| 1 | //===- AddressSanitizer.cpp - memory error detector -----------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file is a part of AddressSanitizer, an address basic correctness |
| 10 | // checker. |
| 11 | // Details of the algorithm: |
| 12 | // https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm |
| 13 | // |
| 14 | // FIXME: This sanitizer does not yet handle scalable vectors |
| 15 | // |
| 16 | //===----------------------------------------------------------------------===// |
| 17 | |
| 18 | #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" |
| 19 | #include "llvm/ADT/ArrayRef.h" |
| 20 | #include "llvm/ADT/DenseMap.h" |
| 21 | #include "llvm/ADT/DepthFirstIterator.h" |
| 22 | #include "llvm/ADT/SmallPtrSet.h" |
| 23 | #include "llvm/ADT/SmallVector.h" |
| 24 | #include "llvm/ADT/Statistic.h" |
| 25 | #include "llvm/ADT/StringExtras.h" |
| 26 | #include "llvm/ADT/StringRef.h" |
| 27 | #include "llvm/ADT/Twine.h" |
| 28 | #include "llvm/Analysis/GlobalsModRef.h" |
| 29 | #include "llvm/Analysis/MemoryBuiltins.h" |
| 30 | #include "llvm/Analysis/StackSafetyAnalysis.h" |
| 31 | #include "llvm/Analysis/TargetLibraryInfo.h" |
| 32 | #include "llvm/Analysis/ValueTracking.h" |
| 33 | #include "llvm/BinaryFormat/MachO.h" |
| 34 | #include "llvm/Demangle/Demangle.h" |
| 35 | #include "llvm/IR/Argument.h" |
| 36 | #include "llvm/IR/Attributes.h" |
| 37 | #include "llvm/IR/BasicBlock.h" |
| 38 | #include "llvm/IR/Comdat.h" |
| 39 | #include "llvm/IR/Constant.h" |
| 40 | #include "llvm/IR/Constants.h" |
| 41 | #include "llvm/IR/DIBuilder.h" |
| 42 | #include "llvm/IR/DataLayout.h" |
| 43 | #include "llvm/IR/DebugInfoMetadata.h" |
| 44 | #include "llvm/IR/DebugLoc.h" |
| 45 | #include "llvm/IR/DerivedTypes.h" |
| 46 | #include "llvm/IR/EHPersonalities.h" |
| 47 | #include "llvm/IR/Function.h" |
| 48 | #include "llvm/IR/GlobalAlias.h" |
| 49 | #include "llvm/IR/GlobalValue.h" |
| 50 | #include "llvm/IR/GlobalVariable.h" |
| 51 | #include "llvm/IR/IRBuilder.h" |
| 52 | #include "llvm/IR/InlineAsm.h" |
| 53 | #include "llvm/IR/InstVisitor.h" |
| 54 | #include "llvm/IR/InstrTypes.h" |
| 55 | #include "llvm/IR/Instruction.h" |
| 56 | #include "llvm/IR/Instructions.h" |
| 57 | #include "llvm/IR/IntrinsicInst.h" |
| 58 | #include "llvm/IR/Intrinsics.h" |
| 59 | #include "llvm/IR/LLVMContext.h" |
| 60 | #include "llvm/IR/MDBuilder.h" |
| 61 | #include "llvm/IR/Metadata.h" |
| 62 | #include "llvm/IR/Module.h" |
| 63 | #include "llvm/IR/Type.h" |
| 64 | #include "llvm/IR/Use.h" |
| 65 | #include "llvm/IR/Value.h" |
| 66 | #include "llvm/MC/MCSectionMachO.h" |
| 67 | #include "llvm/Support/Casting.h" |
| 68 | #include "llvm/Support/CommandLine.h" |
| 69 | #include "llvm/Support/Debug.h" |
| 70 | #include "llvm/Support/ErrorHandling.h" |
| 71 | #include "llvm/Support/MathExtras.h" |
| 72 | #include "llvm/Support/raw_ostream.h" |
| 73 | #include "llvm/TargetParser/Triple.h" |
| 74 | #include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h" |
| 75 | #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h" |
| 76 | #include "llvm/Transforms/Utils/ASanStackFrameLayout.h" |
| 77 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 78 | #include "llvm/Transforms/Utils/Instrumentation.h" |
| 79 | #include "llvm/Transforms/Utils/Local.h" |
| 80 | #include "llvm/Transforms/Utils/ModuleUtils.h" |
| 81 | #include "llvm/Transforms/Utils/PromoteMemToReg.h" |
| 82 | #include <algorithm> |
| 83 | #include <cassert> |
| 84 | #include <cstddef> |
| 85 | #include <cstdint> |
| 86 | #include <iomanip> |
| 87 | #include <limits> |
| 88 | #include <sstream> |
| 89 | #include <string> |
| 90 | #include <tuple> |
| 91 | |
| 92 | using namespace llvm; |
| 93 | |
| 94 | #define DEBUG_TYPE "asan" |
| 95 | |
| 96 | static const uint64_t kDefaultShadowScale = 3; |
| 97 | static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; |
| 98 | static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; |
| 99 | static const uint64_t kDynamicShadowSentinel = |
| 100 | std::numeric_limits<uint64_t>::max(); |
| 101 | static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G. |
| 102 | static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL; |
| 103 | static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000; |
| 104 | static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44; |
| 105 | static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52; |
| 106 | static const uint64_t kMIPS_ShadowOffsetN32 = 1ULL << 29; |
| 107 | static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000; |
| 108 | static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37; |
| 109 | static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36; |
| 110 | static const uint64_t kLoongArch64_ShadowOffset64 = 1ULL << 46; |
| 111 | static const uint64_t kRISCV64_ShadowOffset64 = kDynamicShadowSentinel; |
| 112 | static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30; |
| 113 | static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46; |
| 114 | static const uint64_t kFreeBSDAArch64_ShadowOffset64 = 1ULL << 47; |
| 115 | static const uint64_t kFreeBSDKasan_ShadowOffset64 = 0xdffff7c000000000; |
| 116 | static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30; |
| 117 | static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46; |
| 118 | static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000; |
| 119 | static const uint64_t kPS_ShadowOffset64 = 1ULL << 40; |
| 120 | static const uint64_t kWindowsShadowOffset32 = 3ULL << 28; |
| 121 | static const uint64_t kWebAssemblyShadowOffset = 0; |
| 122 | |
