixpoint(); |
| 7763 | } |
| 7764 | |
| 7765 | return ChangeStatus::UNCHANGED; |
| 7766 | } |
| 7767 | |
| 7768 | /// See AbstractAttribute::trackStatistics() |
| 7769 | void trackStatistics() const override { |
| 7770 | STATS_DECLTRACK_CSARG_ATTR(privatizable_ptr); |
| 7771 | } |
| 7772 | }; |
| 7773 | |
| 7774 | struct AAPrivatizablePtrCallSiteReturned final |
| 7775 | : public AAPrivatizablePtrFloating { |
| 7776 | AAPrivatizablePtrCallSiteReturned(const IRPosition &IRP, Attributor &A) |
| 7777 | : AAPrivatizablePtrFloating(IRP, A) {} |
| 7778 | |
| 7779 | /// See AbstractAttribute::initialize(...). |
| 7780 | void initialize(Attributor &A) override { |
| 7781 | // TODO: We can privatize more than arguments. |
| 7782 | indicatePessimisticFixpoint(); |
| 7783 | } |
| 7784 | |
| 7785 | /// See AbstractAttribute::trackStatistics() |
| 7786 | void trackStatistics() const override { |
| 7787 | STATS_DECLTRACK_CSRET_ATTR(privatizable_ptr); |
| 7788 | } |
| 7789 | }; |
| 7790 | |
| 7791 | struct AAPrivatizablePtrReturned final : public AAPrivatizablePtrFloating { |
| 7792 | AAPrivatizablePtrReturned(const IRPosition &IRP, Attributor &A) |
| 7793 | : AAPrivatizablePtrFloating(IRP, A) {} |
| 7794 | |
| 7795 | /// See AbstractAttribute::initialize(...). |
| 7796 | void initialize(Attributor &A) override { |
| 7797 | // TODO: We can privatize more than arguments. |
| 7798 | indicatePessimisticFixpoint(); |
| 7799 | } |
| 7800 | |
| 7801 | /// See AbstractAttribute::trackStatistics() |
| 7802 | void trackStatistics() const override { |
| 7803 | STATS_DECLTRACK_FNRET_ATTR(privatizable_ptr); |
| 7804 | } |
| 7805 | }; |
| 7806 | } // namespace |
| 7807 | |
| 7808 | /// -------------------- Memory Behavior Attributes ---------------------------- |
| 7809 | /// Includes read-none, read-only, and write-only. |
| 7810 | /// ---------------------------------------------------------------------------- |
| 7811 | namespace { |
| 7812 | struct AAMemoryBehaviorImpl : public AAMemoryBehavior { |
| 7813 | AAMemoryBehaviorImpl(const IRPosition &IRP, Attributor &A) |
| 7814 | : AAMemoryBehavior(IRP, A) {} |
| 7815 | |
| 7816 | /// See AbstractAttribute::initialize(...). |
| 7817 | void initialize(Attributor &A) override { |
| 7818 | intersectAssumedBits(BitsEncoding: BEST_STATE); |
| 7819 | getKnownStateFromValue(A, IRP: getIRPosition(), State&: getState()); |
| 7820 | AAMemoryBehavior::initialize(A); |
| 7821 | } |
| 7822 | |
| 7823 | /// Return the memory behavior information encoded in the IR for \p IRP. |
| 7824 | static void getKnownStateFromValue(Attributor &A, const IRPosition &IRP, |
| 7825 | BitIntegerState &State, |
| 7826 | bool IgnoreSubsumingPositions = false) { |
| 7827 | SmallVector<Attribute, 2> Attrs; |
| 7828 | A.getAttrs(IRP, AKs: AttrKinds, Attrs, IgnoreSubsumingPositions); |
| 7829 | for (const Attribute &Attr : Attrs) { |
| 7830 | switch (Attr.getKindAsEnum()) { |
| 7831 | case Attribute::ReadNone: |
| 7832 | State.addKnownBits(Bits: NO_ACCESSES); |
| 7833 | break; |
| 7834 | case Attribute::ReadOnly: |
| 7835 | State.addKnownBits(Bits: NO_WRITES); |
| 7836 | break; |
| 7837 | case Attribute::WriteOnly: |
| 7838 | State.addKnownBits(Bits: NO_READS); |
| 7839 | break; |
| 7840 | default: |
| 7841 | llvm_unreachable("Unexpected attribute!" ); |
| 7842 | } |
| 7843 | } |
| 7844 | |
| 7845 | if (auto *I = dyn_cast<Instruction>(Val: &IRP.getAnchorValue())) { |
| 7846 | if (!I->mayReadFromMemory()) |
| 7847 | State.addKnownBits(Bits: NO_READS); |
| 7848 | if (!I->mayWriteToMemory()) |
| 7849 | State.addKnownBits(Bits: NO_WRITES); |
| 7850 | } |
| 7851 | } |
| 7852 | |
| 7853 | /// See AbstractAttribute::getDeducedAttributes(...). |
| 7854 | void getDeducedAttributes(Attributor &A, LLVMContext &Ctx, |
| 7855 | SmallVectorImpl<Attribute> &Attrs) const override { |
| 7856 | assert(Attrs.size() == 0); |
| 7857 | if (isAssumedReadNone()) |
| 7858 | Attrs.push_back(Elt: Attribute::get(Context&: Ctx, Kind: Attribute::ReadNone)); |
| 7859 | else if (isAssumedReadOnly()) |
| 7860 | Attrs.push_back(Elt: Attribute::get(Context&: Ctx, Kind: Attribute::ReadOnly)); |
| 7861 | else if (isAssumedWriteOnly()) |
| 7862 | Attrs.push_back(Elt: Attribute::get(Context&: Ctx, Kind: Attribute::WriteOnly)); |
| 7863 | assert(Attrs.size() <= 1); |
| 7864 | } |
| 7865 | |
| 7866 | /// See AbstractAttribute::manifest(...). |
| 7867 | ChangeStatus manifest(Attributor &A) override { |
| 7868 | const IRPosition &IRP = getIRPosition(); |
| 7869 | |
| 7870 | if (A.hasAttr(IRP, AKs: Attribute::ReadNone, |
| 7871 | /* IgnoreSubsumingPositions */ true)) |
| 7872 | return ChangeStatus::UNCHANGED; |
| 7873 | |
| 7874 | // Check if we would improve the existing attributes first. |
| 7875 | SmallVector<Attribute, 4> DeducedAttrs; |
| 7876 | getDeducedAttributes(A, Ctx&: IRP.getAnchorValue().getContext(), Attrs&: DeducedAttrs); |
| 7877 | if (llvm::all_of(Range&: DeducedAttrs, P: [&](const Attribute &Attr) { |
| 7878 | return A.hasAttr(IRP, AKs: Attr.getKindAsEnum(), |
| 7879 | /* IgnoreSubsumingPositions */ true); |
| 7880 | })) |
| 7881 | return ChangeStatus::UNCHANGED; |
| 7882 | |
| 7883 | // Clear existing attributes. |
| 7884 | A.removeAttrs(IRP, AttrKinds); |
| 7885 | // Clear conflicting writable attribute. |
| 7886 | if (isAssumedReadOnly()) |
| 7887 | A.removeAttrs(IRP, AttrKinds: Attribute::Writable); |
| 7888 | |
| 7889 | // Use the generic manifest method. |
| 7890 | return IRAttribute::manifest(A); |
| 7891 | } |
| 7892 | |
| 7893 | /// See AbstractState::getAsStr(). |
| 7894 | const std::string getAsStr(Attributor *A) const override { |
| 7895 | if (isAssumedReadNone()) |
| 7896 | return "readnone" ; |
| 7897 | if (isAssumedReadOnly()) |
| 7898 | return "readonly" ; |
| 7899 | if (isAssumedWriteOnly()) |
| 7900 | return "writeonly" ; |
| 7901 | return "may-read/write" ; |
| 7902 | } |
| 7903 | |
| 7904 | /// The set of IR attributes AAMemoryBehavior deals with. |
| 7905 | static const Attribute::AttrKind AttrKinds[3]; |
| 7906 | }; |
| 7907 | |
| 7908 | const Attribute::AttrKind AAMemoryBehaviorImpl::AttrKinds[] = { |
| 7909 | Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly}; |
| 7910 | |
| 7911 | /// Memory behavior attribute for a floating value. |
| 7912 | struct AAMemoryBehaviorFloating : AAMemoryBehaviorImpl { |
| 7913 | AAMemoryBehaviorFloating(const IRPosition &IRP, Attributor &A) |
| 7914 | : AAMemoryBehaviorImpl(IRP, A) {} |
| 7915 | |
| 7916 | /// See AbstractAttribute::updateImpl(...). |
| 7917 | ChangeStatus updateImpl(Attributor &A) override; |
| 7918 | |
| 7919 | /// See AbstractAttribute::trackStatistics() |
| 7920 | void trackStatistics() const override { |
| 7921 | if (isAssumedReadNone()) |
| 7922 | STATS_DECLTRACK_FLOATING_ATTR(readnone) |
| 7923 | else if (isAssumedReadOnly()) |
| 7924 | STATS_DECLTRACK_FLOATING_ATTR(readonly) |
| 7925 | else if (isAssumedWriteOnly()) |
| 7926 | STATS_DECLTRACK_FLOATING_ATTR(writeonly) |
| 7927 | } |
| 7928 | |
| 7929 | private: |
| 7930 | /// Return true if users of \p UserI might access the underlying |
| 7931 | /// variable/location described by \p U and should therefore be analyzed. |
| 7932 | bool followUsersOfUseIn(Attributor &A, const Use &U, |
| 7933 | const Instruction *UserI); |
| 7934 | |
| 7935 | /// Update the state according to the effect of use \p U in \p UserI. |
| 7936 | void analyzeUseIn(Attributor &A, const Use &U, const Instruction *UserI); |
| 7937 | }; |
| 7938 | |
| 7939 | /// Memory behavior attribute for function argument. |
| 7940 | struct AAMemoryBehaviorArgument : AAMemoryBehaviorFloating { |
| 7941 | AAMemoryBehaviorArgument(const IRPosition &IRP, Attributor &A) |
| 7942 | : AAMemoryBehaviorFloating(IRP, A) {} |
| 7943 | |
| 7944 | /// See AbstractAttribute::initialize(...). |
| 7945 | void initialize(Attributor &A) override { |
| 7946 | intersectAssumedBits(BitsEncoding: BEST_STATE); |
| 7947 | const IRPosition &IRP = getIRPosition(); |
| 7948 | // TODO: Make IgnoreSubsumingPositions a property of an IRAttribute so we |
| 7949 | // can query it when we use has/getAttr. That would allow us to reuse the |
| 7950 | // initialize of the base class here. |
| 7951 | bool HasByVal = A.hasAttr(IRP, AKs: {Attribute::ByVal}, |
| 7952 | /* IgnoreSubsumingPositions */ true); |
| 7953 | getKnownStateFromValue(A, IRP, State&: getState(), |
| 7954 | /* IgnoreSubsumingPositions */ HasByVal); |
| 7955 | } |
| 7956 | |
| 7957 | ChangeStatus manifest(Attributor &A) override { |
| 7958 | // TODO: Pointer arguments are not supported on vectors of pointers yet. |
| 7959 | if (!getAssociatedValue().getType()->isPointerTy()) |
| 7960 | return ChangeStatus::UNCHANGED; |
| 7961 | |
| 7962 | // TODO: From readattrs.ll: "inalloca parameters are always |
| 7963 | // considered written" |
| 7964 | if (A.hasAttr(IRP: getIRPosition(), |
| 7965 | AKs: {Attribute::InAlloca, Attribute::Preallocated})) { |
| 7966 | removeKnownBits(BitsEncoding: NO_WRITES); |
| 7967 | removeAssumedBits(BitsEncoding: NO_WRITES); |
| 7968 | } |
| 7969 | A.removeAttrs(IRP: getIRPosition(), AttrKinds); |
| 7970 | return AAMemoryBehaviorFloating::manifest(A); |
| 7971 | } |
| 7972 | |
| 7973 | /// See AbstractAttribute::trackStatistics() |
| 7974 | void trackStatistics() const override { |
| 7975 | if (isAssumedReadNone()) |
| 7976 | STATS_DECLTRACK_ARG_ATTR(readnone) |
| 7977 | else if (isAssumedReadOnly()) |
| 7978 | STATS_DECLTRACK_ARG_ATTR(readonly) |
| 7979 | else if (isAssumedWriteOnly()) |
| 7980 | STATS_DECLTRACK_ARG_ATTR(writeonly) |
| 7981 | } |
| 7982 | }; |
| 7983 | |
| 7984 | struct AAMemoryBehaviorCallSiteArgument final : AAMemoryBehaviorArgument { |
| 7985 | AAMemoryBehaviorCallSiteArgument(const IRPosition &IRP, Attributor &A) |
| 7986 | : AAMemoryBehaviorArgument(IRP, A) {} |
| 7987 | |
| 7988 | /// See AbstractAttribute::initialize(...). |
| 7989 | void initialize(Attributor &A) override { |
| 7990 | // If we don't have an associated attribute this is either a variadic call |
| 7991 | // or an indirect call, either way, nothing to do here. |
| 7992 | Argument *Arg = getAssociatedArgument(); |
| 7993 | if (!Arg) { |
| 7994 | indicatePessimisticFixpoint(); |
| 7995 | return; |
| 7996 | } |
| 7997 | if (Arg->hasByValAttr()) { |
| 7998 | addKnownBits(Bits: NO_WRITES); |
| 7999 | removeKnownBits(BitsEncoding: NO_READS); |
| 8000 | removeAssumedBits(BitsEncoding: NO_READS); |
| 8001 | } |
| 8002 | AAMemoryBehaviorArgument::initialize(A); |
| 8003 | if (getAssociatedFunction()->isDeclaration()) |
| 8004 | indicatePessimisticFixpoint(); |
| 8005 | } |
| 8006 | |
| 8007 | /// See AbstractAttribute::updateImpl(...). |
| 8008 | ChangeStatus updateImpl(Attributor &A) override { |
| 8009 | // TODO: Once we have call site specific value information we can provide |
| 8010 | // call site specific liveness liveness information and then it makes |
| 8011 | // sense to specialize attributes for call sites arguments instead of |
| 8012 | // redirecting requests to the callee argument. |
| 8013 | Argument *Arg = getAssociatedArgument(); |
| 8014 | const IRPosition &ArgPos = IRPosition::argument(Arg: *Arg); |
| 8015 | auto *ArgAA = |
| 8016 | A.getAAFor<AAMemoryBehavior>(QueryingAA: *this, IRP: ArgPos, DepClass: DepClassTy::REQUIRED); |
| 8017 | if (!ArgAA) |
| 8018 | return indicatePessimisticFixpoint(); |
| 8019 | return clampStateAndIndicateChange(S&: getState(), R: ArgAA->getState()); |
| 8020 | } |
| 8021 | |
| 8022 | /// See AbstractAttribute::trackStatistics() |
| 8023 | void trackStatistics() const override { |
| 8024 | if (isAssumedReadNone()) |
| 8025 | STATS_DECLTRACK_CSARG_ATTR(readnone) |
| 8026 | else if (isAssumedReadOnly()) |
| 8027 | STATS_DECLTRACK_CSARG_ATTR(readonly) |
| 8028 | else if (isAssumedWriteOnly()) |
| 8029 | STATS_DECLTRACK_CSARG_ATTR(writeonly) |
| 8030 | } |
| 8031 | }; |
| 8032 | |
| 8033 | /// Memory behavior attribute for a call site return position. |
| 8034 | struct AAMemoryBehaviorCallSiteReturned final : AAMemoryBehaviorFloating { |
| 8035 | AAMemoryBehaviorCallSiteReturned(const IRPosition &IRP, Attributor &A) |
| 8036 | : AAMemoryBehaviorFloating(IRP, A) {} |
| 8037 | |
| 8038 | /// See AbstractAttribute::initialize(...). |
| 8039 | void initialize(Attributor &A) override { |
| 8040 | AAMemoryBehaviorImpl::initialize(A); |
| 8041 | } |
| 8042 | /// See AbstractAttribute::manifest(...). |
| 8043 | ChangeStatus manifest(Attributor &A) override { |
| 8044 | // We do not annotate returned values. |
| 8045 | return ChangeStatus::UNCHANGED; |
| 8046 | } |
| 8047 | |
| 8048 | /// See AbstractAttribute::trackStatistics() |
| 8049 | void trackStatistics() const override {} |
| 8050 | }; |
| 8051 | |
| 8052 | /// An AA to represent the memory behavior function attributes. |
| 8053 | struct AAMemoryBehaviorFunction final : public AAMemoryBehaviorImpl { |
| 8054 | AAMemoryBehaviorFunction(const IRPosition &IRP, Attributor &A) |
| 8055 | : AAMemoryBehaviorImpl(IRP, A) {} |
| 8056 | |
| 8057 | /// See AbstractAttribute::updateImpl(Attributor &A). |
| 8058 | ChangeStatus updateImpl(Attributor &A) override; |
| 8059 | |
| 8060 | /// See AbstractAttribute::manifest(...). |
| 8061 | ChangeStatus manifest(Attributor &A) override { |
| 8062 | // TODO: It would be better to merge this with AAMemoryLocation, so that |
| 8063 | // we could determine read/write per location. This would also have the |
| 8064 | // benefit of only one place trying to manifest the memory attribute. |
| 8065 | Function &F = cast<Function>(Val&: getAnchorValue()); |
| 8066 | MemoryEffects ME = MemoryEffects::unknown(); |
| 8067 | if (isAssumedReadNone()) |
| 8068 | ME = MemoryEffects::none(); |
| 8069 | else if (isAssumedReadOnly()) |
| 8070 | ME = MemoryEffects::readOnly(); |
| 8071 | else if (isAssumedWriteOnly()) |
| 8072 | ME = MemoryEffects::writeOnly(); |
| 8073 | |
| 8074 | A.removeAttrs(IRP: getIRPosition(), AttrKinds); |
| 8075 | // Clear conflicting writable attribute. |
| 8076 | if (ME.onlyReadsMemory()) |
| 8077 | for (Argument &Arg : F.args()) |
| 8078 | A.removeAttrs(IRP: IRPosition::argument(Arg), AttrKinds: Attribute::Writable); |
| 8079 | return A.manifestAttrs(IRP: getIRPosition(), |
| 8080 | DeducedAttrs: Attribute::getWithMemoryEffects(Context&: F.getContext(), ME)); |
| 8081 | } |
| 8082 | |
| 8083 | /// See AbstractAttribute::trackStatistics() |
| 8084 | void trackStatistics() const override { |
| 8085 | if (isAssumedReadNone()) |
| 8086 | STATS_DECLTRACK_FN_ATTR(readnone) |
| 8087 | else if (isAssumedReadOnly()) |
| 8088 | STATS_DECLTRACK_FN_ATTR(readonly) |
| 8089 | else if (isAssumedWriteOnly()) |
| 8090 | STATS_DECLTRACK_FN_ATTR(writeonly) |
| 8091 | } |
| 8092 | }; |
| 8093 | |
| 8094 | /// AAMemoryBehavior attribute for call sites. |
| 8095 | struct AAMemoryBehaviorCallSite final |
| 8096 | : AACalleeToCallSite<AAMemoryBehavior, AAMemoryBehaviorImpl> { |
| 8097 | AAMemoryBehaviorCallSite(const IRPosition &IRP, Attributor &A) |
| 8098 | : AACalleeToCallSite<AAMemoryBehavior, AAMemoryBehaviorImpl>(IRP, A) {} |
| 8099 | |
| 8100 | /// See AbstractAttribute::manifest(...). |
| 8101 | ChangeStatus manifest(Attributor &A) override { |
| 8102 | // TODO: Deduplicate this with AAMemoryBehaviorFunction. |
| 8103 | CallBase &CB = cast<CallBase>(Val&: getAnchorValue()); |
| 8104 | MemoryEffects ME = MemoryEffects::unknown(); |
| 8105 | if (isAssumedReadNone()) |
| 8106 | ME = MemoryEffects::none(); |
| 8107 | else if (isAssumedReadOnly()) |
| 8108 | ME = MemoryEffects::readOnly(); |
| 8109 | else if (isAssumedWriteOnly()) |
| 8110 | ME = MemoryEffects::writeOnly(); |
| 8111 | |
| 8112 | A.removeAttrs(IRP: getIRPosition(), AttrKinds); |
| 8113 | // Clear conflicting writable attribute. |
| 8114 | if (ME.onlyReadsMemory()) |
| 8115 | for (Use &U : CB.args()) |
| 8116 | A.removeAttrs(IRP: IRPosition::callsite_argument(CB, ArgNo: U.getOperandNo()), |
| 8117 | AttrKinds: Attribute::Writable); |
| 8118 | return A.manifestAttrs( |
| 8119 | IRP: getIRPosition(), DeducedAttrs: Attribute::getWithMemoryEffects(Context&: CB.getContext(), ME)); |
| 8120 | } |
| 8121 | |
| 8122 | /// See AbstractAttribute::trackStatistics() |
| 8123 | void trackStatistics() const override { |
| 8124 | if (isAssumedReadNone()) |
| 8125 | STATS_DECLTRACK_CS_ATTR(readnone) |
| 8126 | else if (isAssumedReadOnly()) |
| 8127 | STATS_DECLTRACK_CS_ATTR(readonly) |
| 8128 | else if (isAssumedWriteOnly()) |
| 8129 | STATS_DECLTRACK_CS_ATTR(writeonly) |
| 8130 | } |
| 8131 | }; |
| 8132 | |
| 8133 | ChangeStatus AAMemoryBehaviorFunction::updateImpl(Attributor &A) { |
| 8134 | |
| 8135 | // The current assumed state used to determine a change. |
| 8136 | auto AssumedState = getAssumed(); |
| 8137 | |
| 8138 | auto CheckRWInst = [&](Instruction &I) { |
| 8139 | // If the instruction has an own memory behavior state, use it to restrict |
| 8140 | // the local state. No further analysis is required as the other memory |
| 8141 | // state is as optimistic as it gets. |
| 8142 | if (const auto *CB = dyn_cast<CallBase>(Val: &I)) { |
| 8143 | const auto *MemBehaviorAA = A.getAAFor<AAMemoryBehavior>( |
| 8144 | QueryingAA: *this, IRP: IRPosition::callsite_function(CB: *CB), DepClass: DepClassTy::REQUIRED); |
| 8145 | if (MemBehaviorAA) { |
| 8146 | intersectAssumedBits(BitsEncoding: MemBehaviorAA->getAssumed()); |
| 8147 | return !isAtFixpoint(); |
| 8148 | } |
| 8149 | } |
| 8150 | |
| 8151 | // Remove access kind modifiers if necessary. |
| 8152 | if (I.mayReadFromMemory()) |
| 8153 | removeAssumedBits(BitsEncoding: NO_READS); |
| 8154 | if (I.mayWriteToMemory()) |
| 8155 | removeAssumedBits(BitsEncoding: NO_WRITES); |
| 8156 | return !isAtFixpoint(); |
| 8157 | }; |
| 8158 | |
| 8159 | bool UsedAssumedInformation = false; |
| 8160 | if (!A.checkForAllReadWriteInstructions(Pred: CheckRWInst, QueryingAA&: *this, |
| 8161 | UsedAssumedInformation)) |
| 8162 | return indicatePessimisticFixpoint(); |
| 8163 | |
| 8164 | return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED |
| 8165 | : ChangeStatus::UNCHANGED; |
| 8166 | } |
| 8167 | |
| 8168 | ChangeStatus AAMemoryBehaviorFloating::updateImpl(Attributor &A) { |
| 8169 | |
| 8170 | const IRPosition &IRP = getIRPosition(); |
| 8171 | const IRPosition &FnPos = IRPosition::function_scope(IRP); |
| 8172 | AAMemoryBehavior::StateType &S = getState(); |
| 8173 | |
| 8174 | // First, check the function scope. We take the known information and we avoid |
| 8175 | // work if the assumed information implies the current assumed information for |
| 8176 | // this attribute. This is a valid for all but byval arguments. |
| 8177 | Argument *Arg = IRP.getAssociatedArgument(); |
| 8178 | AAMemoryBehavior::base_t FnMemAssumedState = |
| 8179 | AAMemoryBehavior::StateType::getWorstState(); |
| 8180 | if (!Arg || !Arg->hasByValAttr()) { |
| 8181 | const auto *FnMemAA = |
| 8182 | A.getAAFor<AAMemoryBehavior>(QueryingAA: *this, IRP: FnPos, DepClass: DepClassTy::OPTIONAL); |
| 8183 | if (FnMemAA) { |
| 8184 | FnMemAssumedState = FnMemAA->getAssumed(); |
| 8185 | S.addKnownBits(Bits: FnMemAA->getKnown()); |
| 8186 | if ((S.getAssumed() & FnMemAA->getAssumed()) == S.getAssumed()) |
| 8187 | return ChangeStatus::UNCHANGED; |
| 8188 | } |
| 8189 | } |
| 8190 | |
| 8191 | // The current assumed state used to determine a change. |
| 8192 | auto AssumedState = S.getAssumed(); |
| 8193 | |
| 8194 | // Make sure the value is not captured (except through "return"), if |
| 8195 | // it is, any information derived would be irrelevant anyway as we cannot |
| 8196 | // check the potential aliases introduced by the capture. However, no need |
| 8197 | // to fall back to anythign less optimistic than the function state. |
| 8198 | bool IsKnownNoCapture; |
| 8199 | const AANoCapture *ArgNoCaptureAA = nullptr; |
| 8200 | bool IsAssumedNoCapture = AA::hasAssumedIRAttr<Attribute::Captures>( |
| 8201 | A, QueryingAA: this, IRP, DepClass: DepClassTy::OPTIONAL, IsKnown&: IsKnownNoCapture, IgnoreSubsumingPositions: false, |
| 8202 | AAPtr: &ArgNoCaptureAA); |
| 8203 | |
| 8204 | if (!IsAssumedNoCapture && |
| 8205 | (!ArgNoCaptureAA || !ArgNoCaptureAA->isAssumedNoCaptureMaybeReturned())) { |
| 8206 | S.intersectAssumedBits(BitsEncoding: FnMemAssumedState); |
| 8207 | return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED |
| 8208 | : ChangeStatus::UNCHANGED; |
| 8209 | } |
| 8210 | |
| 8211 | // Visit and expand uses until all are analyzed or a fixpoint is reached. |
| 8212 | auto UsePred = [&](const Use &U, bool &Follow) -> bool { |
| 8213 | Instruction *UserI = cast<Instruction>(Val: U.getUser()); |
| 8214 | LLVM_DEBUG(dbgs() << "[AAMemoryBehavior] Use: " << *U << " in " << *UserI |
| 8215 | << " \n" ); |
| 8216 | |
| 8217 | // Droppable users, e.g., llvm::assume does not actually perform any action. |
| 8218 | if (UserI->isDroppable()) |
| 8219 | return true; |
| 8220 | |
| 8221 | // Check if the users of UserI should also be visited. |
| 8222 | Follow = followUsersOfUseIn(A, U, UserI); |
| 8223 | |
| 8224 | // If UserI might touch memory we analyze the use in detail. |
| 8225 | if (UserI->mayReadOrWriteMemory()) |
| 8226 | analyzeUseIn(A, U, UserI); |
| 8227 | |
| 8228 | return !isAtFixpoint(); |
| 8229 | }; |
| 8230 | |
| 8231 | if (!A.checkForAllUses(Pred: UsePred, QueryingAA: *this, V: getAssociatedValue())) |
| 8232 | return indicatePessimisticFixpoint(); |
| 8233 | |
| 8234 | return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED |
| 8235 | : ChangeStatus::UNCHANGED; |
| 8236 | } |
| 8237 | |
| 8238 | bool AAMemoryBehaviorFloating::followUsersOfUseIn(Attributor &A, const Use &U, |
| 8239 | const Instruction *UserI) { |
| 8240 | // The loaded value is unrelated to the pointer argument, no need to |
| 8241 | // follow the users of the load. |
| 8242 | if (isa<LoadInst>(Val: UserI) || isa<ReturnInst>(Val: UserI)) |
| 8243 | return false; |
| 8244 | |
| 8245 | // By default we follow all uses assuming UserI might leak information on U, |
| 8246 | // we have special handling for call sites operands though. |
| 8247 | const auto *CB = dyn_cast<CallBase>(Val: UserI); |
| 8248 | if (!CB || !CB->isArgOperand(U: &U)) |
| 8249 | return true; |
| 8250 | |
| 8251 | // If the use is a call argument known not to be captured, the users of |
| 8252 | // the call do not need to be visited because they have to be unrelated to |
| 8253 | // the input. Note that this check is not trivial even though we disallow |
| 8254 | // general capturing of the underlying argument. The reason is that the |
| 8255 | // call might the argument "through return", which we allow and for which we |
| 8256 | // need to check call users. |
| 8257 | if (U.get()->getType()->isPointerTy()) { |
| 8258 | unsigned ArgNo = CB->getArgOperandNo(U: &U); |
| 8259 | bool IsKnownNoCapture; |
| 8260 | return !AA::hasAssumedIRAttr<Attribute::Captures>( |
| 8261 | A, QueryingAA: this, IRP: IRPosition::callsite_argument(CB: *CB, ArgNo), |
| 8262 | DepClass: DepClassTy::OPTIONAL, IsKnown&: IsKnownNoCapture); |
| 8263 | } |
| 8264 | |
| 8265 | return true; |
| 8266 | } |
| 8267 | |
| 8268 | void AAMemoryBehaviorFloating::analyzeUseIn(Attributor &A, const Use &U, |
| 8269 | const Instruction *UserI) { |
| 8270 | assert(UserI->mayReadOrWriteMemory()); |
| 8271 | |
| 8272 | switch (UserI->getOpcode()) { |
| 8273 | default: |
| 8274 | // TODO: Handle all atomics and other side-effect operations we know of. |
| 8275 | break; |
| 8276 | case Instruction::Load: |
| 8277 | // Loads cause the NO_READS property to disappear. |
| 8278 | removeAssumedBits(BitsEncoding: NO_READS); |
| 8279 | return; |
| 8280 | |
| 8281 | case Instruction::Store: |
| 8282 | // Stores cause the NO_WRITES property to disappear if the use is the |
| 8283 | // pointer operand. Note that while capturing was taken care of somewhere |
| 8284 | // else we need to deal with stores of the value that is not looked through. |
| 8285 | if (cast<StoreInst>(Val: UserI)->getPointerOperand() == U.get()) |
| 8286 | removeAssumedBits(BitsEncoding: NO_WRITES); |
| 8287 | else |
| 8288 | indicatePessimisticFixpoint(); |
| 8289 | return; |
| 8290 | |
| 8291 | case Instruction::Call: |
| 8292 | case Instruction::CallBr: |
| 8293 | case Instruction::Invoke: { |
| 8294 | // For call sites we look at the argument memory behavior attribute (this |
| 8295 | // could be recursive!) in order to restrict our own state. |
| 8296 | const auto *CB = cast<CallBase>(Val: UserI); |
| 8297 | |
| 8298 | // Give up on operand bundles. |
| 8299 | if (CB->isBundleOperand(U: &U)) { |
| 8300 | indicatePessimisticFixpoint(); |
| 8301 | return; |
| 8302 | } |
| 8303 | |
| 8304 | // Calling a function does read the function pointer, maybe write it if the |
| 8305 | // function is self-modifying. |
| 8306 | if (CB->isCallee(U: &U)) { |
| 8307 | removeAssumedBits(BitsEncoding: NO_READS); |
| 8308 | break; |
| 8309 | } |
| 8310 | |
| 8311 | // Adjust the possible access behavior based on the information on the |
| 8312 | // argument. |
| 8313 | IRPosition Pos; |
| 8314 | if (U.get()->getType()->isPointerTy()) |
| 8315 | Pos = IRPosition::callsite_argument(CB: *CB, ArgNo: CB->getArgOperandNo(U: &U)); |
| 8316 | else |
| 8317 | Pos = IRPosition::callsite_function(CB: *CB); |
| 8318 | const auto *MemBehaviorAA = |
| 8319 | A.getAAFor<AAMemoryBehavior>(QueryingAA: *this, IRP: Pos, DepClass: DepClassTy::OPTIONAL); |
| 8320 | if (!MemBehaviorAA) |
| 8321 | break; |
| 8322 | // "assumed" has at most the same bits as the MemBehaviorAA assumed |
| 8323 | // and at least "known". |
| 8324 | intersectAssumedBits(BitsEncoding: MemBehaviorAA->getAssumed()); |
| 8325 | return; |
| 8326 | } |
| 8327 | }; |
| 8328 | |
| 8329 | // Generally, look at the "may-properties" and adjust the assumed state if we |
| 8330 | // did not trigger special handling before. |
| 8331 | if (UserI->mayReadFromMemory()) |
| 8332 | removeAssumedBits(BitsEncoding: NO_READS); |
| 8333 | if (UserI->mayWriteToMemory()) |
| 8334 | removeAssumedBits(BitsEncoding: NO_WRITES); |
| 8335 | } |
| 8336 | } // namespace |
| 8337 | |
| 8338 | /// -------------------- Memory Locations Attributes --------------------------- |
| 8339 | /// Includes read-none, argmemonly, inaccessiblememonly, |
| 8340 | /// inaccessiblememorargmemonly |
| 8341 | /// ---------------------------------------------------------------------------- |
| 8342 | |
| 8343 | std::string AAMemoryLocation::getMemoryLocationsAsStr( |
| 8344 | AAMemoryLocation::MemoryLocationsKind MLK) { |
| 8345 | if (0 == (MLK & AAMemoryLocation::NO_LOCATIONS)) |
| 8346 | return "all memory" ; |
| 8347 | if (MLK == AAMemoryLocation::NO_LOCATIONS) |
| 8348 | return "no memory" ; |
| 8349 | std::string S = "memory:" ; |
| 8350 | if (0 == (MLK & AAMemoryLocation::NO_LOCAL_MEM)) |
| 8351 | S += "stack," ; |
| 8352 | if (0 == (MLK & AAMemoryLocation::NO_CONST_MEM)) |
| 8353 | S += "constant," ; |
| 8354 | if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_INTERNAL_MEM)) |
| 8355 | S += "internal global," ; |
| 8356 | if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_EXTERNAL_MEM)) |
| 8357 | S += "external global," ; |
| 8358 | if (0 == (MLK & AAMemoryLocation::NO_ARGUMENT_MEM)) |
| 8359 | S += "argument," ; |
| 8360 | if (0 == (MLK & AAMemoryLocation::NO_INACCESSIBLE_MEM)) |
| 8361 | S += "inaccessible," ; |
| 8362 | if (0 == (MLK & AAMemoryLocation::NO_MALLOCED_MEM)) |
| 8363 | S += "malloced," ; |
| 8364 | if (0 == (MLK & AAMemoryLocation::NO_UNKOWN_MEM)) |
| 8365 | S += "unknown," ; |
| 8366 | S.pop_back(); |
| 8367 | return S; |
| 8368 | } |
| 8369 | |
| 8370 | namespace { |
| 8371 | struct AAMemoryLocationImpl : public AAMemoryLocation { |
| 8372 | |
| 8373 | AAMemoryLocationImpl(const IRPosition &IRP, Attributor &A) |
| 8374 | : AAMemoryLocation(IRP, A), Allocator(A.Allocator) { |
| 8375 | AccessKind2Accesses.fill(u: nullptr); |
| 8376 | } |
| 8377 | |
| 8378 | ~AAMemoryLocationImpl() { |
| 8379 | // The AccessSets are allocated via a BumpPtrAllocator, we call |
| 8380 | // the destructor manually. |
| 8381 | for (AccessSet *AS : AccessKind2Accesses) |
| 8382 | if (AS) |
| 8383 | AS->~AccessSet(); |
| 8384 | } |
| 8385 | |
| 8386 | /// See AbstractAttribute::initialize(...). |
| 8387 | void initialize(Attributor &A) override { |
| 8388 | intersectAssumedBits(BitsEncoding: BEST_STATE); |
| 8389 | getKnownStateFromValue(A, IRP: getIRPosition(), State&: getState()); |
| 8390 | AAMemoryLocation::initialize(A); |
| 8391 | } |
| 8392 | |
| 8393 | /// Return the memory behavior information encoded in the IR for \p IRP. |
| 8394 | static void getKnownStateFromValue(Attributor &A, const IRPosition &IRP, |
| 8395 | BitIntegerState &State, |
| 8396 | bool IgnoreSubsumingPositions = false) { |
| 8397 | // For internal functions we ignore `argmemonly` and |
| 8398 | // `inaccessiblememorargmemonly` as we might break it via interprocedural |
| 8399 | // constant propagation. It is unclear if this is the best way but it is |
| 8400 | // unlikely this will cause real performance problems. If we are deriving |
| 8401 | // attributes for the anchor function we even remove the attribute in |
| 8402 | // addition to ignoring it. |
| 8403 | // TODO: A better way to handle this would be to add ~NO_GLOBAL_MEM / |
| 8404 | // MemoryEffects::Other as a possible location. |
| 8405 | bool UseArgMemOnly = true; |
| 8406 | Function *AnchorFn = IRP.getAnchorScope(); |
| 8407 | if (AnchorFn && A.isRunOn(Fn&: *AnchorFn)) |
| 8408 | UseArgMemOnly = !AnchorFn->hasLocalLinkage(); |
| 8409 | |
| 8410 | SmallVector<Attribute, 2> Attrs; |
| 8411 | A.getAttrs(IRP, AKs: {Attribute::Memory}, Attrs, IgnoreSubsumingPositions); |
| 8412 | for (const Attribute &Attr : Attrs) { |
| 8413 | // TODO: We can map MemoryEffects to Attributor locations more precisely. |
| 8414 | MemoryEffects ME = Attr.getMemoryEffects(); |
| 8415 | if (ME.doesNotAccessMemory()) { |
| 8416 | State.addKnownBits(Bits: NO_LOCAL_MEM | NO_CONST_MEM); |
| 8417 | continue; |
| 8418 | } |
| 8419 | if (ME.onlyAccessesInaccessibleMem()) { |
| 8420 | State.addKnownBits(Bits: inverseLocation(Loc: NO_INACCESSIBLE_MEM, AndLocalMem: true, AndConstMem: true)); |
| 8421 | continue; |
| 8422 | } |
| 8423 | if (ME.onlyAccessesArgPointees()) { |
| 8424 | if (UseArgMemOnly) |
| 8425 | State.addKnownBits(Bits: inverseLocation(Loc: NO_ARGUMENT_MEM, AndLocalMem: true, AndConstMem: true)); |
| 8426 | else { |
| 8427 | // Remove location information, only keep read/write info. |
| 8428 | ME = MemoryEffects(ME.getModRef()); |
| 8429 | A.manifestAttrs(IRP, |
| 8430 | DeducedAttrs: Attribute::getWithMemoryEffects( |
| 8431 | Context&: IRP.getAnchorValue().getContext(), ME), |
| 8432 | /*ForceReplace*/ true); |
| 8433 | } |
| 8434 | continue; |
| 8435 | } |
| 8436 | if (ME.onlyAccessesInaccessibleOrArgMem()) { |
| 8437 | if (UseArgMemOnly) |
| 8438 | State.addKnownBits(Bits: inverseLocation( |
| 8439 | Loc: NO_INACCESSIBLE_MEM | NO_ARGUMENT_MEM, AndLocalMem: true, AndConstMem: true)); |
| 8440 | else { |
| 8441 | // Remove location information, only keep read/write info. |
| 8442 | ME = MemoryEffects(ME.getModRef()); |
| 8443 | A.manifestAttrs(IRP, |
| 8444 | DeducedAttrs: Attribute::getWithMemoryEffects( |
| 8445 | Context&: IRP.getAnchorValue().getContext(), ME), |
| 8446 | /*ForceReplace*/ true); |
| 8447 | } |
| 8448 | continue; |
| 8449 | } |
| 8450 | } |
| 8451 | } |
| 8452 | |
| 8453 | /// See AbstractAttribute::getDeducedAttributes(...). |
| 8454 | void getDeducedAttributes(Attributor &A, LLVMContext &Ctx, |
| 8455 | SmallVectorImpl<Attribute> &Attrs) const override { |
| 8456 | // TODO: We can map Attributor locations to MemoryEffects more precisely. |
| 8457 | assert(Attrs.size() == 0); |
| 8458 | if (getIRPosition().getPositionKind() == IRPosition::IRP_FUNCTION) { |
| 8459 | if (isAssumedReadNone()) |
| 8460 | Attrs.push_back( |
| 8461 | Elt: Attribute::getWithMemoryEffects(Context&: Ctx, ME: MemoryEffects::none())); |
| 8462 | else if (isAssumedInaccessibleMemOnly()) |
