| 1 | //===- InstCombineAndOrXor.cpp --------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the visitAnd, visitOr, and visitXor functions. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "InstCombineInternal.h" |
| 14 | #include "llvm/Analysis/CmpInstAnalysis.h" |
| 15 | #include "llvm/Analysis/FloatingPointPredicateUtils.h" |
| 16 | #include "llvm/Analysis/InstructionSimplify.h" |
| 17 | #include "llvm/IR/ConstantRange.h" |
| 18 | #include "llvm/IR/Intrinsics.h" |
| 19 | #include "llvm/IR/PatternMatch.h" |
| 20 | #include "llvm/Transforms/InstCombine/InstCombiner.h" |
| 21 | #include "llvm/Transforms/Utils/Local.h" |
| 22 | |
| 23 | using namespace llvm; |
| 24 | using namespace PatternMatch; |
| 25 | |
| 26 | #define DEBUG_TYPE "instcombine" |
| 27 | |
| 28 | /// This is the complement of getICmpCode, which turns an opcode and two |
| 29 | /// operands into either a constant true or false, or a brand new ICmp |
| 30 | /// instruction. The sign is passed in to determine which kind of predicate to |
| 31 | /// use in the new icmp instruction. |
| 32 | static Value *getNewICmpValue(unsigned Code, bool Sign, Value *LHS, Value *RHS, |
| 33 | InstCombiner::BuilderTy &Builder) { |
| 34 | ICmpInst::Predicate NewPred; |
| 35 | if (Constant *TorF = getPredForICmpCode(Code, Sign, OpTy: LHS->getType(), Pred&: NewPred)) |
| 36 | return TorF; |
| 37 | return Builder.CreateICmp(P: NewPred, LHS, RHS); |
| 38 | } |
| 39 | |
| 40 | /// This is the complement of getFCmpCode, which turns an opcode and two |
| 41 | /// operands into either a FCmp instruction, or a true/false constant. |
| 42 | static Value *getFCmpValue(unsigned Code, Value *LHS, Value *RHS, |
| 43 | InstCombiner::BuilderTy &Builder, FMFSource FMF) { |
| 44 | FCmpInst::Predicate NewPred; |
| 45 | if (Constant *TorF = getPredForFCmpCode(Code, OpTy: LHS->getType(), Pred&: NewPred)) |
| 46 | return TorF; |
| 47 | return Builder.CreateFCmpFMF(P: NewPred, LHS, RHS, FMFSource: FMF); |
| 48 | } |
| 49 | |
| 50 | /// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise |
| 51 | /// (V < Lo || V >= Hi). This method expects that Lo < Hi. IsSigned indicates |
| 52 | /// whether to treat V, Lo, and Hi as signed or not. |
| 53 | Value *InstCombinerImpl::insertRangeTest(Value *V, const APInt &Lo, |
| 54 | const APInt &Hi, bool isSigned, |
| 55 | bool Inside) { |
| 56 | assert((isSigned ? Lo.slt(Hi) : Lo.ult(Hi)) && |
| 57 | "Lo is not < Hi in range emission code!" ); |
| 58 | |
| 59 | Type *Ty = V->getType(); |
| 60 | |
| 61 | // V >= Min && V < Hi --> V < Hi |
| 62 | // V < Min || V >= Hi --> V >= Hi |
| 63 | ICmpInst::Predicate Pred = Inside ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE; |
| 64 | if (isSigned ? Lo.isMinSignedValue() : Lo.isMinValue()) { |
| 65 | Pred = isSigned ? ICmpInst::getSignedPredicate(Pred) : Pred; |
| 66 | return Builder.CreateICmp(P: Pred, LHS: V, RHS: ConstantInt::get(Ty, V: Hi)); |
| 67 | } |
| 68 | |
| 69 | // V >= Lo && V < Hi --> V - Lo u< Hi - Lo |
| 70 | // V < Lo || V >= Hi --> V - Lo u>= Hi - Lo |
| 71 | Value *VMinusLo = |
| 72 | Builder.CreateSub(LHS: V, RHS: ConstantInt::get(Ty, V: Lo), Name: V->getName() + ".off" ); |
| 73 | Constant *HiMinusLo = ConstantInt::get(Ty, V: Hi - Lo); |
| 74 | return Builder.CreateICmp(P: Pred, LHS: VMinusLo, RHS: HiMinusLo); |
| 75 | } |
| 76 | |
| 77 | /// Classify (icmp eq (A & B), C) and (icmp ne (A & B), C) as matching patterns |
| 78 | /// that can be simplified. |
| 79 | /// One of A and B is considered the mask. The other is the value. This is |
| 80 | /// described as the "AMask" or "BMask" part of the enum. If the enum contains |
| 81 | /// only "Mask", then both A and B can be considered masks. If A is the mask, |
| 82 | /// then it was proven that (A & C) == C. This is trivial if C == A or C == 0. |
| 83 | /// If both A and C are constants, this proof is also easy. |
| 84 | /// For the following explanations, we assume that A is the mask. |
| 85 | /// |
| 86 | /// "AllOnes" declares that the comparison is true only if (A & B) == A or all |
| 87 | /// bits of A are set in B. |
| 88 | /// Example: (icmp eq (A & 3), 3) -> AMask_AllOnes |
| 89 | /// |
| 90 | /// "AllZeros" declares that the comparison is true only if (A & B) == 0 or all |
| 91 | /// bits of A are cleared in B. |
| 92 | /// Example: (icmp eq (A & 3), 0) -> Mask_AllZeroes |
| 93 | /// |
| 94 | /// "Mixed" declares that (A & B) == C and C might or might not contain any |
| 95 | /// number of one bits and zero bits. |
| 96 | /// Example: (icmp eq (A & 3), 1) -> AMask_Mixed |
| 97 | /// |
| 98 | /// "Not" means that in above descriptions "==" should be replaced by "!=". |
| 99 | /// Example: (icmp ne (A & 3), 3) -> AMask_NotAllOnes |
| 100 | /// |
| 101 | /// If the mask A contains a single bit, then the following is equivalent: |
| 102 | /// (icmp eq (A & B), A) equals (icmp ne (A & B), 0) |
| 103 | /// (icmp ne (A & B), A) equals (icmp eq (A & B), 0) |
| 104 | enum MaskedICmpType { |
| 105 | AMask_AllOnes = 1, |
| 106 | AMask_NotAllOnes = 2, |
| 107 | BMask_AllOnes = 4, |
| 108 | BMask_NotAllOnes = 8, |
| 109 | Mask_AllZeros = 16, |
| 110 | Mask_NotAllZeros = 32, |
| 111 | AMask_Mixed = 64, |
| 112 | AMask_NotMixed = 128, |
| 113 | BMask_Mixed = 256, |
| 114 | BMask_NotMixed = 512 |
| 115 | }; |
| 116 | |
| 117 | /// Return the set of patterns (from MaskedICmpType) that (icmp SCC (A & B), C) |
| 118 | /// satisfies. |
| 119 | static unsigned getMaskedICmpType(Value *A, Value *B, Value *C, |
| 120 | ICmpInst::Predicate Pred) { |
| 121 | const APInt *ConstA = nullptr, *ConstB = nullptr, *ConstC = nullptr; |
| 122 | match(V: A, P: m_APInt(Res&: ConstA)); |
| 123 | match(V: B, P: m_APInt(Res&: ConstB)); |
| 124 | match(V: C, P: m_APInt(Res&: ConstC)); |
| 125 | bool IsEq = (Pred == ICmpInst::ICMP_EQ); |
| 126 | bool IsAPow2 = ConstA && ConstA->isPowerOf2(); |
| 127 | bool IsBPow2 = ConstB && ConstB->isPowerOf2(); |
| 128 | unsigned MaskVal = 0; |
| 129 | if (ConstC && ConstC->isZero()) { |
| 130 | // if C is zero, then both A and B qualify as mask |
| 131 | MaskVal |= (IsEq ? (Mask_AllZeros | AMask_Mixed | BMask_Mixed) |
| 132 | : (Mask_NotAllZeros | AMask_NotMixed | BMask_NotMixed)); |
| 133 | if (IsAPow2) |
| 134 | MaskVal |= (IsEq ? (AMask_NotAllOnes | AMask_NotMixed) |
| 135 | : (AMask_AllOnes | AMask_Mixed)); |
| 136 | if (IsBPow2) |
| 137 | MaskVal |= (IsEq ? (BMask_NotAllOnes | BMask_NotMixed) |
| 138 | : (BMask_AllOnes | BMask_Mixed)); |
| 139 | return MaskVal; |
| 140 | } |
| 141 | |
| 142 | if (A == C) { |
| 143 | MaskVal |= (IsEq ? (AMask_AllOnes | AMask_Mixed) |
| 144 | : (AMask_NotAllOnes | AMask_NotMixed)); |
| 145 | if (IsAPow2) |
| 146 | MaskVal |= (IsEq ? (Mask_NotAllZeros | AMask_NotMixed) |
| 147 | : (Mask_AllZeros | AMask_Mixed)); |
| 148 | } else if (ConstA && ConstC && ConstC->isSubsetOf(RHS: *ConstA)) { |
| 149 | MaskVal |= (IsEq ? AMask_Mixed : AMask_NotMixed); |
| 150 | } |
| 151 | |
| 152 | if (B == C) { |
| 153 | MaskVal |= (IsEq ? (BMask_AllOnes | BMask_Mixed) |
| 154 | : (BMask_NotAllOnes | BMask_NotMixed)); |
| 155 | if (IsBPow2) |
| 156 | MaskVal |= (IsEq ? (Mask_NotAllZeros | BMask_NotMixed) |
| 157 | : (Mask_AllZeros | BMask_Mixed)); |
| 158 | } else if (ConstB && ConstC && ConstC->isSubsetOf(RHS: *ConstB)) { |
| 159 | MaskVal |= (IsEq ? BMask_Mixed : BMask_NotMixed); |
| 160 | } |
| 161 | |
| 162 | return MaskVal; |
| 163 | } |
| 164 | |
| 165 | /// Convert an analysis of a masked ICmp into its equivalent if all boolean |
| 166 | /// operations had the opposite sense. Since each "NotXXX" flag (recording !=) |
| 167 | /// is adjacent to the corresponding normal flag (recording ==), this just |
| 168 | /// involves swapping those bits over. |
| 169 | static unsigned conjugateICmpMask(unsigned Mask) { |
| 170 | unsigned NewMask; |
| 171 | NewMask = (Mask & (AMask_AllOnes | BMask_AllOnes | Mask_AllZeros | |
| 172 | AMask_Mixed | BMask_Mixed)) |
| 173 | << 1; |
| 174 | |
| 175 | NewMask |= (Mask & (AMask_NotAllOnes | BMask_NotAllOnes | Mask_NotAllZeros | |
| 176 | AMask_NotMixed | BMask_NotMixed)) |
| 177 | >> 1; |
| 178 | |
| 179 | return NewMask; |
| 180 | } |
| 181 | |
| 182 | // Adapts the external decomposeBitTestICmp for local use. |
| 183 | static bool decomposeBitTestICmp(Value *Cond, CmpInst::Predicate &Pred, |
| 184 | Value *&X, Value *&Y, Value *&Z) { |
| 185 | auto Res = llvm::decomposeBitTest(Cond, /*LookThroughTrunc=*/true, |
| 186 | /*AllowNonZeroC=*/true); |
| 187 | if (!Res) |
| 188 | return false; |
| 189 | |
| 190 | Pred = Res->Pred; |
| 191 | X = Res->X; |
| 192 | Y = ConstantInt::get(Ty: X->getType(), V: Res->Mask); |
| 193 | Z = ConstantInt::get(Ty: X->getType(), V: Res->C); |
| 194 | return true; |
| 195 | } |
| 196 | |
| 197 | /// Handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E). |
| 198 | /// Return the pattern classes (from MaskedICmpType) for the left hand side and |
| 199 | /// the right hand side as a pair. |
| 200 | /// LHS and RHS are the left hand side and the right hand side ICmps and PredL |
| 201 | /// and PredR are their predicates, respectively. |
| 202 | static std::optional<std::pair<unsigned, unsigned>> |
| 203 | getMaskedTypeForICmpPair(Value *&A, Value *&B, Value *&C, Value *&D, Value *&E, |
| 204 | Value *LHS, Value *RHS, ICmpInst::Predicate &PredL, |
| 205 | ICmpInst::Predicate &PredR) { |
| 206 | |
| 207 | // Here comes the tricky part: |
| 208 | // LHS might be of the form L11 & L12 == X, X == L21 & L22, |
| 209 | // and L11 & L12 == L21 & L22. The same goes for RHS. |
| 210 | // Now we must find those components L** and R**, that are equal, so |
| 211 | // that we can extract the parameters A, B, C, D, and E for the canonical |
| 212 | // above. |
| 213 | |
| 214 | // Check whether the icmp can be decomposed into a bit test. |
| 215 | Value *L1, *L11, *L12, *L2, *L21, *L22; |
| 216 | if (decomposeBitTestICmp(Cond: LHS, Pred&: PredL, X&: L11, Y&: L12, Z&: L2)) { |
| 217 | L21 = L22 = L1 = nullptr; |
| 218 | } else { |
| 219 | auto *LHSCMP = dyn_cast<ICmpInst>(Val: LHS); |
| 220 | if (!LHSCMP) |
| 221 | return std::nullopt; |
| 222 | |
| 223 | // Don't allow pointers. Splat vectors are fine. |
| 224 | if (!LHSCMP->getOperand(i_nocapture: 0)->getType()->isIntOrIntVectorTy()) |
| 225 | return std::nullopt; |
| 226 | |
| 227 | PredL = LHSCMP->getPredicate(); |
| 228 | L1 = LHSCMP->getOperand(i_nocapture: 0); |
| 229 | L2 = LHSCMP->getOperand(i_nocapture: 1); |
| 230 | // Look for ANDs in the LHS icmp. |
| 231 | if (!match(V: L1, P: m_And(L: m_Value(V&: L11), R: m_Value(V&: L12)))) { |
| 232 | // Any icmp can be viewed as being trivially masked; if it allows us to |
| 233 | // remove one, it's worth it. |
| 234 | L11 = L1; |
| 235 | L12 = Constant::getAllOnesValue(Ty: L1->getType()); |
| 236 | } |
| 237 | |
| 238 | if (!match(V: L2, P: m_And(L: m_Value(V&: L21), R: m_Value(V&: L22)))) { |
| 239 | L21 = L2; |
| 240 | L22 = Constant::getAllOnesValue(Ty: L2->getType()); |
| 241 | } |
| 242 | } |
| 243 | |
| 244 | // Bail if LHS was a icmp that can't be decomposed into an equality. |
| 245 | if (!ICmpInst::isEquality(P: PredL)) |
| 246 | return std::nullopt; |
| 247 | |
| 248 | Value *R11, *R12, *R2; |
| 249 | if (decomposeBitTestICmp(Cond: RHS, Pred&: PredR, X&: R11, Y&: R12, Z&: R2)) { |
| 250 | if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) { |
| 251 | A = R11; |
| 252 | D = R12; |
| 253 | } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) { |
| 254 | A = R12; |
| 255 | D = R11; |
| 256 | } else { |
| 257 | return std::nullopt; |
| 258 | } |
| 259 | E = R2; |
| 260 | } else { |
| 261 | auto *RHSCMP = dyn_cast<ICmpInst>(Val: RHS); |
| 262 | if (!RHSCMP) |
| 263 | return std::nullopt; |
| 264 | // Don't allow pointers. Splat vectors are fine. |
| 265 | if (!RHSCMP->getOperand(i_nocapture: 0)->getType()->isIntOrIntVectorTy()) |
| 266 | return std::nullopt; |
| 267 | |
| 268 | PredR = RHSCMP->getPredicate(); |
| 269 | |
| 270 | Value *R1 = RHSCMP->getOperand(i_nocapture: 0); |
| 271 | R2 = RHSCMP->getOperand(i_nocapture: 1); |
| 272 | bool Ok = false; |
| 273 | if (!match(V: R1, P: m_And(L: m_Value(V&: R11), R: m_Value(V&: R12)))) { |
| 274 | // As before, model no mask as a trivial mask if it'll let us do an |
| 275 | // optimization. |
| 276 | R11 = R1; |
| 277 | R12 = Constant::getAllOnesValue(Ty: R1->getType()); |
| 278 | } |
| 279 | |
| 280 | if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) { |
| 281 | A = R11; |
| 282 | D = R12; |
| 283 | E = R2; |
| 284 | Ok = true; |
| 285 | } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) { |
| 286 | A = R12; |
| 287 | D = R11; |
| 288 | E = R2; |
| 289 | Ok = true; |
| 290 | } |
| 291 | |
| 292 | // Avoid matching against the -1 value we created for unmasked operand. |
| 293 | if (Ok && match(V: A, P: m_AllOnes())) |
| 294 | Ok = false; |
| 295 | |
| 296 | // Look for ANDs on the right side of the RHS icmp. |
| 297 | if (!Ok) { |
| 298 | if (!match(V: R2, P: m_And(L: m_Value(V&: R11), R: m_Value(V&: R12)))) { |
| 299 | R11 = R2; |
| 300 | R12 = Constant::getAllOnesValue(Ty: R2->getType()); |
| 301 | } |
| 302 | |
| 303 | if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) { |
| 304 | A = R11; |
| 305 | D = R12; |
| 306 | E = R1; |
| 307 | } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) { |
| 308 | A = R12; |
| 309 | D = R11; |
| 310 | E = R1; |
| 311 | } else { |
| 312 | return std::nullopt; |
| 313 | } |
| 314 | } |
| 315 | } |
| 316 | |
| 317 | // Bail if RHS was a icmp that can't be decomposed into an equality. |
| 318 | if (!ICmpInst::isEquality(P: PredR)) |
| 319 | return std::nullopt; |
| 320 | |
| 321 | if (L11 == A) { |
| 322 | B = L12; |
| 323 | C = L2; |
| 324 | } else if (L12 == A) { |
| 325 | B = L11; |
| 326 | C = L2; |
| 327 | } else if (L21 == A) { |
| 328 | B = L22; |
| 329 | C = L1; |
| 330 | } else if (L22 == A) { |
| 331 | B = L21; |
| 332 | C = L1; |
| 333 | } |
| 334 | |
| 335 | unsigned LeftType = getMaskedICmpType(A, B, C, Pred: PredL); |
| 336 | unsigned RightType = getMaskedICmpType(A, B: D, C: E, Pred: PredR); |
| 337 | return std::optional<std::pair<unsigned, unsigned>>( |
| 338 | std::make_pair(x&: LeftType, y&: RightType)); |
| 339 | } |
| 340 | |
| 341 | /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) into a single |
| 342 | /// (icmp(A & X) ==/!= Y), where the left-hand side is of type Mask_NotAllZeros |
| 343 | /// and the right hand side is of type BMask_Mixed. For example, |
| 344 | /// (icmp (A & 12) != 0) & (icmp (A & 15) == 8) -> (icmp (A & 15) == 8). |
| 345 | /// Also used for logical and/or, must be poison safe. |
| 346 | static Value *foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed( |
| 347 | Value *LHS, Value *RHS, bool IsAnd, Value *A, Value *B, Value *D, Value *E, |
| 348 | ICmpInst::Predicate PredL, ICmpInst::Predicate PredR, |
| 349 | InstCombiner::BuilderTy &Builder) { |
| 350 | // We are given the canonical form: |
| 351 | // (icmp ne (A & B), 0) & (icmp eq (A & D), E). |
| 352 | // where D & E == E. |
| 353 | // |
| 354 | // If IsAnd is false, we get it in negated form: |
| 355 | // (icmp eq (A & B), 0) | (icmp ne (A & D), E) -> |
| 356 | // !((icmp ne (A & B), 0) & (icmp eq (A & D), E)). |
| 357 | // |
| 358 | // We currently handle the case of B, C, D, E are constant. |
| 359 | // |
| 360 | const APInt *BCst, *DCst, *OrigECst; |
| 361 | if (!match(V: B, P: m_APInt(Res&: BCst)) || !match(V: D, P: m_APInt(Res&: DCst)) || |
| 362 | !match(V: E, P: m_APInt(Res&: OrigECst))) |
| 363 | return nullptr; |
| 364 | |
| 365 | ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; |
| 366 | |
| 367 | // Update E to the canonical form when D is a power of two and RHS is |
| 368 | // canonicalized as, |
| 369 | // (icmp ne (A & D), 0) -> (icmp eq (A & D), D) or |
| 370 | // (icmp ne (A & D), D) -> (icmp eq (A & D), 0). |
| 371 | APInt ECst = *OrigECst; |
| 372 | if (PredR != NewCC) |
| 373 | ECst ^= *DCst; |
| 374 | |
| 375 | // If B or D is zero, skip because if LHS or RHS can be trivially folded by |
| 376 | // other folding rules and this pattern won't apply any more. |
| 377 | if (*BCst == 0 || *DCst == 0) |
| 378 | return nullptr; |
| 379 | |
| 380 | // If B and D don't intersect, ie. (B & D) == 0, try to fold isNaN idiom: |
| 381 | // (icmp ne (A & FractionBits), 0) & (icmp eq (A & ExpBits), ExpBits) |
| 382 | // -> isNaN(A) |
| 383 | // Otherwise, we cannot deduce anything from it. |
| 384 | if (!BCst->intersects(RHS: *DCst)) { |
| 385 | Value *Src; |
| 386 | if (*DCst == ECst && match(V: A, P: m_ElementWiseBitCast(Op: m_Value(V&: Src))) && |
| 387 | !Builder.GetInsertBlock()->getParent()->hasFnAttribute( |
| 388 | Kind: Attribute::StrictFP)) { |
| 389 | Type *Ty = Src->getType()->getScalarType(); |
| 390 | if (!Ty->isIEEELikeFPTy()) |
| 391 | return nullptr; |
| 392 | |
| 393 | APInt ExpBits = APFloat::getInf(Sem: Ty->getFltSemantics()).bitcastToAPInt(); |
| 394 | if (ECst != ExpBits) |
| 395 | return nullptr; |
| 396 | APInt FractionBits = ~ExpBits; |
| 397 | FractionBits.clearSignBit(); |
| 398 | if (*BCst != FractionBits) |
| 399 | return nullptr; |
| 400 | |
| 401 | return Builder.CreateFCmp(P: IsAnd ? FCmpInst::FCMP_UNO : FCmpInst::FCMP_ORD, |
| 402 | LHS: Src, RHS: ConstantFP::getZero(Ty: Src->getType())); |
| 403 | } |
| 404 | return nullptr; |
| 405 | } |
| 406 | |
| 407 | // If the following two conditions are met: |
| 408 | // |
| 409 | // 1. mask B covers only a single bit that's not covered by mask D, that is, |
| 410 | // (B & (B ^ D)) is a power of 2 (in other words, B minus the intersection of |
| 411 | // B and D has only one bit set) and, |
| 412 | // |
| 413 | // 2. RHS (and E) indicates that the rest of B's bits are zero (in other |
| 414 | // words, the intersection of B and D is zero), that is, ((B & D) & E) == 0 |
| 415 | // |
| 416 | // then that single bit in B must be one and thus the whole expression can be |
| 417 | // folded to |
| 418 | // (A & (B | D)) == (B & (B ^ D)) | E. |
| 419 | // |
| 420 | // For example, |
| 421 | // (icmp ne (A & 12), 0) & (icmp eq (A & 7), 1) -> (icmp eq (A & 15), 9) |
| 422 | // (icmp ne (A & 15), 0) & (icmp eq (A & 7), 0) -> (icmp eq (A & 15), 8) |
| 423 | if ((((*BCst & *DCst) & ECst) == 0) && |
| 424 | (*BCst & (*BCst ^ *DCst)).isPowerOf2()) { |
| 425 | APInt BorD = *BCst | *DCst; |
| 426 | APInt BandBxorDorE = (*BCst & (*BCst ^ *DCst)) | ECst; |
| 427 | Value *NewMask = ConstantInt::get(Ty: A->getType(), V: BorD); |
| 428 | Value *NewMaskedValue = ConstantInt::get(Ty: A->getType(), V: BandBxorDorE); |
| 429 | Value *NewAnd = Builder.CreateAnd(LHS: A, RHS: NewMask); |
| 430 | return Builder.CreateICmp(P: NewCC, LHS: NewAnd, RHS: NewMaskedValue); |
| 431 | } |
| 432 | |
| 433 | auto IsSubSetOrEqual = [](const APInt *C1, const APInt *C2) { |
| 434 | return (*C1 & *C2) == *C1; |
| 435 | }; |
| 436 | auto IsSuperSetOrEqual = [](const APInt *C1, const APInt *C2) { |
| 437 | return (*C1 & *C2) == *C2; |
| 438 | }; |
| 439 | |
| 440 | // In the following, we consider only the cases where B is a superset of D, B |
| 441 | // is a subset of D, or B == D because otherwise there's at least one bit |
| 442 | // covered by B but not D, in which case we can't deduce much from it, so |
| 443 | // no folding (aside from the single must-be-one bit case right above.) |
| 444 | // For example, |
| 445 | // (icmp ne (A & 14), 0) & (icmp eq (A & 3), 1) -> no folding. |
| 446 | if (!IsSubSetOrEqual(BCst, DCst) && !IsSuperSetOrEqual(BCst, DCst)) |
| 447 | return nullptr; |
| 448 | |
| 449 | // At this point, either B is a superset of D, B is a subset of D or B == D. |
| 450 | |
| 451 | // If E is zero, if B is a subset of (or equal to) D, LHS and RHS contradict |
| 452 | // and the whole expression becomes false (or true if negated), otherwise, no |
| 453 | // folding. |
| 454 | // For example, |
| 455 | // (icmp ne (A & 3), 0) & (icmp eq (A & 7), 0) -> false. |
| 456 | // (icmp ne (A & 15), 0) & (icmp eq (A & 3), 0) -> no folding. |
| 457 | if (ECst.isZero()) { |
| 458 | if (IsSubSetOrEqual(BCst, DCst)) |
| 459 | return ConstantInt::get(Ty: LHS->getType(), V: !IsAnd); |
| 460 | return nullptr; |
| 461 | } |
| 462 | |
| 463 | // At this point, B, D, E aren't zero and (B & D) == B, (B & D) == D or B == |
| 464 | // D. If B is a superset of (or equal to) D, since E is not zero, LHS is |
| 465 | // subsumed by RHS (RHS implies LHS.) So the whole expression becomes |
| 466 | // RHS. For example, |
| 467 | // (icmp ne (A & 255), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8). |
| 468 | // (icmp ne (A & 15), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8). |
| 469 | if (IsSuperSetOrEqual(BCst, DCst)) { |
| 470 | // We can't guarantee that samesign hold after this fold. |
| 471 | if (auto *ICmp = dyn_cast<ICmpInst>(Val: RHS)) |
| 472 | ICmp->setSameSign(false); |
| 473 | return RHS; |
| 474 | } |
| 475 | // Otherwise, B is a subset of D. If B and E have a common bit set, |
| 476 | // ie. (B & E) != 0, then LHS is subsumed by RHS. For example. |
| 477 | // (icmp ne (A & 12), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8). |
| 478 | assert(IsSubSetOrEqual(BCst, DCst) && "Precondition due to above code" ); |
| 479 | if ((*BCst & ECst) != 0) { |
| 480 | // We can't guarantee that samesign hold after this fold. |
| 481 | if (auto *ICmp = dyn_cast<ICmpInst>(Val: RHS)) |
| 482 | ICmp->setSameSign(false); |
| 483 | return RHS; |
| 484 | } |
| 485 | // Otherwise, LHS and RHS contradict and the whole expression becomes false |
| 486 | // (or true if negated.) For example, |
| 487 | // (icmp ne (A & 7), 0) & (icmp eq (A & 15), 8) -> false. |
| 488 | // (icmp ne (A & 6), 0) & (icmp eq (A & 15), 8) -> false. |
| 489 | return ConstantInt::get(Ty: LHS->getType(), V: !IsAnd); |
| 490 | } |
| 491 | |
| 492 | /// Try to fold (icmp(A & B) ==/!= 0) &/| (icmp(A & D) ==/!= E) into a single |
| 493 | /// (icmp(A & X) ==/!= Y), where the left-hand side and the right hand side |
| 494 | /// aren't of the common mask pattern type. |
| 495 | /// Also used for logical and/or, must be poison safe. |
| 496 | static Value *foldLogOpOfMaskedICmpsAsymmetric( |
| 497 | Value *LHS, Value *RHS, bool IsAnd, Value *A, Value *B, Value *C, Value *D, |
| 498 | Value *E, ICmpInst::Predicate PredL, ICmpInst::Predicate PredR, |
| 499 | unsigned LHSMask, unsigned RHSMask, InstCombiner::BuilderTy &Builder) { |
| 500 | assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) && |
| 501 | "Expected equality predicates for masked type of icmps." ); |
| 502 | // Handle Mask_NotAllZeros-BMask_Mixed cases. |
| 503 | // (icmp ne/eq (A & B), C) &/| (icmp eq/ne (A & D), E), or |
| 504 | // (icmp eq/ne (A & B), C) &/| (icmp ne/eq (A & D), E) |
| 505 | // which gets swapped to |
| 506 | // (icmp ne/eq (A & D), E) &/| (icmp eq/ne (A & B), C). |
| 507 | if (!IsAnd) { |
| 508 | LHSMask = conjugateICmpMask(Mask: LHSMask); |
| 509 | RHSMask = conjugateICmpMask(Mask: RHSMask); |
| 510 | } |
| 511 | if ((LHSMask & Mask_NotAllZeros) && (RHSMask & BMask_Mixed)) { |
| 512 | if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed( |
| 513 | LHS, RHS, IsAnd, A, B, D, E, PredL, PredR, Builder)) { |
| 514 | return V; |
| 515 | } |
| 516 | } else if ((LHSMask & BMask_Mixed) && (RHSMask & Mask_NotAllZeros)) { |
| 517 | if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed( |
| 518 | LHS: RHS, RHS: LHS, IsAnd, A, B: D, D: B, E: C, PredL: PredR, PredR: PredL, Builder)) { |
| 519 | return V; |
| 520 | } |
| 521 | } |
| 522 | return nullptr; |
| 523 | } |
| 524 | |
| 525 | /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) |
| 526 | /// into a single (icmp(A & X) ==/!= Y). |
| 527 | static Value *foldLogOpOfMaskedICmps(Value *LHS, Value *RHS, bool IsAnd, |
| 528 | bool IsLogical, |
| 529 | InstCombiner::BuilderTy &Builder, |
| 530 | const SimplifyQuery &Q) { |
| 531 | Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr; |
| 532 | ICmpInst::Predicate PredL, PredR; |
| 533 | std::optional<std::pair<unsigned, unsigned>> MaskPair = |
| 534 | getMaskedTypeForICmpPair(A, B, C, D, E, LHS, RHS, PredL, PredR); |
| 535 | if (!MaskPair) |
| 536 | return nullptr; |
| 537 | assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) && |
| 538 | "Expected equality predicates for masked type of icmps." ); |
| 539 | unsigned LHSMask = MaskPair->first; |
| 540 | unsigned RHSMask = MaskPair->second; |
| 541 | unsigned Mask = LHSMask & RHSMask; |
| 542 | if (Mask == 0) { |
| 543 | // Even if the two sides don't share a common pattern, check if folding can |
| 544 | // still happen. |
| 545 | if (Value *V = foldLogOpOfMaskedICmpsAsymmetric( |
| 546 | LHS, RHS, IsAnd, A, B, C, D, E, PredL, PredR, LHSMask, RHSMask, |
| 547 | Builder)) |
| 548 | return V; |
| 549 | return nullptr; |
| 550 | } |
| 551 | |
| 552 | // In full generality: |
| 553 | // (icmp (A & B) Op C) | (icmp (A & D) Op E) |
| 554 | // == ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ] |
| 555 | // |
| 556 | // If the latter can be converted into (icmp (A & X) Op Y) then the former is |
| 557 | // equivalent to (icmp (A & X) !Op Y). |
| 558 | // |
| 559 | // Therefore, we can pretend for the rest of this function that we're dealing |
| 560 | // with the conjunction, provided we flip the sense of any comparisons (both |
| 561 | // input and output). |
| 562 | |
| 563 | // In most cases we're going to produce an EQ for the "&&" case. |
| 564 | ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; |
| 565 | if (!IsAnd) { |
| 566 | // Convert the masking analysis into its equivalent with negated |
| 567 | // comparisons. |
| 568 | Mask = conjugateICmpMask(Mask); |
| 569 | } |
| 570 | |
| 571 | if (Mask & Mask_AllZeros) { |
| 572 | // (icmp eq (A & B), 0) & (icmp eq (A & D), 0) |
| 573 | // -> (icmp eq (A & (B|D)), 0) |
| 574 | if (IsLogical && !isGuaranteedNotToBeUndefOrPoison(V: D)) |
| 575 | return nullptr; // TODO: Use freeze? |
| 576 | Value *NewOr = Builder.CreateOr(LHS: B, RHS: D); |
| 577 | Value *NewAnd = Builder.CreateAnd(LHS: A, RHS: NewOr); |
| 578 | // We can't use C as zero because we might actually handle |
| 579 | // (icmp ne (A & B), B) & (icmp ne (A & D), D) |
| 580 | // with B and D, having a single bit set. |
| 581 | Value *Zero = Constant::getNullValue(Ty: A->getType()); |
| 582 | return Builder.CreateICmp(P: NewCC, LHS: NewAnd, RHS: Zero); |
| 583 | } |
| 584 | if (Mask & BMask_AllOnes) { |
| 585 | // (icmp eq (A & B), B) & (icmp eq (A & D), D) |
| 586 | // -> (icmp eq (A & (B|D)), (B|D)) |
| 587 | if (IsLogical && !isGuaranteedNotToBeUndefOrPoison(V: D)) |
| 588 | return nullptr; // TODO: Use freeze? |
| 589 | Value *NewOr = Builder.CreateOr(LHS: B, RHS: D); |
| 590 | Value *NewAnd = Builder.CreateAnd(LHS: A, RHS: NewOr); |
| 591 | return Builder.CreateICmp(P: NewCC, LHS: NewAnd, RHS: NewOr); |
| 592 | } |
| 593 | if (Mask & AMask_AllOnes) { |
| 594 | // (icmp eq (A & B), A) & (icmp eq (A & D), A) |
| 595 | // -> (icmp eq (A & (B&D)), A) |
| 596 | if (IsLogical && !isGuaranteedNotToBeUndefOrPoison(V: D)) |
| 597 | return nullptr; // TODO: Use freeze? |
| 598 | Value *NewAnd1 = Builder.CreateAnd(LHS: B, RHS: D); |
| 599 | Value *NewAnd2 = Builder.CreateAnd(LHS: A, RHS: NewAnd1); |
| 600 | return Builder.CreateICmp(P: NewCC, LHS: NewAnd2, RHS: A); |
| 601 | } |
| 602 | |
| 603 | const APInt *ConstB, *ConstD; |
| 604 | if (match(V: B, P: m_APInt(Res&: ConstB)) && match(V: D, P: m_APInt(Res&: ConstD))) { |
| 605 | if (Mask & (Mask_NotAllZeros | BMask_NotAllOnes)) { |
| 606 | // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and |
| 607 | // (icmp ne (A & B), B) & (icmp ne (A & D), D) |
| 608 | // -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0) |
| 609 | // Only valid if one of the masks is a superset of the other (check "B&D" |
| 610 | // is the same as either B or D). |
| 611 | APInt NewMask = *ConstB & *ConstD; |
| 612 | if (NewMask == *ConstB) |
| 613 | return LHS; |
| 614 | if (NewMask == *ConstD) { |
| 615 | if (IsLogical) { |
| 616 | if (auto *RHSI = dyn_cast<Instruction>(Val: RHS)) |
| 617 | RHSI->dropPoisonGeneratingFlags(); |
| 618 | } |
| 619 | return RHS; |
| 620 | } |
| 621 | } |
| 622 | |
| 623 | if (Mask & AMask_NotAllOnes) { |
| 624 | // (icmp ne (A & B), B) & (icmp ne (A & D), D) |
| 625 | // -> (icmp ne (A & B), A) or (icmp ne (A & D), A) |
| 626 | // Only valid if one of the masks is a superset of the other (check "B|D" |
| 627 | // is the same as either B or D). |
| 628 | APInt NewMask = *ConstB | *ConstD; |
| 629 | if (NewMask == *ConstB) |
| 630 | return LHS; |
| 631 | if (NewMask == *ConstD) |
| 632 | return RHS; |
| 633 | } |
| 634 | |
| 635 | if (Mask & (BMask_Mixed | BMask_NotMixed)) { |
| 636 | // Mixed: |
| 637 | // (icmp eq (A & B), C) & (icmp eq (A & D), E) |
| 638 | // We already know that B & C == C && D & E == E. |
| 639 | // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of |
| 640 | // C and E, which are shared by both the mask B and the mask D, don't |
| 641 | // contradict, then we can transform to |
| 642 | // -> (icmp eq (A & (B|D)), (C|E)) |
| 643 | // Currently, we only handle the case of B, C, D, and E being constant. |
| 644 | // We can't simply use C and E because we might actually handle |
| 645 | // (icmp ne (A & B), B) & (icmp eq (A & D), D) |
| 646 | // with B and D, having a single bit set. |
| 647 | |
| 648 | // NotMixed: |
| 649 | // (icmp ne (A & B), C) & (icmp ne (A & D), E) |
| 650 | // -> (icmp ne (A & (B & D)), (C & E)) |
| 651 | // Check the intersection (B & D) for inequality. |
| 652 | // Assume that (B & D) == B || (B & D) == D, i.e B/D is a subset of D/B |
| 653 | // and (B & D) & (C ^ E) == 0, bits of C and E, which are shared by both |
| 654 | // the B and the D, don't contradict. Note that we can assume (~B & C) == |
| 655 | // 0 && (~D & E) == 0, previous operation should delete these icmps if it |
| 656 | // hadn't been met. |
| 657 | |
| 658 | const APInt *OldConstC, *OldConstE; |
| 659 | if (!match(V: C, P: m_APInt(Res&: OldConstC)) || !match(V: E, P: m_APInt(Res&: OldConstE))) |
| 660 | return nullptr; |
| 661 | |
| 662 | auto FoldBMixed = [&](ICmpInst::Predicate CC, bool IsNot) -> Value * { |
| 663 | CC = IsNot ? CmpInst::getInversePredicate(pred: CC) : CC; |
| 664 | const APInt ConstC = PredL != CC ? *ConstB ^ *OldConstC : *OldConstC; |
| 665 | const APInt ConstE = PredR != CC ? *ConstD ^ *OldConstE : *OldConstE; |
| 666 | |
| 667 | if (((*ConstB & *ConstD) & (ConstC ^ ConstE)).getBoolValue()) |
| 668 | return IsNot ? nullptr : ConstantInt::get(Ty: LHS->getType(), V: !IsAnd); |
| 669 | |
| 670 | if (IsNot && !ConstB->isSubsetOf(RHS: *ConstD) && |
| 671 | !ConstD->isSubsetOf(RHS: *ConstB)) |
| 672 | return nullptr; |
| 673 | |
| 674 | APInt BD, CE; |
| 675 | if (IsNot) { |
| 676 | BD = *ConstB & *ConstD; |
| 677 | CE = ConstC & ConstE; |
| 678 | } else { |
| 679 | BD = *ConstB | *ConstD; |
| 680 | CE = ConstC | ConstE; |
| 681 | } |
| 682 | Value *NewAnd = Builder.CreateAnd(LHS: A, RHS: BD); |
| 683 | Value *CEVal = ConstantInt::get(Ty: A->getType(), V: CE); |
| 684 | return Builder.CreateICmp(P: CC, LHS: NewAnd, RHS: CEVal); |
| 685 | }; |
| 686 | |
| 687 | if (Mask & BMask_Mixed) |
| 688 | return FoldBMixed(NewCC, false); |
| 689 | if (Mask & BMask_NotMixed) // can be else also |
| 690 | return FoldBMixed(NewCC, true); |
| 691 | } |
| 692 | } |
| 693 | |
| 694 | // (icmp eq (A & B), 0) | (icmp eq (A & D), 0) |
| 695 | // -> (icmp ne (A & (B|D)), (B|D)) |
| 696 | // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) |
| 697 | // -> (icmp eq (A & (B|D)), (B|D)) |
| 698 | // iff B and D is known to be a power of two |
| 699 | if (Mask & Mask_NotAllZeros && |
| 700 | isKnownToBeAPowerOfTwo(V: B, /*OrZero=*/false, Q) && |
| 701 | isKnownToBeAPowerOfTwo(V: D, /*OrZero=*/false, Q)) { |
| 702 | // If this is a logical and/or, then we must prevent propagation of a |
| 703 | // poison value from the RHS by inserting freeze. |
| 704 | if (IsLogical) |
| 705 | D = Builder.CreateFreeze(V: D); |
| 706 | Value *Mask = Builder.CreateOr(LHS: B, RHS: D); |
| 707 | Value *Masked = Builder.CreateAnd(LHS: A, RHS: Mask); |
