1 | //===- InstCombineSimplifyDemanded.cpp ------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file contains logic for simplifying instructions based on information |
10 | // about how they are used. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "InstCombineInternal.h" |
15 | #include "llvm/Analysis/ValueTracking.h" |
16 | #include "llvm/IR/GetElementPtrTypeIterator.h" |
17 | #include "llvm/IR/IntrinsicInst.h" |
18 | #include "llvm/IR/PatternMatch.h" |
19 | #include "llvm/Support/KnownBits.h" |
20 | #include "llvm/Transforms/InstCombine/InstCombiner.h" |
21 | |
22 | using namespace llvm; |
23 | using namespace llvm::PatternMatch; |
24 | |
25 | #define DEBUG_TYPE "instcombine" |
26 | |
27 | static cl::opt<bool> |
28 | VerifyKnownBits("instcombine-verify-known-bits" , |
29 | cl::desc("Verify that computeKnownBits() and " |
30 | "SimplifyDemandedBits() are consistent" ), |
31 | cl::Hidden, cl::init(Val: false)); |
32 | |
33 | static cl::opt<unsigned> SimplifyDemandedVectorEltsDepthLimit( |
34 | "instcombine-simplify-vector-elts-depth" , |
35 | cl::desc( |
36 | "Depth limit when simplifying vector instructions and their operands" ), |
37 | cl::Hidden, cl::init(Val: 10)); |
38 | |
39 | /// Check to see if the specified operand of the specified instruction is a |
40 | /// constant integer. If so, check to see if there are any bits set in the |
41 | /// constant that are not demanded. If so, shrink the constant and return true. |
42 | static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, |
43 | const APInt &Demanded) { |
44 | assert(I && "No instruction?" ); |
45 | assert(OpNo < I->getNumOperands() && "Operand index too large" ); |
46 | |
47 | // The operand must be a constant integer or splat integer. |
48 | Value *Op = I->getOperand(i: OpNo); |
49 | const APInt *C; |
50 | if (!match(V: Op, P: m_APInt(Res&: C))) |
51 | return false; |
52 | |
53 | // If there are no bits set that aren't demanded, nothing to do. |
54 | if (C->isSubsetOf(RHS: Demanded)) |
55 | return false; |
56 | |
57 | // This instruction is producing bits that are not demanded. Shrink the RHS. |
58 | I->setOperand(i: OpNo, Val: ConstantInt::get(Ty: Op->getType(), V: *C & Demanded)); |
59 | |
60 | return true; |
61 | } |
62 | |
63 | /// Returns the bitwidth of the given scalar or pointer type. For vector types, |
64 | /// returns the element type's bitwidth. |
65 | static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { |
66 | if (unsigned BitWidth = Ty->getScalarSizeInBits()) |
67 | return BitWidth; |
68 | |
69 | return DL.getPointerTypeSizeInBits(Ty); |
70 | } |
71 | |
72 | /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if |
73 | /// the instruction has any properties that allow us to simplify its operands. |
74 | bool InstCombinerImpl::SimplifyDemandedInstructionBits(Instruction &Inst, |
75 | KnownBits &Known) { |
76 | APInt DemandedMask(APInt::getAllOnes(numBits: Known.getBitWidth())); |
77 | Value *V = SimplifyDemandedUseBits(I: &Inst, DemandedMask, Known, |
78 | Q: SQ.getWithInstruction(I: &Inst)); |
79 | if (!V) return false; |
80 | if (V == &Inst) return true; |
81 | replaceInstUsesWith(I&: Inst, V); |
82 | return true; |
83 | } |
84 | |
85 | /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if |
86 | /// the instruction has any properties that allow us to simplify its operands. |
87 | bool InstCombinerImpl::SimplifyDemandedInstructionBits(Instruction &Inst) { |
88 | KnownBits Known(getBitWidth(Ty: Inst.getType(), DL)); |
89 | return SimplifyDemandedInstructionBits(Inst, Known); |
90 | } |
91 | |
92 | /// This form of SimplifyDemandedBits simplifies the specified instruction |
93 | /// operand if possible, updating it in place. It returns true if it made any |
94 | /// change and false otherwise. |
95 | bool InstCombinerImpl::SimplifyDemandedBits(Instruction *I, unsigned OpNo, |
96 | const APInt &DemandedMask, |
97 | KnownBits &Known, |
98 | const SimplifyQuery &Q, |
99 | unsigned Depth) { |
100 | Use &U = I->getOperandUse(i: OpNo); |
101 | Value *V = U.get(); |
102 | if (isa<Constant>(Val: V)) { |
103 | llvm::computeKnownBits(V, Known, Q, Depth); |
104 | return false; |
105 | } |
106 | |
107 | Known.resetAll(); |
108 | if (DemandedMask.isZero()) { |
109 | // Not demanding any bits from V. |
110 | replaceUse(U, NewValue: UndefValue::get(T: V->getType())); |
111 | return true; |
112 | } |
113 | |
114 | Instruction *VInst = dyn_cast<Instruction>(Val: V); |
115 | if (!VInst) { |
116 | llvm::computeKnownBits(V, Known, Q, Depth); |
117 | return false; |
118 | } |
119 | |
120 | if (Depth == MaxAnalysisRecursionDepth) |
121 | return false; |
122 | |
123 | Value *NewVal; |
124 | if (VInst->hasOneUse()) { |
125 | // If the instruction has one use, we can directly simplify it. |
126 | NewVal = SimplifyDemandedUseBits(I: VInst, DemandedMask, Known, Q, Depth); |
127 | } else { |
128 | // If there are multiple uses of this instruction, then we can simplify |
129 | // VInst to some other value, but not modify the instruction. |
130 | NewVal = |
131 | SimplifyMultipleUseDemandedBits(I: VInst, DemandedMask, Known, Q, Depth); |
132 | } |
133 | if (!NewVal) return false; |
134 | if (Instruction* OpInst = dyn_cast<Instruction>(Val&: U)) |
135 | salvageDebugInfo(I&: *OpInst); |
136 | |
137 | replaceUse(U, NewValue: NewVal); |
138 | return true; |
139 | } |
140 | |
141 | /// This function attempts to replace V with a simpler value based on the |
142 | /// demanded bits. When this function is called, it is known that only the bits |
143 | /// set in DemandedMask of the result of V are ever used downstream. |
144 | /// Consequently, depending on the mask and V, it may be possible to replace V |
145 | /// with a constant or one of its operands. In such cases, this function does |
146 | /// the replacement and returns true. In all other cases, it returns false after |
147 | /// analyzing the expression and setting KnownOne and known to be one in the |
148 | /// expression. Known.Zero contains all the bits that are known to be zero in |
149 | /// the expression. These are provided to potentially allow the caller (which |
150 | /// might recursively be SimplifyDemandedBits itself) to simplify the |
151 | /// expression. |
152 | /// Known.One and Known.Zero always follow the invariant that: |
153 | /// Known.One & Known.Zero == 0. |
154 | /// That is, a bit can't be both 1 and 0. The bits in Known.One and Known.Zero |
155 | /// are accurate even for bits not in DemandedMask. Note |
156 | /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all |
157 | /// be the same. |
158 | /// |
159 | /// This returns null if it did not change anything and it permits no |
160 | /// simplification. This returns V itself if it did some simplification of V's |
161 | /// operands based on the information about what bits are demanded. This returns |
162 | /// some other non-null value if it found out that V is equal to another value |
163 | /// in the context where the specified bits are demanded, but not for all users. |
164 | Value *InstCombinerImpl::SimplifyDemandedUseBits(Instruction *I, |
165 | const APInt &DemandedMask, |
166 | KnownBits &Known, |
167 | const SimplifyQuery &Q, |
168 | unsigned Depth) { |
169 | assert(I != nullptr && "Null pointer of Value???" ); |
170 | assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth" ); |
171 | uint32_t BitWidth = DemandedMask.getBitWidth(); |
172 | Type *VTy = I->getType(); |
173 | assert( |
174 | (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) && |
175 | Known.getBitWidth() == BitWidth && |
176 | "Value *V, DemandedMask and Known must have same BitWidth" ); |
177 | |
178 | KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth); |
179 | |
180 | // Update flags after simplifying an operand based on the fact that some high |
181 | // order bits are not demanded. |
182 | auto disableWrapFlagsBasedOnUnusedHighBits = [](Instruction *I, |
183 | unsigned NLZ) { |
184 | if (NLZ > 0) { |
185 | // Disable the nsw and nuw flags here: We can no longer guarantee that |
186 | // we won't wrap after simplification. Removing the nsw/nuw flags is |
187 | // legal here because the top bit is not demanded. |
188 | I->setHasNoSignedWrap(false); |
189 | I->setHasNoUnsignedWrap(false); |
190 | } |
191 | return I; |
192 | }; |
193 | |
194 | // If the high-bits of an ADD/SUB/MUL are not demanded, then we do not care |
195 | // about the high bits of the operands. |
196 | auto simplifyOperandsBasedOnUnusedHighBits = [&](APInt &DemandedFromOps) { |
197 | unsigned NLZ = DemandedMask.countl_zero(); |
198 | // Right fill the mask of bits for the operands to demand the most |
199 | // significant bit and all those below it. |
200 | DemandedFromOps = APInt::getLowBitsSet(numBits: BitWidth, loBitsSet: BitWidth - NLZ); |
201 | if (ShrinkDemandedConstant(I, OpNo: 0, Demanded: DemandedFromOps) || |
202 | SimplifyDemandedBits(I, OpNo: 0, DemandedMask: DemandedFromOps, Known&: LHSKnown, Q, Depth: Depth + 1) || |
203 | ShrinkDemandedConstant(I, OpNo: 1, Demanded: DemandedFromOps) || |
204 | SimplifyDemandedBits(I, OpNo: 1, DemandedMask: DemandedFromOps, Known&: RHSKnown, Q, Depth: Depth + 1)) { |
205 | disableWrapFlagsBasedOnUnusedHighBits(I, NLZ); |
206 | return true; |
207 | } |
208 | return false; |
209 | }; |
210 | |
211 | switch (I->getOpcode()) { |
212 | default: |
213 | llvm::computeKnownBits(V: I, Known, Q, Depth); |
214 | break; |
215 | case Instruction::And: { |
216 | // If either the LHS or the RHS are Zero, the result is zero. |
217 | if (SimplifyDemandedBits(I, OpNo: 1, DemandedMask, Known&: RHSKnown, Q, Depth: Depth + 1) || |
218 | SimplifyDemandedBits(I, OpNo: 0, DemandedMask: DemandedMask & ~RHSKnown.Zero, Known&: LHSKnown, Q, |
219 | Depth: Depth + 1)) |
220 | return I; |
221 | |
222 | Known = analyzeKnownBitsFromAndXorOr(I: cast<Operator>(Val: I), KnownLHS: LHSKnown, KnownRHS: RHSKnown, |
223 | SQ: Q, Depth); |
224 | |
225 | // If the client is only demanding bits that we know, return the known |
226 | // constant. |
227 | if (DemandedMask.isSubsetOf(RHS: Known.Zero | Known.One)) |
228 | return Constant::getIntegerValue(Ty: VTy, V: Known.One); |
229 | |
230 | // If all of the demanded bits are known 1 on one side, return the other. |
231 | // These bits cannot contribute to the result of the 'and'. |
232 | if (DemandedMask.isSubsetOf(RHS: LHSKnown.Zero | RHSKnown.One)) |
233 | return I->getOperand(i: 0); |
234 | if (DemandedMask.isSubsetOf(RHS: RHSKnown.Zero | LHSKnown.One)) |
235 | return I->getOperand(i: 1); |
236 | |
237 | // If the RHS is a constant, see if we can simplify it. |
238 | if (ShrinkDemandedConstant(I, OpNo: 1, Demanded: DemandedMask & ~LHSKnown.Zero)) |
239 | return I; |
240 | |
241 | break; |
242 | } |
243 | case Instruction::Or: { |
244 | // If either the LHS or the RHS are One, the result is One. |
245 | if (SimplifyDemandedBits(I, OpNo: 1, DemandedMask, Known&: RHSKnown, Q, Depth: Depth + 1) || |
246 | SimplifyDemandedBits(I, OpNo: 0, DemandedMask: DemandedMask & ~RHSKnown.One, Known&: LHSKnown, Q, |
247 | Depth: Depth + 1)) { |
248 | // Disjoint flag may not longer hold. |
249 | I->dropPoisonGeneratingFlags(); |
250 | return I; |
251 | } |
252 | |
253 | Known = analyzeKnownBitsFromAndXorOr(I: cast<Operator>(Val: I), KnownLHS: LHSKnown, KnownRHS: RHSKnown, |
254 | SQ: Q, Depth); |
255 | |
256 | // If the client is only demanding bits that we know, return the known |
257 | // constant. |
258 | if (DemandedMask.isSubsetOf(RHS: Known.Zero | Known.One)) |
259 | return Constant::getIntegerValue(Ty: VTy, V: Known.One); |
260 | |
261 | // If all of the demanded bits are known zero on one side, return the other. |
262 | // These bits cannot contribute to the result of the 'or'. |