| 8463 | Attrs.push_back(Elt: Attribute::getWithMemoryEffects( |
| 8464 | Context&: Ctx, ME: MemoryEffects::inaccessibleMemOnly())); |
| 8465 | else if (isAssumedArgMemOnly()) |
| 8466 | Attrs.push_back( |
| 8467 | Elt: Attribute::getWithMemoryEffects(Context&: Ctx, ME: MemoryEffects::argMemOnly())); |
| 8468 | else if (isAssumedInaccessibleOrArgMemOnly()) |
| 8469 | Attrs.push_back(Elt: Attribute::getWithMemoryEffects( |
| 8470 | Context&: Ctx, ME: MemoryEffects::inaccessibleOrArgMemOnly())); |
| 8471 | } |
| 8472 | assert(Attrs.size() <= 1); |
| 8473 | } |
| 8474 | |
| 8475 | /// See AbstractAttribute::manifest(...). |
| 8476 | ChangeStatus manifest(Attributor &A) override { |
| 8477 | // TODO: If AAMemoryLocation and AAMemoryBehavior are merged, we could |
| 8478 | // provide per-location modref information here. |
| 8479 | const IRPosition &IRP = getIRPosition(); |
| 8480 | |
| 8481 | SmallVector<Attribute, 1> DeducedAttrs; |
| 8482 | getDeducedAttributes(A, Ctx&: IRP.getAnchorValue().getContext(), Attrs&: DeducedAttrs); |
| 8483 | if (DeducedAttrs.size() != 1) |
| 8484 | return ChangeStatus::UNCHANGED; |
| 8485 | MemoryEffects ME = DeducedAttrs[0].getMemoryEffects(); |
| 8486 | |
| 8487 | return A.manifestAttrs(IRP, DeducedAttrs: Attribute::getWithMemoryEffects( |
| 8488 | Context&: IRP.getAnchorValue().getContext(), ME)); |
| 8489 | } |
| 8490 | |
| 8491 | /// See AAMemoryLocation::checkForAllAccessesToMemoryKind(...). |
| 8492 | bool checkForAllAccessesToMemoryKind( |
| 8493 | function_ref<bool(const Instruction *, const Value *, AccessKind, |
| 8494 | MemoryLocationsKind)> |
| 8495 | Pred, |
| 8496 | MemoryLocationsKind RequestedMLK) const override { |
| 8497 | if (!isValidState()) |
| 8498 | return false; |
| 8499 | |
| 8500 | MemoryLocationsKind AssumedMLK = getAssumedNotAccessedLocation(); |
| 8501 | if (AssumedMLK == NO_LOCATIONS) |
| 8502 | return true; |
| 8503 | |
| 8504 | unsigned Idx = 0; |
| 8505 | for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; |
| 8506 | CurMLK *= 2, ++Idx) { |
| 8507 | if (CurMLK & RequestedMLK) |
| 8508 | continue; |
| 8509 | |
| 8510 | if (const AccessSet *Accesses = AccessKind2Accesses[Idx]) |
| 8511 | for (const AccessInfo &AI : *Accesses) |
| 8512 | if (!Pred(AI.I, AI.Ptr, AI.Kind, CurMLK)) |
| 8513 | return false; |
| 8514 | } |
| 8515 | |
| 8516 | return true; |
| 8517 | } |
| 8518 | |
| 8519 | ChangeStatus indicatePessimisticFixpoint() override { |
| 8520 | // If we give up and indicate a pessimistic fixpoint this instruction will |
| 8521 | // become an access for all potential access kinds: |
| 8522 | // TODO: Add pointers for argmemonly and globals to improve the results of |
| 8523 | // checkForAllAccessesToMemoryKind. |
| 8524 | bool Changed = false; |
| 8525 | MemoryLocationsKind KnownMLK = getKnown(); |
| 8526 | Instruction *I = dyn_cast<Instruction>(Val: &getAssociatedValue()); |
| 8527 | for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2) |
| 8528 | if (!(CurMLK & KnownMLK)) |
| 8529 | updateStateAndAccessesMap(State&: getState(), MLK: CurMLK, I, Ptr: nullptr, Changed, |
| 8530 | AK: getAccessKindFromInst(I)); |
| 8531 | return AAMemoryLocation::indicatePessimisticFixpoint(); |
| 8532 | } |
| 8533 | |
| 8534 | protected: |
| 8535 | /// Helper struct to tie together an instruction that has a read or write |
| 8536 | /// effect with the pointer it accesses (if any). |
| 8537 | struct AccessInfo { |
| 8538 | |
| 8539 | /// The instruction that caused the access. |
| 8540 | const Instruction *I; |
| 8541 | |
| 8542 | /// The base pointer that is accessed, or null if unknown. |
| 8543 | const Value *Ptr; |
| 8544 | |
| 8545 | /// The kind of access (read/write/read+write). |
| 8546 | AccessKind Kind; |
| 8547 | |
| 8548 | bool operator==(const AccessInfo &RHS) const { |
| 8549 | return I == RHS.I && Ptr == RHS.Ptr && Kind == RHS.Kind; |
| 8550 | } |
| 8551 | bool operator()(const AccessInfo &LHS, const AccessInfo &RHS) const { |
| 8552 | if (LHS.I != RHS.I) |
| 8553 | return LHS.I < RHS.I; |
| 8554 | if (LHS.Ptr != RHS.Ptr) |
| 8555 | return LHS.Ptr < RHS.Ptr; |
| 8556 | if (LHS.Kind != RHS.Kind) |
| 8557 | return LHS.Kind < RHS.Kind; |
| 8558 | return false; |
| 8559 | } |
| 8560 | }; |
| 8561 | |
| 8562 | /// Mapping from *single* memory location kinds, e.g., LOCAL_MEM with the |
| 8563 | /// value of NO_LOCAL_MEM, to the accesses encountered for this memory kind. |
| 8564 | using AccessSet = SmallSet<AccessInfo, 2, AccessInfo>; |
| 8565 | std::array<AccessSet *, llvm::CTLog2<VALID_STATE>()> AccessKind2Accesses; |
| 8566 | |
| 8567 | /// Categorize the pointer arguments of CB that might access memory in |
| 8568 | /// AccessedLoc and update the state and access map accordingly. |
| 8569 | void |
| 8570 | categorizeArgumentPointerLocations(Attributor &A, CallBase &CB, |
| 8571 | AAMemoryLocation::StateType &AccessedLocs, |
| 8572 | bool &Changed); |
| 8573 | |
| 8574 | /// Return the kind(s) of location that may be accessed by \p V. |
| 8575 | AAMemoryLocation::MemoryLocationsKind |
| 8576 | categorizeAccessedLocations(Attributor &A, Instruction &I, bool &Changed); |
| 8577 | |
| 8578 | /// Return the access kind as determined by \p I. |
| 8579 | AccessKind getAccessKindFromInst(const Instruction *I) { |
| 8580 | AccessKind AK = READ_WRITE; |
| 8581 | if (I) { |
| 8582 | AK = I->mayReadFromMemory() ? READ : NONE; |
| 8583 | AK = AccessKind(AK | (I->mayWriteToMemory() ? WRITE : NONE)); |
| 8584 | } |
| 8585 | return AK; |
| 8586 | } |
| 8587 | |
| 8588 | /// Update the state \p State and the AccessKind2Accesses given that \p I is |
| 8589 | /// an access of kind \p AK to a \p MLK memory location with the access |
| 8590 | /// pointer \p Ptr. |
| 8591 | void updateStateAndAccessesMap(AAMemoryLocation::StateType &State, |
| 8592 | MemoryLocationsKind MLK, const Instruction *I, |
| 8593 | const Value *Ptr, bool &Changed, |
| 8594 | AccessKind AK = READ_WRITE) { |
| 8595 | |
| 8596 | assert(isPowerOf2_32(MLK) && "Expected a single location set!" ); |
| 8597 | auto *&Accesses = AccessKind2Accesses[llvm::Log2_32(Value: MLK)]; |
| 8598 | if (!Accesses) |
| 8599 | Accesses = new (Allocator) AccessSet(); |
| 8600 | Changed |= Accesses->insert(V: AccessInfo{.I: I, .Ptr: Ptr, .Kind: AK}).second; |
| 8601 | if (MLK == NO_UNKOWN_MEM) |
| 8602 | MLK = NO_LOCATIONS; |
| 8603 | State.removeAssumedBits(BitsEncoding: MLK); |
| 8604 | } |
| 8605 | |
| 8606 | /// Determine the underlying locations kinds for \p Ptr, e.g., globals or |
| 8607 | /// arguments, and update the state and access map accordingly. |
| 8608 | void categorizePtrValue(Attributor &A, const Instruction &I, const Value &Ptr, |
| 8609 | AAMemoryLocation::StateType &State, bool &Changed, |
| 8610 | unsigned AccessAS = 0); |
| 8611 | |
| 8612 | /// Used to allocate access sets. |
| 8613 | BumpPtrAllocator &Allocator; |
| 8614 | }; |
| 8615 | |
| 8616 | void AAMemoryLocationImpl::categorizePtrValue( |
| 8617 | Attributor &A, const Instruction &I, const Value &Ptr, |
| 8618 | AAMemoryLocation::StateType &State, bool &Changed, unsigned AccessAS) { |
| 8619 | LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize pointer locations for " |
| 8620 | << Ptr << " [" |
| 8621 | << getMemoryLocationsAsStr(State.getAssumed()) << "]\n" ); |
| 8622 | |
| 8623 | auto Pred = [&](Value &Obj) { |
| 8624 | unsigned ObjectAS = Obj.getType()->getPointerAddressSpace(); |
| 8625 | // TODO: recognize the TBAA used for constant accesses. |
| 8626 | MemoryLocationsKind MLK = NO_LOCATIONS; |
| 8627 | |
| 8628 | // Filter accesses to constant (GPU) memory if we have an AS at the access |
| 8629 | // site or the object is known to actually have the associated AS. |
| 8630 | if ((AccessAS == (unsigned)AA::GPUAddressSpace::Constant || |
| 8631 | (ObjectAS == (unsigned)AA::GPUAddressSpace::Constant && |
| 8632 | isIdentifiedObject(V: &Obj))) && |
| 8633 | AA::isGPU(M: *I.getModule())) |
| 8634 | return true; |
| 8635 | |
| 8636 | if (isa<UndefValue>(Val: &Obj)) |
| 8637 | return true; |
| 8638 | if (isa<Argument>(Val: &Obj)) { |
| 8639 | // TODO: For now we do not treat byval arguments as local copies performed |
| 8640 | // on the call edge, though, we should. To make that happen we need to |
| 8641 | // teach various passes, e.g., DSE, about the copy effect of a byval. That |
| 8642 | // would also allow us to mark functions only accessing byval arguments as |
| 8643 | // readnone again, arguably their accesses have no effect outside of the |
| 8644 | // function, like accesses to allocas. |
| 8645 | MLK = NO_ARGUMENT_MEM; |
| 8646 | } else if (auto *GV = dyn_cast<GlobalValue>(Val: &Obj)) { |
| 8647 | // Reading constant memory is not treated as a read "effect" by the |
| 8648 | // function attr pass so we won't neither. Constants defined by TBAA are |
| 8649 | // similar. (We know we do not write it because it is constant.) |
| 8650 | if (auto *GVar = dyn_cast<GlobalVariable>(Val: GV)) |
| 8651 | if (GVar->isConstant()) |
| 8652 | return true; |
| 8653 | |
| 8654 | if (GV->hasLocalLinkage()) |
| 8655 | MLK = NO_GLOBAL_INTERNAL_MEM; |
| 8656 | else |
| 8657 | MLK = NO_GLOBAL_EXTERNAL_MEM; |
| 8658 | } else if (isa<ConstantPointerNull>(Val: &Obj) && |
| 8659 | (!NullPointerIsDefined(F: getAssociatedFunction(), AS: AccessAS) || |
| 8660 | !NullPointerIsDefined(F: getAssociatedFunction(), AS: ObjectAS))) { |
| 8661 | return true; |
| 8662 | } else if (isa<AllocaInst>(Val: &Obj)) { |
| 8663 | MLK = NO_LOCAL_MEM; |
| 8664 | } else if (const auto *CB = dyn_cast<CallBase>(Val: &Obj)) { |
| 8665 | bool IsKnownNoAlias; |
| 8666 | if (AA::hasAssumedIRAttr<Attribute::NoAlias>( |
| 8667 | A, QueryingAA: this, IRP: IRPosition::callsite_returned(CB: *CB), DepClass: DepClassTy::OPTIONAL, |
| 8668 | IsKnown&: IsKnownNoAlias)) |
| 8669 | MLK = NO_MALLOCED_MEM; |
| 8670 | else |
| 8671 | MLK = NO_UNKOWN_MEM; |
| 8672 | } else { |
| 8673 | MLK = NO_UNKOWN_MEM; |
| 8674 | } |
| 8675 | |
| 8676 | assert(MLK != NO_LOCATIONS && "No location specified!" ); |
| 8677 | LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Ptr value can be categorized: " |
| 8678 | << Obj << " -> " << getMemoryLocationsAsStr(MLK) << "\n" ); |
| 8679 | updateStateAndAccessesMap(State, MLK, I: &I, Ptr: &Obj, Changed, |
| 8680 | AK: getAccessKindFromInst(I: &I)); |
| 8681 | |
| 8682 | return true; |
| 8683 | }; |
| 8684 | |
| 8685 | const auto *AA = A.getAAFor<AAUnderlyingObjects>( |
| 8686 | QueryingAA: *this, IRP: IRPosition::value(V: Ptr), DepClass: DepClassTy::OPTIONAL); |
| 8687 | if (!AA || !AA->forallUnderlyingObjects(Pred, Scope: AA::Intraprocedural)) { |
| 8688 | LLVM_DEBUG( |
| 8689 | dbgs() << "[AAMemoryLocation] Pointer locations not categorized\n" ); |
| 8690 | updateStateAndAccessesMap(State, MLK: NO_UNKOWN_MEM, I: &I, Ptr: nullptr, Changed, |
| 8691 | AK: getAccessKindFromInst(I: &I)); |
| 8692 | return; |
| 8693 | } |
| 8694 | |
| 8695 | LLVM_DEBUG( |
| 8696 | dbgs() << "[AAMemoryLocation] Accessed locations with pointer locations: " |
| 8697 | << getMemoryLocationsAsStr(State.getAssumed()) << "\n" ); |
| 8698 | } |
| 8699 | |
| 8700 | void AAMemoryLocationImpl::categorizeArgumentPointerLocations( |
| 8701 | Attributor &A, CallBase &CB, AAMemoryLocation::StateType &AccessedLocs, |
| 8702 | bool &Changed) { |
| 8703 | for (unsigned ArgNo = 0, E = CB.arg_size(); ArgNo < E; ++ArgNo) { |
| 8704 | |
| 8705 | // Skip non-pointer arguments. |
| 8706 | const Value *ArgOp = CB.getArgOperand(i: ArgNo); |
| 8707 | if (!ArgOp->getType()->isPtrOrPtrVectorTy()) |
| 8708 | continue; |
| 8709 | |
| 8710 | // Skip readnone arguments. |
| 8711 | const IRPosition &ArgOpIRP = IRPosition::callsite_argument(CB, ArgNo); |
| 8712 | const auto *ArgOpMemLocationAA = |
| 8713 | A.getAAFor<AAMemoryBehavior>(QueryingAA: *this, IRP: ArgOpIRP, DepClass: DepClassTy::OPTIONAL); |
| 8714 | |
| 8715 | if (ArgOpMemLocationAA && ArgOpMemLocationAA->isAssumedReadNone()) |
| 8716 | continue; |
| 8717 | |
| 8718 | // Categorize potentially accessed pointer arguments as if there was an |
| 8719 | // access instruction with them as pointer. |
| 8720 | categorizePtrValue(A, I: CB, Ptr: *ArgOp, State&: AccessedLocs, Changed); |
| 8721 | } |
| 8722 | } |
| 8723 | |
| 8724 | AAMemoryLocation::MemoryLocationsKind |
| 8725 | AAMemoryLocationImpl::categorizeAccessedLocations(Attributor &A, Instruction &I, |
| 8726 | bool &Changed) { |
| 8727 | LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize accessed locations for " |
| 8728 | << I << "\n" ); |
| 8729 | |
| 8730 | AAMemoryLocation::StateType AccessedLocs; |
| 8731 | AccessedLocs.intersectAssumedBits(BitsEncoding: NO_LOCATIONS); |
| 8732 | |
| 8733 | if (auto *CB = dyn_cast<CallBase>(Val: &I)) { |
| 8734 | |
| 8735 | // First check if we assume any memory is access is visible. |
| 8736 | const auto *CBMemLocationAA = A.getAAFor<AAMemoryLocation>( |
| 8737 | QueryingAA: *this, IRP: IRPosition::callsite_function(CB: *CB), DepClass: DepClassTy::OPTIONAL); |
| 8738 | LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize call site: " << I |
| 8739 | << " [" << CBMemLocationAA << "]\n" ); |
| 8740 | if (!CBMemLocationAA) { |
| 8741 | updateStateAndAccessesMap(State&: AccessedLocs, MLK: NO_UNKOWN_MEM, I: &I, Ptr: nullptr, |
| 8742 | Changed, AK: getAccessKindFromInst(I: &I)); |
| 8743 | return NO_UNKOWN_MEM; |
| 8744 | } |
| 8745 | |
| 8746 | if (CBMemLocationAA->isAssumedReadNone()) |
| 8747 | return NO_LOCATIONS; |
| 8748 | |
| 8749 | if (CBMemLocationAA->isAssumedInaccessibleMemOnly()) { |
| 8750 | updateStateAndAccessesMap(State&: AccessedLocs, MLK: NO_INACCESSIBLE_MEM, I: &I, Ptr: nullptr, |
| 8751 | Changed, AK: getAccessKindFromInst(I: &I)); |
| 8752 | return AccessedLocs.getAssumed(); |
| 8753 | } |
| 8754 | |
| 8755 | uint32_t CBAssumedNotAccessedLocs = |
| 8756 | CBMemLocationAA->getAssumedNotAccessedLocation(); |
| 8757 | |
| 8758 | // Set the argmemonly and global bit as we handle them separately below. |
| 8759 | uint32_t CBAssumedNotAccessedLocsNoArgMem = |
| 8760 | CBAssumedNotAccessedLocs | NO_ARGUMENT_MEM | NO_GLOBAL_MEM; |
| 8761 | |
| 8762 | for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2) { |
| 8763 | if (CBAssumedNotAccessedLocsNoArgMem & CurMLK) |
| 8764 | continue; |
| 8765 | updateStateAndAccessesMap(State&: AccessedLocs, MLK: CurMLK, I: &I, Ptr: nullptr, Changed, |
| 8766 | AK: getAccessKindFromInst(I: &I)); |
| 8767 | } |
| 8768 | |
| 8769 | // Now handle global memory if it might be accessed. This is slightly tricky |
| 8770 | // as NO_GLOBAL_MEM has multiple bits set. |
| 8771 | bool HasGlobalAccesses = ((~CBAssumedNotAccessedLocs) & NO_GLOBAL_MEM); |
| 8772 | if (HasGlobalAccesses) { |
| 8773 | auto AccessPred = [&](const Instruction *, const Value *Ptr, |
| 8774 | AccessKind Kind, MemoryLocationsKind MLK) { |
| 8775 | updateStateAndAccessesMap(State&: AccessedLocs, MLK, I: &I, Ptr, Changed, |
| 8776 | AK: getAccessKindFromInst(I: &I)); |
| 8777 | return true; |
| 8778 | }; |
| 8779 | if (!CBMemLocationAA->checkForAllAccessesToMemoryKind( |
| 8780 | Pred: AccessPred, MLK: inverseLocation(Loc: NO_GLOBAL_MEM, AndLocalMem: false, AndConstMem: false))) |
| 8781 | return AccessedLocs.getWorstState(); |
| 8782 | } |
| 8783 | |
| 8784 | LLVM_DEBUG( |
| 8785 | dbgs() << "[AAMemoryLocation] Accessed state before argument handling: " |
| 8786 | << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n" ); |
| 8787 | |
| 8788 | // Now handle argument memory if it might be accessed. |
| 8789 | bool HasArgAccesses = ((~CBAssumedNotAccessedLocs) & NO_ARGUMENT_MEM); |
| 8790 | if (HasArgAccesses) |
| 8791 | categorizeArgumentPointerLocations(A, CB&: *CB, AccessedLocs, Changed); |
| 8792 | |
| 8793 | LLVM_DEBUG( |
| 8794 | dbgs() << "[AAMemoryLocation] Accessed state after argument handling: " |
| 8795 | << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n" ); |
| 8796 | |
| 8797 | return AccessedLocs.getAssumed(); |
| 8798 | } |
| 8799 | |
| 8800 | if (const Value *Ptr = getPointerOperand(I: &I, /* AllowVolatile */ true)) { |
| 8801 | LLVM_DEBUG( |
| 8802 | dbgs() << "[AAMemoryLocation] Categorize memory access with pointer: " |
| 8803 | << I << " [" << *Ptr << "]\n" ); |
| 8804 | categorizePtrValue(A, I, Ptr: *Ptr, State&: AccessedLocs, Changed, |
| 8805 | AccessAS: Ptr->getType()->getPointerAddressSpace()); |
| 8806 | return AccessedLocs.getAssumed(); |
| 8807 | } |
| 8808 | |
| 8809 | LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Failed to categorize instruction: " |
| 8810 | << I << "\n" ); |
| 8811 | updateStateAndAccessesMap(State&: AccessedLocs, MLK: NO_UNKOWN_MEM, I: &I, Ptr: nullptr, Changed, |
| 8812 | AK: getAccessKindFromInst(I: &I)); |
| 8813 | return AccessedLocs.getAssumed(); |
| 8814 | } |
| 8815 | |
| 8816 | /// An AA to represent the memory behavior function attributes. |
| 8817 | struct AAMemoryLocationFunction final : public AAMemoryLocationImpl { |
| 8818 | AAMemoryLocationFunction(const IRPosition &IRP, Attributor &A) |
| 8819 | : AAMemoryLocationImpl(IRP, A) {} |
| 8820 | |
| 8821 | /// See AbstractAttribute::updateImpl(Attributor &A). |
| 8822 | ChangeStatus updateImpl(Attributor &A) override { |
| 8823 | |
| 8824 | const auto *MemBehaviorAA = |
| 8825 | A.getAAFor<AAMemoryBehavior>(QueryingAA: *this, IRP: getIRPosition(), DepClass: DepClassTy::NONE); |
| 8826 | if (MemBehaviorAA && MemBehaviorAA->isAssumedReadNone()) { |
| 8827 | if (MemBehaviorAA->isKnownReadNone()) |
| 8828 | return indicateOptimisticFixpoint(); |
| 8829 | assert(isAssumedReadNone() && |
| 8830 | "AAMemoryLocation was not read-none but AAMemoryBehavior was!" ); |
| 8831 | A.recordDependence(FromAA: *MemBehaviorAA, ToAA: *this, DepClass: DepClassTy::OPTIONAL); |
| 8832 | return ChangeStatus::UNCHANGED; |
| 8833 | } |
| 8834 | |
| 8835 | // The current assumed state used to determine a change. |
| 8836 | auto AssumedState = getAssumed(); |
| 8837 | bool Changed = false; |
| 8838 | |
| 8839 | auto CheckRWInst = [&](Instruction &I) { |
| 8840 | MemoryLocationsKind MLK = categorizeAccessedLocations(A, I, Changed); |
| 8841 | LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Accessed locations for " << I |
| 8842 | << ": " << getMemoryLocationsAsStr(MLK) << "\n" ); |
| 8843 | removeAssumedBits(BitsEncoding: inverseLocation(Loc: MLK, AndLocalMem: false, AndConstMem: false)); |
| 8844 | // Stop once only the valid bit set in the *not assumed location*, thus |
| 8845 | // once we don't actually exclude any memory locations in the state. |
| 8846 | return getAssumedNotAccessedLocation() != VALID_STATE; |
| 8847 | }; |
| 8848 | |
| 8849 | bool UsedAssumedInformation = false; |
| 8850 | if (!A.checkForAllReadWriteInstructions(Pred: CheckRWInst, QueryingAA&: *this, |
| 8851 | UsedAssumedInformation)) |
| 8852 | return indicatePessimisticFixpoint(); |
| 8853 | |
| 8854 | Changed |= AssumedState != getAssumed(); |
| 8855 | return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED; |
| 8856 | } |
| 8857 | |
| 8858 | /// See AbstractAttribute::trackStatistics() |
| 8859 | void trackStatistics() const override { |
| 8860 | if (isAssumedReadNone()) |
| 8861 | STATS_DECLTRACK_FN_ATTR(readnone) |
| 8862 | else if (isAssumedArgMemOnly()) |
| 8863 | STATS_DECLTRACK_FN_ATTR(argmemonly) |
| 8864 | else if (isAssumedInaccessibleMemOnly()) |
| 8865 | STATS_DECLTRACK_FN_ATTR(inaccessiblememonly) |
| 8866 | else if (isAssumedInaccessibleOrArgMemOnly()) |
| 8867 | STATS_DECLTRACK_FN_ATTR(inaccessiblememorargmemonly) |
| 8868 | } |
| 8869 | }; |
| 8870 | |
| 8871 | /// AAMemoryLocation attribute for call sites. |
| 8872 | struct AAMemoryLocationCallSite final : AAMemoryLocationImpl { |
| 8873 | AAMemoryLocationCallSite(const IRPosition &IRP, Attributor &A) |
| 8874 | : AAMemoryLocationImpl(IRP, A) {} |
| 8875 | |
| 8876 | /// See AbstractAttribute::updateImpl(...). |
| 8877 | ChangeStatus updateImpl(Attributor &A) override { |
| 8878 | // TODO: Once we have call site specific value information we can provide |
| 8879 | // call site specific liveness liveness information and then it makes |
| 8880 | // sense to specialize attributes for call sites arguments instead of |
| 8881 | // redirecting requests to the callee argument. |
| 8882 | Function *F = getAssociatedFunction(); |
| 8883 | const IRPosition &FnPos = IRPosition::function(F: *F); |
| 8884 | auto *FnAA = |
| 8885 | A.getAAFor<AAMemoryLocation>(QueryingAA: *this, IRP: FnPos, DepClass: DepClassTy::REQUIRED); |
| 8886 | if (!FnAA) |
| 8887 | return indicatePessimisticFixpoint(); |
| 8888 | bool Changed = false; |
| 8889 | auto AccessPred = [&](const Instruction *I, const Value *Ptr, |
| 8890 | AccessKind Kind, MemoryLocationsKind MLK) { |
| 8891 | updateStateAndAccessesMap(State&: getState(), MLK, I, Ptr, Changed, |
| 8892 | AK: getAccessKindFromInst(I)); |
| 8893 | return true; |
| 8894 | }; |
| 8895 | if (!FnAA->checkForAllAccessesToMemoryKind(Pred: AccessPred, MLK: ALL_LOCATIONS)) |
| 8896 | return indicatePessimisticFixpoint(); |
| 8897 | return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED; |
| 8898 | } |
| 8899 | |
| 8900 | /// See AbstractAttribute::trackStatistics() |
| 8901 | void trackStatistics() const override { |
| 8902 | if (isAssumedReadNone()) |
| 8903 | STATS_DECLTRACK_CS_ATTR(readnone) |
| 8904 | } |
| 8905 | }; |
| 8906 | } // namespace |
| 8907 | |
| 8908 | /// ------------------ denormal-fp-math Attribute ------------------------- |
| 8909 | |
| 8910 | namespace { |
| 8911 | struct AADenormalFPMathImpl : public AADenormalFPMath { |
| 8912 | AADenormalFPMathImpl(const IRPosition &IRP, Attributor &A) |
| 8913 | : AADenormalFPMath(IRP, A) {} |
| 8914 | |
| 8915 | const std::string getAsStr(Attributor *A) const override { |
| 8916 | std::string Str("AADenormalFPMath[" ); |
| 8917 | raw_string_ostream OS(Str); |
| 8918 | |
| 8919 | DenormalState Known = getKnown(); |
| 8920 | if (Known.Mode.isValid()) |
| 8921 | OS << "denormal-fp-math=" << Known.Mode; |
| 8922 | else |
| 8923 | OS << "invalid" ; |
| 8924 | |
| 8925 | if (Known.ModeF32.isValid()) |
| 8926 | OS << " denormal-fp-math-f32=" << Known.ModeF32; |
| 8927 | OS << ']'; |
| 8928 | return Str; |
| 8929 | } |
| 8930 | }; |
| 8931 | |
| 8932 | struct AADenormalFPMathFunction final : AADenormalFPMathImpl { |
| 8933 | AADenormalFPMathFunction(const IRPosition &IRP, Attributor &A) |
| 8934 | : AADenormalFPMathImpl(IRP, A) {} |
| 8935 | |
| 8936 | void initialize(Attributor &A) override { |
| 8937 | const Function *F = getAnchorScope(); |
| 8938 | DenormalMode Mode = F->getDenormalModeRaw(); |
| 8939 | DenormalMode ModeF32 = F->getDenormalModeF32Raw(); |
| 8940 | |
| 8941 | // TODO: Handling this here prevents handling the case where a callee has a |
| 8942 | // fixed denormal-fp-math with dynamic denormal-fp-math-f32, but called from |
| 8943 | // a function with a fully fixed mode. |
| 8944 | if (ModeF32 == DenormalMode::getInvalid()) |
| 8945 | ModeF32 = Mode; |
| 8946 | Known = DenormalState{.Mode: Mode, .ModeF32: ModeF32}; |
| 8947 | if (isModeFixed()) |
| 8948 | indicateFixpoint(); |
| 8949 | } |
| 8950 | |
| 8951 | ChangeStatus updateImpl(Attributor &A) override { |
| 8952 | ChangeStatus Change = ChangeStatus::UNCHANGED; |
| 8953 | |
| 8954 | auto CheckCallSite = [=, &Change, &A](AbstractCallSite CS) { |
| 8955 | Function *Caller = CS.getInstruction()->getFunction(); |
| 8956 | LLVM_DEBUG(dbgs() << "[AADenormalFPMath] Call " << Caller->getName() |
| 8957 | << "->" << getAssociatedFunction()->getName() << '\n'); |
| 8958 | |
| 8959 | const auto *CallerInfo = A.getAAFor<AADenormalFPMath>( |
| 8960 | QueryingAA: *this, IRP: IRPosition::function(F: *Caller), DepClass: DepClassTy::REQUIRED); |
| 8961 | if (!CallerInfo) |
| 8962 | return false; |
| 8963 | |
| 8964 | Change = Change | clampStateAndIndicateChange(S&: this->getState(), |
| 8965 | R: CallerInfo->getState()); |
| 8966 | return true; |
| 8967 | }; |
| 8968 | |
| 8969 | bool AllCallSitesKnown = true; |
| 8970 | if (!A.checkForAllCallSites(Pred: CheckCallSite, QueryingAA: *this, RequireAllCallSites: true, UsedAssumedInformation&: AllCallSitesKnown)) |
| 8971 | return indicatePessimisticFixpoint(); |
| 8972 | |
| 8973 | if (Change == ChangeStatus::CHANGED && isModeFixed()) |
| 8974 | indicateFixpoint(); |
| 8975 | return Change; |
| 8976 | } |
| 8977 | |
| 8978 | ChangeStatus manifest(Attributor &A) override { |
| 8979 | LLVMContext &Ctx = getAssociatedFunction()->getContext(); |
| 8980 | |
| 8981 | SmallVector<Attribute, 2> AttrToAdd; |
| 8982 | SmallVector<StringRef, 2> AttrToRemove; |
| 8983 | if (Known.Mode == DenormalMode::getDefault()) { |
| 8984 | AttrToRemove.push_back(Elt: "denormal-fp-math" ); |
| 8985 | } else { |
| 8986 | AttrToAdd.push_back( |
| 8987 | Elt: Attribute::get(Context&: Ctx, Kind: "denormal-fp-math" , Val: Known.Mode.str())); |
| 8988 | } |
| 8989 | |
| 8990 | if (Known.ModeF32 != Known.Mode) { |
| 8991 | AttrToAdd.push_back( |
| 8992 | Elt: Attribute::get(Context&: Ctx, Kind: "denormal-fp-math-f32" , Val: Known.ModeF32.str())); |
| 8993 | } else { |
| 8994 | AttrToRemove.push_back(Elt: "denormal-fp-math-f32" ); |
| 8995 | } |
| 8996 | |
| 8997 | auto &IRP = getIRPosition(); |
| 8998 | |
| 8999 | // TODO: There should be a combined add and remove API. |
| 9000 | return A.removeAttrs(IRP, Attrs: AttrToRemove) | |
| 9001 | A.manifestAttrs(IRP, DeducedAttrs: AttrToAdd, /*ForceReplace=*/true); |
| 9002 | } |
| 9003 | |
| 9004 | void trackStatistics() const override { |
| 9005 | STATS_DECLTRACK_FN_ATTR(denormal_fp_math) |
| 9006 | } |
| 9007 | }; |
| 9008 | } // namespace |
| 9009 | |
| 9010 | /// ------------------ Value Constant Range Attribute ------------------------- |
| 9011 | |
| 9012 | namespace { |
| 9013 | struct AAValueConstantRangeImpl : AAValueConstantRange { |
| 9014 | using StateType = IntegerRangeState; |
| 9015 | AAValueConstantRangeImpl(const IRPosition &IRP, Attributor &A) |
| 9016 | : AAValueConstantRange(IRP, A) {} |
| 9017 | |
| 9018 | /// See AbstractAttribute::initialize(..). |
| 9019 | void initialize(Attributor &A) override { |
| 9020 | if (A.hasSimplificationCallback(IRP: getIRPosition())) { |
| 9021 | indicatePessimisticFixpoint(); |
| 9022 | return; |
| 9023 | } |
| 9024 | |
| 9025 | // Intersect a range given by SCEV. |
| 9026 | intersectKnown(R: getConstantRangeFromSCEV(A, I: getCtxI())); |
| 9027 | |
| 9028 | // Intersect a range given by LVI. |
| 9029 | intersectKnown(R: getConstantRangeFromLVI(A, CtxI: getCtxI())); |
| 9030 | } |
| 9031 | |
| 9032 | /// See AbstractAttribute::getAsStr(). |
| 9033 | const std::string getAsStr(Attributor *A) const override { |
| 9034 | std::string Str; |
| 9035 | llvm::raw_string_ostream OS(Str); |
| 9036 | OS << "range(" << getBitWidth() << ")<" ; |
| 9037 | getKnown().print(OS); |
| 9038 | OS << " / " ; |
| 9039 | getAssumed().print(OS); |
| 9040 | OS << ">" ; |
| 9041 | return Str; |
| 9042 | } |
| 9043 | |
| 9044 | /// Helper function to get a SCEV expr for the associated value at program |
| 9045 | /// point \p I. |
| 9046 | const SCEV *getSCEV(Attributor &A, const Instruction *I = nullptr) const { |
| 9047 | if (!getAnchorScope()) |
| 9048 | return nullptr; |
| 9049 | |
| 9050 | ScalarEvolution *SE = |
| 9051 | A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>( |
| 9052 | F: *getAnchorScope()); |
| 9053 | |
| 9054 | LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>( |
| 9055 | F: *getAnchorScope()); |
| 9056 | |
| 9057 | if (!SE || !LI) |
| 9058 | return nullptr; |
| 9059 | |
| 9060 | const SCEV *S = SE->getSCEV(V: &getAssociatedValue()); |
| 9061 | if (!I) |
| 9062 | return S; |
| 9063 | |
| 9064 | return SE->getSCEVAtScope(S, L: LI->getLoopFor(BB: I->getParent())); |
| 9065 | } |
| 9066 | |
| 9067 | /// Helper function to get a range from SCEV for the associated value at |
| 9068 | /// program point \p I. |
| 9069 | ConstantRange getConstantRangeFromSCEV(Attributor &A, |
| 9070 | const Instruction *I = nullptr) const { |
| 9071 | if (!getAnchorScope()) |
| 9072 | return getWorstState(BitWidth: getBitWidth()); |
| 9073 | |
| 9074 | ScalarEvolution *SE = |
| 9075 | A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>( |
| 9076 | F: *getAnchorScope()); |
| 9077 | |
| 9078 | const SCEV *S = getSCEV(A, I); |
| 9079 | if (!SE || !S) |
| 9080 | return getWorstState(BitWidth: getBitWidth()); |
| 9081 | |
| 9082 | return SE->getUnsignedRange(S); |
| 9083 | } |
| 9084 | |
| 9085 | /// Helper function to get a range from LVI for the associated value at |
| 9086 | /// program point \p I. |
| 9087 | ConstantRange |
| 9088 | getConstantRangeFromLVI(Attributor &A, |
| 9089 | const Instruction *CtxI = nullptr) const { |
| 9090 | if (!getAnchorScope()) |
| 9091 | return getWorstState(BitWidth: getBitWidth()); |
| 9092 | |
| 9093 | LazyValueInfo *LVI = |
| 9094 | A.getInfoCache().getAnalysisResultForFunction<LazyValueAnalysis>( |
| 9095 | F: *getAnchorScope()); |
| 9096 | |
| 9097 | if (!LVI || !CtxI) |
| 9098 | return getWorstState(BitWidth: getBitWidth()); |
| 9099 | return LVI->getConstantRange(V: &getAssociatedValue(), |
| 9100 | CxtI: const_cast<Instruction *>(CtxI), |
| 9101 | /*UndefAllowed*/ false); |
| 9102 | } |
| 9103 | |
| 9104 | /// Return true if \p CtxI is valid for querying outside analyses. |
| 9105 | /// This basically makes sure we do not ask intra-procedural analysis |
| 9106 | /// about a context in the wrong function or a context that violates |
| 9107 | /// dominance assumptions they might have. The \p AllowAACtxI flag indicates |
| 9108 | /// if the original context of this AA is OK or should be considered invalid. |
| 9109 | bool isValidCtxInstructionForOutsideAnalysis(Attributor &A, |
| 9110 | const Instruction *CtxI, |
| 9111 | bool AllowAACtxI) const { |
| 9112 | if (!CtxI || (!AllowAACtxI && CtxI == getCtxI())) |
| 9113 | return false; |
| 9114 | |
| 9115 | // Our context might be in a different function, neither intra-procedural |
| 9116 | // analysis (ScalarEvolution nor LazyValueInfo) can handle that. |
| 9117 | if (!AA::isValidInScope(V: getAssociatedValue(), Scope: CtxI->getFunction())) |
| 9118 | return false; |
| 9119 | |
| 9120 | // If the context is not dominated by the value there are paths to the |
| 9121 | // context that do not define the value. This cannot be handled by |
| 9122 | // LazyValueInfo so we need to bail. |
| 9123 | if (auto *I = dyn_cast<Instruction>(Val: &getAssociatedValue())) { |
| 9124 | InformationCache &InfoCache = A.getInfoCache(); |
| 9125 | const DominatorTree *DT = |
| 9126 | InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>( |
| 9127 | F: *I->getFunction()); |
| 9128 | return DT && DT->dominates(Def: I, User: CtxI); |
| 9129 | } |
| 9130 | |
| 9131 | return true; |
| 9132 | } |
| 9133 | |
| 9134 | /// See AAValueConstantRange::getKnownConstantRange(..). |
| 9135 | ConstantRange |
| 9136 | getKnownConstantRange(Attributor &A, |
| 9137 | const Instruction *CtxI = nullptr) const override { |
| 9138 | if (!isValidCtxInstructionForOutsideAnalysis(A, CtxI, |
| 9139 | /* AllowAACtxI */ false)) |
| 9140 | return getKnown(); |
| 9141 | |
| 9142 | ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI); |
| 9143 | ConstantRange SCEVR = getConstantRangeFromSCEV(A, I: CtxI); |
| 9144 | return getKnown().intersectWith(CR: SCEVR).intersectWith(CR: LVIR); |
| 9145 | } |
| 9146 | |
| 9147 | /// See AAValueConstantRange::getAssumedConstantRange(..). |
| 9148 | ConstantRange |
| 9149 | getAssumedConstantRange(Attributor &A, |
| 9150 | const Instruction *CtxI = nullptr) const override { |
| 9151 | // TODO: Make SCEV use Attributor assumption. |
| 9152 | // We may be able to bound a variable range via assumptions in |
| 9153 | // Attributor. ex.) If x is assumed to be in [1, 3] and y is known to |
| 9154 | // evolve to x^2 + x, then we can say that y is in [2, 12]. |
| 9155 | if (!isValidCtxInstructionForOutsideAnalysis(A, CtxI, |
| 9156 | /* AllowAACtxI */ false)) |
| 9157 | return getAssumed(); |
| 9158 | |