| 708 | return Builder.CreateICmp(P: NewCC, LHS: Masked, RHS: Mask); |
| 709 | } |
| 710 | return nullptr; |
| 711 | } |
| 712 | |
| 713 | /// Try to fold a signed range checked with lower bound 0 to an unsigned icmp. |
| 714 | /// Example: (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n |
| 715 | /// If \p Inverted is true then the check is for the inverted range, e.g. |
| 716 | /// (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n |
| 717 | Value *InstCombinerImpl::simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, |
| 718 | bool Inverted) { |
| 719 | // Check the lower range comparison, e.g. x >= 0 |
| 720 | // InstCombine already ensured that if there is a constant it's on the RHS. |
| 721 | ConstantInt *RangeStart = dyn_cast<ConstantInt>(Val: Cmp0->getOperand(i_nocapture: 1)); |
| 722 | if (!RangeStart) |
| 723 | return nullptr; |
| 724 | |
| 725 | ICmpInst::Predicate Pred0 = (Inverted ? Cmp0->getInversePredicate() : |
| 726 | Cmp0->getPredicate()); |
| 727 | |
| 728 | // Accept x > -1 or x >= 0 (after potentially inverting the predicate). |
| 729 | if (!((Pred0 == ICmpInst::ICMP_SGT && RangeStart->isMinusOne()) || |
| 730 | (Pred0 == ICmpInst::ICMP_SGE && RangeStart->isZero()))) |
| 731 | return nullptr; |
| 732 | |
| 733 | ICmpInst::Predicate Pred1 = (Inverted ? Cmp1->getInversePredicate() : |
| 734 | Cmp1->getPredicate()); |
| 735 | |
| 736 | Value *Input = Cmp0->getOperand(i_nocapture: 0); |
| 737 | Value *Cmp1Op0 = Cmp1->getOperand(i_nocapture: 0); |
| 738 | Value *Cmp1Op1 = Cmp1->getOperand(i_nocapture: 1); |
| 739 | Value *RangeEnd; |
| 740 | if (match(V: Cmp1Op0, P: m_SExtOrSelf(Op: m_Specific(V: Input)))) { |
| 741 | // For the upper range compare we have: icmp x, n |
| 742 | Input = Cmp1Op0; |
| 743 | RangeEnd = Cmp1Op1; |
| 744 | } else if (match(V: Cmp1Op1, P: m_SExtOrSelf(Op: m_Specific(V: Input)))) { |
| 745 | // For the upper range compare we have: icmp n, x |
| 746 | Input = Cmp1Op1; |
| 747 | RangeEnd = Cmp1Op0; |
| 748 | Pred1 = ICmpInst::getSwappedPredicate(pred: Pred1); |
| 749 | } else { |
| 750 | return nullptr; |
| 751 | } |
| 752 | |
| 753 | // Check the upper range comparison, e.g. x < n |
| 754 | ICmpInst::Predicate NewPred; |
| 755 | switch (Pred1) { |
| 756 | case ICmpInst::ICMP_SLT: NewPred = ICmpInst::ICMP_ULT; break; |
| 757 | case ICmpInst::ICMP_SLE: NewPred = ICmpInst::ICMP_ULE; break; |
| 758 | default: return nullptr; |
| 759 | } |
| 760 | |
| 761 | // This simplification is only valid if the upper range is not negative. |
| 762 | KnownBits Known = computeKnownBits(V: RangeEnd, CxtI: Cmp1); |
| 763 | if (!Known.isNonNegative()) |
| 764 | return nullptr; |
| 765 | |
| 766 | if (Inverted) |
| 767 | NewPred = ICmpInst::getInversePredicate(pred: NewPred); |
| 768 | |
| 769 | return Builder.CreateICmp(P: NewPred, LHS: Input, RHS: RangeEnd); |
| 770 | } |
| 771 | |
| 772 | // (or (icmp eq X, 0), (icmp eq X, Pow2OrZero)) |
| 773 | // -> (icmp eq (and X, Pow2OrZero), X) |
| 774 | // (and (icmp ne X, 0), (icmp ne X, Pow2OrZero)) |
| 775 | // -> (icmp ne (and X, Pow2OrZero), X) |
| 776 | static Value * |
| 777 | foldAndOrOfICmpsWithPow2AndWithZero(InstCombiner::BuilderTy &Builder, |
| 778 | ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, |
| 779 | const SimplifyQuery &Q) { |
| 780 | CmpPredicate Pred = IsAnd ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ; |
| 781 | // Make sure we have right compares for our op. |
| 782 | if (LHS->getPredicate() != Pred || RHS->getPredicate() != Pred) |
| 783 | return nullptr; |
| 784 | |
| 785 | // Make it so we can match LHS against the (icmp eq/ne X, 0) just for |
| 786 | // simplicity. |
| 787 | if (match(V: RHS->getOperand(i_nocapture: 1), P: m_Zero())) |
| 788 | std::swap(a&: LHS, b&: RHS); |
| 789 | |
| 790 | Value *Pow2, *Op; |
| 791 | // Match the desired pattern: |
| 792 | // LHS: (icmp eq/ne X, 0) |
| 793 | // RHS: (icmp eq/ne X, Pow2OrZero) |
| 794 | // Skip if Pow2OrZero is 1. Either way it gets folded to (icmp ugt X, 1) but |
| 795 | // this form ends up slightly less canonical. |
| 796 | // We could potentially be more sophisticated than requiring LHS/RHS |
| 797 | // be one-use. We don't create additional instructions if only one |
| 798 | // of them is one-use. So cases where one is one-use and the other |
| 799 | // is two-use might be profitable. |
| 800 | if (!match(V: LHS, P: m_OneUse(SubPattern: m_ICmp(Pred, L: m_Value(V&: Op), R: m_Zero()))) || |
| 801 | !match(V: RHS, P: m_OneUse(SubPattern: m_c_ICmp(Pred, L: m_Specific(V: Op), R: m_Value(V&: Pow2)))) || |
| 802 | match(V: Pow2, P: m_One()) || |
| 803 | !isKnownToBeAPowerOfTwo(V: Pow2, DL: Q.DL, /*OrZero=*/true, AC: Q.AC, CxtI: Q.CxtI, DT: Q.DT)) |
| 804 | return nullptr; |
| 805 | |
| 806 | Value *And = Builder.CreateAnd(LHS: Op, RHS: Pow2); |
| 807 | return Builder.CreateICmp(P: Pred, LHS: And, RHS: Op); |
| 808 | } |
| 809 | |
| 810 | /// General pattern: |
| 811 | /// X & Y |
| 812 | /// |
| 813 | /// Where Y is checking that all the high bits (covered by a mask 4294967168) |
| 814 | /// are uniform, i.e. %arg & 4294967168 can be either 4294967168 or 0 |
| 815 | /// Pattern can be one of: |
| 816 | /// %t = add i32 %arg, 128 |
| 817 | /// %r = icmp ult i32 %t, 256 |
| 818 | /// Or |
| 819 | /// %t0 = shl i32 %arg, 24 |
| 820 | /// %t1 = ashr i32 %t0, 24 |
| 821 | /// %r = icmp eq i32 %t1, %arg |
| 822 | /// Or |
| 823 | /// %t0 = trunc i32 %arg to i8 |
| 824 | /// %t1 = sext i8 %t0 to i32 |
| 825 | /// %r = icmp eq i32 %t1, %arg |
| 826 | /// This pattern is a signed truncation check. |
| 827 | /// |
| 828 | /// And X is checking that some bit in that same mask is zero. |
| 829 | /// I.e. can be one of: |
| 830 | /// %r = icmp sgt i32 %arg, -1 |
| 831 | /// Or |
| 832 | /// %t = and i32 %arg, 2147483648 |
| 833 | /// %r = icmp eq i32 %t, 0 |
| 834 | /// |
| 835 | /// Since we are checking that all the bits in that mask are the same, |
| 836 | /// and a particular bit is zero, what we are really checking is that all the |
| 837 | /// masked bits are zero. |
| 838 | /// So this should be transformed to: |
| 839 | /// %r = icmp ult i32 %arg, 128 |
| 840 | static Value *foldSignedTruncationCheck(ICmpInst *ICmp0, ICmpInst *ICmp1, |
| 841 | Instruction &CxtI, |
| 842 | InstCombiner::BuilderTy &Builder) { |
| 843 | assert(CxtI.getOpcode() == Instruction::And); |
| 844 | |
| 845 | // Match icmp ult (add %arg, C01), C1 (C1 == C01 << 1; powers of two) |
| 846 | auto tryToMatchSignedTruncationCheck = [](ICmpInst *ICmp, Value *&X, |
| 847 | APInt &SignBitMask) -> bool { |
| 848 | const APInt *I01, *I1; // powers of two; I1 == I01 << 1 |
| 849 | if (!(match(V: ICmp, P: m_SpecificICmp(MatchPred: ICmpInst::ICMP_ULT, |
| 850 | L: m_Add(L: m_Value(V&: X), R: m_Power2(V&: I01)), |
| 851 | R: m_Power2(V&: I1))) && |
| 852 | I1->ugt(RHS: *I01) && I01->shl(shiftAmt: 1) == *I1)) |
| 853 | return false; |
| 854 | // Which bit is the new sign bit as per the 'signed truncation' pattern? |
| 855 | SignBitMask = *I01; |
| 856 | return true; |
| 857 | }; |
| 858 | |
| 859 | // One icmp needs to be 'signed truncation check'. |
| 860 | // We need to match this first, else we will mismatch commutative cases. |
| 861 | Value *X1; |
| 862 | APInt HighestBit; |
| 863 | ICmpInst *OtherICmp; |
| 864 | if (tryToMatchSignedTruncationCheck(ICmp1, X1, HighestBit)) |
| 865 | OtherICmp = ICmp0; |
| 866 | else if (tryToMatchSignedTruncationCheck(ICmp0, X1, HighestBit)) |
| 867 | OtherICmp = ICmp1; |
| 868 | else |
| 869 | return nullptr; |
| 870 | |
| 871 | assert(HighestBit.isPowerOf2() && "expected to be power of two (non-zero)" ); |
| 872 | |
| 873 | // Try to match/decompose into: icmp eq (X & Mask), 0 |
| 874 | auto tryToDecompose = [](ICmpInst *ICmp, Value *&X, |
| 875 | APInt &UnsetBitsMask) -> bool { |
| 876 | CmpPredicate Pred = ICmp->getPredicate(); |
| 877 | // Can it be decomposed into icmp eq (X & Mask), 0 ? |
| 878 | auto Res = llvm::decomposeBitTestICmp( |
| 879 | LHS: ICmp->getOperand(i_nocapture: 0), RHS: ICmp->getOperand(i_nocapture: 1), Pred, |
| 880 | /*LookThroughTrunc=*/false, /*AllowNonZeroC=*/false, |
| 881 | /*DecomposeAnd=*/true); |
| 882 | if (Res && Res->Pred == ICmpInst::ICMP_EQ) { |
| 883 | X = Res->X; |
| 884 | UnsetBitsMask = Res->Mask; |
| 885 | return true; |
| 886 | } |
| 887 | |
| 888 | return false; |
| 889 | }; |
| 890 | |
| 891 | // And the other icmp needs to be decomposable into a bit test. |
| 892 | Value *X0; |
| 893 | APInt UnsetBitsMask; |
| 894 | if (!tryToDecompose(OtherICmp, X0, UnsetBitsMask)) |
| 895 | return nullptr; |
| 896 | |
| 897 | assert(!UnsetBitsMask.isZero() && "empty mask makes no sense." ); |
| 898 | |
| 899 | // Are they working on the same value? |
| 900 | Value *X; |
| 901 | if (X1 == X0) { |
| 902 | // Ok as is. |
| 903 | X = X1; |
| 904 | } else if (match(V: X0, P: m_Trunc(Op: m_Specific(V: X1)))) { |
| 905 | UnsetBitsMask = UnsetBitsMask.zext(width: X1->getType()->getScalarSizeInBits()); |
| 906 | X = X1; |
| 907 | } else |
| 908 | return nullptr; |
| 909 | |
| 910 | // So which bits should be uniform as per the 'signed truncation check'? |
| 911 | // (all the bits starting with (i.e. including) HighestBit) |
| 912 | APInt SignBitsMask = ~(HighestBit - 1U); |
| 913 | |
| 914 | // UnsetBitsMask must have some common bits with SignBitsMask, |
| 915 | if (!UnsetBitsMask.intersects(RHS: SignBitsMask)) |
| 916 | return nullptr; |
| 917 | |
| 918 | // Does UnsetBitsMask contain any bits outside of SignBitsMask? |
| 919 | if (!UnsetBitsMask.isSubsetOf(RHS: SignBitsMask)) { |
| 920 | APInt OtherHighestBit = (~UnsetBitsMask) + 1U; |
| 921 | if (!OtherHighestBit.isPowerOf2()) |
| 922 | return nullptr; |
| 923 | HighestBit = APIntOps::umin(A: HighestBit, B: OtherHighestBit); |
| 924 | } |
| 925 | // Else, if it does not, then all is ok as-is. |
| 926 | |
| 927 | // %r = icmp ult %X, SignBit |
| 928 | return Builder.CreateICmpULT(LHS: X, RHS: ConstantInt::get(Ty: X->getType(), V: HighestBit), |
| 929 | Name: CxtI.getName() + ".simplified" ); |
| 930 | } |
| 931 | |
| 932 | /// Fold (icmp eq ctpop(X) 1) | (icmp eq X 0) into (icmp ult ctpop(X) 2) and |
| 933 | /// fold (icmp ne ctpop(X) 1) & (icmp ne X 0) into (icmp ugt ctpop(X) 1). |
| 934 | /// Also used for logical and/or, must be poison safe if range attributes are |
| 935 | /// dropped. |
| 936 | static Value *foldIsPowerOf2OrZero(ICmpInst *Cmp0, ICmpInst *Cmp1, bool IsAnd, |
| 937 | InstCombiner::BuilderTy &Builder, |
| 938 | InstCombinerImpl &IC) { |
| 939 | CmpPredicate Pred0, Pred1; |
| 940 | Value *X; |
| 941 | if (!match(V: Cmp0, P: m_ICmp(Pred&: Pred0, L: m_Intrinsic<Intrinsic::ctpop>(Op0: m_Value(V&: X)), |
| 942 | R: m_SpecificInt(V: 1))) || |
| 943 | !match(V: Cmp1, P: m_ICmp(Pred&: Pred1, L: m_Specific(V: X), R: m_ZeroInt()))) |
| 944 | return nullptr; |
| 945 | |
| 946 | auto *CtPop = cast<Instruction>(Val: Cmp0->getOperand(i_nocapture: 0)); |
| 947 | if (IsAnd && Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_NE) { |
| 948 | // Drop range attributes and re-infer them in the next iteration. |
| 949 | CtPop->dropPoisonGeneratingAnnotations(); |
| 950 | IC.addToWorklist(I: CtPop); |
| 951 | return Builder.CreateICmpUGT(LHS: CtPop, RHS: ConstantInt::get(Ty: CtPop->getType(), V: 1)); |
| 952 | } |
| 953 | if (!IsAnd && Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_EQ) { |
| 954 | // Drop range attributes and re-infer them in the next iteration. |
| 955 | CtPop->dropPoisonGeneratingAnnotations(); |
| 956 | IC.addToWorklist(I: CtPop); |
| 957 | return Builder.CreateICmpULT(LHS: CtPop, RHS: ConstantInt::get(Ty: CtPop->getType(), V: 2)); |
| 958 | } |
| 959 | |
| 960 | return nullptr; |
| 961 | } |
| 962 | |
| 963 | /// Reduce a pair of compares that check if a value has exactly 1 bit set. |
| 964 | /// Also used for logical and/or, must be poison safe if range attributes are |
| 965 | /// dropped. |
| 966 | static Value *foldIsPowerOf2(ICmpInst *Cmp0, ICmpInst *Cmp1, bool JoinedByAnd, |
| 967 | InstCombiner::BuilderTy &Builder, |
| 968 | InstCombinerImpl &IC) { |
| 969 | // Handle 'and' / 'or' commutation: make the equality check the first operand. |
| 970 | if (JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_NE) |
| 971 | std::swap(a&: Cmp0, b&: Cmp1); |
| 972 | else if (!JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_EQ) |
| 973 | std::swap(a&: Cmp0, b&: Cmp1); |
| 974 | |
| 975 | // (X != 0) && (ctpop(X) u< 2) --> ctpop(X) == 1 |
| 976 | Value *X; |
| 977 | if (JoinedByAnd && |
| 978 | match(V: Cmp0, P: m_SpecificICmp(MatchPred: ICmpInst::ICMP_NE, L: m_Value(V&: X), R: m_ZeroInt())) && |
| 979 | match(V: Cmp1, P: m_SpecificICmp(MatchPred: ICmpInst::ICMP_ULT, |
| 980 | L: m_Intrinsic<Intrinsic::ctpop>(Op0: m_Specific(V: X)), |
| 981 | R: m_SpecificInt(V: 2)))) { |
| 982 | auto *CtPop = cast<Instruction>(Val: Cmp1->getOperand(i_nocapture: 0)); |
| 983 | // Drop range attributes and re-infer them in the next iteration. |
| 984 | CtPop->dropPoisonGeneratingAnnotations(); |
| 985 | IC.addToWorklist(I: CtPop); |
| 986 | return Builder.CreateICmpEQ(LHS: CtPop, RHS: ConstantInt::get(Ty: CtPop->getType(), V: 1)); |
| 987 | } |
| 988 | // (X == 0) || (ctpop(X) u> 1) --> ctpop(X) != 1 |
| 989 | if (!JoinedByAnd && |
| 990 | match(V: Cmp0, P: m_SpecificICmp(MatchPred: ICmpInst::ICMP_EQ, L: m_Value(V&: X), R: m_ZeroInt())) && |
| 991 | match(V: Cmp1, P: m_SpecificICmp(MatchPred: ICmpInst::ICMP_UGT, |
| 992 | L: m_Intrinsic<Intrinsic::ctpop>(Op0: m_Specific(V: X)), |
| 993 | R: m_SpecificInt(V: 1)))) { |
| 994 | auto *CtPop = cast<Instruction>(Val: Cmp1->getOperand(i_nocapture: 0)); |
| 995 | // Drop range attributes and re-infer them in the next iteration. |
| 996 | CtPop->dropPoisonGeneratingAnnotations(); |
| 997 | IC.addToWorklist(I: CtPop); |
| 998 | return Builder.CreateICmpNE(LHS: CtPop, RHS: ConstantInt::get(Ty: CtPop->getType(), V: 1)); |
| 999 | } |
| 1000 | return nullptr; |
| 1001 | } |
| 1002 | |
| 1003 | /// Try to fold (icmp(A & B) == 0) & (icmp(A & D) != E) into (icmp A u< D) iff |
| 1004 | /// B is a contiguous set of ones starting from the most significant bit |
| 1005 | /// (negative power of 2), D and E are equal, and D is a contiguous set of ones |
| 1006 | /// starting at the most significant zero bit in B. Parameter B supports masking |
| 1007 | /// using undef/poison in either scalar or vector values. |
| 1008 | static Value *foldNegativePower2AndShiftedMask( |
| 1009 | Value *A, Value *B, Value *D, Value *E, ICmpInst::Predicate PredL, |
| 1010 | ICmpInst::Predicate PredR, InstCombiner::BuilderTy &Builder) { |
| 1011 | assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) && |
| 1012 | "Expected equality predicates for masked type of icmps." ); |
| 1013 | if (PredL != ICmpInst::ICMP_EQ || PredR != ICmpInst::ICMP_NE) |
| 1014 | return nullptr; |
| 1015 | |
| 1016 | if (!match(V: B, P: m_NegatedPower2()) || !match(V: D, P: m_ShiftedMask()) || |
| 1017 | !match(V: E, P: m_ShiftedMask())) |
| 1018 | return nullptr; |
| 1019 | |
| 1020 | // Test scalar arguments for conversion. B has been validated earlier to be a |
| 1021 | // negative power of two and thus is guaranteed to have one or more contiguous |
| 1022 | // ones starting from the MSB followed by zero or more contiguous zeros. D has |
| 1023 | // been validated earlier to be a shifted set of one or more contiguous ones. |
| 1024 | // In order to match, B leading ones and D leading zeros should be equal. The |
| 1025 | // predicate that B be a negative power of 2 prevents the condition of there |
| 1026 | // ever being zero leading ones. Thus 0 == 0 cannot occur. The predicate that |
| 1027 | // D always be a shifted mask prevents the condition of D equaling 0. This |
| 1028 | // prevents matching the condition where B contains the maximum number of |
| 1029 | // leading one bits (-1) and D contains the maximum number of leading zero |
| 1030 | // bits (0). |
| 1031 | auto isReducible = [](const Value *B, const Value *D, const Value *E) { |
| 1032 | const APInt *BCst, *DCst, *ECst; |
| 1033 | return match(V: B, P: m_APIntAllowPoison(Res&: BCst)) && match(V: D, P: m_APInt(Res&: DCst)) && |
| 1034 | match(V: E, P: m_APInt(Res&: ECst)) && *DCst == *ECst && |
| 1035 | (isa<PoisonValue>(Val: B) || |
| 1036 | (BCst->countLeadingOnes() == DCst->countLeadingZeros())); |
| 1037 | }; |
| 1038 | |
| 1039 | // Test vector type arguments for conversion. |
| 1040 | if (const auto *BVTy = dyn_cast<VectorType>(Val: B->getType())) { |
| 1041 | const auto *BFVTy = dyn_cast<FixedVectorType>(Val: BVTy); |
| 1042 | const auto *BConst = dyn_cast<Constant>(Val: B); |
| 1043 | const auto *DConst = dyn_cast<Constant>(Val: D); |
| 1044 | const auto *EConst = dyn_cast<Constant>(Val: E); |
| 1045 | |
| 1046 | if (!BFVTy || !BConst || !DConst || !EConst) |
| 1047 | return nullptr; |
| 1048 | |
| 1049 | for (unsigned I = 0; I != BFVTy->getNumElements(); ++I) { |
| 1050 | const auto *BElt = BConst->getAggregateElement(Elt: I); |
| 1051 | const auto *DElt = DConst->getAggregateElement(Elt: I); |
| 1052 | const auto *EElt = EConst->getAggregateElement(Elt: I); |
| 1053 | |
| 1054 | if (!BElt || !DElt || !EElt) |
| 1055 | return nullptr; |
| 1056 | if (!isReducible(BElt, DElt, EElt)) |
| 1057 | return nullptr; |
| 1058 | } |
| 1059 | } else { |
| 1060 | // Test scalar type arguments for conversion. |
| 1061 | if (!isReducible(B, D, E)) |
| 1062 | return nullptr; |
| 1063 | } |
| 1064 | return Builder.CreateICmp(P: ICmpInst::ICMP_ULT, LHS: A, RHS: D); |
| 1065 | } |
| 1066 | |
| 1067 | /// Try to fold ((icmp X u< P) & (icmp(X & M) != M)) or ((icmp X s> -1) & |
| 1068 | /// (icmp(X & M) != M)) into (icmp X u< M). Where P is a power of 2, M < P, and |
| 1069 | /// M is a contiguous shifted mask starting at the right most significant zero |
| 1070 | /// bit in P. SGT is supported as when P is the largest representable power of |
| 1071 | /// 2, an earlier optimization converts the expression into (icmp X s> -1). |
| 1072 | /// Parameter P supports masking using undef/poison in either scalar or vector |
| 1073 | /// values. |
| 1074 | static Value *foldPowerOf2AndShiftedMask(ICmpInst *Cmp0, ICmpInst *Cmp1, |
| 1075 | bool JoinedByAnd, |
| 1076 | InstCombiner::BuilderTy &Builder) { |
| 1077 | if (!JoinedByAnd) |
| 1078 | return nullptr; |
| 1079 | Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr; |
| 1080 | ICmpInst::Predicate CmpPred0, CmpPred1; |
| 1081 | // Assuming P is a 2^n, getMaskedTypeForICmpPair will normalize (icmp X u< |
| 1082 | // 2^n) into (icmp (X & ~(2^n-1)) == 0) and (icmp X s> -1) into (icmp (X & |
| 1083 | // SignMask) == 0). |
| 1084 | std::optional<std::pair<unsigned, unsigned>> MaskPair = |
| 1085 | getMaskedTypeForICmpPair(A, B, C, D, E, LHS: Cmp0, RHS: Cmp1, PredL&: CmpPred0, PredR&: CmpPred1); |
| 1086 | if (!MaskPair) |
| 1087 | return nullptr; |
| 1088 | |
| 1089 | const auto compareBMask = BMask_NotMixed | BMask_NotAllOnes; |
| 1090 | unsigned CmpMask0 = MaskPair->first; |
| 1091 | unsigned CmpMask1 = MaskPair->second; |
| 1092 | if ((CmpMask0 & Mask_AllZeros) && (CmpMask1 == compareBMask)) { |
| 1093 | if (Value *V = foldNegativePower2AndShiftedMask(A, B, D, E, PredL: CmpPred0, |
| 1094 | PredR: CmpPred1, Builder)) |
| 1095 | return V; |
| 1096 | } else if ((CmpMask0 == compareBMask) && (CmpMask1 & Mask_AllZeros)) { |
| 1097 | if (Value *V = foldNegativePower2AndShiftedMask(A, B: D, D: B, E: C, PredL: CmpPred1, |
| 1098 | PredR: CmpPred0, Builder)) |
| 1099 | return V; |
| 1100 | } |
| 1101 | return nullptr; |
| 1102 | } |
| 1103 | |
| 1104 | /// Commuted variants are assumed to be handled by calling this function again |
| 1105 | /// with the parameters swapped. |
| 1106 | static Value *foldUnsignedUnderflowCheck(ICmpInst *ZeroICmp, |
| 1107 | ICmpInst *UnsignedICmp, bool IsAnd, |
| 1108 | const SimplifyQuery &Q, |
| 1109 | InstCombiner::BuilderTy &Builder) { |
| 1110 | Value *ZeroCmpOp; |
| 1111 | CmpPredicate EqPred; |
| 1112 | if (!match(V: ZeroICmp, P: m_ICmp(Pred&: EqPred, L: m_Value(V&: ZeroCmpOp), R: m_Zero())) || |
| 1113 | !ICmpInst::isEquality(P: EqPred)) |
| 1114 | return nullptr; |
| 1115 | |
| 1116 | CmpPredicate UnsignedPred; |
| 1117 | |
| 1118 | Value *A, *B; |
| 1119 | if (match(V: UnsignedICmp, |
| 1120 | P: m_c_ICmp(Pred&: UnsignedPred, L: m_Specific(V: ZeroCmpOp), R: m_Value(V&: A))) && |
| 1121 | match(V: ZeroCmpOp, P: m_c_Add(L: m_Specific(V: A), R: m_Value(V&: B))) && |
| 1122 | (ZeroICmp->hasOneUse() || UnsignedICmp->hasOneUse())) { |
| 1123 | auto GetKnownNonZeroAndOther = [&](Value *&NonZero, Value *&Other) { |
| 1124 | if (!isKnownNonZero(V: NonZero, Q)) |
| 1125 | std::swap(a&: NonZero, b&: Other); |
| 1126 | return isKnownNonZero(V: NonZero, Q); |
| 1127 | }; |
| 1128 | |
| 1129 | // Given ZeroCmpOp = (A + B) |
| 1130 | // ZeroCmpOp < A && ZeroCmpOp != 0 --> (0-X) < Y iff |
| 1131 | // ZeroCmpOp >= A || ZeroCmpOp == 0 --> (0-X) >= Y iff |
| 1132 | // with X being the value (A/B) that is known to be non-zero, |
| 1133 | // and Y being remaining value. |
| 1134 | if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE && |
| 1135 | IsAnd && GetKnownNonZeroAndOther(B, A)) |
| 1136 | return Builder.CreateICmpULT(LHS: Builder.CreateNeg(V: B), RHS: A); |
| 1137 | if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ && |
| 1138 | !IsAnd && GetKnownNonZeroAndOther(B, A)) |
| 1139 | return Builder.CreateICmpUGE(LHS: Builder.CreateNeg(V: B), RHS: A); |
| 1140 | } |
| 1141 | |
| 1142 | return nullptr; |
| 1143 | } |
| 1144 | |
| 1145 | struct IntPart { |
| 1146 | Value *From; |
| 1147 | unsigned StartBit; |
| 1148 | unsigned NumBits; |
| 1149 | }; |
| 1150 | |
| 1151 | /// Match an extraction of bits from an integer. |
| 1152 | static std::optional<IntPart> matchIntPart(Value *V) { |
| 1153 | Value *X; |
| 1154 | if (!match(V, P: m_OneUse(SubPattern: m_Trunc(Op: m_Value(V&: X))))) |
| 1155 | return std::nullopt; |
| 1156 | |
| 1157 | unsigned NumOriginalBits = X->getType()->getScalarSizeInBits(); |
| 1158 | unsigned = V->getType()->getScalarSizeInBits(); |
| 1159 | Value *Y; |
| 1160 | const APInt *Shift; |
| 1161 | // For a trunc(lshr Y, Shift) pattern, make sure we're only extracting bits |
| 1162 | // from Y, not any shifted-in zeroes. |
| 1163 | if (match(V: X, P: m_OneUse(SubPattern: m_LShr(L: m_Value(V&: Y), R: m_APInt(Res&: Shift)))) && |
| 1164 | Shift->ule(RHS: NumOriginalBits - NumExtractedBits)) |
| 1165 | return {{.From: Y, .StartBit: (unsigned)Shift->getZExtValue(), .NumBits: NumExtractedBits}}; |
| 1166 | return {{.From: X, .StartBit: 0, .NumBits: NumExtractedBits}}; |
| 1167 | } |
| 1168 | |
| 1169 | /// Materialize an extraction of bits from an integer in IR. |
| 1170 | static Value *(const IntPart &P, IRBuilderBase &Builder) { |
| 1171 | Value *V = P.From; |
| 1172 | if (P.StartBit) |
| 1173 | V = Builder.CreateLShr(LHS: V, RHS: P.StartBit); |
| 1174 | Type *TruncTy = V->getType()->getWithNewBitWidth(NewBitWidth: P.NumBits); |
| 1175 | if (TruncTy != V->getType()) |
| 1176 | V = Builder.CreateTrunc(V, DestTy: TruncTy); |
| 1177 | return V; |
| 1178 | } |
| 1179 | |
| 1180 | /// (icmp eq X0, Y0) & (icmp eq X1, Y1) -> icmp eq X01, Y01 |
| 1181 | /// (icmp ne X0, Y0) | (icmp ne X1, Y1) -> icmp ne X01, Y01 |
| 1182 | /// where X0, X1 and Y0, Y1 are adjacent parts extracted from an integer. |
| 1183 | Value *InstCombinerImpl::foldEqOfParts(Value *Cmp0, Value *Cmp1, bool IsAnd) { |
| 1184 | if (!Cmp0->hasOneUse() || !Cmp1->hasOneUse()) |
| 1185 | return nullptr; |
| 1186 | |
| 1187 | CmpInst::Predicate Pred = IsAnd ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE; |
| 1188 | auto GetMatchPart = [&](Value *CmpV, |
| 1189 | unsigned OpNo) -> std::optional<IntPart> { |
| 1190 | assert(CmpV->getType()->isIntOrIntVectorTy(1) && "Must be bool" ); |
| 1191 | |
| 1192 | Value *X, *Y; |
| 1193 | // icmp ne (and x, 1), (and y, 1) <=> trunc (xor x, y) to i1 |
| 1194 | // icmp eq (and x, 1), (and y, 1) <=> not (trunc (xor x, y) to i1) |
| 1195 | if (Pred == CmpInst::ICMP_NE |
| 1196 | ? match(V: CmpV, P: m_Trunc(Op: m_Xor(L: m_Value(V&: X), R: m_Value(V&: Y)))) |
| 1197 | : match(V: CmpV, P: m_Not(V: m_Trunc(Op: m_Xor(L: m_Value(V&: X), R: m_Value(V&: Y)))))) |
| 1198 | return {{.From: OpNo == 0 ? X : Y, .StartBit: 0, .NumBits: 1}}; |
| 1199 | |
| 1200 | auto *Cmp = dyn_cast<ICmpInst>(Val: CmpV); |
| 1201 | if (!Cmp) |
| 1202 | return std::nullopt; |
| 1203 | |
| 1204 | if (Pred == Cmp->getPredicate()) |
| 1205 | return matchIntPart(V: Cmp->getOperand(i_nocapture: OpNo)); |
| 1206 | |
| 1207 | const APInt *C; |
| 1208 | // (icmp eq (lshr x, C), (lshr y, C)) gets optimized to: |
| 1209 | // (icmp ult (xor x, y), 1 << C) so also look for that. |
| 1210 | if (Pred == CmpInst::ICMP_EQ && Cmp->getPredicate() == CmpInst::ICMP_ULT) { |
| 1211 | if (!match(V: Cmp->getOperand(i_nocapture: 1), P: m_Power2(V&: C)) || |
| 1212 | !match(V: Cmp->getOperand(i_nocapture: 0), P: m_Xor(L: m_Value(), R: m_Value()))) |
| 1213 | return std::nullopt; |
| 1214 | } |
| 1215 | |
| 1216 | // (icmp ne (lshr x, C), (lshr y, C)) gets optimized to: |
| 1217 | // (icmp ugt (xor x, y), (1 << C) - 1) so also look for that. |
| 1218 | else if (Pred == CmpInst::ICMP_NE && |
| 1219 | Cmp->getPredicate() == CmpInst::ICMP_UGT) { |
| 1220 | if (!match(V: Cmp->getOperand(i_nocapture: 1), P: m_LowBitMask(V&: C)) || |
| 1221 | !match(V: Cmp->getOperand(i_nocapture: 0), P: m_Xor(L: m_Value(), R: m_Value()))) |
| 1222 | return std::nullopt; |
| 1223 | } else { |
| 1224 | return std::nullopt; |
| 1225 | } |
| 1226 | |
| 1227 | unsigned From = Pred == CmpInst::ICMP_NE ? C->popcount() : C->countr_zero(); |
| 1228 | Instruction *I = cast<Instruction>(Val: Cmp->getOperand(i_nocapture: 0)); |
| 1229 | return {{.From: I->getOperand(i: OpNo), .StartBit: From, .NumBits: C->getBitWidth() - From}}; |
| 1230 | }; |
| 1231 | |
| 1232 | std::optional<IntPart> L0 = GetMatchPart(Cmp0, 0); |
| 1233 | std::optional<IntPart> R0 = GetMatchPart(Cmp0, 1); |
| 1234 | std::optional<IntPart> L1 = GetMatchPart(Cmp1, 0); |
| 1235 | std::optional<IntPart> R1 = GetMatchPart(Cmp1, 1); |
| 1236 | if (!L0 || !R0 || !L1 || !R1) |
| 1237 | return nullptr; |
| 1238 | |
| 1239 | // Make sure the LHS/RHS compare a part of the same value, possibly after |
| 1240 | // an operand swap. |
| 1241 | if (L0->From != L1->From || R0->From != R1->From) { |
| 1242 | if (L0->From != R1->From || R0->From != L1->From) |
| 1243 | return nullptr; |
| 1244 | std::swap(lhs&: L1, rhs&: R1); |
| 1245 | } |
| 1246 | |
| 1247 | // Make sure the extracted parts are adjacent, canonicalizing to L0/R0 being |
| 1248 | // the low part and L1/R1 being the high part. |
| 1249 | if (L0->StartBit + L0->NumBits != L1->StartBit || |
| 1250 | R0->StartBit + R0->NumBits != R1->StartBit) { |
| 1251 | if (L1->StartBit + L1->NumBits != L0->StartBit || |
| 1252 | R1->StartBit + R1->NumBits != R0->StartBit) |
| 1253 | return nullptr; |
| 1254 | std::swap(lhs&: L0, rhs&: L1); |
| 1255 | std::swap(lhs&: R0, rhs&: R1); |
| 1256 | } |
| 1257 | |
| 1258 | // We can simplify to a comparison of these larger parts of the integers. |
| 1259 | IntPart L = {.From: L0->From, .StartBit: L0->StartBit, .NumBits: L0->NumBits + L1->NumBits}; |
| 1260 | IntPart R = {.From: R0->From, .StartBit: R0->StartBit, .NumBits: R0->NumBits + R1->NumBits}; |
| 1261 | Value *LValue = extractIntPart(P: L, Builder); |
| 1262 | Value *RValue = extractIntPart(P: R, Builder); |
| 1263 | return Builder.CreateICmp(P: Pred, LHS: LValue, RHS: RValue); |
| 1264 | } |
| 1265 | |
| 1266 | /// Reduce logic-of-compares with equality to a constant by substituting a |
| 1267 | /// common operand with the constant. Callers are expected to call this with |
| 1268 | /// Cmp0/Cmp1 switched to handle logic op commutativity. |
| 1269 | static Value *foldAndOrOfICmpsWithConstEq(ICmpInst *Cmp0, ICmpInst *Cmp1, |
| 1270 | bool IsAnd, bool IsLogical, |
| 1271 | InstCombiner::BuilderTy &Builder, |
| 1272 | const SimplifyQuery &Q) { |
| 1273 | // Match an equality compare with a non-poison constant as Cmp0. |
| 1274 | // Also, give up if the compare can be constant-folded to avoid looping. |
| 1275 | CmpPredicate Pred0; |
| 1276 | Value *X; |
| 1277 | Constant *C; |
| 1278 | if (!match(V: Cmp0, P: m_ICmp(Pred&: Pred0, L: m_Value(V&: X), R: m_Constant(C))) || |
| 1279 | !isGuaranteedNotToBeUndefOrPoison(V: C) || isa<Constant>(Val: X)) |
| 1280 | return nullptr; |
| 1281 | if ((IsAnd && Pred0 != ICmpInst::ICMP_EQ) || |
| 1282 | (!IsAnd && Pred0 != ICmpInst::ICMP_NE)) |
| 1283 | return nullptr; |
| 1284 | |
| 1285 | // The other compare must include a common operand (X). Canonicalize the |
| 1286 | // common operand as operand 1 (Pred1 is swapped if the common operand was |
| 1287 | // operand 0). |
| 1288 | Value *Y; |
| 1289 | CmpPredicate Pred1; |
| 1290 | if (!match(V: Cmp1, P: m_c_ICmp(Pred&: Pred1, L: m_Value(V&: Y), R: m_Specific(V: X)))) |
| 1291 | return nullptr; |
| 1292 | |
| 1293 | // Replace variable with constant value equivalence to remove a variable use: |
| 1294 | // (X == C) && (Y Pred1 X) --> (X == C) && (Y Pred1 C) |
| 1295 | // (X != C) || (Y Pred1 X) --> (X != C) || (Y Pred1 C) |
| 1296 | // Can think of the 'or' substitution with the 'and' bool equivalent: |
| 1297 | // A || B --> A || (!A && B) |
| 1298 | Value *SubstituteCmp = simplifyICmpInst(Pred: Pred1, LHS: Y, RHS: C, Q); |
| 1299 | if (!SubstituteCmp) { |
| 1300 | // If we need to create a new instruction, require that the old compare can |
| 1301 | // be removed. |
| 1302 | if (!Cmp1->hasOneUse()) |
| 1303 | return nullptr; |
| 1304 | SubstituteCmp = Builder.CreateICmp(P: Pred1, LHS: Y, RHS: C); |
| 1305 | } |
| 1306 | if (IsLogical) |
| 1307 | return IsAnd ? Builder.CreateLogicalAnd(Cond1: Cmp0, Cond2: SubstituteCmp) |
| 1308 | : Builder.CreateLogicalOr(Cond1: Cmp0, Cond2: SubstituteCmp); |
| 1309 | return Builder.CreateBinOp(Opc: IsAnd ? Instruction::And : Instruction::Or, LHS: Cmp0, |
| 1310 | RHS: SubstituteCmp); |
| 1311 | } |
| 1312 | |
| 1313 | /// Fold (icmp Pred1 V1, C1) & (icmp Pred2 V2, C2) |
| 1314 | /// or (icmp Pred1 V1, C1) | (icmp Pred2 V2, C2) |
| 1315 | /// into a single comparison using range-based reasoning. |
| 1316 | /// NOTE: This is also used for logical and/or, must be poison-safe! |
| 1317 | Value *InstCombinerImpl::foldAndOrOfICmpsUsingRanges(ICmpInst *ICmp1, |
| 1318 | ICmpInst *ICmp2, |
| 1319 | bool IsAnd) { |
| 1320 | CmpPredicate Pred1, Pred2; |
| 1321 | Value *V1, *V2; |
| 1322 | const APInt *C1, *C2; |
| 1323 | if (!match(V: ICmp1, P: m_ICmp(Pred&: Pred1, L: m_Value(V&: V1), R: m_APInt(Res&: C1))) || |
| 1324 | !match(V: ICmp2, P: m_ICmp(Pred&: Pred2, L: m_Value(V&: V2), R: m_APInt(Res&: C2)))) |
| 1325 | return nullptr; |
| 1326 | |
| 1327 | // Look through add of a constant offset on V1, V2, or both operands. This |
| 1328 | // allows us to interpret the V + C' < C'' range idiom into a proper range. |
| 1329 | const APInt *Offset1 = nullptr, *Offset2 = nullptr; |
| 1330 | if (V1 != V2) { |
| 1331 | Value *X; |
| 1332 | if (match(V: V1, P: m_Add(L: m_Value(V&: X), R: m_APInt(Res&: Offset1)))) |
| 1333 | V1 = X; |
| 1334 | if (match(V: V2, P: m_Add(L: m_Value(V&: X), R: m_APInt(Res&: Offset2)))) |
| 1335 | V2 = X; |
| 1336 | } |
| 1337 | |
| 1338 | if (V1 != V2) |
| 1339 | return nullptr; |
| 1340 | |
| 1341 | ConstantRange CR1 = ConstantRange::makeExactICmpRegion( |
| 1342 | Pred: IsAnd ? ICmpInst::getInverseCmpPredicate(Pred: Pred1) : Pred1, Other: *C1); |
| 1343 | if (Offset1) |
| 1344 | CR1 = CR1.subtract(CI: *Offset1); |
| 1345 | |
| 1346 | ConstantRange CR2 = ConstantRange::makeExactICmpRegion( |
| 1347 | Pred: IsAnd ? ICmpInst::getInverseCmpPredicate(Pred: Pred2) : Pred2, Other: *C2); |
| 1348 | if (Offset2) |
| 1349 | CR2 = CR2.subtract(CI: *Offset2); |
| 1350 | |
| 1351 | Type *Ty = V1->getType(); |
| 1352 | Value *NewV = V1; |
| 1353 | std::optional<ConstantRange> CR = CR1.exactUnionWith(CR: CR2); |
| 1354 | if (!CR) { |
| 1355 | if (!(ICmp1->hasOneUse() && ICmp2->hasOneUse()) || CR1.isWrappedSet() || |
| 1356 | CR2.isWrappedSet()) |
| 1357 | return nullptr; |