| 123 | // The shadow memory space is dynamically allocated. |
| 124 | static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel; |
| 125 | |
| 126 | static const size_t kMinStackMallocSize = 1 << 6; // 64B |
| 127 | static const size_t kMaxStackMallocSize = 1 << 16; // 64K |
| 128 | static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; |
| 129 | static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; |
| 130 | |
| 131 | const char kAsanModuleCtorName[] = "asan.module_ctor" ; |
| 132 | const char kAsanModuleDtorName[] = "asan.module_dtor" ; |
| 133 | static const uint64_t kAsanCtorAndDtorPriority = 1; |
| 134 | // On Emscripten, the system needs more than one priorities for constructors. |
| 135 | static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50; |
| 136 | const char kAsanReportErrorTemplate[] = "__asan_report_" ; |
| 137 | const char kAsanRegisterGlobalsName[] = "__asan_register_globals" ; |
| 138 | const char kAsanUnregisterGlobalsName[] = "__asan_unregister_globals" ; |
| 139 | const char kAsanRegisterImageGlobalsName[] = "__asan_register_image_globals" ; |
| 140 | const char kAsanUnregisterImageGlobalsName[] = |
| 141 | "__asan_unregister_image_globals" ; |
| 142 | const char kAsanRegisterElfGlobalsName[] = "__asan_register_elf_globals" ; |
| 143 | const char kAsanUnregisterElfGlobalsName[] = "__asan_unregister_elf_globals" ; |
| 144 | const char kAsanPoisonGlobalsName[] = "__asan_before_dynamic_init" ; |
| 145 | const char kAsanUnpoisonGlobalsName[] = "__asan_after_dynamic_init" ; |
| 146 | const char kAsanInitName[] = "__asan_init" ; |
| 147 | const char kAsanVersionCheckNamePrefix[] = "__asan_version_mismatch_check_v" ; |
| 148 | const char kAsanPtrCmp[] = "__sanitizer_ptr_cmp" ; |
| 149 | const char kAsanPtrSub[] = "__sanitizer_ptr_sub" ; |
| 150 | const char kAsanHandleNoReturnName[] = "__asan_handle_no_return" ; |
| 151 | static const int kMaxAsanStackMallocSizeClass = 10; |
| 152 | const char kAsanStackMallocNameTemplate[] = "__asan_stack_malloc_" ; |
| 153 | const char kAsanStackMallocAlwaysNameTemplate[] = |
| 154 | "__asan_stack_malloc_always_" ; |
| 155 | const char kAsanStackFreeNameTemplate[] = "__asan_stack_free_" ; |
| 156 | const char kAsanGenPrefix[] = "___asan_gen_" ; |
| 157 | const char kODRGenPrefix[] = "__odr_asan_gen_" ; |
| 158 | const char kSanCovGenPrefix[] = "__sancov_gen_" ; |
| 159 | const char kAsanSetShadowPrefix[] = "__asan_set_shadow_" ; |
| 160 | const char kAsanPoisonStackMemoryName[] = "__asan_poison_stack_memory" ; |
| 161 | const char kAsanUnpoisonStackMemoryName[] = "__asan_unpoison_stack_memory" ; |
| 162 | |
| 163 | // ASan version script has __asan_* wildcard. Triple underscore prevents a |
| 164 | // linker (gold) warning about attempting to export a local symbol. |
| 165 | const char kAsanGlobalsRegisteredFlagName[] = "___asan_globals_registered" ; |
| 166 | |
| 167 | const char kAsanOptionDetectUseAfterReturn[] = |
| 168 | "__asan_option_detect_stack_use_after_return" ; |
| 169 | |
| 170 | const char kAsanShadowMemoryDynamicAddress[] = |
| 171 | "__asan_shadow_memory_dynamic_address" ; |
| 172 | |
| 173 | const char kAsanAllocaPoison[] = "__asan_alloca_poison" ; |
| 174 | const char kAsanAllocasUnpoison[] = "__asan_allocas_unpoison" ; |
| 175 | |
| 176 | const char kAMDGPUAddressSharedName[] = "llvm.amdgcn.is.shared" ; |
| 177 | const char kAMDGPUAddressPrivateName[] = "llvm.amdgcn.is.private" ; |
| 178 | const char kAMDGPUBallotName[] = "llvm.amdgcn.ballot.i64" ; |
| 179 | const char kAMDGPUUnreachableName[] = "llvm.amdgcn.unreachable" ; |
| 180 | |
| 181 | // Accesses sizes are powers of two: 1, 2, 4, 8, 16. |
| 182 | static const size_t kNumberOfAccessSizes = 5; |
| 183 | |
| 184 | static const uint64_t kAllocaRzSize = 32; |
| 185 | |
| 186 | // ASanAccessInfo implementation constants. |
| 187 | constexpr size_t kCompileKernelShift = 0; |
| 188 | constexpr size_t kCompileKernelMask = 0x1; |
| 189 | constexpr size_t kAccessSizeIndexShift = 1; |
| 190 | constexpr size_t kAccessSizeIndexMask = 0xf; |
| 191 | constexpr size_t kIsWriteShift = 5; |
| 192 | constexpr size_t kIsWriteMask = 0x1; |
| 193 | |
| 194 | // Command-line flags. |
| 195 | |
| 196 | static cl::opt<bool> ClEnableKasan( |
| 197 | "asan-kernel" , cl::desc("Enable KernelAddressSanitizer instrumentation" ), |
| 198 | cl::Hidden, cl::init(Val: false)); |
| 199 | |
| 200 | static cl::opt<bool> ClRecover( |
| 201 | "asan-recover" , |
| 202 | cl::desc("Enable recovery mode (continue-after-error)." ), |
| 203 | cl::Hidden, cl::init(Val: false)); |
| 204 | |
| 205 | static cl::opt<bool> ClInsertVersionCheck( |
| 206 | "asan-guard-against-version-mismatch" , |
| 207 | cl::desc("Guard against compiler/runtime version mismatch." ), cl::Hidden, |
| 208 | cl::init(Val: true)); |
| 209 | |
| 210 | // This flag may need to be replaced with -f[no-]asan-reads. |
| 211 | static cl::opt<bool> ClInstrumentReads("asan-instrument-reads" , |
| 212 | cl::desc("instrument read instructions" ), |
| 213 | cl::Hidden, cl::init(Val: true)); |
| 214 | |
| 215 | static cl::opt<bool> ClInstrumentWrites( |
| 216 | "asan-instrument-writes" , cl::desc("instrument write instructions" ), |
| 217 | cl::Hidden, cl::init(Val: true)); |
| 218 | |
| 219 | static cl::opt<bool> |
| 220 | ClUseStackSafety("asan-use-stack-safety" , cl::Hidden, cl::init(Val: true), |
| 221 | cl::Hidden, cl::desc("Use Stack Safety analysis results" ), |
| 222 | cl::Optional); |
| 223 | |
| 224 | static cl::opt<bool> ClInstrumentAtomics( |
| 225 | "asan-instrument-atomics" , |
| 226 | cl::desc("instrument atomic instructions (rmw, cmpxchg)" ), cl::Hidden, |