| 9159 | ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI); |
| 9160 | ConstantRange SCEVR = getConstantRangeFromSCEV(A, I: CtxI); |
| 9161 | return getAssumed().intersectWith(CR: SCEVR).intersectWith(CR: LVIR); |
| 9162 | } |
| 9163 | |
| 9164 | /// Helper function to create MDNode for range metadata. |
| 9165 | static MDNode * |
| 9166 | getMDNodeForConstantRange(Type *Ty, LLVMContext &Ctx, |
| 9167 | const ConstantRange &AssumedConstantRange) { |
| 9168 | Metadata *LowAndHigh[] = {ConstantAsMetadata::get(C: ConstantInt::get( |
| 9169 | Ty, V: AssumedConstantRange.getLower())), |
| 9170 | ConstantAsMetadata::get(C: ConstantInt::get( |
| 9171 | Ty, V: AssumedConstantRange.getUpper()))}; |
| 9172 | return MDNode::get(Context&: Ctx, MDs: LowAndHigh); |
| 9173 | } |
| 9174 | |
| 9175 | /// Return true if \p Assumed is included in \p KnownRanges. |
| 9176 | static bool isBetterRange(const ConstantRange &Assumed, MDNode *KnownRanges) { |
| 9177 | |
| 9178 | if (Assumed.isFullSet()) |
| 9179 | return false; |
| 9180 | |
| 9181 | if (!KnownRanges) |
| 9182 | return true; |
| 9183 | |
| 9184 | // If multiple ranges are annotated in IR, we give up to annotate assumed |
| 9185 | // range for now. |
| 9186 | |
| 9187 | // TODO: If there exists a known range which containts assumed range, we |
| 9188 | // can say assumed range is better. |
| 9189 | if (KnownRanges->getNumOperands() > 2) |
| 9190 | return false; |
| 9191 | |
| 9192 | ConstantInt *Lower = |
| 9193 | mdconst::extract<ConstantInt>(MD: KnownRanges->getOperand(I: 0)); |
| 9194 | ConstantInt *Upper = |
| 9195 | mdconst::extract<ConstantInt>(MD: KnownRanges->getOperand(I: 1)); |
| 9196 | |
| 9197 | ConstantRange Known(Lower->getValue(), Upper->getValue()); |
| 9198 | return Known.contains(CR: Assumed) && Known != Assumed; |
| 9199 | } |
| 9200 | |
| 9201 | /// Helper function to set range metadata. |
| 9202 | static bool |
| 9203 | setRangeMetadataIfisBetterRange(Instruction *I, |
| 9204 | const ConstantRange &AssumedConstantRange) { |
| 9205 | auto *OldRangeMD = I->getMetadata(KindID: LLVMContext::MD_range); |
| 9206 | if (isBetterRange(Assumed: AssumedConstantRange, KnownRanges: OldRangeMD)) { |
| 9207 | if (!AssumedConstantRange.isEmptySet()) { |
| 9208 | I->setMetadata(KindID: LLVMContext::MD_range, |
| 9209 | Node: getMDNodeForConstantRange(Ty: I->getType(), Ctx&: I->getContext(), |
| 9210 | AssumedConstantRange)); |
| 9211 | return true; |
| 9212 | } |
| 9213 | } |
| 9214 | return false; |
| 9215 | } |
| 9216 | |
| 9217 | /// See AbstractAttribute::manifest() |
| 9218 | ChangeStatus manifest(Attributor &A) override { |
| 9219 | ChangeStatus Changed = ChangeStatus::UNCHANGED; |
| 9220 | ConstantRange AssumedConstantRange = getAssumedConstantRange(A); |
| 9221 | assert(!AssumedConstantRange.isFullSet() && "Invalid state" ); |
| 9222 | |
| 9223 | auto &V = getAssociatedValue(); |
| 9224 | if (!AssumedConstantRange.isEmptySet() && |
| 9225 | !AssumedConstantRange.isSingleElement()) { |
| 9226 | if (Instruction *I = dyn_cast<Instruction>(Val: &V)) { |
| 9227 | assert(I == getCtxI() && "Should not annotate an instruction which is " |
| 9228 | "not the context instruction" ); |
| 9229 | if (isa<CallInst>(Val: I) || isa<LoadInst>(Val: I)) |
| 9230 | if (setRangeMetadataIfisBetterRange(I, AssumedConstantRange)) |
| 9231 | Changed = ChangeStatus::CHANGED; |
| 9232 | } |
| 9233 | } |
| 9234 | |
| 9235 | return Changed; |
| 9236 | } |
| 9237 | }; |
| 9238 | |
| 9239 | struct AAValueConstantRangeArgument final |
| 9240 | : AAArgumentFromCallSiteArguments< |
| 9241 | AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState, |
| 9242 | true /* BridgeCallBaseContext */> { |
| 9243 | using Base = AAArgumentFromCallSiteArguments< |
| 9244 | AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState, |
| 9245 | true /* BridgeCallBaseContext */>; |
| 9246 | AAValueConstantRangeArgument(const IRPosition &IRP, Attributor &A) |
| 9247 | : Base(IRP, A) {} |
| 9248 | |
| 9249 | /// See AbstractAttribute::trackStatistics() |
| 9250 | void trackStatistics() const override { |
| 9251 | STATS_DECLTRACK_ARG_ATTR(value_range) |
| 9252 | } |
| 9253 | }; |
| 9254 | |
| 9255 | struct AAValueConstantRangeReturned |
| 9256 | : AAReturnedFromReturnedValues<AAValueConstantRange, |
| 9257 | AAValueConstantRangeImpl, |
| 9258 | AAValueConstantRangeImpl::StateType, |
| 9259 | /* PropagateCallBaseContext */ true> { |
| 9260 | using Base = |
| 9261 | AAReturnedFromReturnedValues<AAValueConstantRange, |
| 9262 | AAValueConstantRangeImpl, |
| 9263 | AAValueConstantRangeImpl::StateType, |
| 9264 | /* PropagateCallBaseContext */ true>; |
| 9265 | AAValueConstantRangeReturned(const IRPosition &IRP, Attributor &A) |
| 9266 | : Base(IRP, A) {} |
| 9267 | |
| 9268 | /// See AbstractAttribute::initialize(...). |
| 9269 | void initialize(Attributor &A) override { |
| 9270 | if (!A.isFunctionIPOAmendable(F: *getAssociatedFunction())) |
| 9271 | indicatePessimisticFixpoint(); |
| 9272 | } |
| 9273 | |
| 9274 | /// See AbstractAttribute::trackStatistics() |
| 9275 | void trackStatistics() const override { |
| 9276 | STATS_DECLTRACK_FNRET_ATTR(value_range) |
| 9277 | } |
| 9278 | }; |
| 9279 | |
| 9280 | struct AAValueConstantRangeFloating : AAValueConstantRangeImpl { |
| 9281 | AAValueConstantRangeFloating(const IRPosition &IRP, Attributor &A) |
| 9282 | : AAValueConstantRangeImpl(IRP, A) {} |
| 9283 | |
| 9284 | /// See AbstractAttribute::initialize(...). |
| 9285 | void initialize(Attributor &A) override { |
| 9286 | AAValueConstantRangeImpl::initialize(A); |
| 9287 | if (isAtFixpoint()) |
| 9288 | return; |
| 9289 | |
| 9290 | Value &V = getAssociatedValue(); |
| 9291 | |
| 9292 | if (auto *C = dyn_cast<ConstantInt>(Val: &V)) { |
| 9293 | unionAssumed(R: ConstantRange(C->getValue())); |
| 9294 | indicateOptimisticFixpoint(); |
| 9295 | return; |
| 9296 | } |
| 9297 | |
| 9298 | if (isa<UndefValue>(Val: &V)) { |
| 9299 | // Collapse the undef state to 0. |
| 9300 | unionAssumed(R: ConstantRange(APInt(getBitWidth(), 0))); |
| 9301 | indicateOptimisticFixpoint(); |
| 9302 | return; |
| 9303 | } |
| 9304 | |
| 9305 | if (isa<CallBase>(Val: &V)) |
| 9306 | return; |
| 9307 | |
| 9308 | if (isa<BinaryOperator>(Val: &V) || isa<CmpInst>(Val: &V) || isa<CastInst>(Val: &V)) |
| 9309 | return; |
| 9310 | |
| 9311 | // If it is a load instruction with range metadata, use it. |
| 9312 | if (LoadInst *LI = dyn_cast<LoadInst>(Val: &V)) |
| 9313 | if (auto *RangeMD = LI->getMetadata(KindID: LLVMContext::MD_range)) { |
| 9314 | intersectKnown(R: getConstantRangeFromMetadata(RangeMD: *RangeMD)); |
| 9315 | return; |
| 9316 | } |
| 9317 | |
| 9318 | // We can work with PHI and select instruction as we traverse their operands |
| 9319 | // during update. |
| 9320 | if (isa<SelectInst>(Val: V) || isa<PHINode>(Val: V)) |
| 9321 | return; |
| 9322 | |
| 9323 | // Otherwise we give up. |
| 9324 | indicatePessimisticFixpoint(); |
| 9325 | |
| 9326 | LLVM_DEBUG(dbgs() << "[AAValueConstantRange] We give up: " |
| 9327 | << getAssociatedValue() << "\n" ); |
| 9328 | } |
| 9329 | |
| 9330 | bool calculateBinaryOperator( |
| 9331 | Attributor &A, BinaryOperator *BinOp, IntegerRangeState &T, |
| 9332 | const Instruction *CtxI, |
| 9333 | SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) { |
| 9334 | Value *LHS = BinOp->getOperand(i_nocapture: 0); |
| 9335 | Value *RHS = BinOp->getOperand(i_nocapture: 1); |
| 9336 | |
| 9337 | // Simplify the operands first. |
| 9338 | bool UsedAssumedInformation = false; |
| 9339 | const auto &SimplifiedLHS = A.getAssumedSimplified( |
| 9340 | IRP: IRPosition::value(V: *LHS, CBContext: getCallBaseContext()), AA: *this, |
| 9341 | UsedAssumedInformation, S: AA::Interprocedural); |
| 9342 | if (!SimplifiedLHS.has_value()) |
| 9343 | return true; |
| 9344 | if (!*SimplifiedLHS) |
| 9345 | return false; |
| 9346 | LHS = *SimplifiedLHS; |
| 9347 | |
| 9348 | const auto &SimplifiedRHS = A.getAssumedSimplified( |
| 9349 | IRP: IRPosition::value(V: *RHS, CBContext: getCallBaseContext()), AA: *this, |
| 9350 | UsedAssumedInformation, S: AA::Interprocedural); |
| 9351 | if (!SimplifiedRHS.has_value()) |
| 9352 | return true; |
| 9353 | if (!*SimplifiedRHS) |
| 9354 | return false; |
| 9355 | RHS = *SimplifiedRHS; |
| 9356 | |
| 9357 | // TODO: Allow non integers as well. |
| 9358 | if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) |
| 9359 | return false; |
| 9360 | |
| 9361 | auto *LHSAA = A.getAAFor<AAValueConstantRange>( |
| 9362 | QueryingAA: *this, IRP: IRPosition::value(V: *LHS, CBContext: getCallBaseContext()), |
| 9363 | DepClass: DepClassTy::REQUIRED); |
| 9364 | if (!LHSAA) |
| 9365 | return false; |
| 9366 | QuerriedAAs.push_back(Elt: LHSAA); |
| 9367 | auto LHSAARange = LHSAA->getAssumedConstantRange(A, CtxI); |
| 9368 | |
| 9369 | auto *RHSAA = A.getAAFor<AAValueConstantRange>( |
| 9370 | QueryingAA: *this, IRP: IRPosition::value(V: *RHS, CBContext: getCallBaseContext()), |
| 9371 | DepClass: DepClassTy::REQUIRED); |
| 9372 | if (!RHSAA) |
| 9373 | return false; |
| 9374 | QuerriedAAs.push_back(Elt: RHSAA); |
| 9375 | auto RHSAARange = RHSAA->getAssumedConstantRange(A, CtxI); |
| 9376 | |
| 9377 | auto AssumedRange = LHSAARange.binaryOp(BinOp: BinOp->getOpcode(), Other: RHSAARange); |
| 9378 | |
| 9379 | T.unionAssumed(R: AssumedRange); |
| 9380 | |
| 9381 | // TODO: Track a known state too. |
| 9382 | |
| 9383 | return T.isValidState(); |
| 9384 | } |
| 9385 | |
| 9386 | bool calculateCastInst( |
| 9387 | Attributor &A, CastInst *CastI, IntegerRangeState &T, |
| 9388 | const Instruction *CtxI, |
| 9389 | SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) { |
| 9390 | assert(CastI->getNumOperands() == 1 && "Expected cast to be unary!" ); |
| 9391 | // TODO: Allow non integers as well. |
| 9392 | Value *OpV = CastI->getOperand(i_nocapture: 0); |
| 9393 | |
| 9394 | // Simplify the operand first. |
| 9395 | bool UsedAssumedInformation = false; |
| 9396 | const auto &SimplifiedOpV = A.getAssumedSimplified( |
| 9397 | IRP: IRPosition::value(V: *OpV, CBContext: getCallBaseContext()), AA: *this, |
| 9398 | UsedAssumedInformation, S: AA::Interprocedural); |
| 9399 | if (!SimplifiedOpV.has_value()) |
| 9400 | return true; |
| 9401 | if (!*SimplifiedOpV) |
| 9402 | return false; |
| 9403 | OpV = *SimplifiedOpV; |
| 9404 | |
| 9405 | if (!OpV->getType()->isIntegerTy()) |
| 9406 | return false; |
| 9407 | |
| 9408 | auto *OpAA = A.getAAFor<AAValueConstantRange>( |
| 9409 | QueryingAA: *this, IRP: IRPosition::value(V: *OpV, CBContext: getCallBaseContext()), |
| 9410 | DepClass: DepClassTy::REQUIRED); |
| 9411 | if (!OpAA) |
| 9412 | return false; |
| 9413 | QuerriedAAs.push_back(Elt: OpAA); |
| 9414 | T.unionAssumed(R: OpAA->getAssumed().castOp(CastOp: CastI->getOpcode(), |
| 9415 | BitWidth: getState().getBitWidth())); |
| 9416 | return T.isValidState(); |
| 9417 | } |
| 9418 | |
| 9419 | bool |
| 9420 | calculateCmpInst(Attributor &A, CmpInst *CmpI, IntegerRangeState &T, |
| 9421 | const Instruction *CtxI, |
| 9422 | SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) { |
| 9423 | Value *LHS = CmpI->getOperand(i_nocapture: 0); |
| 9424 | Value *RHS = CmpI->getOperand(i_nocapture: 1); |
| 9425 | |
| 9426 | // Simplify the operands first. |
| 9427 | bool UsedAssumedInformation = false; |
| 9428 | const auto &SimplifiedLHS = A.getAssumedSimplified( |
| 9429 | IRP: IRPosition::value(V: *LHS, CBContext: getCallBaseContext()), AA: *this, |
| 9430 | UsedAssumedInformation, S: AA::Interprocedural); |
| 9431 | if (!SimplifiedLHS.has_value()) |
| 9432 | return true; |
| 9433 | if (!*SimplifiedLHS) |
| 9434 | return false; |
| 9435 | LHS = *SimplifiedLHS; |
| 9436 | |
| 9437 | const auto &SimplifiedRHS = A.getAssumedSimplified( |
| 9438 | IRP: IRPosition::value(V: *RHS, CBContext: getCallBaseContext()), AA: *this, |
| 9439 | UsedAssumedInformation, S: AA::Interprocedural); |
| 9440 | if (!SimplifiedRHS.has_value()) |
| 9441 | return true; |
| 9442 | if (!*SimplifiedRHS) |
| 9443 | return false; |
| 9444 | RHS = *SimplifiedRHS; |
| 9445 | |
| 9446 | // TODO: Allow non integers as well. |
| 9447 | if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) |
| 9448 | return false; |
| 9449 | |
| 9450 | auto *LHSAA = A.getAAFor<AAValueConstantRange>( |
| 9451 | QueryingAA: *this, IRP: IRPosition::value(V: *LHS, CBContext: getCallBaseContext()), |
| 9452 | DepClass: DepClassTy::REQUIRED); |
| 9453 | if (!LHSAA) |
| 9454 | return false; |
| 9455 | QuerriedAAs.push_back(Elt: LHSAA); |
| 9456 | auto *RHSAA = A.getAAFor<AAValueConstantRange>( |
| 9457 | QueryingAA: *this, IRP: IRPosition::value(V: *RHS, CBContext: getCallBaseContext()), |
| 9458 | DepClass: DepClassTy::REQUIRED); |
| 9459 | if (!RHSAA) |
| 9460 | return false; |
| 9461 | QuerriedAAs.push_back(Elt: RHSAA); |
| 9462 | auto LHSAARange = LHSAA->getAssumedConstantRange(A, CtxI); |
| 9463 | auto RHSAARange = RHSAA->getAssumedConstantRange(A, CtxI); |
| 9464 | |
| 9465 | // If one of them is empty set, we can't decide. |
| 9466 | if (LHSAARange.isEmptySet() || RHSAARange.isEmptySet()) |
| 9467 | return true; |
| 9468 | |
| 9469 | bool MustTrue = false, MustFalse = false; |
| 9470 | |
| 9471 | auto AllowedRegion = |
| 9472 | ConstantRange::makeAllowedICmpRegion(Pred: CmpI->getPredicate(), Other: RHSAARange); |
| 9473 | |
| 9474 | if (AllowedRegion.intersectWith(CR: LHSAARange).isEmptySet()) |
| 9475 | MustFalse = true; |
| 9476 | |
| 9477 | if (LHSAARange.icmp(Pred: CmpI->getPredicate(), Other: RHSAARange)) |
| 9478 | MustTrue = true; |
| 9479 | |
| 9480 | assert((!MustTrue || !MustFalse) && |
| 9481 | "Either MustTrue or MustFalse should be false!" ); |
| 9482 | |
| 9483 | if (MustTrue) |
| 9484 | T.unionAssumed(R: ConstantRange(APInt(/* numBits */ 1, /* val */ 1))); |
| 9485 | else if (MustFalse) |
| 9486 | T.unionAssumed(R: ConstantRange(APInt(/* numBits */ 1, /* val */ 0))); |
| 9487 | else |
| 9488 | T.unionAssumed(R: ConstantRange(/* BitWidth */ 1, /* isFullSet */ true)); |
| 9489 | |
| 9490 | LLVM_DEBUG(dbgs() << "[AAValueConstantRange] " << *CmpI << " after " |
| 9491 | << (MustTrue ? "true" : (MustFalse ? "false" : "unknown" )) |
| 9492 | << ": " << T << "\n\t" << *LHSAA << "\t<op>\n\t" |
| 9493 | << *RHSAA); |
| 9494 | |
| 9495 | // TODO: Track a known state too. |
| 9496 | return T.isValidState(); |
| 9497 | } |
| 9498 | |
| 9499 | /// See AbstractAttribute::updateImpl(...). |
| 9500 | ChangeStatus updateImpl(Attributor &A) override { |
| 9501 | |
| 9502 | IntegerRangeState T(getBitWidth()); |
| 9503 | auto VisitValueCB = [&](Value &V, const Instruction *CtxI) -> bool { |
| 9504 | Instruction *I = dyn_cast<Instruction>(Val: &V); |
| 9505 | if (!I || isa<CallBase>(Val: I)) { |
| 9506 | |
| 9507 | // Simplify the operand first. |
| 9508 | bool UsedAssumedInformation = false; |
| 9509 | const auto &SimplifiedOpV = A.getAssumedSimplified( |
| 9510 | IRP: IRPosition::value(V, CBContext: getCallBaseContext()), AA: *this, |
| 9511 | UsedAssumedInformation, S: AA::Interprocedural); |
| 9512 | if (!SimplifiedOpV.has_value()) |
| 9513 | return true; |
| 9514 | if (!*SimplifiedOpV) |
| 9515 | return false; |
| 9516 | Value *VPtr = *SimplifiedOpV; |
| 9517 | |
| 9518 | // If the value is not instruction, we query AA to Attributor. |
| 9519 | const auto *AA = A.getAAFor<AAValueConstantRange>( |
| 9520 | QueryingAA: *this, IRP: IRPosition::value(V: *VPtr, CBContext: getCallBaseContext()), |
| 9521 | DepClass: DepClassTy::REQUIRED); |
| 9522 | |
| 9523 | // Clamp operator is not used to utilize a program point CtxI. |
| 9524 | if (AA) |
| 9525 | T.unionAssumed(R: AA->getAssumedConstantRange(A, CtxI)); |
| 9526 | else |
| 9527 | return false; |
| 9528 | |
| 9529 | return T.isValidState(); |
| 9530 | } |
| 9531 | |
| 9532 | SmallVector<const AAValueConstantRange *, 4> QuerriedAAs; |
| 9533 | if (auto *BinOp = dyn_cast<BinaryOperator>(Val: I)) { |
| 9534 | if (!calculateBinaryOperator(A, BinOp, T, CtxI, QuerriedAAs)) |
| 9535 | return false; |
| 9536 | } else if (auto *CmpI = dyn_cast<CmpInst>(Val: I)) { |
| 9537 | if (!calculateCmpInst(A, CmpI, T, CtxI, QuerriedAAs)) |
| 9538 | return false; |
| 9539 | } else if (auto *CastI = dyn_cast<CastInst>(Val: I)) { |
| 9540 | if (!calculateCastInst(A, CastI, T, CtxI, QuerriedAAs)) |
| 9541 | return false; |
| 9542 | } else { |
| 9543 | // Give up with other instructions. |
| 9544 | // TODO: Add other instructions |
| 9545 | |
| 9546 | T.indicatePessimisticFixpoint(); |
| 9547 | return false; |
| 9548 | } |
| 9549 | |
| 9550 | // Catch circular reasoning in a pessimistic way for now. |
| 9551 | // TODO: Check how the range evolves and if we stripped anything, see also |
| 9552 | // AADereferenceable or AAAlign for similar situations. |
| 9553 | for (const AAValueConstantRange *QueriedAA : QuerriedAAs) { |
| 9554 | if (QueriedAA != this) |
| 9555 | continue; |
| 9556 | // If we are in a stady state we do not need to worry. |
| 9557 | if (T.getAssumed() == getState().getAssumed()) |
| 9558 | continue; |
| 9559 | T.indicatePessimisticFixpoint(); |
| 9560 | } |
| 9561 | |
| 9562 | return T.isValidState(); |
| 9563 | }; |
| 9564 | |
| 9565 | if (!VisitValueCB(getAssociatedValue(), getCtxI())) |
| 9566 | return indicatePessimisticFixpoint(); |
| 9567 | |
| 9568 | // Ensure that long def-use chains can't cause circular reasoning either by |
| 9569 | // introducing a cutoff below. |
| 9570 | if (clampStateAndIndicateChange(S&: getState(), R: T) == ChangeStatus::UNCHANGED) |
| 9571 | return ChangeStatus::UNCHANGED; |
| 9572 | if (++NumChanges > MaxNumChanges) { |
| 9573 | LLVM_DEBUG(dbgs() << "[AAValueConstantRange] performed " << NumChanges |
| 9574 | << " but only " << MaxNumChanges |
| 9575 | << " are allowed to avoid cyclic reasoning." ); |
| 9576 | return indicatePessimisticFixpoint(); |
| 9577 | } |
| 9578 | return ChangeStatus::CHANGED; |
| 9579 | } |
| 9580 | |
| 9581 | /// See AbstractAttribute::trackStatistics() |
| 9582 | void trackStatistics() const override { |
| 9583 | STATS_DECLTRACK_FLOATING_ATTR(value_range) |
| 9584 | } |
| 9585 | |
| 9586 | /// Tracker to bail after too many widening steps of the constant range. |
| 9587 | int NumChanges = 0; |
| 9588 | |
| 9589 | /// Upper bound for the number of allowed changes (=widening steps) for the |
| 9590 | /// constant range before we give up. |
| 9591 | static constexpr int MaxNumChanges = 5; |
| 9592 | }; |
| 9593 | |
| 9594 | struct AAValueConstantRangeFunction : AAValueConstantRangeImpl { |
| 9595 | AAValueConstantRangeFunction(const IRPosition &IRP, Attributor &A) |
| 9596 | : AAValueConstantRangeImpl(IRP, A) {} |
| 9597 | |
| 9598 | /// See AbstractAttribute::initialize(...). |
| 9599 | ChangeStatus updateImpl(Attributor &A) override { |
| 9600 | llvm_unreachable("AAValueConstantRange(Function|CallSite)::updateImpl will " |
| 9601 | "not be called" ); |
| 9602 | } |
| 9603 | |
| 9604 | /// See AbstractAttribute::trackStatistics() |
| 9605 | void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(value_range) } |
| 9606 | }; |
| 9607 | |
| 9608 | struct AAValueConstantRangeCallSite : AAValueConstantRangeFunction { |
| 9609 | AAValueConstantRangeCallSite(const IRPosition &IRP, Attributor &A) |
| 9610 | : AAValueConstantRangeFunction(IRP, A) {} |
| 9611 | |
| 9612 | /// See AbstractAttribute::trackStatistics() |
| 9613 | void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(value_range) } |
| 9614 | }; |
| 9615 | |
| 9616 | struct AAValueConstantRangeCallSiteReturned |
| 9617 | : AACalleeToCallSite<AAValueConstantRange, AAValueConstantRangeImpl, |
| 9618 | AAValueConstantRangeImpl::StateType, |
| 9619 | /* IntroduceCallBaseContext */ true> { |
| 9620 | AAValueConstantRangeCallSiteReturned(const IRPosition &IRP, Attributor &A) |
| 9621 | : AACalleeToCallSite<AAValueConstantRange, AAValueConstantRangeImpl, |
| 9622 | AAValueConstantRangeImpl::StateType, |
| 9623 | /* IntroduceCallBaseContext */ true>(IRP, A) {} |
| 9624 | |
| 9625 | /// See AbstractAttribute::initialize(...). |
| 9626 | void initialize(Attributor &A) override { |
| 9627 | // If it is a load instruction with range metadata, use the metadata. |
| 9628 | if (CallInst *CI = dyn_cast<CallInst>(Val: &getAssociatedValue())) |
| 9629 | if (auto *RangeMD = CI->getMetadata(KindID: LLVMContext::MD_range)) |
| 9630 | intersectKnown(R: getConstantRangeFromMetadata(RangeMD: *RangeMD)); |
| 9631 | |
| 9632 | AAValueConstantRangeImpl::initialize(A); |
| 9633 | } |
| 9634 | |
| 9635 | /// See AbstractAttribute::trackStatistics() |
| 9636 | void trackStatistics() const override { |
| 9637 | STATS_DECLTRACK_CSRET_ATTR(value_range) |
| 9638 | } |
| 9639 | }; |
| 9640 | struct AAValueConstantRangeCallSiteArgument : AAValueConstantRangeFloating { |
| 9641 | AAValueConstantRangeCallSiteArgument(const IRPosition &IRP, Attributor &A) |
| 9642 | : AAValueConstantRangeFloating(IRP, A) {} |
| 9643 | |
| 9644 | /// See AbstractAttribute::manifest() |
| 9645 | ChangeStatus manifest(Attributor &A) override { |
| 9646 | return ChangeStatus::UNCHANGED; |
| 9647 | } |
| 9648 | |
| 9649 | /// See AbstractAttribute::trackStatistics() |
| 9650 | void trackStatistics() const override { |
| 9651 | STATS_DECLTRACK_CSARG_ATTR(value_range) |
| 9652 | } |
| 9653 | }; |
| 9654 | } // namespace |
| 9655 | |
| 9656 | /// ------------------ Potential Values Attribute ------------------------- |
| 9657 | |
| 9658 | namespace { |
| 9659 | struct AAPotentialConstantValuesImpl : AAPotentialConstantValues { |
| 9660 | using StateType = PotentialConstantIntValuesState; |
| 9661 | |
| 9662 | AAPotentialConstantValuesImpl(const IRPosition &IRP, Attributor &A) |
| 9663 | : AAPotentialConstantValues(IRP, A) {} |
| 9664 | |
| 9665 | /// See AbstractAttribute::initialize(..). |
| 9666 | void initialize(Attributor &A) override { |
| 9667 | if (A.hasSimplificationCallback(IRP: getIRPosition())) |
| 9668 | indicatePessimisticFixpoint(); |
| 9669 | else |
| 9670 | AAPotentialConstantValues::initialize(A); |
| 9671 | } |
| 9672 | |
| 9673 | bool fillSetWithConstantValues(Attributor &A, const IRPosition &IRP, SetTy &S, |
| 9674 | bool &ContainsUndef, bool ForSelf) { |
| 9675 | SmallVector<AA::ValueAndContext> Values; |
| 9676 | bool UsedAssumedInformation = false; |
| 9677 | if (!A.getAssumedSimplifiedValues(IRP, AA: *this, Values, S: AA::Interprocedural, |
| 9678 | UsedAssumedInformation)) { |
| 9679 | // Avoid recursion when the caller is computing constant values for this |
| 9680 | // IRP itself. |
| 9681 | if (ForSelf) |
| 9682 | return false; |
| 9683 | if (!IRP.getAssociatedType()->isIntegerTy()) |
| 9684 | return false; |
| 9685 | auto *PotentialValuesAA = A.getAAFor<AAPotentialConstantValues>( |
| 9686 | QueryingAA: *this, IRP, DepClass: DepClassTy::REQUIRED); |
| 9687 | if (!PotentialValuesAA || !PotentialValuesAA->getState().isValidState()) |
| 9688 | return false; |
| 9689 | ContainsUndef = PotentialValuesAA->getState().undefIsContained(); |
| 9690 | S = PotentialValuesAA->getState().getAssumedSet(); |
| 9691 | return true; |
| 9692 | } |
| 9693 | |
| 9694 | // Copy all the constant values, except UndefValue. ContainsUndef is true |
| 9695 | // iff Values contains only UndefValue instances. If there are other known |
| 9696 | // constants, then UndefValue is dropped. |
| 9697 | ContainsUndef = false; |
| 9698 | for (auto &It : Values) { |
| 9699 | if (isa<UndefValue>(Val: It.getValue())) { |
| 9700 | ContainsUndef = true; |
| 9701 | continue; |
| 9702 | } |
| 9703 | auto *CI = dyn_cast<ConstantInt>(Val: It.getValue()); |
| 9704 | if (!CI) |
| 9705 | return false; |
| 9706 | S.insert(X: CI->getValue()); |
| 9707 | } |
| 9708 | ContainsUndef &= S.empty(); |
| 9709 | |
| 9710 | return true; |
| 9711 | } |
| 9712 | |
| 9713 | /// See AbstractAttribute::getAsStr(). |
| 9714 | const std::string getAsStr(Attributor *A) const override { |
| 9715 | std::string Str; |
| 9716 | llvm::raw_string_ostream OS(Str); |
| 9717 | OS << getState(); |
| 9718 | return Str; |
| 9719 | } |
| 9720 | |
| 9721 | /// See AbstractAttribute::updateImpl(...). |
| 9722 | ChangeStatus updateImpl(Attributor &A) override { |
| 9723 | return indicatePessimisticFixpoint(); |
| 9724 | } |
| 9725 | }; |
| 9726 | |
| 9727 | struct AAPotentialConstantValuesArgument final |
| 9728 | : AAArgumentFromCallSiteArguments<AAPotentialConstantValues, |
| 9729 | AAPotentialConstantValuesImpl, |
| 9730 | PotentialConstantIntValuesState> { |
| 9731 | using Base = AAArgumentFromCallSiteArguments<AAPotentialConstantValues, |
| 9732 | AAPotentialConstantValuesImpl, |
| 9733 | PotentialConstantIntValuesState>; |
| 9734 | AAPotentialConstantValuesArgument(const IRPosition &IRP, Attributor &A) |
| 9735 | : Base(IRP, A) {} |
| 9736 | |
| 9737 | /// See AbstractAttribute::trackStatistics() |
| 9738 | void trackStatistics() const override { |
| 9739 | STATS_DECLTRACK_ARG_ATTR(potential_values) |
| 9740 | } |
| 9741 | }; |
| 9742 | |
| 9743 | struct AAPotentialConstantValuesReturned |
| 9744 | : AAReturnedFromReturnedValues<AAPotentialConstantValues, |
| 9745 | AAPotentialConstantValuesImpl> { |
| 9746 | using Base = AAReturnedFromReturnedValues<AAPotentialConstantValues, |
| 9747 | AAPotentialConstantValuesImpl>; |
| 9748 | AAPotentialConstantValuesReturned(const IRPosition &IRP, Attributor &A) |
| 9749 | : Base(IRP, A) {} |
| 9750 | |
| 9751 | void initialize(Attributor &A) override { |
| 9752 | if (!A.isFunctionIPOAmendable(F: *getAssociatedFunction())) |
| 9753 | indicatePessimisticFixpoint(); |
| 9754 | Base::initialize(A); |
| 9755 | } |
| 9756 | |
| 9757 | /// See AbstractAttribute::trackStatistics() |
| 9758 | void trackStatistics() const override { |
| 9759 | STATS_DECLTRACK_FNRET_ATTR(potential_values) |
| 9760 | } |
| 9761 | }; |
| 9762 | |
| 9763 | struct AAPotentialConstantValuesFloating : AAPotentialConstantValuesImpl { |
| 9764 | AAPotentialConstantValuesFloating(const IRPosition &IRP, Attributor &A) |
| 9765 | : AAPotentialConstantValuesImpl(IRP, A) {} |
| 9766 | |
| 9767 | /// See AbstractAttribute::initialize(..). |
| 9768 | void initialize(Attributor &A) override { |
| 9769 | AAPotentialConstantValuesImpl::initialize(A); |
| 9770 | if (isAtFixpoint()) |
| 9771 | return; |
| 9772 | |
| 9773 | Value &V = getAssociatedValue(); |
| 9774 | |
| 9775 | if (auto *C = dyn_cast<ConstantInt>(Val: &V)) { |
| 9776 | unionAssumed(C: C->getValue()); |
| 9777 | indicateOptimisticFixpoint(); |
| 9778 | return; |
| 9779 | } |
| 9780 | |
| 9781 | if (isa<UndefValue>(Val: &V)) { |
| 9782 | unionAssumedWithUndef(); |
| 9783 | indicateOptimisticFixpoint(); |
| 9784 | return; |
| 9785 | } |
| 9786 | |
| 9787 | if (isa<BinaryOperator>(Val: &V) || isa<ICmpInst>(Val: &V) || isa<CastInst>(Val: &V)) |
| 9788 | return; |
| 9789 | |
| 9790 | if (isa<SelectInst>(Val: V) || isa<PHINode>(Val: V) || isa<LoadInst>(Val: V)) |
| 9791 | return; |
| 9792 | |
| 9793 | indicatePessimisticFixpoint(); |
| 9794 | |
| 9795 | LLVM_DEBUG(dbgs() << "[AAPotentialConstantValues] We give up: " |
| 9796 | << getAssociatedValue() << "\n" ); |
| 9797 | } |
| 9798 | |
| 9799 | static bool calculateICmpInst(const ICmpInst *ICI, const APInt &LHS, |
| 9800 | const APInt &RHS) { |
| 9801 | return ICmpInst::compare(LHS, RHS, Pred: ICI->getPredicate()); |
| 9802 | } |
| 9803 | |
| 9804 | static APInt calculateCastInst(const CastInst *CI, const APInt &Src, |
| 9805 | uint32_t ResultBitWidth) { |
| 9806 | Instruction::CastOps CastOp = CI->getOpcode(); |
| 9807 | switch (CastOp) { |
| 9808 | default: |
| 9809 | llvm_unreachable("unsupported or not integer cast" ); |
| 9810 | case Instruction::Trunc: |
| 9811 | return Src.trunc(width: ResultBitWidth); |
| 9812 | case Instruction::SExt: |
| 9813 | return Src.sext(width: ResultBitWidth); |
| 9814 | case Instruction::ZExt: |
| 9815 | return Src.zext(width: ResultBitWidth); |
| 9816 | case Instruction::BitCast: |
| 9817 | return Src; |
| 9818 | } |
| 9819 | } |
| 9820 | |
| 9821 | static APInt calculateBinaryOperator(const BinaryOperator *BinOp, |
| 9822 | const APInt &LHS, const APInt &RHS, |
| 9823 | bool &SkipOperation, bool &Unsupported) { |
| 9824 | Instruction::BinaryOps BinOpcode = BinOp->getOpcode(); |
| 9825 | // Unsupported is set to true when the binary operator is not supported. |
| 9826 | // SkipOperation is set to true when UB occur with the given operand pair |
| 9827 | // (LHS, RHS). |
| 9828 | // TODO: we should look at nsw and nuw keywords to handle operations |
| 9829 | // that create poison or undef value. |
| 9830 | switch (BinOpcode) { |
| 9831 | default: |
| 9832 | Unsupported = true; |
| 9833 | return LHS; |
| 9834 | case Instruction::Add: |
| 9835 | return LHS + RHS; |
| 9836 | case Instruction::Sub: |
| 9837 | return LHS - RHS; |
| 9838 | case Instruction::Mul: |
| 9839 | return LHS * RHS; |
| 9840 | case Instruction::UDiv: |
| 9841 | if (RHS.isZero()) { |
| 9842 | SkipOperation = true; |
| 9843 | return LHS; |
| 9844 | } |
| 9845 | return LHS.udiv(RHS); |
| 9846 | case Instruction::SDiv: |
| 9847 | if (RHS.isZero()) { |
| 9848 | SkipOperation = true; |
| 9849 | return LHS; |
| 9850 | } |
| 9851 | return LHS.sdiv(RHS); |
| 9852 | case Instruction::URem: |
| 9853 | if (RHS.isZero()) { |
| 9854 | SkipOperation = true; |
| 9855 | return LHS; |
| 9856 | } |
| 9857 | return LHS.urem(RHS); |
| 9858 | case Instruction::SRem: |
| 9859 | if (RHS.isZero()) { |
| 9860 | SkipOperation = true; |
| 9861 | return LHS; |
| 9862 | } |
| 9863 | return LHS.srem(RHS); |
| 9864 | case Instruction::Shl: |
| 9865 | return LHS.shl(ShiftAmt: RHS); |
| 9866 | case Instruction::LShr: |
| 9867 | return LHS.lshr(ShiftAmt: RHS); |
| 9868 | case Instruction::AShr: |
| 9869 | return LHS.ashr(ShiftAmt: RHS); |
| 9870 | case Instruction::And: |
| 9871 | return LHS & RHS; |
| 9872 | case Instruction::Or: |
| 9873 | return LHS | RHS; |
| 9874 | case Instruction::Xor: |
| 9875 | return LHS ^ RHS; |
| 9876 | } |
| 9877 | } |
| 9878 | |
| 9879 | bool calculateBinaryOperatorAndTakeUnion(const BinaryOperator *BinOp, |
| 9880 | const APInt &LHS, const APInt &RHS) { |
| 9881 | bool SkipOperation = false; |
| 9882 | bool Unsupported = false; |
| 9883 | APInt Result = |
| 9884 | calculateBinaryOperator(BinOp, LHS, RHS, SkipOperation, Unsupported); |
| 9885 | if (Unsupported) |
| 9886 | return false; |
| 9887 | // If SkipOperation is true, we can ignore this operand pair (L, R). |
| 9888 | if (!SkipOperation) |
| 9889 | unionAssumed(C: Result); |
| 9890 | return isValidState(); |
| 9891 | } |
| 9892 | |
| 9893 | ChangeStatus updateWithICmpInst(Attributor &A, ICmpInst *ICI) { |
| 9894 | auto AssumedBefore = getAssumed(); |
| 9895 | Value *LHS = ICI->getOperand(i_nocapture: 0); |
| 9896 | Value *RHS = ICI->getOperand(i_nocapture: 1); |
| 9897 | |
| 9898 | bool LHSContainsUndef = false, RHSContainsUndef = false; |
| 9899 | SetTy LHSAAPVS, RHSAAPVS; |
| 9900 | if (!fillSetWithConstantValues(A, IRP: IRPosition::value(V: *LHS), S&: LHSAAPVS, |
| 9901 | ContainsUndef&: LHSContainsUndef, /* ForSelf */ false) || |
| 9902 | !fillSetWithConstantValues(A, IRP: IRPosition::value(V: *RHS), S&: RHSAAPVS, |
| 9903 | ContainsUndef&: RHSContainsUndef, /* ForSelf */ false)) |
| 9904 | return indicatePessimisticFixpoint(); |
| 9905 | |
| 9906 | // TODO: make use of undef flag to limit potential values aggressively. |
| 9907 | bool MaybeTrue = false, MaybeFalse = false; |
| 9908 | const APInt Zero(RHS->getType()->getIntegerBitWidth(), 0); |
| 9909 | if (LHSContainsUndef && RHSContainsUndef) { |
| 9910 | // The result of any comparison between undefs can be soundly replaced |
| 9911 | // with undef. |
| 9912 | unionAssumedWithUndef(); |
| 9913 | } else if (LHSContainsUndef) { |
| 9914 | for (const APInt &R : RHSAAPVS) { |
| 9915 | bool CmpResult = calculateICmpInst(ICI, LHS: Zero, RHS: R); |
| 9916 | MaybeTrue |= CmpResult; |
| 9917 | MaybeFalse |= !CmpResult; |
| 9918 | if (MaybeTrue & MaybeFalse) |
| 9919 | return indicatePessimisticFixpoint(); |
| 9920 | } |
| 9921 | } else if (RHSContainsUndef) { |