| 1358 | |
| 1359 | // Check whether we have equal-size ranges that only differ by one bit. |
| 1360 | // In that case we can apply a mask to map one range onto the other. |
| 1361 | APInt LowerDiff = CR1.getLower() ^ CR2.getLower(); |
| 1362 | APInt UpperDiff = (CR1.getUpper() - 1) ^ (CR2.getUpper() - 1); |
| 1363 | APInt CR1Size = CR1.getUpper() - CR1.getLower(); |
| 1364 | if (!LowerDiff.isPowerOf2() || LowerDiff != UpperDiff || |
| 1365 | CR1Size != CR2.getUpper() - CR2.getLower()) |
| 1366 | return nullptr; |
| 1367 | |
| 1368 | CR = CR1.getLower().ult(RHS: CR2.getLower()) ? CR1 : CR2; |
| 1369 | NewV = Builder.CreateAnd(LHS: NewV, RHS: ConstantInt::get(Ty, V: ~LowerDiff)); |
| 1370 | } |
| 1371 | |
| 1372 | if (IsAnd) |
| 1373 | CR = CR->inverse(); |
| 1374 | |
| 1375 | CmpInst::Predicate NewPred; |
| 1376 | APInt NewC, Offset; |
| 1377 | CR->getEquivalentICmp(Pred&: NewPred, RHS&: NewC, Offset); |
| 1378 | |
| 1379 | if (Offset != 0) |
| 1380 | NewV = Builder.CreateAdd(LHS: NewV, RHS: ConstantInt::get(Ty, V: Offset)); |
| 1381 | return Builder.CreateICmp(P: NewPred, LHS: NewV, RHS: ConstantInt::get(Ty, V: NewC)); |
| 1382 | } |
| 1383 | |
| 1384 | /// Ignore all operations which only change the sign of a value, returning the |
| 1385 | /// underlying magnitude value. |
| 1386 | static Value *stripSignOnlyFPOps(Value *Val) { |
| 1387 | match(V: Val, P: m_FNeg(X: m_Value(V&: Val))); |
| 1388 | match(V: Val, P: m_FAbs(Op0: m_Value(V&: Val))); |
| 1389 | match(V: Val, P: m_CopySign(Op0: m_Value(V&: Val), Op1: m_Value())); |
| 1390 | return Val; |
| 1391 | } |
| 1392 | |
| 1393 | /// Matches canonical form of isnan, fcmp ord x, 0 |
| 1394 | static bool matchIsNotNaN(FCmpInst::Predicate P, Value *LHS, Value *RHS) { |
| 1395 | return P == FCmpInst::FCMP_ORD && match(V: RHS, P: m_AnyZeroFP()); |
| 1396 | } |
| 1397 | |
| 1398 | /// Matches fcmp u__ x, +/-inf |
| 1399 | static bool matchUnorderedInfCompare(FCmpInst::Predicate P, Value *LHS, |
| 1400 | Value *RHS) { |
| 1401 | return FCmpInst::isUnordered(predicate: P) && match(V: RHS, P: m_Inf()); |
| 1402 | } |
| 1403 | |
| 1404 | /// and (fcmp ord x, 0), (fcmp u* x, inf) -> fcmp o* x, inf |
| 1405 | /// |
| 1406 | /// Clang emits this pattern for doing an isfinite check in __builtin_isnormal. |
| 1407 | static Value *matchIsFiniteTest(InstCombiner::BuilderTy &Builder, FCmpInst *LHS, |
| 1408 | FCmpInst *RHS) { |
| 1409 | Value *LHS0 = LHS->getOperand(i_nocapture: 0), *LHS1 = LHS->getOperand(i_nocapture: 1); |
| 1410 | Value *RHS0 = RHS->getOperand(i_nocapture: 0), *RHS1 = RHS->getOperand(i_nocapture: 1); |
| 1411 | FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); |
| 1412 | |
| 1413 | if (!matchIsNotNaN(P: PredL, LHS: LHS0, RHS: LHS1) || |
| 1414 | !matchUnorderedInfCompare(P: PredR, LHS: RHS0, RHS: RHS1)) |
| 1415 | return nullptr; |
| 1416 | |
| 1417 | return Builder.CreateFCmpFMF(P: FCmpInst::getOrderedPredicate(Pred: PredR), LHS: RHS0, RHS: RHS1, |
| 1418 | FMFSource: FMFSource::intersect(A: LHS, B: RHS)); |
| 1419 | } |
| 1420 | |
| 1421 | Value *InstCombinerImpl::foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS, |
| 1422 | bool IsAnd, bool IsLogicalSelect) { |
| 1423 | Value *LHS0 = LHS->getOperand(i_nocapture: 0), *LHS1 = LHS->getOperand(i_nocapture: 1); |
| 1424 | Value *RHS0 = RHS->getOperand(i_nocapture: 0), *RHS1 = RHS->getOperand(i_nocapture: 1); |
| 1425 | FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); |
| 1426 | |
| 1427 | if (LHS0 == RHS1 && RHS0 == LHS1) { |
| 1428 | // Swap RHS operands to match LHS. |
| 1429 | PredR = FCmpInst::getSwappedPredicate(pred: PredR); |
| 1430 | std::swap(a&: RHS0, b&: RHS1); |
| 1431 | } |
| 1432 | |
| 1433 | // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y). |
| 1434 | // Suppose the relation between x and y is R, where R is one of |
| 1435 | // U(1000), L(0100), G(0010) or E(0001), and CC0 and CC1 are the bitmasks for |
| 1436 | // testing the desired relations. |
| 1437 | // |
| 1438 | // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this: |
| 1439 | // bool(R & CC0) && bool(R & CC1) |
| 1440 | // = bool((R & CC0) & (R & CC1)) |
| 1441 | // = bool(R & (CC0 & CC1)) <= by re-association, commutation, and idempotency |
| 1442 | // |
| 1443 | // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this: |
| 1444 | // bool(R & CC0) || bool(R & CC1) |
| 1445 | // = bool((R & CC0) | (R & CC1)) |
| 1446 | // = bool(R & (CC0 | CC1)) <= by reversed distribution (contribution? ;) |
| 1447 | if (LHS0 == RHS0 && LHS1 == RHS1) { |
| 1448 | unsigned FCmpCodeL = getFCmpCode(CC: PredL); |
| 1449 | unsigned FCmpCodeR = getFCmpCode(CC: PredR); |
| 1450 | unsigned NewPred = IsAnd ? FCmpCodeL & FCmpCodeR : FCmpCodeL | FCmpCodeR; |
| 1451 | |
| 1452 | // Intersect the fast math flags. |
| 1453 | // TODO: We can union the fast math flags unless this is a logical select. |
| 1454 | return getFCmpValue(Code: NewPred, LHS: LHS0, RHS: LHS1, Builder, |
| 1455 | FMF: FMFSource::intersect(A: LHS, B: RHS)); |
| 1456 | } |
| 1457 | |
| 1458 | // This transform is not valid for a logical select. |
| 1459 | if (!IsLogicalSelect && |
| 1460 | ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || |
| 1461 | (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && |
| 1462 | !IsAnd))) { |
| 1463 | if (LHS0->getType() != RHS0->getType()) |
| 1464 | return nullptr; |
| 1465 | |
| 1466 | // FCmp canonicalization ensures that (fcmp ord/uno X, X) and |
| 1467 | // (fcmp ord/uno X, C) will be transformed to (fcmp X, +0.0). |
| 1468 | if (match(V: LHS1, P: m_PosZeroFP()) && match(V: RHS1, P: m_PosZeroFP())) { |
| 1469 | // Ignore the constants because they are obviously not NANs: |
| 1470 | // (fcmp ord x, 0.0) & (fcmp ord y, 0.0) -> (fcmp ord x, y) |
| 1471 | // (fcmp uno x, 0.0) | (fcmp uno y, 0.0) -> (fcmp uno x, y) |
| 1472 | return Builder.CreateFCmpFMF(P: PredL, LHS: LHS0, RHS: RHS0, |
| 1473 | FMFSource: FMFSource::intersect(A: LHS, B: RHS)); |
| 1474 | } |
| 1475 | } |
| 1476 | |
| 1477 | // This transform is not valid for a logical select. |
| 1478 | if (!IsLogicalSelect && IsAnd && |
| 1479 | stripSignOnlyFPOps(Val: LHS0) == stripSignOnlyFPOps(Val: RHS0)) { |
| 1480 | // and (fcmp ord x, 0), (fcmp u* x, inf) -> fcmp o* x, inf |
| 1481 | // and (fcmp ord x, 0), (fcmp u* fabs(x), inf) -> fcmp o* x, inf |
| 1482 | if (Value *Left = matchIsFiniteTest(Builder, LHS, RHS)) |
| 1483 | return Left; |
| 1484 | if (Value *Right = matchIsFiniteTest(Builder, LHS: RHS, RHS: LHS)) |
| 1485 | return Right; |
| 1486 | } |
| 1487 | |
| 1488 | // Turn at least two fcmps with constants into llvm.is.fpclass. |
| 1489 | // |
| 1490 | // If we can represent a combined value test with one class call, we can |
| 1491 | // potentially eliminate 4-6 instructions. If we can represent a test with a |
| 1492 | // single fcmp with fneg and fabs, that's likely a better canonical form. |
| 1493 | if (LHS->hasOneUse() && RHS->hasOneUse()) { |
| 1494 | auto [ClassValRHS, ClassMaskRHS] = |
| 1495 | fcmpToClassTest(Pred: PredR, F: *RHS->getFunction(), LHS: RHS0, RHS: RHS1); |
| 1496 | if (ClassValRHS) { |
| 1497 | auto [ClassValLHS, ClassMaskLHS] = |
| 1498 | fcmpToClassTest(Pred: PredL, F: *LHS->getFunction(), LHS: LHS0, RHS: LHS1); |
| 1499 | if (ClassValLHS == ClassValRHS) { |
| 1500 | unsigned CombinedMask = IsAnd ? (ClassMaskLHS & ClassMaskRHS) |
| 1501 | : (ClassMaskLHS | ClassMaskRHS); |
| 1502 | return Builder.CreateIntrinsic( |
| 1503 | ID: Intrinsic::is_fpclass, Types: {ClassValLHS->getType()}, |
| 1504 | Args: {ClassValLHS, Builder.getInt32(C: CombinedMask)}); |
| 1505 | } |
| 1506 | } |
| 1507 | } |
| 1508 | |
| 1509 | // Canonicalize the range check idiom: |
| 1510 | // and (fcmp olt/ole/ult/ule x, C), (fcmp ogt/oge/ugt/uge x, -C) |
| 1511 | // --> fabs(x) olt/ole/ult/ule C |
| 1512 | // or (fcmp ogt/oge/ugt/uge x, C), (fcmp olt/ole/ult/ule x, -C) |
| 1513 | // --> fabs(x) ogt/oge/ugt/uge C |
| 1514 | // TODO: Generalize to handle a negated variable operand? |
| 1515 | const APFloat *LHSC, *RHSC; |
| 1516 | if (LHS0 == RHS0 && LHS->hasOneUse() && RHS->hasOneUse() && |
| 1517 | FCmpInst::getSwappedPredicate(pred: PredL) == PredR && |
| 1518 | match(V: LHS1, P: m_APFloatAllowPoison(Res&: LHSC)) && |
| 1519 | match(V: RHS1, P: m_APFloatAllowPoison(Res&: RHSC)) && |
| 1520 | LHSC->bitwiseIsEqual(RHS: neg(X: *RHSC))) { |
| 1521 | auto IsLessThanOrLessEqual = [](FCmpInst::Predicate Pred) { |
| 1522 | switch (Pred) { |
| 1523 | case FCmpInst::FCMP_OLT: |
| 1524 | case FCmpInst::FCMP_OLE: |
| 1525 | case FCmpInst::FCMP_ULT: |
| 1526 | case FCmpInst::FCMP_ULE: |
| 1527 | return true; |
| 1528 | default: |
| 1529 | return false; |
| 1530 | } |
| 1531 | }; |
| 1532 | if (IsLessThanOrLessEqual(IsAnd ? PredR : PredL)) { |
| 1533 | std::swap(a&: LHSC, b&: RHSC); |
| 1534 | std::swap(a&: PredL, b&: PredR); |
| 1535 | } |
| 1536 | if (IsLessThanOrLessEqual(IsAnd ? PredL : PredR)) { |
| 1537 | FastMathFlags NewFlag = LHS->getFastMathFlags(); |
| 1538 | if (!IsLogicalSelect) |
| 1539 | NewFlag |= RHS->getFastMathFlags(); |
| 1540 | |
| 1541 | Value *FAbs = |
| 1542 | Builder.CreateUnaryIntrinsic(ID: Intrinsic::fabs, V: LHS0, FMFSource: NewFlag); |
| 1543 | return Builder.CreateFCmpFMF( |
| 1544 | P: PredL, LHS: FAbs, RHS: ConstantFP::get(Ty: LHS0->getType(), V: *LHSC), FMFSource: NewFlag); |
| 1545 | } |
| 1546 | } |
| 1547 | |
| 1548 | return nullptr; |
| 1549 | } |
| 1550 | |
| 1551 | /// Match an fcmp against a special value that performs a test possible by |
| 1552 | /// llvm.is.fpclass. |
| 1553 | static bool matchIsFPClassLikeFCmp(Value *Op, Value *&ClassVal, |
| 1554 | uint64_t &ClassMask) { |
| 1555 | auto *FCmp = dyn_cast<FCmpInst>(Val: Op); |
| 1556 | if (!FCmp || !FCmp->hasOneUse()) |
| 1557 | return false; |
| 1558 | |
| 1559 | std::tie(args&: ClassVal, args&: ClassMask) = |
| 1560 | fcmpToClassTest(Pred: FCmp->getPredicate(), F: *FCmp->getParent()->getParent(), |
| 1561 | LHS: FCmp->getOperand(i_nocapture: 0), RHS: FCmp->getOperand(i_nocapture: 1)); |
| 1562 | return ClassVal != nullptr; |
| 1563 | } |
| 1564 | |
| 1565 | /// or (is_fpclass x, mask0), (is_fpclass x, mask1) |
| 1566 | /// -> is_fpclass x, (mask0 | mask1) |
| 1567 | /// and (is_fpclass x, mask0), (is_fpclass x, mask1) |
| 1568 | /// -> is_fpclass x, (mask0 & mask1) |
| 1569 | /// xor (is_fpclass x, mask0), (is_fpclass x, mask1) |
| 1570 | /// -> is_fpclass x, (mask0 ^ mask1) |
| 1571 | Instruction *InstCombinerImpl::foldLogicOfIsFPClass(BinaryOperator &BO, |
| 1572 | Value *Op0, Value *Op1) { |
| 1573 | Value *ClassVal0 = nullptr; |
| 1574 | Value *ClassVal1 = nullptr; |
| 1575 | uint64_t ClassMask0, ClassMask1; |
| 1576 | |
| 1577 | // Restrict to folding one fcmp into one is.fpclass for now, don't introduce a |
| 1578 | // new class. |
| 1579 | // |
| 1580 | // TODO: Support forming is.fpclass out of 2 separate fcmps when codegen is |
| 1581 | // better. |
| 1582 | |
| 1583 | bool IsLHSClass = |
| 1584 | match(V: Op0, P: m_OneUse(SubPattern: m_Intrinsic<Intrinsic::is_fpclass>( |
| 1585 | Op0: m_Value(V&: ClassVal0), Op1: m_ConstantInt(V&: ClassMask0)))); |
| 1586 | bool IsRHSClass = |
| 1587 | match(V: Op1, P: m_OneUse(SubPattern: m_Intrinsic<Intrinsic::is_fpclass>( |
| 1588 | Op0: m_Value(V&: ClassVal1), Op1: m_ConstantInt(V&: ClassMask1)))); |
| 1589 | if ((((IsLHSClass || matchIsFPClassLikeFCmp(Op: Op0, ClassVal&: ClassVal0, ClassMask&: ClassMask0)) && |
| 1590 | (IsRHSClass || matchIsFPClassLikeFCmp(Op: Op1, ClassVal&: ClassVal1, ClassMask&: ClassMask1)))) && |
| 1591 | ClassVal0 == ClassVal1) { |
| 1592 | unsigned NewClassMask; |
| 1593 | switch (BO.getOpcode()) { |
| 1594 | case Instruction::And: |
| 1595 | NewClassMask = ClassMask0 & ClassMask1; |
| 1596 | break; |
| 1597 | case Instruction::Or: |
| 1598 | NewClassMask = ClassMask0 | ClassMask1; |
| 1599 | break; |
| 1600 | case Instruction::Xor: |
| 1601 | NewClassMask = ClassMask0 ^ ClassMask1; |
| 1602 | break; |
| 1603 | default: |
| 1604 | llvm_unreachable("not a binary logic operator" ); |
| 1605 | } |
| 1606 | |
| 1607 | if (IsLHSClass) { |
| 1608 | auto *II = cast<IntrinsicInst>(Val: Op0); |
| 1609 | II->setArgOperand( |
| 1610 | i: 1, v: ConstantInt::get(Ty: II->getArgOperand(i: 1)->getType(), V: NewClassMask)); |
| 1611 | return replaceInstUsesWith(I&: BO, V: II); |
| 1612 | } |
| 1613 | |
| 1614 | if (IsRHSClass) { |
| 1615 | auto *II = cast<IntrinsicInst>(Val: Op1); |
| 1616 | II->setArgOperand( |
| 1617 | i: 1, v: ConstantInt::get(Ty: II->getArgOperand(i: 1)->getType(), V: NewClassMask)); |
| 1618 | return replaceInstUsesWith(I&: BO, V: II); |
| 1619 | } |
| 1620 | |
| 1621 | CallInst *NewClass = |
| 1622 | Builder.CreateIntrinsic(ID: Intrinsic::is_fpclass, Types: {ClassVal0->getType()}, |
| 1623 | Args: {ClassVal0, Builder.getInt32(C: NewClassMask)}); |
| 1624 | return replaceInstUsesWith(I&: BO, V: NewClass); |
| 1625 | } |
| 1626 | |
| 1627 | return nullptr; |
| 1628 | } |
| 1629 | |
| 1630 | /// Look for the pattern that conditionally negates a value via math operations: |
| 1631 | /// cond.splat = sext i1 cond |
| 1632 | /// sub = add cond.splat, x |
| 1633 | /// xor = xor sub, cond.splat |
| 1634 | /// and rewrite it to do the same, but via logical operations: |
| 1635 | /// value.neg = sub 0, value |
| 1636 | /// cond = select i1 neg, value.neg, value |
| 1637 | Instruction *InstCombinerImpl::canonicalizeConditionalNegationViaMathToSelect( |
| 1638 | BinaryOperator &I) { |
| 1639 | assert(I.getOpcode() == BinaryOperator::Xor && "Only for xor!" ); |
| 1640 | Value *Cond, *X; |
| 1641 | // As per complexity ordering, `xor` is not commutative here. |
| 1642 | if (!match(V: &I, P: m_c_BinOp(L: m_OneUse(SubPattern: m_Value()), R: m_Value())) || |
| 1643 | !match(V: I.getOperand(i_nocapture: 1), P: m_SExt(Op: m_Value(V&: Cond))) || |
| 1644 | !Cond->getType()->isIntOrIntVectorTy(BitWidth: 1) || |
| 1645 | !match(V: I.getOperand(i_nocapture: 0), P: m_c_Add(L: m_SExt(Op: m_Specific(V: Cond)), R: m_Value(V&: X)))) |
| 1646 | return nullptr; |
| 1647 | return SelectInst::Create(C: Cond, S1: Builder.CreateNeg(V: X, Name: X->getName() + ".neg" ), |
| 1648 | S2: X); |
| 1649 | } |
| 1650 | |
| 1651 | /// This a limited reassociation for a special case (see above) where we are |
| 1652 | /// checking if two values are either both NAN (unordered) or not-NAN (ordered). |
| 1653 | /// This could be handled more generally in '-reassociation', but it seems like |
| 1654 | /// an unlikely pattern for a large number of logic ops and fcmps. |
| 1655 | static Instruction *reassociateFCmps(BinaryOperator &BO, |
| 1656 | InstCombiner::BuilderTy &Builder) { |
| 1657 | Instruction::BinaryOps Opcode = BO.getOpcode(); |
| 1658 | assert((Opcode == Instruction::And || Opcode == Instruction::Or) && |
| 1659 | "Expecting and/or op for fcmp transform" ); |
| 1660 | |
| 1661 | // There are 4 commuted variants of the pattern. Canonicalize operands of this |
| 1662 | // logic op so an fcmp is operand 0 and a matching logic op is operand 1. |
| 1663 | Value *Op0 = BO.getOperand(i_nocapture: 0), *Op1 = BO.getOperand(i_nocapture: 1), *X; |
| 1664 | if (match(V: Op1, P: m_FCmp(L: m_Value(), R: m_AnyZeroFP()))) |
| 1665 | std::swap(a&: Op0, b&: Op1); |
| 1666 | |
| 1667 | // Match inner binop and the predicate for combining 2 NAN checks into 1. |
| 1668 | Value *BO10, *BO11; |
| 1669 | FCmpInst::Predicate NanPred = Opcode == Instruction::And ? FCmpInst::FCMP_ORD |
| 1670 | : FCmpInst::FCMP_UNO; |
| 1671 | if (!match(V: Op0, P: m_SpecificFCmp(MatchPred: NanPred, L: m_Value(V&: X), R: m_AnyZeroFP())) || |
| 1672 | !match(V: Op1, P: m_BinOp(Opcode, L: m_Value(V&: BO10), R: m_Value(V&: BO11)))) |
| 1673 | return nullptr; |
| 1674 | |
| 1675 | // The inner logic op must have a matching fcmp operand. |
| 1676 | Value *Y; |
| 1677 | if (!match(V: BO10, P: m_SpecificFCmp(MatchPred: NanPred, L: m_Value(V&: Y), R: m_AnyZeroFP())) || |
| 1678 | X->getType() != Y->getType()) |
| 1679 | std::swap(a&: BO10, b&: BO11); |
| 1680 | |
| 1681 | if (!match(V: BO10, P: m_SpecificFCmp(MatchPred: NanPred, L: m_Value(V&: Y), R: m_AnyZeroFP())) || |
| 1682 | X->getType() != Y->getType()) |
| 1683 | return nullptr; |
| 1684 | |
| 1685 | // and (fcmp ord X, 0), (and (fcmp ord Y, 0), Z) --> and (fcmp ord X, Y), Z |
| 1686 | // or (fcmp uno X, 0), (or (fcmp uno Y, 0), Z) --> or (fcmp uno X, Y), Z |
| 1687 | // Intersect FMF from the 2 source fcmps. |
| 1688 | Value *NewFCmp = |
| 1689 | Builder.CreateFCmpFMF(P: NanPred, LHS: X, RHS: Y, FMFSource: FMFSource::intersect(A: Op0, B: BO10)); |
| 1690 | return BinaryOperator::Create(Op: Opcode, S1: NewFCmp, S2: BO11); |
| 1691 | } |
| 1692 | |
| 1693 | /// Match variations of De Morgan's Laws: |
| 1694 | /// (~A & ~B) == (~(A | B)) |
| 1695 | /// (~A | ~B) == (~(A & B)) |
| 1696 | static Instruction *matchDeMorgansLaws(BinaryOperator &I, |
| 1697 | InstCombiner &IC) { |
| 1698 | const Instruction::BinaryOps Opcode = I.getOpcode(); |
| 1699 | assert((Opcode == Instruction::And || Opcode == Instruction::Or) && |
| 1700 | "Trying to match De Morgan's Laws with something other than and/or" ); |
| 1701 | |
| 1702 | // Flip the logic operation. |
| 1703 | const Instruction::BinaryOps FlippedOpcode = |
| 1704 | (Opcode == Instruction::And) ? Instruction::Or : Instruction::And; |
| 1705 | |
| 1706 | Value *Op0 = I.getOperand(i_nocapture: 0), *Op1 = I.getOperand(i_nocapture: 1); |
| 1707 | Value *A, *B; |
| 1708 | if (match(V: Op0, P: m_OneUse(SubPattern: m_Not(V: m_Value(V&: A)))) && |
| 1709 | match(V: Op1, P: m_OneUse(SubPattern: m_Not(V: m_Value(V&: B)))) && |
| 1710 | !IC.isFreeToInvert(V: A, WillInvertAllUses: A->hasOneUse()) && |
| 1711 | !IC.isFreeToInvert(V: B, WillInvertAllUses: B->hasOneUse())) { |
| 1712 | Value *AndOr = |
| 1713 | IC.Builder.CreateBinOp(Opc: FlippedOpcode, LHS: A, RHS: B, Name: I.getName() + ".demorgan" ); |
| 1714 | return BinaryOperator::CreateNot(Op: AndOr); |
| 1715 | } |
| 1716 | |
| 1717 | // The 'not' ops may require reassociation. |
| 1718 | // (A & ~B) & ~C --> A & ~(B | C) |
| 1719 | // (~B & A) & ~C --> A & ~(B | C) |
| 1720 | // (A | ~B) | ~C --> A | ~(B & C) |
| 1721 | // (~B | A) | ~C --> A | ~(B & C) |
| 1722 | Value *C; |
| 1723 | if (match(V: Op0, P: m_OneUse(SubPattern: m_c_BinOp(Opcode, L: m_Value(V&: A), R: m_Not(V: m_Value(V&: B))))) && |
| 1724 | match(V: Op1, P: m_Not(V: m_Value(V&: C)))) { |
| 1725 | Value *FlippedBO = IC.Builder.CreateBinOp(Opc: FlippedOpcode, LHS: B, RHS: C); |
| 1726 | return BinaryOperator::Create(Op: Opcode, S1: A, S2: IC.Builder.CreateNot(V: FlippedBO)); |
| 1727 | } |
| 1728 | |
| 1729 | return nullptr; |
| 1730 | } |
| 1731 | |
| 1732 | bool InstCombinerImpl::shouldOptimizeCast(CastInst *CI) { |
| 1733 | Value *CastSrc = CI->getOperand(i_nocapture: 0); |
| 1734 | |
| 1735 | // Noop casts and casts of constants should be eliminated trivially. |
| 1736 | if (CI->getSrcTy() == CI->getDestTy() || isa<Constant>(Val: CastSrc)) |
| 1737 | return false; |
| 1738 | |
| 1739 | // If this cast is paired with another cast that can be eliminated, we prefer |
| 1740 | // to have it eliminated. |
| 1741 | if (const auto *PrecedingCI = dyn_cast<CastInst>(Val: CastSrc)) |
| 1742 | if (isEliminableCastPair(CI1: PrecedingCI, CI2: CI)) |
| 1743 | return false; |
| 1744 | |
| 1745 | return true; |
| 1746 | } |
| 1747 | |
| 1748 | /// Fold {and,or,xor} (cast X), C. |
| 1749 | static Instruction *foldLogicCastConstant(BinaryOperator &Logic, CastInst *Cast, |
| 1750 | InstCombinerImpl &IC) { |
| 1751 | Constant *C = dyn_cast<Constant>(Val: Logic.getOperand(i_nocapture: 1)); |
| 1752 | if (!C) |
| 1753 | return nullptr; |
| 1754 | |
| 1755 | auto LogicOpc = Logic.getOpcode(); |
| 1756 | Type *DestTy = Logic.getType(); |
| 1757 | Type *SrcTy = Cast->getSrcTy(); |
| 1758 | |
| 1759 | // Move the logic operation ahead of a zext or sext if the constant is |
| 1760 | // unchanged in the smaller source type. Performing the logic in a smaller |
| 1761 | // type may provide more information to later folds, and the smaller logic |
| 1762 | // instruction may be cheaper (particularly in the case of vectors). |
| 1763 | Value *X; |
| 1764 | if (match(V: Cast, P: m_OneUse(SubPattern: m_ZExt(Op: m_Value(V&: X))))) { |
| 1765 | if (Constant *TruncC = IC.getLosslessUnsignedTrunc(C, TruncTy: SrcTy)) { |
| 1766 | // LogicOpc (zext X), C --> zext (LogicOpc X, C) |
| 1767 | Value *NewOp = IC.Builder.CreateBinOp(Opc: LogicOpc, LHS: X, RHS: TruncC); |
| 1768 | return new ZExtInst(NewOp, DestTy); |
| 1769 | } |
| 1770 | } |
| 1771 | |
| 1772 | if (match(V: Cast, P: m_OneUse(SubPattern: m_SExtLike(Op: m_Value(V&: X))))) { |
| 1773 | if (Constant *TruncC = IC.getLosslessSignedTrunc(C, TruncTy: SrcTy)) { |
| 1774 | // LogicOpc (sext X), C --> sext (LogicOpc X, C) |
| 1775 | Value *NewOp = IC.Builder.CreateBinOp(Opc: LogicOpc, LHS: X, RHS: TruncC); |
| 1776 | return new SExtInst(NewOp, DestTy); |
| 1777 | } |
| 1778 | } |
| 1779 | |
| 1780 | return nullptr; |
| 1781 | } |
| 1782 | |
| 1783 | /// Fold {and,or,xor} (cast X), Y. |
| 1784 | Instruction *InstCombinerImpl::foldCastedBitwiseLogic(BinaryOperator &I) { |
| 1785 | auto LogicOpc = I.getOpcode(); |
| 1786 | assert(I.isBitwiseLogicOp() && "Unexpected opcode for bitwise logic folding" ); |
| 1787 | |
| 1788 | Value *Op0 = I.getOperand(i_nocapture: 0), *Op1 = I.getOperand(i_nocapture: 1); |
| 1789 | |
| 1790 | // fold bitwise(A >> BW - 1, zext(icmp)) (BW is the scalar bits of the |
| 1791 | // type of A) |
| 1792 | // -> bitwise(zext(A < 0), zext(icmp)) |
| 1793 | // -> zext(bitwise(A < 0, icmp)) |
| 1794 | auto FoldBitwiseICmpZeroWithICmp = [&](Value *Op0, |
| 1795 | Value *Op1) -> Instruction * { |
| 1796 | Value *A; |
| 1797 | bool IsMatched = |
| 1798 | match(V: Op0, |
| 1799 | P: m_OneUse(SubPattern: m_LShr( |
| 1800 | L: m_Value(V&: A), |
| 1801 | R: m_SpecificInt(V: Op0->getType()->getScalarSizeInBits() - 1)))) && |
| 1802 | match(V: Op1, P: m_OneUse(SubPattern: m_ZExt(Op: m_ICmp(L: m_Value(), R: m_Value())))); |
| 1803 | |
| 1804 | if (!IsMatched) |
| 1805 | return nullptr; |
| 1806 | |
| 1807 | auto *ICmpL = |
| 1808 | Builder.CreateICmpSLT(LHS: A, RHS: Constant::getNullValue(Ty: A->getType())); |
| 1809 | auto *ICmpR = cast<ZExtInst>(Val: Op1)->getOperand(i_nocapture: 0); |
| 1810 | auto *BitwiseOp = Builder.CreateBinOp(Opc: LogicOpc, LHS: ICmpL, RHS: ICmpR); |
| 1811 | |
| 1812 | return new ZExtInst(BitwiseOp, Op0->getType()); |
| 1813 | }; |
| 1814 | |
| 1815 | if (auto *Ret = FoldBitwiseICmpZeroWithICmp(Op0, Op1)) |
| 1816 | return Ret; |
| 1817 | |
| 1818 | if (auto *Ret = FoldBitwiseICmpZeroWithICmp(Op1, Op0)) |
| 1819 | return Ret; |
| 1820 | |
| 1821 | CastInst *Cast0 = dyn_cast<CastInst>(Val: Op0); |
| 1822 | if (!Cast0) |
| 1823 | return nullptr; |
| 1824 | |
| 1825 | // This must be a cast from an integer or integer vector source type to allow |
| 1826 | // transformation of the logic operation to the source type. |
| 1827 | Type *DestTy = I.getType(); |
| 1828 | Type *SrcTy = Cast0->getSrcTy(); |
| 1829 | if (!SrcTy->isIntOrIntVectorTy()) |
| 1830 | return nullptr; |
| 1831 | |
| 1832 | if (Instruction *Ret = foldLogicCastConstant(Logic&: I, Cast: Cast0, IC&: *this)) |
| 1833 | return Ret; |
| 1834 | |
| 1835 | CastInst *Cast1 = dyn_cast<CastInst>(Val: Op1); |
| 1836 | if (!Cast1) |
| 1837 | return nullptr; |
| 1838 | |
| 1839 | // Both operands of the logic operation are casts. The casts must be the |
| 1840 | // same kind for reduction. |
| 1841 | Instruction::CastOps CastOpcode = Cast0->getOpcode(); |
| 1842 | if (CastOpcode != Cast1->getOpcode()) |
| 1843 | return nullptr; |
| 1844 | |
| 1845 | // Can't fold it profitably if no one of casts has one use. |
| 1846 | if (!Cast0->hasOneUse() && !Cast1->hasOneUse()) |
| 1847 | return nullptr; |
| 1848 | |
| 1849 | Value *X, *Y; |
| 1850 | if (match(V: Cast0, P: m_ZExtOrSExt(Op: m_Value(V&: X))) && |
| 1851 | match(V: Cast1, P: m_ZExtOrSExt(Op: m_Value(V&: Y)))) { |
| 1852 | // Cast the narrower source to the wider source type. |
| 1853 | unsigned XNumBits = X->getType()->getScalarSizeInBits(); |
| 1854 | unsigned YNumBits = Y->getType()->getScalarSizeInBits(); |
| 1855 | if (XNumBits != YNumBits) { |
| 1856 | // Cast the narrower source to the wider source type only if both of casts |
| 1857 | // have one use to avoid creating an extra instruction. |
| 1858 | if (!Cast0->hasOneUse() || !Cast1->hasOneUse()) |
| 1859 | return nullptr; |
| 1860 | |
| 1861 | // If the source types do not match, but the casts are matching extends, |
| 1862 | // we can still narrow the logic op. |
| 1863 | if (XNumBits < YNumBits) { |
| 1864 | X = Builder.CreateCast(Op: CastOpcode, V: X, DestTy: Y->getType()); |
| 1865 | } else if (YNumBits < XNumBits) { |
| 1866 | Y = Builder.CreateCast(Op: CastOpcode, V: Y, DestTy: X->getType()); |
| 1867 | } |
| 1868 | } |
| 1869 | |
| 1870 | // Do the logic op in the intermediate width, then widen more. |
| 1871 | Value *NarrowLogic = Builder.CreateBinOp(Opc: LogicOpc, LHS: X, RHS: Y, Name: I.getName()); |
| 1872 | auto *Disjoint = dyn_cast<PossiblyDisjointInst>(Val: &I); |
| 1873 | auto *NewDisjoint = dyn_cast<PossiblyDisjointInst>(Val: NarrowLogic); |
| 1874 | if (Disjoint && NewDisjoint) |
| 1875 | NewDisjoint->setIsDisjoint(Disjoint->isDisjoint()); |
| 1876 | return CastInst::Create(CastOpcode, S: NarrowLogic, Ty: DestTy); |
| 1877 | } |
| 1878 | |
| 1879 | // If the src type of casts are different, give up for other cast opcodes. |
| 1880 | if (SrcTy != Cast1->getSrcTy()) |
| 1881 | return nullptr; |
| 1882 | |
| 1883 | Value *Cast0Src = Cast0->getOperand(i_nocapture: 0); |
| 1884 | Value *Cast1Src = Cast1->getOperand(i_nocapture: 0); |
| 1885 | |
| 1886 | // fold logic(cast(A), cast(B)) -> cast(logic(A, B)) |
| 1887 | if (shouldOptimizeCast(CI: Cast0) && shouldOptimizeCast(CI: Cast1)) { |
| 1888 | Value *NewOp = Builder.CreateBinOp(Opc: LogicOpc, LHS: Cast0Src, RHS: Cast1Src, |
| 1889 | Name: I.getName()); |
| 1890 | return CastInst::Create(CastOpcode, S: NewOp, Ty: DestTy); |
| 1891 | } |
| 1892 | |
| 1893 | return nullptr; |
| 1894 | } |
| 1895 | |
| 1896 | static Instruction *foldAndToXor(BinaryOperator &I, |
| 1897 | InstCombiner::BuilderTy &Builder) { |
| 1898 | assert(I.getOpcode() == Instruction::And); |
| 1899 | Value *Op0 = I.getOperand(i_nocapture: 0); |
| 1900 | Value *Op1 = I.getOperand(i_nocapture: 1); |
| 1901 | Value *A, *B; |
| 1902 | |
| 1903 | // Operand complexity canonicalization guarantees that the 'or' is Op0. |
| 1904 | // (A | B) & ~(A & B) --> A ^ B |
| 1905 | // (A | B) & ~(B & A) --> A ^ B |
| 1906 | if (match(V: &I, P: m_BinOp(L: m_Or(L: m_Value(V&: A), R: m_Value(V&: B)), |
| 1907 | R: m_Not(V: m_c_And(L: m_Deferred(V: A), R: m_Deferred(V: B)))))) |
| 1908 | return BinaryOperator::CreateXor(V1: A, V2: B); |
| 1909 | |
| 1910 | // (A | ~B) & (~A | B) --> ~(A ^ B) |
| 1911 | // (A | ~B) & (B | ~A) --> ~(A ^ B) |
| 1912 | // (~B | A) & (~A | B) --> ~(A ^ B) |
| 1913 | // (~B | A) & (B | ~A) --> ~(A ^ B) |
| 1914 | if (Op0->hasOneUse() || Op1->hasOneUse()) |
| 1915 | if (match(V: &I, P: m_BinOp(L: m_c_Or(L: m_Value(V&: A), R: m_Not(V: m_Value(V&: B))), |
| 1916 | R: m_c_Or(L: m_Not(V: m_Deferred(V: A)), R: m_Deferred(V: B))))) |
| 1917 | return BinaryOperator::CreateNot(Op: Builder.CreateXor(LHS: A, RHS: B)); |
| 1918 | |
| 1919 | return nullptr; |
| 1920 | } |
| 1921 | |
| 1922 | static Instruction *foldOrToXor(BinaryOperator &I, |
| 1923 | InstCombiner::BuilderTy &Builder) { |
| 1924 | assert(I.getOpcode() == Instruction::Or); |
| 1925 | Value *Op0 = I.getOperand(i_nocapture: 0); |
| 1926 | Value *Op1 = I.getOperand(i_nocapture: 1); |
| 1927 | Value *A, *B; |
| 1928 | |
| 1929 | // Operand complexity canonicalization guarantees that the 'and' is Op0. |
| 1930 | // (A & B) | ~(A | B) --> ~(A ^ B) |
| 1931 | // (A & B) | ~(B | A) --> ~(A ^ B) |
| 1932 | if (Op0->hasOneUse() || Op1->hasOneUse()) |
| 1933 | if (match(V: Op0, P: m_And(L: m_Value(V&: A), R: m_Value(V&: B))) && |
| 1934 | match(V: Op1, P: m_Not(V: m_c_Or(L: m_Specific(V: A), R: m_Specific(V: B))))) |
| 1935 | return BinaryOperator::CreateNot(Op: Builder.CreateXor(LHS: A, RHS: B)); |
| 1936 | |
| 1937 | // Operand complexity canonicalization guarantees that the 'xor' is Op0. |
| 1938 | // (A ^ B) | ~(A | B) --> ~(A & B) |
| 1939 | // (A ^ B) | ~(B | A) --> ~(A & B) |
| 1940 | if (Op0->hasOneUse() || Op1->hasOneUse()) |
| 1941 | if (match(V: Op0, P: m_Xor(L: m_Value(V&: A), R: m_Value(V&: B))) && |
| 1942 | match(V: Op1, P: m_Not(V: m_c_Or(L: m_Specific(V: A), R: m_Specific(V: B))))) |
| 1943 | return BinaryOperator::CreateNot(Op: Builder.CreateAnd(LHS: A, RHS: B)); |
| 1944 | |
| 1945 | // (A & ~B) | (~A & B) --> A ^ B |
| 1946 | // (A & ~B) | (B & ~A) --> A ^ B |
| 1947 | // (~B & A) | (~A & B) --> A ^ B |
| 1948 | // (~B & A) | (B & ~A) --> A ^ B |
| 1949 | if (match(V: Op0, P: m_c_And(L: m_Value(V&: A), R: m_Not(V: m_Value(V&: B)))) && |
| 1950 | match(V: Op1, P: m_c_And(L: m_Not(V: m_Specific(V: A)), R: m_Specific(V: B)))) |
| 1951 | return BinaryOperator::CreateXor(V1: A, V2: B); |
| 1952 | |
| 1953 | return nullptr; |
| 1954 | } |
| 1955 | |
| 1956 | /// Return true if a constant shift amount is always less than the specified |
| 1957 | /// bit-width. If not, the shift could create poison in the narrower type. |
| 1958 | static bool canNarrowShiftAmt(Constant *C, unsigned BitWidth) { |
| 1959 | APInt Threshold(C->getType()->getScalarSizeInBits(), BitWidth); |
| 1960 | return match(V: C, P: m_SpecificInt_ICMP(Predicate: ICmpInst::ICMP_ULT, Threshold)); |
| 1961 | } |
| 1962 | |
| 1963 | /// Try to use narrower ops (sink zext ops) for an 'and' with binop operand and |
| 1964 | /// a common zext operand: and (binop (zext X), C), (zext X). |
| 1965 | Instruction *InstCombinerImpl::narrowMaskedBinOp(BinaryOperator &And) { |
| 1966 | // This transform could also apply to {or, and, xor}, but there are better |
| 1967 | // folds for those cases, so we don't expect those patterns here. AShr is not |
| 1968 | // handled because it should always be transformed to LShr in this sequence. |
| 1969 | // The subtract transform is different because it has a constant on the left. |
| 1970 | // Add/mul commute the constant to RHS; sub with constant RHS becomes add. |
| 1971 | Value *Op0 = And.getOperand(i_nocapture: 0), *Op1 = And.getOperand(i_nocapture: 1); |
| 1972 | Constant *C; |
| 1973 | if (!match(V: Op0, P: m_OneUse(SubPattern: m_Add(L: m_Specific(V: Op1), R: m_Constant(C)))) && |
| 1974 | !match(V: Op0, P: m_OneUse(SubPattern: m_Mul(L: m_Specific(V: Op1), R: m_Constant(C)))) && |
| 1975 | !match(V: Op0, P: m_OneUse(SubPattern: m_LShr(L: m_Specific(V: Op1), R: m_Constant(C)))) && |
| 1976 | !match(V: Op0, P: m_OneUse(SubPattern: m_Shl(L: m_Specific(V: Op1), R: m_Constant(C)))) && |
| 1977 | !match(V: Op0, P: m_OneUse(SubPattern: m_Sub(L: m_Constant(C), R: m_Specific(V: Op1))))) |
| 1978 | return nullptr; |
| 1979 | |
| 1980 | Value *X; |
| 1981 | if (!match(V: Op1, P: m_ZExt(Op: m_Value(V&: X))) || Op1->hasNUsesOrMore(N: 3)) |
| 1982 | return nullptr; |
| 1983 | |
| 1984 | Type *Ty = And.getType(); |
| 1985 | if (!isa<VectorType>(Val: Ty) && !shouldChangeType(From: Ty, To: X->getType())) |
| 1986 | return nullptr; |
| 1987 | |
| 1988 | // If we're narrowing a shift, the shift amount must be safe (less than the |
| 1989 | // width) in the narrower type. If the shift amount is greater, instsimplify |
| 1990 | // usually handles that case, but we can't guarantee/assert it. |
| 1991 | Instruction::BinaryOps Opc = cast<BinaryOperator>(Val: Op0)->getOpcode(); |
| 1992 | if (Opc == Instruction::LShr || Opc == Instruction::Shl) |
| 1993 | if (!canNarrowShiftAmt(C, BitWidth: X->getType()->getScalarSizeInBits())) |
| 1994 | return nullptr; |
| 1995 | |
| 1996 | // and (sub C, (zext X)), (zext X) --> zext (and (sub C', X), X) |
| 1997 | // and (binop (zext X), C), (zext X) --> zext (and (binop X, C'), X) |
| 1998 | Value *NewC = ConstantExpr::getTrunc(C, Ty: X->getType()); |
| 1999 | Value *NewBO = Opc == Instruction::Sub ? Builder.CreateBinOp(Opc, LHS: NewC, RHS: X) |