| 227 | cl::init(Val: true)); |
| 228 | |
| 229 | static cl::opt<bool> |
| 230 | ClInstrumentByval("asan-instrument-byval" , |
| 231 | cl::desc("instrument byval call arguments" ), cl::Hidden, |
| 232 | cl::init(Val: true)); |
| 233 | |
| 234 | static cl::opt<bool> ClAlwaysSlowPath( |
| 235 | "asan-always-slow-path" , |
| 236 | cl::desc("use instrumentation with slow path for all accesses" ), cl::Hidden, |
| 237 | cl::init(Val: false)); |
| 238 | |
| 239 | static cl::opt<bool> ClForceDynamicShadow( |
| 240 | "asan-force-dynamic-shadow" , |
| 241 | cl::desc("Load shadow address into a local variable for each function" ), |
| 242 | cl::Hidden, cl::init(Val: false)); |
| 243 | |
| 244 | static cl::opt<bool> |
| 245 | ClWithIfunc("asan-with-ifunc" , |
| 246 | cl::desc("Access dynamic shadow through an ifunc global on " |
| 247 | "platforms that support this" ), |
| 248 | cl::Hidden, cl::init(Val: true)); |
| 249 | |
| 250 | static cl::opt<bool> ClWithIfuncSuppressRemat( |
| 251 | "asan-with-ifunc-suppress-remat" , |
| 252 | cl::desc("Suppress rematerialization of dynamic shadow address by passing " |
| 253 | "it through inline asm in prologue." ), |
| 254 | cl::Hidden, cl::init(Val: true)); |
| 255 | |
| 256 | // This flag limits the number of instructions to be instrumented |
| 257 | // in any given BB. Normally, this should be set to unlimited (INT_MAX), |
| 258 | // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary |
| 259 | // set it to 10000. |
| 260 | static cl::opt<int> ClMaxInsnsToInstrumentPerBB( |
| 261 | "asan-max-ins-per-bb" , cl::init(Val: 10000), |
| 262 | cl::desc("maximal number of instructions to instrument in any given BB" ), |
| 263 | cl::Hidden); |
| 264 | |
| 265 | // This flag may need to be replaced with -f[no]asan-stack. |
| 266 | static cl::opt<bool> ClStack("asan-stack" , cl::desc("Handle stack memory" ), |
| 267 | cl::Hidden, cl::init(Val: true)); |
| 268 | static cl::opt<uint32_t> ClMaxInlinePoisoningSize( |
| 269 | "asan-max-inline-poisoning-size" , |
| 270 | cl::desc( |
| 271 | "Inline shadow poisoning for blocks up to the given size in bytes." ), |
| 272 | cl::Hidden, cl::init(Val: 64)); |
| 273 | |
| 274 | static cl::opt<AsanDetectStackUseAfterReturnMode> ClUseAfterReturn( |
| 275 | "asan-use-after-return" , |
| 276 | cl::desc("Sets the mode of detection for stack-use-after-return." ), |
| 277 | cl::values( |
| 278 | clEnumValN(AsanDetectStackUseAfterReturnMode::Never, "never" , |
| 279 | "Never detect stack use after return." ), |
| 280 | clEnumValN( |
| 281 | AsanDetectStackUseAfterReturnMode::Runtime, "runtime" , |
| 282 | "Detect stack use after return if " |
| 283 | "binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set." ), |
| 284 | clEnumValN(AsanDetectStackUseAfterReturnMode::Always, "always" , |
| 285 | "Always detect stack use after return." )), |
| 286 | cl::Hidden, cl::init(Val: AsanDetectStackUseAfterReturnMode::Runtime)); |
| 287 | |
| 288 | static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args" , |
| 289 | cl::desc("Create redzones for byval " |
| 290 | "arguments (extra copy " |
| 291 | "required)" ), cl::Hidden, |
| 292 | cl::init(Val: true)); |
| 293 | |
| 294 | static cl::opt<bool> ClUseAfterScope("asan-use-after-scope" , |
| 295 | cl::desc("Check stack-use-after-scope" ), |
| 296 | cl::Hidden, cl::init(Val: false)); |
| 297 | |
| 298 | // This flag may need to be replaced with -f[no]asan-globals. |
| 299 | static cl::opt<bool> ClGlobals("asan-globals" , |
| 300 | cl::desc("Handle global objects" ), cl::Hidden, |
| 301 | cl::init(Val: true)); |
| 302 | |
| 303 | static cl::opt<bool> ClInitializers("asan-initialization-order" , |
| 304 | cl::desc("Handle C++ initializer order" ), |
| 305 | cl::Hidden, cl::init(Val: true)); |
| 306 | |
| 307 | static cl::opt<bool> ClInvalidPointerPairs( |
| 308 | "asan-detect-invalid-pointer-pair" , |
| 309 | cl::desc("Instrument <, <=, >, >=, - with pointer operands" ), cl::Hidden, |
| 310 | cl::init(Val: false)); |
| 311 | |
| 312 | static cl::opt<bool> ClInvalidPointerCmp( |
| 313 | "asan-detect-invalid-pointer-cmp" , |
| 314 | cl::desc("Instrument <, <=, >, >= with pointer operands" ), cl::Hidden, |
| 315 | cl::init(Val: false)); |
| 316 | |
| 317 | static cl::opt<bool> ClInvalidPointerSub( |
| 318 | "asan-detect-invalid-pointer-sub" , |
| 319 | cl::desc("Instrument - operations with pointer operands" ), cl::Hidden, |
| 320 | cl::init(Val: false)); |
| 321 | |
| 322 | static cl::opt<unsigned> ClRealignStack( |
| 323 | "asan-realign-stack" , |
| 324 | cl::desc("Realign stack to the value of this flag (power of two)" ), |
| 325 | cl::Hidden, cl::init(Val: 32)); |
| 326 | |
| 327 | static cl::opt<int> ClInstrumentationWithCallsThreshold( |
| 328 | "asan-instrumentation-with-call-threshold" , |
| 329 | cl::desc("If the function being instrumented contains more than " |
| 330 | "this number of memory accesses, use callbacks instead of " |
| 331 | "inline checks (-1 means never use callbacks)." ), |
| 332 | cl::Hidden, cl::init(Val: 7000)); |
| 333 | |
| 334 | static cl::opt<std::string> ClMemoryAccessCallbackPrefix( |
| 335 | "asan-memory-access-callback-prefix" , |
| 336 | cl::desc("Prefix for memory access callbacks" ), cl::Hidden, |
| 337 | cl::init(Val: "__asan_" )); |
| 338 | |
| 339 | static cl::opt<bool> ClKasanMemIntrinCallbackPrefix( |
| 340 | "asan-kernel-mem-intrinsic-prefix" , |
| 341 | cl::desc("Use prefix for memory intrinsics in KASAN mode" ), cl::Hidden, |
| 342 | cl::init(Val: false)); |
| 343 | |
| 344 | static cl::opt<bool> |
| 345 | ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas" , |