| 9922 | for (const APInt &L : LHSAAPVS) { |
| 9923 | bool CmpResult = calculateICmpInst(ICI, LHS: L, RHS: Zero); |
| 9924 | MaybeTrue |= CmpResult; |
| 9925 | MaybeFalse |= !CmpResult; |
| 9926 | if (MaybeTrue & MaybeFalse) |
| 9927 | return indicatePessimisticFixpoint(); |
| 9928 | } |
| 9929 | } else { |
| 9930 | for (const APInt &L : LHSAAPVS) { |
| 9931 | for (const APInt &R : RHSAAPVS) { |
| 9932 | bool CmpResult = calculateICmpInst(ICI, LHS: L, RHS: R); |
| 9933 | MaybeTrue |= CmpResult; |
| 9934 | MaybeFalse |= !CmpResult; |
| 9935 | if (MaybeTrue & MaybeFalse) |
| 9936 | return indicatePessimisticFixpoint(); |
| 9937 | } |
| 9938 | } |
| 9939 | } |
| 9940 | if (MaybeTrue) |
| 9941 | unionAssumed(C: APInt(/* numBits */ 1, /* val */ 1)); |
| 9942 | if (MaybeFalse) |
| 9943 | unionAssumed(C: APInt(/* numBits */ 1, /* val */ 0)); |
| 9944 | return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED |
| 9945 | : ChangeStatus::CHANGED; |
| 9946 | } |
| 9947 | |
| 9948 | ChangeStatus updateWithSelectInst(Attributor &A, SelectInst *SI) { |
| 9949 | auto AssumedBefore = getAssumed(); |
| 9950 | Value *LHS = SI->getTrueValue(); |
| 9951 | Value *RHS = SI->getFalseValue(); |
| 9952 | |
| 9953 | bool UsedAssumedInformation = false; |
| 9954 | std::optional<Constant *> C = A.getAssumedConstant( |
| 9955 | V: *SI->getCondition(), AA: *this, UsedAssumedInformation); |
| 9956 | |
| 9957 | // Check if we only need one operand. |
| 9958 | bool OnlyLeft = false, OnlyRight = false; |
| 9959 | if (C && *C && (*C)->isOneValue()) |
| 9960 | OnlyLeft = true; |
| 9961 | else if (C && *C && (*C)->isZeroValue()) |
| 9962 | OnlyRight = true; |
| 9963 | |
| 9964 | bool LHSContainsUndef = false, RHSContainsUndef = false; |
| 9965 | SetTy LHSAAPVS, RHSAAPVS; |
| 9966 | if (!OnlyRight && |
| 9967 | !fillSetWithConstantValues(A, IRP: IRPosition::value(V: *LHS), S&: LHSAAPVS, |
| 9968 | ContainsUndef&: LHSContainsUndef, /* ForSelf */ false)) |
| 9969 | return indicatePessimisticFixpoint(); |
| 9970 | |
| 9971 | if (!OnlyLeft && |
| 9972 | !fillSetWithConstantValues(A, IRP: IRPosition::value(V: *RHS), S&: RHSAAPVS, |
| 9973 | ContainsUndef&: RHSContainsUndef, /* ForSelf */ false)) |
| 9974 | return indicatePessimisticFixpoint(); |
| 9975 | |
| 9976 | if (OnlyLeft || OnlyRight) { |
| 9977 | // select (true/false), lhs, rhs |
| 9978 | auto *OpAA = OnlyLeft ? &LHSAAPVS : &RHSAAPVS; |
| 9979 | auto Undef = OnlyLeft ? LHSContainsUndef : RHSContainsUndef; |
| 9980 | |
| 9981 | if (Undef) |
| 9982 | unionAssumedWithUndef(); |
| 9983 | else { |
| 9984 | for (const auto &It : *OpAA) |
| 9985 | unionAssumed(C: It); |
| 9986 | } |
| 9987 | |
| 9988 | } else if (LHSContainsUndef && RHSContainsUndef) { |
| 9989 | // select i1 *, undef , undef => undef |
| 9990 | unionAssumedWithUndef(); |
| 9991 | } else { |
| 9992 | for (const auto &It : LHSAAPVS) |
| 9993 | unionAssumed(C: It); |
| 9994 | for (const auto &It : RHSAAPVS) |
| 9995 | unionAssumed(C: It); |
| 9996 | } |
| 9997 | return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED |
| 9998 | : ChangeStatus::CHANGED; |
| 9999 | } |
| 10000 | |
| 10001 | ChangeStatus updateWithCastInst(Attributor &A, CastInst *CI) { |
| 10002 | auto AssumedBefore = getAssumed(); |
| 10003 | if (!CI->isIntegerCast()) |
| 10004 | return indicatePessimisticFixpoint(); |
| 10005 | assert(CI->getNumOperands() == 1 && "Expected cast to be unary!" ); |
| 10006 | uint32_t ResultBitWidth = CI->getDestTy()->getIntegerBitWidth(); |
| 10007 | Value *Src = CI->getOperand(i_nocapture: 0); |
| 10008 | |
| 10009 | bool SrcContainsUndef = false; |
| 10010 | SetTy SrcPVS; |
| 10011 | if (!fillSetWithConstantValues(A, IRP: IRPosition::value(V: *Src), S&: SrcPVS, |
| 10012 | ContainsUndef&: SrcContainsUndef, /* ForSelf */ false)) |
| 10013 | return indicatePessimisticFixpoint(); |
| 10014 | |
| 10015 | if (SrcContainsUndef) |
| 10016 | unionAssumedWithUndef(); |
| 10017 | else { |
| 10018 | for (const APInt &S : SrcPVS) { |
| 10019 | APInt T = calculateCastInst(CI, Src: S, ResultBitWidth); |
| 10020 | unionAssumed(C: T); |
| 10021 | } |
| 10022 | } |
| 10023 | return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED |
| 10024 | : ChangeStatus::CHANGED; |
| 10025 | } |
| 10026 | |
| 10027 | ChangeStatus updateWithBinaryOperator(Attributor &A, BinaryOperator *BinOp) { |
| 10028 | auto AssumedBefore = getAssumed(); |
| 10029 | Value *LHS = BinOp->getOperand(i_nocapture: 0); |
| 10030 | Value *RHS = BinOp->getOperand(i_nocapture: 1); |
| 10031 | |
| 10032 | bool LHSContainsUndef = false, RHSContainsUndef = false; |
| 10033 | SetTy LHSAAPVS, RHSAAPVS; |
| 10034 | if (!fillSetWithConstantValues(A, IRP: IRPosition::value(V: *LHS), S&: LHSAAPVS, |
| 10035 | ContainsUndef&: LHSContainsUndef, /* ForSelf */ false) || |
| 10036 | !fillSetWithConstantValues(A, IRP: IRPosition::value(V: *RHS), S&: RHSAAPVS, |
| 10037 | ContainsUndef&: RHSContainsUndef, /* ForSelf */ false)) |
| 10038 | return indicatePessimisticFixpoint(); |
| 10039 | |
| 10040 | const APInt Zero = APInt(LHS->getType()->getIntegerBitWidth(), 0); |
| 10041 | |
| 10042 | // TODO: make use of undef flag to limit potential values aggressively. |
| 10043 | if (LHSContainsUndef && RHSContainsUndef) { |
| 10044 | if (!calculateBinaryOperatorAndTakeUnion(BinOp, LHS: Zero, RHS: Zero)) |
| 10045 | return indicatePessimisticFixpoint(); |
| 10046 | } else if (LHSContainsUndef) { |
| 10047 | for (const APInt &R : RHSAAPVS) { |
| 10048 | if (!calculateBinaryOperatorAndTakeUnion(BinOp, LHS: Zero, RHS: R)) |
| 10049 | return indicatePessimisticFixpoint(); |
| 10050 | } |
| 10051 | } else if (RHSContainsUndef) { |
| 10052 | for (const APInt &L : LHSAAPVS) { |
| 10053 | if (!calculateBinaryOperatorAndTakeUnion(BinOp, LHS: L, RHS: Zero)) |
| 10054 | return indicatePessimisticFixpoint(); |
| 10055 | } |
| 10056 | } else { |
| 10057 | for (const APInt &L : LHSAAPVS) { |
| 10058 | for (const APInt &R : RHSAAPVS) { |
| 10059 | if (!calculateBinaryOperatorAndTakeUnion(BinOp, LHS: L, RHS: R)) |
| 10060 | return indicatePessimisticFixpoint(); |
| 10061 | } |
| 10062 | } |
| 10063 | } |
| 10064 | return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED |
| 10065 | : ChangeStatus::CHANGED; |
| 10066 | } |
| 10067 | |
| 10068 | ChangeStatus updateWithInstruction(Attributor &A, Instruction *Inst) { |
| 10069 | auto AssumedBefore = getAssumed(); |
| 10070 | SetTy Incoming; |
| 10071 | bool ContainsUndef; |
| 10072 | if (!fillSetWithConstantValues(A, IRP: IRPosition::value(V: *Inst), S&: Incoming, |
| 10073 | ContainsUndef, /* ForSelf */ true)) |
| 10074 | return indicatePessimisticFixpoint(); |
| 10075 | if (ContainsUndef) { |
| 10076 | unionAssumedWithUndef(); |
| 10077 | } else { |
| 10078 | for (const auto &It : Incoming) |
| 10079 | unionAssumed(C: It); |
| 10080 | } |
| 10081 | return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED |
| 10082 | : ChangeStatus::CHANGED; |
| 10083 | } |
| 10084 | |
| 10085 | /// See AbstractAttribute::updateImpl(...). |
| 10086 | ChangeStatus updateImpl(Attributor &A) override { |
| 10087 | Value &V = getAssociatedValue(); |
| 10088 | Instruction *I = dyn_cast<Instruction>(Val: &V); |
| 10089 | |
| 10090 | if (auto *ICI = dyn_cast<ICmpInst>(Val: I)) |
| 10091 | return updateWithICmpInst(A, ICI); |
| 10092 | |
| 10093 | if (auto *SI = dyn_cast<SelectInst>(Val: I)) |
| 10094 | return updateWithSelectInst(A, SI); |
| 10095 | |
| 10096 | if (auto *CI = dyn_cast<CastInst>(Val: I)) |
| 10097 | return updateWithCastInst(A, CI); |
| 10098 | |
| 10099 | if (auto *BinOp = dyn_cast<BinaryOperator>(Val: I)) |
| 10100 | return updateWithBinaryOperator(A, BinOp); |
| 10101 | |
| 10102 | if (isa<PHINode>(Val: I) || isa<LoadInst>(Val: I)) |
| 10103 | return updateWithInstruction(A, Inst: I); |
| 10104 | |
| 10105 | return indicatePessimisticFixpoint(); |
| 10106 | } |
| 10107 | |
| 10108 | /// See AbstractAttribute::trackStatistics() |
| 10109 | void trackStatistics() const override { |
| 10110 | STATS_DECLTRACK_FLOATING_ATTR(potential_values) |
| 10111 | } |
| 10112 | }; |
| 10113 | |
| 10114 | struct AAPotentialConstantValuesFunction : AAPotentialConstantValuesImpl { |
| 10115 | AAPotentialConstantValuesFunction(const IRPosition &IRP, Attributor &A) |
| 10116 | : AAPotentialConstantValuesImpl(IRP, A) {} |
| 10117 | |
| 10118 | /// See AbstractAttribute::initialize(...). |
| 10119 | ChangeStatus updateImpl(Attributor &A) override { |
| 10120 | llvm_unreachable( |
| 10121 | "AAPotentialConstantValues(Function|CallSite)::updateImpl will " |
| 10122 | "not be called" ); |
| 10123 | } |
| 10124 | |
| 10125 | /// See AbstractAttribute::trackStatistics() |
| 10126 | void trackStatistics() const override { |
| 10127 | STATS_DECLTRACK_FN_ATTR(potential_values) |
| 10128 | } |
| 10129 | }; |
| 10130 | |
| 10131 | struct AAPotentialConstantValuesCallSite : AAPotentialConstantValuesFunction { |
| 10132 | AAPotentialConstantValuesCallSite(const IRPosition &IRP, Attributor &A) |
| 10133 | : AAPotentialConstantValuesFunction(IRP, A) {} |
| 10134 | |
| 10135 | /// See AbstractAttribute::trackStatistics() |
| 10136 | void trackStatistics() const override { |
| 10137 | STATS_DECLTRACK_CS_ATTR(potential_values) |
| 10138 | } |
| 10139 | }; |
| 10140 | |
| 10141 | struct AAPotentialConstantValuesCallSiteReturned |
| 10142 | : AACalleeToCallSite<AAPotentialConstantValues, |
| 10143 | AAPotentialConstantValuesImpl> { |
| 10144 | AAPotentialConstantValuesCallSiteReturned(const IRPosition &IRP, |
| 10145 | Attributor &A) |
| 10146 | : AACalleeToCallSite<AAPotentialConstantValues, |
| 10147 | AAPotentialConstantValuesImpl>(IRP, A) {} |
| 10148 | |
| 10149 | /// See AbstractAttribute::trackStatistics() |
| 10150 | void trackStatistics() const override { |
| 10151 | STATS_DECLTRACK_CSRET_ATTR(potential_values) |
| 10152 | } |
| 10153 | }; |
| 10154 | |
| 10155 | struct AAPotentialConstantValuesCallSiteArgument |
| 10156 | : AAPotentialConstantValuesFloating { |
| 10157 | AAPotentialConstantValuesCallSiteArgument(const IRPosition &IRP, |
| 10158 | Attributor &A) |
| 10159 | : AAPotentialConstantValuesFloating(IRP, A) {} |
| 10160 | |
| 10161 | /// See AbstractAttribute::initialize(..). |
| 10162 | void initialize(Attributor &A) override { |
| 10163 | AAPotentialConstantValuesImpl::initialize(A); |
| 10164 | if (isAtFixpoint()) |
| 10165 | return; |
| 10166 | |
| 10167 | Value &V = getAssociatedValue(); |
| 10168 | |
| 10169 | if (auto *C = dyn_cast<ConstantInt>(Val: &V)) { |
| 10170 | unionAssumed(C: C->getValue()); |
| 10171 | indicateOptimisticFixpoint(); |
| 10172 | return; |
| 10173 | } |
| 10174 | |
| 10175 | if (isa<UndefValue>(Val: &V)) { |
| 10176 | unionAssumedWithUndef(); |
| 10177 | indicateOptimisticFixpoint(); |
| 10178 | return; |
| 10179 | } |
| 10180 | } |
| 10181 | |
| 10182 | /// See AbstractAttribute::updateImpl(...). |
| 10183 | ChangeStatus updateImpl(Attributor &A) override { |
| 10184 | Value &V = getAssociatedValue(); |
| 10185 | auto AssumedBefore = getAssumed(); |
| 10186 | auto *AA = A.getAAFor<AAPotentialConstantValues>( |
| 10187 | QueryingAA: *this, IRP: IRPosition::value(V), DepClass: DepClassTy::REQUIRED); |
| 10188 | if (!AA) |
| 10189 | return indicatePessimisticFixpoint(); |
| 10190 | const auto &S = AA->getAssumed(); |
| 10191 | unionAssumed(PVS: S); |
| 10192 | return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED |
| 10193 | : ChangeStatus::CHANGED; |
| 10194 | } |
| 10195 | |
| 10196 | /// See AbstractAttribute::trackStatistics() |
| 10197 | void trackStatistics() const override { |
| 10198 | STATS_DECLTRACK_CSARG_ATTR(potential_values) |
| 10199 | } |
| 10200 | }; |
| 10201 | } // namespace |
| 10202 | |
| 10203 | /// ------------------------ NoUndef Attribute --------------------------------- |
| 10204 | bool AANoUndef::isImpliedByIR(Attributor &A, const IRPosition &IRP, |
| 10205 | Attribute::AttrKind ImpliedAttributeKind, |
| 10206 | bool IgnoreSubsumingPositions) { |
| 10207 | assert(ImpliedAttributeKind == Attribute::NoUndef && |
| 10208 | "Unexpected attribute kind" ); |
| 10209 | if (A.hasAttr(IRP, AKs: {Attribute::NoUndef}, IgnoreSubsumingPositions, |
| 10210 | ImpliedAttributeKind: Attribute::NoUndef)) |
| 10211 | return true; |
| 10212 | |
| 10213 | Value &Val = IRP.getAssociatedValue(); |
| 10214 | if (IRP.getPositionKind() != IRPosition::IRP_RETURNED && |
| 10215 | isGuaranteedNotToBeUndefOrPoison(V: &Val)) { |
| 10216 | LLVMContext &Ctx = Val.getContext(); |
| 10217 | A.manifestAttrs(IRP, DeducedAttrs: Attribute::get(Context&: Ctx, Kind: Attribute::NoUndef)); |
| 10218 | return true; |
| 10219 | } |
| 10220 | |
| 10221 | return false; |
| 10222 | } |
| 10223 | |
| 10224 | namespace { |
| 10225 | struct AANoUndefImpl : AANoUndef { |
| 10226 | AANoUndefImpl(const IRPosition &IRP, Attributor &A) : AANoUndef(IRP, A) {} |
| 10227 | |
| 10228 | /// See AbstractAttribute::initialize(...). |
| 10229 | void initialize(Attributor &A) override { |
| 10230 | Value &V = getAssociatedValue(); |
| 10231 | if (isa<UndefValue>(Val: V)) |
| 10232 | indicatePessimisticFixpoint(); |
| 10233 | assert(!isImpliedByIR(A, getIRPosition(), Attribute::NoUndef)); |
| 10234 | } |
| 10235 | |
| 10236 | /// See followUsesInMBEC |
| 10237 | bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I, |
| 10238 | AANoUndef::StateType &State) { |
| 10239 | const Value *UseV = U->get(); |
| 10240 | const DominatorTree *DT = nullptr; |
| 10241 | AssumptionCache *AC = nullptr; |
| 10242 | InformationCache &InfoCache = A.getInfoCache(); |
| 10243 | if (Function *F = getAnchorScope()) { |
| 10244 | DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(F: *F); |
| 10245 | AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(F: *F); |
| 10246 | } |
| 10247 | State.setKnown(isGuaranteedNotToBeUndefOrPoison(V: UseV, AC, CtxI: I, DT)); |
| 10248 | bool TrackUse = false; |
| 10249 | // Track use for instructions which must produce undef or poison bits when |
| 10250 | // at least one operand contains such bits. |
| 10251 | if (isa<CastInst>(Val: *I) || isa<GetElementPtrInst>(Val: *I)) |
| 10252 | TrackUse = true; |
| 10253 | return TrackUse; |
| 10254 | } |
| 10255 | |
| 10256 | /// See AbstractAttribute::getAsStr(). |
| 10257 | const std::string getAsStr(Attributor *A) const override { |
| 10258 | return getAssumed() ? "noundef" : "may-undef-or-poison" ; |
| 10259 | } |
| 10260 | |
| 10261 | ChangeStatus manifest(Attributor &A) override { |
| 10262 | // We don't manifest noundef attribute for dead positions because the |
| 10263 | // associated values with dead positions would be replaced with undef |
| 10264 | // values. |
| 10265 | bool UsedAssumedInformation = false; |
| 10266 | if (A.isAssumedDead(IRP: getIRPosition(), QueryingAA: nullptr, FnLivenessAA: nullptr, |
| 10267 | UsedAssumedInformation)) |
| 10268 | return ChangeStatus::UNCHANGED; |
| 10269 | // A position whose simplified value does not have any value is |
| 10270 | // considered to be dead. We don't manifest noundef in such positions for |
| 10271 | // the same reason above. |
| 10272 | if (!A.getAssumedSimplified(IRP: getIRPosition(), AA: *this, UsedAssumedInformation, |
| 10273 | S: AA::Interprocedural) |
| 10274 | .has_value()) |
| 10275 | return ChangeStatus::UNCHANGED; |
| 10276 | return AANoUndef::manifest(A); |
| 10277 | } |
| 10278 | }; |
| 10279 | |
| 10280 | struct AANoUndefFloating : public AANoUndefImpl { |
| 10281 | AANoUndefFloating(const IRPosition &IRP, Attributor &A) |
| 10282 | : AANoUndefImpl(IRP, A) {} |
| 10283 | |
| 10284 | /// See AbstractAttribute::initialize(...). |
| 10285 | void initialize(Attributor &A) override { |
| 10286 | AANoUndefImpl::initialize(A); |
| 10287 | if (!getState().isAtFixpoint() && getAnchorScope() && |
| 10288 | !getAnchorScope()->isDeclaration()) |
| 10289 | if (Instruction *CtxI = getCtxI()) |
| 10290 | followUsesInMBEC(AA&: *this, A, S&: getState(), CtxI&: *CtxI); |
| 10291 | } |
| 10292 | |
| 10293 | /// See AbstractAttribute::updateImpl(...). |
| 10294 | ChangeStatus updateImpl(Attributor &A) override { |
| 10295 | auto VisitValueCB = [&](const IRPosition &IRP) -> bool { |
| 10296 | bool IsKnownNoUndef; |
| 10297 | return AA::hasAssumedIRAttr<Attribute::NoUndef>( |
| 10298 | A, QueryingAA: this, IRP, DepClass: DepClassTy::REQUIRED, IsKnown&: IsKnownNoUndef); |
| 10299 | }; |
| 10300 | |
| 10301 | bool Stripped; |
| 10302 | bool UsedAssumedInformation = false; |
| 10303 | Value *AssociatedValue = &getAssociatedValue(); |
| 10304 | SmallVector<AA::ValueAndContext> Values; |
| 10305 | if (!A.getAssumedSimplifiedValues(IRP: getIRPosition(), AA: *this, Values, |
| 10306 | S: AA::AnyScope, UsedAssumedInformation)) |
| 10307 | Stripped = false; |
| 10308 | else |
| 10309 | Stripped = |
| 10310 | Values.size() != 1 || Values.front().getValue() != AssociatedValue; |
| 10311 | |
| 10312 | if (!Stripped) { |
| 10313 | // If we haven't stripped anything we might still be able to use a |
| 10314 | // different AA, but only if the IRP changes. Effectively when we |
| 10315 | // interpret this not as a call site value but as a floating/argument |
| 10316 | // value. |
| 10317 | const IRPosition AVIRP = IRPosition::value(V: *AssociatedValue); |
| 10318 | if (AVIRP == getIRPosition() || !VisitValueCB(AVIRP)) |
| 10319 | return indicatePessimisticFixpoint(); |
| 10320 | return ChangeStatus::UNCHANGED; |
| 10321 | } |
| 10322 | |
| 10323 | for (const auto &VAC : Values) |
| 10324 | if (!VisitValueCB(IRPosition::value(V: *VAC.getValue()))) |
| 10325 | return indicatePessimisticFixpoint(); |
| 10326 | |
| 10327 | return ChangeStatus::UNCHANGED; |
| 10328 | } |
| 10329 | |
| 10330 | /// See AbstractAttribute::trackStatistics() |
| 10331 | void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) } |
| 10332 | }; |
| 10333 | |
| 10334 | struct AANoUndefReturned final |
| 10335 | : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl> { |
| 10336 | AANoUndefReturned(const IRPosition &IRP, Attributor &A) |
| 10337 | : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl>(IRP, A) {} |
| 10338 | |
| 10339 | /// See AbstractAttribute::trackStatistics() |
| 10340 | void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) } |
| 10341 | }; |
| 10342 | |
| 10343 | struct AANoUndefArgument final |
| 10344 | : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl> { |
| 10345 | AANoUndefArgument(const IRPosition &IRP, Attributor &A) |
| 10346 | : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl>(IRP, A) {} |
| 10347 | |
| 10348 | /// See AbstractAttribute::trackStatistics() |
| 10349 | void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noundef) } |
| 10350 | }; |
| 10351 | |
| 10352 | struct AANoUndefCallSiteArgument final : AANoUndefFloating { |
| 10353 | AANoUndefCallSiteArgument(const IRPosition &IRP, Attributor &A) |
| 10354 | : AANoUndefFloating(IRP, A) {} |
| 10355 | |
| 10356 | /// See AbstractAttribute::trackStatistics() |
| 10357 | void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noundef) } |
| 10358 | }; |
| 10359 | |
| 10360 | struct AANoUndefCallSiteReturned final |
| 10361 | : AACalleeToCallSite<AANoUndef, AANoUndefImpl> { |
| 10362 | AANoUndefCallSiteReturned(const IRPosition &IRP, Attributor &A) |
| 10363 | : AACalleeToCallSite<AANoUndef, AANoUndefImpl>(IRP, A) {} |
| 10364 | |
| 10365 | /// See AbstractAttribute::trackStatistics() |
| 10366 | void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noundef) } |
| 10367 | }; |
| 10368 | |
| 10369 | /// ------------------------ NoFPClass Attribute ------------------------------- |
| 10370 | |
| 10371 | struct AANoFPClassImpl : AANoFPClass { |
| 10372 | AANoFPClassImpl(const IRPosition &IRP, Attributor &A) : AANoFPClass(IRP, A) {} |
| 10373 | |
| 10374 | void initialize(Attributor &A) override { |
| 10375 | const IRPosition &IRP = getIRPosition(); |
| 10376 | |
| 10377 | Value &V = IRP.getAssociatedValue(); |
| 10378 | if (isa<UndefValue>(Val: V)) { |
| 10379 | indicateOptimisticFixpoint(); |
| 10380 | return; |
| 10381 | } |
| 10382 | |
| 10383 | SmallVector<Attribute> Attrs; |
| 10384 | A.getAttrs(IRP: getIRPosition(), AKs: {Attribute::NoFPClass}, Attrs, IgnoreSubsumingPositions: false); |
| 10385 | for (const auto &Attr : Attrs) { |
| 10386 | addKnownBits(Bits: Attr.getNoFPClass()); |
| 10387 | } |
| 10388 | |
| 10389 | const DataLayout &DL = A.getDataLayout(); |
| 10390 | if (getPositionKind() != IRPosition::IRP_RETURNED) { |
| 10391 | KnownFPClass KnownFPClass = computeKnownFPClass(V: &V, DL); |
| 10392 | addKnownBits(Bits: ~KnownFPClass.KnownFPClasses); |
| 10393 | } |
| 10394 | |
| 10395 | if (Instruction *CtxI = getCtxI()) |
| 10396 | followUsesInMBEC(AA&: *this, A, S&: getState(), CtxI&: *CtxI); |
| 10397 | } |
| 10398 | |
| 10399 | /// See followUsesInMBEC |
| 10400 | bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I, |
| 10401 | AANoFPClass::StateType &State) { |
| 10402 | // TODO: Determine what instructions can be looked through. |
| 10403 | auto *CB = dyn_cast<CallBase>(Val: I); |
| 10404 | if (!CB) |
| 10405 | return false; |
| 10406 | |
| 10407 | if (!CB->isArgOperand(U)) |
| 10408 | return false; |
| 10409 | |
| 10410 | unsigned ArgNo = CB->getArgOperandNo(U); |
| 10411 | IRPosition IRP = IRPosition::callsite_argument(CB: *CB, ArgNo); |
| 10412 | if (auto *NoFPAA = A.getAAFor<AANoFPClass>(QueryingAA: *this, IRP, DepClass: DepClassTy::NONE)) |
| 10413 | State.addKnownBits(Bits: NoFPAA->getState().getKnown()); |
| 10414 | return false; |
| 10415 | } |
| 10416 | |
| 10417 | const std::string getAsStr(Attributor *A) const override { |
| 10418 | std::string Result = "nofpclass" ; |
| 10419 | raw_string_ostream OS(Result); |
| 10420 | OS << getKnownNoFPClass() << '/' << getAssumedNoFPClass(); |
| 10421 | return Result; |
| 10422 | } |
| 10423 | |
| 10424 | void getDeducedAttributes(Attributor &A, LLVMContext &Ctx, |
| 10425 | SmallVectorImpl<Attribute> &Attrs) const override { |
| 10426 | Attrs.emplace_back(Args: Attribute::getWithNoFPClass(Context&: Ctx, Mask: getAssumedNoFPClass())); |
| 10427 | } |
| 10428 | }; |
| 10429 | |
| 10430 | struct AANoFPClassFloating : public AANoFPClassImpl { |
| 10431 | AANoFPClassFloating(const IRPosition &IRP, Attributor &A) |
| 10432 | : AANoFPClassImpl(IRP, A) {} |
| 10433 | |
| 10434 | /// See AbstractAttribute::updateImpl(...). |
| 10435 | ChangeStatus updateImpl(Attributor &A) override { |
| 10436 | SmallVector<AA::ValueAndContext> Values; |
| 10437 | bool UsedAssumedInformation = false; |
| 10438 | if (!A.getAssumedSimplifiedValues(IRP: getIRPosition(), AA: *this, Values, |
| 10439 | S: AA::AnyScope, UsedAssumedInformation)) { |
| 10440 | Values.push_back(Elt: {getAssociatedValue(), getCtxI()}); |
| 10441 | } |
| 10442 | |
| 10443 | StateType T; |
| 10444 | auto VisitValueCB = [&](Value &V, const Instruction *CtxI) -> bool { |
| 10445 | const auto *AA = A.getAAFor<AANoFPClass>(QueryingAA: *this, IRP: IRPosition::value(V), |
| 10446 | DepClass: DepClassTy::REQUIRED); |
| 10447 | if (!AA || this == AA) { |
| 10448 | T.indicatePessimisticFixpoint(); |
| 10449 | } else { |
| 10450 | const AANoFPClass::StateType &S = |
| 10451 | static_cast<const AANoFPClass::StateType &>(AA->getState()); |
| 10452 | T ^= S; |
| 10453 | } |
| 10454 | return T.isValidState(); |
| 10455 | }; |
| 10456 | |
| 10457 | for (const auto &VAC : Values) |
| 10458 | if (!VisitValueCB(*VAC.getValue(), VAC.getCtxI())) |
| 10459 | return indicatePessimisticFixpoint(); |
| 10460 | |
| 10461 | return clampStateAndIndicateChange(S&: getState(), R: T); |
| 10462 | } |
| 10463 | |
| 10464 | /// See AbstractAttribute::trackStatistics() |
| 10465 | void trackStatistics() const override { |
| 10466 | STATS_DECLTRACK_FNRET_ATTR(nofpclass) |
| 10467 | } |
| 10468 | }; |
| 10469 | |
| 10470 | struct AANoFPClassReturned final |
| 10471 | : AAReturnedFromReturnedValues<AANoFPClass, AANoFPClassImpl, |
| 10472 | AANoFPClassImpl::StateType, false, |
| 10473 | Attribute::None, false> { |
| 10474 | AANoFPClassReturned(const IRPosition &IRP, Attributor &A) |
| 10475 | : AAReturnedFromReturnedValues<AANoFPClass, AANoFPClassImpl, |
| 10476 | AANoFPClassImpl::StateType, false, |
| 10477 | Attribute::None, false>(IRP, A) {} |
| 10478 | |
| 10479 | /// See AbstractAttribute::trackStatistics() |
| 10480 | void trackStatistics() const override { |
| 10481 | STATS_DECLTRACK_FNRET_ATTR(nofpclass) |
| 10482 | } |
| 10483 | }; |
| 10484 | |
| 10485 | struct AANoFPClassArgument final |
| 10486 | : AAArgumentFromCallSiteArguments<AANoFPClass, AANoFPClassImpl> { |
| 10487 | AANoFPClassArgument(const IRPosition &IRP, Attributor &A) |
| 10488 | : AAArgumentFromCallSiteArguments<AANoFPClass, AANoFPClassImpl>(IRP, A) {} |
| 10489 | |
| 10490 | /// See AbstractAttribute::trackStatistics() |
| 10491 | void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nofpclass) } |
| 10492 | }; |
| 10493 | |
| 10494 | struct AANoFPClassCallSiteArgument final : AANoFPClassFloating { |
| 10495 | AANoFPClassCallSiteArgument(const IRPosition &IRP, Attributor &A) |
| 10496 | : AANoFPClassFloating(IRP, A) {} |
| 10497 | |
| 10498 | /// See AbstractAttribute::trackStatistics() |
| 10499 | void trackStatistics() const override { |
| 10500 | STATS_DECLTRACK_CSARG_ATTR(nofpclass) |
| 10501 | } |
| 10502 | }; |
| 10503 | |
| 10504 | struct AANoFPClassCallSiteReturned final |
| 10505 | : AACalleeToCallSite<AANoFPClass, AANoFPClassImpl> { |
| 10506 | AANoFPClassCallSiteReturned(const IRPosition &IRP, Attributor &A) |
| 10507 | : AACalleeToCallSite<AANoFPClass, AANoFPClassImpl>(IRP, A) {} |
| 10508 | |
| 10509 | /// See AbstractAttribute::trackStatistics() |
| 10510 | void trackStatistics() const override { |
| 10511 | STATS_DECLTRACK_CSRET_ATTR(nofpclass) |
| 10512 | } |
| 10513 | }; |
| 10514 | |
| 10515 | struct AACallEdgesImpl : public AACallEdges { |
| 10516 | AACallEdgesImpl(const IRPosition &IRP, Attributor &A) : AACallEdges(IRP, A) {} |
| 10517 | |
| 10518 | const SetVector<Function *> &getOptimisticEdges() const override { |
| 10519 | return CalledFunctions; |
| 10520 | } |
| 10521 | |
| 10522 | bool hasUnknownCallee() const override { return HasUnknownCallee; } |
| 10523 | |
| 10524 | bool hasNonAsmUnknownCallee() const override { |
| 10525 | return HasUnknownCalleeNonAsm; |
| 10526 | } |
| 10527 | |
| 10528 | const std::string getAsStr(Attributor *A) const override { |
| 10529 | return "CallEdges[" + std::to_string(val: HasUnknownCallee) + "," + |
| 10530 | std::to_string(val: CalledFunctions.size()) + "]" ; |
| 10531 | } |
| 10532 | |
| 10533 | void trackStatistics() const override {} |
| 10534 | |
| 10535 | protected: |
| 10536 | void addCalledFunction(Function *Fn, ChangeStatus &Change) { |
| 10537 | if (CalledFunctions.insert(X: Fn)) { |
| 10538 | Change = ChangeStatus::CHANGED; |
| 10539 | LLVM_DEBUG(dbgs() << "[AACallEdges] New call edge: " << Fn->getName() |
| 10540 | << "\n" ); |
| 10541 | } |
| 10542 | } |
| 10543 | |
| 10544 | void setHasUnknownCallee(bool NonAsm, ChangeStatus &Change) { |
| 10545 | if (!HasUnknownCallee) |
| 10546 | Change = ChangeStatus::CHANGED; |
| 10547 | if (NonAsm && !HasUnknownCalleeNonAsm) |
| 10548 | Change = ChangeStatus::CHANGED; |
| 10549 | HasUnknownCalleeNonAsm |= NonAsm; |
| 10550 | HasUnknownCallee = true; |
| 10551 | } |
| 10552 | |
| 10553 | private: |
| 10554 | /// Optimistic set of functions that might be called by this position. |
| 10555 | SetVector<Function *> CalledFunctions; |
| 10556 | |
| 10557 | /// Is there any call with a unknown callee. |
| 10558 | bool HasUnknownCallee = false; |
| 10559 | |
| 10560 | /// Is there any call with a unknown callee, excluding any inline asm. |
| 10561 | bool HasUnknownCalleeNonAsm = false; |
| 10562 | }; |
| 10563 | |
| 10564 | struct AACallEdgesCallSite : public AACallEdgesImpl { |
| 10565 | AACallEdgesCallSite(const IRPosition &IRP, Attributor &A) |
| 10566 | : AACallEdgesImpl(IRP, A) {} |
| 10567 | /// See AbstractAttribute::updateImpl(...). |
| 10568 | ChangeStatus updateImpl(Attributor &A) override { |
| 10569 | ChangeStatus Change = ChangeStatus::UNCHANGED; |
| 10570 | |
| 10571 | auto VisitValue = [&](Value &V, const Instruction *CtxI) -> bool { |
| 10572 | if (Function *Fn = dyn_cast<Function>(Val: &V)) { |
| 10573 | addCalledFunction(Fn, Change); |
| 10574 | } else { |
| 10575 | LLVM_DEBUG(dbgs() << "[AACallEdges] Unrecognized value: " << V << "\n" ); |
| 10576 | setHasUnknownCallee(NonAsm: true, Change); |
| 10577 | } |
| 10578 | |
| 10579 | // Explore all values. |
| 10580 | return true; |
| 10581 | }; |
| 10582 | |
| 10583 | SmallVector<AA::ValueAndContext> Values; |
| 10584 | // Process any value that we might call. |
| 10585 | auto ProcessCalledOperand = [&](Value *V, Instruction *CtxI) { |
| 10586 | if (isa<Constant>(Val: V)) { |
| 10587 | VisitValue(*V, CtxI); |
| 10588 | return; |
| 10589 | } |
| 10590 | |
| 10591 | bool UsedAssumedInformation = false; |
| 10592 | Values.clear(); |
| 10593 | if (!A.getAssumedSimplifiedValues(IRP: IRPosition::value(V: *V), AA: *this, Values, |
| 10594 | S: AA::AnyScope, UsedAssumedInformation)) { |
| 10595 | Values.push_back(Elt: {*V, CtxI}); |
| 10596 | } |
| 10597 | for (auto &VAC : Values) |
| 10598 | VisitValue(*VAC.getValue(), VAC.getCtxI()); |
| 10599 | }; |
| 10600 | |
| 10601 | CallBase *CB = cast<CallBase>(Val: getCtxI()); |
| 10602 | |
| 10603 | if (auto *IA = dyn_cast<InlineAsm>(Val: CB->getCalledOperand())) { |
| 10604 | if (IA->hasSideEffects() && |
| 10605 | !hasAssumption(F: *CB->getCaller(), AssumptionStr: "ompx_no_call_asm" ) && |
| 10606 | !hasAssumption(CB: *CB, AssumptionStr: "ompx_no_call_asm" )) { |
| 10607 | setHasUnknownCallee(NonAsm: false, Change); |
| 10608 | } |
| 10609 | return Change; |
| 10610 | } |
| 10611 | |
| 10612 | if (CB->isIndirectCall()) |
| 10613 | if (auto *IndirectCallAA = A.getAAFor<AAIndirectCallInfo>( |
| 10614 | QueryingAA: *this, IRP: getIRPosition(), DepClass: DepClassTy::OPTIONAL)) |
| 10615 | if (IndirectCallAA->foreachCallee( |
| 10616 | CB: [&](Function *Fn) { return VisitValue(*Fn, CB); })) |
| 10617 | return Change; |
| 10618 | |
| 10619 | // The most simple case. |
| 10620 | ProcessCalledOperand(CB->getCalledOperand(), CB); |
| 10621 | |
| 10622 | // Process callback functions. |
| 10623 | SmallVector<const Use *, 4u> CallbackUses; |
| 10624 | AbstractCallSite::getCallbackUses(CB: *CB, CallbackUses); |
| 10625 | for (const Use *U : CallbackUses) |
| 10626 | ProcessCalledOperand(U->get(), CB); |
| 10627 | |
| 10628 | return Change; |
| 10629 | } |
| 10630 | }; |
| 10631 | |
| 10632 | struct AACallEdgesFunction : public AACallEdgesImpl { |
| 10633 | AACallEdgesFunction(const IRPosition &IRP, Attributor &A) |
| 10634 | : AACallEdgesImpl(IRP, A) {} |
| 10635 | |
| 10636 | /// See AbstractAttribute::updateImpl(...). |
| 10637 | ChangeStatus updateImpl(Attributor &A) override { |
| 10638 | ChangeStatus Change = ChangeStatus::UNCHANGED; |
| 10639 | |
| 10640 | auto ProcessCallInst = [&](Instruction &Inst) { |
| 10641 | CallBase &CB = cast<CallBase>(Val&: Inst); |
| 10642 | |
| 10643 | auto *CBEdges = A.getAAFor<AACallEdges>( |
| 10644 | QueryingAA: *this, IRP: IRPosition::callsite_function(CB), DepClass: DepClassTy::REQUIRED); |
| 10645 | if (!CBEdges) |
| 10646 | return false; |
| 10647 | if (CBEdges->hasNonAsmUnknownCallee()) |
| 10648 | setHasUnknownCallee(NonAsm: true, Change); |
| 10649 | if (CBEdges->hasUnknownCallee()) |
| 10650 | setHasUnknownCallee(NonAsm: false, Change); |
| 10651 | |
| 10652 | for (Function *F : CBEdges->getOptimisticEdges()) |
| 10653 | addCalledFunction(Fn: F, Change); |
| 10654 | |
| 10655 | return true; |
| 10656 | }; |
| 10657 | |
| 10658 | // Visit all callable instructions. |
| 10659 | bool UsedAssumedInformation = false; |
| 10660 | if (!A.checkForAllCallLikeInstructions(Pred: ProcessCallInst, QueryingAA: *this, |
| 10661 | UsedAssumedInformation, |
| 10662 | /* CheckBBLivenessOnly */ true)) { |
| 10663 | // If we haven't looked at all call like instructions, assume that there |