| 2000 | : Builder.CreateBinOp(Opc, LHS: X, RHS: NewC); |
| 2001 | return new ZExtInst(Builder.CreateAnd(LHS: NewBO, RHS: X), Ty); |
| 2002 | } |
| 2003 | |
| 2004 | /// Try folding relatively complex patterns for both And and Or operations |
| 2005 | /// with all And and Or swapped. |
| 2006 | static Instruction *foldComplexAndOrPatterns(BinaryOperator &I, |
| 2007 | InstCombiner::BuilderTy &Builder) { |
| 2008 | const Instruction::BinaryOps Opcode = I.getOpcode(); |
| 2009 | assert(Opcode == Instruction::And || Opcode == Instruction::Or); |
| 2010 | |
| 2011 | // Flip the logic operation. |
| 2012 | const Instruction::BinaryOps FlippedOpcode = |
| 2013 | (Opcode == Instruction::And) ? Instruction::Or : Instruction::And; |
| 2014 | |
| 2015 | Value *Op0 = I.getOperand(i_nocapture: 0), *Op1 = I.getOperand(i_nocapture: 1); |
| 2016 | Value *A, *B, *C, *X, *Y, *Dummy; |
| 2017 | |
| 2018 | // Match following expressions: |
| 2019 | // (~(A | B) & C) |
| 2020 | // (~(A & B) | C) |
| 2021 | // Captures X = ~(A | B) or ~(A & B) |
| 2022 | const auto matchNotOrAnd = |
| 2023 | [Opcode, FlippedOpcode](Value *Op, auto m_A, auto m_B, auto m_C, |
| 2024 | Value *&X, bool CountUses = false) -> bool { |
| 2025 | if (CountUses && !Op->hasOneUse()) |
| 2026 | return false; |
| 2027 | |
| 2028 | if (match(Op, m_c_BinOp(FlippedOpcode, |
| 2029 | m_CombineAnd(m_Value(V&: X), |
| 2030 | m_Not(m_c_BinOp(Opcode, m_A, m_B))), |
| 2031 | m_C))) |
| 2032 | return !CountUses || X->hasOneUse(); |
| 2033 | |
| 2034 | return false; |
| 2035 | }; |
| 2036 | |
| 2037 | // (~(A | B) & C) | ... --> ... |
| 2038 | // (~(A & B) | C) & ... --> ... |
| 2039 | // TODO: One use checks are conservative. We just need to check that a total |
| 2040 | // number of multiple used values does not exceed reduction |
| 2041 | // in operations. |
| 2042 | if (matchNotOrAnd(Op0, m_Value(V&: A), m_Value(V&: B), m_Value(V&: C), X)) { |
| 2043 | // (~(A | B) & C) | (~(A | C) & B) --> (B ^ C) & ~A |
| 2044 | // (~(A & B) | C) & (~(A & C) | B) --> ~((B ^ C) & A) |
| 2045 | if (matchNotOrAnd(Op1, m_Specific(V: A), m_Specific(V: C), m_Specific(V: B), Dummy, |
| 2046 | true)) { |
| 2047 | Value *Xor = Builder.CreateXor(LHS: B, RHS: C); |
| 2048 | return (Opcode == Instruction::Or) |
| 2049 | ? BinaryOperator::CreateAnd(V1: Xor, V2: Builder.CreateNot(V: A)) |
| 2050 | : BinaryOperator::CreateNot(Op: Builder.CreateAnd(LHS: Xor, RHS: A)); |
| 2051 | } |
| 2052 | |
| 2053 | // (~(A | B) & C) | (~(B | C) & A) --> (A ^ C) & ~B |
| 2054 | // (~(A & B) | C) & (~(B & C) | A) --> ~((A ^ C) & B) |
| 2055 | if (matchNotOrAnd(Op1, m_Specific(V: B), m_Specific(V: C), m_Specific(V: A), Dummy, |
| 2056 | true)) { |
| 2057 | Value *Xor = Builder.CreateXor(LHS: A, RHS: C); |
| 2058 | return (Opcode == Instruction::Or) |
| 2059 | ? BinaryOperator::CreateAnd(V1: Xor, V2: Builder.CreateNot(V: B)) |
| 2060 | : BinaryOperator::CreateNot(Op: Builder.CreateAnd(LHS: Xor, RHS: B)); |
| 2061 | } |
| 2062 | |
| 2063 | // (~(A | B) & C) | ~(A | C) --> ~((B & C) | A) |
| 2064 | // (~(A & B) | C) & ~(A & C) --> ~((B | C) & A) |
| 2065 | if (match(V: Op1, P: m_OneUse(SubPattern: m_Not(V: m_OneUse( |
| 2066 | SubPattern: m_c_BinOp(Opcode, L: m_Specific(V: A), R: m_Specific(V: C))))))) |
| 2067 | return BinaryOperator::CreateNot(Op: Builder.CreateBinOp( |
| 2068 | Opc: Opcode, LHS: Builder.CreateBinOp(Opc: FlippedOpcode, LHS: B, RHS: C), RHS: A)); |
| 2069 | |
| 2070 | // (~(A | B) & C) | ~(B | C) --> ~((A & C) | B) |
| 2071 | // (~(A & B) | C) & ~(B & C) --> ~((A | C) & B) |
| 2072 | if (match(V: Op1, P: m_OneUse(SubPattern: m_Not(V: m_OneUse( |
| 2073 | SubPattern: m_c_BinOp(Opcode, L: m_Specific(V: B), R: m_Specific(V: C))))))) |
| 2074 | return BinaryOperator::CreateNot(Op: Builder.CreateBinOp( |
| 2075 | Opc: Opcode, LHS: Builder.CreateBinOp(Opc: FlippedOpcode, LHS: A, RHS: C), RHS: B)); |
| 2076 | |
| 2077 | // (~(A | B) & C) | ~(C | (A ^ B)) --> ~((A | B) & (C | (A ^ B))) |
| 2078 | // Note, the pattern with swapped and/or is not handled because the |
| 2079 | // result is more undefined than a source: |
| 2080 | // (~(A & B) | C) & ~(C & (A ^ B)) --> (A ^ B ^ C) | ~(A | C) is invalid. |
| 2081 | if (Opcode == Instruction::Or && Op0->hasOneUse() && |
| 2082 | match(V: Op1, P: m_OneUse(SubPattern: m_Not(V: m_CombineAnd( |
| 2083 | L: m_Value(V&: Y), |
| 2084 | R: m_c_BinOp(Opcode, L: m_Specific(V: C), |
| 2085 | R: m_c_Xor(L: m_Specific(V: A), R: m_Specific(V: B)))))))) { |
| 2086 | // X = ~(A | B) |
| 2087 | // Y = (C | (A ^ B) |
| 2088 | Value *Or = cast<BinaryOperator>(Val: X)->getOperand(i_nocapture: 0); |
| 2089 | return BinaryOperator::CreateNot(Op: Builder.CreateAnd(LHS: Or, RHS: Y)); |
| 2090 | } |
| 2091 | } |
| 2092 | |
| 2093 | // (~A & B & C) | ... --> ... |
| 2094 | // (~A | B | C) | ... --> ... |
| 2095 | // TODO: One use checks are conservative. We just need to check that a total |
| 2096 | // number of multiple used values does not exceed reduction |
| 2097 | // in operations. |
| 2098 | if (match(V: Op0, |
| 2099 | P: m_OneUse(SubPattern: m_c_BinOp(Opcode: FlippedOpcode, |
| 2100 | L: m_BinOp(Opcode: FlippedOpcode, L: m_Value(V&: B), R: m_Value(V&: C)), |
| 2101 | R: m_CombineAnd(L: m_Value(V&: X), R: m_Not(V: m_Value(V&: A)))))) || |
| 2102 | match(V: Op0, P: m_OneUse(SubPattern: m_c_BinOp( |
| 2103 | Opcode: FlippedOpcode, |
| 2104 | L: m_c_BinOp(Opcode: FlippedOpcode, L: m_Value(V&: C), |
| 2105 | R: m_CombineAnd(L: m_Value(V&: X), R: m_Not(V: m_Value(V&: A)))), |
| 2106 | R: m_Value(V&: B))))) { |
| 2107 | // X = ~A |
| 2108 | // (~A & B & C) | ~(A | B | C) --> ~(A | (B ^ C)) |
| 2109 | // (~A | B | C) & ~(A & B & C) --> (~A | (B ^ C)) |
| 2110 | if (match(V: Op1, P: m_OneUse(SubPattern: m_Not(V: m_c_BinOp( |
| 2111 | Opcode, L: m_c_BinOp(Opcode, L: m_Specific(V: A), R: m_Specific(V: B)), |
| 2112 | R: m_Specific(V: C))))) || |
| 2113 | match(V: Op1, P: m_OneUse(SubPattern: m_Not(V: m_c_BinOp( |
| 2114 | Opcode, L: m_c_BinOp(Opcode, L: m_Specific(V: B), R: m_Specific(V: C)), |
| 2115 | R: m_Specific(V: A))))) || |
| 2116 | match(V: Op1, P: m_OneUse(SubPattern: m_Not(V: m_c_BinOp( |
| 2117 | Opcode, L: m_c_BinOp(Opcode, L: m_Specific(V: A), R: m_Specific(V: C)), |
| 2118 | R: m_Specific(V: B)))))) { |
| 2119 | Value *Xor = Builder.CreateXor(LHS: B, RHS: C); |
| 2120 | return (Opcode == Instruction::Or) |
| 2121 | ? BinaryOperator::CreateNot(Op: Builder.CreateOr(LHS: Xor, RHS: A)) |
| 2122 | : BinaryOperator::CreateOr(V1: Xor, V2: X); |
| 2123 | } |
| 2124 | |
| 2125 | // (~A & B & C) | ~(A | B) --> (C | ~B) & ~A |
| 2126 | // (~A | B | C) & ~(A & B) --> (C & ~B) | ~A |
| 2127 | if (match(V: Op1, P: m_OneUse(SubPattern: m_Not(V: m_OneUse( |
| 2128 | SubPattern: m_c_BinOp(Opcode, L: m_Specific(V: A), R: m_Specific(V: B))))))) |
| 2129 | return BinaryOperator::Create( |
| 2130 | Op: FlippedOpcode, S1: Builder.CreateBinOp(Opc: Opcode, LHS: C, RHS: Builder.CreateNot(V: B)), |
| 2131 | S2: X); |
| 2132 | |
| 2133 | // (~A & B & C) | ~(A | C) --> (B | ~C) & ~A |
| 2134 | // (~A | B | C) & ~(A & C) --> (B & ~C) | ~A |
| 2135 | if (match(V: Op1, P: m_OneUse(SubPattern: m_Not(V: m_OneUse( |
| 2136 | SubPattern: m_c_BinOp(Opcode, L: m_Specific(V: A), R: m_Specific(V: C))))))) |
| 2137 | return BinaryOperator::Create( |
| 2138 | Op: FlippedOpcode, S1: Builder.CreateBinOp(Opc: Opcode, LHS: B, RHS: Builder.CreateNot(V: C)), |
| 2139 | S2: X); |
| 2140 | } |
| 2141 | |
| 2142 | return nullptr; |
| 2143 | } |
| 2144 | |
| 2145 | /// Try to reassociate a pair of binops so that values with one use only are |
| 2146 | /// part of the same instruction. This may enable folds that are limited with |
| 2147 | /// multi-use restrictions and makes it more likely to match other patterns that |
| 2148 | /// are looking for a common operand. |
| 2149 | static Instruction *reassociateForUses(BinaryOperator &BO, |
| 2150 | InstCombinerImpl::BuilderTy &Builder) { |
| 2151 | Instruction::BinaryOps Opcode = BO.getOpcode(); |
| 2152 | Value *X, *Y, *Z; |
| 2153 | if (match(V: &BO, |
| 2154 | P: m_c_BinOp(Opcode, L: m_OneUse(SubPattern: m_BinOp(Opcode, L: m_Value(V&: X), R: m_Value(V&: Y))), |
| 2155 | R: m_OneUse(SubPattern: m_Value(V&: Z))))) { |
| 2156 | if (!isa<Constant>(Val: X) && !isa<Constant>(Val: Y) && !isa<Constant>(Val: Z)) { |
| 2157 | // (X op Y) op Z --> (Y op Z) op X |
| 2158 | if (!X->hasOneUse()) { |
| 2159 | Value *YZ = Builder.CreateBinOp(Opc: Opcode, LHS: Y, RHS: Z); |
| 2160 | return BinaryOperator::Create(Op: Opcode, S1: YZ, S2: X); |
| 2161 | } |
| 2162 | // (X op Y) op Z --> (X op Z) op Y |
| 2163 | if (!Y->hasOneUse()) { |
| 2164 | Value *XZ = Builder.CreateBinOp(Opc: Opcode, LHS: X, RHS: Z); |
| 2165 | return BinaryOperator::Create(Op: Opcode, S1: XZ, S2: Y); |
| 2166 | } |
| 2167 | } |
| 2168 | } |
| 2169 | |
| 2170 | return nullptr; |
| 2171 | } |
| 2172 | |
| 2173 | // Match |
| 2174 | // (X + C2) | C |
| 2175 | // (X + C2) ^ C |
| 2176 | // (X + C2) & C |
| 2177 | // and convert to do the bitwise logic first: |
| 2178 | // (X | C) + C2 |
| 2179 | // (X ^ C) + C2 |
| 2180 | // (X & C) + C2 |
| 2181 | // iff bits affected by logic op are lower than last bit affected by math op |
| 2182 | static Instruction *canonicalizeLogicFirst(BinaryOperator &I, |
| 2183 | InstCombiner::BuilderTy &Builder) { |
| 2184 | Type *Ty = I.getType(); |
| 2185 | Instruction::BinaryOps OpC = I.getOpcode(); |
| 2186 | Value *Op0 = I.getOperand(i_nocapture: 0); |
| 2187 | Value *Op1 = I.getOperand(i_nocapture: 1); |
| 2188 | Value *X; |
| 2189 | const APInt *C, *C2; |
| 2190 | |
| 2191 | if (!(match(V: Op0, P: m_OneUse(SubPattern: m_Add(L: m_Value(V&: X), R: m_APInt(Res&: C2)))) && |
| 2192 | match(V: Op1, P: m_APInt(Res&: C)))) |
| 2193 | return nullptr; |
| 2194 | |
| 2195 | unsigned Width = Ty->getScalarSizeInBits(); |
| 2196 | unsigned LastOneMath = Width - C2->countr_zero(); |
| 2197 | |
| 2198 | switch (OpC) { |
| 2199 | case Instruction::And: |
| 2200 | if (C->countl_one() < LastOneMath) |
| 2201 | return nullptr; |
| 2202 | break; |
| 2203 | case Instruction::Xor: |
| 2204 | case Instruction::Or: |
| 2205 | if (C->countl_zero() < LastOneMath) |
| 2206 | return nullptr; |
| 2207 | break; |
| 2208 | default: |
| 2209 | llvm_unreachable("Unexpected BinaryOp!" ); |
| 2210 | } |
| 2211 | |
| 2212 | Value *NewBinOp = Builder.CreateBinOp(Opc: OpC, LHS: X, RHS: ConstantInt::get(Ty, V: *C)); |
| 2213 | return BinaryOperator::CreateWithCopiedFlags(Opc: Instruction::Add, V1: NewBinOp, |
| 2214 | V2: ConstantInt::get(Ty, V: *C2), CopyO: Op0); |
| 2215 | } |
| 2216 | |
| 2217 | // binop(shift(ShiftedC1, ShAmt), shift(ShiftedC2, add(ShAmt, AddC))) -> |
| 2218 | // shift(binop(ShiftedC1, shift(ShiftedC2, AddC)), ShAmt) |
| 2219 | // where both shifts are the same and AddC is a valid shift amount. |
| 2220 | Instruction *InstCombinerImpl::foldBinOpOfDisplacedShifts(BinaryOperator &I) { |
| 2221 | assert((I.isBitwiseLogicOp() || I.getOpcode() == Instruction::Add) && |
| 2222 | "Unexpected opcode" ); |
| 2223 | |
| 2224 | Value *ShAmt; |
| 2225 | Constant *ShiftedC1, *ShiftedC2, *AddC; |
| 2226 | Type *Ty = I.getType(); |
| 2227 | unsigned BitWidth = Ty->getScalarSizeInBits(); |
| 2228 | if (!match(V: &I, P: m_c_BinOp(L: m_Shift(L: m_ImmConstant(C&: ShiftedC1), R: m_Value(V&: ShAmt)), |
| 2229 | R: m_Shift(L: m_ImmConstant(C&: ShiftedC2), |
| 2230 | R: m_AddLike(L: m_Deferred(V: ShAmt), |
| 2231 | R: m_ImmConstant(C&: AddC)))))) |
| 2232 | return nullptr; |
| 2233 | |
| 2234 | // Make sure the add constant is a valid shift amount. |
| 2235 | if (!match(V: AddC, |
| 2236 | P: m_SpecificInt_ICMP(Predicate: ICmpInst::ICMP_ULT, Threshold: APInt(BitWidth, BitWidth)))) |
| 2237 | return nullptr; |
| 2238 | |
| 2239 | // Avoid constant expressions. |
| 2240 | auto *Op0Inst = dyn_cast<Instruction>(Val: I.getOperand(i_nocapture: 0)); |
| 2241 | auto *Op1Inst = dyn_cast<Instruction>(Val: I.getOperand(i_nocapture: 1)); |
| 2242 | if (!Op0Inst || !Op1Inst) |
| 2243 | return nullptr; |
| 2244 | |
| 2245 | // Both shifts must be the same. |
| 2246 | Instruction::BinaryOps ShiftOp = |
| 2247 | static_cast<Instruction::BinaryOps>(Op0Inst->getOpcode()); |
| 2248 | if (ShiftOp != Op1Inst->getOpcode()) |
| 2249 | return nullptr; |
| 2250 | |
| 2251 | // For adds, only left shifts are supported. |
| 2252 | if (I.getOpcode() == Instruction::Add && ShiftOp != Instruction::Shl) |
| 2253 | return nullptr; |
| 2254 | |
| 2255 | Value *NewC = Builder.CreateBinOp( |
| 2256 | Opc: I.getOpcode(), LHS: ShiftedC1, RHS: Builder.CreateBinOp(Opc: ShiftOp, LHS: ShiftedC2, RHS: AddC)); |
| 2257 | return BinaryOperator::Create(Op: ShiftOp, S1: NewC, S2: ShAmt); |
| 2258 | } |
| 2259 | |
| 2260 | // Fold and/or/xor with two equal intrinsic IDs: |
| 2261 | // bitwise(fshl (A, B, ShAmt), fshl(C, D, ShAmt)) |
| 2262 | // -> fshl(bitwise(A, C), bitwise(B, D), ShAmt) |
| 2263 | // bitwise(fshr (A, B, ShAmt), fshr(C, D, ShAmt)) |
| 2264 | // -> fshr(bitwise(A, C), bitwise(B, D), ShAmt) |
| 2265 | // bitwise(bswap(A), bswap(B)) -> bswap(bitwise(A, B)) |
| 2266 | // bitwise(bswap(A), C) -> bswap(bitwise(A, bswap(C))) |
| 2267 | // bitwise(bitreverse(A), bitreverse(B)) -> bitreverse(bitwise(A, B)) |
| 2268 | // bitwise(bitreverse(A), C) -> bitreverse(bitwise(A, bitreverse(C))) |
| 2269 | static Instruction * |
| 2270 | foldBitwiseLogicWithIntrinsics(BinaryOperator &I, |
| 2271 | InstCombiner::BuilderTy &Builder) { |
| 2272 | assert(I.isBitwiseLogicOp() && "Should and/or/xor" ); |
| 2273 | if (!I.getOperand(i_nocapture: 0)->hasOneUse()) |
| 2274 | return nullptr; |
| 2275 | IntrinsicInst *X = dyn_cast<IntrinsicInst>(Val: I.getOperand(i_nocapture: 0)); |
| 2276 | if (!X) |
| 2277 | return nullptr; |
| 2278 | |
| 2279 | IntrinsicInst *Y = dyn_cast<IntrinsicInst>(Val: I.getOperand(i_nocapture: 1)); |
| 2280 | if (Y && (!Y->hasOneUse() || X->getIntrinsicID() != Y->getIntrinsicID())) |
| 2281 | return nullptr; |
| 2282 | |
| 2283 | Intrinsic::ID IID = X->getIntrinsicID(); |
| 2284 | const APInt *RHSC; |
| 2285 | // Try to match constant RHS. |
| 2286 | if (!Y && (!(IID == Intrinsic::bswap || IID == Intrinsic::bitreverse) || |
| 2287 | !match(V: I.getOperand(i_nocapture: 1), P: m_APInt(Res&: RHSC)))) |
| 2288 | return nullptr; |
| 2289 | |
| 2290 | switch (IID) { |
| 2291 | case Intrinsic::fshl: |
| 2292 | case Intrinsic::fshr: { |
| 2293 | if (X->getOperand(i_nocapture: 2) != Y->getOperand(i_nocapture: 2)) |
| 2294 | return nullptr; |
| 2295 | Value *NewOp0 = |
| 2296 | Builder.CreateBinOp(Opc: I.getOpcode(), LHS: X->getOperand(i_nocapture: 0), RHS: Y->getOperand(i_nocapture: 0)); |
| 2297 | Value *NewOp1 = |
| 2298 | Builder.CreateBinOp(Opc: I.getOpcode(), LHS: X->getOperand(i_nocapture: 1), RHS: Y->getOperand(i_nocapture: 1)); |
| 2299 | Function *F = |
| 2300 | Intrinsic::getOrInsertDeclaration(M: I.getModule(), id: IID, Tys: I.getType()); |
| 2301 | return CallInst::Create(Func: F, Args: {NewOp0, NewOp1, X->getOperand(i_nocapture: 2)}); |
| 2302 | } |
| 2303 | case Intrinsic::bswap: |
| 2304 | case Intrinsic::bitreverse: { |
| 2305 | Value *NewOp0 = Builder.CreateBinOp( |
| 2306 | Opc: I.getOpcode(), LHS: X->getOperand(i_nocapture: 0), |
| 2307 | RHS: Y ? Y->getOperand(i_nocapture: 0) |
| 2308 | : ConstantInt::get(Ty: I.getType(), V: IID == Intrinsic::bswap |
| 2309 | ? RHSC->byteSwap() |
| 2310 | : RHSC->reverseBits())); |
| 2311 | Function *F = |
| 2312 | Intrinsic::getOrInsertDeclaration(M: I.getModule(), id: IID, Tys: I.getType()); |
| 2313 | return CallInst::Create(Func: F, Args: {NewOp0}); |
| 2314 | } |
| 2315 | default: |
| 2316 | return nullptr; |
| 2317 | } |
| 2318 | } |
| 2319 | |
| 2320 | // Try to simplify V by replacing occurrences of Op with RepOp, but only look |
| 2321 | // through bitwise operations. In particular, for X | Y we try to replace Y with |
| 2322 | // 0 inside X and for X & Y we try to replace Y with -1 inside X. |
| 2323 | // Return the simplified result of X if successful, and nullptr otherwise. |
| 2324 | // If SimplifyOnly is true, no new instructions will be created. |
| 2325 | static Value *simplifyAndOrWithOpReplaced(Value *V, Value *Op, Value *RepOp, |
| 2326 | bool SimplifyOnly, |
| 2327 | InstCombinerImpl &IC, |
| 2328 | unsigned Depth = 0) { |
| 2329 | if (Op == RepOp) |
| 2330 | return nullptr; |
| 2331 | |
| 2332 | if (V == Op) |
| 2333 | return RepOp; |
| 2334 | |
| 2335 | auto *I = dyn_cast<BinaryOperator>(Val: V); |
| 2336 | if (!I || !I->isBitwiseLogicOp() || Depth >= 3) |
| 2337 | return nullptr; |
| 2338 | |
| 2339 | if (!I->hasOneUse()) |
| 2340 | SimplifyOnly = true; |
| 2341 | |
| 2342 | Value *NewOp0 = simplifyAndOrWithOpReplaced(V: I->getOperand(i_nocapture: 0), Op, RepOp, |
| 2343 | SimplifyOnly, IC, Depth: Depth + 1); |
| 2344 | Value *NewOp1 = simplifyAndOrWithOpReplaced(V: I->getOperand(i_nocapture: 1), Op, RepOp, |
| 2345 | SimplifyOnly, IC, Depth: Depth + 1); |
| 2346 | if (!NewOp0 && !NewOp1) |
| 2347 | return nullptr; |
| 2348 | |
| 2349 | if (!NewOp0) |
| 2350 | NewOp0 = I->getOperand(i_nocapture: 0); |
| 2351 | if (!NewOp1) |
| 2352 | NewOp1 = I->getOperand(i_nocapture: 1); |
| 2353 | |
| 2354 | if (Value *Res = simplifyBinOp(Opcode: I->getOpcode(), LHS: NewOp0, RHS: NewOp1, |
| 2355 | Q: IC.getSimplifyQuery().getWithInstruction(I))) |
| 2356 | return Res; |
| 2357 | |
| 2358 | if (SimplifyOnly) |
| 2359 | return nullptr; |
| 2360 | return IC.Builder.CreateBinOp(Opc: I->getOpcode(), LHS: NewOp0, RHS: NewOp1); |
| 2361 | } |
| 2362 | |
| 2363 | /// Reassociate and/or expressions to see if we can fold the inner and/or ops. |
| 2364 | /// TODO: Make this recursive; it's a little tricky because an arbitrary |
| 2365 | /// number of and/or instructions might have to be created. |
| 2366 | Value *InstCombinerImpl::reassociateBooleanAndOr(Value *LHS, Value *X, Value *Y, |
| 2367 | Instruction &I, bool IsAnd, |
| 2368 | bool RHSIsLogical) { |
| 2369 | Instruction::BinaryOps Opcode = IsAnd ? Instruction::And : Instruction::Or; |
| 2370 | // LHS bop (X lop Y) --> (LHS bop X) lop Y |
| 2371 | // LHS bop (X bop Y) --> (LHS bop X) bop Y |
| 2372 | if (Value *Res = foldBooleanAndOr(LHS, RHS: X, I, IsAnd, /*IsLogical=*/false)) |
| 2373 | return RHSIsLogical ? Builder.CreateLogicalOp(Opc: Opcode, Cond1: Res, Cond2: Y) |
| 2374 | : Builder.CreateBinOp(Opc: Opcode, LHS: Res, RHS: Y); |
| 2375 | // LHS bop (X bop Y) --> X bop (LHS bop Y) |
| 2376 | // LHS bop (X lop Y) --> X lop (LHS bop Y) |
| 2377 | if (Value *Res = foldBooleanAndOr(LHS, RHS: Y, I, IsAnd, /*IsLogical=*/false)) |
| 2378 | return RHSIsLogical ? Builder.CreateLogicalOp(Opc: Opcode, Cond1: X, Cond2: Res) |
| 2379 | : Builder.CreateBinOp(Opc: Opcode, LHS: X, RHS: Res); |
| 2380 | return nullptr; |
| 2381 | } |
| 2382 | |
| 2383 | // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches |
| 2384 | // here. We should standardize that construct where it is needed or choose some |
| 2385 | // other way to ensure that commutated variants of patterns are not missed. |
| 2386 | Instruction *InstCombinerImpl::visitAnd(BinaryOperator &I) { |
| 2387 | Type *Ty = I.getType(); |
| 2388 | |
| 2389 | if (Value *V = simplifyAndInst(LHS: I.getOperand(i_nocapture: 0), RHS: I.getOperand(i_nocapture: 1), |
| 2390 | Q: SQ.getWithInstruction(I: &I))) |
| 2391 | return replaceInstUsesWith(I, V); |
| 2392 | |
| 2393 | if (SimplifyAssociativeOrCommutative(I)) |
| 2394 | return &I; |
| 2395 | |
| 2396 | if (Instruction *X = foldVectorBinop(Inst&: I)) |
| 2397 | return X; |
| 2398 | |
| 2399 | if (Instruction *Phi = foldBinopWithPhiOperands(BO&: I)) |
| 2400 | return Phi; |
| 2401 | |
| 2402 | // See if we can simplify any instructions used by the instruction whose sole |
| 2403 | // purpose is to compute bits we don't care about. |
| 2404 | if (SimplifyDemandedInstructionBits(Inst&: I)) |
| 2405 | return &I; |
| 2406 | |
| 2407 | // Do this before using distributive laws to catch simple and/or/not patterns. |
| 2408 | if (Instruction *Xor = foldAndToXor(I, Builder)) |
| 2409 | return Xor; |
| 2410 | |
| 2411 | if (Instruction *X = foldComplexAndOrPatterns(I, Builder)) |
| 2412 | return X; |
| 2413 | |
| 2414 | // (A|B)&(A|C) -> A|(B&C) etc |
| 2415 | if (Value *V = foldUsingDistributiveLaws(I)) |
| 2416 | return replaceInstUsesWith(I, V); |
| 2417 | |
| 2418 | if (Instruction *R = foldBinOpShiftWithShift(I)) |
| 2419 | return R; |
| 2420 | |
| 2421 | Value *Op0 = I.getOperand(i_nocapture: 0), *Op1 = I.getOperand(i_nocapture: 1); |
| 2422 | |
| 2423 | Value *X, *Y; |
| 2424 | const APInt *C; |
| 2425 | if ((match(V: Op0, P: m_OneUse(SubPattern: m_LogicalShift(L: m_One(), R: m_Value(V&: X)))) || |
| 2426 | (match(V: Op0, P: m_OneUse(SubPattern: m_Shl(L: m_APInt(Res&: C), R: m_Value(V&: X)))) && (*C)[0])) && |
| 2427 | match(V: Op1, P: m_One())) { |
| 2428 | // (1 >> X) & 1 --> zext(X == 0) |
| 2429 | // (C << X) & 1 --> zext(X == 0), when C is odd |
| 2430 | Value *IsZero = Builder.CreateICmpEQ(LHS: X, RHS: ConstantInt::get(Ty, V: 0)); |
| 2431 | return new ZExtInst(IsZero, Ty); |
| 2432 | } |
| 2433 | |
| 2434 | // (-(X & 1)) & Y --> (X & 1) == 0 ? 0 : Y |
| 2435 | Value *Neg; |
| 2436 | if (match(V: &I, |
| 2437 | P: m_c_And(L: m_CombineAnd(L: m_Value(V&: Neg), |
| 2438 | R: m_OneUse(SubPattern: m_Neg(V: m_And(L: m_Value(), R: m_One())))), |
| 2439 | R: m_Value(V&: Y)))) { |
| 2440 | Value *Cmp = Builder.CreateIsNull(Arg: Neg); |
| 2441 | return SelectInst::Create(C: Cmp, S1: ConstantInt::getNullValue(Ty), S2: Y); |
| 2442 | } |
| 2443 | |
| 2444 | // Canonicalize: |
| 2445 | // (X +/- Y) & Y --> ~X & Y when Y is a power of 2. |
| 2446 | if (match(V: &I, P: m_c_And(L: m_Value(V&: Y), R: m_OneUse(SubPattern: m_CombineOr( |
| 2447 | L: m_c_Add(L: m_Value(V&: X), R: m_Deferred(V: Y)), |
| 2448 | R: m_Sub(L: m_Value(V&: X), R: m_Deferred(V: Y)))))) && |
| 2449 | isKnownToBeAPowerOfTwo(V: Y, /*OrZero*/ true, CxtI: &I)) |
| 2450 | return BinaryOperator::CreateAnd(V1: Builder.CreateNot(V: X), V2: Y); |
| 2451 | |
| 2452 | if (match(V: Op1, P: m_APInt(Res&: C))) { |
| 2453 | const APInt *XorC; |
| 2454 | if (match(V: Op0, P: m_OneUse(SubPattern: m_Xor(L: m_Value(V&: X), R: m_APInt(Res&: XorC))))) { |
| 2455 | // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2) |
| 2456 | Constant *NewC = ConstantInt::get(Ty, V: *C & *XorC); |
| 2457 | Value *And = Builder.CreateAnd(LHS: X, RHS: Op1); |
| 2458 | And->takeName(V: Op0); |
| 2459 | return BinaryOperator::CreateXor(V1: And, V2: NewC); |
| 2460 | } |
| 2461 | |
| 2462 | const APInt *OrC; |
| 2463 | if (match(V: Op0, P: m_OneUse(SubPattern: m_Or(L: m_Value(V&: X), R: m_APInt(Res&: OrC))))) { |
| 2464 | // (X | C1) & C2 --> (X & C2^(C1&C2)) | (C1&C2) |
| 2465 | // NOTE: This reduces the number of bits set in the & mask, which |
| 2466 | // can expose opportunities for store narrowing for scalars. |
| 2467 | // NOTE: SimplifyDemandedBits should have already removed bits from C1 |
| 2468 | // that aren't set in C2. Meaning we can replace (C1&C2) with C1 in |
| 2469 | // above, but this feels safer. |
| 2470 | APInt Together = *C & *OrC; |
| 2471 | Value *And = Builder.CreateAnd(LHS: X, RHS: ConstantInt::get(Ty, V: Together ^ *C)); |
| 2472 | And->takeName(V: Op0); |
| 2473 | return BinaryOperator::CreateOr(V1: And, V2: ConstantInt::get(Ty, V: Together)); |
| 2474 | } |
| 2475 | |
| 2476 | unsigned Width = Ty->getScalarSizeInBits(); |
| 2477 | const APInt *ShiftC; |
| 2478 | if (match(V: Op0, P: m_OneUse(SubPattern: m_SExt(Op: m_AShr(L: m_Value(V&: X), R: m_APInt(Res&: ShiftC))))) && |
| 2479 | ShiftC->ult(RHS: Width)) { |
| 2480 | if (*C == APInt::getLowBitsSet(numBits: Width, loBitsSet: Width - ShiftC->getZExtValue())) { |
| 2481 | // We are clearing high bits that were potentially set by sext+ashr: |
| 2482 | // and (sext (ashr X, ShiftC)), C --> lshr (sext X), ShiftC |
| 2483 | Value *Sext = Builder.CreateSExt(V: X, DestTy: Ty); |
| 2484 | Constant *ShAmtC = ConstantInt::get(Ty, V: ShiftC->zext(width: Width)); |
| 2485 | return BinaryOperator::CreateLShr(V1: Sext, V2: ShAmtC); |
| 2486 | } |
| 2487 | } |
| 2488 | |
| 2489 | // If this 'and' clears the sign-bits added by ashr, replace with lshr: |
| 2490 | // and (ashr X, ShiftC), C --> lshr X, ShiftC |
| 2491 | if (match(V: Op0, P: m_AShr(L: m_Value(V&: X), R: m_APInt(Res&: ShiftC))) && ShiftC->ult(RHS: Width) && |
| 2492 | C->isMask(numBits: Width - ShiftC->getZExtValue())) |
| 2493 | return BinaryOperator::CreateLShr(V1: X, V2: ConstantInt::get(Ty, V: *ShiftC)); |
| 2494 | |
| 2495 | const APInt *AddC; |
| 2496 | if (match(V: Op0, P: m_Add(L: m_Value(V&: X), R: m_APInt(Res&: AddC)))) { |
| 2497 | // If we are masking the result of the add down to exactly one bit and |
| 2498 | // the constant we are adding has no bits set below that bit, then the |
| 2499 | // add is flipping a single bit. Example: |
| 2500 | // (X + 4) & 4 --> (X & 4) ^ 4 |
| 2501 | if (Op0->hasOneUse() && C->isPowerOf2() && (*AddC & (*C - 1)) == 0) { |
| 2502 | assert((*C & *AddC) != 0 && "Expected common bit" ); |
| 2503 | Value *NewAnd = Builder.CreateAnd(LHS: X, RHS: Op1); |
| 2504 | return BinaryOperator::CreateXor(V1: NewAnd, V2: Op1); |
| 2505 | } |
| 2506 | } |
| 2507 | |
| 2508 | // ((C1 OP zext(X)) & C2) -> zext((C1 OP X) & C2) if C2 fits in the |
| 2509 | // bitwidth of X and OP behaves well when given trunc(C1) and X. |
| 2510 | auto isNarrowableBinOpcode = [](BinaryOperator *B) { |
| 2511 | switch (B->getOpcode()) { |
| 2512 | case Instruction::Xor: |
| 2513 | case Instruction::Or: |
| 2514 | case Instruction::Mul: |
| 2515 | case Instruction::Add: |
| 2516 | case Instruction::Sub: |
| 2517 | return true; |
| 2518 | default: |
| 2519 | return false; |
| 2520 | } |
| 2521 | }; |
| 2522 | BinaryOperator *BO; |
| 2523 | if (match(V: Op0, P: m_OneUse(SubPattern: m_BinOp(I&: BO))) && isNarrowableBinOpcode(BO)) { |
| 2524 | Instruction::BinaryOps BOpcode = BO->getOpcode(); |
| 2525 | Value *X; |
| 2526 | const APInt *C1; |
| 2527 | // TODO: The one-use restrictions could be relaxed a little if the AND |
| 2528 | // is going to be removed. |
| 2529 | // Try to narrow the 'and' and a binop with constant operand: |
| 2530 | // and (bo (zext X), C1), C --> zext (and (bo X, TruncC1), TruncC) |
| 2531 | if (match(V: BO, P: m_c_BinOp(L: m_OneUse(SubPattern: m_ZExt(Op: m_Value(V&: X))), R: m_APInt(Res&: C1))) && |
| 2532 | C->isIntN(N: X->getType()->getScalarSizeInBits())) { |
| 2533 | unsigned XWidth = X->getType()->getScalarSizeInBits(); |
| 2534 | Constant *TruncC1 = ConstantInt::get(Ty: X->getType(), V: C1->trunc(width: XWidth)); |
| 2535 | Value *BinOp = isa<ZExtInst>(Val: BO->getOperand(i_nocapture: 0)) |
| 2536 | ? Builder.CreateBinOp(Opc: BOpcode, LHS: X, RHS: TruncC1) |
| 2537 | : Builder.CreateBinOp(Opc: BOpcode, LHS: TruncC1, RHS: X); |
| 2538 | Constant *TruncC = ConstantInt::get(Ty: X->getType(), V: C->trunc(width: XWidth)); |
| 2539 | Value *And = Builder.CreateAnd(LHS: BinOp, RHS: TruncC); |
| 2540 | return new ZExtInst(And, Ty); |
| 2541 | } |
| 2542 | |
| 2543 | // Similar to above: if the mask matches the zext input width, then the |
| 2544 | // 'and' can be eliminated, so we can truncate the other variable op: |
| 2545 | // and (bo (zext X), Y), C --> zext (bo X, (trunc Y)) |
| 2546 | if (isa<Instruction>(Val: BO->getOperand(i_nocapture: 0)) && |
| 2547 | match(V: BO->getOperand(i_nocapture: 0), P: m_OneUse(SubPattern: m_ZExt(Op: m_Value(V&: X)))) && |
| 2548 | C->isMask(numBits: X->getType()->getScalarSizeInBits())) { |
| 2549 | Y = BO->getOperand(i_nocapture: 1); |
| 2550 | Value *TrY = Builder.CreateTrunc(V: Y, DestTy: X->getType(), Name: Y->getName() + ".tr" ); |
| 2551 | Value *NewBO = |
| 2552 | Builder.CreateBinOp(Opc: BOpcode, LHS: X, RHS: TrY, Name: BO->getName() + ".narrow" ); |
| 2553 | return new ZExtInst(NewBO, Ty); |
| 2554 | } |
| 2555 | // and (bo Y, (zext X)), C --> zext (bo (trunc Y), X) |
| 2556 | if (isa<Instruction>(Val: BO->getOperand(i_nocapture: 1)) && |
| 2557 | match(V: BO->getOperand(i_nocapture: 1), P: m_OneUse(SubPattern: m_ZExt(Op: m_Value(V&: X)))) && |
| 2558 | C->isMask(numBits: X->getType()->getScalarSizeInBits())) { |
| 2559 | Y = BO->getOperand(i_nocapture: 0); |
| 2560 | Value *TrY = Builder.CreateTrunc(V: Y, DestTy: X->getType(), Name: Y->getName() + ".tr" ); |
| 2561 | Value *NewBO = |
| 2562 | Builder.CreateBinOp(Opc: BOpcode, LHS: TrY, RHS: X, Name: BO->getName() + ".narrow" ); |
| 2563 | return new ZExtInst(NewBO, Ty); |
| 2564 | } |
| 2565 | } |
| 2566 | |
| 2567 | // This is intentionally placed after the narrowing transforms for |
| 2568 | // efficiency (transform directly to the narrow logic op if possible). |
| 2569 | // If the mask is only needed on one incoming arm, push the 'and' op up. |
| 2570 | if (match(V: Op0, P: m_OneUse(SubPattern: m_Xor(L: m_Value(V&: X), R: m_Value(V&: Y)))) || |
| 2571 | match(V: Op0, P: m_OneUse(SubPattern: m_Or(L: m_Value(V&: X), R: m_Value(V&: Y))))) { |
| 2572 | APInt NotAndMask(~(*C)); |
| 2573 | BinaryOperator::BinaryOps BinOp = cast<BinaryOperator>(Val: Op0)->getOpcode(); |
| 2574 | if (MaskedValueIsZero(V: X, Mask: NotAndMask, CxtI: &I)) { |
| 2575 | // Not masking anything out for the LHS, move mask to RHS. |
| 2576 | // and ({x}or X, Y), C --> {x}or X, (and Y, C) |
| 2577 | Value *NewRHS = Builder.CreateAnd(LHS: Y, RHS: Op1, Name: Y->getName() + ".masked" ); |
| 2578 | return BinaryOperator::Create(Op: BinOp, S1: X, S2: NewRHS); |
| 2579 | } |
| 2580 | if (!isa<Constant>(Val: Y) && MaskedValueIsZero(V: Y, Mask: NotAndMask, CxtI: &I)) { |
| 2581 | // Not masking anything out for the RHS, move mask to LHS. |
| 2582 | // and ({x}or X, Y), C --> {x}or (and X, C), Y |
| 2583 | Value *NewLHS = Builder.CreateAnd(LHS: X, RHS: Op1, Name: X->getName() + ".masked" ); |
| 2584 | return BinaryOperator::Create(Op: BinOp, S1: NewLHS, S2: Y); |
| 2585 | } |
| 2586 | } |
| 2587 | |
| 2588 | // When the mask is a power-of-2 constant and op0 is a shifted-power-of-2 |
| 2589 | // constant, test if the shift amount equals the offset bit index: |
| 2590 | // (ShiftC << X) & C --> X == (log2(C) - log2(ShiftC)) ? C : 0 |
| 2591 | // (ShiftC >> X) & C --> X == (log2(ShiftC) - log2(C)) ? C : 0 |
| 2592 | if (C->isPowerOf2() && |
| 2593 | match(V: Op0, P: m_OneUse(SubPattern: m_LogicalShift(L: m_Power2(V&: ShiftC), R: m_Value(V&: X))))) { |
| 2594 | int Log2ShiftC = ShiftC->exactLogBase2(); |
| 2595 | int Log2C = C->exactLogBase2(); |
| 2596 | bool IsShiftLeft = |
| 2597 | cast<BinaryOperator>(Val: Op0)->getOpcode() == Instruction::Shl; |
| 2598 | int BitNum = IsShiftLeft ? Log2C - Log2ShiftC : Log2ShiftC - Log2C; |
| 2599 | assert(BitNum >= 0 && "Expected demanded bits to handle impossible mask" ); |
| 2600 | Value *Cmp = Builder.CreateICmpEQ(LHS: X, RHS: ConstantInt::get(Ty, V: BitNum)); |
| 2601 | return SelectInst::Create(C: Cmp, S1: ConstantInt::get(Ty, V: *C), |
| 2602 | S2: ConstantInt::getNullValue(Ty)); |
| 2603 | } |
| 2604 | |
| 2605 | Constant *C1, *C2; |
| 2606 | const APInt *C3 = C; |
| 2607 | Value *X; |
| 2608 | if (C3->isPowerOf2()) { |
| 2609 | Constant *Log2C3 = ConstantInt::get(Ty, V: C3->countr_zero()); |
| 2610 | if (match(V: Op0, P: m_OneUse(SubPattern: m_LShr(L: m_Shl(L: m_ImmConstant(C&: C1), R: m_Value(V&: X)), |
| 2611 | R: m_ImmConstant(C&: C2)))) && |
| 2612 | match(V: C1, P: m_Power2())) { |
| 2613 | Constant *Log2C1 = ConstantExpr::getExactLogBase2(C: C1); |
| 2614 | Constant *LshrC = ConstantExpr::getAdd(C1: C2, C2: Log2C3); |
| 2615 | KnownBits KnownLShrc = computeKnownBits(V: LshrC, CxtI: nullptr); |
| 2616 | if (KnownLShrc.getMaxValue().ult(RHS: Width)) { |
| 2617 | // iff C1,C3 is pow2 and C2 + cttz(C3) < BitWidth: |
| 2618 | // ((C1 << X) >> C2) & C3 -> X == (cttz(C3)+C2-cttz(C1)) ? C3 : 0 |
| 2619 | Constant *CmpC = ConstantExpr::getSub(C1: LshrC, C2: Log2C1); |
| 2620 | Value *Cmp = Builder.CreateICmpEQ(LHS: X, RHS: CmpC); |
| 2621 | return SelectInst::Create(C: Cmp, S1: ConstantInt::get(Ty, V: *C3), |
| 2622 | S2: ConstantInt::getNullValue(Ty)); |
| 2623 | } |
| 2624 | } |
| 2625 | |