| 346 | cl::desc("instrument dynamic allocas" ), |
| 347 | cl::Hidden, cl::init(Val: true)); |
| 348 | |
| 349 | static cl::opt<bool> ClSkipPromotableAllocas( |
| 350 | "asan-skip-promotable-allocas" , |
| 351 | cl::desc("Do not instrument promotable allocas" ), cl::Hidden, |
| 352 | cl::init(Val: true)); |
| 353 | |
| 354 | static cl::opt<AsanCtorKind> ClConstructorKind( |
| 355 | "asan-constructor-kind" , |
| 356 | cl::desc("Sets the ASan constructor kind" ), |
| 357 | cl::values(clEnumValN(AsanCtorKind::None, "none" , "No constructors" ), |
| 358 | clEnumValN(AsanCtorKind::Global, "global" , |
| 359 | "Use global constructors" )), |
| 360 | cl::init(Val: AsanCtorKind::Global), cl::Hidden); |
| 361 | // These flags allow to change the shadow mapping. |
| 362 | // The shadow mapping looks like |
| 363 | // Shadow = (Mem >> scale) + offset |
| 364 | |
| 365 | static cl::opt<int> ClMappingScale("asan-mapping-scale" , |
| 366 | cl::desc("scale of asan shadow mapping" ), |
| 367 | cl::Hidden, cl::init(Val: 0)); |
| 368 | |
| 369 | static cl::opt<uint64_t> |
| 370 | ClMappingOffset("asan-mapping-offset" , |
| 371 | cl::desc("offset of asan shadow mapping [EXPERIMENTAL]" ), |
| 372 | cl::Hidden, cl::init(Val: 0)); |
| 373 | |
| 374 | // Optimization flags. Not user visible, used mostly for testing |
| 375 | // and benchmarking the tool. |
| 376 | |
| 377 | static cl::opt<bool> ClOpt("asan-opt" , cl::desc("Optimize instrumentation" ), |
| 378 | cl::Hidden, cl::init(Val: true)); |
| 379 | |
| 380 | static cl::opt<bool> ClOptimizeCallbacks("asan-optimize-callbacks" , |
| 381 | cl::desc("Optimize callbacks" ), |
| 382 | cl::Hidden, cl::init(Val: false)); |
| 383 | |
| 384 | static cl::opt<bool> ClOptSameTemp( |
| 385 | "asan-opt-same-temp" , cl::desc("Instrument the same temp just once" ), |
| 386 | cl::Hidden, cl::init(Val: true)); |
| 387 | |
| 388 | static cl::opt<bool> ClOptGlobals("asan-opt-globals" , |
| 389 | cl::desc("Don't instrument scalar globals" ), |
| 390 | cl::Hidden, cl::init(Val: true)); |
| 391 | |
| 392 | static cl::opt<bool> ClOptStack( |
| 393 | "asan-opt-stack" , cl::desc("Don't instrument scalar stack variables" ), |
| 394 | cl::Hidden, cl::init(Val: false)); |
| 395 | |
| 396 | static cl::opt<bool> ClDynamicAllocaStack( |
| 397 | "asan-stack-dynamic-alloca" , |
| 398 | cl::desc("Use dynamic alloca to represent stack variables" ), cl::Hidden, |
| 399 | cl::init(Val: true)); |
| 400 | |
| 401 | static cl::opt<uint32_t> ClForceExperiment( |
| 402 | "asan-force-experiment" , |
| 403 | cl::desc("Force optimization experiment (for testing)" ), cl::Hidden, |
| 404 | cl::init(Val: 0)); |
| 405 | |
| 406 | static cl::opt<bool> |
| 407 | ClUsePrivateAlias("asan-use-private-alias" , |
| 408 | cl::desc("Use private aliases for global variables" ), |
| 409 | cl::Hidden, cl::init(Val: true)); |
| 410 | |
| 411 | static cl::opt<bool> |
| 412 | ClUseOdrIndicator("asan-use-odr-indicator" , |
| 413 | cl::desc("Use odr indicators to improve ODR reporting" ), |
| 414 | cl::Hidden, cl::init(Val: true)); |
| 415 | |
| 416 | static cl::opt<bool> |
| 417 | ClUseGlobalsGC("asan-globals-live-support" , |
| 418 | cl::desc("Use linker features to support dead " |
| 419 | "code stripping of globals" ), |
| 420 | cl::Hidden, cl::init(Val: true)); |
| 421 | |
| 422 | // This is on by default even though there is a bug in gold: |
| 423 | // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 |
| 424 | static cl::opt<bool> |
| 425 | ClWithComdat("asan-with-comdat" , |
| 426 | cl::desc("Place ASan constructors in comdat sections" ), |
| 427 | cl::Hidden, cl::init(Val: true)); |
| 428 | |
| 429 | static cl::opt<AsanDtorKind> ClOverrideDestructorKind( |
| 430 | "asan-destructor-kind" , |
| 431 | cl::desc("Sets the ASan destructor kind. The default is to use the value " |
| 432 | "provided to the pass constructor" ), |
| 433 | cl::values(clEnumValN(AsanDtorKind::None, "none" , "No destructors" ), |
| 434 | clEnumValN(AsanDtorKind::Global, "global" , |
| 435 | "Use global destructors" )), |
| 436 | cl::init(Val: AsanDtorKind::Invalid), cl::Hidden); |
| 437 | |
| 438 | // Debug flags. |
| 439 | |
| 440 | static cl::opt<int> ClDebug("asan-debug" , cl::desc("debug" ), cl::Hidden, |
| 441 | cl::init(Val: 0)); |
| 442 | |
| 443 | static cl::opt<int> ClDebugStack("asan-debug-stack" , cl::desc("debug stack" ), |
| 444 | cl::Hidden, cl::init(Val: 0)); |
| 445 | |
| 446 | static cl::opt<std::string> ClDebugFunc("asan-debug-func" , cl::Hidden, |
| 447 | cl::desc("Debug func" )); |
| 448 | |
| 449 | static cl::opt<int> ClDebugMin("asan-debug-min" , cl::desc("Debug min inst" ), |
| 450 | cl::Hidden, cl::init(Val: -1)); |
| 451 | |
| 452 | static cl::opt<int> ClDebugMax("asan-debug-max" , cl::desc("Debug max inst" ), |
| 453 | cl::Hidden, cl::init(Val: -1)); |
| 454 | |
| 455 | STATISTIC(NumInstrumentedReads, "Number of instrumented reads" ); |
| 456 | STATISTIC(NumInstrumentedWrites, "Number of instrumented writes" ); |
| 457 | STATISTIC(NumOptimizedAccessesToGlobalVar, |
| 458 | "Number of optimized accesses to global vars" ); |
| 459 | STATISTIC(NumOptimizedAccessesToStackVar, |
| 460 | "Number of optimized accesses to stack vars" ); |
| 461 | |
| 462 | namespace { |
| 463 | |
| 464 | /// This struct defines the shadow mapping using the rule: |
| 465 | /// shadow = (mem >> Scale) ADD-or-OR Offset. |
| 466 | /// If InGlobal is true, then |
| 467 | /// extern char __asan_shadow[]; |
| 468 | /// shadow = (mem >> Scale) + &__asan_shadow |
| 469 | struct ShadowMapping { |
| 470 | int Scale; |
| 471 | uint64_t Offset; |
| 472 | bool OrShadowOffset; |
| 473 | bool InGlobal; |