263 | if (DemandedMask.isSubsetOf(RHS: LHSKnown.One | RHSKnown.Zero)) |
264 | return I->getOperand(i: 0); |
265 | if (DemandedMask.isSubsetOf(RHS: RHSKnown.One | LHSKnown.Zero)) |
266 | return I->getOperand(i: 1); |
267 | |
268 | // If the RHS is a constant, see if we can simplify it. |
269 | if (ShrinkDemandedConstant(I, OpNo: 1, Demanded: DemandedMask)) |
270 | return I; |
271 | |
272 | // Infer disjoint flag if no common bits are set. |
273 | if (!cast<PossiblyDisjointInst>(Val: I)->isDisjoint()) { |
274 | WithCache<const Value *> LHSCache(I->getOperand(i: 0), LHSKnown), |
275 | RHSCache(I->getOperand(i: 1), RHSKnown); |
276 | if (haveNoCommonBitsSet(LHSCache, RHSCache, SQ: Q)) { |
277 | cast<PossiblyDisjointInst>(Val: I)->setIsDisjoint(true); |
278 | return I; |
279 | } |
280 | } |
281 | |
282 | break; |
283 | } |
284 | case Instruction::Xor: { |
285 | if (SimplifyDemandedBits(I, OpNo: 1, DemandedMask, Known&: RHSKnown, Q, Depth: Depth + 1) || |
286 | SimplifyDemandedBits(I, OpNo: 0, DemandedMask, Known&: LHSKnown, Q, Depth: Depth + 1)) |
287 | return I; |
288 | Value *LHS, *RHS; |
289 | if (DemandedMask == 1 && |
290 | match(V: I->getOperand(i: 0), P: m_Intrinsic<Intrinsic::ctpop>(Op0: m_Value(V&: LHS))) && |
291 | match(V: I->getOperand(i: 1), P: m_Intrinsic<Intrinsic::ctpop>(Op0: m_Value(V&: RHS)))) { |
292 | // (ctpop(X) ^ ctpop(Y)) & 1 --> ctpop(X^Y) & 1 |
293 | IRBuilderBase::InsertPointGuard Guard(Builder); |
294 | Builder.SetInsertPoint(I); |
295 | auto *Xor = Builder.CreateXor(LHS, RHS); |
296 | return Builder.CreateUnaryIntrinsic(ID: Intrinsic::ctpop, V: Xor); |
297 | } |
298 | |
299 | Known = analyzeKnownBitsFromAndXorOr(I: cast<Operator>(Val: I), KnownLHS: LHSKnown, KnownRHS: RHSKnown, |
300 | SQ: Q, Depth); |
301 | |
302 | // If the client is only demanding bits that we know, return the known |
303 | // constant. |
304 | if (DemandedMask.isSubsetOf(RHS: Known.Zero | Known.One)) |
305 | return Constant::getIntegerValue(Ty: VTy, V: Known.One); |
306 | |
307 | // If all of the demanded bits are known zero on one side, return the other. |
308 | // These bits cannot contribute to the result of the 'xor'. |
309 | if (DemandedMask.isSubsetOf(RHS: RHSKnown.Zero)) |
310 | return I->getOperand(i: 0); |
311 | if (DemandedMask.isSubsetOf(RHS: LHSKnown.Zero)) |
312 | return I->getOperand(i: 1); |
313 | |
314 | // If all of the demanded bits are known to be zero on one side or the |
315 | // other, turn this into an *inclusive* or. |
316 | // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 |
317 | if (DemandedMask.isSubsetOf(RHS: RHSKnown.Zero | LHSKnown.Zero)) { |
318 | Instruction *Or = |
319 | BinaryOperator::CreateOr(V1: I->getOperand(i: 0), V2: I->getOperand(i: 1)); |
320 | if (DemandedMask.isAllOnes()) |
321 | cast<PossiblyDisjointInst>(Val: Or)->setIsDisjoint(true); |
322 | Or->takeName(V: I); |
323 | return InsertNewInstWith(New: Or, Old: I->getIterator()); |
324 | } |
325 | |
326 | // If all of the demanded bits on one side are known, and all of the set |
327 | // bits on that side are also known to be set on the other side, turn this |
328 | // into an AND, as we know the bits will be cleared. |
329 | // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 |
330 | if (DemandedMask.isSubsetOf(RHS: RHSKnown.Zero|RHSKnown.One) && |
331 | RHSKnown.One.isSubsetOf(RHS: LHSKnown.One)) { |
332 | Constant *AndC = Constant::getIntegerValue(Ty: VTy, |
333 | V: ~RHSKnown.One & DemandedMask); |
334 | Instruction *And = BinaryOperator::CreateAnd(V1: I->getOperand(i: 0), V2: AndC); |
335 | return InsertNewInstWith(New: And, Old: I->getIterator()); |
336 | } |
337 | |
338 | // If the RHS is a constant, see if we can change it. Don't alter a -1 |
339 | // constant because that's a canonical 'not' op, and that is better for |
340 | // combining, SCEV, and codegen. |
341 | const APInt *C; |
342 | if (match(V: I->getOperand(i: 1), P: m_APInt(Res&: C)) && !C->isAllOnes()) { |
343 | if ((*C | ~DemandedMask).isAllOnes()) { |
344 | // Force bits to 1 to create a 'not' op. |
345 | I->setOperand(i: 1, Val: ConstantInt::getAllOnesValue(Ty: VTy)); |
346 | return I; |
347 | } |
348 | // If we can't turn this into a 'not', try to shrink the constant. |
349 | if (ShrinkDemandedConstant(I, OpNo: 1, Demanded: DemandedMask)) |
350 | return I; |
351 | } |
352 | |
353 | // If our LHS is an 'and' and if it has one use, and if any of the bits we |
354 | // are flipping are known to be set, then the xor is just resetting those |
355 | // bits to zero. We can just knock out bits from the 'and' and the 'xor', |
356 | // simplifying both of them. |
357 | if (Instruction *LHSInst = dyn_cast<Instruction>(Val: I->getOperand(i: 0))) { |
358 | ConstantInt *AndRHS, *XorRHS; |
359 | if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && |
360 | match(V: I->getOperand(i: 1), P: m_ConstantInt(CI&: XorRHS)) && |
361 | match(V: LHSInst->getOperand(i: 1), P: m_ConstantInt(CI&: AndRHS)) && |
362 | (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) { |
363 | APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask); |
364 | |
365 | Constant *AndC = ConstantInt::get(Ty: VTy, V: NewMask & AndRHS->getValue()); |
366 | Instruction *NewAnd = BinaryOperator::CreateAnd(V1: I->getOperand(i: 0), V2: AndC); |
367 | InsertNewInstWith(New: NewAnd, Old: I->getIterator()); |
368 | |
369 | Constant *XorC = ConstantInt::get(Ty: VTy, V: NewMask & XorRHS->getValue()); |
370 | Instruction *NewXor = BinaryOperator::CreateXor(V1: NewAnd, V2: XorC); |
371 | return InsertNewInstWith(New: NewXor, Old: I->getIterator()); |
372 | } |
373 | } |
374 | break; |
375 | } |
376 | case Instruction::Select: { |
377 | if (SimplifyDemandedBits(I, OpNo: 2, DemandedMask, Known&: RHSKnown, Q, Depth: Depth + 1) || |
378 | SimplifyDemandedBits(I, OpNo: 1, DemandedMask, Known&: LHSKnown, Q, Depth: Depth + 1)) |
379 | return I; |
380 | |
381 | // If the operands are constants, see if we can simplify them. |
382 | // This is similar to ShrinkDemandedConstant, but for a select we want to |
383 | // try to keep the selected constants the same as icmp value constants, if |
384 | // we can. This helps not break apart (or helps put back together) |
385 | // canonical patterns like min and max. |
386 | auto CanonicalizeSelectConstant = [](Instruction *I, unsigned OpNo, |
387 | const APInt &DemandedMask) { |
388 | const APInt *SelC; |
389 | if (!match(V: I->getOperand(i: OpNo), P: m_APInt(Res&: SelC))) |
390 | return false; |
391 | |
392 | // Get the constant out of the ICmp, if there is one. |
393 | // Only try this when exactly 1 operand is a constant (if both operands |
394 | // are constant, the icmp should eventually simplify). Otherwise, we may |
395 | // invert the transform that reduces set bits and infinite-loop. |
396 | Value *X; |
397 | const APInt *CmpC; |
398 | if (!match(V: I->getOperand(i: 0), P: m_ICmp(L: m_Value(V&: X), R: m_APInt(Res&: CmpC))) || |
399 | isa<Constant>(Val: X) || CmpC->getBitWidth() != SelC->getBitWidth()) |
400 | return ShrinkDemandedConstant(I, OpNo, Demanded: DemandedMask); |
401 | |
402 | // If the constant is already the same as the ICmp, leave it as-is. |
403 | if (*CmpC == *SelC) |
404 | return false; |
405 | // If the constants are not already the same, but can be with the demand |
406 | // mask, use the constant value from the ICmp. |
407 | if ((*CmpC & DemandedMask) == (*SelC & DemandedMask)) { |
408 | I->setOperand(i: OpNo, Val: ConstantInt::get(Ty: I->getType(), V: *CmpC)); |
409 | return true; |
410 | } |
411 | return ShrinkDemandedConstant(I, OpNo, Demanded: DemandedMask); |
412 | }; |
413 | if (CanonicalizeSelectConstant(I, 1, DemandedMask) || |
414 | CanonicalizeSelectConstant(I, 2, DemandedMask)) |
415 | return I; |
416 | |
417 | // Only known if known in both the LHS and RHS. |
418 | adjustKnownBitsForSelectArm(Known&: LHSKnown, Cond: I->getOperand(i: 0), Arm: I->getOperand(i: 1), |
419 | /*Invert=*/false, Q, Depth); |
420 | adjustKnownBitsForSelectArm(Known&: RHSKnown, Cond: I->getOperand(i: 0), Arm: I->getOperand(i: 2), |
421 | /*Invert=*/true, Q, Depth); |
422 | Known = LHSKnown.intersectWith(RHS: RHSKnown); |
423 | break; |
424 | } |
425 | case Instruction::Trunc: { |
426 | // If we do not demand the high bits of a right-shifted and truncated value, |
427 | // then we may be able to truncate it before the shift. |
428 | Value *X; |
429 | const APInt *C; |
430 | if (match(V: I->getOperand(i: 0), P: m_OneUse(SubPattern: m_LShr(L: m_Value(V&: X), R: m_APInt(Res&: C))))) { |
431 | // The shift amount must be valid (not poison) in the narrow type, and |
432 | // it must not be greater than the high bits demanded of the result. |
433 | if (C->ult(RHS: VTy->getScalarSizeInBits()) && |
434 | C->ule(RHS: DemandedMask.countl_zero())) { |
435 | // trunc (lshr X, C) --> lshr (trunc X), C |
436 | IRBuilderBase::InsertPointGuard Guard(Builder); |
437 | Builder.SetInsertPoint(I); |
438 | Value *Trunc = Builder.CreateTrunc(V: X, DestTy: VTy); |
439 | return Builder.CreateLShr(LHS: Trunc, RHS: C->getZExtValue()); |
440 | } |
441 | } |
442 | } |
443 | [[fallthrough]]; |
444 | case Instruction::ZExt: { |
445 | unsigned SrcBitWidth = I->getOperand(i: 0)->getType()->getScalarSizeInBits(); |
446 | |
447 | APInt InputDemandedMask = DemandedMask.zextOrTrunc(width: SrcBitWidth); |
448 | KnownBits InputKnown(SrcBitWidth); |
449 | if (SimplifyDemandedBits(I, OpNo: 0, DemandedMask: InputDemandedMask, Known&: InputKnown, Q, |
450 | Depth: Depth + 1)) { |
451 | // For zext nneg, we may have dropped the instruction which made the |
452 | // input non-negative. |
453 | I->dropPoisonGeneratingFlags(); |
454 | return I; |
455 | } |
456 | assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?" ); |
457 | if (I->getOpcode() == Instruction::ZExt && I->hasNonNeg() && |
458 | !InputKnown.isNegative()) |
459 | InputKnown.makeNonNegative(); |
460 | Known = InputKnown.zextOrTrunc(BitWidth); |
461 | |
462 | break; |
463 | } |
464 | case Instruction::SExt: { |
465 | // Compute the bits in the result that are not present in the input. |
466 | unsigned SrcBitWidth = I->getOperand(i: 0)->getType()->getScalarSizeInBits(); |
467 | |
468 | APInt InputDemandedBits = DemandedMask.trunc(width: SrcBitWidth); |
469 | |
470 | // If any of the sign extended bits are demanded, we know that the sign |
471 | // bit is demanded. |
472 | if (DemandedMask.getActiveBits() > SrcBitWidth) |
473 | InputDemandedBits.setBit(SrcBitWidth-1); |
474 | |
475 | KnownBits InputKnown(SrcBitWidth); |
476 | if (SimplifyDemandedBits(I, OpNo: 0, DemandedMask: InputDemandedBits, Known&: InputKnown, Q, Depth: Depth + 1)) |
477 | return I; |
478 | |
479 | // If the input sign bit is known zero, or if the NewBits are not demanded |
480 | // convert this into a zero extension. |
481 | if (InputKnown.isNonNegative() || |
482 | DemandedMask.getActiveBits() <= SrcBitWidth) { |
483 | // Convert to ZExt cast. |
484 | CastInst *NewCast = new ZExtInst(I->getOperand(i: 0), VTy); |
485 | NewCast->takeName(V: I); |
486 | return InsertNewInstWith(New: NewCast, Old: I->getIterator()); |
487 | } |
488 | |
489 | // If the sign bit of the input is known set or clear, then we know the |
490 | // top bits of the result. |
491 | Known = InputKnown.sext(BitWidth); |
492 | break; |
493 | } |
494 | case Instruction::Add: { |
495 | if ((DemandedMask & 1) == 0) { |
496 | // If we do not need the low bit, try to convert bool math to logic: |
497 | // add iN (zext i1 X), (sext i1 Y) --> sext (~X & Y) to iN |
498 | Value *X, *Y; |
499 | if (match(V: I, P: m_c_Add(L: m_OneUse(SubPattern: m_ZExt(Op: m_Value(V&: X))), |
500 | R: m_OneUse(SubPattern: m_SExt(Op: m_Value(V&: Y))))) && |