| 2626 | if (match(V: Op0, P: m_OneUse(SubPattern: m_Shl(L: m_LShr(L: m_ImmConstant(C&: C1), R: m_Value(V&: X)), |
| 2627 | R: m_ImmConstant(C&: C2)))) && |
| 2628 | match(V: C1, P: m_Power2())) { |
| 2629 | Constant *Log2C1 = ConstantExpr::getExactLogBase2(C: C1); |
| 2630 | Constant *Cmp = |
| 2631 | ConstantFoldCompareInstOperands(Predicate: ICmpInst::ICMP_ULT, LHS: Log2C3, RHS: C2, DL); |
| 2632 | if (Cmp && Cmp->isZeroValue()) { |
| 2633 | // iff C1,C3 is pow2 and Log2(C3) >= C2: |
| 2634 | // ((C1 >> X) << C2) & C3 -> X == (cttz(C1)+C2-cttz(C3)) ? C3 : 0 |
| 2635 | Constant *ShlC = ConstantExpr::getAdd(C1: C2, C2: Log2C1); |
| 2636 | Constant *CmpC = ConstantExpr::getSub(C1: ShlC, C2: Log2C3); |
| 2637 | Value *Cmp = Builder.CreateICmpEQ(LHS: X, RHS: CmpC); |
| 2638 | return SelectInst::Create(C: Cmp, S1: ConstantInt::get(Ty, V: *C3), |
| 2639 | S2: ConstantInt::getNullValue(Ty)); |
| 2640 | } |
| 2641 | } |
| 2642 | } |
| 2643 | } |
| 2644 | |
| 2645 | // If we are clearing the sign bit of a floating-point value, convert this to |
| 2646 | // fabs, then cast back to integer. |
| 2647 | // |
| 2648 | // This is a generous interpretation for noimplicitfloat, this is not a true |
| 2649 | // floating-point operation. |
| 2650 | // |
| 2651 | // Assumes any IEEE-represented type has the sign bit in the high bit. |
| 2652 | // TODO: Unify with APInt matcher. This version allows undef unlike m_APInt |
| 2653 | Value *CastOp; |
| 2654 | if (match(V: Op0, P: m_ElementWiseBitCast(Op: m_Value(V&: CastOp))) && |
| 2655 | match(V: Op1, P: m_MaxSignedValue()) && |
| 2656 | !Builder.GetInsertBlock()->getParent()->hasFnAttribute( |
| 2657 | Kind: Attribute::NoImplicitFloat)) { |
| 2658 | Type *EltTy = CastOp->getType()->getScalarType(); |
| 2659 | if (EltTy->isFloatingPointTy() && |
| 2660 | APFloat::hasSignBitInMSB(EltTy->getFltSemantics())) { |
| 2661 | Value *FAbs = Builder.CreateUnaryIntrinsic(ID: Intrinsic::fabs, V: CastOp); |
| 2662 | return new BitCastInst(FAbs, I.getType()); |
| 2663 | } |
| 2664 | } |
| 2665 | |
| 2666 | // and(shl(zext(X), Y), SignMask) -> and(sext(X), SignMask) |
| 2667 | // where Y is a valid shift amount. |
| 2668 | if (match(V: &I, P: m_And(L: m_OneUse(SubPattern: m_Shl(L: m_ZExt(Op: m_Value(V&: X)), R: m_Value(V&: Y))), |
| 2669 | R: m_SignMask())) && |
| 2670 | match(V: Y, P: m_SpecificInt_ICMP( |
| 2671 | Predicate: ICmpInst::Predicate::ICMP_EQ, |
| 2672 | Threshold: APInt(Ty->getScalarSizeInBits(), |
| 2673 | Ty->getScalarSizeInBits() - |
| 2674 | X->getType()->getScalarSizeInBits())))) { |
| 2675 | auto *SExt = Builder.CreateSExt(V: X, DestTy: Ty, Name: X->getName() + ".signext" ); |
| 2676 | return BinaryOperator::CreateAnd(V1: SExt, V2: Op1); |
| 2677 | } |
| 2678 | |
| 2679 | if (Instruction *Z = narrowMaskedBinOp(And&: I)) |
| 2680 | return Z; |
| 2681 | |
| 2682 | if (I.getType()->isIntOrIntVectorTy(BitWidth: 1)) { |
| 2683 | if (auto *SI0 = dyn_cast<SelectInst>(Val: Op0)) { |
| 2684 | if (auto *R = |
| 2685 | foldAndOrOfSelectUsingImpliedCond(Op: Op1, SI&: *SI0, /* IsAnd */ true)) |
| 2686 | return R; |
| 2687 | } |
| 2688 | if (auto *SI1 = dyn_cast<SelectInst>(Val: Op1)) { |
| 2689 | if (auto *R = |
| 2690 | foldAndOrOfSelectUsingImpliedCond(Op: Op0, SI&: *SI1, /* IsAnd */ true)) |
| 2691 | return R; |
| 2692 | } |
| 2693 | } |
| 2694 | |
| 2695 | if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I)) |
| 2696 | return FoldedLogic; |
| 2697 | |
| 2698 | if (Instruction *DeMorgan = matchDeMorgansLaws(I, IC&: *this)) |
| 2699 | return DeMorgan; |
| 2700 | |
| 2701 | { |
| 2702 | Value *A, *B, *C; |
| 2703 | // A & ~(A ^ B) --> A & B |
| 2704 | if (match(V: Op1, P: m_Not(V: m_c_Xor(L: m_Specific(V: Op0), R: m_Value(V&: B))))) |
| 2705 | return BinaryOperator::CreateAnd(V1: Op0, V2: B); |
| 2706 | // ~(A ^ B) & A --> A & B |
| 2707 | if (match(V: Op0, P: m_Not(V: m_c_Xor(L: m_Specific(V: Op1), R: m_Value(V&: B))))) |
| 2708 | return BinaryOperator::CreateAnd(V1: Op1, V2: B); |
| 2709 | |
| 2710 | // (A ^ B) & ((B ^ C) ^ A) -> (A ^ B) & ~C |
| 2711 | if (match(V: Op0, P: m_Xor(L: m_Value(V&: A), R: m_Value(V&: B))) && |
| 2712 | match(V: Op1, P: m_Xor(L: m_Xor(L: m_Specific(V: B), R: m_Value(V&: C)), R: m_Specific(V: A)))) { |
| 2713 | Value *NotC = Op1->hasOneUse() |
| 2714 | ? Builder.CreateNot(V: C) |
| 2715 | : getFreelyInverted(V: C, WillInvertAllUses: C->hasOneUse(), Builder: &Builder); |
| 2716 | if (NotC != nullptr) |
| 2717 | return BinaryOperator::CreateAnd(V1: Op0, V2: NotC); |
| 2718 | } |
| 2719 | |
| 2720 | // ((A ^ C) ^ B) & (B ^ A) -> (B ^ A) & ~C |
| 2721 | if (match(V: Op0, P: m_Xor(L: m_Xor(L: m_Value(V&: A), R: m_Value(V&: C)), R: m_Value(V&: B))) && |
| 2722 | match(V: Op1, P: m_Xor(L: m_Specific(V: B), R: m_Specific(V: A)))) { |
| 2723 | Value *NotC = Op0->hasOneUse() |
| 2724 | ? Builder.CreateNot(V: C) |
| 2725 | : getFreelyInverted(V: C, WillInvertAllUses: C->hasOneUse(), Builder: &Builder); |
| 2726 | if (NotC != nullptr) |
| 2727 | return BinaryOperator::CreateAnd(V1: Op1, V2: Builder.CreateNot(V: C)); |
| 2728 | } |
| 2729 | |
| 2730 | // (A | B) & (~A ^ B) -> A & B |
| 2731 | // (A | B) & (B ^ ~A) -> A & B |
| 2732 | // (B | A) & (~A ^ B) -> A & B |
| 2733 | // (B | A) & (B ^ ~A) -> A & B |
| 2734 | if (match(V: Op1, P: m_c_Xor(L: m_Not(V: m_Value(V&: A)), R: m_Value(V&: B))) && |
| 2735 | match(V: Op0, P: m_c_Or(L: m_Specific(V: A), R: m_Specific(V: B)))) |
| 2736 | return BinaryOperator::CreateAnd(V1: A, V2: B); |
| 2737 | |
| 2738 | // (~A ^ B) & (A | B) -> A & B |
| 2739 | // (~A ^ B) & (B | A) -> A & B |
| 2740 | // (B ^ ~A) & (A | B) -> A & B |
| 2741 | // (B ^ ~A) & (B | A) -> A & B |
| 2742 | if (match(V: Op0, P: m_c_Xor(L: m_Not(V: m_Value(V&: A)), R: m_Value(V&: B))) && |
| 2743 | match(V: Op1, P: m_c_Or(L: m_Specific(V: A), R: m_Specific(V: B)))) |
| 2744 | return BinaryOperator::CreateAnd(V1: A, V2: B); |
| 2745 | |
| 2746 | // (~A | B) & (A ^ B) -> ~A & B |
| 2747 | // (~A | B) & (B ^ A) -> ~A & B |
| 2748 | // (B | ~A) & (A ^ B) -> ~A & B |
| 2749 | // (B | ~A) & (B ^ A) -> ~A & B |
| 2750 | if (match(V: Op0, P: m_c_Or(L: m_Not(V: m_Value(V&: A)), R: m_Value(V&: B))) && |
| 2751 | match(V: Op1, P: m_c_Xor(L: m_Specific(V: A), R: m_Specific(V: B)))) |
| 2752 | return BinaryOperator::CreateAnd(V1: Builder.CreateNot(V: A), V2: B); |
| 2753 | |
| 2754 | // (A ^ B) & (~A | B) -> ~A & B |
| 2755 | // (B ^ A) & (~A | B) -> ~A & B |
| 2756 | // (A ^ B) & (B | ~A) -> ~A & B |
| 2757 | // (B ^ A) & (B | ~A) -> ~A & B |
| 2758 | if (match(V: Op1, P: m_c_Or(L: m_Not(V: m_Value(V&: A)), R: m_Value(V&: B))) && |
| 2759 | match(V: Op0, P: m_c_Xor(L: m_Specific(V: A), R: m_Specific(V: B)))) |
| 2760 | return BinaryOperator::CreateAnd(V1: Builder.CreateNot(V: A), V2: B); |
| 2761 | } |
| 2762 | |
| 2763 | if (Value *Res = |
| 2764 | foldBooleanAndOr(LHS: Op0, RHS: Op1, I, /*IsAnd=*/true, /*IsLogical=*/false)) |
| 2765 | return replaceInstUsesWith(I, V: Res); |
| 2766 | |
| 2767 | if (match(V: Op1, P: m_OneUse(SubPattern: m_LogicalAnd(L: m_Value(V&: X), R: m_Value(V&: Y))))) { |
| 2768 | bool IsLogical = isa<SelectInst>(Val: Op1); |
| 2769 | if (auto *V = reassociateBooleanAndOr(LHS: Op0, X, Y, I, /*IsAnd=*/true, |
| 2770 | /*RHSIsLogical=*/IsLogical)) |
| 2771 | return replaceInstUsesWith(I, V); |
| 2772 | } |
| 2773 | if (match(V: Op0, P: m_OneUse(SubPattern: m_LogicalAnd(L: m_Value(V&: X), R: m_Value(V&: Y))))) { |
| 2774 | bool IsLogical = isa<SelectInst>(Val: Op0); |
| 2775 | if (auto *V = reassociateBooleanAndOr(LHS: Op1, X, Y, I, /*IsAnd=*/true, |
| 2776 | /*RHSIsLogical=*/IsLogical)) |
| 2777 | return replaceInstUsesWith(I, V); |
| 2778 | } |
| 2779 | |
| 2780 | if (Instruction *FoldedFCmps = reassociateFCmps(BO&: I, Builder)) |
| 2781 | return FoldedFCmps; |
| 2782 | |
| 2783 | if (Instruction *CastedAnd = foldCastedBitwiseLogic(I)) |
| 2784 | return CastedAnd; |
| 2785 | |
| 2786 | if (Instruction *Sel = foldBinopOfSextBoolToSelect(I)) |
| 2787 | return Sel; |
| 2788 | |
| 2789 | // and(sext(A), B) / and(B, sext(A)) --> A ? B : 0, where A is i1 or <N x i1>. |
| 2790 | // TODO: Move this into foldBinopOfSextBoolToSelect as a more generalized fold |
| 2791 | // with binop identity constant. But creating a select with non-constant |
| 2792 | // arm may not be reversible due to poison semantics. Is that a good |
| 2793 | // canonicalization? |
| 2794 | Value *A, *B; |
| 2795 | if (match(V: &I, P: m_c_And(L: m_SExt(Op: m_Value(V&: A)), R: m_Value(V&: B))) && |
| 2796 | A->getType()->isIntOrIntVectorTy(BitWidth: 1)) |
| 2797 | return SelectInst::Create(C: A, S1: B, S2: Constant::getNullValue(Ty)); |
| 2798 | |
| 2799 | // Similarly, a 'not' of the bool translates to a swap of the select arms: |
| 2800 | // ~sext(A) & B / B & ~sext(A) --> A ? 0 : B |
| 2801 | if (match(V: &I, P: m_c_And(L: m_Not(V: m_SExt(Op: m_Value(V&: A))), R: m_Value(V&: B))) && |
| 2802 | A->getType()->isIntOrIntVectorTy(BitWidth: 1)) |
| 2803 | return SelectInst::Create(C: A, S1: Constant::getNullValue(Ty), S2: B); |
| 2804 | |
| 2805 | // and(zext(A), B) -> A ? (B & 1) : 0 |
| 2806 | if (match(V: &I, P: m_c_And(L: m_OneUse(SubPattern: m_ZExt(Op: m_Value(V&: A))), R: m_Value(V&: B))) && |
| 2807 | A->getType()->isIntOrIntVectorTy(BitWidth: 1)) |
| 2808 | return SelectInst::Create(C: A, S1: Builder.CreateAnd(LHS: B, RHS: ConstantInt::get(Ty, V: 1)), |
| 2809 | S2: Constant::getNullValue(Ty)); |
| 2810 | |
| 2811 | // (-1 + A) & B --> A ? 0 : B where A is 0/1. |
| 2812 | if (match(V: &I, P: m_c_And(L: m_OneUse(SubPattern: m_Add(L: m_ZExtOrSelf(Op: m_Value(V&: A)), R: m_AllOnes())), |
| 2813 | R: m_Value(V&: B)))) { |
| 2814 | if (A->getType()->isIntOrIntVectorTy(BitWidth: 1)) |
| 2815 | return SelectInst::Create(C: A, S1: Constant::getNullValue(Ty), S2: B); |
| 2816 | if (computeKnownBits(V: A, CxtI: &I).countMaxActiveBits() <= 1) { |
| 2817 | return SelectInst::Create( |
| 2818 | C: Builder.CreateICmpEQ(LHS: A, RHS: Constant::getNullValue(Ty: A->getType())), S1: B, |
| 2819 | S2: Constant::getNullValue(Ty)); |
| 2820 | } |
| 2821 | } |
| 2822 | |
| 2823 | // (iN X s>> (N-1)) & Y --> (X s< 0) ? Y : 0 -- with optional sext |
| 2824 | if (match(V: &I, P: m_c_And(L: m_OneUse(SubPattern: m_SExtOrSelf( |
| 2825 | Op: m_AShr(L: m_Value(V&: X), R: m_APIntAllowPoison(Res&: C)))), |
| 2826 | R: m_Value(V&: Y))) && |
| 2827 | *C == X->getType()->getScalarSizeInBits() - 1) { |
| 2828 | Value *IsNeg = Builder.CreateIsNeg(Arg: X, Name: "isneg" ); |
| 2829 | return SelectInst::Create(C: IsNeg, S1: Y, S2: ConstantInt::getNullValue(Ty)); |
| 2830 | } |
| 2831 | // If there's a 'not' of the shifted value, swap the select operands: |
| 2832 | // ~(iN X s>> (N-1)) & Y --> (X s< 0) ? 0 : Y -- with optional sext |
| 2833 | if (match(V: &I, P: m_c_And(L: m_OneUse(SubPattern: m_SExtOrSelf( |
| 2834 | Op: m_Not(V: m_AShr(L: m_Value(V&: X), R: m_APIntAllowPoison(Res&: C))))), |
| 2835 | R: m_Value(V&: Y))) && |
| 2836 | *C == X->getType()->getScalarSizeInBits() - 1) { |
| 2837 | Value *IsNeg = Builder.CreateIsNeg(Arg: X, Name: "isneg" ); |
| 2838 | return SelectInst::Create(C: IsNeg, S1: ConstantInt::getNullValue(Ty), S2: Y); |
| 2839 | } |
| 2840 | |
| 2841 | // (~x) & y --> ~(x | (~y)) iff that gets rid of inversions |
| 2842 | if (sinkNotIntoOtherHandOfLogicalOp(I)) |
| 2843 | return &I; |
| 2844 | |
| 2845 | // An and recurrence w/loop invariant step is equivelent to (and start, step) |
| 2846 | PHINode *PN = nullptr; |
| 2847 | Value *Start = nullptr, *Step = nullptr; |
| 2848 | if (matchSimpleRecurrence(I: &I, P&: PN, Start, Step) && DT.dominates(Def: Step, User: PN)) |
| 2849 | return replaceInstUsesWith(I, V: Builder.CreateAnd(LHS: Start, RHS: Step)); |
| 2850 | |
| 2851 | if (Instruction *R = reassociateForUses(BO&: I, Builder)) |
| 2852 | return R; |
| 2853 | |
| 2854 | if (Instruction *Canonicalized = canonicalizeLogicFirst(I, Builder)) |
| 2855 | return Canonicalized; |
| 2856 | |
| 2857 | if (Instruction *Folded = foldLogicOfIsFPClass(BO&: I, Op0, Op1)) |
| 2858 | return Folded; |
| 2859 | |
| 2860 | if (Instruction *Res = foldBinOpOfDisplacedShifts(I)) |
| 2861 | return Res; |
| 2862 | |
| 2863 | if (Instruction *Res = foldBitwiseLogicWithIntrinsics(I, Builder)) |
| 2864 | return Res; |
| 2865 | |
| 2866 | if (Value *V = |
| 2867 | simplifyAndOrWithOpReplaced(V: Op0, Op: Op1, RepOp: Constant::getAllOnesValue(Ty), |
| 2868 | /*SimplifyOnly*/ false, IC&: *this)) |
| 2869 | return BinaryOperator::CreateAnd(V1: V, V2: Op1); |
| 2870 | if (Value *V = |
| 2871 | simplifyAndOrWithOpReplaced(V: Op1, Op: Op0, RepOp: Constant::getAllOnesValue(Ty), |
| 2872 | /*SimplifyOnly*/ false, IC&: *this)) |
| 2873 | return BinaryOperator::CreateAnd(V1: Op0, V2: V); |
| 2874 | |
| 2875 | return nullptr; |
| 2876 | } |
| 2877 | |
| 2878 | Instruction *InstCombinerImpl::matchBSwapOrBitReverse(Instruction &I, |
| 2879 | bool MatchBSwaps, |
| 2880 | bool MatchBitReversals) { |
| 2881 | SmallVector<Instruction *, 4> Insts; |
| 2882 | if (!recognizeBSwapOrBitReverseIdiom(I: &I, MatchBSwaps, MatchBitReversals, |
| 2883 | InsertedInsts&: Insts)) |
| 2884 | return nullptr; |
| 2885 | Instruction *LastInst = Insts.pop_back_val(); |
| 2886 | LastInst->removeFromParent(); |
| 2887 | |
| 2888 | for (auto *Inst : Insts) { |
| 2889 | Inst->setDebugLoc(I.getDebugLoc()); |
| 2890 | Worklist.push(I: Inst); |
| 2891 | } |
| 2892 | return LastInst; |
| 2893 | } |
| 2894 | |
| 2895 | std::optional<std::pair<Intrinsic::ID, SmallVector<Value *, 3>>> |
| 2896 | InstCombinerImpl::convertOrOfShiftsToFunnelShift(Instruction &Or) { |
| 2897 | // TODO: Can we reduce the code duplication between this and the related |
| 2898 | // rotate matching code under visitSelect and visitTrunc? |
| 2899 | assert(Or.getOpcode() == BinaryOperator::Or && "Expecting or instruction" ); |
| 2900 | |
| 2901 | unsigned Width = Or.getType()->getScalarSizeInBits(); |
| 2902 | |
| 2903 | Instruction *Or0, *Or1; |
| 2904 | if (!match(V: Or.getOperand(i: 0), P: m_Instruction(I&: Or0)) || |
| 2905 | !match(V: Or.getOperand(i: 1), P: m_Instruction(I&: Or1))) |
| 2906 | return std::nullopt; |
| 2907 | |
| 2908 | bool IsFshl = true; // Sub on LSHR. |
| 2909 | SmallVector<Value *, 3> FShiftArgs; |
| 2910 | |
| 2911 | // First, find an or'd pair of opposite shifts: |
| 2912 | // or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1) |
| 2913 | if (isa<BinaryOperator>(Val: Or0) && isa<BinaryOperator>(Val: Or1)) { |
| 2914 | Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1; |
| 2915 | if (!match(V: Or0, |
| 2916 | P: m_OneUse(SubPattern: m_LogicalShift(L: m_Value(V&: ShVal0), R: m_Value(V&: ShAmt0)))) || |
| 2917 | !match(V: Or1, |
| 2918 | P: m_OneUse(SubPattern: m_LogicalShift(L: m_Value(V&: ShVal1), R: m_Value(V&: ShAmt1)))) || |
| 2919 | Or0->getOpcode() == Or1->getOpcode()) |
| 2920 | return std::nullopt; |
| 2921 | |
| 2922 | // Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)). |
| 2923 | if (Or0->getOpcode() == BinaryOperator::LShr) { |
| 2924 | std::swap(a&: Or0, b&: Or1); |
| 2925 | std::swap(a&: ShVal0, b&: ShVal1); |
| 2926 | std::swap(a&: ShAmt0, b&: ShAmt1); |
| 2927 | } |
| 2928 | assert(Or0->getOpcode() == BinaryOperator::Shl && |
| 2929 | Or1->getOpcode() == BinaryOperator::LShr && |
| 2930 | "Illegal or(shift,shift) pair" ); |
| 2931 | |
| 2932 | // Match the shift amount operands for a funnel shift pattern. This always |
| 2933 | // matches a subtraction on the R operand. |
| 2934 | auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * { |
| 2935 | // Check for constant shift amounts that sum to the bitwidth. |
| 2936 | const APInt *LI, *RI; |
| 2937 | if (match(V: L, P: m_APIntAllowPoison(Res&: LI)) && match(V: R, P: m_APIntAllowPoison(Res&: RI))) |
| 2938 | if (LI->ult(RHS: Width) && RI->ult(RHS: Width) && (*LI + *RI) == Width) |
| 2939 | return ConstantInt::get(Ty: L->getType(), V: *LI); |
| 2940 | |
| 2941 | Constant *LC, *RC; |
| 2942 | if (match(V: L, P: m_Constant(C&: LC)) && match(V: R, P: m_Constant(C&: RC)) && |
| 2943 | match(V: L, |
| 2944 | P: m_SpecificInt_ICMP(Predicate: ICmpInst::ICMP_ULT, Threshold: APInt(Width, Width))) && |
| 2945 | match(V: R, |
| 2946 | P: m_SpecificInt_ICMP(Predicate: ICmpInst::ICMP_ULT, Threshold: APInt(Width, Width))) && |
| 2947 | match(V: ConstantExpr::getAdd(C1: LC, C2: RC), P: m_SpecificIntAllowPoison(V: Width))) |
| 2948 | return ConstantExpr::mergeUndefsWith(C: LC, Other: RC); |
| 2949 | |
| 2950 | // (shl ShVal, X) | (lshr ShVal, (Width - x)) iff X < Width. |
| 2951 | // We limit this to X < Width in case the backend re-expands the |
| 2952 | // intrinsic, and has to reintroduce a shift modulo operation (InstCombine |
| 2953 | // might remove it after this fold). This still doesn't guarantee that the |
| 2954 | // final codegen will match this original pattern. |
| 2955 | if (match(V: R, P: m_OneUse(SubPattern: m_Sub(L: m_SpecificInt(V: Width), R: m_Specific(V: L))))) { |
| 2956 | KnownBits KnownL = computeKnownBits(V: L, CxtI: &Or); |
| 2957 | return KnownL.getMaxValue().ult(RHS: Width) ? L : nullptr; |
| 2958 | } |
| 2959 | |
| 2960 | // For non-constant cases, the following patterns currently only work for |
| 2961 | // rotation patterns. |
| 2962 | // TODO: Add general funnel-shift compatible patterns. |
| 2963 | if (ShVal0 != ShVal1) |
| 2964 | return nullptr; |
| 2965 | |
| 2966 | // For non-constant cases we don't support non-pow2 shift masks. |
| 2967 | // TODO: Is it worth matching urem as well? |
| 2968 | if (!isPowerOf2_32(Value: Width)) |
| 2969 | return nullptr; |
| 2970 | |
| 2971 | // The shift amount may be masked with negation: |
| 2972 | // (shl ShVal, (X & (Width - 1))) | (lshr ShVal, ((-X) & (Width - 1))) |
| 2973 | Value *X; |
| 2974 | unsigned Mask = Width - 1; |
| 2975 | if (match(V: L, P: m_And(L: m_Value(V&: X), R: m_SpecificInt(V: Mask))) && |
| 2976 | match(V: R, P: m_And(L: m_Neg(V: m_Specific(V: X)), R: m_SpecificInt(V: Mask)))) |
| 2977 | return X; |
| 2978 | |
| 2979 | // (shl ShVal, X) | (lshr ShVal, ((-X) & (Width - 1))) |
| 2980 | if (match(V: R, P: m_And(L: m_Neg(V: m_Specific(V: L)), R: m_SpecificInt(V: Mask)))) |
| 2981 | return L; |
| 2982 | |
| 2983 | // Similar to above, but the shift amount may be extended after masking, |
| 2984 | // so return the extended value as the parameter for the intrinsic. |
| 2985 | if (match(V: L, P: m_ZExt(Op: m_And(L: m_Value(V&: X), R: m_SpecificInt(V: Mask)))) && |
| 2986 | match(V: R, |
| 2987 | P: m_And(L: m_Neg(V: m_ZExt(Op: m_And(L: m_Specific(V: X), R: m_SpecificInt(V: Mask)))), |
| 2988 | R: m_SpecificInt(V: Mask)))) |
| 2989 | return L; |
| 2990 | |
| 2991 | if (match(V: L, P: m_ZExt(Op: m_And(L: m_Value(V&: X), R: m_SpecificInt(V: Mask)))) && |
| 2992 | match(V: R, P: m_ZExt(Op: m_And(L: m_Neg(V: m_Specific(V: X)), R: m_SpecificInt(V: Mask))))) |
| 2993 | return L; |
| 2994 | |
| 2995 | return nullptr; |
| 2996 | }; |
| 2997 | |
| 2998 | Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, Width); |
| 2999 | if (!ShAmt) { |
| 3000 | ShAmt = matchShiftAmount(ShAmt1, ShAmt0, Width); |
| 3001 | IsFshl = false; // Sub on SHL. |
| 3002 | } |
| 3003 | if (!ShAmt) |
| 3004 | return std::nullopt; |
| 3005 | |
| 3006 | FShiftArgs = {ShVal0, ShVal1, ShAmt}; |
| 3007 | } else if (isa<ZExtInst>(Val: Or0) || isa<ZExtInst>(Val: Or1)) { |
| 3008 | // If there are two 'or' instructions concat variables in opposite order: |
| 3009 | // |
| 3010 | // Slot1 and Slot2 are all zero bits. |
| 3011 | // | Slot1 | Low | Slot2 | High | |
| 3012 | // LowHigh = or (shl (zext Low), ZextLowShlAmt), (zext High) |
| 3013 | // | Slot2 | High | Slot1 | Low | |
| 3014 | // HighLow = or (shl (zext High), ZextHighShlAmt), (zext Low) |
| 3015 | // |
| 3016 | // the latter 'or' can be safely convert to |
| 3017 | // -> HighLow = fshl LowHigh, LowHigh, ZextHighShlAmt |
| 3018 | // if ZextLowShlAmt + ZextHighShlAmt == Width. |
| 3019 | if (!isa<ZExtInst>(Val: Or1)) |
| 3020 | std::swap(a&: Or0, b&: Or1); |
| 3021 | |
| 3022 | Value *High, *ZextHigh, *Low; |
| 3023 | const APInt *ZextHighShlAmt; |
| 3024 | if (!match(V: Or0, |
| 3025 | P: m_OneUse(SubPattern: m_Shl(L: m_Value(V&: ZextHigh), R: m_APInt(Res&: ZextHighShlAmt))))) |
| 3026 | return std::nullopt; |
| 3027 | |
| 3028 | if (!match(V: Or1, P: m_ZExt(Op: m_Value(V&: Low))) || |
| 3029 | !match(V: ZextHigh, P: m_ZExt(Op: m_Value(V&: High)))) |
| 3030 | return std::nullopt; |
| 3031 | |
| 3032 | unsigned HighSize = High->getType()->getScalarSizeInBits(); |
| 3033 | unsigned LowSize = Low->getType()->getScalarSizeInBits(); |
| 3034 | // Make sure High does not overlap with Low and most significant bits of |
| 3035 | // High aren't shifted out. |
| 3036 | if (ZextHighShlAmt->ult(RHS: LowSize) || ZextHighShlAmt->ugt(RHS: Width - HighSize)) |
| 3037 | return std::nullopt; |
| 3038 | |
| 3039 | for (User *U : ZextHigh->users()) { |
| 3040 | Value *X, *Y; |
| 3041 | if (!match(V: U, P: m_Or(L: m_Value(V&: X), R: m_Value(V&: Y)))) |
| 3042 | continue; |
| 3043 | |
| 3044 | if (!isa<ZExtInst>(Val: Y)) |
| 3045 | std::swap(a&: X, b&: Y); |
| 3046 | |
| 3047 | const APInt *ZextLowShlAmt; |
| 3048 | if (!match(V: X, P: m_Shl(L: m_Specific(V: Or1), R: m_APInt(Res&: ZextLowShlAmt))) || |
| 3049 | !match(V: Y, P: m_Specific(V: ZextHigh)) || !DT.dominates(Def: U, User: &Or)) |
| 3050 | continue; |
| 3051 | |
| 3052 | // HighLow is good concat. If sum of two shifts amount equals to Width, |
| 3053 | // LowHigh must also be a good concat. |
| 3054 | if (*ZextLowShlAmt + *ZextHighShlAmt != Width) |
| 3055 | continue; |
| 3056 | |
| 3057 | // Low must not overlap with High and most significant bits of Low must |
| 3058 | // not be shifted out. |
| 3059 | assert(ZextLowShlAmt->uge(HighSize) && |
| 3060 | ZextLowShlAmt->ule(Width - LowSize) && "Invalid concat" ); |
| 3061 | |
| 3062 | FShiftArgs = {U, U, ConstantInt::get(Ty: Or0->getType(), V: *ZextHighShlAmt)}; |
| 3063 | break; |
| 3064 | } |
| 3065 | } |
| 3066 | |
| 3067 | if (FShiftArgs.empty()) |
| 3068 | return std::nullopt; |
| 3069 | |
| 3070 | Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; |
| 3071 | return std::make_pair(x&: IID, y&: FShiftArgs); |
| 3072 | } |
| 3073 | |
| 3074 | /// Match UB-safe variants of the funnel shift intrinsic. |
| 3075 | static Instruction *matchFunnelShift(Instruction &Or, InstCombinerImpl &IC) { |
| 3076 | if (auto Opt = IC.convertOrOfShiftsToFunnelShift(Or)) { |
| 3077 | auto [IID, FShiftArgs] = *Opt; |
| 3078 | Function *F = |
| 3079 | Intrinsic::getOrInsertDeclaration(M: Or.getModule(), id: IID, Tys: Or.getType()); |
| 3080 | return CallInst::Create(Func: F, Args: FShiftArgs); |
| 3081 | } |
| 3082 | |
| 3083 | return nullptr; |
| 3084 | } |
| 3085 | |
| 3086 | /// Attempt to combine or(zext(x),shl(zext(y),bw/2) concat packing patterns. |
| 3087 | static Value *matchOrConcat(Instruction &Or, InstCombiner::BuilderTy &Builder) { |
| 3088 | assert(Or.getOpcode() == Instruction::Or && "bswap requires an 'or'" ); |
| 3089 | Value *Op0 = Or.getOperand(i: 0), *Op1 = Or.getOperand(i: 1); |
| 3090 | Type *Ty = Or.getType(); |
| 3091 | |
| 3092 | unsigned Width = Ty->getScalarSizeInBits(); |
| 3093 | if ((Width & 1) != 0) |
| 3094 | return nullptr; |
| 3095 | unsigned HalfWidth = Width / 2; |
| 3096 | |
| 3097 | // Canonicalize zext (lower half) to LHS. |
| 3098 | if (!isa<ZExtInst>(Val: Op0)) |
| 3099 | std::swap(a&: Op0, b&: Op1); |
| 3100 | |
| 3101 | // Find lower/upper half. |
| 3102 | Value *LowerSrc, *ShlVal, *UpperSrc; |
| 3103 | const APInt *C; |
| 3104 | if (!match(V: Op0, P: m_OneUse(SubPattern: m_ZExt(Op: m_Value(V&: LowerSrc)))) || |
| 3105 | !match(V: Op1, P: m_OneUse(SubPattern: m_Shl(L: m_Value(V&: ShlVal), R: m_APInt(Res&: C)))) || |
| 3106 | !match(V: ShlVal, P: m_OneUse(SubPattern: m_ZExt(Op: m_Value(V&: UpperSrc))))) |
| 3107 | return nullptr; |
| 3108 | if (*C != HalfWidth || LowerSrc->getType() != UpperSrc->getType() || |
| 3109 | LowerSrc->getType()->getScalarSizeInBits() != HalfWidth) |
| 3110 | return nullptr; |
| 3111 | |
| 3112 | auto ConcatIntrinsicCalls = [&](Intrinsic::ID id, Value *Lo, Value *Hi) { |
| 3113 | Value *NewLower = Builder.CreateZExt(V: Lo, DestTy: Ty); |
| 3114 | Value *NewUpper = Builder.CreateZExt(V: Hi, DestTy: Ty); |
| 3115 | NewUpper = Builder.CreateShl(LHS: NewUpper, RHS: HalfWidth); |
| 3116 | Value *BinOp = Builder.CreateOr(LHS: NewLower, RHS: NewUpper); |
| 3117 | return Builder.CreateIntrinsic(ID: id, Types: Ty, Args: BinOp); |
| 3118 | }; |
| 3119 | |
| 3120 | // BSWAP: Push the concat down, swapping the lower/upper sources. |
| 3121 | // concat(bswap(x),bswap(y)) -> bswap(concat(x,y)) |
| 3122 | Value *LowerBSwap, *UpperBSwap; |
| 3123 | if (match(V: LowerSrc, P: m_BSwap(Op0: m_Value(V&: LowerBSwap))) && |
| 3124 | match(V: UpperSrc, P: m_BSwap(Op0: m_Value(V&: UpperBSwap)))) |
| 3125 | return ConcatIntrinsicCalls(Intrinsic::bswap, UpperBSwap, LowerBSwap); |
| 3126 | |
| 3127 | // BITREVERSE: Push the concat down, swapping the lower/upper sources. |
| 3128 | // concat(bitreverse(x),bitreverse(y)) -> bitreverse(concat(x,y)) |
| 3129 | Value *LowerBRev, *UpperBRev; |
| 3130 | if (match(V: LowerSrc, P: m_BitReverse(Op0: m_Value(V&: LowerBRev))) && |
| 3131 | match(V: UpperSrc, P: m_BitReverse(Op0: m_Value(V&: UpperBRev)))) |
| 3132 | return ConcatIntrinsicCalls(Intrinsic::bitreverse, UpperBRev, LowerBRev); |
| 3133 | |
| 3134 | // iX ext split: extending or(zext(x),shl(zext(y),bw/2) pattern |
| 3135 | // to consume sext/ashr: |
| 3136 | // or(zext(sext(x)),shl(zext(sext(ashr(x,xbw-1))),bw/2) |
| 3137 | // or(zext(x),shl(zext(ashr(x,xbw-1)),bw/2) |
| 3138 | Value *X; |
| 3139 | if (match(V: LowerSrc, P: m_SExtOrSelf(Op: m_Value(V&: X))) && |
| 3140 | match(V: UpperSrc, |
| 3141 | P: m_SExtOrSelf(Op: m_AShr( |
| 3142 | L: m_Specific(V: X), |
| 3143 | R: m_SpecificInt(V: X->getType()->getScalarSizeInBits() - 1))))) |
| 3144 | return Builder.CreateSExt(V: X, DestTy: Ty); |
| 3145 | |
| 3146 | return nullptr; |
| 3147 | } |
| 3148 | |
| 3149 | /// If all elements of two constant vectors are 0/-1 and inverses, return true. |
| 3150 | static bool areInverseVectorBitmasks(Constant *C1, Constant *C2) { |
| 3151 | unsigned NumElts = cast<FixedVectorType>(Val: C1->getType())->getNumElements(); |
| 3152 | for (unsigned i = 0; i != NumElts; ++i) { |
| 3153 | Constant *EltC1 = C1->getAggregateElement(Elt: i); |
| 3154 | Constant *EltC2 = C2->getAggregateElement(Elt: i); |
| 3155 | if (!EltC1 || !EltC2) |
| 3156 | return false; |
| 3157 | |
| 3158 | // One element must be all ones, and the other must be all zeros. |
| 3159 | if (!((match(V: EltC1, P: m_Zero()) && match(V: EltC2, P: m_AllOnes())) || |
| 3160 | (match(V: EltC2, P: m_Zero()) && match(V: EltC1, P: m_AllOnes())))) |
| 3161 | return false; |
| 3162 | } |
| 3163 | return true; |
| 3164 | } |
| 3165 | |
| 3166 | /// We have an expression of the form (A & C) | (B & D). If A is a scalar or |
| 3167 | /// vector composed of all-zeros or all-ones values and is the bitwise 'not' of |
| 3168 | /// B, it can be used as the condition operand of a select instruction. |
| 3169 | /// We will detect (A & C) | ~(B | D) when the flag ABIsTheSame enabled. |
| 3170 | Value *InstCombinerImpl::getSelectCondition(Value *A, Value *B, |
| 3171 | bool ABIsTheSame) { |
| 3172 | // We may have peeked through bitcasts in the caller. |
| 3173 | // Exit immediately if we don't have (vector) integer types. |
| 3174 | Type *Ty = A->getType(); |
| 3175 | if (!Ty->isIntOrIntVectorTy() || !B->getType()->isIntOrIntVectorTy()) |
| 3176 | return nullptr; |
| 3177 | |
| 3178 | // If A is the 'not' operand of B and has enough signbits, we have our answer. |
| 3179 | if (ABIsTheSame ? (A == B) : match(V: B, P: m_Not(V: m_Specific(V: A)))) { |
| 3180 | // If these are scalars or vectors of i1, A can be used directly. |
| 3181 | if (Ty->isIntOrIntVectorTy(BitWidth: 1)) |
| 3182 | return A; |
| 3183 | |
| 3184 | // If we look through a vector bitcast, the caller will bitcast the operands |
| 3185 | // to match the condition's number of bits (N x i1). |
| 3186 | // To make this poison-safe, disallow bitcast from wide element to narrow |
| 3187 | // element. That could allow poison in lanes where it was not present in the |
| 3188 | // original code. |
| 3189 | A = peekThroughBitcast(V: A); |
| 3190 | if (A->getType()->isIntOrIntVectorTy()) { |
| 3191 | unsigned NumSignBits = ComputeNumSignBits(Op: A); |
| 3192 | if (NumSignBits == A->getType()->getScalarSizeInBits() && |
| 3193 | NumSignBits <= Ty->getScalarSizeInBits()) |
| 3194 | return Builder.CreateTrunc(V: A, DestTy: CmpInst::makeCmpResultType(opnd_type: A->getType())); |
| 3195 | } |
| 3196 | return nullptr; |
| 3197 | } |
| 3198 | |
| 3199 | // TODO: add support for sext and constant case |
| 3200 | if (ABIsTheSame) |
| 3201 | return nullptr; |
| 3202 | |
| 3203 | // If both operands are constants, see if the constants are inverse bitmasks. |
| 3204 | Constant *AConst, *BConst; |
| 3205 | if (match(V: A, P: m_Constant(C&: AConst)) && match(V: B, P: m_Constant(C&: BConst))) |
| 3206 | if (AConst == ConstantExpr::getNot(C: BConst) && |
| 3207 | ComputeNumSignBits(Op: A) == Ty->getScalarSizeInBits()) |
| 3208 | return Builder.CreateZExtOrTrunc(V: A, DestTy: CmpInst::makeCmpResultType(opnd_type: Ty)); |
| 3209 | |
| 3210 | // Look for more complex patterns. The 'not' op may be hidden behind various |
| 3211 | // casts. Look through sexts and bitcasts to find the booleans. |
| 3212 | Value *Cond; |
| 3213 | Value *NotB; |
| 3214 | if (match(V: A, P: m_SExt(Op: m_Value(V&: Cond))) && |
| 3215 | Cond->getType()->isIntOrIntVectorTy(BitWidth: 1)) { |
| 3216 | // A = sext i1 Cond; B = sext (not (i1 Cond)) |
| 3217 | if (match(V: B, P: m_SExt(Op: m_Not(V: m_Specific(V: Cond))))) |
| 3218 | return Cond; |
| 3219 | |
| 3220 | // A = sext i1 Cond; B = not ({bitcast} (sext (i1 Cond))) |
| 3221 | // TODO: The one-use checks are unnecessary or misplaced. If the caller |
| 3222 | // checked for uses on logic ops/casts, that should be enough to |
| 3223 | // make this transform worthwhile. |
| 3224 | if (match(V: B, P: m_OneUse(SubPattern: m_Not(V: m_Value(V&: NotB))))) { |
| 3225 | NotB = peekThroughBitcast(V: NotB, OneUseOnly: true); |
| 3226 | if (match(V: NotB, P: m_SExt(Op: m_Specific(V: Cond)))) |
| 3227 | return Cond; |
| 3228 | } |
| 3229 | } |
| 3230 | |
| 3231 | // All scalar (and most vector) possibilities should be handled now. |
| 3232 | // Try more matches that only apply to non-splat constant vectors. |
| 3233 | if (!Ty->isVectorTy()) |
| 3234 | return nullptr; |
| 3235 | |
| 3236 | // If both operands are xor'd with constants using the same sexted boolean |
| 3237 | // operand, see if the constants are inverse bitmasks. |
| 3238 | // TODO: Use ConstantExpr::getNot()? |
| 3239 | if (match(V: A, P: (m_Xor(L: m_SExt(Op: m_Value(V&: Cond)), R: m_Constant(C&: AConst)))) && |
| 3240 | match(V: B, P: (m_Xor(L: m_SExt(Op: m_Specific(V: Cond)), R: m_Constant(C&: BConst)))) && |
| 3241 | Cond->getType()->isIntOrIntVectorTy(BitWidth: 1) && |
| 3242 | areInverseVectorBitmasks(C1: AConst, C2: BConst)) { |
| 3243 | AConst = ConstantExpr::getTrunc(C: AConst, Ty: CmpInst::makeCmpResultType(opnd_type: Ty)); |
| 3244 | return Builder.CreateXor(LHS: Cond, RHS: AConst); |
| 3245 | } |
| 3246 | return nullptr; |
| 3247 | } |
| 3248 | |
| 3249 | /// We have an expression of the form (A & B) | (C & D). Try to simplify this |
| 3250 | /// to "A' ? B : D", where A' is a boolean or vector of booleans. |
| 3251 | /// When InvertFalseVal is set to true, we try to match the pattern |
| 3252 | /// where we have peeked through a 'not' op and A and C are the same: |
| 3253 | /// (A & B) | ~(A | D) --> (A & B) | (~A & ~D) --> A' ? B : ~D |
| 3254 | Value *InstCombinerImpl::matchSelectFromAndOr(Value *A, Value *B, Value *C, |
| 3255 | Value *D, bool InvertFalseVal) { |
| 3256 | // The potential condition of the select may be bitcasted. In that case, look |
| 3257 | // through its bitcast and the corresponding bitcast of the 'not' condition. |
| 3258 | Type *OrigType = A->getType(); |
| 3259 | A = peekThroughBitcast(V: A, OneUseOnly: true); |