| 474 | }; |
| 475 | |
| 476 | } // end anonymous namespace |
| 477 | |
| 478 | static ShadowMapping getShadowMapping(const Triple &TargetTriple, int LongSize, |
| 479 | bool IsKasan) { |
| 480 | bool IsAndroid = TargetTriple.isAndroid(); |
| 481 | bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS() || |
| 482 | TargetTriple.isDriverKit(); |
| 483 | bool IsMacOS = TargetTriple.isMacOSX(); |
| 484 | bool IsFreeBSD = TargetTriple.isOSFreeBSD(); |
| 485 | bool IsNetBSD = TargetTriple.isOSNetBSD(); |
| 486 | bool IsPS = TargetTriple.isPS(); |
| 487 | bool IsLinux = TargetTriple.isOSLinux(); |
| 488 | bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 || |
| 489 | TargetTriple.getArch() == Triple::ppc64le; |
| 490 | bool IsSystemZ = TargetTriple.getArch() == Triple::systemz; |
| 491 | bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; |
| 492 | bool IsMIPSN32ABI = TargetTriple.isABIN32(); |
| 493 | bool IsMIPS32 = TargetTriple.isMIPS32(); |
| 494 | bool IsMIPS64 = TargetTriple.isMIPS64(); |
| 495 | bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb(); |
| 496 | bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64 || |
| 497 | TargetTriple.getArch() == Triple::aarch64_be; |
| 498 | bool IsLoongArch64 = TargetTriple.isLoongArch64(); |
| 499 | bool IsRISCV64 = TargetTriple.getArch() == Triple::riscv64; |
| 500 | bool IsWindows = TargetTriple.isOSWindows(); |
| 501 | bool IsFuchsia = TargetTriple.isOSFuchsia(); |
| 502 | bool IsAMDGPU = TargetTriple.isAMDGPU(); |
| 503 | bool IsHaiku = TargetTriple.isOSHaiku(); |
| 504 | bool IsWasm = TargetTriple.isWasm(); |
| 505 | |
| 506 | ShadowMapping Mapping; |
| 507 | |
| 508 | Mapping.Scale = kDefaultShadowScale; |
| 509 | if (ClMappingScale.getNumOccurrences() > 0) { |
| 510 | Mapping.Scale = ClMappingScale; |
| 511 | } |
| 512 | |
| 513 | if (LongSize == 32) { |
| 514 | if (IsAndroid) |
| 515 | Mapping.Offset = kDynamicShadowSentinel; |
| 516 | else if (IsMIPSN32ABI) |
| 517 | Mapping.Offset = kMIPS_ShadowOffsetN32; |
| 518 | else if (IsMIPS32) |
| 519 | Mapping.Offset = kMIPS32_ShadowOffset32; |
| 520 | else if (IsFreeBSD) |
| 521 | Mapping.Offset = kFreeBSD_ShadowOffset32; |
| 522 | else if (IsNetBSD) |
| 523 | Mapping.Offset = kNetBSD_ShadowOffset32; |
| 524 | else if (IsIOS) |
| 525 | Mapping.Offset = kDynamicShadowSentinel; |
| 526 | else if (IsWindows) |
| 527 | Mapping.Offset = kWindowsShadowOffset32; |
| 528 | else if (IsWasm) |
| 529 | Mapping.Offset = kWebAssemblyShadowOffset; |
| 530 | else |
| 531 | Mapping.Offset = kDefaultShadowOffset32; |
| 532 | } else { // LongSize == 64 |
| 533 | // Fuchsia is always PIE, which means that the beginning of the address |
| 534 | // space is always available. |
| 535 | if (IsFuchsia) |
| 536 | Mapping.Offset = 0; |
| 537 | else if (IsPPC64) |
| 538 | Mapping.Offset = kPPC64_ShadowOffset64; |
| 539 | else if (IsSystemZ) |
| 540 | Mapping.Offset = kSystemZ_ShadowOffset64; |
| 541 | else if (IsFreeBSD && IsAArch64) |
| 542 | Mapping.Offset = kFreeBSDAArch64_ShadowOffset64; |
| 543 | else if (IsFreeBSD && !IsMIPS64) { |
| 544 | if (IsKasan) |
| 545 | Mapping.Offset = kFreeBSDKasan_ShadowOffset64; |
| 546 | else |
| 547 | Mapping.Offset = kFreeBSD_ShadowOffset64; |
| 548 | } else if (IsNetBSD) { |
| 549 | if (IsKasan) |
| 550 | Mapping.Offset = kNetBSDKasan_ShadowOffset64; |
| 551 | else |
| 552 | Mapping.Offset = kNetBSD_ShadowOffset64; |
| 553 | } else if (IsPS) |
| 554 | Mapping.Offset = kPS_ShadowOffset64; |
| 555 | else if (IsLinux && IsX86_64) { |
| 556 | if (IsKasan) |
| 557 | Mapping.Offset = kLinuxKasan_ShadowOffset64; |
| 558 | else |
| 559 | Mapping.Offset = (kSmallX86_64ShadowOffsetBase & |
| 560 | (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); |
| 561 | } else if (IsWindows && IsX86_64) { |
| 562 | Mapping.Offset = kWindowsShadowOffset64; |
| 563 | } else if (IsMIPS64) |
| 564 | Mapping.Offset = kMIPS64_ShadowOffset64; |
| 565 | else if (IsIOS) |
| 566 | Mapping.Offset = kDynamicShadowSentinel; |
| 567 | else if (IsMacOS && IsAArch64) |
| 568 | Mapping.Offset = kDynamicShadowSentinel; |
| 569 | else if (IsAArch64) |
| 570 | Mapping.Offset = kAArch64_ShadowOffset64; |
| 571 | else if (IsLoongArch64) |
| 572 | Mapping.Offset = kLoongArch64_ShadowOffset64; |
| 573 | else if (IsRISCV64) |
| 574 | Mapping.Offset = kRISCV64_ShadowOffset64; |
| 575 | else if (IsAMDGPU) |
| 576 | Mapping.Offset = (kSmallX86_64ShadowOffsetBase & |
| 577 | (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); |
| 578 | else if (IsHaiku && IsX86_64) |
| 579 | Mapping.Offset = (kSmallX86_64ShadowOffsetBase & |
| 580 | (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); |
| 581 | else |
| 582 | Mapping.Offset = kDefaultShadowOffset64; |
| 583 | } |
| 584 | |
| 585 | if (ClForceDynamicShadow) { |
| 586 | Mapping.Offset = kDynamicShadowSentinel; |
| 587 | } |
| 588 | |
| 589 | if (ClMappingOffset.getNumOccurrences() > 0) { |
| 590 | Mapping.Offset = ClMappingOffset; |
| 591 | } |
| 592 | |
| 593 | // OR-ing shadow offset if more efficient (at least on x86) if the offset |
| 594 | // is a power of two, but on ppc64 and loongarch64 we have to use add since |
| 595 | // the shadow offset is not necessarily 1/8-th of the address space. On |
| 596 | // SystemZ, we could OR the constant in a single instruction, but it's more |
| 597 | // efficient to load it once and use indexed addressing. |
| 598 | Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS && |
| 599 | !IsRISCV64 && !IsLoongArch64 && |
| 600 | !(Mapping.Offset & (Mapping.Offset - 1)) && |
| 601 | Mapping.Offset != kDynamicShadowSentinel; |