501 | X->getType()->isIntOrIntVectorTy(BitWidth: 1) && X->getType() == Y->getType()) { |
502 | // Truth table for inputs and output signbits: |
503 | // X:0 | X:1 |
504 | // ---------- |
505 | // Y:0 | 0 | 0 | |
506 | // Y:1 | -1 | 0 | |
507 | // ---------- |
508 | IRBuilderBase::InsertPointGuard Guard(Builder); |
509 | Builder.SetInsertPoint(I); |
510 | Value *AndNot = Builder.CreateAnd(LHS: Builder.CreateNot(V: X), RHS: Y); |
511 | return Builder.CreateSExt(V: AndNot, DestTy: VTy); |
512 | } |
513 | |
514 | // add iN (sext i1 X), (sext i1 Y) --> sext (X | Y) to iN |
515 | if (match(V: I, P: m_Add(L: m_SExt(Op: m_Value(V&: X)), R: m_SExt(Op: m_Value(V&: Y)))) && |
516 | X->getType()->isIntOrIntVectorTy(BitWidth: 1) && X->getType() == Y->getType() && |
517 | (I->getOperand(i: 0)->hasOneUse() || I->getOperand(i: 1)->hasOneUse())) { |
518 | |
519 | // Truth table for inputs and output signbits: |
520 | // X:0 | X:1 |
521 | // ----------- |
522 | // Y:0 | -1 | -1 | |
523 | // Y:1 | -1 | 0 | |
524 | // ----------- |
525 | IRBuilderBase::InsertPointGuard Guard(Builder); |
526 | Builder.SetInsertPoint(I); |
527 | Value *Or = Builder.CreateOr(LHS: X, RHS: Y); |
528 | return Builder.CreateSExt(V: Or, DestTy: VTy); |
529 | } |
530 | } |
531 | |
532 | // Right fill the mask of bits for the operands to demand the most |
533 | // significant bit and all those below it. |
534 | unsigned NLZ = DemandedMask.countl_zero(); |
535 | APInt DemandedFromOps = APInt::getLowBitsSet(numBits: BitWidth, loBitsSet: BitWidth - NLZ); |
536 | if (ShrinkDemandedConstant(I, OpNo: 1, Demanded: DemandedFromOps) || |
537 | SimplifyDemandedBits(I, OpNo: 1, DemandedMask: DemandedFromOps, Known&: RHSKnown, Q, Depth: Depth + 1)) |
538 | return disableWrapFlagsBasedOnUnusedHighBits(I, NLZ); |
539 | |
540 | // If low order bits are not demanded and known to be zero in one operand, |
541 | // then we don't need to demand them from the other operand, since they |
542 | // can't cause overflow into any bits that are demanded in the result. |
543 | unsigned NTZ = (~DemandedMask & RHSKnown.Zero).countr_one(); |
544 | APInt DemandedFromLHS = DemandedFromOps; |
545 | DemandedFromLHS.clearLowBits(loBits: NTZ); |
546 | if (ShrinkDemandedConstant(I, OpNo: 0, Demanded: DemandedFromLHS) || |
547 | SimplifyDemandedBits(I, OpNo: 0, DemandedMask: DemandedFromLHS, Known&: LHSKnown, Q, Depth: Depth + 1)) |
548 | return disableWrapFlagsBasedOnUnusedHighBits(I, NLZ); |
549 | |
550 | // If we are known to be adding zeros to every bit below |
551 | // the highest demanded bit, we just return the other side. |
552 | if (DemandedFromOps.isSubsetOf(RHS: RHSKnown.Zero)) |
553 | return I->getOperand(i: 0); |
554 | if (DemandedFromOps.isSubsetOf(RHS: LHSKnown.Zero)) |
555 | return I->getOperand(i: 1); |
556 | |
557 | // (add X, C) --> (xor X, C) IFF C is equal to the top bit of the DemandMask |
558 | { |
559 | const APInt *C; |
560 | if (match(V: I->getOperand(i: 1), P: m_APInt(Res&: C)) && |
561 | C->isOneBitSet(BitNo: DemandedMask.getActiveBits() - 1)) { |
562 | IRBuilderBase::InsertPointGuard Guard(Builder); |
563 | Builder.SetInsertPoint(I); |
564 | return Builder.CreateXor(LHS: I->getOperand(i: 0), RHS: ConstantInt::get(Ty: VTy, V: *C)); |
565 | } |
566 | } |
567 | |
568 | // Otherwise just compute the known bits of the result. |
569 | bool NSW = cast<OverflowingBinaryOperator>(Val: I)->hasNoSignedWrap(); |
570 | bool NUW = cast<OverflowingBinaryOperator>(Val: I)->hasNoUnsignedWrap(); |
571 | Known = KnownBits::add(LHS: LHSKnown, RHS: RHSKnown, NSW, NUW); |
572 | break; |
573 | } |
574 | case Instruction::Sub: { |
575 | // Right fill the mask of bits for the operands to demand the most |
576 | // significant bit and all those below it. |
577 | unsigned NLZ = DemandedMask.countl_zero(); |
578 | APInt DemandedFromOps = APInt::getLowBitsSet(numBits: BitWidth, loBitsSet: BitWidth - NLZ); |
579 | if (ShrinkDemandedConstant(I, OpNo: 1, Demanded: DemandedFromOps) || |
580 | SimplifyDemandedBits(I, OpNo: 1, DemandedMask: DemandedFromOps, Known&: RHSKnown, Q, Depth: Depth + 1)) |
581 | return disableWrapFlagsBasedOnUnusedHighBits(I, NLZ); |
582 | |
583 | // If low order bits are not demanded and are known to be zero in RHS, |
584 | // then we don't need to demand them from LHS, since they can't cause a |
585 | // borrow from any bits that are demanded in the result. |
586 | unsigned NTZ = (~DemandedMask & RHSKnown.Zero).countr_one(); |
587 | APInt DemandedFromLHS = DemandedFromOps; |
588 | DemandedFromLHS.clearLowBits(loBits: NTZ); |
589 | if (ShrinkDemandedConstant(I, OpNo: 0, Demanded: DemandedFromLHS) || |
590 | SimplifyDemandedBits(I, OpNo: 0, DemandedMask: DemandedFromLHS, Known&: LHSKnown, Q, Depth: Depth + 1)) |
591 | return disableWrapFlagsBasedOnUnusedHighBits(I, NLZ); |
592 | |
593 | // If we are known to be subtracting zeros from every bit below |
594 | // the highest demanded bit, we just return the other side. |
595 | if (DemandedFromOps.isSubsetOf(RHS: RHSKnown.Zero)) |
596 | return I->getOperand(i: 0); |
597 | // We can't do this with the LHS for subtraction, unless we are only |
598 | // demanding the LSB. |
599 | if (DemandedFromOps.isOne() && DemandedFromOps.isSubsetOf(RHS: LHSKnown.Zero)) |
600 | return I->getOperand(i: 1); |
601 | |
602 | // Canonicalize sub mask, X -> ~X |
603 | const APInt *LHSC; |
604 | if (match(V: I->getOperand(i: 0), P: m_LowBitMask(V&: LHSC)) && |
605 | DemandedFromOps.isSubsetOf(RHS: *LHSC)) { |
606 | IRBuilderBase::InsertPointGuard Guard(Builder); |
607 | Builder.SetInsertPoint(I); |
608 | return Builder.CreateNot(V: I->getOperand(i: 1)); |
609 | } |
610 | |
611 | // Otherwise just compute the known bits of the result. |
612 | bool NSW = cast<OverflowingBinaryOperator>(Val: I)->hasNoSignedWrap(); |
613 | bool NUW = cast<OverflowingBinaryOperator>(Val: I)->hasNoUnsignedWrap(); |
614 | Known = KnownBits::sub(LHS: LHSKnown, RHS: RHSKnown, NSW, NUW); |
615 | break; |
616 | } |
617 | case Instruction::Mul: { |
618 | APInt DemandedFromOps; |
619 | if (simplifyOperandsBasedOnUnusedHighBits(DemandedFromOps)) |
620 | return I; |
621 | |
622 | if (DemandedMask.isPowerOf2()) { |
623 | // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1. |
624 | // If we demand exactly one bit N and we have "X * (C' << N)" where C' is |
625 | // odd (has LSB set), then the left-shifted low bit of X is the answer. |
626 | unsigned CTZ = DemandedMask.countr_zero(); |
627 | const APInt *C; |
628 | if (match(V: I->getOperand(i: 1), P: m_APInt(Res&: C)) && C->countr_zero() == CTZ) { |
629 | Constant *ShiftC = ConstantInt::get(Ty: VTy, V: CTZ); |
630 | Instruction *Shl = BinaryOperator::CreateShl(V1: I->getOperand(i: 0), V2: ShiftC); |
631 | return InsertNewInstWith(New: Shl, Old: I->getIterator()); |
632 | } |
633 | } |
634 | // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because: |
635 | // X * X is odd iff X is odd. |
636 | // 'Quadratic Reciprocity': X * X -> 0 for bit[1] |
637 | if (I->getOperand(i: 0) == I->getOperand(i: 1) && DemandedMask.ult(RHS: 4)) { |
638 | Constant *One = ConstantInt::get(Ty: VTy, V: 1); |
639 | Instruction *And1 = BinaryOperator::CreateAnd(V1: I->getOperand(i: 0), V2: One); |
640 | return InsertNewInstWith(New: And1, Old: I->getIterator()); |
641 | } |
642 | |
643 | llvm::computeKnownBits(V: I, Known, Q, Depth); |
644 | break; |
645 | } |
646 | case Instruction::Shl: { |
647 | const APInt *SA; |
648 | if (match(V: I->getOperand(i: 1), P: m_APInt(Res&: SA))) { |
649 | const APInt *ShrAmt; |
650 | if (match(V: I->getOperand(i: 0), P: m_Shr(L: m_Value(), R: m_APInt(Res&: ShrAmt)))) |
651 | if (Instruction *Shr = dyn_cast<Instruction>(Val: I->getOperand(i: 0))) |
652 | if (Value *R = simplifyShrShlDemandedBits(Shr, ShrOp1: *ShrAmt, Shl: I, ShlOp1: *SA, |
653 | DemandedMask, Known)) |
654 | return R; |
655 | |
656 | // Do not simplify if shl is part of funnel-shift pattern |
657 | if (I->hasOneUse()) { |
658 | auto *Inst = dyn_cast<Instruction>(Val: I->user_back()); |
659 | if (Inst && Inst->getOpcode() == BinaryOperator::Or) { |
660 | if (auto Opt = convertOrOfShiftsToFunnelShift(Or&: *Inst)) { |
661 | auto [IID, FShiftArgs] = *Opt; |
662 | if ((IID == Intrinsic::fshl || IID == Intrinsic::fshr) && |
663 | FShiftArgs[0] == FShiftArgs[1]) { |
664 | llvm::computeKnownBits(V: I, Known, Q, Depth); |
665 | break; |
666 | } |
667 | } |
668 | } |
669 | } |
670 | |
671 | // We only want bits that already match the signbit then we don't |
672 | // need to shift. |
673 | uint64_t ShiftAmt = SA->getLimitedValue(Limit: BitWidth - 1); |
674 | if (DemandedMask.countr_zero() >= ShiftAmt) { |
675 | if (I->hasNoSignedWrap()) { |
676 | unsigned NumHiDemandedBits = BitWidth - DemandedMask.countr_zero(); |
677 | unsigned SignBits = |
678 | ComputeNumSignBits(Op: I->getOperand(i: 0), CxtI: Q.CxtI, Depth: Depth + 1); |
679 | if (SignBits > ShiftAmt && SignBits - ShiftAmt >= NumHiDemandedBits) |
680 | return I->getOperand(i: 0); |
681 | } |
682 | |
683 | // If we can pre-shift a right-shifted constant to the left without |
684 | // losing any high bits and we don't demand the low bits, then eliminate |
685 | // the left-shift: |
686 | // (C >> X) << LeftShiftAmtC --> (C << LeftShiftAmtC) >> X |
687 | Value *X; |
688 | Constant *C; |
689 | if (match(V: I->getOperand(i: 0), P: m_LShr(L: m_ImmConstant(C), R: m_Value(V&: X)))) { |
690 | Constant *LeftShiftAmtC = ConstantInt::get(Ty: VTy, V: ShiftAmt); |
691 | Constant *NewC = ConstantFoldBinaryOpOperands(Opcode: Instruction::Shl, LHS: C, |
692 | RHS: LeftShiftAmtC, DL); |
693 | if (ConstantFoldBinaryOpOperands(Opcode: Instruction::LShr, LHS: NewC, |
694 | RHS: LeftShiftAmtC, DL) == C) { |
695 | Instruction *Lshr = BinaryOperator::CreateLShr(V1: NewC, V2: X); |
696 | return InsertNewInstWith(New: Lshr, Old: I->getIterator()); |
697 | } |
698 | } |
699 | } |
700 | |
701 | APInt DemandedMaskIn(DemandedMask.lshr(shiftAmt: ShiftAmt)); |
702 | |
703 | // If the shift is NUW/NSW, then it does demand the high bits. |
704 | ShlOperator *IOp = cast<ShlOperator>(Val: I); |
705 | if (IOp->hasNoSignedWrap()) |
706 | DemandedMaskIn.setHighBits(ShiftAmt+1); |
707 | else if (IOp->hasNoUnsignedWrap()) |
708 | DemandedMaskIn.setHighBits(ShiftAmt); |
709 | |
710 | if (SimplifyDemandedBits(I, OpNo: 0, DemandedMask: DemandedMaskIn, Known, Q, Depth: Depth + 1)) |
711 | return I; |
712 | |
713 | Known = KnownBits::shl(LHS: Known, |
714 | RHS: KnownBits::makeConstant(C: APInt(BitWidth, ShiftAmt)), |
715 | /* NUW */ IOp->hasNoUnsignedWrap(), |
716 | /* NSW */ IOp->hasNoSignedWrap()); |
717 | } else { |
718 | // This is a variable shift, so we can't shift the demand mask by a known |
719 | // amount. But if we are not demanding high bits, then we are not |
720 | // demanding those bits from the pre-shifted operand either. |
721 | if (unsigned CTLZ = DemandedMask.countl_zero()) { |
722 | APInt DemandedFromOp(APInt::getLowBitsSet(numBits: BitWidth, loBitsSet: BitWidth - CTLZ)); |
723 | if (SimplifyDemandedBits(I, OpNo: 0, DemandedMask: DemandedFromOp, Known, Q, Depth: Depth + 1)) { |
724 | // We can't guarantee that nsw/nuw hold after simplifying the operand. |
725 | I->dropPoisonGeneratingFlags(); |
726 | return I; |
727 | } |
728 | } |
729 | llvm::computeKnownBits(V: I, Known, Q, Depth); |
730 | } |
731 | break; |
732 | } |
733 | case Instruction::LShr: { |
734 | const APInt *SA; |
735 | if (match(V: I->getOperand(i: 1), P: m_APInt(Res&: SA))) { |
736 | uint64_t ShiftAmt = SA->getLimitedValue(Limit: BitWidth-1); |
737 | |
738 | // Do not simplify if lshr is part of funnel-shift pattern |
739 | if (I->hasOneUse()) { |
740 | auto *Inst = dyn_cast<Instruction>(Val: I->user_back()); |
741 | if (Inst && Inst->getOpcode() == BinaryOperator::Or) { |