| 3260 | C = peekThroughBitcast(V: C, OneUseOnly: true); |
| 3261 | if (Value *Cond = getSelectCondition(A, B: C, ABIsTheSame: InvertFalseVal)) { |
| 3262 | // ((bc Cond) & B) | ((bc ~Cond) & D) --> bc (select Cond, (bc B), (bc D)) |
| 3263 | // If this is a vector, we may need to cast to match the condition's length. |
| 3264 | // The bitcasts will either all exist or all not exist. The builder will |
| 3265 | // not create unnecessary casts if the types already match. |
| 3266 | Type *SelTy = A->getType(); |
| 3267 | if (auto *VecTy = dyn_cast<VectorType>(Val: Cond->getType())) { |
| 3268 | // For a fixed or scalable vector get N from <{vscale x} N x iM> |
| 3269 | unsigned Elts = VecTy->getElementCount().getKnownMinValue(); |
| 3270 | // For a fixed or scalable vector, get the size in bits of N x iM; for a |
| 3271 | // scalar this is just M. |
| 3272 | unsigned SelEltSize = SelTy->getPrimitiveSizeInBits().getKnownMinValue(); |
| 3273 | Type *EltTy = Builder.getIntNTy(N: SelEltSize / Elts); |
| 3274 | SelTy = VectorType::get(ElementType: EltTy, EC: VecTy->getElementCount()); |
| 3275 | } |
| 3276 | Value *BitcastB = Builder.CreateBitCast(V: B, DestTy: SelTy); |
| 3277 | if (InvertFalseVal) |
| 3278 | D = Builder.CreateNot(V: D); |
| 3279 | Value *BitcastD = Builder.CreateBitCast(V: D, DestTy: SelTy); |
| 3280 | Value *Select = Builder.CreateSelect(C: Cond, True: BitcastB, False: BitcastD); |
| 3281 | return Builder.CreateBitCast(V: Select, DestTy: OrigType); |
| 3282 | } |
| 3283 | |
| 3284 | return nullptr; |
| 3285 | } |
| 3286 | |
| 3287 | // (icmp eq X, C) | (icmp ult Other, (X - C)) -> (icmp ule Other, (X - (C + 1))) |
| 3288 | // (icmp ne X, C) & (icmp uge Other, (X - C)) -> (icmp ugt Other, (X - (C + 1))) |
| 3289 | static Value *foldAndOrOfICmpEqConstantAndICmp(ICmpInst *LHS, ICmpInst *RHS, |
| 3290 | bool IsAnd, bool IsLogical, |
| 3291 | IRBuilderBase &Builder) { |
| 3292 | Value *LHS0 = LHS->getOperand(i_nocapture: 0); |
| 3293 | Value *RHS0 = RHS->getOperand(i_nocapture: 0); |
| 3294 | Value *RHS1 = RHS->getOperand(i_nocapture: 1); |
| 3295 | |
| 3296 | ICmpInst::Predicate LPred = |
| 3297 | IsAnd ? LHS->getInversePredicate() : LHS->getPredicate(); |
| 3298 | ICmpInst::Predicate RPred = |
| 3299 | IsAnd ? RHS->getInversePredicate() : RHS->getPredicate(); |
| 3300 | |
| 3301 | const APInt *CInt; |
| 3302 | if (LPred != ICmpInst::ICMP_EQ || |
| 3303 | !match(V: LHS->getOperand(i_nocapture: 1), P: m_APIntAllowPoison(Res&: CInt)) || |
| 3304 | !LHS0->getType()->isIntOrIntVectorTy() || |
| 3305 | !(LHS->hasOneUse() || RHS->hasOneUse())) |
| 3306 | return nullptr; |
| 3307 | |
| 3308 | auto MatchRHSOp = [LHS0, CInt](const Value *RHSOp) { |
| 3309 | return match(V: RHSOp, |
| 3310 | P: m_Add(L: m_Specific(V: LHS0), R: m_SpecificIntAllowPoison(V: -*CInt))) || |
| 3311 | (CInt->isZero() && RHSOp == LHS0); |
| 3312 | }; |
| 3313 | |
| 3314 | Value *Other; |
| 3315 | if (RPred == ICmpInst::ICMP_ULT && MatchRHSOp(RHS1)) |
| 3316 | Other = RHS0; |
| 3317 | else if (RPred == ICmpInst::ICMP_UGT && MatchRHSOp(RHS0)) |
| 3318 | Other = RHS1; |
| 3319 | else |
| 3320 | return nullptr; |
| 3321 | |
| 3322 | if (IsLogical) |
| 3323 | Other = Builder.CreateFreeze(V: Other); |
| 3324 | |
| 3325 | return Builder.CreateICmp( |
| 3326 | P: IsAnd ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE, |
| 3327 | LHS: Builder.CreateSub(LHS: LHS0, RHS: ConstantInt::get(Ty: LHS0->getType(), V: *CInt + 1)), |
| 3328 | RHS: Other); |
| 3329 | } |
| 3330 | |
| 3331 | /// Fold (icmp)&(icmp) or (icmp)|(icmp) if possible. |
| 3332 | /// If IsLogical is true, then the and/or is in select form and the transform |
| 3333 | /// must be poison-safe. |
| 3334 | Value *InstCombinerImpl::foldAndOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, |
| 3335 | Instruction &I, bool IsAnd, |
| 3336 | bool IsLogical) { |
| 3337 | const SimplifyQuery Q = SQ.getWithInstruction(I: &I); |
| 3338 | |
| 3339 | ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); |
| 3340 | Value *LHS0 = LHS->getOperand(i_nocapture: 0), *RHS0 = RHS->getOperand(i_nocapture: 0); |
| 3341 | Value *LHS1 = LHS->getOperand(i_nocapture: 1), *RHS1 = RHS->getOperand(i_nocapture: 1); |
| 3342 | |
| 3343 | const APInt *LHSC = nullptr, *RHSC = nullptr; |
| 3344 | match(V: LHS1, P: m_APInt(Res&: LHSC)); |
| 3345 | match(V: RHS1, P: m_APInt(Res&: RHSC)); |
| 3346 | |
| 3347 | // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B) |
| 3348 | // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B) |
| 3349 | if (predicatesFoldable(P1: PredL, P2: PredR)) { |
| 3350 | if (LHS0 == RHS1 && LHS1 == RHS0) { |
| 3351 | PredL = ICmpInst::getSwappedPredicate(pred: PredL); |
| 3352 | std::swap(a&: LHS0, b&: LHS1); |
| 3353 | } |
| 3354 | if (LHS0 == RHS0 && LHS1 == RHS1) { |
| 3355 | unsigned Code = IsAnd ? getICmpCode(Pred: PredL) & getICmpCode(Pred: PredR) |
| 3356 | : getICmpCode(Pred: PredL) | getICmpCode(Pred: PredR); |
| 3357 | bool IsSigned = LHS->isSigned() || RHS->isSigned(); |
| 3358 | return getNewICmpValue(Code, Sign: IsSigned, LHS: LHS0, RHS: LHS1, Builder); |
| 3359 | } |
| 3360 | } |
| 3361 | |
| 3362 | if (Value *V = |
| 3363 | foldAndOrOfICmpEqConstantAndICmp(LHS, RHS, IsAnd, IsLogical, Builder)) |
| 3364 | return V; |
| 3365 | // We can treat logical like bitwise here, because both operands are used on |
| 3366 | // the LHS, and as such poison from both will propagate. |
| 3367 | if (Value *V = foldAndOrOfICmpEqConstantAndICmp(LHS: RHS, RHS: LHS, IsAnd, |
| 3368 | /*IsLogical*/ false, Builder)) |
| 3369 | return V; |
| 3370 | |
| 3371 | if (Value *V = |
| 3372 | foldAndOrOfICmpsWithConstEq(Cmp0: LHS, Cmp1: RHS, IsAnd, IsLogical, Builder, Q)) |
| 3373 | return V; |
| 3374 | // We can convert this case to bitwise and, because both operands are used |
| 3375 | // on the LHS, and as such poison from both will propagate. |
| 3376 | if (Value *V = foldAndOrOfICmpsWithConstEq(Cmp0: RHS, Cmp1: LHS, IsAnd, |
| 3377 | /*IsLogical=*/false, Builder, Q)) { |
| 3378 | // If RHS is still used, we should drop samesign flag. |
| 3379 | if (IsLogical && RHS->hasSameSign() && !RHS->use_empty()) { |
| 3380 | RHS->setSameSign(false); |
| 3381 | addToWorklist(I: RHS); |
| 3382 | } |
| 3383 | return V; |
| 3384 | } |
| 3385 | |
| 3386 | if (Value *V = foldIsPowerOf2OrZero(Cmp0: LHS, Cmp1: RHS, IsAnd, Builder, IC&: *this)) |
| 3387 | return V; |
| 3388 | if (Value *V = foldIsPowerOf2OrZero(Cmp0: RHS, Cmp1: LHS, IsAnd, Builder, IC&: *this)) |
| 3389 | return V; |
| 3390 | |
| 3391 | // TODO: One of these directions is fine with logical and/or, the other could |
| 3392 | // be supported by inserting freeze. |
| 3393 | if (!IsLogical) { |
| 3394 | // E.g. (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n |
| 3395 | // E.g. (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n |
| 3396 | if (Value *V = simplifyRangeCheck(Cmp0: LHS, Cmp1: RHS, /*Inverted=*/!IsAnd)) |
| 3397 | return V; |
| 3398 | |
| 3399 | // E.g. (icmp sgt x, n) | (icmp slt x, 0) --> icmp ugt x, n |
| 3400 | // E.g. (icmp slt x, n) & (icmp sge x, 0) --> icmp ult x, n |
| 3401 | if (Value *V = simplifyRangeCheck(Cmp0: RHS, Cmp1: LHS, /*Inverted=*/!IsAnd)) |
| 3402 | return V; |
| 3403 | } |
| 3404 | |
| 3405 | // TODO: Add conjugated or fold, check whether it is safe for logical and/or. |
| 3406 | if (IsAnd && !IsLogical) |
| 3407 | if (Value *V = foldSignedTruncationCheck(ICmp0: LHS, ICmp1: RHS, CxtI&: I, Builder)) |
| 3408 | return V; |
| 3409 | |
| 3410 | if (Value *V = foldIsPowerOf2(Cmp0: LHS, Cmp1: RHS, JoinedByAnd: IsAnd, Builder, IC&: *this)) |
| 3411 | return V; |
| 3412 | |
| 3413 | if (Value *V = foldPowerOf2AndShiftedMask(Cmp0: LHS, Cmp1: RHS, JoinedByAnd: IsAnd, Builder)) |
| 3414 | return V; |
| 3415 | |
| 3416 | // TODO: Verify whether this is safe for logical and/or. |
| 3417 | if (!IsLogical) { |
| 3418 | if (Value *X = foldUnsignedUnderflowCheck(ZeroICmp: LHS, UnsignedICmp: RHS, IsAnd, Q, Builder)) |
| 3419 | return X; |
| 3420 | if (Value *X = foldUnsignedUnderflowCheck(ZeroICmp: RHS, UnsignedICmp: LHS, IsAnd, Q, Builder)) |
| 3421 | return X; |
| 3422 | } |
| 3423 | |
| 3424 | // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0) |
| 3425 | // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0) |
| 3426 | // TODO: Remove this and below when foldLogOpOfMaskedICmps can handle undefs. |
| 3427 | if (PredL == (IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) && |
| 3428 | PredL == PredR && match(V: LHS1, P: m_ZeroInt()) && match(V: RHS1, P: m_ZeroInt()) && |
| 3429 | LHS0->getType() == RHS0->getType() && |
| 3430 | (!IsLogical || isGuaranteedNotToBePoison(V: RHS0))) { |
| 3431 | Value *NewOr = Builder.CreateOr(LHS: LHS0, RHS: RHS0); |
| 3432 | return Builder.CreateICmp(P: PredL, LHS: NewOr, |
| 3433 | RHS: Constant::getNullValue(Ty: NewOr->getType())); |
| 3434 | } |
| 3435 | |
| 3436 | // (icmp ne A, -1) | (icmp ne B, -1) --> (icmp ne (A&B), -1) |
| 3437 | // (icmp eq A, -1) & (icmp eq B, -1) --> (icmp eq (A&B), -1) |
| 3438 | if (PredL == (IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) && |
| 3439 | PredL == PredR && match(V: LHS1, P: m_AllOnes()) && match(V: RHS1, P: m_AllOnes()) && |
| 3440 | LHS0->getType() == RHS0->getType() && |
| 3441 | (!IsLogical || isGuaranteedNotToBePoison(V: RHS0))) { |
| 3442 | Value *NewAnd = Builder.CreateAnd(LHS: LHS0, RHS: RHS0); |
| 3443 | return Builder.CreateICmp(P: PredL, LHS: NewAnd, |
| 3444 | RHS: Constant::getAllOnesValue(Ty: LHS0->getType())); |
| 3445 | } |
| 3446 | |
| 3447 | if (!IsLogical) |
| 3448 | if (Value *V = |
| 3449 | foldAndOrOfICmpsWithPow2AndWithZero(Builder, LHS, RHS, IsAnd, Q)) |
| 3450 | return V; |
| 3451 | |
| 3452 | // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2). |
| 3453 | if (!LHSC || !RHSC) |
| 3454 | return nullptr; |
| 3455 | |
| 3456 | // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2 |
| 3457 | // (trunc x) != C1 | (and x, CA) != C2 -> (and x, CA|CMAX) != C1|C2 |
| 3458 | // where CMAX is the all ones value for the truncated type, |
| 3459 | // iff the lower bits of C2 and CA are zero. |
| 3460 | if (PredL == (IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) && |
| 3461 | PredL == PredR && LHS->hasOneUse() && RHS->hasOneUse()) { |
| 3462 | Value *V; |
| 3463 | const APInt *AndC, *SmallC = nullptr, *BigC = nullptr; |
| 3464 | |
| 3465 | // (trunc x) == C1 & (and x, CA) == C2 |
| 3466 | // (and x, CA) == C2 & (trunc x) == C1 |
| 3467 | if (match(V: RHS0, P: m_Trunc(Op: m_Value(V))) && |
| 3468 | match(V: LHS0, P: m_And(L: m_Specific(V), R: m_APInt(Res&: AndC)))) { |
| 3469 | SmallC = RHSC; |
| 3470 | BigC = LHSC; |
| 3471 | } else if (match(V: LHS0, P: m_Trunc(Op: m_Value(V))) && |
| 3472 | match(V: RHS0, P: m_And(L: m_Specific(V), R: m_APInt(Res&: AndC)))) { |
| 3473 | SmallC = LHSC; |
| 3474 | BigC = RHSC; |
| 3475 | } |
| 3476 | |
| 3477 | if (SmallC && BigC) { |
| 3478 | unsigned BigBitSize = BigC->getBitWidth(); |
| 3479 | unsigned SmallBitSize = SmallC->getBitWidth(); |
| 3480 | |
| 3481 | // Check that the low bits are zero. |
| 3482 | APInt Low = APInt::getLowBitsSet(numBits: BigBitSize, loBitsSet: SmallBitSize); |
| 3483 | if ((Low & *AndC).isZero() && (Low & *BigC).isZero()) { |
| 3484 | Value *NewAnd = Builder.CreateAnd(LHS: V, RHS: Low | *AndC); |
| 3485 | APInt N = SmallC->zext(width: BigBitSize) | *BigC; |
| 3486 | Value *NewVal = ConstantInt::get(Ty: NewAnd->getType(), V: N); |
| 3487 | return Builder.CreateICmp(P: PredL, LHS: NewAnd, RHS: NewVal); |
| 3488 | } |
| 3489 | } |
| 3490 | } |
| 3491 | |
| 3492 | // Match naive pattern (and its inverted form) for checking if two values |
| 3493 | // share same sign. An example of the pattern: |
| 3494 | // (icmp slt (X & Y), 0) | (icmp sgt (X | Y), -1) -> (icmp sgt (X ^ Y), -1) |
| 3495 | // Inverted form (example): |
| 3496 | // (icmp slt (X | Y), 0) & (icmp sgt (X & Y), -1) -> (icmp slt (X ^ Y), 0) |
| 3497 | bool TrueIfSignedL, TrueIfSignedR; |
| 3498 | if (isSignBitCheck(Pred: PredL, RHS: *LHSC, TrueIfSigned&: TrueIfSignedL) && |
| 3499 | isSignBitCheck(Pred: PredR, RHS: *RHSC, TrueIfSigned&: TrueIfSignedR) && |
| 3500 | (RHS->hasOneUse() || LHS->hasOneUse())) { |
| 3501 | Value *X, *Y; |
| 3502 | if (IsAnd) { |
| 3503 | if ((TrueIfSignedL && !TrueIfSignedR && |
| 3504 | match(V: LHS0, P: m_Or(L: m_Value(V&: X), R: m_Value(V&: Y))) && |
| 3505 | match(V: RHS0, P: m_c_And(L: m_Specific(V: X), R: m_Specific(V: Y)))) || |
| 3506 | (!TrueIfSignedL && TrueIfSignedR && |
| 3507 | match(V: LHS0, P: m_And(L: m_Value(V&: X), R: m_Value(V&: Y))) && |
| 3508 | match(V: RHS0, P: m_c_Or(L: m_Specific(V: X), R: m_Specific(V: Y))))) { |
| 3509 | Value *NewXor = Builder.CreateXor(LHS: X, RHS: Y); |
| 3510 | return Builder.CreateIsNeg(Arg: NewXor); |
| 3511 | } |
| 3512 | } else { |
| 3513 | if ((TrueIfSignedL && !TrueIfSignedR && |
| 3514 | match(V: LHS0, P: m_And(L: m_Value(V&: X), R: m_Value(V&: Y))) && |
| 3515 | match(V: RHS0, P: m_c_Or(L: m_Specific(V: X), R: m_Specific(V: Y)))) || |
| 3516 | (!TrueIfSignedL && TrueIfSignedR && |
| 3517 | match(V: LHS0, P: m_Or(L: m_Value(V&: X), R: m_Value(V&: Y))) && |
| 3518 | match(V: RHS0, P: m_c_And(L: m_Specific(V: X), R: m_Specific(V: Y))))) { |
| 3519 | Value *NewXor = Builder.CreateXor(LHS: X, RHS: Y); |
| 3520 | return Builder.CreateIsNotNeg(Arg: NewXor); |
| 3521 | } |
| 3522 | } |
| 3523 | } |
| 3524 | |
| 3525 | // (X & ExpMask) != 0 && (X & ExpMask) != ExpMask -> isnormal(X) |
| 3526 | // (X & ExpMask) == 0 || (X & ExpMask) == ExpMask -> !isnormal(X) |
| 3527 | Value *X; |
| 3528 | const APInt *MaskC; |
| 3529 | if (LHS0 == RHS0 && PredL == PredR && |
| 3530 | PredL == (IsAnd ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ) && |
| 3531 | !I.getFunction()->hasFnAttribute(Kind: Attribute::NoImplicitFloat) && |
| 3532 | LHS->hasOneUse() && RHS->hasOneUse() && |
| 3533 | match(V: LHS0, P: m_And(L: m_ElementWiseBitCast(Op: m_Value(V&: X)), R: m_APInt(Res&: MaskC))) && |
| 3534 | X->getType()->getScalarType()->isIEEELikeFPTy() && |
| 3535 | APFloat(X->getType()->getScalarType()->getFltSemantics(), *MaskC) |
| 3536 | .isPosInfinity() && |
| 3537 | ((LHSC->isZero() && *RHSC == *MaskC) || |
| 3538 | (RHSC->isZero() && *LHSC == *MaskC))) |
| 3539 | return Builder.createIsFPClass(FPNum: X, Test: IsAnd ? FPClassTest::fcNormal |
| 3540 | : ~FPClassTest::fcNormal); |
| 3541 | |
| 3542 | return foldAndOrOfICmpsUsingRanges(ICmp1: LHS, ICmp2: RHS, IsAnd); |
| 3543 | } |
| 3544 | |
| 3545 | /// If IsLogical is true, then the and/or is in select form and the transform |
| 3546 | /// must be poison-safe. |
| 3547 | Value *InstCombinerImpl::foldBooleanAndOr(Value *LHS, Value *RHS, |
| 3548 | Instruction &I, bool IsAnd, |
| 3549 | bool IsLogical) { |
| 3550 | if (!LHS->getType()->isIntOrIntVectorTy(BitWidth: 1)) |
| 3551 | return nullptr; |
| 3552 | |
| 3553 | // handle (roughly): |
| 3554 | // (icmp ne (A & B), C) | (icmp ne (A & D), E) |
| 3555 | // (icmp eq (A & B), C) & (icmp eq (A & D), E) |
| 3556 | if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, IsAnd, IsLogical, Builder, |
| 3557 | Q: SQ.getWithInstruction(I: &I))) |
| 3558 | return V; |
| 3559 | |
| 3560 | if (auto *LHSCmp = dyn_cast<ICmpInst>(Val: LHS)) |
| 3561 | if (auto *RHSCmp = dyn_cast<ICmpInst>(Val: RHS)) |
| 3562 | if (Value *Res = foldAndOrOfICmps(LHS: LHSCmp, RHS: RHSCmp, I, IsAnd, IsLogical)) |
| 3563 | return Res; |
| 3564 | |
| 3565 | if (auto *LHSCmp = dyn_cast<FCmpInst>(Val: LHS)) |
| 3566 | if (auto *RHSCmp = dyn_cast<FCmpInst>(Val: RHS)) |
| 3567 | if (Value *Res = foldLogicOfFCmps(LHS: LHSCmp, RHS: RHSCmp, IsAnd, IsLogicalSelect: IsLogical)) |
| 3568 | return Res; |
| 3569 | |
| 3570 | if (Value *Res = foldEqOfParts(Cmp0: LHS, Cmp1: RHS, IsAnd)) |
| 3571 | return Res; |
| 3572 | |
| 3573 | return nullptr; |
| 3574 | } |
| 3575 | |
| 3576 | static Value *foldOrOfInversions(BinaryOperator &I, |
| 3577 | InstCombiner::BuilderTy &Builder) { |
| 3578 | assert(I.getOpcode() == Instruction::Or && |
| 3579 | "Simplification only supports or at the moment." ); |
| 3580 | |
| 3581 | Value *Cmp1, *Cmp2, *Cmp3, *Cmp4; |
| 3582 | if (!match(V: I.getOperand(i_nocapture: 0), P: m_And(L: m_Value(V&: Cmp1), R: m_Value(V&: Cmp2))) || |
| 3583 | !match(V: I.getOperand(i_nocapture: 1), P: m_And(L: m_Value(V&: Cmp3), R: m_Value(V&: Cmp4)))) |
| 3584 | return nullptr; |
| 3585 | |
| 3586 | // Check if any two pairs of the and operations are inversions of each other. |
| 3587 | if (isKnownInversion(X: Cmp1, Y: Cmp3) && isKnownInversion(X: Cmp2, Y: Cmp4)) |
| 3588 | return Builder.CreateXor(LHS: Cmp1, RHS: Cmp4); |
| 3589 | if (isKnownInversion(X: Cmp1, Y: Cmp4) && isKnownInversion(X: Cmp2, Y: Cmp3)) |
| 3590 | return Builder.CreateXor(LHS: Cmp1, RHS: Cmp3); |
| 3591 | |
| 3592 | return nullptr; |
| 3593 | } |
| 3594 | |
| 3595 | // A decomposition of ((X & Mask) * Factor). The NUW / NSW bools |
| 3596 | // track these properities for preservation. Note that we can decompose |
| 3597 | // equivalent select form of this expression (e.g. (!(X & Mask) ? 0 : Mask * |
| 3598 | // Factor)) |
| 3599 | struct DecomposedBitMaskMul { |
| 3600 | Value *X; |
| 3601 | APInt Factor; |
| 3602 | APInt Mask; |
| 3603 | bool NUW; |
| 3604 | bool NSW; |
| 3605 | }; |
| 3606 | |
| 3607 | static std::optional<DecomposedBitMaskMul> matchBitmaskMul(Value *V) { |
| 3608 | Instruction *Op = dyn_cast<Instruction>(Val: V); |
| 3609 | if (!Op) |
| 3610 | return std::nullopt; |
| 3611 | |
| 3612 | // Decompose (A & N) * C) into BitMaskMul |
| 3613 | Value *Original = nullptr; |
| 3614 | const APInt *Mask = nullptr; |
| 3615 | const APInt *MulConst = nullptr; |
| 3616 | if (match(V: Op, P: m_Mul(L: m_And(L: m_Value(V&: Original), R: m_APInt(Res&: Mask)), |
| 3617 | R: m_APInt(Res&: MulConst)))) { |
| 3618 | if (MulConst->isZero() || Mask->isZero()) |
| 3619 | return std::nullopt; |
| 3620 | |
| 3621 | return std::optional<DecomposedBitMaskMul>( |
| 3622 | {.X: Original, .Factor: *MulConst, .Mask: *Mask, |
| 3623 | .NUW: cast<BinaryOperator>(Val: Op)->hasNoUnsignedWrap(), |
| 3624 | .NSW: cast<BinaryOperator>(Val: Op)->hasNoSignedWrap()}); |
| 3625 | } |
| 3626 | |
| 3627 | Value *Cond = nullptr; |
| 3628 | const APInt *EqZero = nullptr, *NeZero = nullptr; |
| 3629 | |
| 3630 | // Decompose ((A & N) ? 0 : N * C) into BitMaskMul |
| 3631 | if (match(V: Op, P: m_Select(C: m_Value(V&: Cond), L: m_APInt(Res&: EqZero), R: m_APInt(Res&: NeZero)))) { |
| 3632 | auto ICmpDecompose = |
| 3633 | decomposeBitTest(Cond, /*LookThruTrunc=*/LookThroughTrunc: true, |
| 3634 | /*AllowNonZeroC=*/false, /*DecomposeBitMask=*/DecomposeAnd: true); |
| 3635 | if (!ICmpDecompose.has_value()) |
| 3636 | return std::nullopt; |
| 3637 | |
| 3638 | assert(ICmpInst::isEquality(ICmpDecompose->Pred) && |
| 3639 | ICmpDecompose->C.isZero()); |
| 3640 | |
| 3641 | if (ICmpDecompose->Pred == ICmpInst::ICMP_NE) |
| 3642 | std::swap(a&: EqZero, b&: NeZero); |
| 3643 | |
| 3644 | if (!EqZero->isZero() || NeZero->isZero()) |
| 3645 | return std::nullopt; |
| 3646 | |
| 3647 | if (!ICmpDecompose->Mask.isPowerOf2() || ICmpDecompose->Mask.isZero() || |
| 3648 | NeZero->getBitWidth() != ICmpDecompose->Mask.getBitWidth()) |
| 3649 | return std::nullopt; |
| 3650 | |
| 3651 | if (!NeZero->urem(RHS: ICmpDecompose->Mask).isZero()) |
| 3652 | return std::nullopt; |
| 3653 | |
| 3654 | return std::optional<DecomposedBitMaskMul>( |
| 3655 | {.X: ICmpDecompose->X, .Factor: NeZero->udiv(RHS: ICmpDecompose->Mask), |
| 3656 | .Mask: ICmpDecompose->Mask, /*NUW=*/false, /*NSW=*/false}); |
| 3657 | } |
| 3658 | |
| 3659 | return std::nullopt; |
| 3660 | } |
| 3661 | |
| 3662 | // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches |
| 3663 | // here. We should standardize that construct where it is needed or choose some |
| 3664 | // other way to ensure that commutated variants of patterns are not missed. |
| 3665 | Instruction *InstCombinerImpl::visitOr(BinaryOperator &I) { |
| 3666 | if (Value *V = simplifyOrInst(LHS: I.getOperand(i_nocapture: 0), RHS: I.getOperand(i_nocapture: 1), |
| 3667 | Q: SQ.getWithInstruction(I: &I))) |
| 3668 | return replaceInstUsesWith(I, V); |
| 3669 | |
| 3670 | if (SimplifyAssociativeOrCommutative(I)) |
| 3671 | return &I; |
| 3672 | |
| 3673 | if (Instruction *X = foldVectorBinop(Inst&: I)) |
| 3674 | return X; |
| 3675 | |
| 3676 | if (Instruction *Phi = foldBinopWithPhiOperands(BO&: I)) |
| 3677 | return Phi; |
| 3678 | |
| 3679 | // See if we can simplify any instructions used by the instruction whose sole |
| 3680 | // purpose is to compute bits we don't care about. |
| 3681 | if (SimplifyDemandedInstructionBits(Inst&: I)) |
| 3682 | return &I; |
| 3683 | |
| 3684 | // Do this before using distributive laws to catch simple and/or/not patterns. |
| 3685 | if (Instruction *Xor = foldOrToXor(I, Builder)) |
| 3686 | return Xor; |
| 3687 | |
| 3688 | if (Instruction *X = foldComplexAndOrPatterns(I, Builder)) |
| 3689 | return X; |
| 3690 | |
| 3691 | // (A & B) | (C & D) -> A ^ D where A == ~C && B == ~D |
| 3692 | // (A & B) | (C & D) -> A ^ C where A == ~D && B == ~C |
| 3693 | if (Value *V = foldOrOfInversions(I, Builder)) |
| 3694 | return replaceInstUsesWith(I, V); |
| 3695 | |
| 3696 | // (A&B)|(A&C) -> A&(B|C) etc |
| 3697 | if (Value *V = foldUsingDistributiveLaws(I)) |
| 3698 | return replaceInstUsesWith(I, V); |
| 3699 | |
| 3700 | Value *Op0 = I.getOperand(i_nocapture: 0), *Op1 = I.getOperand(i_nocapture: 1); |
| 3701 | Type *Ty = I.getType(); |
| 3702 | if (Ty->isIntOrIntVectorTy(BitWidth: 1)) { |
| 3703 | if (auto *SI0 = dyn_cast<SelectInst>(Val: Op0)) { |
| 3704 | if (auto *R = |
| 3705 | foldAndOrOfSelectUsingImpliedCond(Op: Op1, SI&: *SI0, /* IsAnd */ false)) |
| 3706 | return R; |
| 3707 | } |
| 3708 | if (auto *SI1 = dyn_cast<SelectInst>(Val: Op1)) { |
| 3709 | if (auto *R = |
| 3710 | foldAndOrOfSelectUsingImpliedCond(Op: Op0, SI&: *SI1, /* IsAnd */ false)) |
| 3711 | return R; |
| 3712 | } |
| 3713 | } |
| 3714 | |
| 3715 | if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I)) |
| 3716 | return FoldedLogic; |
| 3717 | |
| 3718 | if (Instruction *BitOp = matchBSwapOrBitReverse(I, /*MatchBSwaps*/ true, |
| 3719 | /*MatchBitReversals*/ true)) |
| 3720 | return BitOp; |
| 3721 | |
| 3722 | if (Instruction *Funnel = matchFunnelShift(Or&: I, IC&: *this)) |
| 3723 | return Funnel; |
| 3724 | |
| 3725 | if (Value *Concat = matchOrConcat(Or&: I, Builder)) |
| 3726 | return replaceInstUsesWith(I, V: Concat); |
| 3727 | |
| 3728 | if (Instruction *R = foldBinOpShiftWithShift(I)) |
| 3729 | return R; |
| 3730 | |
| 3731 | if (Instruction *R = tryFoldInstWithCtpopWithNot(I: &I)) |
| 3732 | return R; |
| 3733 | |
| 3734 | if (cast<PossiblyDisjointInst>(Val&: I).isDisjoint()) { |
| 3735 | if (Instruction *R = |
| 3736 | foldAddLikeCommutative(LHS: I.getOperand(i_nocapture: 0), RHS: I.getOperand(i_nocapture: 1), |
| 3737 | /*NSW=*/true, /*NUW=*/true)) |
| 3738 | return R; |
| 3739 | if (Instruction *R = |
| 3740 | foldAddLikeCommutative(LHS: I.getOperand(i_nocapture: 1), RHS: I.getOperand(i_nocapture: 0), |
| 3741 | /*NSW=*/true, /*NUW=*/true)) |
| 3742 | return R; |
| 3743 | |
| 3744 | // (A & N) * C + (A & M) * C -> (A & (N + M)) & C |
| 3745 | // This also accepts the equivalent select form of (A & N) * C |
| 3746 | // expressions i.e. !(A & N) ? 0 : N * C) |
| 3747 | auto Decomp1 = matchBitmaskMul(V: I.getOperand(i_nocapture: 1)); |
| 3748 | if (Decomp1) { |
| 3749 | auto Decomp0 = matchBitmaskMul(V: I.getOperand(i_nocapture: 0)); |
| 3750 | if (Decomp0 && Decomp0->X == Decomp1->X && |
| 3751 | (Decomp0->Mask & Decomp1->Mask).isZero() && |
| 3752 | Decomp0->Factor == Decomp1->Factor) { |
| 3753 | |
| 3754 | Value *NewAnd = Builder.CreateAnd( |
| 3755 | LHS: Decomp0->X, RHS: ConstantInt::get(Ty: Decomp0->X->getType(), |
| 3756 | V: (Decomp0->Mask + Decomp1->Mask))); |
| 3757 | |
| 3758 | auto *Combined = BinaryOperator::CreateMul( |
| 3759 | V1: NewAnd, V2: ConstantInt::get(Ty: NewAnd->getType(), V: Decomp1->Factor)); |
| 3760 | |
| 3761 | Combined->setHasNoUnsignedWrap(Decomp0->NUW && Decomp1->NUW); |
| 3762 | Combined->setHasNoSignedWrap(Decomp0->NSW && Decomp1->NSW); |
| 3763 | return Combined; |
| 3764 | } |
| 3765 | } |
| 3766 | } |
| 3767 | |
| 3768 | Value *X, *Y; |
| 3769 | const APInt *CV; |
| 3770 | if (match(V: &I, P: m_c_Or(L: m_OneUse(SubPattern: m_Xor(L: m_Value(V&: X), R: m_APInt(Res&: CV))), R: m_Value(V&: Y))) && |
| 3771 | !CV->isAllOnes() && MaskedValueIsZero(V: Y, Mask: *CV, CxtI: &I)) { |
| 3772 | // (X ^ C) | Y -> (X | Y) ^ C iff Y & C == 0 |
| 3773 | // The check for a 'not' op is for efficiency (if Y is known zero --> ~X). |
| 3774 | Value *Or = Builder.CreateOr(LHS: X, RHS: Y); |
| 3775 | return BinaryOperator::CreateXor(V1: Or, V2: ConstantInt::get(Ty, V: *CV)); |
| 3776 | } |
| 3777 | |
| 3778 | // If the operands have no common bits set: |
| 3779 | // or (mul X, Y), X --> add (mul X, Y), X --> mul X, (Y + 1) |
| 3780 | if (match(V: &I, P: m_c_DisjointOr(L: m_OneUse(SubPattern: m_Mul(L: m_Value(V&: X), R: m_Value(V&: Y))), |
| 3781 | R: m_Deferred(V: X)))) { |
| 3782 | Value *IncrementY = Builder.CreateAdd(LHS: Y, RHS: ConstantInt::get(Ty, V: 1)); |
| 3783 | return BinaryOperator::CreateMul(V1: X, V2: IncrementY); |
| 3784 | } |
| 3785 | |
| 3786 | // (A & C) | (B & D) |
| 3787 | Value *A, *B, *C, *D; |
| 3788 | if (match(V: Op0, P: m_And(L: m_Value(V&: A), R: m_Value(V&: C))) && |
| 3789 | match(V: Op1, P: m_And(L: m_Value(V&: B), R: m_Value(V&: D)))) { |
| 3790 | |
| 3791 | // (A & C0) | (B & C1) |
| 3792 | const APInt *C0, *C1; |
| 3793 | if (match(V: C, P: m_APInt(Res&: C0)) && match(V: D, P: m_APInt(Res&: C1))) { |
| 3794 | Value *X; |
| 3795 | if (*C0 == ~*C1) { |
| 3796 | // ((X | B) & MaskC) | (B & ~MaskC) -> (X & MaskC) | B |
| 3797 | if (match(V: A, P: m_c_Or(L: m_Value(V&: X), R: m_Specific(V: B)))) |
| 3798 | return BinaryOperator::CreateOr(V1: Builder.CreateAnd(LHS: X, RHS: *C0), V2: B); |
| 3799 | // (A & MaskC) | ((X | A) & ~MaskC) -> (X & ~MaskC) | A |
| 3800 | if (match(V: B, P: m_c_Or(L: m_Specific(V: A), R: m_Value(V&: X)))) |
| 3801 | return BinaryOperator::CreateOr(V1: Builder.CreateAnd(LHS: X, RHS: *C1), V2: A); |
| 3802 | |
| 3803 | // ((X ^ B) & MaskC) | (B & ~MaskC) -> (X & MaskC) ^ B |
| 3804 | if (match(V: A, P: m_c_Xor(L: m_Value(V&: X), R: m_Specific(V: B)))) |
| 3805 | return BinaryOperator::CreateXor(V1: Builder.CreateAnd(LHS: X, RHS: *C0), V2: B); |
| 3806 | // (A & MaskC) | ((X ^ A) & ~MaskC) -> (X & ~MaskC) ^ A |
| 3807 | if (match(V: B, P: m_c_Xor(L: m_Specific(V: A), R: m_Value(V&: X)))) |
| 3808 | return BinaryOperator::CreateXor(V1: Builder.CreateAnd(LHS: X, RHS: *C1), V2: A); |
| 3809 | } |
| 3810 | |
| 3811 | if ((*C0 & *C1).isZero()) { |
| 3812 | // ((X | B) & C0) | (B & C1) --> (X | B) & (C0 | C1) |
| 3813 | // iff (C0 & C1) == 0 and (X & ~C0) == 0 |
| 3814 | if (match(V: A, P: m_c_Or(L: m_Value(V&: X), R: m_Specific(V: B))) && |
| 3815 | MaskedValueIsZero(V: X, Mask: ~*C0, CxtI: &I)) { |
| 3816 | Constant *C01 = ConstantInt::get(Ty, V: *C0 | *C1); |
| 3817 | return BinaryOperator::CreateAnd(V1: A, V2: C01); |
| 3818 | } |
| 3819 | // (A & C0) | ((X | A) & C1) --> (X | A) & (C0 | C1) |
| 3820 | // iff (C0 & C1) == 0 and (X & ~C1) == 0 |
| 3821 | if (match(V: B, P: m_c_Or(L: m_Value(V&: X), R: m_Specific(V: A))) && |
| 3822 | MaskedValueIsZero(V: X, Mask: ~*C1, CxtI: &I)) { |
| 3823 | Constant *C01 = ConstantInt::get(Ty, V: *C0 | *C1); |
| 3824 | return BinaryOperator::CreateAnd(V1: B, V2: C01); |
| 3825 | } |
| 3826 | // ((X | C2) & C0) | ((X | C3) & C1) --> (X | C2 | C3) & (C0 | C1) |
| 3827 | // iff (C0 & C1) == 0 and (C2 & ~C0) == 0 and (C3 & ~C1) == 0. |
| 3828 | const APInt *C2, *C3; |
| 3829 | if (match(V: A, P: m_Or(L: m_Value(V&: X), R: m_APInt(Res&: C2))) && |
| 3830 | match(V: B, P: m_Or(L: m_Specific(V: X), R: m_APInt(Res&: C3))) && |
| 3831 | (*C2 & ~*C0).isZero() && (*C3 & ~*C1).isZero()) { |
| 3832 | Value *Or = Builder.CreateOr(LHS: X, RHS: *C2 | *C3, Name: "bitfield" ); |
| 3833 | Constant *C01 = ConstantInt::get(Ty, V: *C0 | *C1); |
| 3834 | return BinaryOperator::CreateAnd(V1: Or, V2: C01); |
| 3835 | } |
| 3836 | } |
| 3837 | } |
| 3838 | |
| 3839 | // Don't try to form a select if it's unlikely that we'll get rid of at |
| 3840 | // least one of the operands. A select is generally more expensive than the |
| 3841 | // 'or' that it is replacing. |
| 3842 | if (Op0->hasOneUse() || Op1->hasOneUse()) { |
| 3843 | // (Cond & C) | (~Cond & D) -> Cond ? C : D, and commuted variants. |
| 3844 | if (Value *V = matchSelectFromAndOr(A, B: C, C: B, D)) |
| 3845 | return replaceInstUsesWith(I, V); |
| 3846 | if (Value *V = matchSelectFromAndOr(A, B: C, C: D, D: B)) |
| 3847 | return replaceInstUsesWith(I, V); |
| 3848 | if (Value *V = matchSelectFromAndOr(A: C, B: A, C: B, D)) |
| 3849 | return replaceInstUsesWith(I, V); |
| 3850 | if (Value *V = matchSelectFromAndOr(A: C, B: A, C: D, D: B)) |
| 3851 | return replaceInstUsesWith(I, V); |
| 3852 | if (Value *V = matchSelectFromAndOr(A: B, B: D, C: A, D: C)) |
| 3853 | return replaceInstUsesWith(I, V); |
| 3854 | if (Value *V = matchSelectFromAndOr(A: B, B: D, C, D: A)) |
| 3855 | return replaceInstUsesWith(I, V); |
| 3856 | if (Value *V = matchSelectFromAndOr(A: D, B, C: A, D: C)) |
| 3857 | return replaceInstUsesWith(I, V); |
| 3858 | if (Value *V = matchSelectFromAndOr(A: D, B, C, D: A)) |
| 3859 | return replaceInstUsesWith(I, V); |
| 3860 | } |
| 3861 | } |
| 3862 | |
| 3863 | if (match(V: Op0, P: m_And(L: m_Value(V&: A), R: m_Value(V&: C))) && |
| 3864 | match(V: Op1, P: m_Not(V: m_Or(L: m_Value(V&: B), R: m_Value(V&: D)))) && |
| 3865 | (Op0->hasOneUse() || Op1->hasOneUse())) { |
| 3866 | // (Cond & C) | ~(Cond | D) -> Cond ? C : ~D |
| 3867 | if (Value *V = matchSelectFromAndOr(A, B: C, C: B, D, InvertFalseVal: true)) |
| 3868 | return replaceInstUsesWith(I, V); |
| 3869 | if (Value *V = matchSelectFromAndOr(A, B: C, C: D, D: B, InvertFalseVal: true)) |
| 3870 | return replaceInstUsesWith(I, V); |
| 3871 | if (Value *V = matchSelectFromAndOr(A: C, B: A, C: B, D, InvertFalseVal: true)) |
| 3872 | return replaceInstUsesWith(I, V); |
| 3873 | if (Value *V = matchSelectFromAndOr(A: C, B: A, C: D, D: B, InvertFalseVal: true)) |
| 3874 | return replaceInstUsesWith(I, V); |
| 3875 | } |
| 3876 | |
| 3877 | // (A ^ B) | ((B ^ C) ^ A) -> (A ^ B) | C |
| 3878 | if (match(V: Op0, P: m_Xor(L: m_Value(V&: A), R: m_Value(V&: B)))) |
| 3879 | if (match(V: Op1, |
| 3880 | P: m_c_Xor(L: m_c_Xor(L: m_Specific(V: B), R: m_Value(V&: C)), R: m_Specific(V: A))) || |
| 3881 | match(V: Op1, P: m_c_Xor(L: m_c_Xor(L: m_Specific(V: A), R: m_Value(V&: C)), R: m_Specific(V: B)))) |
| 3882 | return BinaryOperator::CreateOr(V1: Op0, V2: C); |
| 3883 | |
| 3884 | // ((B ^ C) ^ A) | (A ^ B) -> (A ^ B) | C |
| 3885 | if (match(V: Op1, P: m_Xor(L: m_Value(V&: A), R: m_Value(V&: B)))) |
| 3886 | if (match(V: Op0, |
| 3887 | P: m_c_Xor(L: m_c_Xor(L: m_Specific(V: B), R: m_Value(V&: C)), R: m_Specific(V: A))) || |
| 3888 | match(V: Op0, P: m_c_Xor(L: m_c_Xor(L: m_Specific(V: A), R: m_Value(V&: C)), R: m_Specific(V: B)))) |
| 3889 | return BinaryOperator::CreateOr(V1: Op1, V2: C); |
| 3890 | |
| 3891 | if (Instruction *DeMorgan = matchDeMorgansLaws(I, IC&: *this)) |
| 3892 | return DeMorgan; |
| 3893 | |
| 3894 | // Canonicalize xor to the RHS. |
| 3895 | bool SwappedForXor = false; |
| 3896 | if (match(V: Op0, P: m_Xor(L: m_Value(), R: m_Value()))) { |
| 3897 | std::swap(a&: Op0, b&: Op1); |
| 3898 | SwappedForXor = true; |
| 3899 | } |
| 3900 | |
| 3901 | if (match(V: Op1, P: m_Xor(L: m_Value(V&: A), R: m_Value(V&: B)))) { |
| 3902 | // (A | ?) | (A ^ B) --> (A | ?) | B |
| 3903 | // (B | ?) | (A ^ B) --> (B | ?) | A |
| 3904 | if (match(V: Op0, P: m_c_Or(L: m_Specific(V: A), R: m_Value()))) |
| 3905 | return BinaryOperator::CreateOr(V1: Op0, V2: B); |
| 3906 | if (match(V: Op0, P: m_c_Or(L: m_Specific(V: B), R: m_Value()))) |
| 3907 | return BinaryOperator::CreateOr(V1: Op0, V2: A); |
| 3908 | |
| 3909 | // (A & B) | (A ^ B) --> A | B |