| 10664 | // are unknown callees. |
| 10665 | setHasUnknownCallee(NonAsm: true, Change); |
| 10666 | } |
| 10667 | |
| 10668 | return Change; |
| 10669 | } |
| 10670 | }; |
| 10671 | |
| 10672 | /// -------------------AAInterFnReachability Attribute-------------------------- |
| 10673 | |
| 10674 | struct AAInterFnReachabilityFunction |
| 10675 | : public CachedReachabilityAA<AAInterFnReachability, Function> { |
| 10676 | using Base = CachedReachabilityAA<AAInterFnReachability, Function>; |
| 10677 | AAInterFnReachabilityFunction(const IRPosition &IRP, Attributor &A) |
| 10678 | : Base(IRP, A) {} |
| 10679 | |
| 10680 | bool instructionCanReach( |
| 10681 | Attributor &A, const Instruction &From, const Function &To, |
| 10682 | const AA::InstExclusionSetTy *ExclusionSet) const override { |
| 10683 | assert(From.getFunction() == getAnchorScope() && "Queried the wrong AA!" ); |
| 10684 | auto *NonConstThis = const_cast<AAInterFnReachabilityFunction *>(this); |
| 10685 | |
| 10686 | RQITy StackRQI(A, From, To, ExclusionSet, false); |
| 10687 | typename RQITy::Reachable Result; |
| 10688 | if (!NonConstThis->checkQueryCache(A, StackRQI, Result)) |
| 10689 | return NonConstThis->isReachableImpl(A, RQI&: StackRQI, |
| 10690 | /*IsTemporaryRQI=*/true); |
| 10691 | return Result == RQITy::Reachable::Yes; |
| 10692 | } |
| 10693 | |
| 10694 | bool isReachableImpl(Attributor &A, RQITy &RQI, |
| 10695 | bool IsTemporaryRQI) override { |
| 10696 | const Instruction *EntryI = |
| 10697 | &RQI.From->getFunction()->getEntryBlock().front(); |
| 10698 | if (EntryI != RQI.From && |
| 10699 | !instructionCanReach(A, From: *EntryI, To: *RQI.To, ExclusionSet: nullptr)) |
| 10700 | return rememberResult(A, Result: RQITy::Reachable::No, RQI, UsedExclusionSet: false, |
| 10701 | IsTemporaryRQI); |
| 10702 | |
| 10703 | auto CheckReachableCallBase = [&](CallBase *CB) { |
| 10704 | auto *CBEdges = A.getAAFor<AACallEdges>( |
| 10705 | QueryingAA: *this, IRP: IRPosition::callsite_function(CB: *CB), DepClass: DepClassTy::OPTIONAL); |
| 10706 | if (!CBEdges || !CBEdges->getState().isValidState()) |
| 10707 | return false; |
| 10708 | // TODO Check To backwards in this case. |
| 10709 | if (CBEdges->hasUnknownCallee()) |
| 10710 | return false; |
| 10711 | |
| 10712 | for (Function *Fn : CBEdges->getOptimisticEdges()) { |
| 10713 | if (Fn == RQI.To) |
| 10714 | return false; |
| 10715 | |
| 10716 | if (Fn->isDeclaration()) { |
| 10717 | if (Fn->hasFnAttribute(Kind: Attribute::NoCallback)) |
| 10718 | continue; |
| 10719 | // TODO Check To backwards in this case. |
| 10720 | return false; |
| 10721 | } |
| 10722 | |
| 10723 | if (Fn == getAnchorScope()) { |
| 10724 | if (EntryI == RQI.From) |
| 10725 | continue; |
| 10726 | return false; |
| 10727 | } |
| 10728 | |
| 10729 | const AAInterFnReachability *InterFnReachability = |
| 10730 | A.getAAFor<AAInterFnReachability>(QueryingAA: *this, IRP: IRPosition::function(F: *Fn), |
| 10731 | DepClass: DepClassTy::OPTIONAL); |
| 10732 | |
| 10733 | const Instruction &FnFirstInst = Fn->getEntryBlock().front(); |
| 10734 | if (!InterFnReachability || |
| 10735 | InterFnReachability->instructionCanReach(A, Inst: FnFirstInst, Fn: *RQI.To, |
| 10736 | ExclusionSet: RQI.ExclusionSet)) |
| 10737 | return false; |
| 10738 | } |
| 10739 | return true; |
| 10740 | }; |
| 10741 | |
| 10742 | const auto *IntraFnReachability = A.getAAFor<AAIntraFnReachability>( |
| 10743 | QueryingAA: *this, IRP: IRPosition::function(F: *RQI.From->getFunction()), |
| 10744 | DepClass: DepClassTy::OPTIONAL); |
| 10745 | |
| 10746 | // Determine call like instructions that we can reach from the inst. |
| 10747 | auto CheckCallBase = [&](Instruction &CBInst) { |
| 10748 | // There are usually less nodes in the call graph, check inter function |
| 10749 | // reachability first. |
| 10750 | if (CheckReachableCallBase(cast<CallBase>(Val: &CBInst))) |
| 10751 | return true; |
| 10752 | return IntraFnReachability && !IntraFnReachability->isAssumedReachable( |
| 10753 | A, From: *RQI.From, To: CBInst, ExclusionSet: RQI.ExclusionSet); |
| 10754 | }; |
| 10755 | |
| 10756 | bool UsedExclusionSet = /* conservative */ true; |
| 10757 | bool UsedAssumedInformation = false; |
| 10758 | if (!A.checkForAllCallLikeInstructions(Pred: CheckCallBase, QueryingAA: *this, |
| 10759 | UsedAssumedInformation, |
| 10760 | /* CheckBBLivenessOnly */ true)) |
| 10761 | return rememberResult(A, Result: RQITy::Reachable::Yes, RQI, UsedExclusionSet, |
| 10762 | IsTemporaryRQI); |
| 10763 | |
| 10764 | return rememberResult(A, Result: RQITy::Reachable::No, RQI, UsedExclusionSet, |
| 10765 | IsTemporaryRQI); |
| 10766 | } |
| 10767 | |
| 10768 | void trackStatistics() const override {} |
| 10769 | }; |
| 10770 | } // namespace |
| 10771 | |
| 10772 | template <typename AAType> |
| 10773 | static std::optional<Constant *> |
| 10774 | askForAssumedConstant(Attributor &A, const AbstractAttribute &QueryingAA, |
| 10775 | const IRPosition &IRP, Type &Ty) { |
| 10776 | if (!Ty.isIntegerTy()) |
| 10777 | return nullptr; |
| 10778 | |
| 10779 | // This will also pass the call base context. |
| 10780 | const auto *AA = A.getAAFor<AAType>(QueryingAA, IRP, DepClassTy::NONE); |
| 10781 | if (!AA) |
| 10782 | return nullptr; |
| 10783 | |
| 10784 | std::optional<Constant *> COpt = AA->getAssumedConstant(A); |
| 10785 | |
| 10786 | if (!COpt.has_value()) { |
| 10787 | A.recordDependence(FromAA: *AA, ToAA: QueryingAA, DepClass: DepClassTy::OPTIONAL); |
| 10788 | return std::nullopt; |
| 10789 | } |
| 10790 | if (auto *C = *COpt) { |
| 10791 | A.recordDependence(FromAA: *AA, ToAA: QueryingAA, DepClass: DepClassTy::OPTIONAL); |
| 10792 | return C; |
| 10793 | } |
| 10794 | return nullptr; |
| 10795 | } |
| 10796 | |
| 10797 | Value *AAPotentialValues::getSingleValue( |
| 10798 | Attributor &A, const AbstractAttribute &AA, const IRPosition &IRP, |
| 10799 | SmallVectorImpl<AA::ValueAndContext> &Values) { |
| 10800 | Type &Ty = *IRP.getAssociatedType(); |
| 10801 | std::optional<Value *> V; |
| 10802 | for (auto &It : Values) { |
| 10803 | V = AA::combineOptionalValuesInAAValueLatice(A: V, B: It.getValue(), Ty: &Ty); |
| 10804 | if (V.has_value() && !*V) |
| 10805 | break; |
| 10806 | } |
| 10807 | if (!V.has_value()) |
| 10808 | return UndefValue::get(T: &Ty); |
| 10809 | return *V; |
| 10810 | } |
| 10811 | |
| 10812 | namespace { |
| 10813 | struct AAPotentialValuesImpl : AAPotentialValues { |
| 10814 | using StateType = PotentialLLVMValuesState; |
| 10815 | |
| 10816 | AAPotentialValuesImpl(const IRPosition &IRP, Attributor &A) |
| 10817 | : AAPotentialValues(IRP, A) {} |
| 10818 | |
| 10819 | /// See AbstractAttribute::initialize(..). |
| 10820 | void initialize(Attributor &A) override { |
| 10821 | if (A.hasSimplificationCallback(IRP: getIRPosition())) { |
| 10822 | indicatePessimisticFixpoint(); |
| 10823 | return; |
| 10824 | } |
| 10825 | Value *Stripped = getAssociatedValue().stripPointerCasts(); |
| 10826 | if (isa<Constant>(Val: Stripped) && !isa<ConstantExpr>(Val: Stripped)) { |
| 10827 | addValue(A, State&: getState(), V&: *Stripped, CtxI: getCtxI(), S: AA::AnyScope, |
| 10828 | AnchorScope: getAnchorScope()); |
| 10829 | indicateOptimisticFixpoint(); |
| 10830 | return; |
| 10831 | } |
| 10832 | AAPotentialValues::initialize(A); |
| 10833 | } |
| 10834 | |
| 10835 | /// See AbstractAttribute::getAsStr(). |
| 10836 | const std::string getAsStr(Attributor *A) const override { |
| 10837 | std::string Str; |
| 10838 | llvm::raw_string_ostream OS(Str); |
| 10839 | OS << getState(); |
| 10840 | return Str; |
| 10841 | } |
| 10842 | |
| 10843 | template <typename AAType> |
| 10844 | static std::optional<Value *> askOtherAA(Attributor &A, |
| 10845 | const AbstractAttribute &AA, |
| 10846 | const IRPosition &IRP, Type &Ty) { |
| 10847 | if (isa<Constant>(Val: IRP.getAssociatedValue())) |
| 10848 | return &IRP.getAssociatedValue(); |
| 10849 | std::optional<Constant *> C = askForAssumedConstant<AAType>(A, AA, IRP, Ty); |
| 10850 | if (!C) |
| 10851 | return std::nullopt; |
| 10852 | if (*C) |
| 10853 | if (auto *CC = AA::getWithType(V&: **C, Ty)) |
| 10854 | return CC; |
| 10855 | return nullptr; |
| 10856 | } |
| 10857 | |
| 10858 | virtual void addValue(Attributor &A, StateType &State, Value &V, |
| 10859 | const Instruction *CtxI, AA::ValueScope S, |
| 10860 | Function *AnchorScope) const { |
| 10861 | |
| 10862 | IRPosition ValIRP = IRPosition::value(V); |
| 10863 | if (auto *CB = dyn_cast_or_null<CallBase>(Val: CtxI)) { |
| 10864 | for (const auto &U : CB->args()) { |
| 10865 | if (U.get() != &V) |
| 10866 | continue; |
| 10867 | ValIRP = IRPosition::callsite_argument(CB: *CB, ArgNo: CB->getArgOperandNo(U: &U)); |
| 10868 | break; |
| 10869 | } |
| 10870 | } |
| 10871 | |
| 10872 | Value *VPtr = &V; |
| 10873 | if (ValIRP.getAssociatedType()->isIntegerTy()) { |
| 10874 | Type &Ty = *getAssociatedType(); |
| 10875 | std::optional<Value *> SimpleV = |
| 10876 | askOtherAA<AAValueConstantRange>(A, AA: *this, IRP: ValIRP, Ty); |
| 10877 | if (SimpleV.has_value() && !*SimpleV) { |
| 10878 | auto *PotentialConstantsAA = A.getAAFor<AAPotentialConstantValues>( |
| 10879 | QueryingAA: *this, IRP: ValIRP, DepClass: DepClassTy::OPTIONAL); |
| 10880 | if (PotentialConstantsAA && PotentialConstantsAA->isValidState()) { |
| 10881 | for (const auto &It : PotentialConstantsAA->getAssumedSet()) |
| 10882 | State.unionAssumed(C: {{*ConstantInt::get(Ty: &Ty, V: It), nullptr}, S}); |
| 10883 | if (PotentialConstantsAA->undefIsContained()) |
| 10884 | State.unionAssumed(C: {{*UndefValue::get(T: &Ty), nullptr}, S}); |
| 10885 | return; |
| 10886 | } |
| 10887 | } |
| 10888 | if (!SimpleV.has_value()) |
| 10889 | return; |
| 10890 | |
| 10891 | if (*SimpleV) |
| 10892 | VPtr = *SimpleV; |
| 10893 | } |
| 10894 | |
| 10895 | if (isa<ConstantInt>(Val: VPtr)) |
| 10896 | CtxI = nullptr; |
| 10897 | if (!AA::isValidInScope(V: *VPtr, Scope: AnchorScope)) |
| 10898 | S = AA::ValueScope(S | AA::Interprocedural); |
| 10899 | |
| 10900 | State.unionAssumed(C: {{*VPtr, CtxI}, S}); |
| 10901 | } |
| 10902 | |
| 10903 | /// Helper struct to tie a value+context pair together with the scope for |
| 10904 | /// which this is the simplified version. |
| 10905 | struct ItemInfo { |
| 10906 | AA::ValueAndContext I; |
| 10907 | AA::ValueScope S; |
| 10908 | |
| 10909 | bool operator==(const ItemInfo &II) const { |
| 10910 | return II.I == I && II.S == S; |
| 10911 | }; |
| 10912 | bool operator<(const ItemInfo &II) const { |
| 10913 | return std::tie(args: I, args: S) < std::tie(args: II.I, args: II.S); |
| 10914 | }; |
| 10915 | }; |
| 10916 | |
| 10917 | bool recurseForValue(Attributor &A, const IRPosition &IRP, AA::ValueScope S) { |
| 10918 | SmallMapVector<AA::ValueAndContext, int, 8> ValueScopeMap; |
| 10919 | for (auto CS : {AA::Intraprocedural, AA::Interprocedural}) { |
| 10920 | if (!(CS & S)) |
| 10921 | continue; |
| 10922 | |
| 10923 | bool UsedAssumedInformation = false; |
| 10924 | SmallVector<AA::ValueAndContext> Values; |
| 10925 | if (!A.getAssumedSimplifiedValues(IRP, AA: this, Values, S: CS, |
| 10926 | UsedAssumedInformation)) |
| 10927 | return false; |
| 10928 | |
| 10929 | for (auto &It : Values) |
| 10930 | ValueScopeMap[It] += CS; |
| 10931 | } |
| 10932 | for (auto &It : ValueScopeMap) |
| 10933 | addValue(A, State&: getState(), V&: *It.first.getValue(), CtxI: It.first.getCtxI(), |
| 10934 | S: AA::ValueScope(It.second), AnchorScope: getAnchorScope()); |
| 10935 | |
| 10936 | return true; |
| 10937 | } |
| 10938 | |
| 10939 | void giveUpOnIntraprocedural(Attributor &A) { |
| 10940 | auto NewS = StateType::getBestState(PVS: getState()); |
| 10941 | for (const auto &It : getAssumedSet()) { |
| 10942 | if (It.second == AA::Intraprocedural) |
| 10943 | continue; |
| 10944 | addValue(A, State&: NewS, V&: *It.first.getValue(), CtxI: It.first.getCtxI(), |
| 10945 | S: AA::Interprocedural, AnchorScope: getAnchorScope()); |
| 10946 | } |
| 10947 | assert(!undefIsContained() && "Undef should be an explicit value!" ); |
| 10948 | addValue(A, State&: NewS, V&: getAssociatedValue(), CtxI: getCtxI(), S: AA::Intraprocedural, |
| 10949 | AnchorScope: getAnchorScope()); |
| 10950 | getState() = NewS; |
| 10951 | } |
| 10952 | |
| 10953 | /// See AbstractState::indicatePessimisticFixpoint(...). |
| 10954 | ChangeStatus indicatePessimisticFixpoint() override { |
| 10955 | getState() = StateType::getBestState(PVS: getState()); |
| 10956 | getState().unionAssumed(C: {{getAssociatedValue(), getCtxI()}, AA::AnyScope}); |
| 10957 | AAPotentialValues::indicateOptimisticFixpoint(); |
| 10958 | return ChangeStatus::CHANGED; |
| 10959 | } |
| 10960 | |
| 10961 | /// See AbstractAttribute::updateImpl(...). |
| 10962 | ChangeStatus updateImpl(Attributor &A) override { |
| 10963 | return indicatePessimisticFixpoint(); |
| 10964 | } |
| 10965 | |
| 10966 | /// See AbstractAttribute::manifest(...). |
| 10967 | ChangeStatus manifest(Attributor &A) override { |
| 10968 | SmallVector<AA::ValueAndContext> Values; |
| 10969 | for (AA::ValueScope S : {AA::Interprocedural, AA::Intraprocedural}) { |
| 10970 | Values.clear(); |
| 10971 | if (!getAssumedSimplifiedValues(A, Values, S)) |
| 10972 | continue; |
| 10973 | Value &OldV = getAssociatedValue(); |
| 10974 | if (isa<UndefValue>(Val: OldV)) |
| 10975 | continue; |
| 10976 | Value *NewV = getSingleValue(A, AA: *this, IRP: getIRPosition(), Values); |
| 10977 | if (!NewV || NewV == &OldV) |
| 10978 | continue; |
| 10979 | if (getCtxI() && |
| 10980 | !AA::isValidAtPosition(VAC: {*NewV, *getCtxI()}, InfoCache&: A.getInfoCache())) |
| 10981 | continue; |
| 10982 | if (A.changeAfterManifest(IRP: getIRPosition(), NV&: *NewV)) |
| 10983 | return ChangeStatus::CHANGED; |
| 10984 | } |
| 10985 | return ChangeStatus::UNCHANGED; |
| 10986 | } |
| 10987 | |
| 10988 | bool getAssumedSimplifiedValues( |
| 10989 | Attributor &A, SmallVectorImpl<AA::ValueAndContext> &Values, |
| 10990 | AA::ValueScope S, bool RecurseForSelectAndPHI = false) const override { |
| 10991 | if (!isValidState()) |
| 10992 | return false; |
| 10993 | bool UsedAssumedInformation = false; |
| 10994 | for (const auto &It : getAssumedSet()) |
| 10995 | if (It.second & S) { |
| 10996 | if (RecurseForSelectAndPHI && (isa<PHINode>(Val: It.first.getValue()) || |
| 10997 | isa<SelectInst>(Val: It.first.getValue()))) { |
| 10998 | if (A.getAssumedSimplifiedValues( |
| 10999 | IRP: IRPosition::inst(I: *cast<Instruction>(Val: It.first.getValue())), |
| 11000 | AA: this, Values, S, UsedAssumedInformation)) |
| 11001 | continue; |
| 11002 | } |
| 11003 | Values.push_back(Elt: It.first); |
| 11004 | } |
| 11005 | assert(!undefIsContained() && "Undef should be an explicit value!" ); |
| 11006 | return true; |
| 11007 | } |
| 11008 | }; |
| 11009 | |
| 11010 | struct AAPotentialValuesFloating : AAPotentialValuesImpl { |
| 11011 | AAPotentialValuesFloating(const IRPosition &IRP, Attributor &A) |
| 11012 | : AAPotentialValuesImpl(IRP, A) {} |
| 11013 | |
| 11014 | /// See AbstractAttribute::updateImpl(...). |
| 11015 | ChangeStatus updateImpl(Attributor &A) override { |
| 11016 | auto AssumedBefore = getAssumed(); |
| 11017 | |
| 11018 | genericValueTraversal(A, InitialV: &getAssociatedValue()); |
| 11019 | |
| 11020 | return (AssumedBefore == getAssumed()) ? ChangeStatus::UNCHANGED |
| 11021 | : ChangeStatus::CHANGED; |
| 11022 | } |
| 11023 | |
| 11024 | /// Helper struct to remember which AAIsDead instances we actually used. |
| 11025 | struct LivenessInfo { |
| 11026 | const AAIsDead *LivenessAA = nullptr; |
| 11027 | bool AnyDead = false; |
| 11028 | }; |
| 11029 | |
| 11030 | /// Check if \p Cmp is a comparison we can simplify. |
| 11031 | /// |
| 11032 | /// We handle multiple cases, one in which at least one operand is an |
| 11033 | /// (assumed) nullptr. If so, try to simplify it using AANonNull on the other |
| 11034 | /// operand. Return true if successful, in that case Worklist will be updated. |
| 11035 | bool handleCmp(Attributor &A, Value &Cmp, Value *LHS, Value *RHS, |
| 11036 | CmpInst::Predicate Pred, ItemInfo II, |
| 11037 | SmallVectorImpl<ItemInfo> &Worklist) { |
| 11038 | |
| 11039 | // Simplify the operands first. |
| 11040 | bool UsedAssumedInformation = false; |
| 11041 | SmallVector<AA::ValueAndContext> LHSValues, RHSValues; |
| 11042 | auto GetSimplifiedValues = [&](Value &V, |
| 11043 | SmallVector<AA::ValueAndContext> &Values) { |
| 11044 | if (!A.getAssumedSimplifiedValues( |
| 11045 | IRP: IRPosition::value(V, CBContext: getCallBaseContext()), AA: this, Values, |
| 11046 | S: AA::Intraprocedural, UsedAssumedInformation)) { |
| 11047 | Values.clear(); |
| 11048 | Values.push_back(Elt: AA::ValueAndContext{V, II.I.getCtxI()}); |
| 11049 | } |
| 11050 | return Values.empty(); |
| 11051 | }; |
| 11052 | if (GetSimplifiedValues(*LHS, LHSValues)) |
| 11053 | return true; |
| 11054 | if (GetSimplifiedValues(*RHS, RHSValues)) |
| 11055 | return true; |
| 11056 | |
| 11057 | LLVMContext &Ctx = LHS->getContext(); |
| 11058 | |
| 11059 | InformationCache &InfoCache = A.getInfoCache(); |
| 11060 | Instruction *CmpI = dyn_cast<Instruction>(Val: &Cmp); |
| 11061 | Function *F = CmpI ? CmpI->getFunction() : nullptr; |
| 11062 | const auto *DT = |
| 11063 | F ? InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(F: *F) |
| 11064 | : nullptr; |
| 11065 | const auto *TLI = |
| 11066 | F ? A.getInfoCache().getTargetLibraryInfoForFunction(F: *F) : nullptr; |
| 11067 | auto *AC = |
| 11068 | F ? InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(F: *F) |
| 11069 | : nullptr; |
| 11070 | |
| 11071 | const DataLayout &DL = A.getDataLayout(); |
| 11072 | SimplifyQuery Q(DL, TLI, DT, AC, CmpI); |
| 11073 | |
| 11074 | auto CheckPair = [&](Value &LHSV, Value &RHSV) { |
| 11075 | if (isa<UndefValue>(Val: LHSV) || isa<UndefValue>(Val: RHSV)) { |
| 11076 | addValue(A, State&: getState(), V&: *UndefValue::get(T: Cmp.getType()), |
| 11077 | /* CtxI */ nullptr, S: II.S, AnchorScope: getAnchorScope()); |
| 11078 | return true; |
| 11079 | } |
| 11080 | |
| 11081 | // Handle the trivial case first in which we don't even need to think |
| 11082 | // about null or non-null. |
| 11083 | if (&LHSV == &RHSV && |
| 11084 | (CmpInst::isTrueWhenEqual(predicate: Pred) || CmpInst::isFalseWhenEqual(predicate: Pred))) { |
| 11085 | Constant *NewV = ConstantInt::get(Ty: Type::getInt1Ty(C&: Ctx), |
| 11086 | V: CmpInst::isTrueWhenEqual(predicate: Pred)); |
| 11087 | addValue(A, State&: getState(), V&: *NewV, /* CtxI */ nullptr, S: II.S, |
| 11088 | AnchorScope: getAnchorScope()); |
| 11089 | return true; |
| 11090 | } |
| 11091 | |
| 11092 | auto *TypedLHS = AA::getWithType(V&: LHSV, Ty&: *LHS->getType()); |
| 11093 | auto *TypedRHS = AA::getWithType(V&: RHSV, Ty&: *RHS->getType()); |
| 11094 | if (TypedLHS && TypedRHS) { |
| 11095 | Value *NewV = simplifyCmpInst(Predicate: Pred, LHS: TypedLHS, RHS: TypedRHS, Q); |
| 11096 | if (NewV && NewV != &Cmp) { |
| 11097 | addValue(A, State&: getState(), V&: *NewV, /* CtxI */ nullptr, S: II.S, |
| 11098 | AnchorScope: getAnchorScope()); |
| 11099 | return true; |
| 11100 | } |
| 11101 | } |
| 11102 | |
| 11103 | // From now on we only handle equalities (==, !=). |
| 11104 | if (!CmpInst::isEquality(pred: Pred)) |
| 11105 | return false; |
| 11106 | |
| 11107 | bool LHSIsNull = isa<ConstantPointerNull>(Val: LHSV); |
| 11108 | bool RHSIsNull = isa<ConstantPointerNull>(Val: RHSV); |
| 11109 | if (!LHSIsNull && !RHSIsNull) |
| 11110 | return false; |
| 11111 | |
| 11112 | // Left is the nullptr ==/!= non-nullptr case. We'll use AANonNull on the |
| 11113 | // non-nullptr operand and if we assume it's non-null we can conclude the |
| 11114 | // result of the comparison. |
| 11115 | assert((LHSIsNull || RHSIsNull) && |
| 11116 | "Expected nullptr versus non-nullptr comparison at this point" ); |
| 11117 | |
| 11118 | // The index is the operand that we assume is not null. |
| 11119 | unsigned PtrIdx = LHSIsNull; |
| 11120 | bool IsKnownNonNull; |
| 11121 | bool IsAssumedNonNull = AA::hasAssumedIRAttr<Attribute::NonNull>( |
| 11122 | A, QueryingAA: this, IRP: IRPosition::value(V: *(PtrIdx ? &RHSV : &LHSV)), |
| 11123 | DepClass: DepClassTy::REQUIRED, IsKnown&: IsKnownNonNull); |
| 11124 | if (!IsAssumedNonNull) |
| 11125 | return false; |
| 11126 | |
| 11127 | // The new value depends on the predicate, true for != and false for ==. |
| 11128 | Constant *NewV = |
| 11129 | ConstantInt::get(Ty: Type::getInt1Ty(C&: Ctx), V: Pred == CmpInst::ICMP_NE); |
| 11130 | addValue(A, State&: getState(), V&: *NewV, /* CtxI */ nullptr, S: II.S, |
| 11131 | AnchorScope: getAnchorScope()); |
| 11132 | return true; |
| 11133 | }; |
| 11134 | |
| 11135 | for (auto &LHSValue : LHSValues) |
| 11136 | for (auto &RHSValue : RHSValues) |
| 11137 | if (!CheckPair(*LHSValue.getValue(), *RHSValue.getValue())) |
| 11138 | return false; |
| 11139 | return true; |
| 11140 | } |
| 11141 | |
| 11142 | bool handleSelectInst(Attributor &A, SelectInst &SI, ItemInfo II, |
| 11143 | SmallVectorImpl<ItemInfo> &Worklist) { |
| 11144 | const Instruction *CtxI = II.I.getCtxI(); |
| 11145 | bool UsedAssumedInformation = false; |
| 11146 | |
| 11147 | std::optional<Constant *> C = |
| 11148 | A.getAssumedConstant(V: *SI.getCondition(), AA: *this, UsedAssumedInformation); |
| 11149 | bool NoValueYet = !C.has_value(); |
| 11150 | if (NoValueYet || isa_and_nonnull<UndefValue>(Val: *C)) |
| 11151 | return true; |
| 11152 | if (auto *CI = dyn_cast_or_null<ConstantInt>(Val: *C)) { |
| 11153 | if (CI->isZero()) |
| 11154 | Worklist.push_back(Elt: {.I: {*SI.getFalseValue(), CtxI}, .S: II.S}); |
| 11155 | else |
| 11156 | Worklist.push_back(Elt: {.I: {*SI.getTrueValue(), CtxI}, .S: II.S}); |
| 11157 | } else if (&SI == &getAssociatedValue()) { |
| 11158 | // We could not simplify the condition, assume both values. |
| 11159 | Worklist.push_back(Elt: {.I: {*SI.getTrueValue(), CtxI}, .S: II.S}); |
| 11160 | Worklist.push_back(Elt: {.I: {*SI.getFalseValue(), CtxI}, .S: II.S}); |
| 11161 | } else { |
| 11162 | std::optional<Value *> SimpleV = A.getAssumedSimplified( |
| 11163 | IRP: IRPosition::inst(I: SI), AA: *this, UsedAssumedInformation, S: II.S); |
| 11164 | if (!SimpleV.has_value()) |
| 11165 | return true; |
| 11166 | if (*SimpleV) { |
| 11167 | addValue(A, State&: getState(), V&: **SimpleV, CtxI, S: II.S, AnchorScope: getAnchorScope()); |
| 11168 | return true; |
| 11169 | } |
| 11170 | return false; |
| 11171 | } |
| 11172 | return true; |
| 11173 | } |
| 11174 | |
| 11175 | bool handleLoadInst(Attributor &A, LoadInst &LI, ItemInfo II, |
| 11176 | SmallVectorImpl<ItemInfo> &Worklist) { |
| 11177 | SmallSetVector<Value *, 4> PotentialCopies; |
| 11178 | SmallSetVector<Instruction *, 4> PotentialValueOrigins; |
| 11179 | bool UsedAssumedInformation = false; |
| 11180 | if (!AA::getPotentiallyLoadedValues(A, LI, PotentialValues&: PotentialCopies, |
| 11181 | PotentialValueOrigins, QueryingAA: *this, |
| 11182 | UsedAssumedInformation, |
| 11183 | /* OnlyExact */ true)) { |
| 11184 | LLVM_DEBUG(dbgs() << "[AAPotentialValues] Failed to get potentially " |
| 11185 | "loaded values for load instruction " |
| 11186 | << LI << "\n" ); |
| 11187 | return false; |
| 11188 | } |
| 11189 | |
| 11190 | // Do not simplify loads that are only used in llvm.assume if we cannot also |
| 11191 | // remove all stores that may feed into the load. The reason is that the |
| 11192 | // assume is probably worth something as long as the stores are around. |
| 11193 | InformationCache &InfoCache = A.getInfoCache(); |
| 11194 | if (InfoCache.isOnlyUsedByAssume(I: LI)) { |
| 11195 | if (!llvm::all_of(Range&: PotentialValueOrigins, P: [&](Instruction *I) { |
| 11196 | if (!I || isa<AssumeInst>(Val: I)) |
| 11197 | return true; |
| 11198 | if (auto *SI = dyn_cast<StoreInst>(Val: I)) |
| 11199 | return A.isAssumedDead(U: SI->getOperandUse(i: 0), QueryingAA: this, |
| 11200 | /* LivenessAA */ FnLivenessAA: nullptr, |
| 11201 | UsedAssumedInformation, |
| 11202 | /* CheckBBLivenessOnly */ false); |
| 11203 | return A.isAssumedDead(I: *I, QueryingAA: this, /* LivenessAA */ nullptr, |
| 11204 | UsedAssumedInformation, |
| 11205 | /* CheckBBLivenessOnly */ false); |
| 11206 | })) { |
| 11207 | LLVM_DEBUG(dbgs() << "[AAPotentialValues] Load is onl used by assumes " |
| 11208 | "and we cannot delete all the stores: " |
| 11209 | << LI << "\n" ); |
| 11210 | return false; |
| 11211 | } |
| 11212 | } |
| 11213 | |
| 11214 | // Values have to be dynamically unique or we loose the fact that a |
| 11215 | // single llvm::Value might represent two runtime values (e.g., |
| 11216 | // stack locations in different recursive calls). |
| 11217 | const Instruction *CtxI = II.I.getCtxI(); |
| 11218 | bool ScopeIsLocal = (II.S & AA::Intraprocedural); |
| 11219 | bool AllLocal = ScopeIsLocal; |
| 11220 | bool DynamicallyUnique = llvm::all_of(Range&: PotentialCopies, P: [&](Value *PC) { |
| 11221 | AllLocal &= AA::isValidInScope(V: *PC, Scope: getAnchorScope()); |
| 11222 | return AA::isDynamicallyUnique(A, QueryingAA: *this, V: *PC); |
| 11223 | }); |
| 11224 | if (!DynamicallyUnique) { |
| 11225 | LLVM_DEBUG(dbgs() << "[AAPotentialValues] Not all potentially loaded " |
| 11226 | "values are dynamically unique: " |
| 11227 | << LI << "\n" ); |
| 11228 | return false; |
| 11229 | } |
| 11230 | |
| 11231 | for (auto *PotentialCopy : PotentialCopies) { |
| 11232 | if (AllLocal) { |
| 11233 | Worklist.push_back(Elt: {.I: {*PotentialCopy, CtxI}, .S: II.S}); |
| 11234 | } else { |
| 11235 | Worklist.push_back(Elt: {.I: {*PotentialCopy, CtxI}, .S: AA::Interprocedural}); |
| 11236 | } |
| 11237 | } |
| 11238 | if (!AllLocal && ScopeIsLocal) |
| 11239 | addValue(A, State&: getState(), V&: LI, CtxI, S: AA::Intraprocedural, AnchorScope: getAnchorScope()); |
| 11240 | return true; |
| 11241 | } |
| 11242 | |
| 11243 | bool handlePHINode( |
| 11244 | Attributor &A, PHINode &PHI, ItemInfo II, |
| 11245 | SmallVectorImpl<ItemInfo> &Worklist, |
| 11246 | SmallMapVector<const Function *, LivenessInfo, 4> &LivenessAAs) { |
| 11247 | auto GetLivenessInfo = [&](const Function &F) -> LivenessInfo & { |
| 11248 | LivenessInfo &LI = LivenessAAs[&F]; |
| 11249 | if (!LI.LivenessAA) |
| 11250 | LI.LivenessAA = A.getAAFor<AAIsDead>(QueryingAA: *this, IRP: IRPosition::function(F), |
| 11251 | DepClass: DepClassTy::NONE); |
| 11252 | return LI; |
| 11253 | }; |
| 11254 | |
| 11255 | if (&PHI == &getAssociatedValue()) { |
| 11256 | LivenessInfo &LI = GetLivenessInfo(*PHI.getFunction()); |
| 11257 | const auto *CI = |
| 11258 | A.getInfoCache().getAnalysisResultForFunction<CycleAnalysis>( |
| 11259 | F: *PHI.getFunction()); |
| 11260 | |
| 11261 | Cycle *C = nullptr; |
| 11262 | bool CyclePHI = mayBeInCycle(CI, I: &PHI, /* HeaderOnly */ true, CPtr: &C); |
| 11263 | for (unsigned u = 0, e = PHI.getNumIncomingValues(); u < e; u++) { |
| 11264 | BasicBlock *IncomingBB = PHI.getIncomingBlock(i: u); |
| 11265 | if (LI.LivenessAA && |
| 11266 | LI.LivenessAA->isEdgeDead(From: IncomingBB, To: PHI.getParent())) { |
| 11267 | LI.AnyDead = true; |
| 11268 | continue; |
| 11269 | } |
| 11270 | Value *V = PHI.getIncomingValue(i: u); |
| 11271 | if (V == &PHI) |
| 11272 | continue; |
| 11273 | |
| 11274 | // If the incoming value is not the PHI but an instruction in the same |
| 11275 | // cycle we might have multiple versions of it flying around. |
| 11276 | if (CyclePHI && isa<Instruction>(Val: V) && |
| 11277 | (!C || C->contains(Block: cast<Instruction>(Val: V)->getParent()))) |
| 11278 | return false; |
| 11279 | |
| 11280 | Worklist.push_back(Elt: {.I: {*V, IncomingBB->getTerminator()}, .S: II.S}); |
| 11281 | } |
| 11282 | return true; |
| 11283 | } |
| 11284 | |
| 11285 | bool UsedAssumedInformation = false; |
| 11286 | std::optional<Value *> SimpleV = A.getAssumedSimplified( |
| 11287 | IRP: IRPosition::inst(I: PHI), AA: *this, UsedAssumedInformation, S: II.S); |
| 11288 | if (!SimpleV.has_value()) |
| 11289 | return true; |
| 11290 | if (!(*SimpleV)) |
| 11291 | return false; |
| 11292 | addValue(A, State&: getState(), V&: **SimpleV, CtxI: &PHI, S: II.S, AnchorScope: getAnchorScope()); |
| 11293 | return true; |
| 11294 | } |
| 11295 | |
| 11296 | /// Use the generic, non-optimistic InstSimplfy functionality if we managed to |
| 11297 | /// simplify any operand of the instruction \p I. Return true if successful, |
| 11298 | /// in that case Worklist will be updated. |
| 11299 | bool handleGenericInst(Attributor &A, Instruction &I, ItemInfo II, |
| 11300 | SmallVectorImpl<ItemInfo> &Worklist) { |
| 11301 | bool SomeSimplified = false; |
| 11302 | bool UsedAssumedInformation = false; |
| 11303 | |
| 11304 | SmallVector<Value *, 8> NewOps(I.getNumOperands()); |
| 11305 | int Idx = 0; |
| 11306 | for (Value *Op : I.operands()) { |
| 11307 | const auto &SimplifiedOp = A.getAssumedSimplified( |
| 11308 | IRP: IRPosition::value(V: *Op, CBContext: getCallBaseContext()), AA: *this, |
| 11309 | UsedAssumedInformation, S: AA::Intraprocedural); |
| 11310 | // If we are not sure about any operand we are not sure about the entire |
| 11311 | // instruction, we'll wait. |
| 11312 | if (!SimplifiedOp.has_value()) |
| 11313 | return true; |
| 11314 | |
| 11315 | if (*SimplifiedOp) |
| 11316 | NewOps[Idx] = *SimplifiedOp; |
| 11317 | else |
| 11318 | NewOps[Idx] = Op; |
| 11319 | |
| 11320 | SomeSimplified |= (NewOps[Idx] != Op); |
| 11321 | ++Idx; |
| 11322 | } |
| 11323 | |
| 11324 | // We won't bother with the InstSimplify interface if we didn't simplify any |
| 11325 | // operand ourselves. |
| 11326 | if (!SomeSimplified) |
| 11327 | return false; |
| 11328 | |
| 11329 | InformationCache &InfoCache = A.getInfoCache(); |
| 11330 | Function *F = I.getFunction(); |
| 11331 | const auto *DT = |
| 11332 | InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(F: *F); |
| 11333 | const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(F: *F); |
| 11334 | auto *AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(F: *F); |
| 11335 | |
| 11336 | const DataLayout &DL = I.getDataLayout(); |
| 11337 | SimplifyQuery Q(DL, TLI, DT, AC, &I); |
| 11338 | Value *NewV = simplifyInstructionWithOperands(I: &I, NewOps, Q); |
| 11339 | if (!NewV || NewV == &I) |
| 11340 | return false; |
| 11341 | |
| 11342 | LLVM_DEBUG(dbgs() << "Generic inst " << I << " assumed simplified to " |
| 11343 | << *NewV << "\n" ); |
| 11344 | Worklist.push_back(Elt: {.I: {*NewV, II.I.getCtxI()}, .S: II.S}); |
| 11345 | return true; |
| 11346 | } |
| 11347 | |
| 11348 | bool simplifyInstruction( |
| 11349 | Attributor &A, Instruction &I, ItemInfo II, |
| 11350 | SmallVectorImpl<ItemInfo> &Worklist, |
| 11351 | SmallMapVector<const Function *, LivenessInfo, 4> &LivenessAAs) { |
| 11352 | if (auto *CI = dyn_cast<CmpInst>(Val: &I)) |
| 11353 | return handleCmp(A, Cmp&: *CI, LHS: CI->getOperand(i_nocapture: 0), RHS: CI->getOperand(i_nocapture: 1), |
| 11354 | Pred: CI->getPredicate(), II, Worklist); |
| 11355 | |
| 11356 | switch (I.getOpcode()) { |
| 11357 | case Instruction::Select: |
| 11358 | return handleSelectInst(A, SI&: cast<SelectInst>(Val&: I), II, Worklist); |
| 11359 | case Instruction::PHI: |
| 11360 | return handlePHINode(A, PHI&: cast<PHINode>(Val&: I), II, Worklist, LivenessAAs); |
| 11361 | case Instruction::Load: |
| 11362 | return handleLoadInst(A, LI&: cast<LoadInst>(Val&: I), II, Worklist); |
| 11363 | default: |
| 11364 | return handleGenericInst(A, I, II, Worklist); |
| 11365 | }; |
| 11366 | return false; |
| 11367 | } |
| 11368 | |
| 11369 | void genericValueTraversal(Attributor &A, Value *InitialV) { |
| 11370 | SmallMapVector<const Function *, LivenessInfo, 4> LivenessAAs; |
| 11371 | |
| 11372 | SmallSet<ItemInfo, 16> Visited; |
| 11373 | SmallVector<ItemInfo, 16> Worklist; |
| 11374 | Worklist.push_back(Elt: {.I: {*InitialV, getCtxI()}, .S: AA::AnyScope}); |