742 | if (auto Opt = convertOrOfShiftsToFunnelShift(Or&: *Inst)) { |
743 | auto [IID, FShiftArgs] = *Opt; |
744 | if ((IID == Intrinsic::fshl || IID == Intrinsic::fshr) && |
745 | FShiftArgs[0] == FShiftArgs[1]) { |
746 | llvm::computeKnownBits(V: I, Known, Q, Depth); |
747 | break; |
748 | } |
749 | } |
750 | } |
751 | } |
752 | |
753 | // If we are just demanding the shifted sign bit and below, then this can |
754 | // be treated as an ASHR in disguise. |
755 | if (DemandedMask.countl_zero() >= ShiftAmt) { |
756 | // If we only want bits that already match the signbit then we don't |
757 | // need to shift. |
758 | unsigned NumHiDemandedBits = BitWidth - DemandedMask.countr_zero(); |
759 | unsigned SignBits = |
760 | ComputeNumSignBits(Op: I->getOperand(i: 0), CxtI: Q.CxtI, Depth: Depth + 1); |
761 | if (SignBits >= NumHiDemandedBits) |
762 | return I->getOperand(i: 0); |
763 | |
764 | // If we can pre-shift a left-shifted constant to the right without |
765 | // losing any low bits (we already know we don't demand the high bits), |
766 | // then eliminate the right-shift: |
767 | // (C << X) >> RightShiftAmtC --> (C >> RightShiftAmtC) << X |
768 | Value *X; |
769 | Constant *C; |
770 | if (match(V: I->getOperand(i: 0), P: m_Shl(L: m_ImmConstant(C), R: m_Value(V&: X)))) { |
771 | Constant *RightShiftAmtC = ConstantInt::get(Ty: VTy, V: ShiftAmt); |
772 | Constant *NewC = ConstantFoldBinaryOpOperands(Opcode: Instruction::LShr, LHS: C, |
773 | RHS: RightShiftAmtC, DL); |
774 | if (ConstantFoldBinaryOpOperands(Opcode: Instruction::Shl, LHS: NewC, |
775 | RHS: RightShiftAmtC, DL) == C) { |
776 | Instruction *Shl = BinaryOperator::CreateShl(V1: NewC, V2: X); |
777 | return InsertNewInstWith(New: Shl, Old: I->getIterator()); |
778 | } |
779 | } |
780 | |
781 | const APInt *Factor; |
782 | if (match(V: I->getOperand(i: 0), |
783 | P: m_OneUse(SubPattern: m_Mul(L: m_Value(V&: X), R: m_APInt(Res&: Factor)))) && |
784 | Factor->countr_zero() >= ShiftAmt) { |
785 | BinaryOperator *Mul = BinaryOperator::CreateMul( |
786 | V1: X, V2: ConstantInt::get(Ty: X->getType(), V: Factor->lshr(shiftAmt: ShiftAmt))); |
787 | return InsertNewInstWith(New: Mul, Old: I->getIterator()); |
788 | } |
789 | } |
790 | |
791 | // Unsigned shift right. |
792 | APInt DemandedMaskIn(DemandedMask.shl(shiftAmt: ShiftAmt)); |
793 | if (SimplifyDemandedBits(I, OpNo: 0, DemandedMask: DemandedMaskIn, Known, Q, Depth: Depth + 1)) { |
794 | // exact flag may not longer hold. |
795 | I->dropPoisonGeneratingFlags(); |
796 | return I; |
797 | } |
798 | Known.Zero.lshrInPlace(ShiftAmt); |
799 | Known.One.lshrInPlace(ShiftAmt); |
800 | if (ShiftAmt) |
801 | Known.Zero.setHighBits(ShiftAmt); // high bits known zero. |
802 | } else { |
803 | llvm::computeKnownBits(V: I, Known, Q, Depth); |
804 | } |
805 | break; |
806 | } |
807 | case Instruction::AShr: { |
808 | unsigned SignBits = ComputeNumSignBits(Op: I->getOperand(i: 0), CxtI: Q.CxtI, Depth: Depth + 1); |
809 | |
810 | // If we only want bits that already match the signbit then we don't need |
811 | // to shift. |
812 | unsigned NumHiDemandedBits = BitWidth - DemandedMask.countr_zero(); |
813 | if (SignBits >= NumHiDemandedBits) |
814 | return I->getOperand(i: 0); |
815 | |
816 | // If this is an arithmetic shift right and only the low-bit is set, we can |
817 | // always convert this into a logical shr, even if the shift amount is |
818 | // variable. The low bit of the shift cannot be an input sign bit unless |
819 | // the shift amount is >= the size of the datatype, which is undefined. |
820 | if (DemandedMask.isOne()) { |
821 | // Perform the logical shift right. |
822 | Instruction *NewVal = BinaryOperator::CreateLShr( |
823 | V1: I->getOperand(i: 0), V2: I->getOperand(i: 1), Name: I->getName()); |
824 | return InsertNewInstWith(New: NewVal, Old: I->getIterator()); |
825 | } |
826 | |
827 | const APInt *SA; |
828 | if (match(V: I->getOperand(i: 1), P: m_APInt(Res&: SA))) { |
829 | uint32_t ShiftAmt = SA->getLimitedValue(Limit: BitWidth-1); |
830 | |
831 | // Signed shift right. |
832 | APInt DemandedMaskIn(DemandedMask.shl(shiftAmt: ShiftAmt)); |
833 | // If any of the bits being shifted in are demanded, then we should set |
834 | // the sign bit as demanded. |
835 | bool ShiftedInBitsDemanded = DemandedMask.countl_zero() < ShiftAmt; |
836 | if (ShiftedInBitsDemanded) |
837 | DemandedMaskIn.setSignBit(); |
838 | if (SimplifyDemandedBits(I, OpNo: 0, DemandedMask: DemandedMaskIn, Known, Q, Depth: Depth + 1)) { |
839 | // exact flag may not longer hold. |
840 | I->dropPoisonGeneratingFlags(); |
841 | return I; |
842 | } |
843 | |
844 | // If the input sign bit is known to be zero, or if none of the shifted in |
845 | // bits are demanded, turn this into an unsigned shift right. |
846 | if (Known.Zero[BitWidth - 1] || !ShiftedInBitsDemanded) { |
847 | BinaryOperator *LShr = BinaryOperator::CreateLShr(V1: I->getOperand(i: 0), |
848 | V2: I->getOperand(i: 1)); |
849 | LShr->setIsExact(cast<BinaryOperator>(Val: I)->isExact()); |
850 | LShr->takeName(V: I); |
851 | return InsertNewInstWith(New: LShr, Old: I->getIterator()); |
852 | } |
853 | |
854 | Known = KnownBits::ashr( |
855 | LHS: Known, RHS: KnownBits::makeConstant(C: APInt(BitWidth, ShiftAmt)), |
856 | ShAmtNonZero: ShiftAmt != 0, Exact: I->isExact()); |
857 | } else { |
858 | llvm::computeKnownBits(V: I, Known, Q, Depth); |
859 | } |
860 | break; |
861 | } |
862 | case Instruction::UDiv: { |
863 | // UDiv doesn't demand low bits that are zero in the divisor. |
864 | const APInt *SA; |
865 | if (match(V: I->getOperand(i: 1), P: m_APInt(Res&: SA))) { |
866 | // TODO: Take the demanded mask of the result into account. |
867 | unsigned RHSTrailingZeros = SA->countr_zero(); |
868 | APInt DemandedMaskIn = |
869 | APInt::getHighBitsSet(numBits: BitWidth, hiBitsSet: BitWidth - RHSTrailingZeros); |
870 | if (SimplifyDemandedBits(I, OpNo: 0, DemandedMask: DemandedMaskIn, Known&: LHSKnown, Q, Depth: Depth + 1)) { |
871 | // We can't guarantee that "exact" is still true after changing the |
872 | // the dividend. |
873 | I->dropPoisonGeneratingFlags(); |
874 | return I; |
875 | } |
876 | |
877 | Known = KnownBits::udiv(LHS: LHSKnown, RHS: KnownBits::makeConstant(C: *SA), |
878 | Exact: cast<BinaryOperator>(Val: I)->isExact()); |
879 | } else { |
880 | llvm::computeKnownBits(V: I, Known, Q, Depth); |
881 | } |
882 | break; |
883 | } |
884 | case Instruction::SRem: { |
885 | const APInt *Rem; |
886 | if (match(V: I->getOperand(i: 1), P: m_APInt(Res&: Rem)) && Rem->isPowerOf2()) { |
887 | if (DemandedMask.ult(RHS: *Rem)) // srem won't affect demanded bits |
888 | return I->getOperand(i: 0); |
889 | |
890 | APInt LowBits = *Rem - 1; |
891 | APInt Mask2 = LowBits | APInt::getSignMask(BitWidth); |
892 | if (SimplifyDemandedBits(I, OpNo: 0, DemandedMask: Mask2, Known&: LHSKnown, Q, Depth: Depth + 1)) |
893 | return I; |
894 | Known = KnownBits::srem(LHS: LHSKnown, RHS: KnownBits::makeConstant(C: *Rem)); |
895 | break; |
896 | } |
897 | |
898 | llvm::computeKnownBits(V: I, Known, Q, Depth); |
899 | break; |
900 | } |
901 | case Instruction::Call: { |
902 | bool KnownBitsComputed = false; |
903 | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: I)) { |
904 | switch (II->getIntrinsicID()) { |
905 | case Intrinsic::abs: { |
906 | if (DemandedMask == 1) |
907 | return II->getArgOperand(i: 0); |
908 | break; |
909 | } |
910 | case Intrinsic::ctpop: { |
911 | // Checking if the number of clear bits is odd (parity)? If the type has |
912 | // an even number of bits, that's the same as checking if the number of |
913 | // set bits is odd, so we can eliminate the 'not' op. |
914 | Value *X; |
915 | if (DemandedMask == 1 && VTy->getScalarSizeInBits() % 2 == 0 && |
916 | match(V: II->getArgOperand(i: 0), P: m_Not(V: m_Value(V&: X)))) { |
917 | Function *Ctpop = Intrinsic::getOrInsertDeclaration( |
918 | M: II->getModule(), id: Intrinsic::ctpop, Tys: VTy); |
919 | return InsertNewInstWith(New: CallInst::Create(Func: Ctpop, Args: {X}), Old: I->getIterator()); |
920 | } |
921 | break; |
922 | } |
923 | case Intrinsic::bswap: { |
924 | // If the only bits demanded come from one byte of the bswap result, |
925 | // just shift the input byte into position to eliminate the bswap. |
926 | unsigned NLZ = DemandedMask.countl_zero(); |
927 | unsigned NTZ = DemandedMask.countr_zero(); |
928 | |
929 | // Round NTZ down to the next byte. If we have 11 trailing zeros, then |
930 | // we need all the bits down to bit 8. Likewise, round NLZ. If we |
931 | // have 14 leading zeros, round to 8. |
932 | NLZ = alignDown(Value: NLZ, Align: 8); |
933 | NTZ = alignDown(Value: NTZ, Align: 8); |
934 | // If we need exactly one byte, we can do this transformation. |
935 | if (BitWidth - NLZ - NTZ == 8) { |
936 | // Replace this with either a left or right shift to get the byte into |
937 | // the right place. |
938 | Instruction *NewVal; |
939 | if (NLZ > NTZ) |
940 | NewVal = BinaryOperator::CreateLShr( |
941 | V1: II->getArgOperand(i: 0), V2: ConstantInt::get(Ty: VTy, V: NLZ - NTZ)); |
942 | else |
943 | NewVal = BinaryOperator::CreateShl( |
944 | V1: II->getArgOperand(i: 0), V2: ConstantInt::get(Ty: VTy, V: NTZ - NLZ)); |
945 | NewVal->takeName(V: I); |
946 | return InsertNewInstWith(New: NewVal, Old: I->getIterator()); |
947 | } |
948 | break; |
949 | } |
950 | case Intrinsic::ptrmask: { |
951 | unsigned MaskWidth = I->getOperand(i: 1)->getType()->getScalarSizeInBits(); |
952 | RHSKnown = KnownBits(MaskWidth); |
953 | // If either the LHS or the RHS are Zero, the result is zero. |
954 | if (SimplifyDemandedBits(I, OpNo: 0, DemandedMask, Known&: LHSKnown, Q, Depth: Depth + 1) || |
955 | SimplifyDemandedBits( |
956 | I, OpNo: 1, DemandedMask: (DemandedMask & ~LHSKnown.Zero).zextOrTrunc(width: MaskWidth), |
957 | Known&: RHSKnown, Q, Depth: Depth + 1)) |
958 | return I; |
959 | |
960 | // TODO: Should be 1-extend |
961 | RHSKnown = RHSKnown.anyextOrTrunc(BitWidth); |
962 | |
963 | Known = LHSKnown & RHSKnown; |
964 | KnownBitsComputed = true; |
965 | |
966 | // If the client is only demanding bits we know to be zero, return |
967 | // `llvm.ptrmask(p, 0)`. We can't return `null` here due to pointer |
968 | // provenance, but making the mask zero will be easily optimizable in |
969 | // the backend. |
970 | if (DemandedMask.isSubsetOf(RHS: Known.Zero) && |
971 | !match(V: I->getOperand(i: 1), P: m_Zero())) |
972 | return replaceOperand( |
973 | I&: *I, OpNum: 1, V: Constant::getNullValue(Ty: I->getOperand(i: 1)->getType())); |
974 | |
975 | // Mask in demanded space does nothing. |
976 | // NOTE: We may have attributes associated with the return value of the |
977 | // llvm.ptrmask intrinsic that will be lost when we just return the |
978 | // operand. We should try to preserve them. |
979 | if (DemandedMask.isSubsetOf(RHS: RHSKnown.One | LHSKnown.Zero)) |
980 | return I->getOperand(i: 0); |
981 | |
982 | // If the RHS is a constant, see if we can simplify it. |
983 | if (ShrinkDemandedConstant( |
984 | I, OpNo: 1, Demanded: (DemandedMask & ~LHSKnown.Zero).zextOrTrunc(width: MaskWidth))) |
985 | return I; |
986 | |
987 | // Combine: |
988 | // (ptrmask (getelementptr i8, ptr p, imm i), imm mask) |
989 | // -> (ptrmask (getelementptr i8, ptr p, imm (i & mask)), imm mask) |
990 | // where only the low bits known to be zero in the pointer are changed |
991 | Value *InnerPtr; |
992 | uint64_t GEPIndex; |
993 | uint64_t PtrMaskImmediate; |
994 | if (match(V: I, P: m_Intrinsic<Intrinsic::ptrmask>( |
995 | Op0: m_PtrAdd(PointerOp: m_Value(V&: InnerPtr), OffsetOp: m_ConstantInt(V&: GEPIndex)), |
996 | Op1: m_ConstantInt(V&: PtrMaskImmediate)))) { |
997 | |