| 3910 | // (B & A) | (A ^ B) --> A | B |
| 3911 | if (match(V: Op0, P: m_c_And(L: m_Specific(V: A), R: m_Specific(V: B)))) |
| 3912 | return BinaryOperator::CreateOr(V1: A, V2: B); |
| 3913 | |
| 3914 | // ~A | (A ^ B) --> ~(A & B) |
| 3915 | // ~B | (A ^ B) --> ~(A & B) |
| 3916 | // The swap above should always make Op0 the 'not'. |
| 3917 | if ((Op0->hasOneUse() || Op1->hasOneUse()) && |
| 3918 | (match(V: Op0, P: m_Not(V: m_Specific(V: A))) || match(V: Op0, P: m_Not(V: m_Specific(V: B))))) |
| 3919 | return BinaryOperator::CreateNot(Op: Builder.CreateAnd(LHS: A, RHS: B)); |
| 3920 | |
| 3921 | // Same as above, but peek through an 'and' to the common operand: |
| 3922 | // ~(A & ?) | (A ^ B) --> ~((A & ?) & B) |
| 3923 | // ~(B & ?) | (A ^ B) --> ~((B & ?) & A) |
| 3924 | Instruction *And; |
| 3925 | if ((Op0->hasOneUse() || Op1->hasOneUse()) && |
| 3926 | match(V: Op0, P: m_Not(V: m_CombineAnd(L: m_Instruction(I&: And), |
| 3927 | R: m_c_And(L: m_Specific(V: A), R: m_Value()))))) |
| 3928 | return BinaryOperator::CreateNot(Op: Builder.CreateAnd(LHS: And, RHS: B)); |
| 3929 | if ((Op0->hasOneUse() || Op1->hasOneUse()) && |
| 3930 | match(V: Op0, P: m_Not(V: m_CombineAnd(L: m_Instruction(I&: And), |
| 3931 | R: m_c_And(L: m_Specific(V: B), R: m_Value()))))) |
| 3932 | return BinaryOperator::CreateNot(Op: Builder.CreateAnd(LHS: And, RHS: A)); |
| 3933 | |
| 3934 | // (~A | C) | (A ^ B) --> ~(A & B) | C |
| 3935 | // (~B | C) | (A ^ B) --> ~(A & B) | C |
| 3936 | if (Op0->hasOneUse() && Op1->hasOneUse() && |
| 3937 | (match(V: Op0, P: m_c_Or(L: m_Not(V: m_Specific(V: A)), R: m_Value(V&: C))) || |
| 3938 | match(V: Op0, P: m_c_Or(L: m_Not(V: m_Specific(V: B)), R: m_Value(V&: C))))) { |
| 3939 | Value *Nand = Builder.CreateNot(V: Builder.CreateAnd(LHS: A, RHS: B), Name: "nand" ); |
| 3940 | return BinaryOperator::CreateOr(V1: Nand, V2: C); |
| 3941 | } |
| 3942 | } |
| 3943 | |
| 3944 | if (SwappedForXor) |
| 3945 | std::swap(a&: Op0, b&: Op1); |
| 3946 | |
| 3947 | if (Value *Res = |
| 3948 | foldBooleanAndOr(LHS: Op0, RHS: Op1, I, /*IsAnd=*/false, /*IsLogical=*/false)) |
| 3949 | return replaceInstUsesWith(I, V: Res); |
| 3950 | |
| 3951 | if (match(V: Op1, P: m_OneUse(SubPattern: m_LogicalOr(L: m_Value(V&: X), R: m_Value(V&: Y))))) { |
| 3952 | bool IsLogical = isa<SelectInst>(Val: Op1); |
| 3953 | if (auto *V = reassociateBooleanAndOr(LHS: Op0, X, Y, I, /*IsAnd=*/false, |
| 3954 | /*RHSIsLogical=*/IsLogical)) |
| 3955 | return replaceInstUsesWith(I, V); |
| 3956 | } |
| 3957 | if (match(V: Op0, P: m_OneUse(SubPattern: m_LogicalOr(L: m_Value(V&: X), R: m_Value(V&: Y))))) { |
| 3958 | bool IsLogical = isa<SelectInst>(Val: Op0); |
| 3959 | if (auto *V = reassociateBooleanAndOr(LHS: Op1, X, Y, I, /*IsAnd=*/false, |
| 3960 | /*RHSIsLogical=*/IsLogical)) |
| 3961 | return replaceInstUsesWith(I, V); |
| 3962 | } |
| 3963 | |
| 3964 | if (Instruction *FoldedFCmps = reassociateFCmps(BO&: I, Builder)) |
| 3965 | return FoldedFCmps; |
| 3966 | |
| 3967 | if (Instruction *CastedOr = foldCastedBitwiseLogic(I)) |
| 3968 | return CastedOr; |
| 3969 | |
| 3970 | if (Instruction *Sel = foldBinopOfSextBoolToSelect(I)) |
| 3971 | return Sel; |
| 3972 | |
| 3973 | // or(sext(A), B) / or(B, sext(A)) --> A ? -1 : B, where A is i1 or <N x i1>. |
| 3974 | // TODO: Move this into foldBinopOfSextBoolToSelect as a more generalized fold |
| 3975 | // with binop identity constant. But creating a select with non-constant |
| 3976 | // arm may not be reversible due to poison semantics. Is that a good |
| 3977 | // canonicalization? |
| 3978 | if (match(V: &I, P: m_c_Or(L: m_OneUse(SubPattern: m_SExt(Op: m_Value(V&: A))), R: m_Value(V&: B))) && |
| 3979 | A->getType()->isIntOrIntVectorTy(BitWidth: 1)) |
| 3980 | return SelectInst::Create(C: A, S1: ConstantInt::getAllOnesValue(Ty), S2: B); |
| 3981 | |
| 3982 | // Note: If we've gotten to the point of visiting the outer OR, then the |
| 3983 | // inner one couldn't be simplified. If it was a constant, then it won't |
| 3984 | // be simplified by a later pass either, so we try swapping the inner/outer |
| 3985 | // ORs in the hopes that we'll be able to simplify it this way. |
| 3986 | // (X|C) | V --> (X|V) | C |
| 3987 | // Pass the disjoint flag in the following two patterns: |
| 3988 | // 1. or-disjoint (or-disjoint X, C), V --> |
| 3989 | // or-disjoint (or-disjoint X, V), C |
| 3990 | // |
| 3991 | // 2. or-disjoint (or X, C), V --> |
| 3992 | // or (or-disjoint X, V), C |
| 3993 | ConstantInt *CI; |
| 3994 | if (Op0->hasOneUse() && !match(V: Op1, P: m_ConstantInt()) && |
| 3995 | match(V: Op0, P: m_Or(L: m_Value(V&: A), R: m_ConstantInt(CI)))) { |
| 3996 | bool IsDisjointOuter = cast<PossiblyDisjointInst>(Val&: I).isDisjoint(); |
| 3997 | bool IsDisjointInner = cast<PossiblyDisjointInst>(Val: Op0)->isDisjoint(); |
| 3998 | Value *Inner = Builder.CreateOr(LHS: A, RHS: Op1); |
| 3999 | cast<PossiblyDisjointInst>(Val: Inner)->setIsDisjoint(IsDisjointOuter); |
| 4000 | Inner->takeName(V: Op0); |
| 4001 | return IsDisjointOuter && IsDisjointInner |
| 4002 | ? BinaryOperator::CreateDisjointOr(V1: Inner, V2: CI) |
| 4003 | : BinaryOperator::CreateOr(V1: Inner, V2: CI); |
| 4004 | } |
| 4005 | |
| 4006 | // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D)) |
| 4007 | // Since this OR statement hasn't been optimized further yet, we hope |
| 4008 | // that this transformation will allow the new ORs to be optimized. |
| 4009 | { |
| 4010 | Value *X = nullptr, *Y = nullptr; |
| 4011 | if (Op0->hasOneUse() && Op1->hasOneUse() && |
| 4012 | match(V: Op0, P: m_Select(C: m_Value(V&: X), L: m_Value(V&: A), R: m_Value(V&: B))) && |
| 4013 | match(V: Op1, P: m_Select(C: m_Value(V&: Y), L: m_Value(V&: C), R: m_Value(V&: D))) && X == Y) { |
| 4014 | Value *orTrue = Builder.CreateOr(LHS: A, RHS: C); |
| 4015 | Value *orFalse = Builder.CreateOr(LHS: B, RHS: D); |
| 4016 | return SelectInst::Create(C: X, S1: orTrue, S2: orFalse); |
| 4017 | } |
| 4018 | } |
| 4019 | |
| 4020 | // or(ashr(subNSW(Y, X), ScalarSizeInBits(Y) - 1), X) --> X s> Y ? -1 : X. |
| 4021 | { |
| 4022 | Value *X, *Y; |
| 4023 | if (match(V: &I, P: m_c_Or(L: m_OneUse(SubPattern: m_AShr( |
| 4024 | L: m_NSWSub(L: m_Value(V&: Y), R: m_Value(V&: X)), |
| 4025 | R: m_SpecificInt(V: Ty->getScalarSizeInBits() - 1))), |
| 4026 | R: m_Deferred(V: X)))) { |
| 4027 | Value *NewICmpInst = Builder.CreateICmpSGT(LHS: X, RHS: Y); |
| 4028 | Value *AllOnes = ConstantInt::getAllOnesValue(Ty); |
| 4029 | return SelectInst::Create(C: NewICmpInst, S1: AllOnes, S2: X); |
| 4030 | } |
| 4031 | } |
| 4032 | |
| 4033 | { |
| 4034 | // ((A & B) ^ A) | ((A & B) ^ B) -> A ^ B |
| 4035 | // (A ^ (A & B)) | (B ^ (A & B)) -> A ^ B |
| 4036 | // ((A & B) ^ B) | ((A & B) ^ A) -> A ^ B |
| 4037 | // (B ^ (A & B)) | (A ^ (A & B)) -> A ^ B |
| 4038 | const auto TryXorOpt = [&](Value *Lhs, Value *Rhs) -> Instruction * { |
| 4039 | if (match(V: Lhs, P: m_c_Xor(L: m_And(L: m_Value(V&: A), R: m_Value(V&: B)), R: m_Deferred(V: A))) && |
| 4040 | match(V: Rhs, |
| 4041 | P: m_c_Xor(L: m_And(L: m_Specific(V: A), R: m_Specific(V: B)), R: m_Specific(V: B)))) { |
| 4042 | return BinaryOperator::CreateXor(V1: A, V2: B); |
| 4043 | } |
| 4044 | return nullptr; |
| 4045 | }; |
| 4046 | |
| 4047 | if (Instruction *Result = TryXorOpt(Op0, Op1)) |
| 4048 | return Result; |
| 4049 | if (Instruction *Result = TryXorOpt(Op1, Op0)) |
| 4050 | return Result; |
| 4051 | } |
| 4052 | |
| 4053 | if (Instruction *V = |
| 4054 | canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I)) |
| 4055 | return V; |
| 4056 | |
| 4057 | CmpPredicate Pred; |
| 4058 | Value *Mul, *Ov, *MulIsNotZero, *UMulWithOv; |
| 4059 | // Check if the OR weakens the overflow condition for umul.with.overflow by |
| 4060 | // treating any non-zero result as overflow. In that case, we overflow if both |
| 4061 | // umul.with.overflow operands are != 0, as in that case the result can only |
| 4062 | // be 0, iff the multiplication overflows. |
| 4063 | if (match(V: &I, |
| 4064 | P: m_c_Or(L: m_CombineAnd(L: m_ExtractValue<1>(V: m_Value(V&: UMulWithOv)), |
| 4065 | R: m_Value(V&: Ov)), |
| 4066 | R: m_CombineAnd( |
| 4067 | L: m_SpecificICmp(MatchPred: ICmpInst::ICMP_NE, |
| 4068 | L: m_CombineAnd(L: m_ExtractValue<0>( |
| 4069 | V: m_Deferred(V: UMulWithOv)), |
| 4070 | R: m_Value(V&: Mul)), |
| 4071 | R: m_ZeroInt()), |
| 4072 | R: m_Value(V&: MulIsNotZero)))) && |
| 4073 | (Ov->hasOneUse() || (MulIsNotZero->hasOneUse() && Mul->hasOneUse()))) { |
| 4074 | Value *A, *B; |
| 4075 | if (match(V: UMulWithOv, P: m_Intrinsic<Intrinsic::umul_with_overflow>( |
| 4076 | Op0: m_Value(V&: A), Op1: m_Value(V&: B)))) { |
| 4077 | Value *NotNullA = Builder.CreateIsNotNull(Arg: A); |
| 4078 | Value *NotNullB = Builder.CreateIsNotNull(Arg: B); |
| 4079 | return BinaryOperator::CreateAnd(V1: NotNullA, V2: NotNullB); |
| 4080 | } |
| 4081 | } |
| 4082 | |
| 4083 | /// Res, Overflow = xxx_with_overflow X, C1 |
| 4084 | /// Try to canonicalize the pattern "Overflow | icmp pred Res, C2" into |
| 4085 | /// "Overflow | icmp pred X, C2 +/- C1". |
| 4086 | const WithOverflowInst *WO; |
| 4087 | const Value *WOV; |
| 4088 | const APInt *C1, *C2; |
| 4089 | if (match(V: &I, P: m_c_Or(L: m_CombineAnd(L: m_ExtractValue<1>(V: m_CombineAnd( |
| 4090 | L: m_WithOverflowInst(I&: WO), R: m_Value(V&: WOV))), |
| 4091 | R: m_Value(V&: Ov)), |
| 4092 | R: m_OneUse(SubPattern: m_ICmp(Pred, L: m_ExtractValue<0>(V: m_Deferred(V: WOV)), |
| 4093 | R: m_APInt(Res&: C2))))) && |
| 4094 | (WO->getBinaryOp() == Instruction::Add || |
| 4095 | WO->getBinaryOp() == Instruction::Sub) && |
| 4096 | (ICmpInst::isEquality(P: Pred) || |
| 4097 | WO->isSigned() == ICmpInst::isSigned(predicate: Pred)) && |
| 4098 | match(V: WO->getRHS(), P: m_APInt(Res&: C1))) { |
| 4099 | bool Overflow; |
| 4100 | APInt NewC = WO->getBinaryOp() == Instruction::Add |
| 4101 | ? (ICmpInst::isSigned(predicate: Pred) ? C2->ssub_ov(RHS: *C1, Overflow) |
| 4102 | : C2->usub_ov(RHS: *C1, Overflow)) |
| 4103 | : (ICmpInst::isSigned(predicate: Pred) ? C2->sadd_ov(RHS: *C1, Overflow) |
| 4104 | : C2->uadd_ov(RHS: *C1, Overflow)); |
| 4105 | if (!Overflow || ICmpInst::isEquality(P: Pred)) { |
| 4106 | Value *NewCmp = Builder.CreateICmp( |
| 4107 | P: Pred, LHS: WO->getLHS(), RHS: ConstantInt::get(Ty: WO->getLHS()->getType(), V: NewC)); |
| 4108 | return BinaryOperator::CreateOr(V1: Ov, V2: NewCmp); |
| 4109 | } |
| 4110 | } |
| 4111 | |
| 4112 | // (~x) | y --> ~(x & (~y)) iff that gets rid of inversions |
| 4113 | if (sinkNotIntoOtherHandOfLogicalOp(I)) |
| 4114 | return &I; |
| 4115 | |
| 4116 | // Improve "get low bit mask up to and including bit X" pattern: |
| 4117 | // (1 << X) | ((1 << X) + -1) --> -1 l>> (bitwidth(x) - 1 - X) |
| 4118 | if (match(V: &I, P: m_c_Or(L: m_Add(L: m_Shl(L: m_One(), R: m_Value(V&: X)), R: m_AllOnes()), |
| 4119 | R: m_Shl(L: m_One(), R: m_Deferred(V: X)))) && |
| 4120 | match(V: &I, P: m_c_Or(L: m_OneUse(SubPattern: m_Value()), R: m_Value()))) { |
| 4121 | Value *Sub = Builder.CreateSub( |
| 4122 | LHS: ConstantInt::get(Ty, V: Ty->getScalarSizeInBits() - 1), RHS: X); |
| 4123 | return BinaryOperator::CreateLShr(V1: Constant::getAllOnesValue(Ty), V2: Sub); |
| 4124 | } |
| 4125 | |
| 4126 | // An or recurrence w/loop invariant step is equivelent to (or start, step) |
| 4127 | PHINode *PN = nullptr; |
| 4128 | Value *Start = nullptr, *Step = nullptr; |
| 4129 | if (matchSimpleRecurrence(I: &I, P&: PN, Start, Step) && DT.dominates(Def: Step, User: PN)) |
| 4130 | return replaceInstUsesWith(I, V: Builder.CreateOr(LHS: Start, RHS: Step)); |
| 4131 | |
| 4132 | // (A & B) | (C | D) or (C | D) | (A & B) |
| 4133 | // Can be combined if C or D is of type (A/B & X) |
| 4134 | if (match(V: &I, P: m_c_Or(L: m_OneUse(SubPattern: m_And(L: m_Value(V&: A), R: m_Value(V&: B))), |
| 4135 | R: m_OneUse(SubPattern: m_Or(L: m_Value(V&: C), R: m_Value(V&: D)))))) { |
| 4136 | // (A & B) | (C | ?) -> C | (? | (A & B)) |
| 4137 | // (A & B) | (C | ?) -> C | (? | (A & B)) |
| 4138 | // (A & B) | (C | ?) -> C | (? | (A & B)) |
| 4139 | // (A & B) | (C | ?) -> C | (? | (A & B)) |
| 4140 | // (C | ?) | (A & B) -> C | (? | (A & B)) |
| 4141 | // (C | ?) | (A & B) -> C | (? | (A & B)) |
| 4142 | // (C | ?) | (A & B) -> C | (? | (A & B)) |
| 4143 | // (C | ?) | (A & B) -> C | (? | (A & B)) |
| 4144 | if (match(V: D, P: m_OneUse(SubPattern: m_c_And(L: m_Specific(V: A), R: m_Value()))) || |
| 4145 | match(V: D, P: m_OneUse(SubPattern: m_c_And(L: m_Specific(V: B), R: m_Value())))) |
| 4146 | return BinaryOperator::CreateOr( |
| 4147 | V1: C, V2: Builder.CreateOr(LHS: D, RHS: Builder.CreateAnd(LHS: A, RHS: B))); |
| 4148 | // (A & B) | (? | D) -> (? | (A & B)) | D |
| 4149 | // (A & B) | (? | D) -> (? | (A & B)) | D |
| 4150 | // (A & B) | (? | D) -> (? | (A & B)) | D |
| 4151 | // (A & B) | (? | D) -> (? | (A & B)) | D |
| 4152 | // (? | D) | (A & B) -> (? | (A & B)) | D |
| 4153 | // (? | D) | (A & B) -> (? | (A & B)) | D |
| 4154 | // (? | D) | (A & B) -> (? | (A & B)) | D |
| 4155 | // (? | D) | (A & B) -> (? | (A & B)) | D |
| 4156 | if (match(V: C, P: m_OneUse(SubPattern: m_c_And(L: m_Specific(V: A), R: m_Value()))) || |
| 4157 | match(V: C, P: m_OneUse(SubPattern: m_c_And(L: m_Specific(V: B), R: m_Value())))) |
| 4158 | return BinaryOperator::CreateOr( |
| 4159 | V1: Builder.CreateOr(LHS: C, RHS: Builder.CreateAnd(LHS: A, RHS: B)), V2: D); |
| 4160 | } |
| 4161 | |
| 4162 | if (Instruction *R = reassociateForUses(BO&: I, Builder)) |
| 4163 | return R; |
| 4164 | |
| 4165 | if (Instruction *Canonicalized = canonicalizeLogicFirst(I, Builder)) |
| 4166 | return Canonicalized; |
| 4167 | |
| 4168 | if (Instruction *Folded = foldLogicOfIsFPClass(BO&: I, Op0, Op1)) |
| 4169 | return Folded; |
| 4170 | |
| 4171 | if (Instruction *Res = foldBinOpOfDisplacedShifts(I)) |
| 4172 | return Res; |
| 4173 | |
| 4174 | // If we are setting the sign bit of a floating-point value, convert |
| 4175 | // this to fneg(fabs), then cast back to integer. |
| 4176 | // |
| 4177 | // If the result isn't immediately cast back to a float, this will increase |
| 4178 | // the number of instructions. This is still probably a better canonical form |
| 4179 | // as it enables FP value tracking. |
| 4180 | // |
| 4181 | // Assumes any IEEE-represented type has the sign bit in the high bit. |
| 4182 | // |
| 4183 | // This is generous interpretation of noimplicitfloat, this is not a true |
| 4184 | // floating-point operation. |
| 4185 | Value *CastOp; |
| 4186 | if (match(V: Op0, P: m_ElementWiseBitCast(Op: m_Value(V&: CastOp))) && |
| 4187 | match(V: Op1, P: m_SignMask()) && |
| 4188 | !Builder.GetInsertBlock()->getParent()->hasFnAttribute( |
| 4189 | Kind: Attribute::NoImplicitFloat)) { |
| 4190 | Type *EltTy = CastOp->getType()->getScalarType(); |
| 4191 | if (EltTy->isFloatingPointTy() && |
| 4192 | APFloat::hasSignBitInMSB(EltTy->getFltSemantics())) { |
| 4193 | Value *FAbs = Builder.CreateUnaryIntrinsic(ID: Intrinsic::fabs, V: CastOp); |
| 4194 | Value *FNegFAbs = Builder.CreateFNeg(V: FAbs); |
| 4195 | return new BitCastInst(FNegFAbs, I.getType()); |
| 4196 | } |
| 4197 | } |
| 4198 | |
| 4199 | // (X & C1) | C2 -> X & (C1 | C2) iff (X & C2) == C2 |
| 4200 | if (match(V: Op0, P: m_OneUse(SubPattern: m_And(L: m_Value(V&: X), R: m_APInt(Res&: C1)))) && |
| 4201 | match(V: Op1, P: m_APInt(Res&: C2))) { |
| 4202 | KnownBits KnownX = computeKnownBits(V: X, CxtI: &I); |
| 4203 | if ((KnownX.One & *C2) == *C2) |
| 4204 | return BinaryOperator::CreateAnd(V1: X, V2: ConstantInt::get(Ty, V: *C1 | *C2)); |
| 4205 | } |
| 4206 | |
| 4207 | if (Instruction *Res = foldBitwiseLogicWithIntrinsics(I, Builder)) |
| 4208 | return Res; |
| 4209 | |
| 4210 | if (Value *V = |
| 4211 | simplifyAndOrWithOpReplaced(V: Op0, Op: Op1, RepOp: Constant::getNullValue(Ty), |
| 4212 | /*SimplifyOnly*/ false, IC&: *this)) |
| 4213 | return BinaryOperator::CreateOr(V1: V, V2: Op1); |
| 4214 | if (Value *V = |
| 4215 | simplifyAndOrWithOpReplaced(V: Op1, Op: Op0, RepOp: Constant::getNullValue(Ty), |
| 4216 | /*SimplifyOnly*/ false, IC&: *this)) |
| 4217 | return BinaryOperator::CreateOr(V1: Op0, V2: V); |
| 4218 | |
| 4219 | if (cast<PossiblyDisjointInst>(Val&: I).isDisjoint()) |
| 4220 | if (Value *V = SimplifyAddWithRemainder(I)) |
| 4221 | return replaceInstUsesWith(I, V); |
| 4222 | |
| 4223 | return nullptr; |
| 4224 | } |
| 4225 | |
| 4226 | /// A ^ B can be specified using other logic ops in a variety of patterns. We |
| 4227 | /// can fold these early and efficiently by morphing an existing instruction. |
| 4228 | static Instruction *foldXorToXor(BinaryOperator &I, |
| 4229 | InstCombiner::BuilderTy &Builder) { |
| 4230 | assert(I.getOpcode() == Instruction::Xor); |
| 4231 | Value *Op0 = I.getOperand(i_nocapture: 0); |
| 4232 | Value *Op1 = I.getOperand(i_nocapture: 1); |
| 4233 | Value *A, *B; |
| 4234 | |
| 4235 | // There are 4 commuted variants for each of the basic patterns. |
| 4236 | |
| 4237 | // (A & B) ^ (A | B) -> A ^ B |
| 4238 | // (A & B) ^ (B | A) -> A ^ B |
| 4239 | // (A | B) ^ (A & B) -> A ^ B |
| 4240 | // (A | B) ^ (B & A) -> A ^ B |
| 4241 | if (match(V: &I, P: m_c_Xor(L: m_And(L: m_Value(V&: A), R: m_Value(V&: B)), |
| 4242 | R: m_c_Or(L: m_Deferred(V: A), R: m_Deferred(V: B))))) |
| 4243 | return BinaryOperator::CreateXor(V1: A, V2: B); |
| 4244 | |
| 4245 | // (A | ~B) ^ (~A | B) -> A ^ B |
| 4246 | // (~B | A) ^ (~A | B) -> A ^ B |
| 4247 | // (~A | B) ^ (A | ~B) -> A ^ B |
| 4248 | // (B | ~A) ^ (A | ~B) -> A ^ B |
| 4249 | if (match(V: &I, P: m_Xor(L: m_c_Or(L: m_Value(V&: A), R: m_Not(V: m_Value(V&: B))), |
| 4250 | R: m_c_Or(L: m_Not(V: m_Deferred(V: A)), R: m_Deferred(V: B))))) |
| 4251 | return BinaryOperator::CreateXor(V1: A, V2: B); |
| 4252 | |
| 4253 | // (A & ~B) ^ (~A & B) -> A ^ B |
| 4254 | // (~B & A) ^ (~A & B) -> A ^ B |
| 4255 | // (~A & B) ^ (A & ~B) -> A ^ B |
| 4256 | // (B & ~A) ^ (A & ~B) -> A ^ B |
| 4257 | if (match(V: &I, P: m_Xor(L: m_c_And(L: m_Value(V&: A), R: m_Not(V: m_Value(V&: B))), |
| 4258 | R: m_c_And(L: m_Not(V: m_Deferred(V: A)), R: m_Deferred(V: B))))) |
| 4259 | return BinaryOperator::CreateXor(V1: A, V2: B); |
| 4260 | |
| 4261 | // For the remaining cases we need to get rid of one of the operands. |
| 4262 | if (!Op0->hasOneUse() && !Op1->hasOneUse()) |
| 4263 | return nullptr; |
| 4264 | |
| 4265 | // (A | B) ^ ~(A & B) -> ~(A ^ B) |
| 4266 | // (A | B) ^ ~(B & A) -> ~(A ^ B) |
| 4267 | // (A & B) ^ ~(A | B) -> ~(A ^ B) |
| 4268 | // (A & B) ^ ~(B | A) -> ~(A ^ B) |
| 4269 | // Complexity sorting ensures the not will be on the right side. |
| 4270 | if ((match(V: Op0, P: m_Or(L: m_Value(V&: A), R: m_Value(V&: B))) && |
| 4271 | match(V: Op1, P: m_Not(V: m_c_And(L: m_Specific(V: A), R: m_Specific(V: B))))) || |
| 4272 | (match(V: Op0, P: m_And(L: m_Value(V&: A), R: m_Value(V&: B))) && |
| 4273 | match(V: Op1, P: m_Not(V: m_c_Or(L: m_Specific(V: A), R: m_Specific(V: B)))))) |
| 4274 | return BinaryOperator::CreateNot(Op: Builder.CreateXor(LHS: A, RHS: B)); |
| 4275 | |
| 4276 | return nullptr; |
| 4277 | } |
| 4278 | |
| 4279 | Value *InstCombinerImpl::foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS, |
| 4280 | BinaryOperator &I) { |
| 4281 | assert(I.getOpcode() == Instruction::Xor && I.getOperand(0) == LHS && |
| 4282 | I.getOperand(1) == RHS && "Should be 'xor' with these operands" ); |
| 4283 | |
| 4284 | ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); |
| 4285 | Value *LHS0 = LHS->getOperand(i_nocapture: 0), *LHS1 = LHS->getOperand(i_nocapture: 1); |
| 4286 | Value *RHS0 = RHS->getOperand(i_nocapture: 0), *RHS1 = RHS->getOperand(i_nocapture: 1); |
| 4287 | |
| 4288 | if (predicatesFoldable(P1: PredL, P2: PredR)) { |
| 4289 | if (LHS0 == RHS1 && LHS1 == RHS0) { |
| 4290 | std::swap(a&: LHS0, b&: LHS1); |
| 4291 | PredL = ICmpInst::getSwappedPredicate(pred: PredL); |
| 4292 | } |
| 4293 | if (LHS0 == RHS0 && LHS1 == RHS1) { |
| 4294 | // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B) |
| 4295 | unsigned Code = getICmpCode(Pred: PredL) ^ getICmpCode(Pred: PredR); |
| 4296 | bool IsSigned = LHS->isSigned() || RHS->isSigned(); |
| 4297 | return getNewICmpValue(Code, Sign: IsSigned, LHS: LHS0, RHS: LHS1, Builder); |
| 4298 | } |
| 4299 | } |
| 4300 | |
| 4301 | const APInt *LC, *RC; |
| 4302 | if (match(V: LHS1, P: m_APInt(Res&: LC)) && match(V: RHS1, P: m_APInt(Res&: RC)) && |
| 4303 | LHS0->getType() == RHS0->getType() && |
| 4304 | LHS0->getType()->isIntOrIntVectorTy()) { |
| 4305 | // Convert xor of signbit tests to signbit test of xor'd values: |
| 4306 | // (X > -1) ^ (Y > -1) --> (X ^ Y) < 0 |
| 4307 | // (X < 0) ^ (Y < 0) --> (X ^ Y) < 0 |
| 4308 | // (X > -1) ^ (Y < 0) --> (X ^ Y) > -1 |
| 4309 | // (X < 0) ^ (Y > -1) --> (X ^ Y) > -1 |
| 4310 | bool TrueIfSignedL, TrueIfSignedR; |
| 4311 | if ((LHS->hasOneUse() || RHS->hasOneUse()) && |
| 4312 | isSignBitCheck(Pred: PredL, RHS: *LC, TrueIfSigned&: TrueIfSignedL) && |
| 4313 | isSignBitCheck(Pred: PredR, RHS: *RC, TrueIfSigned&: TrueIfSignedR)) { |
| 4314 | Value *XorLR = Builder.CreateXor(LHS: LHS0, RHS: RHS0); |
| 4315 | return TrueIfSignedL == TrueIfSignedR ? Builder.CreateIsNeg(Arg: XorLR) : |
| 4316 | Builder.CreateIsNotNeg(Arg: XorLR); |
| 4317 | } |
| 4318 | |
| 4319 | // Fold (icmp pred1 X, C1) ^ (icmp pred2 X, C2) |
| 4320 | // into a single comparison using range-based reasoning. |
| 4321 | if (LHS0 == RHS0) { |
| 4322 | ConstantRange CR1 = ConstantRange::makeExactICmpRegion(Pred: PredL, Other: *LC); |
| 4323 | ConstantRange CR2 = ConstantRange::makeExactICmpRegion(Pred: PredR, Other: *RC); |
| 4324 | auto CRUnion = CR1.exactUnionWith(CR: CR2); |
| 4325 | auto CRIntersect = CR1.exactIntersectWith(CR: CR2); |
| 4326 | if (CRUnion && CRIntersect) |
| 4327 | if (auto CR = CRUnion->exactIntersectWith(CR: CRIntersect->inverse())) { |
| 4328 | if (CR->isFullSet()) |
| 4329 | return ConstantInt::getTrue(Ty: I.getType()); |
| 4330 | if (CR->isEmptySet()) |
| 4331 | return ConstantInt::getFalse(Ty: I.getType()); |
| 4332 | |
| 4333 | CmpInst::Predicate NewPred; |
| 4334 | APInt NewC, Offset; |
| 4335 | CR->getEquivalentICmp(Pred&: NewPred, RHS&: NewC, Offset); |
| 4336 | |
| 4337 | if ((Offset.isZero() && (LHS->hasOneUse() || RHS->hasOneUse())) || |
| 4338 | (LHS->hasOneUse() && RHS->hasOneUse())) { |
| 4339 | Value *NewV = LHS0; |
| 4340 | Type *Ty = LHS0->getType(); |
| 4341 | if (!Offset.isZero()) |
| 4342 | NewV = Builder.CreateAdd(LHS: NewV, RHS: ConstantInt::get(Ty, V: Offset)); |
| 4343 | return Builder.CreateICmp(P: NewPred, LHS: NewV, |
| 4344 | RHS: ConstantInt::get(Ty, V: NewC)); |
| 4345 | } |
| 4346 | } |
| 4347 | } |
| 4348 | |
| 4349 | // Fold (icmp eq/ne (X & Pow2), 0) ^ (icmp eq/ne (Y & Pow2), 0) into |
| 4350 | // (icmp eq/ne ((X ^ Y) & Pow2), 0) |
| 4351 | Value *X, *Y, *Pow2; |
| 4352 | if (ICmpInst::isEquality(P: PredL) && ICmpInst::isEquality(P: PredR) && |
| 4353 | LC->isZero() && RC->isZero() && LHS->hasOneUse() && RHS->hasOneUse() && |
| 4354 | match(V: LHS0, P: m_And(L: m_Value(V&: X), R: m_Value(V&: Pow2))) && |
| 4355 | match(V: RHS0, P: m_And(L: m_Value(V&: Y), R: m_Specific(V: Pow2))) && |
| 4356 | isKnownToBeAPowerOfTwo(V: Pow2, /*OrZero=*/true, CxtI: &I)) { |
| 4357 | Value *Xor = Builder.CreateXor(LHS: X, RHS: Y); |
| 4358 | Value *And = Builder.CreateAnd(LHS: Xor, RHS: Pow2); |
| 4359 | return Builder.CreateICmp(P: PredL == PredR ? ICmpInst::ICMP_NE |
| 4360 | : ICmpInst::ICMP_EQ, |
| 4361 | LHS: And, RHS: ConstantInt::getNullValue(Ty: Xor->getType())); |
| 4362 | } |
| 4363 | } |
| 4364 | |
| 4365 | // Instead of trying to imitate the folds for and/or, decompose this 'xor' |
| 4366 | // into those logic ops. That is, try to turn this into an and-of-icmps |
| 4367 | // because we have many folds for that pattern. |
| 4368 | // |
| 4369 | // This is based on a truth table definition of xor: |
| 4370 | // X ^ Y --> (X | Y) & !(X & Y) |
| 4371 | if (Value *OrICmp = simplifyBinOp(Opcode: Instruction::Or, LHS, RHS, Q: SQ)) { |
| 4372 | // TODO: If OrICmp is true, then the definition of xor simplifies to !(X&Y). |
| 4373 | // TODO: If OrICmp is false, the whole thing is false (InstSimplify?). |
| 4374 | if (Value *AndICmp = simplifyBinOp(Opcode: Instruction::And, LHS, RHS, Q: SQ)) { |
| 4375 | // TODO: Independently handle cases where the 'and' side is a constant. |
| 4376 | ICmpInst *X = nullptr, *Y = nullptr; |
| 4377 | if (OrICmp == LHS && AndICmp == RHS) { |
| 4378 | // (LHS | RHS) & !(LHS & RHS) --> LHS & !RHS --> X & !Y |
| 4379 | X = LHS; |
| 4380 | Y = RHS; |
| 4381 | } |
| 4382 | if (OrICmp == RHS && AndICmp == LHS) { |
| 4383 | // !(LHS & RHS) & (LHS | RHS) --> !LHS & RHS --> !Y & X |
| 4384 | X = RHS; |
| 4385 | Y = LHS; |
| 4386 | } |
| 4387 | if (X && Y && (Y->hasOneUse() || canFreelyInvertAllUsersOf(V: Y, IgnoredUser: &I))) { |
| 4388 | // Invert the predicate of 'Y', thus inverting its output. |
| 4389 | Y->setPredicate(Y->getInversePredicate()); |
| 4390 | // So, are there other uses of Y? |
| 4391 | if (!Y->hasOneUse()) { |
| 4392 | // We need to adapt other uses of Y though. Get a value that matches |
| 4393 | // the original value of Y before inversion. While this increases |
| 4394 | // immediate instruction count, we have just ensured that all the |
| 4395 | // users are freely-invertible, so that 'not' *will* get folded away. |
| 4396 | BuilderTy::InsertPointGuard Guard(Builder); |
| 4397 | // Set insertion point to right after the Y. |
| 4398 | Builder.SetInsertPoint(TheBB: Y->getParent(), IP: ++(Y->getIterator())); |
| 4399 | Value *NotY = Builder.CreateNot(V: Y, Name: Y->getName() + ".not" ); |
| 4400 | // Replace all uses of Y (excluding the one in NotY!) with NotY. |
| 4401 | Worklist.pushUsersToWorkList(I&: *Y); |
| 4402 | Y->replaceUsesWithIf(New: NotY, |
| 4403 | ShouldReplace: [NotY](Use &U) { return U.getUser() != NotY; }); |
| 4404 | } |
| 4405 | // All done. |
| 4406 | return Builder.CreateAnd(LHS, RHS); |
| 4407 | } |
| 4408 | } |
| 4409 | } |
| 4410 | |
| 4411 | return nullptr; |
| 4412 | } |
| 4413 | |
| 4414 | /// If we have a masked merge, in the canonical form of: |
| 4415 | /// (assuming that A only has one use.) |
| 4416 | /// | A | |B| |
| 4417 | /// ((x ^ y) & M) ^ y |
| 4418 | /// | D | |
| 4419 | /// * If M is inverted: |
| 4420 | /// | D | |
| 4421 | /// ((x ^ y) & ~M) ^ y |
| 4422 | /// We can canonicalize by swapping the final xor operand |
| 4423 | /// to eliminate the 'not' of the mask. |
| 4424 | /// ((x ^ y) & M) ^ x |
| 4425 | /// * If M is a constant, and D has one use, we transform to 'and' / 'or' ops |
| 4426 | /// because that shortens the dependency chain and improves analysis: |
| 4427 | /// (x & M) | (y & ~M) |
| 4428 | static Instruction *visitMaskedMerge(BinaryOperator &I, |
| 4429 | InstCombiner::BuilderTy &Builder) { |
| 4430 | Value *B, *X, *D; |
| 4431 | Value *M; |
| 4432 | if (!match(V: &I, P: m_c_Xor(L: m_Value(V&: B), |
| 4433 | R: m_OneUse(SubPattern: m_c_And( |
| 4434 | L: m_CombineAnd(L: m_c_Xor(L: m_Deferred(V: B), R: m_Value(V&: X)), |
| 4435 | R: m_Value(V&: D)), |
| 4436 | R: m_Value(V&: M)))))) |
| 4437 | return nullptr; |
| 4438 | |
| 4439 | Value *NotM; |
| 4440 | if (match(V: M, P: m_Not(V: m_Value(V&: NotM)))) { |
| 4441 | // De-invert the mask and swap the value in B part. |
| 4442 | Value *NewA = Builder.CreateAnd(LHS: D, RHS: NotM); |
| 4443 | return BinaryOperator::CreateXor(V1: NewA, V2: X); |
| 4444 | } |
| 4445 | |
| 4446 | Constant *C; |
| 4447 | if (D->hasOneUse() && match(V: M, P: m_Constant(C))) { |
| 4448 | // Propagating undef is unsafe. Clamp undef elements to -1. |
| 4449 | Type *EltTy = C->getType()->getScalarType(); |
| 4450 | C = Constant::replaceUndefsWith(C, Replacement: ConstantInt::getAllOnesValue(Ty: EltTy)); |
| 4451 | // Unfold. |
| 4452 | Value *LHS = Builder.CreateAnd(LHS: X, RHS: C); |
| 4453 | Value *NotC = Builder.CreateNot(V: C); |
| 4454 | Value *RHS = Builder.CreateAnd(LHS: B, RHS: NotC); |
| 4455 | return BinaryOperator::CreateOr(V1: LHS, V2: RHS); |
| 4456 | } |
| 4457 | |
| 4458 | return nullptr; |
| 4459 | } |
| 4460 | |
| 4461 | static Instruction *foldNotXor(BinaryOperator &I, |
| 4462 | InstCombiner::BuilderTy &Builder) { |
| 4463 | Value *X, *Y; |
| 4464 | // FIXME: one-use check is not needed in general, but currently we are unable |
| 4465 | // to fold 'not' into 'icmp', if that 'icmp' has multiple uses. (D35182) |
| 4466 | if (!match(V: &I, P: m_Not(V: m_OneUse(SubPattern: m_Xor(L: m_Value(V&: X), R: m_Value(V&: Y)))))) |
| 4467 | return nullptr; |
| 4468 | |
| 4469 | auto hasCommonOperand = [](Value *A, Value *B, Value *C, Value *D) { |
| 4470 | return A == C || A == D || B == C || B == D; |
| 4471 | }; |
| 4472 | |
| 4473 | Value *A, *B, *C, *D; |
| 4474 | // Canonicalize ~((A & B) ^ (A | ?)) -> (A & B) | ~(A | ?) |
| 4475 | // 4 commuted variants |
| 4476 | if (match(V: X, P: m_And(L: m_Value(V&: A), R: m_Value(V&: B))) && |
| 4477 | match(V: Y, P: m_Or(L: m_Value(V&: C), R: m_Value(V&: D))) && hasCommonOperand(A, B, C, D)) { |
| 4478 | Value *NotY = Builder.CreateNot(V: Y); |
| 4479 | return BinaryOperator::CreateOr(V1: X, V2: NotY); |
| 4480 | }; |
| 4481 | |
| 4482 | // Canonicalize ~((A | ?) ^ (A & B)) -> (A & B) | ~(A | ?) |
| 4483 | // 4 commuted variants |
| 4484 | if (match(V: Y, P: m_And(L: m_Value(V&: A), R: m_Value(V&: B))) && |
| 4485 | match(V: X, P: m_Or(L: m_Value(V&: C), R: m_Value(V&: D))) && hasCommonOperand(A, B, C, D)) { |
| 4486 | Value *NotX = Builder.CreateNot(V: X); |
| 4487 | return BinaryOperator::CreateOr(V1: Y, V2: NotX); |
| 4488 | }; |
| 4489 | |
| 4490 | return nullptr; |
| 4491 | } |
| 4492 | |
| 4493 | /// Canonicalize a shifty way to code absolute value to the more common pattern |
| 4494 | /// that uses negation and select. |
| 4495 | static Instruction *canonicalizeAbs(BinaryOperator &Xor, |
| 4496 | InstCombiner::BuilderTy &Builder) { |
| 4497 | assert(Xor.getOpcode() == Instruction::Xor && "Expected an xor instruction." ); |
| 4498 | |
| 4499 | // There are 4 potential commuted variants. Move the 'ashr' candidate to Op1. |
| 4500 | // We're relying on the fact that we only do this transform when the shift has |
| 4501 | // exactly 2 uses and the add has exactly 1 use (otherwise, we might increase |
| 4502 | // instructions). |
| 4503 | Value *Op0 = Xor.getOperand(i_nocapture: 0), *Op1 = Xor.getOperand(i_nocapture: 1); |
| 4504 | if (Op0->hasNUses(N: 2)) |
| 4505 | std::swap(a&: Op0, b&: Op1); |
| 4506 | |
| 4507 | Type *Ty = Xor.getType(); |
| 4508 | Value *A; |
| 4509 | const APInt *ShAmt; |
| 4510 | if (match(V: Op1, P: m_AShr(L: m_Value(V&: A), R: m_APInt(Res&: ShAmt))) && |
| 4511 | Op1->hasNUses(N: 2) && *ShAmt == Ty->getScalarSizeInBits() - 1 && |
| 4512 | match(V: Op0, P: m_OneUse(SubPattern: m_c_Add(L: m_Specific(V: A), R: m_Specific(V: Op1))))) { |
| 4513 | // Op1 = ashr i32 A, 31 ; smear the sign bit |
| 4514 | // xor (add A, Op1), Op1 ; add -1 and flip bits if negative |
| 4515 | // --> (A < 0) ? -A : A |
| 4516 | Value *IsNeg = Builder.CreateIsNeg(Arg: A); |
| 4517 | // Copy the nsw flags from the add to the negate. |
| 4518 | auto *Add = cast<BinaryOperator>(Val: Op0); |
| 4519 | Value *NegA = Add->hasNoUnsignedWrap() |
| 4520 | ? Constant::getNullValue(Ty: A->getType()) |
| 4521 | : Builder.CreateNeg(V: A, Name: "" , HasNSW: Add->hasNoSignedWrap()); |
| 4522 | return SelectInst::Create(C: IsNeg, S1: NegA, S2: A); |
| 4523 | } |
| 4524 | return nullptr; |
| 4525 | } |
| 4526 | |
| 4527 | static bool canFreelyInvert(InstCombiner &IC, Value *Op, |
| 4528 | Instruction *IgnoredUser) { |
| 4529 | auto *I = dyn_cast<Instruction>(Val: Op); |
| 4530 | return I && IC.isFreeToInvert(V: I, /*WillInvertAllUses=*/true) && |
| 4531 | IC.canFreelyInvertAllUsersOf(V: I, IgnoredUser); |
| 4532 | } |
| 4533 | |
| 4534 | static Value *freelyInvert(InstCombinerImpl &IC, Value *Op, |
| 4535 | Instruction *IgnoredUser) { |
| 4536 | auto *I = cast<Instruction>(Val: Op); |
| 4537 | IC.Builder.SetInsertPoint(*I->getInsertionPointAfterDef()); |