| 11375 | |
| 11376 | int Iteration = 0; |
| 11377 | do { |
| 11378 | ItemInfo II = Worklist.pop_back_val(); |
| 11379 | Value *V = II.I.getValue(); |
| 11380 | assert(V); |
| 11381 | const Instruction *CtxI = II.I.getCtxI(); |
| 11382 | AA::ValueScope S = II.S; |
| 11383 | |
| 11384 | // Check if we should process the current value. To prevent endless |
| 11385 | // recursion keep a record of the values we followed! |
| 11386 | if (!Visited.insert(V: II).second) |
| 11387 | continue; |
| 11388 | |
| 11389 | // Make sure we limit the compile time for complex expressions. |
| 11390 | if (Iteration++ >= MaxPotentialValuesIterations) { |
| 11391 | LLVM_DEBUG(dbgs() << "Generic value traversal reached iteration limit: " |
| 11392 | << Iteration << "!\n" ); |
| 11393 | addValue(A, State&: getState(), V&: *V, CtxI, S, AnchorScope: getAnchorScope()); |
| 11394 | continue; |
| 11395 | } |
| 11396 | |
| 11397 | // Explicitly look through calls with a "returned" attribute if we do |
| 11398 | // not have a pointer as stripPointerCasts only works on them. |
| 11399 | Value *NewV = nullptr; |
| 11400 | if (V->getType()->isPointerTy()) { |
| 11401 | NewV = AA::getWithType(V&: *V->stripPointerCasts(), Ty&: *V->getType()); |
| 11402 | } else { |
| 11403 | if (auto *CB = dyn_cast<CallBase>(Val: V)) |
| 11404 | if (auto *Callee = |
| 11405 | dyn_cast_if_present<Function>(Val: CB->getCalledOperand())) { |
| 11406 | for (Argument &Arg : Callee->args()) |
| 11407 | if (Arg.hasReturnedAttr()) { |
| 11408 | NewV = CB->getArgOperand(i: Arg.getArgNo()); |
| 11409 | break; |
| 11410 | } |
| 11411 | } |
| 11412 | } |
| 11413 | if (NewV && NewV != V) { |
| 11414 | Worklist.push_back(Elt: {.I: {*NewV, CtxI}, .S: S}); |
| 11415 | continue; |
| 11416 | } |
| 11417 | |
| 11418 | if (auto *I = dyn_cast<Instruction>(Val: V)) { |
| 11419 | if (simplifyInstruction(A, I&: *I, II, Worklist, LivenessAAs)) |
| 11420 | continue; |
| 11421 | } |
| 11422 | |
| 11423 | if (V != InitialV || isa<Argument>(Val: V)) |
| 11424 | if (recurseForValue(A, IRP: IRPosition::value(V: *V), S: II.S)) |
| 11425 | continue; |
| 11426 | |
| 11427 | // If we haven't stripped anything we give up. |
| 11428 | if (V == InitialV && CtxI == getCtxI()) { |
| 11429 | indicatePessimisticFixpoint(); |
| 11430 | return; |
| 11431 | } |
| 11432 | |
| 11433 | addValue(A, State&: getState(), V&: *V, CtxI, S, AnchorScope: getAnchorScope()); |
| 11434 | } while (!Worklist.empty()); |
| 11435 | |
| 11436 | // If we actually used liveness information so we have to record a |
| 11437 | // dependence. |
| 11438 | for (auto &It : LivenessAAs) |
| 11439 | if (It.second.AnyDead) |
| 11440 | A.recordDependence(FromAA: *It.second.LivenessAA, ToAA: *this, DepClass: DepClassTy::OPTIONAL); |
| 11441 | } |
| 11442 | |
| 11443 | /// See AbstractAttribute::trackStatistics() |
| 11444 | void trackStatistics() const override { |
| 11445 | STATS_DECLTRACK_FLOATING_ATTR(potential_values) |
| 11446 | } |
| 11447 | }; |
| 11448 | |
| 11449 | struct AAPotentialValuesArgument final : AAPotentialValuesImpl { |
| 11450 | using Base = AAPotentialValuesImpl; |
| 11451 | AAPotentialValuesArgument(const IRPosition &IRP, Attributor &A) |
| 11452 | : Base(IRP, A) {} |
| 11453 | |
| 11454 | /// See AbstractAttribute::initialize(..). |
| 11455 | void initialize(Attributor &A) override { |
| 11456 | auto &Arg = cast<Argument>(Val&: getAssociatedValue()); |
| 11457 | if (Arg.hasPointeeInMemoryValueAttr()) |
| 11458 | indicatePessimisticFixpoint(); |
| 11459 | } |
| 11460 | |
| 11461 | /// See AbstractAttribute::updateImpl(...). |
| 11462 | ChangeStatus updateImpl(Attributor &A) override { |
| 11463 | auto AssumedBefore = getAssumed(); |
| 11464 | |
| 11465 | unsigned ArgNo = getCalleeArgNo(); |
| 11466 | |
| 11467 | bool UsedAssumedInformation = false; |
| 11468 | SmallVector<AA::ValueAndContext> Values; |
| 11469 | auto CallSitePred = [&](AbstractCallSite ACS) { |
| 11470 | const auto CSArgIRP = IRPosition::callsite_argument(ACS, ArgNo); |
| 11471 | if (CSArgIRP.getPositionKind() == IRP_INVALID) |
| 11472 | return false; |
| 11473 | |
| 11474 | if (!A.getAssumedSimplifiedValues(IRP: CSArgIRP, AA: this, Values, |
| 11475 | S: AA::Interprocedural, |
| 11476 | UsedAssumedInformation)) |
| 11477 | return false; |
| 11478 | |
| 11479 | return isValidState(); |
| 11480 | }; |
| 11481 | |
| 11482 | if (!A.checkForAllCallSites(Pred: CallSitePred, QueryingAA: *this, |
| 11483 | /* RequireAllCallSites */ true, |
| 11484 | UsedAssumedInformation)) |
| 11485 | return indicatePessimisticFixpoint(); |
| 11486 | |
| 11487 | Function *Fn = getAssociatedFunction(); |
| 11488 | bool AnyNonLocal = false; |
| 11489 | for (auto &It : Values) { |
| 11490 | if (isa<Constant>(Val: It.getValue())) { |
| 11491 | addValue(A, State&: getState(), V&: *It.getValue(), CtxI: It.getCtxI(), S: AA::AnyScope, |
| 11492 | AnchorScope: getAnchorScope()); |
| 11493 | continue; |
| 11494 | } |
| 11495 | if (!AA::isDynamicallyUnique(A, QueryingAA: *this, V: *It.getValue())) |
| 11496 | return indicatePessimisticFixpoint(); |
| 11497 | |
| 11498 | if (auto *Arg = dyn_cast<Argument>(Val: It.getValue())) |
| 11499 | if (Arg->getParent() == Fn) { |
| 11500 | addValue(A, State&: getState(), V&: *It.getValue(), CtxI: It.getCtxI(), S: AA::AnyScope, |
| 11501 | AnchorScope: getAnchorScope()); |
| 11502 | continue; |
| 11503 | } |
| 11504 | addValue(A, State&: getState(), V&: *It.getValue(), CtxI: It.getCtxI(), S: AA::Interprocedural, |
| 11505 | AnchorScope: getAnchorScope()); |
| 11506 | AnyNonLocal = true; |
| 11507 | } |
| 11508 | assert(!undefIsContained() && "Undef should be an explicit value!" ); |
| 11509 | if (AnyNonLocal) |
| 11510 | giveUpOnIntraprocedural(A); |
| 11511 | |
| 11512 | return (AssumedBefore == getAssumed()) ? ChangeStatus::UNCHANGED |
| 11513 | : ChangeStatus::CHANGED; |
| 11514 | } |
| 11515 | |
| 11516 | /// See AbstractAttribute::trackStatistics() |
| 11517 | void trackStatistics() const override { |
| 11518 | STATS_DECLTRACK_ARG_ATTR(potential_values) |
| 11519 | } |
| 11520 | }; |
| 11521 | |
| 11522 | struct AAPotentialValuesReturned : public AAPotentialValuesFloating { |
| 11523 | using Base = AAPotentialValuesFloating; |
| 11524 | AAPotentialValuesReturned(const IRPosition &IRP, Attributor &A) |
| 11525 | : Base(IRP, A) {} |
| 11526 | |
| 11527 | /// See AbstractAttribute::initialize(..). |
| 11528 | void initialize(Attributor &A) override { |
| 11529 | Function *F = getAssociatedFunction(); |
| 11530 | if (!F || F->isDeclaration() || F->getReturnType()->isVoidTy()) { |
| 11531 | indicatePessimisticFixpoint(); |
| 11532 | return; |
| 11533 | } |
| 11534 | |
| 11535 | for (Argument &Arg : F->args()) |
| 11536 | if (Arg.hasReturnedAttr()) { |
| 11537 | addValue(A, State&: getState(), V&: Arg, CtxI: nullptr, S: AA::AnyScope, AnchorScope: F); |
| 11538 | ReturnedArg = &Arg; |
| 11539 | break; |
| 11540 | } |
| 11541 | if (!A.isFunctionIPOAmendable(F: *F) || |
| 11542 | A.hasSimplificationCallback(IRP: getIRPosition())) { |
| 11543 | if (!ReturnedArg) |
| 11544 | indicatePessimisticFixpoint(); |
| 11545 | else |
| 11546 | indicateOptimisticFixpoint(); |
| 11547 | } |
| 11548 | } |
| 11549 | |
| 11550 | /// See AbstractAttribute::updateImpl(...). |
| 11551 | ChangeStatus updateImpl(Attributor &A) override { |
| 11552 | auto AssumedBefore = getAssumed(); |
| 11553 | bool UsedAssumedInformation = false; |
| 11554 | |
| 11555 | SmallVector<AA::ValueAndContext> Values; |
| 11556 | Function *AnchorScope = getAnchorScope(); |
| 11557 | auto HandleReturnedValue = [&](Value &V, Instruction *CtxI, |
| 11558 | bool AddValues) { |
| 11559 | for (AA::ValueScope S : {AA::Interprocedural, AA::Intraprocedural}) { |
| 11560 | Values.clear(); |
| 11561 | if (!A.getAssumedSimplifiedValues(IRP: IRPosition::value(V), AA: this, Values, S, |
| 11562 | UsedAssumedInformation, |
| 11563 | /* RecurseForSelectAndPHI */ true)) |
| 11564 | return false; |
| 11565 | if (!AddValues) |
| 11566 | continue; |
| 11567 | |
| 11568 | bool AllInterAreIntra = false; |
| 11569 | if (S == AA::Interprocedural) |
| 11570 | AllInterAreIntra = |
| 11571 | llvm::all_of(Range&: Values, P: [&](const AA::ValueAndContext &VAC) { |
| 11572 | return AA::isValidInScope(V: *VAC.getValue(), Scope: AnchorScope); |
| 11573 | }); |
| 11574 | |
| 11575 | for (const AA::ValueAndContext &VAC : Values) { |
| 11576 | addValue(A, State&: getState(), V&: *VAC.getValue(), |
| 11577 | CtxI: VAC.getCtxI() ? VAC.getCtxI() : CtxI, |
| 11578 | S: AllInterAreIntra ? AA::AnyScope : S, AnchorScope); |
| 11579 | } |
| 11580 | if (AllInterAreIntra) |
| 11581 | break; |
| 11582 | } |
| 11583 | return true; |
| 11584 | }; |
| 11585 | |
| 11586 | if (ReturnedArg) { |
| 11587 | HandleReturnedValue(*ReturnedArg, nullptr, true); |
| 11588 | } else { |
| 11589 | auto RetInstPred = [&](Instruction &RetI) { |
| 11590 | bool AddValues = true; |
| 11591 | if (isa<PHINode>(Val: RetI.getOperand(i: 0)) || |
| 11592 | isa<SelectInst>(Val: RetI.getOperand(i: 0))) { |
| 11593 | addValue(A, State&: getState(), V&: *RetI.getOperand(i: 0), CtxI: &RetI, S: AA::AnyScope, |
| 11594 | AnchorScope); |
| 11595 | AddValues = false; |
| 11596 | } |
| 11597 | return HandleReturnedValue(*RetI.getOperand(i: 0), &RetI, AddValues); |
| 11598 | }; |
| 11599 | |
| 11600 | if (!A.checkForAllInstructions(Pred: RetInstPred, QueryingAA: *this, Opcodes: {Instruction::Ret}, |
| 11601 | UsedAssumedInformation, |
| 11602 | /* CheckBBLivenessOnly */ true)) |
| 11603 | return indicatePessimisticFixpoint(); |
| 11604 | } |
| 11605 | |
| 11606 | return (AssumedBefore == getAssumed()) ? ChangeStatus::UNCHANGED |
| 11607 | : ChangeStatus::CHANGED; |
| 11608 | } |
| 11609 | |
| 11610 | ChangeStatus manifest(Attributor &A) override { |
| 11611 | if (ReturnedArg) |
| 11612 | return ChangeStatus::UNCHANGED; |
| 11613 | SmallVector<AA::ValueAndContext> Values; |
| 11614 | if (!getAssumedSimplifiedValues(A, Values, S: AA::ValueScope::Intraprocedural, |
| 11615 | /* RecurseForSelectAndPHI */ true)) |
| 11616 | return ChangeStatus::UNCHANGED; |
| 11617 | Value *NewVal = getSingleValue(A, AA: *this, IRP: getIRPosition(), Values); |
| 11618 | if (!NewVal) |
| 11619 | return ChangeStatus::UNCHANGED; |
| 11620 | |
| 11621 | ChangeStatus Changed = ChangeStatus::UNCHANGED; |
| 11622 | if (auto *Arg = dyn_cast<Argument>(Val: NewVal)) { |
| 11623 | STATS_DECLTRACK(UniqueReturnValue, FunctionReturn, |
| 11624 | "Number of function with unique return" ); |
| 11625 | Changed |= A.manifestAttrs( |
| 11626 | IRP: IRPosition::argument(Arg: *Arg), |
| 11627 | DeducedAttrs: {Attribute::get(Context&: Arg->getContext(), Kind: Attribute::Returned)}); |
| 11628 | STATS_DECLTRACK_ARG_ATTR(returned); |
| 11629 | } |
| 11630 | |
| 11631 | auto RetInstPred = [&](Instruction &RetI) { |
| 11632 | Value *RetOp = RetI.getOperand(i: 0); |
| 11633 | if (isa<UndefValue>(Val: RetOp) || RetOp == NewVal) |
| 11634 | return true; |
| 11635 | if (AA::isValidAtPosition(VAC: {*NewVal, RetI}, InfoCache&: A.getInfoCache())) |
| 11636 | if (A.changeUseAfterManifest(U&: RetI.getOperandUse(i: 0), NV&: *NewVal)) |
| 11637 | Changed = ChangeStatus::CHANGED; |
| 11638 | return true; |
| 11639 | }; |
| 11640 | bool UsedAssumedInformation = false; |
| 11641 | (void)A.checkForAllInstructions(Pred: RetInstPred, QueryingAA: *this, Opcodes: {Instruction::Ret}, |
| 11642 | UsedAssumedInformation, |
| 11643 | /* CheckBBLivenessOnly */ true); |
| 11644 | return Changed; |
| 11645 | } |
| 11646 | |
| 11647 | ChangeStatus indicatePessimisticFixpoint() override { |
| 11648 | return AAPotentialValues::indicatePessimisticFixpoint(); |
| 11649 | } |
| 11650 | |
| 11651 | /// See AbstractAttribute::trackStatistics() |
| 11652 | void trackStatistics() const override{ |
| 11653 | STATS_DECLTRACK_FNRET_ATTR(potential_values)} |
| 11654 | |
| 11655 | /// The argumented with an existing `returned` attribute. |
| 11656 | Argument *ReturnedArg = nullptr; |
| 11657 | }; |
| 11658 | |
| 11659 | struct AAPotentialValuesFunction : AAPotentialValuesImpl { |
| 11660 | AAPotentialValuesFunction(const IRPosition &IRP, Attributor &A) |
| 11661 | : AAPotentialValuesImpl(IRP, A) {} |
| 11662 | |
| 11663 | /// See AbstractAttribute::updateImpl(...). |
| 11664 | ChangeStatus updateImpl(Attributor &A) override { |
| 11665 | llvm_unreachable("AAPotentialValues(Function|CallSite)::updateImpl will " |
| 11666 | "not be called" ); |
| 11667 | } |
| 11668 | |
| 11669 | /// See AbstractAttribute::trackStatistics() |
| 11670 | void trackStatistics() const override { |
| 11671 | STATS_DECLTRACK_FN_ATTR(potential_values) |
| 11672 | } |
| 11673 | }; |
| 11674 | |
| 11675 | struct AAPotentialValuesCallSite : AAPotentialValuesFunction { |
| 11676 | AAPotentialValuesCallSite(const IRPosition &IRP, Attributor &A) |
| 11677 | : AAPotentialValuesFunction(IRP, A) {} |
| 11678 | |
| 11679 | /// See AbstractAttribute::trackStatistics() |
| 11680 | void trackStatistics() const override { |
| 11681 | STATS_DECLTRACK_CS_ATTR(potential_values) |
| 11682 | } |
| 11683 | }; |
| 11684 | |
| 11685 | struct AAPotentialValuesCallSiteReturned : AAPotentialValuesImpl { |
| 11686 | AAPotentialValuesCallSiteReturned(const IRPosition &IRP, Attributor &A) |
| 11687 | : AAPotentialValuesImpl(IRP, A) {} |
| 11688 | |
| 11689 | /// See AbstractAttribute::updateImpl(...). |
| 11690 | ChangeStatus updateImpl(Attributor &A) override { |
| 11691 | auto AssumedBefore = getAssumed(); |
| 11692 | |
| 11693 | Function *Callee = getAssociatedFunction(); |
| 11694 | if (!Callee) |
| 11695 | return indicatePessimisticFixpoint(); |
| 11696 | |
| 11697 | bool UsedAssumedInformation = false; |
| 11698 | auto *CB = cast<CallBase>(Val: getCtxI()); |
| 11699 | if (CB->isMustTailCall() && |
| 11700 | !A.isAssumedDead(IRP: IRPosition::inst(I: *CB), QueryingAA: this, FnLivenessAA: nullptr, |
| 11701 | UsedAssumedInformation)) |
| 11702 | return indicatePessimisticFixpoint(); |
| 11703 | |
| 11704 | Function *Caller = CB->getCaller(); |
| 11705 | |
| 11706 | auto AddScope = [&](AA::ValueScope S) { |
| 11707 | SmallVector<AA::ValueAndContext> Values; |
| 11708 | if (!A.getAssumedSimplifiedValues(IRP: IRPosition::returned(F: *Callee), AA: this, |
| 11709 | Values, S, UsedAssumedInformation)) |
| 11710 | return false; |
| 11711 | |
| 11712 | for (auto &It : Values) { |
| 11713 | Value *V = It.getValue(); |
| 11714 | std::optional<Value *> CallerV = A.translateArgumentToCallSiteContent( |
| 11715 | V, CB&: *CB, AA: *this, UsedAssumedInformation); |
| 11716 | if (!CallerV.has_value()) { |
| 11717 | // Nothing to do as long as no value was determined. |
| 11718 | continue; |
| 11719 | } |
| 11720 | V = *CallerV ? *CallerV : V; |
| 11721 | if (*CallerV && AA::isDynamicallyUnique(A, QueryingAA: *this, V: *V)) { |
| 11722 | if (recurseForValue(A, IRP: IRPosition::value(V: *V), S)) |
| 11723 | continue; |
| 11724 | } |
| 11725 | if (S == AA::Intraprocedural && !AA::isValidInScope(V: *V, Scope: Caller)) { |
| 11726 | giveUpOnIntraprocedural(A); |
| 11727 | return true; |
| 11728 | } |
| 11729 | addValue(A, State&: getState(), V&: *V, CtxI: CB, S, AnchorScope: getAnchorScope()); |
| 11730 | } |
| 11731 | return true; |
| 11732 | }; |
| 11733 | if (!AddScope(AA::Intraprocedural)) |
| 11734 | return indicatePessimisticFixpoint(); |
| 11735 | if (!AddScope(AA::Interprocedural)) |
| 11736 | return indicatePessimisticFixpoint(); |
| 11737 | return (AssumedBefore == getAssumed()) ? ChangeStatus::UNCHANGED |
| 11738 | : ChangeStatus::CHANGED; |
| 11739 | } |
| 11740 | |
| 11741 | ChangeStatus indicatePessimisticFixpoint() override { |
| 11742 | return AAPotentialValues::indicatePessimisticFixpoint(); |
| 11743 | } |
| 11744 | |
| 11745 | /// See AbstractAttribute::trackStatistics() |
| 11746 | void trackStatistics() const override { |
| 11747 | STATS_DECLTRACK_CSRET_ATTR(potential_values) |
| 11748 | } |
| 11749 | }; |
| 11750 | |
| 11751 | struct AAPotentialValuesCallSiteArgument : AAPotentialValuesFloating { |
| 11752 | AAPotentialValuesCallSiteArgument(const IRPosition &IRP, Attributor &A) |
| 11753 | : AAPotentialValuesFloating(IRP, A) {} |
| 11754 | |
| 11755 | /// See AbstractAttribute::trackStatistics() |
| 11756 | void trackStatistics() const override { |
| 11757 | STATS_DECLTRACK_CSARG_ATTR(potential_values) |
| 11758 | } |
| 11759 | }; |
| 11760 | } // namespace |
| 11761 | |
| 11762 | /// ---------------------- Assumption Propagation ------------------------------ |
| 11763 | namespace { |
| 11764 | struct AAAssumptionInfoImpl : public AAAssumptionInfo { |
| 11765 | AAAssumptionInfoImpl(const IRPosition &IRP, Attributor &A, |
| 11766 | const DenseSet<StringRef> &Known) |
| 11767 | : AAAssumptionInfo(IRP, A, Known) {} |
| 11768 | |
| 11769 | /// See AbstractAttribute::manifest(...). |
| 11770 | ChangeStatus manifest(Attributor &A) override { |
| 11771 | // Don't manifest a universal set if it somehow made it here. |
| 11772 | if (getKnown().isUniversal()) |
| 11773 | return ChangeStatus::UNCHANGED; |
| 11774 | |
| 11775 | const IRPosition &IRP = getIRPosition(); |
| 11776 | SmallVector<StringRef, 0> Set(getAssumed().getSet().begin(), |
| 11777 | getAssumed().getSet().end()); |
| 11778 | llvm::sort(C&: Set); |
| 11779 | return A.manifestAttrs(IRP, |
| 11780 | DeducedAttrs: Attribute::get(Context&: IRP.getAnchorValue().getContext(), |
| 11781 | Kind: AssumptionAttrKey, |
| 11782 | Val: llvm::join(R&: Set, Separator: "," )), |
| 11783 | /*ForceReplace=*/true); |
| 11784 | } |
| 11785 | |
| 11786 | bool hasAssumption(const StringRef Assumption) const override { |
| 11787 | return isValidState() && setContains(Assumption); |
| 11788 | } |
| 11789 | |
| 11790 | /// See AbstractAttribute::getAsStr() |
| 11791 | const std::string getAsStr(Attributor *A) const override { |
| 11792 | const SetContents &Known = getKnown(); |
| 11793 | const SetContents &Assumed = getAssumed(); |
| 11794 | |
| 11795 | SmallVector<StringRef, 0> Set(Known.getSet().begin(), Known.getSet().end()); |
| 11796 | llvm::sort(C&: Set); |
| 11797 | const std::string KnownStr = llvm::join(R&: Set, Separator: "," ); |
| 11798 | |
| 11799 | std::string AssumedStr = "Universal" ; |
| 11800 | if (!Assumed.isUniversal()) { |
| 11801 | Set.assign(in_start: Assumed.getSet().begin(), in_end: Assumed.getSet().end()); |
| 11802 | AssumedStr = llvm::join(R&: Set, Separator: "," ); |
| 11803 | } |
| 11804 | return "Known [" + KnownStr + "]," + " Assumed [" + AssumedStr + "]" ; |
| 11805 | } |
| 11806 | }; |
| 11807 | |
| 11808 | /// Propagates assumption information from parent functions to all of their |
| 11809 | /// successors. An assumption can be propagated if the containing function |
| 11810 | /// dominates the called function. |
| 11811 | /// |
| 11812 | /// We start with a "known" set of assumptions already valid for the associated |
| 11813 | /// function and an "assumed" set that initially contains all possible |
| 11814 | /// assumptions. The assumed set is inter-procedurally updated by narrowing its |
| 11815 | /// contents as concrete values are known. The concrete values are seeded by the |
| 11816 | /// first nodes that are either entries into the call graph, or contains no |
| 11817 | /// assumptions. Each node is updated as the intersection of the assumed state |
| 11818 | /// with all of its predecessors. |
| 11819 | struct AAAssumptionInfoFunction final : AAAssumptionInfoImpl { |
| 11820 | AAAssumptionInfoFunction(const IRPosition &IRP, Attributor &A) |
| 11821 | : AAAssumptionInfoImpl(IRP, A, |
| 11822 | getAssumptions(F: *IRP.getAssociatedFunction())) {} |
| 11823 | |
| 11824 | /// See AbstractAttribute::updateImpl(...). |
| 11825 | ChangeStatus updateImpl(Attributor &A) override { |
| 11826 | bool Changed = false; |
| 11827 | |
| 11828 | auto CallSitePred = [&](AbstractCallSite ACS) { |
| 11829 | const auto *AssumptionAA = A.getAAFor<AAAssumptionInfo>( |
| 11830 | QueryingAA: *this, IRP: IRPosition::callsite_function(CB: *ACS.getInstruction()), |
| 11831 | DepClass: DepClassTy::REQUIRED); |
| 11832 | if (!AssumptionAA) |
| 11833 | return false; |
| 11834 | // Get the set of assumptions shared by all of this function's callers. |
| 11835 | Changed |= getIntersection(RHS: AssumptionAA->getAssumed()); |
| 11836 | return !getAssumed().empty() || !getKnown().empty(); |
| 11837 | }; |
| 11838 | |
| 11839 | bool UsedAssumedInformation = false; |
| 11840 | // Get the intersection of all assumptions held by this node's predecessors. |
| 11841 | // If we don't know all the call sites then this is either an entry into the |
| 11842 | // call graph or an empty node. This node is known to only contain its own |
| 11843 | // assumptions and can be propagated to its successors. |
| 11844 | if (!A.checkForAllCallSites(Pred: CallSitePred, QueryingAA: *this, RequireAllCallSites: true, |
| 11845 | UsedAssumedInformation)) |
| 11846 | return indicatePessimisticFixpoint(); |
| 11847 | |
| 11848 | return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED; |
| 11849 | } |
| 11850 | |
| 11851 | void trackStatistics() const override {} |
| 11852 | }; |
| 11853 | |
| 11854 | /// Assumption Info defined for call sites. |
| 11855 | struct AAAssumptionInfoCallSite final : AAAssumptionInfoImpl { |
| 11856 | |
| 11857 | AAAssumptionInfoCallSite(const IRPosition &IRP, Attributor &A) |
| 11858 | : AAAssumptionInfoImpl(IRP, A, getInitialAssumptions(IRP)) {} |
| 11859 | |
| 11860 | /// See AbstractAttribute::initialize(...). |
| 11861 | void initialize(Attributor &A) override { |
| 11862 | const IRPosition &FnPos = IRPosition::function(F: *getAnchorScope()); |
| 11863 | A.getAAFor<AAAssumptionInfo>(QueryingAA: *this, IRP: FnPos, DepClass: DepClassTy::REQUIRED); |
| 11864 | } |
| 11865 | |
| 11866 | /// See AbstractAttribute::updateImpl(...). |
| 11867 | ChangeStatus updateImpl(Attributor &A) override { |
| 11868 | const IRPosition &FnPos = IRPosition::function(F: *getAnchorScope()); |
| 11869 | auto *AssumptionAA = |
| 11870 | A.getAAFor<AAAssumptionInfo>(QueryingAA: *this, IRP: FnPos, DepClass: DepClassTy::REQUIRED); |
| 11871 | if (!AssumptionAA) |
| 11872 | return indicatePessimisticFixpoint(); |
| 11873 | bool Changed = getIntersection(RHS: AssumptionAA->getAssumed()); |
| 11874 | return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED; |
| 11875 | } |
| 11876 | |
| 11877 | /// See AbstractAttribute::trackStatistics() |
| 11878 | void trackStatistics() const override {} |
| 11879 | |
| 11880 | private: |
| 11881 | /// Helper to initialized the known set as all the assumptions this call and |
| 11882 | /// the callee contain. |
| 11883 | DenseSet<StringRef> getInitialAssumptions(const IRPosition &IRP) { |
| 11884 | const CallBase &CB = cast<CallBase>(Val&: IRP.getAssociatedValue()); |
| 11885 | auto Assumptions = getAssumptions(CB); |
| 11886 | if (const Function *F = CB.getCaller()) |
| 11887 | set_union(S1&: Assumptions, S2: getAssumptions(F: *F)); |
| 11888 | if (Function *F = IRP.getAssociatedFunction()) |
| 11889 | set_union(S1&: Assumptions, S2: getAssumptions(F: *F)); |
| 11890 | return Assumptions; |
| 11891 | } |
| 11892 | }; |
| 11893 | } // namespace |
| 11894 | |
| 11895 | AACallGraphNode *AACallEdgeIterator::operator*() const { |
| 11896 | return static_cast<AACallGraphNode *>(const_cast<AACallEdges *>( |
| 11897 | A.getOrCreateAAFor<AACallEdges>(IRP: IRPosition::function(F: **I)))); |
| 11898 | } |
| 11899 | |
| 11900 | void AttributorCallGraph::print() { llvm::WriteGraph(O&: outs(), G: this); } |
| 11901 | |
| 11902 | /// ------------------------ UnderlyingObjects --------------------------------- |
| 11903 | |
| 11904 | namespace { |
| 11905 | struct AAUnderlyingObjectsImpl |
| 11906 | : StateWrapper<BooleanState, AAUnderlyingObjects> { |
| 11907 | using BaseTy = StateWrapper<BooleanState, AAUnderlyingObjects>; |
| 11908 | AAUnderlyingObjectsImpl(const IRPosition &IRP, Attributor &A) : BaseTy(IRP) {} |
| 11909 | |
| 11910 | /// See AbstractAttribute::getAsStr(). |
| 11911 | const std::string getAsStr(Attributor *A) const override { |
| 11912 | if (!isValidState()) |
| 11913 | return "<invalid>" ; |
| 11914 | std::string Str; |
| 11915 | llvm::raw_string_ostream OS(Str); |
| 11916 | OS << "underlying objects: inter " << InterAssumedUnderlyingObjects.size() |
| 11917 | << " objects, intra " << IntraAssumedUnderlyingObjects.size() |
| 11918 | << " objects.\n" ; |
| 11919 | if (!InterAssumedUnderlyingObjects.empty()) { |
| 11920 | OS << "inter objects:\n" ; |
| 11921 | for (auto *Obj : InterAssumedUnderlyingObjects) |
| 11922 | OS << *Obj << '\n'; |
| 11923 | } |
| 11924 | if (!IntraAssumedUnderlyingObjects.empty()) { |
| 11925 | OS << "intra objects:\n" ; |
| 11926 | for (auto *Obj : IntraAssumedUnderlyingObjects) |
| 11927 | OS << *Obj << '\n'; |
| 11928 | } |
| 11929 | return Str; |
| 11930 | } |
| 11931 | |
| 11932 | /// See AbstractAttribute::trackStatistics() |
| 11933 | void trackStatistics() const override {} |
| 11934 | |
| 11935 | /// See AbstractAttribute::updateImpl(...). |
| 11936 | ChangeStatus updateImpl(Attributor &A) override { |
| 11937 | auto &Ptr = getAssociatedValue(); |
| 11938 | |
| 11939 | bool UsedAssumedInformation = false; |
| 11940 | auto DoUpdate = [&](SmallSetVector<Value *, 8> &UnderlyingObjects, |
| 11941 | AA::ValueScope Scope) { |
| 11942 | SmallPtrSet<Value *, 8> SeenObjects; |
| 11943 | SmallVector<AA::ValueAndContext> Values; |
| 11944 | |
| 11945 | if (!A.getAssumedSimplifiedValues(IRP: IRPosition::value(V: Ptr), AA: *this, Values, |
| 11946 | S: Scope, UsedAssumedInformation)) |
| 11947 | return UnderlyingObjects.insert(X: &Ptr); |
| 11948 | |
| 11949 | bool Changed = false; |
| 11950 | |
| 11951 | for (unsigned I = 0; I < Values.size(); ++I) { |
| 11952 | auto &VAC = Values[I]; |
| 11953 | auto *Obj = VAC.getValue(); |
| 11954 | Value *UO = getUnderlyingObject(V: Obj); |
| 11955 | if (!SeenObjects.insert(Ptr: UO ? UO : Obj).second) |
| 11956 | continue; |
| 11957 | if (UO && UO != Obj) { |
| 11958 | if (isa<AllocaInst>(Val: UO) || isa<GlobalValue>(Val: UO)) { |
| 11959 | Changed |= UnderlyingObjects.insert(X: UO); |
| 11960 | continue; |
| 11961 | } |
| 11962 | |
| 11963 | const auto *OtherAA = A.getAAFor<AAUnderlyingObjects>( |
| 11964 | QueryingAA: *this, IRP: IRPosition::value(V: *UO), DepClass: DepClassTy::OPTIONAL); |
| 11965 | auto Pred = [&](Value &V) { |
| 11966 | if (&V == UO) |
| 11967 | Changed |= UnderlyingObjects.insert(X: UO); |
| 11968 | else |
| 11969 | Values.emplace_back(Args&: V, Args: nullptr); |
| 11970 | return true; |
| 11971 | }; |
| 11972 | |
| 11973 | if (!OtherAA || !OtherAA->forallUnderlyingObjects(Pred, Scope)) |
| 11974 | llvm_unreachable( |
| 11975 | "The forall call should not return false at this position" ); |
| 11976 | UsedAssumedInformation |= !OtherAA->getState().isAtFixpoint(); |
| 11977 | continue; |
| 11978 | } |
| 11979 | |
| 11980 | if (isa<SelectInst>(Val: Obj)) { |
| 11981 | Changed |= handleIndirect(A, V&: *Obj, UnderlyingObjects, Scope, |
| 11982 | UsedAssumedInformation); |
| 11983 | continue; |
| 11984 | } |
| 11985 | if (auto *PHI = dyn_cast<PHINode>(Val: Obj)) { |
| 11986 | // Explicitly look through PHIs as we do not care about dynamically |
| 11987 | // uniqueness. |
| 11988 | for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) { |
| 11989 | Changed |= |
| 11990 | handleIndirect(A, V&: *PHI->getIncomingValue(i: u), UnderlyingObjects, |
| 11991 | Scope, UsedAssumedInformation); |
| 11992 | } |
| 11993 | continue; |
| 11994 | } |
| 11995 | |
| 11996 | Changed |= UnderlyingObjects.insert(X: Obj); |
| 11997 | } |
| 11998 | |
| 11999 | return Changed; |
| 12000 | }; |
| 12001 | |
| 12002 | bool Changed = false; |
| 12003 | Changed |= DoUpdate(IntraAssumedUnderlyingObjects, AA::Intraprocedural); |
| 12004 | Changed |= DoUpdate(InterAssumedUnderlyingObjects, AA::Interprocedural); |
| 12005 | if (!UsedAssumedInformation) |
| 12006 | indicateOptimisticFixpoint(); |
| 12007 | return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED; |
| 12008 | } |
| 12009 | |
| 12010 | bool forallUnderlyingObjects( |
| 12011 | function_ref<bool(Value &)> Pred, |
| 12012 | AA::ValueScope Scope = AA::Interprocedural) const override { |
| 12013 | if (!isValidState()) |
| 12014 | return Pred(getAssociatedValue()); |
| 12015 | |
| 12016 | auto &AssumedUnderlyingObjects = Scope == AA::Intraprocedural |
| 12017 | ? IntraAssumedUnderlyingObjects |
| 12018 | : InterAssumedUnderlyingObjects; |
| 12019 | for (Value *Obj : AssumedUnderlyingObjects) |
| 12020 | if (!Pred(*Obj)) |
| 12021 | return false; |
| 12022 | |
| 12023 | return true; |
| 12024 | } |
| 12025 | |
| 12026 | private: |
| 12027 | /// Handle the case where the value is not the actual underlying value, such |
| 12028 | /// as a phi node or a select instruction. |
| 12029 | bool handleIndirect(Attributor &A, Value &V, |
| 12030 | SmallSetVector<Value *, 8> &UnderlyingObjects, |
| 12031 | AA::ValueScope Scope, bool &UsedAssumedInformation) { |
| 12032 | bool Changed = false; |
| 12033 | const auto *AA = A.getAAFor<AAUnderlyingObjects>( |
| 12034 | QueryingAA: *this, IRP: IRPosition::value(V), DepClass: DepClassTy::OPTIONAL); |
| 12035 | auto Pred = [&](Value &V) { |
| 12036 | Changed |= UnderlyingObjects.insert(X: &V); |
| 12037 | return true; |
| 12038 | }; |
| 12039 | if (!AA || !AA->forallUnderlyingObjects(Pred, Scope)) |
| 12040 | llvm_unreachable( |
| 12041 | "The forall call should not return false at this position" ); |
| 12042 | UsedAssumedInformation |= !AA->getState().isAtFixpoint(); |
| 12043 | return Changed; |
| 12044 | } |
| 12045 | |
| 12046 | /// All the underlying objects collected so far via intra procedural scope. |
| 12047 | SmallSetVector<Value *, 8> IntraAssumedUnderlyingObjects; |
| 12048 | /// All the underlying objects collected so far via inter procedural scope. |
| 12049 | SmallSetVector<Value *, 8> InterAssumedUnderlyingObjects; |
| 12050 | }; |
| 12051 | |
| 12052 | struct AAUnderlyingObjectsFloating final : AAUnderlyingObjectsImpl { |
| 12053 | AAUnderlyingObjectsFloating(const IRPosition &IRP, Attributor &A) |
| 12054 | : AAUnderlyingObjectsImpl(IRP, A) {} |
| 12055 | }; |
| 12056 | |
| 12057 | struct AAUnderlyingObjectsArgument final : AAUnderlyingObjectsImpl { |
| 12058 | AAUnderlyingObjectsArgument(const IRPosition &IRP, Attributor &A) |
| 12059 | : AAUnderlyingObjectsImpl(IRP, A) {} |
| 12060 | }; |
| 12061 | |
| 12062 | struct AAUnderlyingObjectsCallSite final : AAUnderlyingObjectsImpl { |
| 12063 | AAUnderlyingObjectsCallSite(const IRPosition &IRP, Attributor &A) |
| 12064 | : AAUnderlyingObjectsImpl(IRP, A) {} |
| 12065 | }; |
| 12066 | |
| 12067 | struct AAUnderlyingObjectsCallSiteArgument final : AAUnderlyingObjectsImpl { |
| 12068 | AAUnderlyingObjectsCallSiteArgument(const IRPosition &IRP, Attributor &A) |
| 12069 | : AAUnderlyingObjectsImpl(IRP, A) {} |
| 12070 | }; |
| 12071 | |
| 12072 | struct AAUnderlyingObjectsReturned final : AAUnderlyingObjectsImpl { |
| 12073 | AAUnderlyingObjectsReturned(const IRPosition &IRP, Attributor &A) |
| 12074 | : AAUnderlyingObjectsImpl(IRP, A) {} |
| 12075 | }; |
| 12076 | |
| 12077 | struct AAUnderlyingObjectsCallSiteReturned final : AAUnderlyingObjectsImpl { |
| 12078 | AAUnderlyingObjectsCallSiteReturned(const IRPosition &IRP, Attributor &A) |
| 12079 | : AAUnderlyingObjectsImpl(IRP, A) {} |
| 12080 | }; |
| 12081 | |
| 12082 | struct AAUnderlyingObjectsFunction final : AAUnderlyingObjectsImpl { |
| 12083 | AAUnderlyingObjectsFunction(const IRPosition &IRP, Attributor &A) |
| 12084 | : AAUnderlyingObjectsImpl(IRP, A) {} |
| 12085 | }; |
| 12086 | } // namespace |
| 12087 | |
| 12088 | /// ------------------------ Global Value Info ------------------------------- |
| 12089 | namespace { |
| 12090 | struct AAGlobalValueInfoFloating : public AAGlobalValueInfo { |
| 12091 | AAGlobalValueInfoFloating(const IRPosition &IRP, Attributor &A) |
| 12092 | : AAGlobalValueInfo(IRP, A) {} |