| 602 | bool IsAndroidWithIfuncSupport = |
| 603 | IsAndroid && !TargetTriple.isAndroidVersionLT(Major: 21); |
| 604 | Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb; |
| 605 | |
| 606 | return Mapping; |
| 607 | } |
| 608 | |
| 609 | namespace llvm { |
| 610 | void getAddressSanitizerParams(const Triple &TargetTriple, int LongSize, |
| 611 | bool IsKasan, uint64_t *ShadowBase, |
| 612 | int *MappingScale, bool *OrShadowOffset) { |
| 613 | auto Mapping = getShadowMapping(TargetTriple, LongSize, IsKasan); |
| 614 | *ShadowBase = Mapping.Offset; |
| 615 | *MappingScale = Mapping.Scale; |
| 616 | *OrShadowOffset = Mapping.OrShadowOffset; |
| 617 | } |
| 618 | |
| 619 | void removeASanIncompatibleFnAttributes(Function &F, bool ReadsArgMem) { |
| 620 | // Sanitizer checks read from shadow, which invalidates memory(argmem: *). |
| 621 | // |
| 622 | // This is not only true for sanitized functions, because AttrInfer can |
| 623 | // infer those attributes on libc functions, which is not true if those |
| 624 | // are instrumented (Android) or intercepted. |
| 625 | // |
| 626 | // We might want to model ASan shadow memory more opaquely to get rid of |
| 627 | // this problem altogether, by hiding the shadow memory write in an |
| 628 | // intrinsic, essentially like in the AArch64StackTagging pass. But that's |
| 629 | // for another day. |
| 630 | |
| 631 | // The API is weird. `onlyReadsMemory` actually means "does not write", and |
| 632 | // `onlyWritesMemory` actually means "does not read". So we reconstruct |
| 633 | // "accesses memory" && "does not read" <=> "writes". |
| 634 | bool Changed = false; |
| 635 | if (!F.doesNotAccessMemory()) { |
| 636 | bool WritesMemory = !F.onlyReadsMemory(); |
| 637 | bool ReadsMemory = !F.onlyWritesMemory(); |
| 638 | if ((WritesMemory && !ReadsMemory) || F.onlyAccessesArgMemory()) { |
| 639 | F.removeFnAttr(Kind: Attribute::Memory); |
| 640 | Changed = true; |
| 641 | } |
| 642 | } |
| 643 | if (ReadsArgMem) { |
| 644 | for (Argument &A : F.args()) { |
| 645 | if (A.hasAttribute(Kind: Attribute::WriteOnly)) { |
| 646 | A.removeAttr(Kind: Attribute::WriteOnly); |
| 647 | Changed = true; |
| 648 | } |
| 649 | } |
| 650 | } |
| 651 | if (Changed) { |
| 652 | // nobuiltin makes sure later passes don't restore assumptions about |
| 653 | // the function. |
| 654 | F.addFnAttr(Kind: Attribute::NoBuiltin); |
| 655 | } |
| 656 | } |
| 657 | |
| 658 | ASanAccessInfo::ASanAccessInfo(int32_t Packed) |
| 659 | : Packed(Packed), |
| 660 | AccessSizeIndex((Packed >> kAccessSizeIndexShift) & kAccessSizeIndexMask), |
| 661 | IsWrite((Packed >> kIsWriteShift) & kIsWriteMask), |
| 662 | CompileKernel((Packed >> kCompileKernelShift) & kCompileKernelMask) {} |
| 663 | |
| 664 | ASanAccessInfo::ASanAccessInfo(bool IsWrite, bool CompileKernel, |
| 665 | uint8_t AccessSizeIndex) |
| 666 | : Packed((IsWrite << kIsWriteShift) + |
| 667 | (CompileKernel << kCompileKernelShift) + |
| 668 | (AccessSizeIndex << kAccessSizeIndexShift)), |
| 669 | AccessSizeIndex(AccessSizeIndex), IsWrite(IsWrite), |
| 670 | CompileKernel(CompileKernel) {} |
| 671 | |
| 672 | } // namespace llvm |
| 673 | |
| 674 | static uint64_t getRedzoneSizeForScale(int MappingScale) { |
| 675 | // Redzone used for stack and globals is at least 32 bytes. |
| 676 | // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. |
| 677 | return std::max(a: 32U, b: 1U << MappingScale); |
| 678 | } |
| 679 | |
| 680 | static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) { |
| 681 | if (TargetTriple.isOSEmscripten()) { |
| 682 | return kAsanEmscriptenCtorAndDtorPriority; |
| 683 | } else { |
| 684 | return kAsanCtorAndDtorPriority; |
| 685 | } |
| 686 | } |
| 687 | |
| 688 | static Twine genName(StringRef suffix) { |
| 689 | return Twine(kAsanGenPrefix) + suffix; |
| 690 | } |
| 691 | |
| 692 | namespace { |
| 693 | /// Helper RAII class to post-process inserted asan runtime calls during a |
| 694 | /// pass on a single Function. Upon end of scope, detects and applies the |
| 695 | /// required funclet OpBundle. |
| 696 | class RuntimeCallInserter { |
| 697 | Function *OwnerFn = nullptr; |
| 698 | bool TrackInsertedCalls = false; |
| 699 | SmallVector<CallInst *> InsertedCalls; |
| 700 | |
| 701 | public: |
| 702 | RuntimeCallInserter(Function &Fn) : OwnerFn(&Fn) { |
| 703 | if (Fn.hasPersonalityFn()) { |
| 704 | auto Personality = classifyEHPersonality(Pers: Fn.getPersonalityFn()); |
| 705 | if (isScopedEHPersonality(Pers: Personality)) |
| 706 | TrackInsertedCalls = true; |
| 707 | } |
| 708 | } |
| 709 | |
| 710 | ~RuntimeCallInserter() { |
| 711 | if (InsertedCalls.empty()) |
| 712 | return; |
| 713 | assert(TrackInsertedCalls && "Calls were wrongly tracked" ); |
| 714 | |
| 715 | DenseMap<BasicBlock *, ColorVector> BlockColors = colorEHFunclets(F&: *OwnerFn); |
| 716 | for (CallInst *CI : InsertedCalls) { |
| 717 | BasicBlock *BB = CI->getParent(); |
| 718 | assert(BB && "Instruction doesn't belong to a BasicBlock" ); |
| 719 | assert(BB->getParent() == OwnerFn && |
| 720 | "Instruction doesn't belong to the expected Function!" ); |
| 721 | |
| 722 | ColorVector &Colors = BlockColors[BB]; |
| 723 | // funclet opbundles are only valid in monochromatic BBs. |
| 724 | // Note that unreachable BBs are seen as colorless by colorEHFunclets() |
| 725 | // and will be DCE'ed later. |
| 726 | if (Colors.empty()) |
| 727 | continue; |
| 728 | if (Colors.size() != 1) { |
| 729 | OwnerFn->getContext().emitError( |
| 730 | ErrorStr: "Instruction's BasicBlock is not monochromatic" ); |
| 731 | continue; |
| 732 | } |
| 733 | |
| 734 | BasicBlock *Color = Colors.front(); |