998 | LHSKnown = computeKnownBits(V: InnerPtr, CxtI: I, Depth: Depth + 1); |
999 | if (!LHSKnown.isZero()) { |
1000 | const unsigned trailingZeros = LHSKnown.countMinTrailingZeros(); |
1001 | uint64_t PointerAlignBits = (uint64_t(1) << trailingZeros) - 1; |
1002 | |
1003 | uint64_t HighBitsGEPIndex = GEPIndex & ~PointerAlignBits; |
1004 | uint64_t MaskedLowBitsGEPIndex = |
1005 | GEPIndex & PointerAlignBits & PtrMaskImmediate; |
1006 | |
1007 | uint64_t MaskedGEPIndex = HighBitsGEPIndex | MaskedLowBitsGEPIndex; |
1008 | |
1009 | if (MaskedGEPIndex != GEPIndex) { |
1010 | auto *GEP = cast<GEPOperator>(Val: II->getArgOperand(i: 0)); |
1011 | Builder.SetInsertPoint(I); |
1012 | Type *GEPIndexType = |
1013 | DL.getIndexType(PtrTy: GEP->getPointerOperand()->getType()); |
1014 | Value *MaskedGEP = Builder.CreateGEP( |
1015 | Ty: GEP->getSourceElementType(), Ptr: InnerPtr, |
1016 | IdxList: ConstantInt::get(Ty: GEPIndexType, V: MaskedGEPIndex), |
1017 | Name: GEP->getName(), NW: GEP->isInBounds()); |
1018 | |
1019 | replaceOperand(I&: *I, OpNum: 0, V: MaskedGEP); |
1020 | return I; |
1021 | } |
1022 | } |
1023 | } |
1024 | |
1025 | break; |
1026 | } |
1027 | |
1028 | case Intrinsic::fshr: |
1029 | case Intrinsic::fshl: { |
1030 | const APInt *SA; |
1031 | if (!match(V: I->getOperand(i: 2), P: m_APInt(Res&: SA))) |
1032 | break; |
1033 | |
1034 | // Normalize to funnel shift left. APInt shifts of BitWidth are well- |
1035 | // defined, so no need to special-case zero shifts here. |
1036 | uint64_t ShiftAmt = SA->urem(RHS: BitWidth); |
1037 | if (II->getIntrinsicID() == Intrinsic::fshr) |
1038 | ShiftAmt = BitWidth - ShiftAmt; |
1039 | |
1040 | APInt DemandedMaskLHS(DemandedMask.lshr(shiftAmt: ShiftAmt)); |
1041 | APInt DemandedMaskRHS(DemandedMask.shl(shiftAmt: BitWidth - ShiftAmt)); |
1042 | if (I->getOperand(i: 0) != I->getOperand(i: 1)) { |
1043 | if (SimplifyDemandedBits(I, OpNo: 0, DemandedMask: DemandedMaskLHS, Known&: LHSKnown, Q, |
1044 | Depth: Depth + 1) || |
1045 | SimplifyDemandedBits(I, OpNo: 1, DemandedMask: DemandedMaskRHS, Known&: RHSKnown, Q, |
1046 | Depth: Depth + 1)) { |
1047 | // Range attribute may no longer hold. |
1048 | I->dropPoisonGeneratingReturnAttributes(); |
1049 | return I; |
1050 | } |
1051 | } else { // fshl is a rotate |
1052 | // Avoid converting rotate into funnel shift. |
1053 | // Only simplify if one operand is constant. |
1054 | LHSKnown = computeKnownBits(V: I->getOperand(i: 0), CxtI: I, Depth: Depth + 1); |
1055 | if (DemandedMaskLHS.isSubsetOf(RHS: LHSKnown.Zero | LHSKnown.One) && |
1056 | !match(V: I->getOperand(i: 0), P: m_SpecificInt(V: LHSKnown.One))) { |
1057 | replaceOperand(I&: *I, OpNum: 0, V: Constant::getIntegerValue(Ty: VTy, V: LHSKnown.One)); |
1058 | return I; |
1059 | } |
1060 | |
1061 | RHSKnown = computeKnownBits(V: I->getOperand(i: 1), CxtI: I, Depth: Depth + 1); |
1062 | if (DemandedMaskRHS.isSubsetOf(RHS: RHSKnown.Zero | RHSKnown.One) && |
1063 | !match(V: I->getOperand(i: 1), P: m_SpecificInt(V: RHSKnown.One))) { |
1064 | replaceOperand(I&: *I, OpNum: 1, V: Constant::getIntegerValue(Ty: VTy, V: RHSKnown.One)); |
1065 | return I; |
1066 | } |
1067 | } |
1068 | |
1069 | Known.Zero = LHSKnown.Zero.shl(shiftAmt: ShiftAmt) | |
1070 | RHSKnown.Zero.lshr(shiftAmt: BitWidth - ShiftAmt); |
1071 | Known.One = LHSKnown.One.shl(shiftAmt: ShiftAmt) | |
1072 | RHSKnown.One.lshr(shiftAmt: BitWidth - ShiftAmt); |
1073 | KnownBitsComputed = true; |
1074 | break; |
1075 | } |
1076 | case Intrinsic::umax: { |
1077 | // UMax(A, C) == A if ... |
1078 | // The lowest non-zero bit of DemandMask is higher than the highest |
1079 | // non-zero bit of C. |
1080 | const APInt *C; |
1081 | unsigned CTZ = DemandedMask.countr_zero(); |
1082 | if (match(V: II->getArgOperand(i: 1), P: m_APInt(Res&: C)) && |
1083 | CTZ >= C->getActiveBits()) |
1084 | return II->getArgOperand(i: 0); |
1085 | break; |
1086 | } |
1087 | case Intrinsic::umin: { |
1088 | // UMin(A, C) == A if ... |
1089 | // The lowest non-zero bit of DemandMask is higher than the highest |
1090 | // non-one bit of C. |
1091 | // This comes from using DeMorgans on the above umax example. |
1092 | const APInt *C; |
1093 | unsigned CTZ = DemandedMask.countr_zero(); |
1094 | if (match(V: II->getArgOperand(i: 1), P: m_APInt(Res&: C)) && |
1095 | CTZ >= C->getBitWidth() - C->countl_one()) |
1096 | return II->getArgOperand(i: 0); |
1097 | break; |
1098 | } |
1099 | default: { |
1100 | // Handle target specific intrinsics |
1101 | std::optional<Value *> V = targetSimplifyDemandedUseBitsIntrinsic( |
1102 | II&: *II, DemandedMask, Known, KnownBitsComputed); |
1103 | if (V) |
1104 | return *V; |
1105 | break; |
1106 | } |
1107 | } |
1108 | } |
1109 | |
1110 | if (!KnownBitsComputed) |
1111 | llvm::computeKnownBits(V: I, Known, Q, Depth); |
1112 | break; |
1113 | } |
1114 | } |
1115 | |
1116 | if (I->getType()->isPointerTy()) { |
1117 | Align Alignment = I->getPointerAlignment(DL); |
1118 | Known.Zero.setLowBits(Log2(A: Alignment)); |
1119 | } |
1120 | |
1121 | // If the client is only demanding bits that we know, return the known |
1122 | // constant. We can't directly simplify pointers as a constant because of |
1123 | // pointer provenance. |
1124 | // TODO: We could return `(inttoptr const)` for pointers. |
1125 | if (!I->getType()->isPointerTy() && |
1126 | DemandedMask.isSubsetOf(RHS: Known.Zero | Known.One)) |
1127 | return Constant::getIntegerValue(Ty: VTy, V: Known.One); |
1128 | |
1129 | if (VerifyKnownBits) { |
1130 | KnownBits ReferenceKnown = llvm::computeKnownBits(V: I, Q, Depth); |
1131 | if (Known != ReferenceKnown) { |
1132 | errs() << "Mismatched known bits for " << *I << " in " |
1133 | << I->getFunction()->getName() << "\n" ; |
1134 | errs() << "computeKnownBits(): " << ReferenceKnown << "\n" ; |
1135 | errs() << "SimplifyDemandedBits(): " << Known << "\n" ; |
1136 | std::abort(); |
1137 | } |
1138 | } |
1139 | |
1140 | return nullptr; |
1141 | } |
1142 | |
1143 | /// Helper routine of SimplifyDemandedUseBits. It computes Known |
1144 | /// bits. It also tries to handle simplifications that can be done based on |
1145 | /// DemandedMask, but without modifying the Instruction. |
1146 | Value *InstCombinerImpl::SimplifyMultipleUseDemandedBits( |
1147 | Instruction *I, const APInt &DemandedMask, KnownBits &Known, |
1148 | const SimplifyQuery &Q, unsigned Depth) { |
1149 | unsigned BitWidth = DemandedMask.getBitWidth(); |
1150 | Type *ITy = I->getType(); |
1151 | |
1152 | KnownBits LHSKnown(BitWidth); |
1153 | KnownBits RHSKnown(BitWidth); |
1154 | |
1155 | // Despite the fact that we can't simplify this instruction in all User's |
1156 | // context, we can at least compute the known bits, and we can |
1157 | // do simplifications that apply to *just* the one user if we know that |
1158 | // this instruction has a simpler value in that context. |
1159 | switch (I->getOpcode()) { |
1160 | case Instruction::And: { |
1161 | llvm::computeKnownBits(V: I->getOperand(i: 1), Known&: RHSKnown, Q, Depth: Depth + 1); |
1162 | llvm::computeKnownBits(V: I->getOperand(i: 0), Known&: LHSKnown, Q, Depth: Depth + 1); |
1163 | Known = analyzeKnownBitsFromAndXorOr(I: cast<Operator>(Val: I), KnownLHS: LHSKnown, KnownRHS: RHSKnown, |
1164 | SQ: Q, Depth); |
1165 | computeKnownBitsFromContext(V: I, Known, Q, Depth); |
1166 | |
1167 | // If the client is only demanding bits that we know, return the known |
1168 | // constant. |
1169 | if (DemandedMask.isSubsetOf(RHS: Known.Zero | Known.One)) |
1170 | return Constant::getIntegerValue(Ty: ITy, V: Known.One); |
1171 | |
1172 | // If all of the demanded bits are known 1 on one side, return the other. |
1173 | // These bits cannot contribute to the result of the 'and' in this context. |
1174 | if (DemandedMask.isSubsetOf(RHS: LHSKnown.Zero | RHSKnown.One)) |
1175 | return I->getOperand(i: 0); |
1176 | if (DemandedMask.isSubsetOf(RHS: RHSKnown.Zero | LHSKnown.One)) |
1177 | return I->getOperand(i: 1); |
1178 | |
1179 | break; |
1180 | } |
1181 | case Instruction::Or: { |
1182 | llvm::computeKnownBits(V: I->getOperand(i: 1), Known&: RHSKnown, Q, Depth: Depth + 1); |
1183 | llvm::computeKnownBits(V: I->getOperand(i: 0), Known&: LHSKnown, Q, Depth: Depth + 1); |
1184 | Known = analyzeKnownBitsFromAndXorOr(I: cast<Operator>(Val: I), KnownLHS: LHSKnown, KnownRHS: RHSKnown, |
1185 | SQ: Q, Depth); |
1186 | computeKnownBitsFromContext(V: I, Known, Q, Depth); |
1187 | |
1188 | // If the client is only demanding bits that we know, return the known |
1189 | // constant. |
1190 | if (DemandedMask.isSubsetOf(RHS: Known.Zero | Known.One)) |
1191 | return Constant::getIntegerValue(Ty: ITy, V: Known.One); |
1192 | |
1193 | // We can simplify (X|Y) -> X or Y in the user's context if we know that |
1194 | // only bits from X or Y are demanded. |
1195 | // If all of the demanded bits are known zero on one side, return the other. |
1196 | // These bits cannot contribute to the result of the 'or' in this context. |
1197 | if (DemandedMask.isSubsetOf(RHS: LHSKnown.One | RHSKnown.Zero)) |
1198 | return I->getOperand(i: 0); |
1199 | if (DemandedMask.isSubsetOf(RHS: RHSKnown.One | LHSKnown.Zero)) |
1200 | return I->getOperand(i: 1); |
1201 | |
1202 | break; |
1203 | } |
1204 | case Instruction::Xor: { |
1205 | llvm::computeKnownBits(V: I->getOperand(i: 1), Known&: RHSKnown, Q, Depth: Depth + 1); |
1206 | llvm::computeKnownBits(V: I->getOperand(i: 0), Known&: LHSKnown, Q, Depth: Depth + 1); |
1207 | Known = analyzeKnownBitsFromAndXorOr(I: cast<Operator>(Val: I), KnownLHS: LHSKnown, KnownRHS: RHSKnown, |
1208 | SQ: Q, Depth); |
1209 | computeKnownBitsFromContext(V: I, Known, Q, Depth); |
1210 | |
1211 | // If the client is only demanding bits that we know, return the known |
1212 | // constant. |
1213 | if (DemandedMask.isSubsetOf(RHS: Known.Zero | Known.One)) |
1214 | return Constant::getIntegerValue(Ty: ITy, V: Known.One); |
1215 | |
1216 | // We can simplify (X^Y) -> X or Y in the user's context if we know that |
1217 | // only bits from X or Y are demanded. |
1218 | // If all of the demanded bits are known zero on one side, return the other. |
1219 | if (DemandedMask.isSubsetOf(RHS: RHSKnown.Zero)) |
1220 | return I->getOperand(i: 0); |
1221 | if (DemandedMask.isSubsetOf(RHS: LHSKnown.Zero)) |
1222 | return I->getOperand(i: 1); |
1223 | |
1224 | break; |
1225 | } |
1226 | case Instruction::Add: { |
1227 | unsigned NLZ = DemandedMask.countl_zero(); |
1228 | APInt DemandedFromOps = APInt::getLowBitsSet(numBits: BitWidth, loBitsSet: BitWidth - NLZ); |
1229 | |
1230 | // If an operand adds zeros to every bit below the highest demanded bit, |
1231 | // that operand doesn't change the result. Return the other side. |
1232 | llvm::computeKnownBits(V: I->getOperand(i: 1), Known&: RHSKnown, Q, Depth: Depth + 1); |
1233 | if (DemandedFromOps.isSubsetOf(RHS: RHSKnown.Zero)) |
1234 | return I->getOperand(i: 0); |
1235 | |
1236 | llvm::computeKnownBits(V: I->getOperand(i: 0), Known&: LHSKnown, Q, Depth: Depth + 1); |
1237 | if (DemandedFromOps.isSubsetOf(RHS: LHSKnown.Zero)) |
1238 | return I->getOperand(i: 1); |
1239 | |
1240 | bool NSW = cast<OverflowingBinaryOperator>(Val: I)->hasNoSignedWrap(); |
1241 | bool NUW = cast<OverflowingBinaryOperator>(Val: I)->hasNoUnsignedWrap(); |
1242 | Known = KnownBits::add(LHS: LHSKnown, RHS: RHSKnown, NSW, NUW); |
1243 | computeKnownBitsFromContext(V: I, Known, Q, Depth); |
1244 | break; |
1245 | } |
1246 | case Instruction::Sub: { |
1247 | unsigned NLZ = DemandedMask.countl_zero(); |
1248 | APInt DemandedFromOps = APInt::getLowBitsSet(numBits: BitWidth, loBitsSet: BitWidth - NLZ); |
1249 | |
1250 | // If an operand subtracts zeros from every bit below the highest demanded |