| 4538 | Value *NotOp = IC.Builder.CreateNot(V: Op, Name: Op->getName() + ".not" ); |
| 4539 | Op->replaceUsesWithIf(New: NotOp, |
| 4540 | ShouldReplace: [NotOp](Use &U) { return U.getUser() != NotOp; }); |
| 4541 | IC.freelyInvertAllUsersOf(V: NotOp, IgnoredUser); |
| 4542 | return NotOp; |
| 4543 | } |
| 4544 | |
| 4545 | // Transform |
| 4546 | // z = ~(x &/| y) |
| 4547 | // into: |
| 4548 | // z = ((~x) |/& (~y)) |
| 4549 | // iff both x and y are free to invert and all uses of z can be freely updated. |
| 4550 | bool InstCombinerImpl::sinkNotIntoLogicalOp(Instruction &I) { |
| 4551 | Value *Op0, *Op1; |
| 4552 | if (!match(V: &I, P: m_LogicalOp(L: m_Value(V&: Op0), R: m_Value(V&: Op1)))) |
| 4553 | return false; |
| 4554 | |
| 4555 | // If this logic op has not been simplified yet, just bail out and let that |
| 4556 | // happen first. Otherwise, the code below may wrongly invert. |
| 4557 | if (Op0 == Op1) |
| 4558 | return false; |
| 4559 | |
| 4560 | // If one of the operands is a user of the other, |
| 4561 | // freelyInvert->freelyInvertAllUsersOf will change the operands of I, which |
| 4562 | // may cause miscompilation. |
| 4563 | if (match(V: Op0, P: m_Not(V: m_Specific(V: Op1))) || match(V: Op1, P: m_Not(V: m_Specific(V: Op0)))) |
| 4564 | return false; |
| 4565 | |
| 4566 | Instruction::BinaryOps NewOpc = |
| 4567 | match(V: &I, P: m_LogicalAnd()) ? Instruction::Or : Instruction::And; |
| 4568 | bool IsBinaryOp = isa<BinaryOperator>(Val: I); |
| 4569 | |
| 4570 | // Can our users be adapted? |
| 4571 | if (!InstCombiner::canFreelyInvertAllUsersOf(V: &I, /*IgnoredUser=*/nullptr)) |
| 4572 | return false; |
| 4573 | |
| 4574 | // And can the operands be adapted? |
| 4575 | if (!canFreelyInvert(IC&: *this, Op: Op0, IgnoredUser: &I) || !canFreelyInvert(IC&: *this, Op: Op1, IgnoredUser: &I)) |
| 4576 | return false; |
| 4577 | |
| 4578 | Op0 = freelyInvert(IC&: *this, Op: Op0, IgnoredUser: &I); |
| 4579 | Op1 = freelyInvert(IC&: *this, Op: Op1, IgnoredUser: &I); |
| 4580 | |
| 4581 | Builder.SetInsertPoint(*I.getInsertionPointAfterDef()); |
| 4582 | Value *NewLogicOp; |
| 4583 | if (IsBinaryOp) |
| 4584 | NewLogicOp = Builder.CreateBinOp(Opc: NewOpc, LHS: Op0, RHS: Op1, Name: I.getName() + ".not" ); |
| 4585 | else |
| 4586 | NewLogicOp = |
| 4587 | Builder.CreateLogicalOp(Opc: NewOpc, Cond1: Op0, Cond2: Op1, Name: I.getName() + ".not" ); |
| 4588 | |
| 4589 | replaceInstUsesWith(I, V: NewLogicOp); |
| 4590 | // We can not just create an outer `not`, it will most likely be immediately |
| 4591 | // folded back, reconstructing our initial pattern, and causing an |
| 4592 | // infinite combine loop, so immediately manually fold it away. |
| 4593 | freelyInvertAllUsersOf(V: NewLogicOp); |
| 4594 | return true; |
| 4595 | } |
| 4596 | |
| 4597 | // Transform |
| 4598 | // z = (~x) &/| y |
| 4599 | // into: |
| 4600 | // z = ~(x |/& (~y)) |
| 4601 | // iff y is free to invert and all uses of z can be freely updated. |
| 4602 | bool InstCombinerImpl::sinkNotIntoOtherHandOfLogicalOp(Instruction &I) { |
| 4603 | Value *Op0, *Op1; |
| 4604 | if (!match(V: &I, P: m_LogicalOp(L: m_Value(V&: Op0), R: m_Value(V&: Op1)))) |
| 4605 | return false; |
| 4606 | Instruction::BinaryOps NewOpc = |
| 4607 | match(V: &I, P: m_LogicalAnd()) ? Instruction::Or : Instruction::And; |
| 4608 | bool IsBinaryOp = isa<BinaryOperator>(Val: I); |
| 4609 | |
| 4610 | Value *NotOp0 = nullptr; |
| 4611 | Value *NotOp1 = nullptr; |
| 4612 | Value **OpToInvert = nullptr; |
| 4613 | if (match(V: Op0, P: m_Not(V: m_Value(V&: NotOp0))) && canFreelyInvert(IC&: *this, Op: Op1, IgnoredUser: &I)) { |
| 4614 | Op0 = NotOp0; |
| 4615 | OpToInvert = &Op1; |
| 4616 | } else if (match(V: Op1, P: m_Not(V: m_Value(V&: NotOp1))) && |
| 4617 | canFreelyInvert(IC&: *this, Op: Op0, IgnoredUser: &I)) { |
| 4618 | Op1 = NotOp1; |
| 4619 | OpToInvert = &Op0; |
| 4620 | } else |
| 4621 | return false; |
| 4622 | |
| 4623 | // And can our users be adapted? |
| 4624 | if (!InstCombiner::canFreelyInvertAllUsersOf(V: &I, /*IgnoredUser=*/nullptr)) |
| 4625 | return false; |
| 4626 | |
| 4627 | *OpToInvert = freelyInvert(IC&: *this, Op: *OpToInvert, IgnoredUser: &I); |
| 4628 | |
| 4629 | Builder.SetInsertPoint(*I.getInsertionPointAfterDef()); |
| 4630 | Value *NewBinOp; |
| 4631 | if (IsBinaryOp) |
| 4632 | NewBinOp = Builder.CreateBinOp(Opc: NewOpc, LHS: Op0, RHS: Op1, Name: I.getName() + ".not" ); |
| 4633 | else |
| 4634 | NewBinOp = Builder.CreateLogicalOp(Opc: NewOpc, Cond1: Op0, Cond2: Op1, Name: I.getName() + ".not" ); |
| 4635 | replaceInstUsesWith(I, V: NewBinOp); |
| 4636 | // We can not just create an outer `not`, it will most likely be immediately |
| 4637 | // folded back, reconstructing our initial pattern, and causing an |
| 4638 | // infinite combine loop, so immediately manually fold it away. |
| 4639 | freelyInvertAllUsersOf(V: NewBinOp); |
| 4640 | return true; |
| 4641 | } |
| 4642 | |
| 4643 | Instruction *InstCombinerImpl::foldNot(BinaryOperator &I) { |
| 4644 | Value *NotOp; |
| 4645 | if (!match(V: &I, P: m_Not(V: m_Value(V&: NotOp)))) |
| 4646 | return nullptr; |
| 4647 | |
| 4648 | // Apply DeMorgan's Law for 'nand' / 'nor' logic with an inverted operand. |
| 4649 | // We must eliminate the and/or (one-use) for these transforms to not increase |
| 4650 | // the instruction count. |
| 4651 | // |
| 4652 | // ~(~X & Y) --> (X | ~Y) |
| 4653 | // ~(Y & ~X) --> (X | ~Y) |
| 4654 | // |
| 4655 | // Note: The logical matches do not check for the commuted patterns because |
| 4656 | // those are handled via SimplifySelectsFeedingBinaryOp(). |
| 4657 | Type *Ty = I.getType(); |
| 4658 | Value *X, *Y; |
| 4659 | if (match(V: NotOp, P: m_OneUse(SubPattern: m_c_And(L: m_Not(V: m_Value(V&: X)), R: m_Value(V&: Y))))) { |
| 4660 | Value *NotY = Builder.CreateNot(V: Y, Name: Y->getName() + ".not" ); |
| 4661 | return BinaryOperator::CreateOr(V1: X, V2: NotY); |
| 4662 | } |
| 4663 | if (match(V: NotOp, P: m_OneUse(SubPattern: m_LogicalAnd(L: m_Not(V: m_Value(V&: X)), R: m_Value(V&: Y))))) { |
| 4664 | Value *NotY = Builder.CreateNot(V: Y, Name: Y->getName() + ".not" ); |
| 4665 | return SelectInst::Create(C: X, S1: ConstantInt::getTrue(Ty), S2: NotY); |
| 4666 | } |
| 4667 | |
| 4668 | // ~(~X | Y) --> (X & ~Y) |
| 4669 | // ~(Y | ~X) --> (X & ~Y) |
| 4670 | if (match(V: NotOp, P: m_OneUse(SubPattern: m_c_Or(L: m_Not(V: m_Value(V&: X)), R: m_Value(V&: Y))))) { |
| 4671 | Value *NotY = Builder.CreateNot(V: Y, Name: Y->getName() + ".not" ); |
| 4672 | return BinaryOperator::CreateAnd(V1: X, V2: NotY); |
| 4673 | } |
| 4674 | if (match(V: NotOp, P: m_OneUse(SubPattern: m_LogicalOr(L: m_Not(V: m_Value(V&: X)), R: m_Value(V&: Y))))) { |
| 4675 | Value *NotY = Builder.CreateNot(V: Y, Name: Y->getName() + ".not" ); |
| 4676 | return SelectInst::Create(C: X, S1: NotY, S2: ConstantInt::getFalse(Ty)); |
| 4677 | } |
| 4678 | |
| 4679 | // Is this a 'not' (~) fed by a binary operator? |
| 4680 | BinaryOperator *NotVal; |
| 4681 | if (match(V: NotOp, P: m_BinOp(I&: NotVal))) { |
| 4682 | // ~((-X) | Y) --> (X - 1) & (~Y) |
| 4683 | if (match(V: NotVal, |
| 4684 | P: m_OneUse(SubPattern: m_c_Or(L: m_OneUse(SubPattern: m_Neg(V: m_Value(V&: X))), R: m_Value(V&: Y))))) { |
| 4685 | Value *DecX = Builder.CreateAdd(LHS: X, RHS: ConstantInt::getAllOnesValue(Ty)); |
| 4686 | Value *NotY = Builder.CreateNot(V: Y); |
| 4687 | return BinaryOperator::CreateAnd(V1: DecX, V2: NotY); |
| 4688 | } |
| 4689 | |
| 4690 | // ~(~X >>s Y) --> (X >>s Y) |
| 4691 | if (match(V: NotVal, P: m_AShr(L: m_Not(V: m_Value(V&: X)), R: m_Value(V&: Y)))) |
| 4692 | return BinaryOperator::CreateAShr(V1: X, V2: Y); |
| 4693 | |
| 4694 | // Treat lshr with non-negative operand as ashr. |
| 4695 | // ~(~X >>u Y) --> (X >>s Y) iff X is known negative |
| 4696 | if (match(V: NotVal, P: m_LShr(L: m_Not(V: m_Value(V&: X)), R: m_Value(V&: Y))) && |
| 4697 | isKnownNegative(V: X, SQ: SQ.getWithInstruction(I: NotVal))) |
| 4698 | return BinaryOperator::CreateAShr(V1: X, V2: Y); |
| 4699 | |
| 4700 | // Bit-hack form of a signbit test for iN type: |
| 4701 | // ~(X >>s (N - 1)) --> sext i1 (X > -1) to iN |
| 4702 | unsigned FullShift = Ty->getScalarSizeInBits() - 1; |
| 4703 | if (match(V: NotVal, P: m_OneUse(SubPattern: m_AShr(L: m_Value(V&: X), R: m_SpecificInt(V: FullShift))))) { |
| 4704 | Value *IsNotNeg = Builder.CreateIsNotNeg(Arg: X, Name: "isnotneg" ); |
| 4705 | return new SExtInst(IsNotNeg, Ty); |
| 4706 | } |
| 4707 | |
| 4708 | // If we are inverting a right-shifted constant, we may be able to eliminate |
| 4709 | // the 'not' by inverting the constant and using the opposite shift type. |
| 4710 | // Canonicalization rules ensure that only a negative constant uses 'ashr', |
| 4711 | // but we must check that in case that transform has not fired yet. |
| 4712 | |
| 4713 | // ~(C >>s Y) --> ~C >>u Y (when inverting the replicated sign bits) |
| 4714 | Constant *C; |
| 4715 | if (match(V: NotVal, P: m_AShr(L: m_Constant(C), R: m_Value(V&: Y))) && |
| 4716 | match(V: C, P: m_Negative())) |
| 4717 | return BinaryOperator::CreateLShr(V1: ConstantExpr::getNot(C), V2: Y); |
| 4718 | |
| 4719 | // ~(C >>u Y) --> ~C >>s Y (when inverting the replicated sign bits) |
| 4720 | if (match(V: NotVal, P: m_LShr(L: m_Constant(C), R: m_Value(V&: Y))) && |
| 4721 | match(V: C, P: m_NonNegative())) |
| 4722 | return BinaryOperator::CreateAShr(V1: ConstantExpr::getNot(C), V2: Y); |
| 4723 | |
| 4724 | // ~(X + C) --> ~C - X |
| 4725 | if (match(V: NotVal, P: m_Add(L: m_Value(V&: X), R: m_ImmConstant(C)))) |
| 4726 | return BinaryOperator::CreateSub(V1: ConstantExpr::getNot(C), V2: X); |
| 4727 | |
| 4728 | // ~(X - Y) --> ~X + Y |
| 4729 | // FIXME: is it really beneficial to sink the `not` here? |
| 4730 | if (match(V: NotVal, P: m_Sub(L: m_Value(V&: X), R: m_Value(V&: Y)))) |
| 4731 | if (isa<Constant>(Val: X) || NotVal->hasOneUse()) |
| 4732 | return BinaryOperator::CreateAdd(V1: Builder.CreateNot(V: X), V2: Y); |
| 4733 | |
| 4734 | // ~(~X + Y) --> X - Y |
| 4735 | if (match(V: NotVal, P: m_c_Add(L: m_Not(V: m_Value(V&: X)), R: m_Value(V&: Y)))) |
| 4736 | return BinaryOperator::CreateWithCopiedFlags(Opc: Instruction::Sub, V1: X, V2: Y, |
| 4737 | CopyO: NotVal); |
| 4738 | } |
| 4739 | |
| 4740 | // not (cmp A, B) = !cmp A, B |
| 4741 | CmpPredicate Pred; |
| 4742 | if (match(V: NotOp, P: m_Cmp(Pred, L: m_Value(), R: m_Value())) && |
| 4743 | (NotOp->hasOneUse() || |
| 4744 | InstCombiner::canFreelyInvertAllUsersOf(V: cast<Instruction>(Val: NotOp), |
| 4745 | /*IgnoredUser=*/nullptr))) { |
| 4746 | cast<CmpInst>(Val: NotOp)->setPredicate(CmpInst::getInversePredicate(pred: Pred)); |
| 4747 | freelyInvertAllUsersOf(V: NotOp); |
| 4748 | return &I; |
| 4749 | } |
| 4750 | |
| 4751 | // Move a 'not' ahead of casts of a bool to enable logic reduction: |
| 4752 | // not (bitcast (sext i1 X)) --> bitcast (sext (not i1 X)) |
| 4753 | if (match(V: NotOp, P: m_OneUse(SubPattern: m_BitCast(Op: m_OneUse(SubPattern: m_SExt(Op: m_Value(V&: X)))))) && X->getType()->isIntOrIntVectorTy(BitWidth: 1)) { |
| 4754 | Type *SextTy = cast<BitCastOperator>(Val: NotOp)->getSrcTy(); |
| 4755 | Value *NotX = Builder.CreateNot(V: X); |
| 4756 | Value *Sext = Builder.CreateSExt(V: NotX, DestTy: SextTy); |
| 4757 | return new BitCastInst(Sext, Ty); |
| 4758 | } |
| 4759 | |
| 4760 | if (auto *NotOpI = dyn_cast<Instruction>(Val: NotOp)) |
| 4761 | if (sinkNotIntoLogicalOp(I&: *NotOpI)) |
| 4762 | return &I; |
| 4763 | |
| 4764 | // Eliminate a bitwise 'not' op of 'not' min/max by inverting the min/max: |
| 4765 | // ~min(~X, ~Y) --> max(X, Y) |
| 4766 | // ~max(~X, Y) --> min(X, ~Y) |
| 4767 | auto *II = dyn_cast<IntrinsicInst>(Val: NotOp); |
| 4768 | if (II && II->hasOneUse()) { |
| 4769 | if (match(V: NotOp, P: m_c_MaxOrMin(L: m_Not(V: m_Value(V&: X)), R: m_Value(V&: Y)))) { |
| 4770 | Intrinsic::ID InvID = getInverseMinMaxIntrinsic(MinMaxID: II->getIntrinsicID()); |
| 4771 | Value *NotY = Builder.CreateNot(V: Y); |
| 4772 | Value *InvMaxMin = Builder.CreateBinaryIntrinsic(ID: InvID, LHS: X, RHS: NotY); |
| 4773 | return replaceInstUsesWith(I, V: InvMaxMin); |
| 4774 | } |
| 4775 | |
| 4776 | if (II->getIntrinsicID() == Intrinsic::is_fpclass) { |
| 4777 | ConstantInt *ClassMask = cast<ConstantInt>(Val: II->getArgOperand(i: 1)); |
| 4778 | II->setArgOperand( |
| 4779 | i: 1, v: ConstantInt::get(Ty: ClassMask->getType(), |
| 4780 | V: ~ClassMask->getZExtValue() & fcAllFlags)); |
| 4781 | return replaceInstUsesWith(I, V: II); |
| 4782 | } |
| 4783 | } |
| 4784 | |
| 4785 | if (NotOp->hasOneUse()) { |
| 4786 | // Pull 'not' into operands of select if both operands are one-use compares |
| 4787 | // or one is one-use compare and the other one is a constant. |
| 4788 | // Inverting the predicates eliminates the 'not' operation. |
| 4789 | // Example: |
| 4790 | // not (select ?, (cmp TPred, ?, ?), (cmp FPred, ?, ?) --> |
| 4791 | // select ?, (cmp InvTPred, ?, ?), (cmp InvFPred, ?, ?) |
| 4792 | // not (select ?, (cmp TPred, ?, ?), true --> |
| 4793 | // select ?, (cmp InvTPred, ?, ?), false |
| 4794 | if (auto *Sel = dyn_cast<SelectInst>(Val: NotOp)) { |
| 4795 | Value *TV = Sel->getTrueValue(); |
| 4796 | Value *FV = Sel->getFalseValue(); |
| 4797 | auto *CmpT = dyn_cast<CmpInst>(Val: TV); |
| 4798 | auto *CmpF = dyn_cast<CmpInst>(Val: FV); |
| 4799 | bool InvertibleT = (CmpT && CmpT->hasOneUse()) || isa<Constant>(Val: TV); |
| 4800 | bool InvertibleF = (CmpF && CmpF->hasOneUse()) || isa<Constant>(Val: FV); |
| 4801 | if (InvertibleT && InvertibleF) { |
| 4802 | if (CmpT) |
| 4803 | CmpT->setPredicate(CmpT->getInversePredicate()); |
| 4804 | else |
| 4805 | Sel->setTrueValue(ConstantExpr::getNot(C: cast<Constant>(Val: TV))); |
| 4806 | if (CmpF) |
| 4807 | CmpF->setPredicate(CmpF->getInversePredicate()); |
| 4808 | else |
| 4809 | Sel->setFalseValue(ConstantExpr::getNot(C: cast<Constant>(Val: FV))); |
| 4810 | return replaceInstUsesWith(I, V: Sel); |
| 4811 | } |
| 4812 | } |
| 4813 | } |
| 4814 | |
| 4815 | if (Instruction *NewXor = foldNotXor(I, Builder)) |
| 4816 | return NewXor; |
| 4817 | |
| 4818 | // TODO: Could handle multi-use better by checking if all uses of NotOp (other |
| 4819 | // than I) can be inverted. |
| 4820 | if (Value *R = getFreelyInverted(V: NotOp, WillInvertAllUses: NotOp->hasOneUse(), Builder: &Builder)) |
| 4821 | return replaceInstUsesWith(I, V: R); |
| 4822 | |
| 4823 | return nullptr; |
| 4824 | } |
| 4825 | |
| 4826 | // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches |
| 4827 | // here. We should standardize that construct where it is needed or choose some |
| 4828 | // other way to ensure that commutated variants of patterns are not missed. |
| 4829 | Instruction *InstCombinerImpl::visitXor(BinaryOperator &I) { |
| 4830 | if (Value *V = simplifyXorInst(LHS: I.getOperand(i_nocapture: 0), RHS: I.getOperand(i_nocapture: 1), |
| 4831 | Q: SQ.getWithInstruction(I: &I))) |
| 4832 | return replaceInstUsesWith(I, V); |
| 4833 | |
| 4834 | if (SimplifyAssociativeOrCommutative(I)) |
| 4835 | return &I; |
| 4836 | |
| 4837 | if (Instruction *X = foldVectorBinop(Inst&: I)) |
| 4838 | return X; |
| 4839 | |
| 4840 | if (Instruction *Phi = foldBinopWithPhiOperands(BO&: I)) |
| 4841 | return Phi; |
| 4842 | |
| 4843 | if (Instruction *NewXor = foldXorToXor(I, Builder)) |
| 4844 | return NewXor; |
| 4845 | |
| 4846 | // (A&B)^(A&C) -> A&(B^C) etc |
| 4847 | if (Value *V = foldUsingDistributiveLaws(I)) |
| 4848 | return replaceInstUsesWith(I, V); |
| 4849 | |
| 4850 | // See if we can simplify any instructions used by the instruction whose sole |
| 4851 | // purpose is to compute bits we don't care about. |
| 4852 | if (SimplifyDemandedInstructionBits(Inst&: I)) |
| 4853 | return &I; |
| 4854 | |
| 4855 | if (Instruction *R = foldNot(I)) |
| 4856 | return R; |
| 4857 | |
| 4858 | if (Instruction *R = foldBinOpShiftWithShift(I)) |
| 4859 | return R; |
| 4860 | |
| 4861 | Value *Op0 = I.getOperand(i_nocapture: 0), *Op1 = I.getOperand(i_nocapture: 1); |
| 4862 | Value *X, *Y, *M; |
| 4863 | |
| 4864 | // (X | Y) ^ M -> (X ^ M) ^ Y |
| 4865 | // (X | Y) ^ M -> (Y ^ M) ^ X |
| 4866 | if (match(V: &I, P: m_c_Xor(L: m_OneUse(SubPattern: m_DisjointOr(L: m_Value(V&: X), R: m_Value(V&: Y))), |
| 4867 | R: m_Value(V&: M)))) { |
| 4868 | if (Value *XorAC = simplifyXorInst(LHS: X, RHS: M, Q: SQ.getWithInstruction(I: &I))) |
| 4869 | return BinaryOperator::CreateXor(V1: XorAC, V2: Y); |
| 4870 | |
| 4871 | if (Value *XorBC = simplifyXorInst(LHS: Y, RHS: M, Q: SQ.getWithInstruction(I: &I))) |
| 4872 | return BinaryOperator::CreateXor(V1: XorBC, V2: X); |
| 4873 | } |
| 4874 | |
| 4875 | // Fold (X & M) ^ (Y & ~M) -> (X & M) | (Y & ~M) |
| 4876 | // This it a special case in haveNoCommonBitsSet, but the computeKnownBits |
| 4877 | // calls in there are unnecessary as SimplifyDemandedInstructionBits should |
| 4878 | // have already taken care of those cases. |
| 4879 | if (match(V: &I, P: m_c_Xor(L: m_c_And(L: m_Not(V: m_Value(V&: M)), R: m_Value()), |
| 4880 | R: m_c_And(L: m_Deferred(V: M), R: m_Value())))) { |
| 4881 | if (isGuaranteedNotToBeUndef(V: M)) |
| 4882 | return BinaryOperator::CreateDisjointOr(V1: Op0, V2: Op1); |
| 4883 | else |
| 4884 | return BinaryOperator::CreateOr(V1: Op0, V2: Op1); |
| 4885 | } |
| 4886 | |
| 4887 | if (Instruction *Xor = visitMaskedMerge(I, Builder)) |
| 4888 | return Xor; |
| 4889 | |
| 4890 | Constant *C1; |
| 4891 | if (match(V: Op1, P: m_Constant(C&: C1))) { |
| 4892 | Constant *C2; |
| 4893 | |
| 4894 | if (match(V: Op0, P: m_OneUse(SubPattern: m_Or(L: m_Value(V&: X), R: m_ImmConstant(C&: C2)))) && |
| 4895 | match(V: C1, P: m_ImmConstant())) { |
| 4896 | // (X | C2) ^ C1 --> (X & ~C2) ^ (C1^C2) |
| 4897 | C2 = Constant::replaceUndefsWith( |
| 4898 | C: C2, Replacement: Constant::getAllOnesValue(Ty: C2->getType()->getScalarType())); |
| 4899 | Value *And = Builder.CreateAnd( |
| 4900 | LHS: X, RHS: Constant::mergeUndefsWith(C: ConstantExpr::getNot(C: C2), Other: C1)); |
| 4901 | return BinaryOperator::CreateXor( |
| 4902 | V1: And, V2: Constant::mergeUndefsWith(C: ConstantExpr::getXor(C1, C2), Other: C1)); |
| 4903 | } |
| 4904 | |
| 4905 | // Use DeMorgan and reassociation to eliminate a 'not' op. |
| 4906 | if (match(V: Op0, P: m_OneUse(SubPattern: m_Or(L: m_Not(V: m_Value(V&: X)), R: m_Constant(C&: C2))))) { |
| 4907 | // (~X | C2) ^ C1 --> ((X & ~C2) ^ -1) ^ C1 --> (X & ~C2) ^ ~C1 |
| 4908 | Value *And = Builder.CreateAnd(LHS: X, RHS: ConstantExpr::getNot(C: C2)); |
| 4909 | return BinaryOperator::CreateXor(V1: And, V2: ConstantExpr::getNot(C: C1)); |
| 4910 | } |
| 4911 | if (match(V: Op0, P: m_OneUse(SubPattern: m_And(L: m_Not(V: m_Value(V&: X)), R: m_Constant(C&: C2))))) { |
| 4912 | // (~X & C2) ^ C1 --> ((X | ~C2) ^ -1) ^ C1 --> (X | ~C2) ^ ~C1 |
| 4913 | Value *Or = Builder.CreateOr(LHS: X, RHS: ConstantExpr::getNot(C: C2)); |
| 4914 | return BinaryOperator::CreateXor(V1: Or, V2: ConstantExpr::getNot(C: C1)); |
| 4915 | } |
| 4916 | |
| 4917 | // Convert xor ([trunc] (ashr X, BW-1)), C => |
| 4918 | // select(X >s -1, C, ~C) |
| 4919 | // The ashr creates "AllZeroOrAllOne's", which then optionally inverses the |
| 4920 | // constant depending on whether this input is less than 0. |
| 4921 | const APInt *CA; |
| 4922 | if (match(V: Op0, P: m_OneUse(SubPattern: m_TruncOrSelf( |
| 4923 | Op: m_AShr(L: m_Value(V&: X), R: m_APIntAllowPoison(Res&: CA))))) && |
| 4924 | *CA == X->getType()->getScalarSizeInBits() - 1 && |
| 4925 | !match(V: C1, P: m_AllOnes())) { |
| 4926 | assert(!C1->isZeroValue() && "Unexpected xor with 0" ); |
| 4927 | Value *IsNotNeg = Builder.CreateIsNotNeg(Arg: X); |
| 4928 | return SelectInst::Create(C: IsNotNeg, S1: Op1, S2: Builder.CreateNot(V: Op1)); |
| 4929 | } |
| 4930 | } |
| 4931 | |
| 4932 | Type *Ty = I.getType(); |
| 4933 | { |
| 4934 | const APInt *RHSC; |
| 4935 | if (match(V: Op1, P: m_APInt(Res&: RHSC))) { |
| 4936 | Value *X; |
| 4937 | const APInt *C; |
| 4938 | // (C - X) ^ signmaskC --> (C + signmaskC) - X |
| 4939 | if (RHSC->isSignMask() && match(V: Op0, P: m_Sub(L: m_APInt(Res&: C), R: m_Value(V&: X)))) |
| 4940 | return BinaryOperator::CreateSub(V1: ConstantInt::get(Ty, V: *C + *RHSC), V2: X); |
| 4941 | |
| 4942 | // (X + C) ^ signmaskC --> X + (C + signmaskC) |
| 4943 | if (RHSC->isSignMask() && match(V: Op0, P: m_Add(L: m_Value(V&: X), R: m_APInt(Res&: C)))) |
| 4944 | return BinaryOperator::CreateAdd(V1: X, V2: ConstantInt::get(Ty, V: *C + *RHSC)); |
| 4945 | |
| 4946 | // (X | C) ^ RHSC --> X ^ (C ^ RHSC) iff X & C == 0 |
| 4947 | if (match(V: Op0, P: m_Or(L: m_Value(V&: X), R: m_APInt(Res&: C))) && |
| 4948 | MaskedValueIsZero(V: X, Mask: *C, CxtI: &I)) |
| 4949 | return BinaryOperator::CreateXor(V1: X, V2: ConstantInt::get(Ty, V: *C ^ *RHSC)); |
| 4950 | |
| 4951 | // When X is a power-of-two or zero and zero input is poison: |
| 4952 | // ctlz(i32 X) ^ 31 --> cttz(X) |
| 4953 | // cttz(i32 X) ^ 31 --> ctlz(X) |
| 4954 | auto *II = dyn_cast<IntrinsicInst>(Val: Op0); |
| 4955 | if (II && II->hasOneUse() && *RHSC == Ty->getScalarSizeInBits() - 1) { |
| 4956 | Intrinsic::ID IID = II->getIntrinsicID(); |
| 4957 | if ((IID == Intrinsic::ctlz || IID == Intrinsic::cttz) && |
| 4958 | match(V: II->getArgOperand(i: 1), P: m_One()) && |
| 4959 | isKnownToBeAPowerOfTwo(V: II->getArgOperand(i: 0), /*OrZero */ true)) { |
| 4960 | IID = (IID == Intrinsic::ctlz) ? Intrinsic::cttz : Intrinsic::ctlz; |
| 4961 | Function *F = |
| 4962 | Intrinsic::getOrInsertDeclaration(M: II->getModule(), id: IID, Tys: Ty); |
| 4963 | return CallInst::Create(Func: F, Args: {II->getArgOperand(i: 0), Builder.getTrue()}); |
| 4964 | } |
| 4965 | } |
| 4966 | |
| 4967 | // If RHSC is inverting the remaining bits of shifted X, |
| 4968 | // canonicalize to a 'not' before the shift to help SCEV and codegen: |
| 4969 | // (X << C) ^ RHSC --> ~X << C |
| 4970 | if (match(V: Op0, P: m_OneUse(SubPattern: m_Shl(L: m_Value(V&: X), R: m_APInt(Res&: C)))) && |
| 4971 | *RHSC == APInt::getAllOnes(numBits: Ty->getScalarSizeInBits()).shl(ShiftAmt: *C)) { |
| 4972 | Value *NotX = Builder.CreateNot(V: X); |
| 4973 | return BinaryOperator::CreateShl(V1: NotX, V2: ConstantInt::get(Ty, V: *C)); |
| 4974 | } |
| 4975 | // (X >>u C) ^ RHSC --> ~X >>u C |
| 4976 | if (match(V: Op0, P: m_OneUse(SubPattern: m_LShr(L: m_Value(V&: X), R: m_APInt(Res&: C)))) && |
| 4977 | *RHSC == APInt::getAllOnes(numBits: Ty->getScalarSizeInBits()).lshr(ShiftAmt: *C)) { |
| 4978 | Value *NotX = Builder.CreateNot(V: X); |
| 4979 | return BinaryOperator::CreateLShr(V1: NotX, V2: ConstantInt::get(Ty, V: *C)); |
| 4980 | } |
| 4981 | // TODO: We could handle 'ashr' here as well. That would be matching |
| 4982 | // a 'not' op and moving it before the shift. Doing that requires |
| 4983 | // preventing the inverse fold in canShiftBinOpWithConstantRHS(). |
| 4984 | } |
| 4985 | |
| 4986 | // If we are XORing the sign bit of a floating-point value, convert |
| 4987 | // this to fneg, then cast back to integer. |
| 4988 | // |
| 4989 | // This is generous interpretation of noimplicitfloat, this is not a true |
| 4990 | // floating-point operation. |
| 4991 | // |
| 4992 | // Assumes any IEEE-represented type has the sign bit in the high bit. |
| 4993 | // TODO: Unify with APInt matcher. This version allows undef unlike m_APInt |
| 4994 | Value *CastOp; |
| 4995 | if (match(V: Op0, P: m_ElementWiseBitCast(Op: m_Value(V&: CastOp))) && |
| 4996 | match(V: Op1, P: m_SignMask()) && |
| 4997 | !Builder.GetInsertBlock()->getParent()->hasFnAttribute( |
| 4998 | Kind: Attribute::NoImplicitFloat)) { |
| 4999 | Type *EltTy = CastOp->getType()->getScalarType(); |
| 5000 | if (EltTy->isFloatingPointTy() && |
| 5001 | APFloat::hasSignBitInMSB(EltTy->getFltSemantics())) { |
| 5002 | Value *FNeg = Builder.CreateFNeg(V: CastOp); |
| 5003 | return new BitCastInst(FNeg, I.getType()); |
| 5004 | } |
| 5005 | } |
| 5006 | } |
| 5007 | |
| 5008 | // FIXME: This should not be limited to scalar (pull into APInt match above). |
| 5009 | { |
| 5010 | Value *X; |
| 5011 | ConstantInt *C1, *C2, *C3; |
| 5012 | // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3) |
| 5013 | if (match(V: Op1, P: m_ConstantInt(CI&: C3)) && |
| 5014 | match(V: Op0, P: m_LShr(L: m_Xor(L: m_Value(V&: X), R: m_ConstantInt(CI&: C1)), |
| 5015 | R: m_ConstantInt(CI&: C2))) && |
| 5016 | Op0->hasOneUse()) { |
| 5017 | // fold (C1 >> C2) ^ C3 |
| 5018 | APInt FoldConst = C1->getValue().lshr(ShiftAmt: C2->getValue()); |
| 5019 | FoldConst ^= C3->getValue(); |
| 5020 | // Prepare the two operands. |
| 5021 | auto *Opnd0 = Builder.CreateLShr(LHS: X, RHS: C2); |
| 5022 | Opnd0->takeName(V: Op0); |
| 5023 | return BinaryOperator::CreateXor(V1: Opnd0, V2: ConstantInt::get(Ty, V: FoldConst)); |
| 5024 | } |
| 5025 | } |
| 5026 | |
| 5027 | if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I)) |
| 5028 | return FoldedLogic; |
| 5029 | |
| 5030 | // Y ^ (X | Y) --> X & ~Y |
| 5031 | // Y ^ (Y | X) --> X & ~Y |
| 5032 | if (match(V: Op1, P: m_OneUse(SubPattern: m_c_Or(L: m_Value(V&: X), R: m_Specific(V: Op0))))) |
| 5033 | return BinaryOperator::CreateAnd(V1: X, V2: Builder.CreateNot(V: Op0)); |
| 5034 | // (X | Y) ^ Y --> X & ~Y |
| 5035 | // (Y | X) ^ Y --> X & ~Y |
| 5036 | if (match(V: Op0, P: m_OneUse(SubPattern: m_c_Or(L: m_Value(V&: X), R: m_Specific(V: Op1))))) |
| 5037 | return BinaryOperator::CreateAnd(V1: X, V2: Builder.CreateNot(V: Op1)); |
| 5038 | |
| 5039 | // Y ^ (X & Y) --> ~X & Y |
| 5040 | // Y ^ (Y & X) --> ~X & Y |
| 5041 | if (match(V: Op1, P: m_OneUse(SubPattern: m_c_And(L: m_Value(V&: X), R: m_Specific(V: Op0))))) |
| 5042 | return BinaryOperator::CreateAnd(V1: Op0, V2: Builder.CreateNot(V: X)); |
| 5043 | // (X & Y) ^ Y --> ~X & Y |
| 5044 | // (Y & X) ^ Y --> ~X & Y |
| 5045 | // Canonical form is (X & C) ^ C; don't touch that. |
| 5046 | // TODO: A 'not' op is better for analysis and codegen, but demanded bits must |
| 5047 | // be fixed to prefer that (otherwise we get infinite looping). |
| 5048 | if (!match(V: Op1, P: m_Constant()) && |
| 5049 | match(V: Op0, P: m_OneUse(SubPattern: m_c_And(L: m_Value(V&: X), R: m_Specific(V: Op1))))) |
| 5050 | return BinaryOperator::CreateAnd(V1: Op1, V2: Builder.CreateNot(V: X)); |
| 5051 | |
| 5052 | Value *A, *B, *C; |
| 5053 | // (A ^ B) ^ (A | C) --> (~A & C) ^ B -- There are 4 commuted variants. |
| 5054 | if (match(V: &I, P: m_c_Xor(L: m_OneUse(SubPattern: m_Xor(L: m_Value(V&: A), R: m_Value(V&: B))), |
| 5055 | R: m_OneUse(SubPattern: m_c_Or(L: m_Deferred(V: A), R: m_Value(V&: C)))))) |
| 5056 | return BinaryOperator::CreateXor( |
| 5057 | V1: Builder.CreateAnd(LHS: Builder.CreateNot(V: A), RHS: C), V2: B); |
| 5058 | |
| 5059 | // (A ^ B) ^ (B | C) --> (~B & C) ^ A -- There are 4 commuted variants. |
| 5060 | if (match(V: &I, P: m_c_Xor(L: m_OneUse(SubPattern: m_Xor(L: m_Value(V&: A), R: m_Value(V&: B))), |
| 5061 | R: m_OneUse(SubPattern: m_c_Or(L: m_Deferred(V: B), R: m_Value(V&: C)))))) |
| 5062 | return BinaryOperator::CreateXor( |
| 5063 | V1: Builder.CreateAnd(LHS: Builder.CreateNot(V: B), RHS: C), V2: A); |
| 5064 | |
| 5065 | // (A & B) ^ (A ^ B) -> (A | B) |
| 5066 | if (match(V: Op0, P: m_And(L: m_Value(V&: A), R: m_Value(V&: B))) && |
| 5067 | match(V: Op1, P: m_c_Xor(L: m_Specific(V: A), R: m_Specific(V: B)))) |
| 5068 | return BinaryOperator::CreateOr(V1: A, V2: B); |
| 5069 | // (A ^ B) ^ (A & B) -> (A | B) |
| 5070 | if (match(V: Op0, P: m_Xor(L: m_Value(V&: A), R: m_Value(V&: B))) && |
| 5071 | match(V: Op1, P: m_c_And(L: m_Specific(V: A), R: m_Specific(V: B)))) |
| 5072 | return BinaryOperator::CreateOr(V1: A, V2: B); |
| 5073 | |
| 5074 | // (A & ~B) ^ ~A -> ~(A & B) |
| 5075 | // (~B & A) ^ ~A -> ~(A & B) |
| 5076 | if (match(V: Op0, P: m_c_And(L: m_Value(V&: A), R: m_Not(V: m_Value(V&: B)))) && |
| 5077 | match(V: Op1, P: m_Not(V: m_Specific(V: A)))) |
| 5078 | return BinaryOperator::CreateNot(Op: Builder.CreateAnd(LHS: A, RHS: B)); |
| 5079 | |
| 5080 | // (~A & B) ^ A --> A | B -- There are 4 commuted variants. |
| 5081 | if (match(V: &I, P: m_c_Xor(L: m_c_And(L: m_Not(V: m_Value(V&: A)), R: m_Value(V&: B)), R: m_Deferred(V: A)))) |
| 5082 | return BinaryOperator::CreateOr(V1: A, V2: B); |
| 5083 | |
| 5084 | // (~A | B) ^ A --> ~(A & B) |
| 5085 | if (match(V: Op0, P: m_OneUse(SubPattern: m_c_Or(L: m_Not(V: m_Specific(V: Op1)), R: m_Value(V&: B))))) |
| 5086 | return BinaryOperator::CreateNot(Op: Builder.CreateAnd(LHS: Op1, RHS: B)); |
| 5087 | |
| 5088 | // A ^ (~A | B) --> ~(A & B) |
| 5089 | if (match(V: Op1, P: m_OneUse(SubPattern: m_c_Or(L: m_Not(V: m_Specific(V: Op0)), R: m_Value(V&: B))))) |
| 5090 | return BinaryOperator::CreateNot(Op: Builder.CreateAnd(LHS: Op0, RHS: B)); |
| 5091 | |
| 5092 | // (A | B) ^ (A | C) --> (B ^ C) & ~A -- There are 4 commuted variants. |
| 5093 | // TODO: Loosen one-use restriction if common operand is a constant. |
| 5094 | Value *D; |
| 5095 | if (match(V: Op0, P: m_OneUse(SubPattern: m_Or(L: m_Value(V&: A), R: m_Value(V&: B)))) && |
| 5096 | match(V: Op1, P: m_OneUse(SubPattern: m_Or(L: m_Value(V&: C), R: m_Value(V&: D))))) { |
| 5097 | if (B == C || B == D) |
| 5098 | std::swap(a&: A, b&: B); |
| 5099 | if (A == C) |
| 5100 | std::swap(a&: C, b&: D); |
| 5101 | if (A == D) { |
| 5102 | Value *NotA = Builder.CreateNot(V: A); |
| 5103 | return BinaryOperator::CreateAnd(V1: Builder.CreateXor(LHS: B, RHS: C), V2: NotA); |
| 5104 | } |
| 5105 | } |
| 5106 | |
| 5107 | // (A & B) ^ (A | C) --> A ? ~B : C -- There are 4 commuted variants. |
| 5108 | if (I.getType()->isIntOrIntVectorTy(BitWidth: 1) && |
| 5109 | match(V: &I, P: m_c_Xor(L: m_OneUse(SubPattern: m_LogicalAnd(L: m_Value(V&: A), R: m_Value(V&: B))), |
| 5110 | R: m_OneUse(SubPattern: m_LogicalOr(L: m_Value(V&: C), R: m_Value(V&: D)))))) { |
| 5111 | bool NeedFreeze = isa<SelectInst>(Val: Op0) && isa<SelectInst>(Val: Op1) && B == D; |
| 5112 | if (B == C || B == D) |
| 5113 | std::swap(a&: A, b&: B); |
| 5114 | if (A == C) |
| 5115 | std::swap(a&: C, b&: D); |
| 5116 | if (A == D) { |
| 5117 | if (NeedFreeze) |
| 5118 | A = Builder.CreateFreeze(V: A); |
| 5119 | Value *NotB = Builder.CreateNot(V: B); |
| 5120 | return SelectInst::Create(C: A, S1: NotB, S2: C); |
| 5121 | } |
| 5122 | } |
| 5123 | |
| 5124 | if (auto *LHS = dyn_cast<ICmpInst>(Val: I.getOperand(i_nocapture: 0))) |
| 5125 | if (auto *RHS = dyn_cast<ICmpInst>(Val: I.getOperand(i_nocapture: 1))) |
| 5126 | if (Value *V = foldXorOfICmps(LHS, RHS, I)) |
| 5127 | return replaceInstUsesWith(I, V); |
| 5128 | |
| 5129 | if (Instruction *CastedXor = foldCastedBitwiseLogic(I)) |
| 5130 | return CastedXor; |
| 5131 | |
| 5132 | if (Instruction *Abs = canonicalizeAbs(Xor&: I, Builder)) |
| 5133 | return Abs; |
| 5134 | |
| 5135 | // Otherwise, if all else failed, try to hoist the xor-by-constant: |
| 5136 | // (X ^ C) ^ Y --> (X ^ Y) ^ C |
| 5137 | // Just like we do in other places, we completely avoid the fold |
| 5138 | // for constantexprs, at least to avoid endless combine loop. |
| 5139 | if (match(V: &I, P: m_c_Xor(L: m_OneUse(SubPattern: m_Xor(L: m_CombineAnd(L: m_Value(V&: X), |
| 5140 | R: m_Unless(M: m_ConstantExpr())), |
| 5141 | R: m_ImmConstant(C&: C1))), |
| 5142 | R: m_Value(V&: Y)))) |
| 5143 | return BinaryOperator::CreateXor(V1: Builder.CreateXor(LHS: X, RHS: Y), V2: C1); |
| 5144 | |
| 5145 | if (Instruction *R = reassociateForUses(BO&: I, Builder)) |
| 5146 | return R; |
| 5147 | |
| 5148 | if (Instruction *Canonicalized = canonicalizeLogicFirst(I, Builder)) |
| 5149 | return Canonicalized; |
| 5150 | |
| 5151 | if (Instruction *Folded = foldLogicOfIsFPClass(BO&: I, Op0, Op1)) |
| 5152 | return Folded; |
| 5153 | |
| 5154 | if (Instruction *Folded = canonicalizeConditionalNegationViaMathToSelect(I)) |
| 5155 | return Folded; |
| 5156 | |
| 5157 | if (Instruction *Res = foldBinOpOfDisplacedShifts(I)) |
| 5158 | return Res; |
| 5159 | |
| 5160 | if (Instruction *Res = foldBitwiseLogicWithIntrinsics(I, Builder)) |
| 5161 | return Res; |
| 5162 | |
| 5163 | return nullptr; |
| 5164 | } |
| 5165 | |