| 735 | BasicBlock::iterator EHPadIt = Color->getFirstNonPHIIt(); |
| 736 | |
| 737 | if (EHPadIt != Color->end() && EHPadIt->isEHPad()) { |
| 738 | // Replace CI with a clone with an added funclet OperandBundle |
| 739 | OperandBundleDef OB("funclet" , &*EHPadIt); |
| 740 | auto *NewCall = CallBase::addOperandBundle(CB: CI, ID: LLVMContext::OB_funclet, |
| 741 | OB, InsertPt: CI->getIterator()); |
| 742 | NewCall->copyMetadata(SrcInst: *CI); |
| 743 | CI->replaceAllUsesWith(V: NewCall); |
| 744 | CI->eraseFromParent(); |
| 745 | } |
| 746 | } |
| 747 | } |
| 748 | |
| 749 | CallInst *createRuntimeCall(IRBuilder<> &IRB, FunctionCallee Callee, |
| 750 | ArrayRef<Value *> Args = {}, |
| 751 | const Twine &Name = "" ) { |
| 752 | assert(IRB.GetInsertBlock()->getParent() == OwnerFn); |
| 753 | |
| 754 | CallInst *Inst = IRB.CreateCall(Callee, Args, Name, FPMathTag: nullptr); |
| 755 | if (TrackInsertedCalls) |
| 756 | InsertedCalls.push_back(Elt: Inst); |
| 757 | return Inst; |
| 758 | } |
| 759 | }; |
| 760 | |
| 761 | /// AddressSanitizer: instrument the code in module to find memory bugs. |
| 762 | struct AddressSanitizer { |
| 763 | AddressSanitizer(Module &M, const StackSafetyGlobalInfo *SSGI, |
| 764 | int InstrumentationWithCallsThreshold, |
| 765 | uint32_t MaxInlinePoisoningSize, bool CompileKernel = false, |
| 766 | bool Recover = false, bool UseAfterScope = false, |
| 767 | AsanDetectStackUseAfterReturnMode UseAfterReturn = |
| 768 | AsanDetectStackUseAfterReturnMode::Runtime) |
| 769 | : M(M), |
| 770 | CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan |
| 771 | : CompileKernel), |
| 772 | Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), |
| 773 | UseAfterScope(UseAfterScope || ClUseAfterScope), |
| 774 | UseAfterReturn(ClUseAfterReturn.getNumOccurrences() ? ClUseAfterReturn |
| 775 | : UseAfterReturn), |
| 776 | SSGI(SSGI), |
| 777 | InstrumentationWithCallsThreshold( |
| 778 | ClInstrumentationWithCallsThreshold.getNumOccurrences() > 0 |
| 779 | ? ClInstrumentationWithCallsThreshold |
| 780 | : InstrumentationWithCallsThreshold), |
| 781 | MaxInlinePoisoningSize(ClMaxInlinePoisoningSize.getNumOccurrences() > 0 |
| 782 | ? ClMaxInlinePoisoningSize |
| 783 | : MaxInlinePoisoningSize) { |
| 784 | C = &(M.getContext()); |
| 785 | DL = &M.getDataLayout(); |
| 786 | LongSize = M.getDataLayout().getPointerSizeInBits(); |
| 787 | IntptrTy = Type::getIntNTy(C&: *C, N: LongSize); |
| 788 | PtrTy = PointerType::getUnqual(C&: *C); |
| 789 | Int32Ty = Type::getInt32Ty(C&: *C); |
| 790 | TargetTriple = M.getTargetTriple(); |
| 791 | |
| 792 | Mapping = getShadowMapping(TargetTriple, LongSize, IsKasan: this->CompileKernel); |
| 793 | |
| 794 | assert(this->UseAfterReturn != AsanDetectStackUseAfterReturnMode::Invalid); |
| 795 | } |
| 796 | |
| 797 | TypeSize getAllocaSizeInBytes(const AllocaInst &AI) const { |
| 798 | return *AI.getAllocationSize(DL: AI.getDataLayout()); |
| 799 | } |
| 800 | |
| 801 | /// Check if we want (and can) handle this alloca. |
| 802 | bool isInterestingAlloca(const AllocaInst &AI); |
| 803 | |
| 804 | bool ignoreAccess(Instruction *Inst, Value *Ptr); |
| 805 | void getInterestingMemoryOperands( |
| 806 | Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting); |
| 807 | |
| 808 | void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, |
| 809 | InterestingMemoryOperand &O, bool UseCalls, |
| 810 | const DataLayout &DL, RuntimeCallInserter &RTCI); |
| 811 | void instrumentPointerComparisonOrSubtraction(Instruction *I, |
| 812 | RuntimeCallInserter &RTCI); |
| 813 | void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, |
| 814 | Value *Addr, MaybeAlign Alignment, |
| 815 | uint32_t TypeStoreSize, bool IsWrite, |
| 816 | Value *SizeArgument, bool UseCalls, uint32_t Exp, |
| 817 | RuntimeCallInserter &RTCI); |
| 818 | Instruction *instrumentAMDGPUAddress(Instruction *OrigIns, |
| 819 | Instruction *InsertBefore, Value *Addr, |
| 820 | uint32_t TypeStoreSize, bool IsWrite, |
| 821 | Value *SizeArgument); |
| 822 | Instruction *genAMDGPUReportBlock(IRBuilder<> &IRB, Value *Cond, |
| 823 | bool Recover); |
| 824 | void instrumentUnusualSizeOrAlignment(Instruction *I, |
| 825 | Instruction *InsertBefore, Value *Addr, |
| 826 | TypeSize TypeStoreSize, bool IsWrite, |
| 827 | Value *SizeArgument, bool UseCalls, |
| 828 | uint32_t Exp, |
| 829 | RuntimeCallInserter &RTCI); |
| 830 | void instrumentMaskedLoadOrStore(AddressSanitizer *Pass, const DataLayout &DL, |
| 831 | Type *IntptrTy, Value *Mask, Value *EVL, |
| 832 | Value *Stride, Instruction *I, Value *Addr, |
| 833 | MaybeAlign Alignment, unsigned Granularity, |
| 834 | Type *OpType, bool IsWrite, |
| 835 | Value *SizeArgument, bool UseCalls, |
| 836 | uint32_t Exp, RuntimeCallInserter &RTCI); |
| 837 | Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, |
| 838 | Value *ShadowValue, uint32_t TypeStoreSize); |
| 839 | Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, |
| 840 | bool IsWrite, size_t AccessSizeIndex, |
| 841 | Value *SizeArgument, uint32_t Exp, |
| 842 | RuntimeCallInserter &RTCI); |
| 843 | void instrumentMemIntrinsic(MemIntrinsic *MI, RuntimeCallInserter &RTCI); |
| 844 | Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); |
| 845 | bool suppressInstrumentationSiteForDebug(int &Instrumented); |
| 846 | bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI); |
| 847 | bool maybeInsertAsanInitAtFunctionEntry(Function &F); |
| 848 | bool maybeInsertDynamicShadowAtFunctionEntry(Function &F); |
| 849 | void markEscapedLocalAllocas(Function &F); |
| 850 | |
| 851 | private: |