1251 | // bit, that operand doesn't change the result. Return the other side. |
1252 | llvm::computeKnownBits(V: I->getOperand(i: 1), Known&: RHSKnown, Q, Depth: Depth + 1); |
1253 | if (DemandedFromOps.isSubsetOf(RHS: RHSKnown.Zero)) |
1254 | return I->getOperand(i: 0); |
1255 | |
1256 | bool NSW = cast<OverflowingBinaryOperator>(Val: I)->hasNoSignedWrap(); |
1257 | bool NUW = cast<OverflowingBinaryOperator>(Val: I)->hasNoUnsignedWrap(); |
1258 | llvm::computeKnownBits(V: I->getOperand(i: 0), Known&: LHSKnown, Q, Depth: Depth + 1); |
1259 | Known = KnownBits::sub(LHS: LHSKnown, RHS: RHSKnown, NSW, NUW); |
1260 | computeKnownBitsFromContext(V: I, Known, Q, Depth); |
1261 | break; |
1262 | } |
1263 | case Instruction::AShr: { |
1264 | // Compute the Known bits to simplify things downstream. |
1265 | llvm::computeKnownBits(V: I, Known, Q, Depth); |
1266 | |
1267 | // If this user is only demanding bits that we know, return the known |
1268 | // constant. |
1269 | if (DemandedMask.isSubsetOf(RHS: Known.Zero | Known.One)) |
1270 | return Constant::getIntegerValue(Ty: ITy, V: Known.One); |
1271 | |
1272 | // If the right shift operand 0 is a result of a left shift by the same |
1273 | // amount, this is probably a zero/sign extension, which may be unnecessary, |
1274 | // if we do not demand any of the new sign bits. So, return the original |
1275 | // operand instead. |
1276 | const APInt *ShiftRC; |
1277 | const APInt *ShiftLC; |
1278 | Value *X; |
1279 | unsigned BitWidth = DemandedMask.getBitWidth(); |
1280 | if (match(V: I, |
1281 | P: m_AShr(L: m_Shl(L: m_Value(V&: X), R: m_APInt(Res&: ShiftLC)), R: m_APInt(Res&: ShiftRC))) && |
1282 | ShiftLC == ShiftRC && ShiftLC->ult(RHS: BitWidth) && |
1283 | DemandedMask.isSubsetOf(RHS: APInt::getLowBitsSet( |
1284 | numBits: BitWidth, loBitsSet: BitWidth - ShiftRC->getZExtValue()))) { |
1285 | return X; |
1286 | } |
1287 | |
1288 | break; |
1289 | } |
1290 | default: |
1291 | // Compute the Known bits to simplify things downstream. |
1292 | llvm::computeKnownBits(V: I, Known, Q, Depth); |
1293 | |
1294 | // If this user is only demanding bits that we know, return the known |
1295 | // constant. |
1296 | if (DemandedMask.isSubsetOf(RHS: Known.Zero|Known.One)) |
1297 | return Constant::getIntegerValue(Ty: ITy, V: Known.One); |
1298 | |
1299 | break; |
1300 | } |
1301 | |
1302 | return nullptr; |
1303 | } |
1304 | |
1305 | /// Helper routine of SimplifyDemandedUseBits. It tries to simplify |
1306 | /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into |
1307 | /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign |
1308 | /// of "C2-C1". |
1309 | /// |
1310 | /// Suppose E1 and E2 are generally different in bits S={bm, bm+1, |
1311 | /// ..., bn}, without considering the specific value X is holding. |
1312 | /// This transformation is legal iff one of following conditions is hold: |
1313 | /// 1) All the bit in S are 0, in this case E1 == E2. |
1314 | /// 2) We don't care those bits in S, per the input DemandedMask. |
1315 | /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the |
1316 | /// rest bits. |
1317 | /// |
1318 | /// Currently we only test condition 2). |
1319 | /// |
1320 | /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was |
1321 | /// not successful. |
1322 | Value *InstCombinerImpl::simplifyShrShlDemandedBits( |
1323 | Instruction *Shr, const APInt &ShrOp1, Instruction *Shl, |
1324 | const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known) { |
1325 | if (!ShlOp1 || !ShrOp1) |
1326 | return nullptr; // No-op. |
1327 | |
1328 | Value *VarX = Shr->getOperand(i: 0); |
1329 | Type *Ty = VarX->getType(); |
1330 | unsigned BitWidth = Ty->getScalarSizeInBits(); |
1331 | if (ShlOp1.uge(RHS: BitWidth) || ShrOp1.uge(RHS: BitWidth)) |
1332 | return nullptr; // Undef. |
1333 | |
1334 | unsigned ShlAmt = ShlOp1.getZExtValue(); |
1335 | unsigned ShrAmt = ShrOp1.getZExtValue(); |
1336 | |
1337 | Known.One.clearAllBits(); |
1338 | Known.Zero.setLowBits(ShlAmt - 1); |
1339 | Known.Zero &= DemandedMask; |
1340 | |
1341 | APInt BitMask1(APInt::getAllOnes(numBits: BitWidth)); |
1342 | APInt BitMask2(APInt::getAllOnes(numBits: BitWidth)); |
1343 | |
1344 | bool isLshr = (Shr->getOpcode() == Instruction::LShr); |
1345 | BitMask1 = isLshr ? (BitMask1.lshr(shiftAmt: ShrAmt) << ShlAmt) : |
1346 | (BitMask1.ashr(ShiftAmt: ShrAmt) << ShlAmt); |
1347 | |
1348 | if (ShrAmt <= ShlAmt) { |
1349 | BitMask2 <<= (ShlAmt - ShrAmt); |
1350 | } else { |
1351 | BitMask2 = isLshr ? BitMask2.lshr(shiftAmt: ShrAmt - ShlAmt): |
1352 | BitMask2.ashr(ShiftAmt: ShrAmt - ShlAmt); |
1353 | } |
1354 | |
1355 | // Check if condition-2 (see the comment to this function) is satified. |
1356 | if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) { |
1357 | if (ShrAmt == ShlAmt) |
1358 | return VarX; |
1359 | |
1360 | if (!Shr->hasOneUse()) |
1361 | return nullptr; |
1362 | |
1363 | BinaryOperator *New; |
1364 | if (ShrAmt < ShlAmt) { |
1365 | Constant *Amt = ConstantInt::get(Ty: VarX->getType(), V: ShlAmt - ShrAmt); |
1366 | New = BinaryOperator::CreateShl(V1: VarX, V2: Amt); |
1367 | BinaryOperator *Orig = cast<BinaryOperator>(Val: Shl); |
1368 | New->setHasNoSignedWrap(Orig->hasNoSignedWrap()); |
1369 | New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap()); |
1370 | } else { |
1371 | Constant *Amt = ConstantInt::get(Ty: VarX->getType(), V: ShrAmt - ShlAmt); |
1372 | New = isLshr ? BinaryOperator::CreateLShr(V1: VarX, V2: Amt) : |
1373 | BinaryOperator::CreateAShr(V1: VarX, V2: Amt); |
1374 | if (cast<BinaryOperator>(Val: Shr)->isExact()) |
1375 | New->setIsExact(true); |
1376 | } |
1377 | |
1378 | return InsertNewInstWith(New, Old: Shl->getIterator()); |
1379 | } |
1380 | |
1381 | return nullptr; |
1382 | } |
1383 | |
1384 | /// The specified value produces a vector with any number of elements. |
1385 | /// This method analyzes which elements of the operand are poison and |
1386 | /// returns that information in PoisonElts. |
1387 | /// |
1388 | /// DemandedElts contains the set of elements that are actually used by the |
1389 | /// caller, and by default (AllowMultipleUsers equals false) the value is |
1390 | /// simplified only if it has a single caller. If AllowMultipleUsers is set |
1391 | /// to true, DemandedElts refers to the union of sets of elements that are |
1392 | /// used by all callers. |
1393 | /// |
1394 | /// If the information about demanded elements can be used to simplify the |
1395 | /// operation, the operation is simplified, then the resultant value is |
1396 | /// returned. This returns null if no change was made. |
1397 | Value *InstCombinerImpl::SimplifyDemandedVectorElts(Value *V, |
1398 | APInt DemandedElts, |
1399 | APInt &PoisonElts, |
1400 | unsigned Depth, |
1401 | bool AllowMultipleUsers) { |
1402 | // Cannot analyze scalable type. The number of vector elements is not a |
1403 | // compile-time constant. |
1404 | if (isa<ScalableVectorType>(Val: V->getType())) |
1405 | return nullptr; |
1406 | |
1407 | unsigned VWidth = cast<FixedVectorType>(Val: V->getType())->getNumElements(); |
1408 | APInt EltMask(APInt::getAllOnes(numBits: VWidth)); |
1409 | assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!" ); |
1410 | |
1411 | if (match(V, P: m_Poison())) { |
1412 | // If the entire vector is poison, just return this info. |
1413 | PoisonElts = EltMask; |
1414 | return nullptr; |
1415 | } |
1416 | |
1417 | if (DemandedElts.isZero()) { // If nothing is demanded, provide poison. |
1418 | PoisonElts = EltMask; |
1419 | return PoisonValue::get(T: V->getType()); |
1420 | } |
1421 | |
1422 | PoisonElts = 0; |
1423 | |
1424 | if (auto *C = dyn_cast<Constant>(Val: V)) { |
1425 | // Check if this is identity. If so, return 0 since we are not simplifying |
1426 | // anything. |
1427 | if (DemandedElts.isAllOnes()) |
1428 | return nullptr; |
1429 | |
1430 | Type *EltTy = cast<VectorType>(Val: V->getType())->getElementType(); |
1431 | Constant *Poison = PoisonValue::get(T: EltTy); |
1432 | SmallVector<Constant*, 16> Elts; |
1433 | for (unsigned i = 0; i != VWidth; ++i) { |
1434 | if (!DemandedElts[i]) { // If not demanded, set to poison. |
1435 | Elts.push_back(Elt: Poison); |
1436 | PoisonElts.setBit(i); |
1437 | continue; |
1438 | } |
1439 | |
1440 | Constant *Elt = C->getAggregateElement(Elt: i); |
1441 | if (!Elt) return nullptr; |
1442 | |
1443 | Elts.push_back(Elt); |
1444 | if (isa<PoisonValue>(Val: Elt)) // Already poison. |
1445 | PoisonElts.setBit(i); |
1446 | } |
1447 | |
1448 | // If we changed the constant, return it. |
1449 | Constant *NewCV = ConstantVector::get(V: Elts); |
1450 | return NewCV != C ? NewCV : nullptr; |
1451 | } |
1452 | |
1453 | // Limit search depth. |
1454 | if (Depth == SimplifyDemandedVectorEltsDepthLimit) |
1455 | return nullptr; |
1456 | |
1457 | if (!AllowMultipleUsers) { |
1458 | // If multiple users are using the root value, proceed with |
1459 | // simplification conservatively assuming that all elements |
1460 | // are needed. |
1461 | if (!V->hasOneUse()) { |
1462 | // Quit if we find multiple users of a non-root value though. |
1463 | // They'll be handled when it's their turn to be visited by |
1464 | // the main instcombine process. |
1465 | if (Depth != 0) |
1466 | // TODO: Just compute the PoisonElts information recursively. |
1467 | return nullptr; |
1468 | |
1469 | // Conservatively assume that all elements are needed. |
1470 | DemandedElts = EltMask; |
1471 | } |
1472 | } |
1473 | |
1474 | Instruction *I = dyn_cast<Instruction>(Val: V); |
1475 | if (!I) return nullptr; // Only analyze instructions. |
1476 | |
1477 | bool MadeChange = false; |
1478 | auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum, |
1479 | APInt Demanded, APInt &Undef) { |
1480 | auto *II = dyn_cast<IntrinsicInst>(Val: Inst); |
1481 | Value *Op = II ? II->getArgOperand(i: OpNum) : Inst->getOperand(i: OpNum); |
1482 | if (Value *V = SimplifyDemandedVectorElts(V: Op, DemandedElts: Demanded, PoisonElts&: Undef, Depth: Depth + 1)) { |
1483 | replaceOperand(I&: *Inst, OpNum, V); |
1484 | MadeChange = true; |
1485 | } |
1486 | }; |
1487 | |
1488 | APInt PoisonElts2(VWidth, 0); |
1489 | APInt PoisonElts3(VWidth, 0); |
1490 | switch (I->getOpcode()) { |
1491 | default: break; |
1492 | |
1493 | case Instruction::GetElementPtr: { |
1494 | // The LangRef requires that struct geps have all constant indices. As |
1495 | // such, we can't convert any operand to partial undef. |
1496 | auto mayIndexStructType = [](GetElementPtrInst &GEP) { |
1497 | for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP); |
1498 | I != E; I++) |
1499 | if (I.isStruct()) |
1500 | return true; |
1501 | return false; |
1502 | }; |
1503 | if (mayIndexStructType(cast<GetElementPtrInst>(Val&: *I))) |
1504 | break; |
1505 | |
1506 | // Conservatively track the demanded elements back through any vector |
1507 | // operands we may have. We know there must be at least one, or we |
1508 | // wouldn't have a vector result to get here. Note that we intentionally |
1509 | // merge the undef bits here since gepping with either an poison base or |
1510 | // index results in poison. |
1511 | for (unsigned i = 0; i < I->getNumOperands(); i++) { |
1512 | if (i == 0 ? match(V: I->getOperand(i), P: m_Undef()) |
1513 | : match(V: I->getOperand(i), P: m_Poison())) { |
1514 | // If the entire vector is undefined, just return this info. |
1515 | PoisonElts = EltMask; |
1516 | return nullptr; |
1517 | } |
1518 | if (I->getOperand(i)->getType()->isVectorTy()) { |
1519 | APInt PoisonEltsOp(VWidth, 0); |
1520 | simplifyAndSetOp(I, i, DemandedElts, PoisonEltsOp); |
1521 | // gep(x, undef) is not undef, so skip considering idx ops here |