| 12093 | |
| 12094 | /// See AbstractAttribute::initialize(...). |
| 12095 | void initialize(Attributor &A) override {} |
| 12096 | |
| 12097 | bool checkUse(Attributor &A, const Use &U, bool &Follow, |
| 12098 | SmallVectorImpl<const Value *> &Worklist) { |
| 12099 | Instruction *UInst = dyn_cast<Instruction>(Val: U.getUser()); |
| 12100 | if (!UInst) { |
| 12101 | Follow = true; |
| 12102 | return true; |
| 12103 | } |
| 12104 | |
| 12105 | LLVM_DEBUG(dbgs() << "[AAGlobalValueInfo] Check use: " << *U.get() << " in " |
| 12106 | << *UInst << "\n" ); |
| 12107 | |
| 12108 | if (auto *Cmp = dyn_cast<ICmpInst>(Val: U.getUser())) { |
| 12109 | int Idx = &Cmp->getOperandUse(i: 0) == &U; |
| 12110 | if (isa<Constant>(Val: Cmp->getOperand(i_nocapture: Idx))) |
| 12111 | return true; |
| 12112 | return U == &getAnchorValue(); |
| 12113 | } |
| 12114 | |
| 12115 | // Explicitly catch return instructions. |
| 12116 | if (isa<ReturnInst>(Val: UInst)) { |
| 12117 | auto CallSitePred = [&](AbstractCallSite ACS) { |
| 12118 | Worklist.push_back(Elt: ACS.getInstruction()); |
| 12119 | return true; |
| 12120 | }; |
| 12121 | bool UsedAssumedInformation = false; |
| 12122 | // TODO: We should traverse the uses or add a "non-call-site" CB. |
| 12123 | if (!A.checkForAllCallSites(Pred: CallSitePred, Fn: *UInst->getFunction(), |
| 12124 | /*RequireAllCallSites=*/true, QueryingAA: this, |
| 12125 | UsedAssumedInformation)) |
| 12126 | return false; |
| 12127 | return true; |
| 12128 | } |
| 12129 | |
| 12130 | // For now we only use special logic for call sites. However, the tracker |
| 12131 | // itself knows about a lot of other non-capturing cases already. |
| 12132 | auto *CB = dyn_cast<CallBase>(Val: UInst); |
| 12133 | if (!CB) |
| 12134 | return false; |
| 12135 | // Direct calls are OK uses. |
| 12136 | if (CB->isCallee(U: &U)) |
| 12137 | return true; |
| 12138 | // Non-argument uses are scary. |
| 12139 | if (!CB->isArgOperand(U: &U)) |
| 12140 | return false; |
| 12141 | // TODO: Iterate callees. |
| 12142 | auto *Fn = dyn_cast<Function>(Val: CB->getCalledOperand()); |
| 12143 | if (!Fn || !A.isFunctionIPOAmendable(F: *Fn)) |
| 12144 | return false; |
| 12145 | |
| 12146 | unsigned ArgNo = CB->getArgOperandNo(U: &U); |
| 12147 | Worklist.push_back(Elt: Fn->getArg(i: ArgNo)); |
| 12148 | return true; |
| 12149 | } |
| 12150 | |
| 12151 | ChangeStatus updateImpl(Attributor &A) override { |
| 12152 | unsigned NumUsesBefore = Uses.size(); |
| 12153 | |
| 12154 | SmallPtrSet<const Value *, 8> Visited; |
| 12155 | SmallVector<const Value *> Worklist; |
| 12156 | Worklist.push_back(Elt: &getAnchorValue()); |
| 12157 | |
| 12158 | auto UsePred = [&](const Use &U, bool &Follow) -> bool { |
| 12159 | Uses.insert(Ptr: &U); |
| 12160 | // TODO(captures): Make this more precise. |
| 12161 | UseCaptureInfo CI = DetermineUseCaptureKind(U, /*Base=*/nullptr); |
| 12162 | if (CI.isPassthrough()) { |
| 12163 | Follow = true; |
| 12164 | return true; |
| 12165 | } |
| 12166 | return checkUse(A, U, Follow, Worklist); |
| 12167 | }; |
| 12168 | auto EquivalentUseCB = [&](const Use &OldU, const Use &NewU) { |
| 12169 | Uses.insert(Ptr: &OldU); |
| 12170 | return true; |
| 12171 | }; |
| 12172 | |
| 12173 | while (!Worklist.empty()) { |
| 12174 | const Value *V = Worklist.pop_back_val(); |
| 12175 | if (!Visited.insert(Ptr: V).second) |
| 12176 | continue; |
| 12177 | if (!A.checkForAllUses(Pred: UsePred, QueryingAA: *this, V: *V, |
| 12178 | /* CheckBBLivenessOnly */ true, |
| 12179 | LivenessDepClass: DepClassTy::OPTIONAL, |
| 12180 | /* IgnoreDroppableUses */ true, EquivalentUseCB)) { |
| 12181 | return indicatePessimisticFixpoint(); |
| 12182 | } |
| 12183 | } |
| 12184 | |
| 12185 | return Uses.size() == NumUsesBefore ? ChangeStatus::UNCHANGED |
| 12186 | : ChangeStatus::CHANGED; |
| 12187 | } |
| 12188 | |
| 12189 | bool isPotentialUse(const Use &U) const override { |
| 12190 | return !isValidState() || Uses.contains(Ptr: &U); |
| 12191 | } |
| 12192 | |
| 12193 | /// See AbstractAttribute::manifest(...). |
| 12194 | ChangeStatus manifest(Attributor &A) override { |
| 12195 | return ChangeStatus::UNCHANGED; |
| 12196 | } |
| 12197 | |
| 12198 | /// See AbstractAttribute::getAsStr(). |
| 12199 | const std::string getAsStr(Attributor *A) const override { |
| 12200 | return "[" + std::to_string(val: Uses.size()) + " uses]" ; |
| 12201 | } |
| 12202 | |
| 12203 | void trackStatistics() const override { |
| 12204 | STATS_DECLTRACK_FLOATING_ATTR(GlobalValuesTracked); |
| 12205 | } |
| 12206 | |
| 12207 | private: |
| 12208 | /// Set of (transitive) uses of this GlobalValue. |
| 12209 | SmallPtrSet<const Use *, 8> Uses; |
| 12210 | }; |
| 12211 | } // namespace |
| 12212 | |
| 12213 | /// ------------------------ Indirect Call Info ------------------------------- |
| 12214 | namespace { |
| 12215 | struct AAIndirectCallInfoCallSite : public AAIndirectCallInfo { |
| 12216 | AAIndirectCallInfoCallSite(const IRPosition &IRP, Attributor &A) |
| 12217 | : AAIndirectCallInfo(IRP, A) {} |
| 12218 | |
| 12219 | /// See AbstractAttribute::initialize(...). |
| 12220 | void initialize(Attributor &A) override { |
| 12221 | auto *MD = getCtxI()->getMetadata(KindID: LLVMContext::MD_callees); |
| 12222 | if (!MD && !A.isClosedWorldModule()) |
| 12223 | return; |
| 12224 | |
| 12225 | if (MD) { |
| 12226 | for (const auto &Op : MD->operands()) |
| 12227 | if (Function *Callee = mdconst::dyn_extract_or_null<Function>(MD: Op)) |
| 12228 | PotentialCallees.insert(X: Callee); |
| 12229 | } else if (A.isClosedWorldModule()) { |
| 12230 | ArrayRef<Function *> IndirectlyCallableFunctions = |
| 12231 | A.getInfoCache().getIndirectlyCallableFunctions(A); |
| 12232 | PotentialCallees.insert_range(R&: IndirectlyCallableFunctions); |
| 12233 | } |
| 12234 | |
| 12235 | if (PotentialCallees.empty()) |
| 12236 | indicateOptimisticFixpoint(); |
| 12237 | } |
| 12238 | |
| 12239 | ChangeStatus updateImpl(Attributor &A) override { |
| 12240 | CallBase *CB = cast<CallBase>(Val: getCtxI()); |
| 12241 | const Use &CalleeUse = CB->getCalledOperandUse(); |
| 12242 | Value *FP = CB->getCalledOperand(); |
| 12243 | |
| 12244 | SmallSetVector<Function *, 4> AssumedCalleesNow; |
| 12245 | bool AllCalleesKnownNow = AllCalleesKnown; |
| 12246 | |
| 12247 | auto CheckPotentialCalleeUse = [&](Function &PotentialCallee, |
| 12248 | bool &UsedAssumedInformation) { |
| 12249 | const auto *GIAA = A.getAAFor<AAGlobalValueInfo>( |
| 12250 | QueryingAA: *this, IRP: IRPosition::value(V: PotentialCallee), DepClass: DepClassTy::OPTIONAL); |
| 12251 | if (!GIAA || GIAA->isPotentialUse(U: CalleeUse)) |
| 12252 | return true; |
| 12253 | UsedAssumedInformation = !GIAA->isAtFixpoint(); |
| 12254 | return false; |
| 12255 | }; |
| 12256 | |
| 12257 | auto AddPotentialCallees = [&]() { |
| 12258 | for (auto *PotentialCallee : PotentialCallees) { |
| 12259 | bool UsedAssumedInformation = false; |
| 12260 | if (CheckPotentialCalleeUse(*PotentialCallee, UsedAssumedInformation)) |
| 12261 | AssumedCalleesNow.insert(X: PotentialCallee); |
| 12262 | } |
| 12263 | }; |
| 12264 | |
| 12265 | // Use simplification to find potential callees, if !callees was present, |
| 12266 | // fallback to that set if necessary. |
| 12267 | bool UsedAssumedInformation = false; |
| 12268 | SmallVector<AA::ValueAndContext> Values; |
| 12269 | if (!A.getAssumedSimplifiedValues(IRP: IRPosition::value(V: *FP), AA: this, Values, |
| 12270 | S: AA::ValueScope::AnyScope, |
| 12271 | UsedAssumedInformation)) { |
| 12272 | if (PotentialCallees.empty()) |
| 12273 | return indicatePessimisticFixpoint(); |
| 12274 | AddPotentialCallees(); |
| 12275 | } |
| 12276 | |
| 12277 | // Try to find a reason for \p Fn not to be a potential callee. If none was |
| 12278 | // found, add it to the assumed callees set. |
| 12279 | auto CheckPotentialCallee = [&](Function &Fn) { |
| 12280 | if (!PotentialCallees.empty() && !PotentialCallees.count(key: &Fn)) |
| 12281 | return false; |
| 12282 | |
| 12283 | auto &CachedResult = FilterResults[&Fn]; |
| 12284 | if (CachedResult.has_value()) |
| 12285 | return CachedResult.value(); |
| 12286 | |
| 12287 | bool UsedAssumedInformation = false; |
| 12288 | if (!CheckPotentialCalleeUse(Fn, UsedAssumedInformation)) { |
| 12289 | if (!UsedAssumedInformation) |
| 12290 | CachedResult = false; |
| 12291 | return false; |
| 12292 | } |
| 12293 | |
| 12294 | int NumFnArgs = Fn.arg_size(); |
| 12295 | int NumCBArgs = CB->arg_size(); |
| 12296 | |
| 12297 | // Check if any excess argument (which we fill up with poison) is known to |
| 12298 | // be UB on undef. |
| 12299 | for (int I = NumCBArgs; I < NumFnArgs; ++I) { |
| 12300 | bool IsKnown = false; |
| 12301 | if (AA::hasAssumedIRAttr<Attribute::NoUndef>( |
| 12302 | A, QueryingAA: this, IRP: IRPosition::argument(Arg: *Fn.getArg(i: I)), |
| 12303 | DepClass: DepClassTy::OPTIONAL, IsKnown)) { |
| 12304 | if (IsKnown) |
| 12305 | CachedResult = false; |
| 12306 | return false; |
| 12307 | } |
| 12308 | } |
| 12309 | |
| 12310 | CachedResult = true; |
| 12311 | return true; |
| 12312 | }; |
| 12313 | |
| 12314 | // Check simplification result, prune known UB callees, also restrict it to |
| 12315 | // the !callees set, if present. |
| 12316 | for (auto &VAC : Values) { |
| 12317 | if (isa<UndefValue>(Val: VAC.getValue())) |
| 12318 | continue; |
| 12319 | if (isa<ConstantPointerNull>(Val: VAC.getValue()) && |
| 12320 | VAC.getValue()->getType()->getPointerAddressSpace() == 0) |
| 12321 | continue; |
| 12322 | // TODO: Check for known UB, e.g., poison + noundef. |
| 12323 | if (auto *VACFn = dyn_cast<Function>(Val: VAC.getValue())) { |
| 12324 | if (CheckPotentialCallee(*VACFn)) |
| 12325 | AssumedCalleesNow.insert(X: VACFn); |
| 12326 | continue; |
| 12327 | } |
| 12328 | if (!PotentialCallees.empty()) { |
| 12329 | AddPotentialCallees(); |
| 12330 | break; |
| 12331 | } |
| 12332 | AllCalleesKnownNow = false; |
| 12333 | } |
| 12334 | |
| 12335 | if (AssumedCalleesNow == AssumedCallees && |
| 12336 | AllCalleesKnown == AllCalleesKnownNow) |
| 12337 | return ChangeStatus::UNCHANGED; |
| 12338 | |
| 12339 | std::swap(LHS&: AssumedCallees, RHS&: AssumedCalleesNow); |
| 12340 | AllCalleesKnown = AllCalleesKnownNow; |
| 12341 | return ChangeStatus::CHANGED; |
| 12342 | } |
| 12343 | |
| 12344 | /// See AbstractAttribute::manifest(...). |
| 12345 | ChangeStatus manifest(Attributor &A) override { |
| 12346 | // If we can't specialize at all, give up now. |
| 12347 | if (!AllCalleesKnown && AssumedCallees.empty()) |
| 12348 | return ChangeStatus::UNCHANGED; |
| 12349 | |
| 12350 | CallBase *CB = cast<CallBase>(Val: getCtxI()); |
| 12351 | bool UsedAssumedInformation = false; |
| 12352 | if (A.isAssumedDead(I: *CB, QueryingAA: this, /*LivenessAA=*/nullptr, |
| 12353 | UsedAssumedInformation)) |
| 12354 | return ChangeStatus::UNCHANGED; |
| 12355 | |
| 12356 | ChangeStatus Changed = ChangeStatus::UNCHANGED; |
| 12357 | Value *FP = CB->getCalledOperand(); |
| 12358 | if (FP->getType()->getPointerAddressSpace()) |
| 12359 | FP = new AddrSpaceCastInst(FP, PointerType::get(C&: FP->getContext(), AddressSpace: 0), |
| 12360 | FP->getName() + ".as0" , CB->getIterator()); |
| 12361 | |
| 12362 | bool CBIsVoid = CB->getType()->isVoidTy(); |
| 12363 | BasicBlock::iterator IP = CB->getIterator(); |
| 12364 | FunctionType *CSFT = CB->getFunctionType(); |
| 12365 | SmallVector<Value *> CSArgs(CB->args()); |
| 12366 | |
| 12367 | // If we know all callees and there are none, the call site is (effectively) |
| 12368 | // dead (or UB). |
| 12369 | if (AssumedCallees.empty()) { |
| 12370 | assert(AllCalleesKnown && |
| 12371 | "Expected all callees to be known if there are none." ); |
| 12372 | A.changeToUnreachableAfterManifest(I: CB); |
| 12373 | return ChangeStatus::CHANGED; |
| 12374 | } |
| 12375 | |
| 12376 | // Special handling for the single callee case. |
| 12377 | if (AllCalleesKnown && AssumedCallees.size() == 1) { |
| 12378 | auto *NewCallee = AssumedCallees.front(); |
| 12379 | if (isLegalToPromote(CB: *CB, Callee: NewCallee)) { |
| 12380 | promoteCall(CB&: *CB, Callee: NewCallee, RetBitCast: nullptr); |
| 12381 | NumIndirectCallsPromoted++; |
| 12382 | return ChangeStatus::CHANGED; |
| 12383 | } |
| 12384 | Instruction *NewCall = |
| 12385 | CallInst::Create(Func: FunctionCallee(CSFT, NewCallee), Args: CSArgs, |
| 12386 | NameStr: CB->getName(), InsertBefore: CB->getIterator()); |
| 12387 | if (!CBIsVoid) |
| 12388 | A.changeAfterManifest(IRP: IRPosition::callsite_returned(CB: *CB), NV&: *NewCall); |
| 12389 | A.deleteAfterManifest(I&: *CB); |
| 12390 | return ChangeStatus::CHANGED; |
| 12391 | } |
| 12392 | |
| 12393 | // For each potential value we create a conditional |
| 12394 | // |
| 12395 | // ``` |
| 12396 | // if (ptr == value) value(args); |
| 12397 | // else ... |
| 12398 | // ``` |
| 12399 | // |
| 12400 | bool SpecializedForAnyCallees = false; |
| 12401 | bool SpecializedForAllCallees = AllCalleesKnown; |
| 12402 | ICmpInst *LastCmp = nullptr; |
| 12403 | SmallVector<Function *, 8> SkippedAssumedCallees; |
| 12404 | SmallVector<std::pair<CallInst *, Instruction *>> NewCalls; |
| 12405 | for (Function *NewCallee : AssumedCallees) { |
| 12406 | if (!A.shouldSpecializeCallSiteForCallee(AA: *this, CB&: *CB, Callee&: *NewCallee, |
| 12407 | NumAssumedCallees: AssumedCallees.size())) { |
| 12408 | SkippedAssumedCallees.push_back(Elt: NewCallee); |
| 12409 | SpecializedForAllCallees = false; |
| 12410 | continue; |
| 12411 | } |
| 12412 | SpecializedForAnyCallees = true; |
| 12413 | |
| 12414 | LastCmp = new ICmpInst(IP, llvm::CmpInst::ICMP_EQ, FP, NewCallee); |
| 12415 | Instruction *ThenTI = |
| 12416 | SplitBlockAndInsertIfThen(Cond: LastCmp, SplitBefore: IP, /* Unreachable */ false); |
| 12417 | BasicBlock *CBBB = CB->getParent(); |
| 12418 | A.registerManifestAddedBasicBlock(BB&: *ThenTI->getParent()); |
| 12419 | A.registerManifestAddedBasicBlock(BB&: *IP->getParent()); |
| 12420 | auto *SplitTI = cast<BranchInst>(Val: LastCmp->getNextNode()); |
| 12421 | BasicBlock *ElseBB; |
| 12422 | if (&*IP == CB) { |
| 12423 | ElseBB = BasicBlock::Create(Context&: ThenTI->getContext(), Name: "" , |
| 12424 | Parent: ThenTI->getFunction(), InsertBefore: CBBB); |
| 12425 | A.registerManifestAddedBasicBlock(BB&: *ElseBB); |
| 12426 | IP = BranchInst::Create(IfTrue: CBBB, InsertBefore: ElseBB)->getIterator(); |
| 12427 | SplitTI->replaceUsesOfWith(From: CBBB, To: ElseBB); |
| 12428 | } else { |
| 12429 | ElseBB = IP->getParent(); |
| 12430 | ThenTI->replaceUsesOfWith(From: ElseBB, To: CBBB); |
| 12431 | } |
| 12432 | CastInst *RetBC = nullptr; |
| 12433 | CallInst *NewCall = nullptr; |
| 12434 | if (isLegalToPromote(CB: *CB, Callee: NewCallee)) { |
| 12435 | auto *CBClone = cast<CallBase>(Val: CB->clone()); |
| 12436 | CBClone->insertBefore(InsertPos: ThenTI->getIterator()); |
| 12437 | NewCall = &cast<CallInst>(Val&: promoteCall(CB&: *CBClone, Callee: NewCallee, RetBitCast: &RetBC)); |
| 12438 | NumIndirectCallsPromoted++; |
| 12439 | } else { |
| 12440 | NewCall = CallInst::Create(Func: FunctionCallee(CSFT, NewCallee), Args: CSArgs, |
| 12441 | NameStr: CB->getName(), InsertBefore: ThenTI->getIterator()); |
| 12442 | } |
| 12443 | NewCalls.push_back(Elt: {NewCall, RetBC}); |
| 12444 | } |
| 12445 | |
| 12446 | auto AttachCalleeMetadata = [&](CallBase &IndirectCB) { |
| 12447 | if (!AllCalleesKnown) |
| 12448 | return ChangeStatus::UNCHANGED; |
| 12449 | MDBuilder MDB(IndirectCB.getContext()); |
| 12450 | MDNode *Callees = MDB.createCallees(Callees: SkippedAssumedCallees); |
| 12451 | IndirectCB.setMetadata(KindID: LLVMContext::MD_callees, Node: Callees); |
| 12452 | return ChangeStatus::CHANGED; |
| 12453 | }; |
| 12454 | |
| 12455 | if (!SpecializedForAnyCallees) |
| 12456 | return AttachCalleeMetadata(*CB); |
| 12457 | |
| 12458 | // Check if we need the fallback indirect call still. |
| 12459 | if (SpecializedForAllCallees) { |
| 12460 | LastCmp->replaceAllUsesWith(V: ConstantInt::getTrue(Context&: LastCmp->getContext())); |
| 12461 | LastCmp->eraseFromParent(); |
| 12462 | new UnreachableInst(IP->getContext(), IP); |
| 12463 | IP->eraseFromParent(); |
| 12464 | } else { |
| 12465 | auto *CBClone = cast<CallInst>(Val: CB->clone()); |
| 12466 | CBClone->setName(CB->getName()); |
| 12467 | CBClone->insertBefore(BB&: *IP->getParent(), InsertPos: IP); |
| 12468 | NewCalls.push_back(Elt: {CBClone, nullptr}); |
| 12469 | AttachCalleeMetadata(*CBClone); |
| 12470 | } |
| 12471 | |
| 12472 | // Check if we need a PHI to merge the results. |
| 12473 | if (!CBIsVoid) { |
| 12474 | auto *PHI = PHINode::Create(Ty: CB->getType(), NumReservedValues: NewCalls.size(), |
| 12475 | NameStr: CB->getName() + ".phi" , |
| 12476 | InsertBefore: CB->getParent()->getFirstInsertionPt()); |
| 12477 | for (auto &It : NewCalls) { |
| 12478 | CallBase *NewCall = It.first; |
| 12479 | Instruction *CallRet = It.second ? It.second : It.first; |
| 12480 | if (CallRet->getType() == CB->getType()) |
| 12481 | PHI->addIncoming(V: CallRet, BB: CallRet->getParent()); |
| 12482 | else if (NewCall->getType()->isVoidTy()) |
| 12483 | PHI->addIncoming(V: PoisonValue::get(T: CB->getType()), |
| 12484 | BB: NewCall->getParent()); |
| 12485 | else |
| 12486 | llvm_unreachable("Call return should match or be void!" ); |
| 12487 | } |
| 12488 | A.changeAfterManifest(IRP: IRPosition::callsite_returned(CB: *CB), NV&: *PHI); |
| 12489 | } |
| 12490 | |
| 12491 | A.deleteAfterManifest(I&: *CB); |
| 12492 | Changed = ChangeStatus::CHANGED; |
| 12493 | |
| 12494 | return Changed; |
| 12495 | } |
| 12496 | |
| 12497 | /// See AbstractAttribute::getAsStr(). |
| 12498 | const std::string getAsStr(Attributor *A) const override { |
| 12499 | return std::string(AllCalleesKnown ? "eliminate" : "specialize" ) + |
| 12500 | " indirect call site with " + std::to_string(val: AssumedCallees.size()) + |
| 12501 | " functions" ; |
| 12502 | } |
| 12503 | |
| 12504 | void trackStatistics() const override { |
| 12505 | if (AllCalleesKnown) { |
| 12506 | STATS_DECLTRACK( |
| 12507 | Eliminated, CallSites, |
| 12508 | "Number of indirect call sites eliminated via specialization" ) |
| 12509 | } else { |
| 12510 | STATS_DECLTRACK(Specialized, CallSites, |
| 12511 | "Number of indirect call sites specialized" ) |
| 12512 | } |
| 12513 | } |
| 12514 | |
| 12515 | bool foreachCallee(function_ref<bool(Function *)> CB) const override { |
| 12516 | return isValidState() && AllCalleesKnown && all_of(Range: AssumedCallees, P: CB); |
| 12517 | } |
| 12518 | |
| 12519 | private: |
| 12520 | /// Map to remember filter results. |
| 12521 | DenseMap<Function *, std::optional<bool>> FilterResults; |
| 12522 | |
| 12523 | /// If the !callee metadata was present, this set will contain all potential |
| 12524 | /// callees (superset). |
| 12525 | SmallSetVector<Function *, 4> PotentialCallees; |
| 12526 | |
| 12527 | /// This set contains all currently assumed calllees, which might grow over |
| 12528 | /// time. |
| 12529 | SmallSetVector<Function *, 4> AssumedCallees; |
| 12530 | |
| 12531 | /// Flag to indicate if all possible callees are in the AssumedCallees set or |
| 12532 | /// if there could be others. |
| 12533 | bool AllCalleesKnown = true; |
| 12534 | }; |
| 12535 | } // namespace |
| 12536 | |
| 12537 | /// --------------------- Invariant Load Pointer ------------------------------- |
| 12538 | namespace { |
| 12539 | |
| 12540 | struct AAInvariantLoadPointerImpl |
| 12541 | : public StateWrapper<BitIntegerState<uint8_t, 15>, |
| 12542 | AAInvariantLoadPointer> { |
| 12543 | |
| 12544 | enum { |
| 12545 | // pointer does not alias within the bounds of the function |
| 12546 | IS_NOALIAS = 1 << 0, |
| 12547 | // pointer is not involved in any effectful instructions within the bounds |
| 12548 | // of the function |
| 12549 | IS_NOEFFECT = 1 << 1, |
| 12550 | // loads are invariant within the bounds of the function |
| 12551 | IS_LOCALLY_INVARIANT = 1 << 2, |
| 12552 | // memory lifetime is constrained within the bounds of the function |
| 12553 | IS_LOCALLY_CONSTRAINED = 1 << 3, |
| 12554 | |
| 12555 | IS_BEST_STATE = IS_NOALIAS | IS_NOEFFECT | IS_LOCALLY_INVARIANT | |
| 12556 | IS_LOCALLY_CONSTRAINED, |
| 12557 | }; |
| 12558 | static_assert(getBestState() == IS_BEST_STATE, "Unexpected best state" ); |
| 12559 | |
| 12560 | using Base = |
| 12561 | StateWrapper<BitIntegerState<uint8_t, 15>, AAInvariantLoadPointer>; |
| 12562 | |
| 12563 | // the BitIntegerState is optimistic about IS_NOALIAS and IS_NOEFFECT, but |
| 12564 | // pessimistic about IS_KNOWN_INVARIANT |
| 12565 | AAInvariantLoadPointerImpl(const IRPosition &IRP, Attributor &A) |
| 12566 | : Base(IRP) {} |
| 12567 | |
| 12568 | bool isKnownInvariant() const final { |
| 12569 | return isKnownLocallyInvariant() && isKnown(BitsEncoding: IS_LOCALLY_CONSTRAINED); |
| 12570 | } |
| 12571 | |
| 12572 | bool isKnownLocallyInvariant() const final { |
| 12573 | if (isKnown(BitsEncoding: IS_LOCALLY_INVARIANT)) |
| 12574 | return true; |
| 12575 | return isKnown(BitsEncoding: IS_NOALIAS | IS_NOEFFECT); |
| 12576 | } |
| 12577 | |
| 12578 | bool isAssumedInvariant() const final { |
| 12579 | return isAssumedLocallyInvariant() && isAssumed(BitsEncoding: IS_LOCALLY_CONSTRAINED); |
| 12580 | } |
| 12581 | |
| 12582 | bool isAssumedLocallyInvariant() const final { |
| 12583 | if (isAssumed(BitsEncoding: IS_LOCALLY_INVARIANT)) |
| 12584 | return true; |
| 12585 | return isAssumed(BitsEncoding: IS_NOALIAS | IS_NOEFFECT); |
| 12586 | } |
| 12587 | |
| 12588 | ChangeStatus updateImpl(Attributor &A) override { |
| 12589 | ChangeStatus Changed = ChangeStatus::UNCHANGED; |
| 12590 | |
| 12591 | Changed |= updateNoAlias(A); |
| 12592 | if (requiresNoAlias() && !isAssumed(BitsEncoding: IS_NOALIAS)) |
| 12593 | return indicatePessimisticFixpoint(); |
| 12594 | |
| 12595 | Changed |= updateNoEffect(A); |
| 12596 | |
| 12597 | Changed |= updateLocalInvariance(A); |
| 12598 | |
| 12599 | return Changed; |
| 12600 | } |
| 12601 | |
| 12602 | ChangeStatus manifest(Attributor &A) override { |
| 12603 | if (!isKnownInvariant()) |
| 12604 | return ChangeStatus::UNCHANGED; |
| 12605 | |
| 12606 | ChangeStatus Changed = ChangeStatus::UNCHANGED; |
| 12607 | const Value *Ptr = &getAssociatedValue(); |
| 12608 | const auto TagInvariantLoads = [&](const Use &U, bool &) { |
| 12609 | if (U.get() != Ptr) |
| 12610 | return true; |
| 12611 | auto *I = dyn_cast<Instruction>(Val: U.getUser()); |
| 12612 | if (!I) |
| 12613 | return true; |
| 12614 | |
| 12615 | // Ensure that we are only changing uses from the corresponding callgraph |
| 12616 | // SSC in the case that the AA isn't run on the entire module |
| 12617 | if (!A.isRunOn(Fn: I->getFunction())) |
| 12618 | return true; |
| 12619 | |
| 12620 | if (I->hasMetadata(KindID: LLVMContext::MD_invariant_load)) |
| 12621 | return true; |
| 12622 | |
| 12623 | if (auto *LI = dyn_cast<LoadInst>(Val: I)) { |
| 12624 | LI->setMetadata(KindID: LLVMContext::MD_invariant_load, |
| 12625 | Node: MDNode::get(Context&: LI->getContext(), MDs: {})); |
| 12626 | Changed = ChangeStatus::CHANGED; |
| 12627 | } |
| 12628 | return true; |
| 12629 | }; |
| 12630 | |
| 12631 | (void)A.checkForAllUses(Pred: TagInvariantLoads, QueryingAA: *this, V: *Ptr); |
| 12632 | return Changed; |
| 12633 | } |
| 12634 | |
| 12635 | /// See AbstractAttribute::getAsStr(). |
| 12636 | const std::string getAsStr(Attributor *) const override { |
| 12637 | if (isKnownInvariant()) |
| 12638 | return "load-invariant pointer" ; |
| 12639 | return "non-invariant pointer" ; |
| 12640 | } |
| 12641 | |
| 12642 | /// See AbstractAttribute::trackStatistics(). |
| 12643 | void trackStatistics() const override {} |
| 12644 | |
| 12645 | private: |
| 12646 | /// Indicate that noalias is required for the pointer to be invariant. |
| 12647 | bool requiresNoAlias() const { |
| 12648 | switch (getPositionKind()) { |
| 12649 | default: |
| 12650 | // Conservatively default to require noalias. |
| 12651 | return true; |
| 12652 | case IRP_FLOAT: |
| 12653 | case IRP_RETURNED: |
| 12654 | case IRP_CALL_SITE: |
| 12655 | return false; |
| 12656 | case IRP_CALL_SITE_RETURNED: { |
| 12657 | const auto &CB = cast<CallBase>(Val&: getAnchorValue()); |
| 12658 | return !isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( |
| 12659 | Call: &CB, /*MustPreserveNullness=*/false); |
| 12660 | } |
| 12661 | case IRP_ARGUMENT: { |
| 12662 | const Function *F = getAssociatedFunction(); |
| 12663 | assert(F && "no associated function for argument" ); |
| 12664 | return !isCallableCC(CC: F->getCallingConv()); |
| 12665 | } |
| 12666 | } |
| 12667 | } |
| 12668 | |
| 12669 | bool isExternal() const { |
| 12670 | const Function *F = getAssociatedFunction(); |
| 12671 | if (!F) |
| 12672 | return true; |
| 12673 | return isCallableCC(CC: F->getCallingConv()) && |
| 12674 | getPositionKind() != IRP_CALL_SITE_RETURNED; |
| 12675 | } |
| 12676 | |
| 12677 | ChangeStatus updateNoAlias(Attributor &A) { |
| 12678 | if (isKnown(BitsEncoding: IS_NOALIAS) || !isAssumed(BitsEncoding: IS_NOALIAS)) |
| 12679 | return ChangeStatus::UNCHANGED; |
| 12680 | |
| 12681 | // Try to use AANoAlias. |
| 12682 | if (const auto *ANoAlias = A.getOrCreateAAFor<AANoAlias>( |
| 12683 | IRP: getIRPosition(), QueryingAA: this, DepClass: DepClassTy::REQUIRED)) { |
| 12684 | if (ANoAlias->isKnownNoAlias()) { |
| 12685 | addKnownBits(Bits: IS_NOALIAS); |
| 12686 | return ChangeStatus::CHANGED; |
| 12687 | } |
| 12688 | |
| 12689 | if (!ANoAlias->isAssumedNoAlias()) { |
| 12690 | removeAssumedBits(BitsEncoding: IS_NOALIAS); |
| 12691 | return ChangeStatus::CHANGED; |
| 12692 | } |
| 12693 | |
| 12694 | return ChangeStatus::UNCHANGED; |
| 12695 | } |
| 12696 | |
| 12697 | // Try to infer noalias from argument attribute, since it is applicable for |
| 12698 | // the duration of the function. |
| 12699 | if (const Argument *Arg = getAssociatedArgument()) { |
| 12700 | if (Arg->hasNoAliasAttr()) { |
| 12701 | addKnownBits(Bits: IS_NOALIAS); |
| 12702 | return ChangeStatus::UNCHANGED; |
| 12703 | } |
| 12704 | |
| 12705 | // Noalias information is not provided, and cannot be inferred, |
| 12706 | // so we conservatively assume the pointer aliases. |
| 12707 | removeAssumedBits(BitsEncoding: IS_NOALIAS); |
| 12708 | return ChangeStatus::CHANGED; |
| 12709 | } |
| 12710 | |
| 12711 | return ChangeStatus::UNCHANGED; |
| 12712 | } |
| 12713 | |
| 12714 | ChangeStatus updateNoEffect(Attributor &A) { |
| 12715 | if (isKnown(BitsEncoding: IS_NOEFFECT) || !isAssumed(BitsEncoding: IS_NOEFFECT)) |
| 12716 | return ChangeStatus::UNCHANGED; |
| 12717 | |
| 12718 | if (!getAssociatedFunction()) |
| 12719 | return indicatePessimisticFixpoint(); |
| 12720 | |
| 12721 | if (isa<AllocaInst>(Val: &getAssociatedValue())) |
| 12722 | return indicatePessimisticFixpoint(); |
| 12723 | |
| 12724 | const auto HasNoEffectLoads = [&](const Use &U, bool &) { |
| 12725 | const auto *LI = dyn_cast<LoadInst>(Val: U.getUser()); |
| 12726 | return !LI || !LI->mayHaveSideEffects(); |
| 12727 | }; |
| 12728 | if (!A.checkForAllUses(Pred: HasNoEffectLoads, QueryingAA: *this, V: getAssociatedValue())) |
| 12729 | return indicatePessimisticFixpoint(); |
| 12730 | |
| 12731 | if (const auto *AMemoryBehavior = A.getOrCreateAAFor<AAMemoryBehavior>( |
| 12732 | IRP: getIRPosition(), QueryingAA: this, DepClass: DepClassTy::REQUIRED)) { |
| 12733 | // For non-instructions, try to use AAMemoryBehavior to infer the readonly |
| 12734 | // attribute |
| 12735 | if (!AMemoryBehavior->isAssumedReadOnly()) |
| 12736 | return indicatePessimisticFixpoint(); |
| 12737 | |
| 12738 | if (AMemoryBehavior->isKnownReadOnly()) { |
| 12739 | addKnownBits(Bits: IS_NOEFFECT); |
| 12740 | return ChangeStatus::UNCHANGED; |
| 12741 | } |
| 12742 | |
| 12743 | return ChangeStatus::UNCHANGED; |
| 12744 | } |
| 12745 | |
| 12746 | if (const Argument *Arg = getAssociatedArgument()) { |
| 12747 | if (Arg->onlyReadsMemory()) { |
| 12748 | addKnownBits(Bits: IS_NOEFFECT); |
| 12749 | return ChangeStatus::UNCHANGED; |
| 12750 | } |
| 12751 | |
| 12752 | // Readonly information is not provided, and cannot be inferred from |
| 12753 | // AAMemoryBehavior. |
| 12754 | return indicatePessimisticFixpoint(); |
| 12755 | } |
| 12756 | |
| 12757 | return ChangeStatus::UNCHANGED; |
| 12758 | } |
| 12759 | |
| 12760 | ChangeStatus updateLocalInvariance(Attributor &A) { |
| 12761 | if (isKnown(BitsEncoding: IS_LOCALLY_INVARIANT) || !isAssumed(BitsEncoding: IS_LOCALLY_INVARIANT)) |
| 12762 | return ChangeStatus::UNCHANGED; |
| 12763 | |
| 12764 | // try to infer invariance from underlying objects |
| 12765 | const auto *AUO = A.getOrCreateAAFor<AAUnderlyingObjects>( |
| 12766 | IRP: getIRPosition(), QueryingAA: this, DepClass: DepClassTy::REQUIRED); |
| 12767 | if (!AUO) |
| 12768 | return ChangeStatus::UNCHANGED; |
| 12769 | |
| 12770 | bool UsedAssumedInformation = false; |
| 12771 | const auto IsLocallyInvariantLoadIfPointer = [&](const Value &V) { |
| 12772 | if (!V.getType()->isPointerTy()) |
| 12773 | return true; |
| 12774 | const auto *IsInvariantLoadPointer = |
| 12775 | A.getOrCreateAAFor<AAInvariantLoadPointer>(IRP: IRPosition::value(V), QueryingAA: this, |
| 12776 | DepClass: DepClassTy::REQUIRED); |
| 12777 | // Conservatively fail if invariance cannot be inferred. |
| 12778 | if (!IsInvariantLoadPointer) |
| 12779 | return false; |
| 12780 | |
| 12781 | if (IsInvariantLoadPointer->isKnownLocallyInvariant()) |
| 12782 | return true; |
| 12783 | if (!IsInvariantLoadPointer->isAssumedLocallyInvariant()) |
| 12784 | return false; |
| 12785 | |
| 12786 | UsedAssumedInformation = true; |
| 12787 | return true; |
| 12788 | }; |
| 12789 | if (!AUO->forallUnderlyingObjects(Pred: IsLocallyInvariantLoadIfPointer)) |
| 12790 | return indicatePessimisticFixpoint(); |
| 12791 | |
| 12792 | if (const auto *CB = dyn_cast<CallBase>(Val: &getAnchorValue())) { |
| 12793 | if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( |
| 12794 | Call: CB, /*MustPreserveNullness=*/false)) { |
| 12795 | for (const Value *Arg : CB->args()) { |
| 12796 | if (!IsLocallyInvariantLoadIfPointer(*Arg)) |
| 12797 | return indicatePessimisticFixpoint(); |
| 12798 | } |
| 12799 | } |
| 12800 | } |
| 12801 | |
| 12802 | if (!UsedAssumedInformation) { |
| 12803 | // Pointer is known and not just assumed to be locally invariant. |
| 12804 | addKnownBits(Bits: IS_LOCALLY_INVARIANT); |
| 12805 | return ChangeStatus::CHANGED; |
| 12806 | } |
| 12807 | |
| 12808 | return ChangeStatus::UNCHANGED; |
| 12809 | } |
| 12810 | }; |
| 12811 | |
| 12812 | struct AAInvariantLoadPointerFloating final : AAInvariantLoadPointerImpl { |
| 12813 | AAInvariantLoadPointerFloating(const IRPosition &IRP, Attributor &A) |
| 12814 | : AAInvariantLoadPointerImpl(IRP, A) {} |
| 12815 | }; |
| 12816 | |
| 12817 | struct AAInvariantLoadPointerReturned final : AAInvariantLoadPointerImpl { |
| 12818 | AAInvariantLoadPointerReturned(const IRPosition &IRP, Attributor &A) |
| 12819 | : AAInvariantLoadPointerImpl(IRP, A) {} |
| 12820 | |
| 12821 | void initialize(Attributor &) override { |
| 12822 | removeAssumedBits(BitsEncoding: IS_LOCALLY_CONSTRAINED); |
| 12823 | } |
| 12824 | }; |
| 12825 | |
| 12826 | struct AAInvariantLoadPointerCallSiteReturned final |
| 12827 | : AAInvariantLoadPointerImpl { |
| 12828 | AAInvariantLoadPointerCallSiteReturned(const IRPosition &IRP, Attributor &A) |
| 12829 | : AAInvariantLoadPointerImpl(IRP, A) {} |
| 12830 | |
| 12831 | void initialize(Attributor &A) override { |
| 12832 | const Function *F = getAssociatedFunction(); |
| 12833 | assert(F && "no associated function for return from call" ); |
| 12834 | |
| 12835 | if (!F->isDeclaration() && !F->isIntrinsic()) |
| 12836 | return AAInvariantLoadPointerImpl::initialize(A); |
| 12837 | |
| 12838 | const auto &CB = cast<CallBase>(Val&: getAnchorValue()); |