1522 | // Note that we could propagate poison, but we can't distinguish between |
1523 | // undef & poison bits ATM |
1524 | if (i == 0) |
1525 | PoisonElts |= PoisonEltsOp; |
1526 | } |
1527 | } |
1528 | |
1529 | break; |
1530 | } |
1531 | case Instruction::InsertElement: { |
1532 | // If this is a variable index, we don't know which element it overwrites. |
1533 | // demand exactly the same input as we produce. |
1534 | ConstantInt *Idx = dyn_cast<ConstantInt>(Val: I->getOperand(i: 2)); |
1535 | if (!Idx) { |
1536 | // Note that we can't propagate undef elt info, because we don't know |
1537 | // which elt is getting updated. |
1538 | simplifyAndSetOp(I, 0, DemandedElts, PoisonElts2); |
1539 | break; |
1540 | } |
1541 | |
1542 | // The element inserted overwrites whatever was there, so the input demanded |
1543 | // set is simpler than the output set. |
1544 | unsigned IdxNo = Idx->getZExtValue(); |
1545 | APInt PreInsertDemandedElts = DemandedElts; |
1546 | if (IdxNo < VWidth) |
1547 | PreInsertDemandedElts.clearBit(BitPosition: IdxNo); |
1548 | |
1549 | // If we only demand the element that is being inserted and that element |
1550 | // was extracted from the same index in another vector with the same type, |
1551 | // replace this insert with that other vector. |
1552 | // Note: This is attempted before the call to simplifyAndSetOp because that |
1553 | // may change PoisonElts to a value that does not match with Vec. |
1554 | Value *Vec; |
1555 | if (PreInsertDemandedElts == 0 && |
1556 | match(V: I->getOperand(i: 1), |
1557 | P: m_ExtractElt(Val: m_Value(V&: Vec), Idx: m_SpecificInt(V: IdxNo))) && |
1558 | Vec->getType() == I->getType()) { |
1559 | return Vec; |
1560 | } |
1561 | |
1562 | simplifyAndSetOp(I, 0, PreInsertDemandedElts, PoisonElts); |
1563 | |
1564 | // If this is inserting an element that isn't demanded, remove this |
1565 | // insertelement. |
1566 | if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { |
1567 | Worklist.push(I); |
1568 | return I->getOperand(i: 0); |
1569 | } |
1570 | |
1571 | // The inserted element is defined. |
1572 | PoisonElts.clearBit(BitPosition: IdxNo); |
1573 | break; |
1574 | } |
1575 | case Instruction::ShuffleVector: { |
1576 | auto *Shuffle = cast<ShuffleVectorInst>(Val: I); |
1577 | assert(Shuffle->getOperand(0)->getType() == |
1578 | Shuffle->getOperand(1)->getType() && |
1579 | "Expected shuffle operands to have same type" ); |
1580 | unsigned OpWidth = cast<FixedVectorType>(Val: Shuffle->getOperand(i_nocapture: 0)->getType()) |
1581 | ->getNumElements(); |
1582 | // Handle trivial case of a splat. Only check the first element of LHS |
1583 | // operand. |
1584 | if (all_of(Range: Shuffle->getShuffleMask(), P: [](int Elt) { return Elt == 0; }) && |
1585 | DemandedElts.isAllOnes()) { |
1586 | if (!isa<PoisonValue>(Val: I->getOperand(i: 1))) { |
1587 | I->setOperand(i: 1, Val: PoisonValue::get(T: I->getOperand(i: 1)->getType())); |
1588 | MadeChange = true; |
1589 | } |
1590 | APInt LeftDemanded(OpWidth, 1); |
1591 | APInt LHSPoisonElts(OpWidth, 0); |
1592 | simplifyAndSetOp(I, 0, LeftDemanded, LHSPoisonElts); |
1593 | if (LHSPoisonElts[0]) |
1594 | PoisonElts = EltMask; |
1595 | else |
1596 | PoisonElts.clearAllBits(); |
1597 | break; |
1598 | } |
1599 | |
1600 | APInt LeftDemanded(OpWidth, 0), RightDemanded(OpWidth, 0); |
1601 | for (unsigned i = 0; i < VWidth; i++) { |
1602 | if (DemandedElts[i]) { |
1603 | unsigned MaskVal = Shuffle->getMaskValue(Elt: i); |
1604 | if (MaskVal != -1u) { |
1605 | assert(MaskVal < OpWidth * 2 && |
1606 | "shufflevector mask index out of range!" ); |
1607 | if (MaskVal < OpWidth) |
1608 | LeftDemanded.setBit(MaskVal); |
1609 | else |
1610 | RightDemanded.setBit(MaskVal - OpWidth); |
1611 | } |
1612 | } |
1613 | } |
1614 | |
1615 | APInt LHSPoisonElts(OpWidth, 0); |
1616 | simplifyAndSetOp(I, 0, LeftDemanded, LHSPoisonElts); |
1617 | |
1618 | APInt RHSPoisonElts(OpWidth, 0); |
1619 | simplifyAndSetOp(I, 1, RightDemanded, RHSPoisonElts); |
1620 | |
1621 | // If this shuffle does not change the vector length and the elements |
1622 | // demanded by this shuffle are an identity mask, then this shuffle is |
1623 | // unnecessary. |
1624 | // |
1625 | // We are assuming canonical form for the mask, so the source vector is |
1626 | // operand 0 and operand 1 is not used. |
1627 | // |
1628 | // Note that if an element is demanded and this shuffle mask is undefined |
1629 | // for that element, then the shuffle is not considered an identity |
1630 | // operation. The shuffle prevents poison from the operand vector from |
1631 | // leaking to the result by replacing poison with an undefined value. |
1632 | if (VWidth == OpWidth) { |
1633 | bool IsIdentityShuffle = true; |
1634 | for (unsigned i = 0; i < VWidth; i++) { |
1635 | unsigned MaskVal = Shuffle->getMaskValue(Elt: i); |
1636 | if (DemandedElts[i] && i != MaskVal) { |
1637 | IsIdentityShuffle = false; |
1638 | break; |
1639 | } |
1640 | } |
1641 | if (IsIdentityShuffle) |
1642 | return Shuffle->getOperand(i_nocapture: 0); |
1643 | } |
1644 | |
1645 | bool NewPoisonElts = false; |
1646 | unsigned LHSIdx = -1u, LHSValIdx = -1u; |
1647 | unsigned RHSIdx = -1u, RHSValIdx = -1u; |
1648 | bool LHSUniform = true; |
1649 | bool RHSUniform = true; |
1650 | for (unsigned i = 0; i < VWidth; i++) { |
1651 | unsigned MaskVal = Shuffle->getMaskValue(Elt: i); |
1652 | if (MaskVal == -1u) { |
1653 | PoisonElts.setBit(i); |
1654 | } else if (!DemandedElts[i]) { |
1655 | NewPoisonElts = true; |
1656 | PoisonElts.setBit(i); |
1657 | } else if (MaskVal < OpWidth) { |
1658 | if (LHSPoisonElts[MaskVal]) { |
1659 | NewPoisonElts = true; |
1660 | PoisonElts.setBit(i); |
1661 | } else { |
1662 | LHSIdx = LHSIdx == -1u ? i : OpWidth; |
1663 | LHSValIdx = LHSValIdx == -1u ? MaskVal : OpWidth; |
1664 | LHSUniform = LHSUniform && (MaskVal == i); |
1665 | } |
1666 | } else { |
1667 | if (RHSPoisonElts[MaskVal - OpWidth]) { |
1668 | NewPoisonElts = true; |
1669 | PoisonElts.setBit(i); |
1670 | } else { |
1671 | RHSIdx = RHSIdx == -1u ? i : OpWidth; |
1672 | RHSValIdx = RHSValIdx == -1u ? MaskVal - OpWidth : OpWidth; |
1673 | RHSUniform = RHSUniform && (MaskVal - OpWidth == i); |
1674 | } |
1675 | } |
1676 | } |
1677 | |
1678 | // Try to transform shuffle with constant vector and single element from |
1679 | // this constant vector to single insertelement instruction. |
1680 | // shufflevector V, C, <v1, v2, .., ci, .., vm> -> |
1681 | // insertelement V, C[ci], ci-n |
1682 | if (OpWidth == |
1683 | cast<FixedVectorType>(Val: Shuffle->getType())->getNumElements()) { |
1684 | Value *Op = nullptr; |
1685 | Constant *Value = nullptr; |
1686 | unsigned Idx = -1u; |
1687 | |
1688 | // Find constant vector with the single element in shuffle (LHS or RHS). |
1689 | if (LHSIdx < OpWidth && RHSUniform) { |
1690 | if (auto *CV = dyn_cast<ConstantVector>(Val: Shuffle->getOperand(i_nocapture: 0))) { |
1691 | Op = Shuffle->getOperand(i_nocapture: 1); |
1692 | Value = CV->getOperand(i_nocapture: LHSValIdx); |
1693 | Idx = LHSIdx; |
1694 | } |
1695 | } |
1696 | if (RHSIdx < OpWidth && LHSUniform) { |
1697 | if (auto *CV = dyn_cast<ConstantVector>(Val: Shuffle->getOperand(i_nocapture: 1))) { |
1698 | Op = Shuffle->getOperand(i_nocapture: 0); |
1699 | Value = CV->getOperand(i_nocapture: RHSValIdx); |
1700 | Idx = RHSIdx; |
1701 | } |
1702 | } |
1703 | // Found constant vector with single element - convert to insertelement. |
1704 | if (Op && Value) { |
1705 | Instruction *New = InsertElementInst::Create( |
1706 | Vec: Op, NewElt: Value, Idx: ConstantInt::get(Ty: Type::getInt64Ty(C&: I->getContext()), V: Idx), |
1707 | NameStr: Shuffle->getName()); |
1708 | InsertNewInstWith(New, Old: Shuffle->getIterator()); |
1709 | return New; |
1710 | } |
1711 | } |
1712 | if (NewPoisonElts) { |
1713 | // Add additional discovered undefs. |
1714 | SmallVector<int, 16> Elts; |
1715 | for (unsigned i = 0; i < VWidth; ++i) { |
1716 | if (PoisonElts[i]) |
1717 | Elts.push_back(Elt: PoisonMaskElem); |
1718 | else |
1719 | Elts.push_back(Elt: Shuffle->getMaskValue(Elt: i)); |
1720 | } |
1721 | Shuffle->setShuffleMask(Elts); |
1722 | MadeChange = true; |
1723 | } |
1724 | break; |
1725 | } |
1726 | case Instruction::Select: { |
1727 | // If this is a vector select, try to transform the select condition based |
1728 | // on the current demanded elements. |
1729 | SelectInst *Sel = cast<SelectInst>(Val: I); |
1730 | if (Sel->getCondition()->getType()->isVectorTy()) { |
1731 | // TODO: We are not doing anything with PoisonElts based on this call. |
1732 | // It is overwritten below based on the other select operands. If an |
1733 | // element of the select condition is known undef, then we are free to |
1734 | // choose the output value from either arm of the select. If we know that |
1735 | // one of those values is undef, then the output can be undef. |
1736 | simplifyAndSetOp(I, 0, DemandedElts, PoisonElts); |
1737 | } |
1738 | |
1739 | // Next, see if we can transform the arms of the select. |
1740 | APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts); |
1741 | if (auto *CV = dyn_cast<ConstantVector>(Val: Sel->getCondition())) { |
1742 | for (unsigned i = 0; i < VWidth; i++) { |
1743 | Constant *CElt = CV->getAggregateElement(Elt: i); |
1744 | |
1745 | // isNullValue() always returns false when called on a ConstantExpr. |
1746 | if (CElt->isNullValue()) |
1747 | DemandedLHS.clearBit(BitPosition: i); |
1748 | else if (CElt->isOneValue()) |
1749 | DemandedRHS.clearBit(BitPosition: i); |
1750 | } |
1751 | } |
1752 | |
1753 | simplifyAndSetOp(I, 1, DemandedLHS, PoisonElts2); |
1754 | simplifyAndSetOp(I, 2, DemandedRHS, PoisonElts3); |
1755 | |
1756 | // Output elements are undefined if the element from each arm is undefined. |
1757 | // TODO: This can be improved. See comment in select condition handling. |
1758 | PoisonElts = PoisonElts2 & PoisonElts3; |
1759 | break; |
1760 | } |
1761 | case Instruction::BitCast: { |
1762 | // Vector->vector casts only. |
1763 | VectorType *VTy = dyn_cast<VectorType>(Val: I->getOperand(i: 0)->getType()); |
1764 | if (!VTy) break; |
1765 | unsigned InVWidth = cast<FixedVectorType>(Val: VTy)->getNumElements(); |
1766 | APInt InputDemandedElts(InVWidth, 0); |
1767 | PoisonElts2 = APInt(InVWidth, 0); |
1768 | unsigned Ratio; |
1769 | |
1770 | if (VWidth == InVWidth) { |
1771 | // If we are converting from <4 x i32> -> <4 x f32>, we demand the same |
1772 | // elements as are demanded of us. |
1773 | Ratio = 1; |
1774 | InputDemandedElts = DemandedElts; |
1775 | } else if ((VWidth % InVWidth) == 0) { |
1776 | // If the number of elements in the output is a multiple of the number of |
1777 | // elements in the input then an input element is live if any of the |
1778 | // corresponding output elements are live. |
1779 | Ratio = VWidth / InVWidth; |
1780 | for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) |
1781 | if (DemandedElts[OutIdx]) |
1782 | InputDemandedElts.setBit(OutIdx / Ratio); |
1783 | } else if ((InVWidth % VWidth) == 0) { |
1784 | // If the number of elements in the input is a multiple of the number of |
1785 | // elements in the output then an input element is live if the |
1786 | // corresponding output element is live. |
1787 | Ratio = InVWidth / VWidth; |
1788 | for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) |
1789 | if (DemandedElts[InIdx / Ratio]) |
1790 | InputDemandedElts.setBit(InIdx); |
1791 | } else { |
1792 | // Unsupported so far. |
1793 | break; |
1794 | } |
1795 | |
1796 | simplifyAndSetOp(I, 0, InputDemandedElts, PoisonElts2); |
1797 | |
1798 | if (VWidth == InVWidth) { |
1799 | PoisonElts = PoisonElts2; |
1800 | } else if ((VWidth % InVWidth) == 0) { |