| 12839 | if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( |
| 12840 | Call: &CB, /*MustPreserveNullness=*/false)) |
| 12841 | return AAInvariantLoadPointerImpl::initialize(A); |
| 12842 | |
| 12843 | if (F->onlyReadsMemory() && F->hasNoSync()) |
| 12844 | return AAInvariantLoadPointerImpl::initialize(A); |
| 12845 | |
| 12846 | // At this point, the function is opaque, so we conservatively assume |
| 12847 | // non-invariance. |
| 12848 | indicatePessimisticFixpoint(); |
| 12849 | } |
| 12850 | }; |
| 12851 | |
| 12852 | struct AAInvariantLoadPointerArgument final : AAInvariantLoadPointerImpl { |
| 12853 | AAInvariantLoadPointerArgument(const IRPosition &IRP, Attributor &A) |
| 12854 | : AAInvariantLoadPointerImpl(IRP, A) {} |
| 12855 | |
| 12856 | void initialize(Attributor &) override { |
| 12857 | const Function *F = getAssociatedFunction(); |
| 12858 | assert(F && "no associated function for argument" ); |
| 12859 | |
| 12860 | if (!isCallableCC(CC: F->getCallingConv())) { |
| 12861 | addKnownBits(Bits: IS_LOCALLY_CONSTRAINED); |
| 12862 | return; |
| 12863 | } |
| 12864 | |
| 12865 | if (!F->hasLocalLinkage()) |
| 12866 | removeAssumedBits(BitsEncoding: IS_LOCALLY_CONSTRAINED); |
| 12867 | } |
| 12868 | }; |
| 12869 | |
| 12870 | struct AAInvariantLoadPointerCallSiteArgument final |
| 12871 | : AAInvariantLoadPointerImpl { |
| 12872 | AAInvariantLoadPointerCallSiteArgument(const IRPosition &IRP, Attributor &A) |
| 12873 | : AAInvariantLoadPointerImpl(IRP, A) {} |
| 12874 | }; |
| 12875 | } // namespace |
| 12876 | |
| 12877 | /// ------------------------ Address Space ------------------------------------ |
| 12878 | namespace { |
| 12879 | |
| 12880 | template <typename InstType> |
| 12881 | static bool makeChange(Attributor &A, InstType *MemInst, const Use &U, |
| 12882 | Value *OriginalValue, PointerType *NewPtrTy, |
| 12883 | bool UseOriginalValue) { |
| 12884 | if (U.getOperandNo() != InstType::getPointerOperandIndex()) |
| 12885 | return false; |
| 12886 | |
| 12887 | if (MemInst->isVolatile()) { |
| 12888 | auto *TTI = A.getInfoCache().getAnalysisResultForFunction<TargetIRAnalysis>( |
| 12889 | *MemInst->getFunction()); |
| 12890 | unsigned NewAS = NewPtrTy->getPointerAddressSpace(); |
| 12891 | if (!TTI || !TTI->hasVolatileVariant(MemInst, NewAS)) |
| 12892 | return false; |
| 12893 | } |
| 12894 | |
| 12895 | if (UseOriginalValue) { |
| 12896 | A.changeUseAfterManifest(U&: const_cast<Use &>(U), NV&: *OriginalValue); |
| 12897 | return true; |
| 12898 | } |
| 12899 | |
| 12900 | Instruction *CastInst = new AddrSpaceCastInst(OriginalValue, NewPtrTy); |
| 12901 | CastInst->insertBefore(MemInst->getIterator()); |
| 12902 | A.changeUseAfterManifest(U&: const_cast<Use &>(U), NV&: *CastInst); |
| 12903 | return true; |
| 12904 | } |
| 12905 | |
| 12906 | struct AAAddressSpaceImpl : public AAAddressSpace { |
| 12907 | AAAddressSpaceImpl(const IRPosition &IRP, Attributor &A) |
| 12908 | : AAAddressSpace(IRP, A) {} |
| 12909 | |
| 12910 | uint32_t getAddressSpace() const override { |
| 12911 | assert(isValidState() && "the AA is invalid" ); |
| 12912 | return AssumedAddressSpace; |
| 12913 | } |
| 12914 | |
| 12915 | /// See AbstractAttribute::initialize(...). |
| 12916 | void initialize(Attributor &A) override { |
| 12917 | assert(getAssociatedType()->isPtrOrPtrVectorTy() && |
| 12918 | "Associated value is not a pointer" ); |
| 12919 | |
| 12920 | if (!A.getInfoCache().getFlatAddressSpace().has_value()) { |
| 12921 | indicatePessimisticFixpoint(); |
| 12922 | return; |
| 12923 | } |
| 12924 | |
| 12925 | unsigned FlatAS = A.getInfoCache().getFlatAddressSpace().value(); |
| 12926 | unsigned AS = getAssociatedType()->getPointerAddressSpace(); |
| 12927 | if (AS != FlatAS) { |
| 12928 | [[maybe_unused]] bool R = takeAddressSpace(AS); |
| 12929 | assert(R && "The take should happen" ); |
| 12930 | indicateOptimisticFixpoint(); |
| 12931 | } |
| 12932 | } |
| 12933 | |
| 12934 | ChangeStatus updateImpl(Attributor &A) override { |
| 12935 | uint32_t OldAddressSpace = AssumedAddressSpace; |
| 12936 | unsigned FlatAS = A.getInfoCache().getFlatAddressSpace().value(); |
| 12937 | |
| 12938 | auto CheckAddressSpace = [&](Value &Obj) { |
| 12939 | // Ignore undef. |
| 12940 | if (isa<UndefValue>(Val: &Obj)) |
| 12941 | return true; |
| 12942 | |
| 12943 | // If the object already has a non-flat address space, we simply take it. |
| 12944 | unsigned ObjAS = Obj.getType()->getPointerAddressSpace(); |
| 12945 | if (ObjAS != FlatAS) |
| 12946 | return takeAddressSpace(AS: ObjAS); |
| 12947 | |
| 12948 | // At this point, we know Obj is in the flat address space. For a final |
| 12949 | // attempt, we want to use getAssumedAddrSpace, but first we must get the |
| 12950 | // associated function, if possible. |
| 12951 | Function *F = nullptr; |
| 12952 | if (auto *Arg = dyn_cast<Argument>(Val: &Obj)) |
| 12953 | F = Arg->getParent(); |
| 12954 | else if (auto *I = dyn_cast<Instruction>(Val: &Obj)) |
| 12955 | F = I->getFunction(); |
| 12956 | |
| 12957 | // Use getAssumedAddrSpace if the associated function exists. |
| 12958 | if (F) { |
| 12959 | auto *TTI = |
| 12960 | A.getInfoCache().getAnalysisResultForFunction<TargetIRAnalysis>(F: *F); |
| 12961 | unsigned AssumedAS = TTI->getAssumedAddrSpace(V: &Obj); |
| 12962 | if (AssumedAS != ~0U) |
| 12963 | return takeAddressSpace(AS: AssumedAS); |
| 12964 | } |
| 12965 | |
| 12966 | // Now we can't do anything else but to take the flat AS. |
| 12967 | return takeAddressSpace(AS: FlatAS); |
| 12968 | }; |
| 12969 | |
| 12970 | auto *AUO = A.getOrCreateAAFor<AAUnderlyingObjects>(IRP: getIRPosition(), QueryingAA: this, |
| 12971 | DepClass: DepClassTy::REQUIRED); |
| 12972 | if (!AUO->forallUnderlyingObjects(Pred: CheckAddressSpace)) |
| 12973 | return indicatePessimisticFixpoint(); |
| 12974 | |
| 12975 | return OldAddressSpace == AssumedAddressSpace ? ChangeStatus::UNCHANGED |
| 12976 | : ChangeStatus::CHANGED; |
| 12977 | } |
| 12978 | |
| 12979 | /// See AbstractAttribute::manifest(...). |
| 12980 | ChangeStatus manifest(Attributor &A) override { |
| 12981 | unsigned NewAS = getAddressSpace(); |
| 12982 | |
| 12983 | if (NewAS == InvalidAddressSpace || |
| 12984 | NewAS == getAssociatedType()->getPointerAddressSpace()) |
| 12985 | return ChangeStatus::UNCHANGED; |
| 12986 | |
| 12987 | unsigned FlatAS = A.getInfoCache().getFlatAddressSpace().value(); |
| 12988 | |
| 12989 | Value *AssociatedValue = &getAssociatedValue(); |
| 12990 | Value *OriginalValue = peelAddrspacecast(V: AssociatedValue, FlatAS); |
| 12991 | |
| 12992 | PointerType *NewPtrTy = |
| 12993 | PointerType::get(C&: getAssociatedType()->getContext(), AddressSpace: NewAS); |
| 12994 | bool UseOriginalValue = |
| 12995 | OriginalValue->getType()->getPointerAddressSpace() == NewAS; |
| 12996 | |
| 12997 | bool Changed = false; |
| 12998 | |
| 12999 | auto Pred = [&](const Use &U, bool &) { |
| 13000 | if (U.get() != AssociatedValue) |
| 13001 | return true; |
| 13002 | auto *Inst = dyn_cast<Instruction>(Val: U.getUser()); |
| 13003 | if (!Inst) |
| 13004 | return true; |
| 13005 | // This is a WA to make sure we only change uses from the corresponding |
| 13006 | // CGSCC if the AA is run on CGSCC instead of the entire module. |
| 13007 | if (!A.isRunOn(Fn: Inst->getFunction())) |
| 13008 | return true; |
| 13009 | if (auto *LI = dyn_cast<LoadInst>(Val: Inst)) { |
| 13010 | Changed |= |
| 13011 | makeChange(A, MemInst: LI, U, OriginalValue, NewPtrTy, UseOriginalValue); |
| 13012 | } else if (auto *SI = dyn_cast<StoreInst>(Val: Inst)) { |
| 13013 | Changed |= |
| 13014 | makeChange(A, MemInst: SI, U, OriginalValue, NewPtrTy, UseOriginalValue); |
| 13015 | } else if (auto *RMW = dyn_cast<AtomicRMWInst>(Val: Inst)) { |
| 13016 | Changed |= |
| 13017 | makeChange(A, MemInst: RMW, U, OriginalValue, NewPtrTy, UseOriginalValue); |
| 13018 | } else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Val: Inst)) { |
| 13019 | Changed |= |
| 13020 | makeChange(A, MemInst: CmpX, U, OriginalValue, NewPtrTy, UseOriginalValue); |
| 13021 | } |
| 13022 | return true; |
| 13023 | }; |
| 13024 | |
| 13025 | // It doesn't matter if we can't check all uses as we can simply |
| 13026 | // conservatively ignore those that can not be visited. |
| 13027 | (void)A.checkForAllUses(Pred, QueryingAA: *this, V: getAssociatedValue(), |
| 13028 | /* CheckBBLivenessOnly */ true); |
| 13029 | |
| 13030 | return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED; |
| 13031 | } |
| 13032 | |
| 13033 | /// See AbstractAttribute::getAsStr(). |
| 13034 | const std::string getAsStr(Attributor *A) const override { |
| 13035 | if (!isValidState()) |
| 13036 | return "addrspace(<invalid>)" ; |
| 13037 | return "addrspace(" + |
| 13038 | (AssumedAddressSpace == InvalidAddressSpace |
| 13039 | ? "none" |
| 13040 | : std::to_string(val: AssumedAddressSpace)) + |
| 13041 | ")" ; |
| 13042 | } |
| 13043 | |
| 13044 | private: |
| 13045 | uint32_t AssumedAddressSpace = InvalidAddressSpace; |
| 13046 | |
| 13047 | bool takeAddressSpace(uint32_t AS) { |
| 13048 | if (AssumedAddressSpace == InvalidAddressSpace) { |
| 13049 | AssumedAddressSpace = AS; |
| 13050 | return true; |
| 13051 | } |
| 13052 | return AssumedAddressSpace == AS; |
| 13053 | } |
| 13054 | |
| 13055 | static Value *peelAddrspacecast(Value *V, unsigned FlatAS) { |
| 13056 | if (auto *I = dyn_cast<AddrSpaceCastInst>(Val: V)) { |
| 13057 | assert(I->getSrcAddressSpace() != FlatAS && |
| 13058 | "there should not be flat AS -> non-flat AS" ); |
| 13059 | return I->getPointerOperand(); |
| 13060 | } |
| 13061 | if (auto *C = dyn_cast<ConstantExpr>(Val: V)) |
| 13062 | if (C->getOpcode() == Instruction::AddrSpaceCast) { |
| 13063 | assert(C->getOperand(0)->getType()->getPointerAddressSpace() != |
| 13064 | FlatAS && |
| 13065 | "there should not be flat AS -> non-flat AS X" ); |
| 13066 | return C->getOperand(i_nocapture: 0); |
| 13067 | } |
| 13068 | return V; |
| 13069 | } |
| 13070 | }; |
| 13071 | |
| 13072 | struct AAAddressSpaceFloating final : AAAddressSpaceImpl { |
| 13073 | AAAddressSpaceFloating(const IRPosition &IRP, Attributor &A) |
| 13074 | : AAAddressSpaceImpl(IRP, A) {} |
| 13075 | |
| 13076 | void trackStatistics() const override { |
| 13077 | STATS_DECLTRACK_FLOATING_ATTR(addrspace); |
| 13078 | } |
| 13079 | }; |
| 13080 | |
| 13081 | struct AAAddressSpaceReturned final : AAAddressSpaceImpl { |
| 13082 | AAAddressSpaceReturned(const IRPosition &IRP, Attributor &A) |
| 13083 | : AAAddressSpaceImpl(IRP, A) {} |
| 13084 | |
| 13085 | /// See AbstractAttribute::initialize(...). |
| 13086 | void initialize(Attributor &A) override { |
| 13087 | // TODO: we don't rewrite function argument for now because it will need to |
| 13088 | // rewrite the function signature and all call sites. |
| 13089 | (void)indicatePessimisticFixpoint(); |
| 13090 | } |
| 13091 | |
| 13092 | void trackStatistics() const override { |
| 13093 | STATS_DECLTRACK_FNRET_ATTR(addrspace); |
| 13094 | } |
| 13095 | }; |
| 13096 | |
| 13097 | struct AAAddressSpaceCallSiteReturned final : AAAddressSpaceImpl { |
| 13098 | AAAddressSpaceCallSiteReturned(const IRPosition &IRP, Attributor &A) |
| 13099 | : AAAddressSpaceImpl(IRP, A) {} |
| 13100 | |
| 13101 | void trackStatistics() const override { |
| 13102 | STATS_DECLTRACK_CSRET_ATTR(addrspace); |
| 13103 | } |
| 13104 | }; |
| 13105 | |
| 13106 | struct AAAddressSpaceArgument final : AAAddressSpaceImpl { |
| 13107 | AAAddressSpaceArgument(const IRPosition &IRP, Attributor &A) |
| 13108 | : AAAddressSpaceImpl(IRP, A) {} |
| 13109 | |
| 13110 | void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(addrspace); } |
| 13111 | }; |
| 13112 | |
| 13113 | struct AAAddressSpaceCallSiteArgument final : AAAddressSpaceImpl { |
| 13114 | AAAddressSpaceCallSiteArgument(const IRPosition &IRP, Attributor &A) |
| 13115 | : AAAddressSpaceImpl(IRP, A) {} |
| 13116 | |
| 13117 | /// See AbstractAttribute::initialize(...). |
| 13118 | void initialize(Attributor &A) override { |
| 13119 | // TODO: we don't rewrite call site argument for now because it will need to |
| 13120 | // rewrite the function signature of the callee. |
| 13121 | (void)indicatePessimisticFixpoint(); |
| 13122 | } |
| 13123 | |
| 13124 | void trackStatistics() const override { |
| 13125 | STATS_DECLTRACK_CSARG_ATTR(addrspace); |
| 13126 | } |
| 13127 | }; |
| 13128 | } // namespace |
| 13129 | |
| 13130 | /// ----------- Allocation Info ---------- |
| 13131 | namespace { |
| 13132 | struct AAAllocationInfoImpl : public AAAllocationInfo { |
| 13133 | AAAllocationInfoImpl(const IRPosition &IRP, Attributor &A) |
| 13134 | : AAAllocationInfo(IRP, A) {} |
| 13135 | |
| 13136 | std::optional<TypeSize> getAllocatedSize() const override { |
| 13137 | assert(isValidState() && "the AA is invalid" ); |
| 13138 | return AssumedAllocatedSize; |
| 13139 | } |
| 13140 | |
| 13141 | std::optional<TypeSize> findInitialAllocationSize(Instruction *I, |
| 13142 | const DataLayout &DL) { |
| 13143 | |
| 13144 | // TODO: implement case for malloc like instructions |
| 13145 | switch (I->getOpcode()) { |
| 13146 | case Instruction::Alloca: { |
| 13147 | AllocaInst *AI = cast<AllocaInst>(Val: I); |
| 13148 | return AI->getAllocationSize(DL); |
| 13149 | } |
| 13150 | default: |
| 13151 | return std::nullopt; |
| 13152 | } |
| 13153 | } |
| 13154 | |
| 13155 | ChangeStatus updateImpl(Attributor &A) override { |
| 13156 | |
| 13157 | const IRPosition &IRP = getIRPosition(); |
| 13158 | Instruction *I = IRP.getCtxI(); |
| 13159 | |
| 13160 | // TODO: update check for malloc like calls |
| 13161 | if (!isa<AllocaInst>(Val: I)) |
| 13162 | return indicatePessimisticFixpoint(); |
| 13163 | |
| 13164 | bool IsKnownNoCapture; |
| 13165 | if (!AA::hasAssumedIRAttr<Attribute::Captures>( |
| 13166 | A, QueryingAA: this, IRP, DepClass: DepClassTy::OPTIONAL, IsKnown&: IsKnownNoCapture)) |
| 13167 | return indicatePessimisticFixpoint(); |
| 13168 | |
| 13169 | const AAPointerInfo *PI = |
| 13170 | A.getOrCreateAAFor<AAPointerInfo>(IRP, QueryingAA: *this, DepClass: DepClassTy::REQUIRED); |
| 13171 | |
| 13172 | if (!PI) |
| 13173 | return indicatePessimisticFixpoint(); |
| 13174 | |
| 13175 | if (!PI->getState().isValidState() || PI->reachesReturn()) |
| 13176 | return indicatePessimisticFixpoint(); |
| 13177 | |
| 13178 | const DataLayout &DL = A.getDataLayout(); |
| 13179 | const auto AllocationSize = findInitialAllocationSize(I, DL); |
| 13180 | |
| 13181 | // If allocation size is nullopt, we give up. |
| 13182 | if (!AllocationSize) |
| 13183 | return indicatePessimisticFixpoint(); |
| 13184 | |
| 13185 | // For zero sized allocations, we give up. |
| 13186 | // Since we can't reduce further |
| 13187 | if (*AllocationSize == 0) |
| 13188 | return indicatePessimisticFixpoint(); |
| 13189 | |
| 13190 | int64_t BinSize = PI->numOffsetBins(); |
| 13191 | |
| 13192 | // TODO: implement for multiple bins |
| 13193 | if (BinSize > 1) |
| 13194 | return indicatePessimisticFixpoint(); |
| 13195 | |
| 13196 | if (BinSize == 0) { |
| 13197 | auto NewAllocationSize = std::optional<TypeSize>(TypeSize(0, false)); |
| 13198 | if (!changeAllocationSize(Size: NewAllocationSize)) |
| 13199 | return ChangeStatus::UNCHANGED; |
| 13200 | return ChangeStatus::CHANGED; |
| 13201 | } |
| 13202 | |
| 13203 | // TODO: refactor this to be part of multiple bin case |
| 13204 | const auto &It = PI->begin(); |
| 13205 | |
| 13206 | // TODO: handle if Offset is not zero |
| 13207 | if (It->first.Offset != 0) |
| 13208 | return indicatePessimisticFixpoint(); |
| 13209 | |
| 13210 | uint64_t SizeOfBin = It->first.Offset + It->first.Size; |
| 13211 | |
| 13212 | if (SizeOfBin >= *AllocationSize) |
| 13213 | return indicatePessimisticFixpoint(); |
| 13214 | |
| 13215 | auto NewAllocationSize = |
| 13216 | std::optional<TypeSize>(TypeSize(SizeOfBin * 8, false)); |
| 13217 | |
| 13218 | if (!changeAllocationSize(Size: NewAllocationSize)) |
| 13219 | return ChangeStatus::UNCHANGED; |
| 13220 | |
| 13221 | return ChangeStatus::CHANGED; |
| 13222 | } |
| 13223 | |
| 13224 | /// See AbstractAttribute::manifest(...). |
| 13225 | ChangeStatus manifest(Attributor &A) override { |
| 13226 | |
| 13227 | assert(isValidState() && |
| 13228 | "Manifest should only be called if the state is valid." ); |
| 13229 | |
| 13230 | Instruction *I = getIRPosition().getCtxI(); |
| 13231 | |
| 13232 | auto FixedAllocatedSizeInBits = getAllocatedSize()->getFixedValue(); |
| 13233 | |
| 13234 | unsigned long NumBytesToAllocate = (FixedAllocatedSizeInBits + 7) / 8; |
| 13235 | |
| 13236 | switch (I->getOpcode()) { |
| 13237 | // TODO: add case for malloc like calls |
| 13238 | case Instruction::Alloca: { |
| 13239 | |
| 13240 | AllocaInst *AI = cast<AllocaInst>(Val: I); |
| 13241 | |
| 13242 | Type *CharType = Type::getInt8Ty(C&: I->getContext()); |
| 13243 | |
| 13244 | auto *NumBytesToValue = |
| 13245 | ConstantInt::get(Context&: I->getContext(), V: APInt(32, NumBytesToAllocate)); |
| 13246 | |
| 13247 | BasicBlock::iterator insertPt = AI->getIterator(); |
| 13248 | insertPt = std::next(x: insertPt); |
| 13249 | AllocaInst *NewAllocaInst = |
| 13250 | new AllocaInst(CharType, AI->getAddressSpace(), NumBytesToValue, |
| 13251 | AI->getAlign(), AI->getName(), insertPt); |
| 13252 | |
| 13253 | if (A.changeAfterManifest(IRP: IRPosition::inst(I: *AI), NV&: *NewAllocaInst)) |
| 13254 | return ChangeStatus::CHANGED; |
| 13255 | |
| 13256 | break; |
| 13257 | } |
| 13258 | default: |
| 13259 | break; |
| 13260 | } |
| 13261 | |
| 13262 | return ChangeStatus::UNCHANGED; |
| 13263 | } |
| 13264 | |
| 13265 | /// See AbstractAttribute::getAsStr(). |
| 13266 | const std::string getAsStr(Attributor *A) const override { |
| 13267 | if (!isValidState()) |
| 13268 | return "allocationinfo(<invalid>)" ; |
| 13269 | return "allocationinfo(" + |
| 13270 | (AssumedAllocatedSize == HasNoAllocationSize |
| 13271 | ? "none" |
| 13272 | : std::to_string(val: AssumedAllocatedSize->getFixedValue())) + |
| 13273 | ")" ; |
| 13274 | } |
| 13275 | |
| 13276 | private: |
| 13277 | std::optional<TypeSize> AssumedAllocatedSize = HasNoAllocationSize; |
| 13278 | |
| 13279 | // Maintain the computed allocation size of the object. |
| 13280 | // Returns (bool) weather the size of the allocation was modified or not. |
| 13281 | bool changeAllocationSize(std::optional<TypeSize> Size) { |
| 13282 | if (AssumedAllocatedSize == HasNoAllocationSize || |
| 13283 | AssumedAllocatedSize != Size) { |
| 13284 | AssumedAllocatedSize = Size; |
| 13285 | return true; |
| 13286 | } |
| 13287 | return false; |
| 13288 | } |
| 13289 | }; |
| 13290 | |
| 13291 | struct AAAllocationInfoFloating : AAAllocationInfoImpl { |
| 13292 | AAAllocationInfoFloating(const IRPosition &IRP, Attributor &A) |
| 13293 | : AAAllocationInfoImpl(IRP, A) {} |
| 13294 | |
| 13295 | void trackStatistics() const override { |
| 13296 | STATS_DECLTRACK_FLOATING_ATTR(allocationinfo); |
| 13297 | } |
| 13298 | }; |
| 13299 | |
| 13300 | struct AAAllocationInfoReturned : AAAllocationInfoImpl { |
| 13301 | AAAllocationInfoReturned(const IRPosition &IRP, Attributor &A) |
| 13302 | : AAAllocationInfoImpl(IRP, A) {} |
| 13303 | |
| 13304 | /// See AbstractAttribute::initialize(...). |
| 13305 | void initialize(Attributor &A) override { |
| 13306 | // TODO: we don't rewrite function argument for now because it will need to |
| 13307 | // rewrite the function signature and all call sites |
| 13308 | (void)indicatePessimisticFixpoint(); |
| 13309 | } |
| 13310 | |
| 13311 | void trackStatistics() const override { |
| 13312 | STATS_DECLTRACK_FNRET_ATTR(allocationinfo); |
| 13313 | } |
| 13314 | }; |
| 13315 | |
| 13316 | struct AAAllocationInfoCallSiteReturned : AAAllocationInfoImpl { |
| 13317 | AAAllocationInfoCallSiteReturned(const IRPosition &IRP, Attributor &A) |
| 13318 | : AAAllocationInfoImpl(IRP, A) {} |
| 13319 | |
| 13320 | void trackStatistics() const override { |
| 13321 | STATS_DECLTRACK_CSRET_ATTR(allocationinfo); |
| 13322 | } |
| 13323 | }; |
| 13324 | |
| 13325 | struct AAAllocationInfoArgument : AAAllocationInfoImpl { |
| 13326 | AAAllocationInfoArgument(const IRPosition &IRP, Attributor &A) |
| 13327 | : AAAllocationInfoImpl(IRP, A) {} |
| 13328 | |
| 13329 | void trackStatistics() const override { |
| 13330 | STATS_DECLTRACK_ARG_ATTR(allocationinfo); |
| 13331 | } |
| 13332 | }; |
| 13333 | |
| 13334 | struct AAAllocationInfoCallSiteArgument : AAAllocationInfoImpl { |
| 13335 | AAAllocationInfoCallSiteArgument(const IRPosition &IRP, Attributor &A) |
| 13336 | : AAAllocationInfoImpl(IRP, A) {} |
| 13337 | |
| 13338 | /// See AbstractAttribute::initialize(...). |
| 13339 | void initialize(Attributor &A) override { |
| 13340 | |
| 13341 | (void)indicatePessimisticFixpoint(); |
| 13342 | } |
| 13343 | |
| 13344 | void trackStatistics() const override { |
| 13345 | STATS_DECLTRACK_CSARG_ATTR(allocationinfo); |
| 13346 | } |
| 13347 | }; |
| 13348 | } // namespace |
| 13349 | |
| 13350 | const char AANoUnwind::ID = 0; |
| 13351 | const char AANoSync::ID = 0; |
| 13352 | const char AANoFree::ID = 0; |
| 13353 | const char AANonNull::ID = 0; |
| 13354 | const char AAMustProgress::ID = 0; |
| 13355 | const char AANoRecurse::ID = 0; |
| 13356 | const char AANonConvergent::ID = 0; |
| 13357 | const char AAWillReturn::ID = 0; |
| 13358 | const char AAUndefinedBehavior::ID = 0; |
| 13359 | const char AANoAlias::ID = 0; |
| 13360 | const char AAIntraFnReachability::ID = 0; |
| 13361 | const char AANoReturn::ID = 0; |
| 13362 | const char AAIsDead::ID = 0; |
| 13363 | const char AADereferenceable::ID = 0; |
| 13364 | const char AAAlign::ID = 0; |
| 13365 | const char AAInstanceInfo::ID = 0; |
| 13366 | const char AANoCapture::ID = 0; |
| 13367 | const char AAValueSimplify::ID = 0; |
| 13368 | const char AAHeapToStack::ID = 0; |
| 13369 | const char AAPrivatizablePtr::ID = 0; |
| 13370 | const char AAMemoryBehavior::ID = 0; |
| 13371 | const char AAMemoryLocation::ID = 0; |
| 13372 | const char AAValueConstantRange::ID = 0; |
| 13373 | const char AAPotentialConstantValues::ID = 0; |
| 13374 | const char AAPotentialValues::ID = 0; |
| 13375 | const char AANoUndef::ID = 0; |
| 13376 | const char AANoFPClass::ID = 0; |
| 13377 | const char AACallEdges::ID = 0; |
| 13378 | const char AAInterFnReachability::ID = 0; |
| 13379 | const char AAPointerInfo::ID = 0; |
| 13380 | const char AAAssumptionInfo::ID = 0; |
| 13381 | const char AAUnderlyingObjects::ID = 0; |
| 13382 | const char AAInvariantLoadPointer::ID = 0; |
| 13383 | const char AAAddressSpace::ID = 0; |
| 13384 | const char AAAllocationInfo::ID = 0; |
| 13385 | const char AAIndirectCallInfo::ID = 0; |
| 13386 | const char AAGlobalValueInfo::ID = 0; |
| 13387 | const char AADenormalFPMath::ID = 0; |
| 13388 | |
| 13389 | // Macro magic to create the static generator function for attributes that |
| 13390 | // follow the naming scheme. |
| 13391 | |
| 13392 | #define SWITCH_PK_INV(CLASS, PK, POS_NAME) \ |
| 13393 | case IRPosition::PK: \ |
| 13394 | llvm_unreachable("Cannot create " #CLASS " for a " POS_NAME " position!"); |
| 13395 | |
| 13396 | #define SWITCH_PK_CREATE(CLASS, IRP, PK, SUFFIX) \ |
| 13397 | case IRPosition::PK: \ |
| 13398 | AA = new (A.Allocator) CLASS##SUFFIX(IRP, A); \ |
| 13399 | ++NumAAs; \ |
| 13400 | break; |
| 13401 | |
| 13402 | #define CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \ |
| 13403 | CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \ |
| 13404 | CLASS *AA = nullptr; \ |
| 13405 | switch (IRP.getPositionKind()) { \ |
| 13406 | SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \ |
| 13407 | SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating") \ |
| 13408 | SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument") \ |
| 13409 | SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned") \ |
| 13410 | SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned") \ |
| 13411 | SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument") \ |
| 13412 | SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function) \ |
| 13413 | SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite) \ |
| 13414 | } \ |
| 13415 | return *AA; \ |
| 13416 | } |
| 13417 | |
| 13418 | #define CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \ |
| 13419 | CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \ |
| 13420 | CLASS *AA = nullptr; \ |
| 13421 | switch (IRP.getPositionKind()) { \ |
| 13422 | SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \ |
| 13423 | SWITCH_PK_INV(CLASS, IRP_FUNCTION, "function") \ |
| 13424 | SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site") \ |
| 13425 | SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating) \ |
| 13426 | SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument) \ |
| 13427 | SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned) \ |
| 13428 | SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned) \ |
| 13429 | SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument) \ |
| 13430 | } \ |
| 13431 | return *AA; \ |
| 13432 | } |
| 13433 | |
| 13434 | #define CREATE_ABSTRACT_ATTRIBUTE_FOR_ONE_POSITION(POS, SUFFIX, CLASS) \ |
| 13435 | CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \ |
| 13436 | CLASS *AA = nullptr; \ |
| 13437 | switch (IRP.getPositionKind()) { \ |
| 13438 | SWITCH_PK_CREATE(CLASS, IRP, POS, SUFFIX) \ |
| 13439 | default: \ |
| 13440 | llvm_unreachable("Cannot create " #CLASS " for position otherthan " #POS \ |
| 13441 | " position!"); \ |
| 13442 | } \ |
| 13443 | return *AA; \ |
| 13444 | } |
| 13445 | |
| 13446 | #define CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \ |
| 13447 | CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \ |
| 13448 | CLASS *AA = nullptr; \ |
| 13449 | switch (IRP.getPositionKind()) { \ |
| 13450 | SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \ |
| 13451 | SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function) \ |
| 13452 | SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite) \ |
| 13453 | SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating) \ |
| 13454 | SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument) \ |
| 13455 | SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned) \ |
| 13456 | SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned) \ |
| 13457 | SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument) \ |
| 13458 | } \ |
| 13459 | return *AA; \ |
| 13460 | } |
| 13461 | |
| 13462 | #define CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \ |
| 13463 | CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \ |
| 13464 | CLASS *AA = nullptr; \ |
| 13465 | switch (IRP.getPositionKind()) { \ |
| 13466 | SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \ |
| 13467 | SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument") \ |
| 13468 | SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating") \ |
| 13469 | SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned") \ |
| 13470 | SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned") \ |
| 13471 | SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument") \ |
| 13472 | SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site") \ |
| 13473 | SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function) \ |
| 13474 | } \ |
| 13475 | return *AA; \ |
| 13476 | } |
| 13477 | |
| 13478 | #define CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \ |
| 13479 | CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \ |
| 13480 | CLASS *AA = nullptr; \ |
| 13481 | switch (IRP.getPositionKind()) { \ |
| 13482 | SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \ |
| 13483 | SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned") \ |
| 13484 | SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function) \ |
| 13485 | SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite) \ |
| 13486 | SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating) \ |
| 13487 | SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument) \ |
| 13488 | SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned) \ |
| 13489 | SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument) \ |
| 13490 | } \ |
| 13491 | return *AA; \ |
| 13492 | } |
| 13493 | |
| 13494 | CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUnwind) |
| 13495 | CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoSync) |
| 13496 | CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoRecurse) |
| 13497 | CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAWillReturn) |
| 13498 | CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoReturn) |
| 13499 | CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryLocation) |
| 13500 | CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AACallEdges) |
| 13501 | CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAssumptionInfo) |
| 13502 | CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMustProgress) |
| 13503 | |
| 13504 | CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANonNull) |
| 13505 | CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoAlias) |
| 13506 | CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPrivatizablePtr) |
| 13507 | CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AADereferenceable) |
| 13508 | CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAlign) |
| 13509 | CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAInstanceInfo) |
| 13510 | CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoCapture) |
| 13511 | CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueConstantRange) |
| 13512 | CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPotentialConstantValues) |
| 13513 | CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPotentialValues) |
| 13514 | CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUndef) |
| 13515 | CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoFPClass) |
| 13516 | CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPointerInfo) |
| 13517 | CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAInvariantLoadPointer) |
| 13518 | CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAddressSpace) |
| 13519 | CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAllocationInfo) |
| 13520 | |
| 13521 | CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueSimplify) |
| 13522 | CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAIsDead) |
| 13523 | CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoFree) |
| 13524 | CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAUnderlyingObjects) |
| 13525 | |
| 13526 | CREATE_ABSTRACT_ATTRIBUTE_FOR_ONE_POSITION(IRP_CALL_SITE, CallSite, |
| 13527 | AAIndirectCallInfo) |
| 13528 | CREATE_ABSTRACT_ATTRIBUTE_FOR_ONE_POSITION(IRP_FLOAT, Floating, |
| 13529 | AAGlobalValueInfo) |
| 13530 | |
| 13531 | CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAHeapToStack) |
| 13532 | CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAUndefinedBehavior) |
| 13533 | CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANonConvergent) |
| 13534 | CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAIntraFnReachability) |
| 13535 | CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAInterFnReachability) |
| 13536 | CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AADenormalFPMath) |
| 13537 | |
| 13538 | CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryBehavior) |
| 13539 | |
| 13540 | #undef CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION |
| 13541 | #undef CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION |
| 13542 | #undef CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION |
| 13543 | #undef CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION |
| 13544 | #undef CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION |
| 13545 | #undef CREATE_ABSTRACT_ATTRIBUTE_FOR_ONE_POSITION |
| 13546 | #undef SWITCH_PK_CREATE |
| 13547 | #undef SWITCH_PK_INV |
| 13548 | |