1801 | // If the number of elements in the output is a multiple of the number of |
1802 | // elements in the input then an output element is undef if the |
1803 | // corresponding input element is undef. |
1804 | for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) |
1805 | if (PoisonElts2[OutIdx / Ratio]) |
1806 | PoisonElts.setBit(OutIdx); |
1807 | } else if ((InVWidth % VWidth) == 0) { |
1808 | // If the number of elements in the input is a multiple of the number of |
1809 | // elements in the output then an output element is undef if all of the |
1810 | // corresponding input elements are undef. |
1811 | for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { |
1812 | APInt SubUndef = PoisonElts2.lshr(shiftAmt: OutIdx * Ratio).zextOrTrunc(width: Ratio); |
1813 | if (SubUndef.popcount() == Ratio) |
1814 | PoisonElts.setBit(OutIdx); |
1815 | } |
1816 | } else { |
1817 | llvm_unreachable("Unimp" ); |
1818 | } |
1819 | break; |
1820 | } |
1821 | case Instruction::FPTrunc: |
1822 | case Instruction::FPExt: |
1823 | simplifyAndSetOp(I, 0, DemandedElts, PoisonElts); |
1824 | break; |
1825 | |
1826 | case Instruction::Call: { |
1827 | IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: I); |
1828 | if (!II) break; |
1829 | switch (II->getIntrinsicID()) { |
1830 | case Intrinsic::masked_gather: // fallthrough |
1831 | case Intrinsic::masked_load: { |
1832 | // Subtlety: If we load from a pointer, the pointer must be valid |
1833 | // regardless of whether the element is demanded. Doing otherwise risks |
1834 | // segfaults which didn't exist in the original program. |
1835 | APInt DemandedPtrs(APInt::getAllOnes(numBits: VWidth)), |
1836 | DemandedPassThrough(DemandedElts); |
1837 | if (auto *CV = dyn_cast<ConstantVector>(Val: II->getOperand(i_nocapture: 2))) |
1838 | for (unsigned i = 0; i < VWidth; i++) { |
1839 | Constant *CElt = CV->getAggregateElement(Elt: i); |
1840 | if (CElt->isNullValue()) |
1841 | DemandedPtrs.clearBit(BitPosition: i); |
1842 | else if (CElt->isAllOnesValue()) |
1843 | DemandedPassThrough.clearBit(BitPosition: i); |
1844 | } |
1845 | if (II->getIntrinsicID() == Intrinsic::masked_gather) |
1846 | simplifyAndSetOp(II, 0, DemandedPtrs, PoisonElts2); |
1847 | simplifyAndSetOp(II, 3, DemandedPassThrough, PoisonElts3); |
1848 | |
1849 | // Output elements are undefined if the element from both sources are. |
1850 | // TODO: can strengthen via mask as well. |
1851 | PoisonElts = PoisonElts2 & PoisonElts3; |
1852 | break; |
1853 | } |
1854 | default: { |
1855 | // Handle target specific intrinsics |
1856 | std::optional<Value *> V = targetSimplifyDemandedVectorEltsIntrinsic( |
1857 | II&: *II, DemandedElts, UndefElts&: PoisonElts, UndefElts2&: PoisonElts2, UndefElts3&: PoisonElts3, |
1858 | SimplifyAndSetOp: simplifyAndSetOp); |
1859 | if (V) |
1860 | return *V; |
1861 | break; |
1862 | } |
1863 | } // switch on IntrinsicID |
1864 | break; |
1865 | } // case Call |
1866 | } // switch on Opcode |
1867 | |
1868 | // TODO: We bail completely on integer div/rem and shifts because they have |
1869 | // UB/poison potential, but that should be refined. |
1870 | BinaryOperator *BO; |
1871 | if (match(V: I, P: m_BinOp(I&: BO)) && !BO->isIntDivRem() && !BO->isShift()) { |
1872 | Value *X = BO->getOperand(i_nocapture: 0); |
1873 | Value *Y = BO->getOperand(i_nocapture: 1); |
1874 | |
1875 | // Look for an equivalent binop except that one operand has been shuffled. |
1876 | // If the demand for this binop only includes elements that are the same as |
1877 | // the other binop, then we may be able to replace this binop with a use of |
1878 | // the earlier one. |
1879 | // |
1880 | // Example: |
1881 | // %other_bo = bo (shuf X, {0}), Y |
1882 | // %this_extracted_bo = extelt (bo X, Y), 0 |
1883 | // --> |
1884 | // %other_bo = bo (shuf X, {0}), Y |
1885 | // %this_extracted_bo = extelt %other_bo, 0 |
1886 | // |
1887 | // TODO: Handle demand of an arbitrary single element or more than one |
1888 | // element instead of just element 0. |
1889 | // TODO: Unlike general demanded elements transforms, this should be safe |
1890 | // for any (div/rem/shift) opcode too. |
1891 | if (DemandedElts == 1 && !X->hasOneUse() && !Y->hasOneUse() && |
1892 | BO->hasOneUse() ) { |
1893 | |
1894 | auto findShufBO = [&](bool MatchShufAsOp0) -> User * { |
1895 | // Try to use shuffle-of-operand in place of an operand: |
1896 | // bo X, Y --> bo (shuf X), Y |
1897 | // bo X, Y --> bo X, (shuf Y) |
1898 | |
1899 | Value *OtherOp = MatchShufAsOp0 ? Y : X; |
1900 | if (!OtherOp->hasUseList()) |
1901 | return nullptr; |
1902 | |
1903 | BinaryOperator::BinaryOps Opcode = BO->getOpcode(); |
1904 | Value *ShufOp = MatchShufAsOp0 ? X : Y; |
1905 | |
1906 | for (User *U : OtherOp->users()) { |
1907 | ArrayRef<int> Mask; |
1908 | auto Shuf = m_Shuffle(v1: m_Specific(V: ShufOp), v2: m_Value(), mask: m_Mask(Mask)); |
1909 | if (BO->isCommutative() |
1910 | ? match(V: U, P: m_c_BinOp(Opcode, L: Shuf, R: m_Specific(V: OtherOp))) |
1911 | : MatchShufAsOp0 |
1912 | ? match(V: U, P: m_BinOp(Opcode, L: Shuf, R: m_Specific(V: OtherOp))) |
1913 | : match(V: U, P: m_BinOp(Opcode, L: m_Specific(V: OtherOp), R: Shuf))) |
1914 | if (match(Mask, P: m_ZeroMask()) && Mask[0] != PoisonMaskElem) |
1915 | if (DT.dominates(Def: U, User: I)) |
1916 | return U; |
1917 | } |
1918 | return nullptr; |
1919 | }; |
1920 | |
1921 | if (User *ShufBO = findShufBO(/* MatchShufAsOp0 */ true)) |
1922 | return ShufBO; |
1923 | if (User *ShufBO = findShufBO(/* MatchShufAsOp0 */ false)) |
1924 | return ShufBO; |
1925 | } |
1926 | |
1927 | simplifyAndSetOp(I, 0, DemandedElts, PoisonElts); |
1928 | simplifyAndSetOp(I, 1, DemandedElts, PoisonElts2); |
1929 | |
1930 | // Output elements are undefined if both are undefined. Consider things |
1931 | // like undef & 0. The result is known zero, not undef. |
1932 | PoisonElts &= PoisonElts2; |
1933 | } |
1934 | |
1935 | // If we've proven all of the lanes poison, return a poison value. |
1936 | // TODO: Intersect w/demanded lanes |
1937 | if (PoisonElts.isAllOnes()) |
1938 | return PoisonValue::get(T: I->getType()); |
1939 | |
1940 | return MadeChange ? I : nullptr; |
1941 | } |
1942 | |
1943 | /// For floating-point classes that resolve to a single bit pattern, return that |
1944 | /// value. |
1945 | static Constant *getFPClassConstant(Type *Ty, FPClassTest Mask) { |
1946 | if (Mask == fcNone) |
1947 | return PoisonValue::get(T: Ty); |
1948 | |
1949 | if (Mask == fcPosZero) |
1950 | return Constant::getNullValue(Ty); |
1951 | |
1952 | // TODO: Support aggregate types that are allowed by FPMathOperator. |
1953 | if (Ty->isAggregateType()) |
1954 | return nullptr; |
1955 | |
1956 | switch (Mask) { |
1957 | case fcNegZero: |
1958 | return ConstantFP::getZero(Ty, Negative: true); |
1959 | case fcPosInf: |
1960 | return ConstantFP::getInfinity(Ty); |
1961 | case fcNegInf: |
1962 | return ConstantFP::getInfinity(Ty, Negative: true); |
1963 | default: |
1964 | return nullptr; |
1965 | } |
1966 | } |
1967 | |
1968 | Value *InstCombinerImpl::SimplifyDemandedUseFPClass(Value *V, |
1969 | FPClassTest DemandedMask, |
1970 | KnownFPClass &Known, |
1971 | Instruction *CxtI, |
1972 | unsigned Depth) { |
1973 | assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth" ); |
1974 | Type *VTy = V->getType(); |
1975 | |
1976 | assert(Known == KnownFPClass() && "expected uninitialized state" ); |
1977 | |
1978 | if (DemandedMask == fcNone) |
1979 | return isa<UndefValue>(Val: V) ? nullptr : PoisonValue::get(T: VTy); |
1980 | |
1981 | if (Depth == MaxAnalysisRecursionDepth) |
1982 | return nullptr; |
1983 | |
1984 | Instruction *I = dyn_cast<Instruction>(Val: V); |
1985 | if (!I) { |
1986 | // Handle constants and arguments |
1987 | Known = computeKnownFPClass(Val: V, Interested: fcAllFlags, CtxI: CxtI, Depth: Depth + 1); |
1988 | Value *FoldedToConst = |
1989 | getFPClassConstant(Ty: VTy, Mask: DemandedMask & Known.KnownFPClasses); |
1990 | return FoldedToConst == V ? nullptr : FoldedToConst; |
1991 | } |
1992 | |
1993 | if (!I->hasOneUse()) |
1994 | return nullptr; |
1995 | |
1996 | if (auto *FPOp = dyn_cast<FPMathOperator>(Val: I)) { |
1997 | if (FPOp->hasNoNaNs()) |
1998 | DemandedMask &= ~fcNan; |
1999 | if (FPOp->hasNoInfs()) |
2000 | DemandedMask &= ~fcInf; |
2001 | } |
2002 | switch (I->getOpcode()) { |
2003 | case Instruction::FNeg: { |
2004 | if (SimplifyDemandedFPClass(I, Op: 0, DemandedMask: llvm::fneg(Mask: DemandedMask), Known, |
2005 | Depth: Depth + 1)) |
2006 | return I; |
2007 | Known.fneg(); |
2008 | break; |
2009 | } |
2010 | case Instruction::Call: { |
2011 | CallInst *CI = cast<CallInst>(Val: I); |
2012 | switch (CI->getIntrinsicID()) { |
2013 | case Intrinsic::fabs: |
2014 | if (SimplifyDemandedFPClass(I, Op: 0, DemandedMask: llvm::inverse_fabs(Mask: DemandedMask), Known, |
2015 | Depth: Depth + 1)) |
2016 | return I; |
2017 | Known.fabs(); |
2018 | break; |
2019 | case Intrinsic::arithmetic_fence: |
2020 | if (SimplifyDemandedFPClass(I, Op: 0, DemandedMask, Known, Depth: Depth + 1)) |
2021 | return I; |
2022 | break; |
2023 | case Intrinsic::copysign: { |
2024 | // Flip on more potentially demanded classes |
2025 | const FPClassTest DemandedMaskAnySign = llvm::unknown_sign(Mask: DemandedMask); |
2026 | if (SimplifyDemandedFPClass(I, Op: 0, DemandedMask: DemandedMaskAnySign, Known, Depth: Depth + 1)) |
2027 | return I; |
2028 | |
2029 | if ((DemandedMask & fcNegative) == DemandedMask) { |
2030 | // Roundabout way of replacing with fneg(fabs) |
2031 | I->setOperand(i: 1, Val: ConstantFP::get(Ty: VTy, V: -1.0)); |
2032 | return I; |
2033 | } |
2034 | |
2035 | if ((DemandedMask & fcPositive) == DemandedMask) { |
2036 | // Roundabout way of replacing with fabs |
2037 | I->setOperand(i: 1, Val: ConstantFP::getZero(Ty: VTy)); |
2038 | return I; |
2039 | } |
2040 | |
2041 | KnownFPClass KnownSign = |
2042 | computeKnownFPClass(Val: I->getOperand(i: 1), Interested: fcAllFlags, CtxI: CxtI, Depth: Depth + 1); |
2043 | Known.copysign(Sign: KnownSign); |
2044 | break; |
2045 | } |
2046 | default: |
2047 | Known = computeKnownFPClass(Val: I, Interested: ~DemandedMask, CtxI: CxtI, Depth: Depth + 1); |
2048 | break; |
2049 | } |
2050 | |
2051 | break; |
2052 | } |
2053 | case Instruction::Select: { |
2054 | KnownFPClass KnownLHS, KnownRHS; |
2055 | if (SimplifyDemandedFPClass(I, Op: 2, DemandedMask, Known&: KnownRHS, Depth: Depth + 1) || |
2056 | SimplifyDemandedFPClass(I, Op: 1, DemandedMask, Known&: KnownLHS, Depth: Depth + 1)) |
2057 | return I; |
2058 | |
2059 | if (KnownLHS.isKnownNever(Mask: DemandedMask)) |
2060 | return I->getOperand(i: 2); |
2061 | if (KnownRHS.isKnownNever(Mask: DemandedMask)) |
2062 | return I->getOperand(i: 1); |
2063 | |
2064 | // TODO: Recognize clamping patterns |
2065 | Known = KnownLHS | KnownRHS; |
2066 | break; |
2067 | } |
2068 | default: |
2069 | Known = computeKnownFPClass(Val: I, Interested: ~DemandedMask, CtxI: CxtI, Depth: Depth + 1); |
2070 | break; |
2071 | } |
2072 | |
2073 | return getFPClassConstant(Ty: VTy, Mask: DemandedMask & Known.KnownFPClasses); |
2074 | } |
2075 | |
2076 | bool InstCombinerImpl::SimplifyDemandedFPClass(Instruction *I, unsigned OpNo, |
2077 | FPClassTest DemandedMask, |
2078 | KnownFPClass &Known, |
2079 | unsigned Depth) { |
2080 | Use &U = I->getOperandUse(i: OpNo); |
2081 | Value *NewVal = |
2082 | SimplifyDemandedUseFPClass(V: U.get(), DemandedMask, Known, CxtI: I, Depth); |
2083 | if (!NewVal) |
2084 | return false; |
2085 | if (Instruction *OpInst = dyn_cast<Instruction>(Val&: U)) |
2086 | salvageDebugInfo(I&: *OpInst); |
2087 | |
2088 | replaceUse(U, NewValue: NewVal); |
2089 | return true; |
2090 | } |
2091 | |