| 852 | friend struct FunctionStackPoisoner; |
| 853 | |
| 854 | void initializeCallbacks(const TargetLibraryInfo *TLI); |
| 855 | |
| 856 | bool LooksLikeCodeInBug11395(Instruction *I); |
| 857 | bool GlobalIsLinkerInitialized(GlobalVariable *G); |
| 858 | bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr, |
| 859 | TypeSize TypeStoreSize) const; |
| 860 | |
| 861 | /// Helper to cleanup per-function state. |
| 862 | struct FunctionStateRAII { |
| 863 | AddressSanitizer *Pass; |
| 864 | |
| 865 | FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) { |
| 866 | assert(Pass->ProcessedAllocas.empty() && |
| 867 | "last pass forgot to clear cache" ); |
| 868 | assert(!Pass->LocalDynamicShadow); |
| 869 | } |
| 870 | |
| 871 | ~FunctionStateRAII() { |
| 872 | Pass->LocalDynamicShadow = nullptr; |
| 873 | Pass->ProcessedAllocas.clear(); |
| 874 | } |
| 875 | }; |
| 876 | |
| 877 | Module &M; |
| 878 | LLVMContext *C; |
| 879 | const DataLayout *DL; |
| 880 | Triple TargetTriple; |
| 881 | int LongSize; |
| 882 | bool CompileKernel; |
| 883 | bool Recover; |
| 884 | bool UseAfterScope; |
| 885 | AsanDetectStackUseAfterReturnMode UseAfterReturn; |
| 886 | Type *IntptrTy; |
| 887 | Type *Int32Ty; |
| 888 | PointerType *PtrTy; |
| 889 | ShadowMapping Mapping; |
| 890 | FunctionCallee AsanHandleNoReturnFunc; |
| 891 | FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction; |
| 892 | Constant *AsanShadowGlobal; |
| 893 | |
| 894 | // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize). |
| 895 | FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes]; |
| 896 | FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes]; |
| 897 | |
| 898 | // These arrays is indexed by AccessIsWrite and Experiment. |
| 899 | FunctionCallee AsanErrorCallbackSized[2][2]; |
| 900 | FunctionCallee AsanMemoryAccessCallbackSized[2][2]; |
| 901 | |
| 902 | FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset; |
| 903 | Value *LocalDynamicShadow = nullptr; |
| 904 | const StackSafetyGlobalInfo *SSGI; |
| 905 | DenseMap<const AllocaInst *, bool> ProcessedAllocas; |
| 906 | |
| 907 | FunctionCallee AMDGPUAddressShared; |
| 908 | FunctionCallee AMDGPUAddressPrivate; |
| 909 | int InstrumentationWithCallsThreshold; |
| 910 | uint32_t MaxInlinePoisoningSize; |
| 911 | }; |
| 912 | |
| 913 | class ModuleAddressSanitizer { |
| 914 | public: |
| 915 | ModuleAddressSanitizer(Module &M, bool InsertVersionCheck, |
| 916 | bool CompileKernel = false, bool Recover = false, |
| 917 | bool UseGlobalsGC = true, bool UseOdrIndicator = true, |
| 918 | AsanDtorKind DestructorKind = AsanDtorKind::Global, |
| 919 | AsanCtorKind ConstructorKind = AsanCtorKind::Global) |
| 920 | : M(M), |
| 921 | CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan |
| 922 | : CompileKernel), |
| 923 | InsertVersionCheck(ClInsertVersionCheck.getNumOccurrences() > 0 |
| 924 | ? ClInsertVersionCheck |
| 925 | : InsertVersionCheck), |
| 926 | Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), |
| 927 | UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC && !this->CompileKernel), |
| 928 | // Enable aliases as they should have no downside with ODR indicators. |
| 929 | UsePrivateAlias(ClUsePrivateAlias.getNumOccurrences() > 0 |
| 930 | ? ClUsePrivateAlias |
| 931 | : UseOdrIndicator), |
| 932 | UseOdrIndicator(ClUseOdrIndicator.getNumOccurrences() > 0 |
| 933 | ? ClUseOdrIndicator |
| 934 | : UseOdrIndicator), |
| 935 | // Not a typo: ClWithComdat is almost completely pointless without |
| 936 | // ClUseGlobalsGC (because then it only works on modules without |
| 937 | // globals, which are rare); it is a prerequisite for ClUseGlobalsGC; |
| 938 | // and both suffer from gold PR19002 for which UseGlobalsGC constructor |
| 939 | // argument is designed as workaround. Therefore, disable both |
| 940 | // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to |
| 941 | // do globals-gc. |
| 942 | UseCtorComdat(UseGlobalsGC && ClWithComdat && !this->CompileKernel), |
| 943 | DestructorKind(DestructorKind), |
| 944 | ConstructorKind(ClConstructorKind.getNumOccurrences() > 0 |
| 945 | ? ClConstructorKind |
| 946 | : ConstructorKind) { |
| 947 | C = &(M.getContext()); |
| 948 | int LongSize = M.getDataLayout().getPointerSizeInBits(); |
| 949 | IntptrTy = Type::getIntNTy(C&: *C, N: LongSize); |
| 950 | PtrTy = PointerType::getUnqual(C&: *C); |
| 951 | TargetTriple = M.getTargetTriple(); |
| 952 | Mapping = getShadowMapping(TargetTriple, LongSize, IsKasan: this->CompileKernel); |
| 953 | |
| 954 | if (ClOverrideDestructorKind != AsanDtorKind::Invalid) |
| 955 | this->DestructorKind = ClOverrideDestructorKind; |
| 956 | assert(this->DestructorKind != AsanDtorKind::Invalid); |
| 957 | } |
| 958 | |
| 959 | bool instrumentModule(); |
| 960 | |
| 961 | private: |
| 962 | void initializeCallbacks(); |
| 963 | |
| 964 | void instrumentGlobals(IRBuilder<> &IRB, bool *CtorComdat); |
| 965 | void InstrumentGlobalsCOFF(IRBuilder<> &IRB, |
| 966 | ArrayRef<GlobalVariable *> ExtendedGlobals, |
| 967 | ArrayRef<Constant *> MetadataInitializers); |
| 968 | void instrumentGlobalsELF(IRBuilder<> &IRB, |
| 969 | ArrayRef<GlobalVariable *> ExtendedGlobals, |
| 970 | ArrayRef<Constant *> MetadataInitializers, |
| 971 | const std::string &UniqueModuleId); |
| 972 | void InstrumentGlobalsMachO(IRBuilder<> &IRB, |
| 973 | ArrayRef<GlobalVariable *> ExtendedGlobals, |
| 974 | ArrayRef<Constant *> MetadataInitializers); |
| 975 | void |
| 976 | InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, |
| 977 | ArrayRef<GlobalVariable *> ExtendedGlobals, |
| 978 | ArrayRef<Constant *> MetadataInitializers); |
| 979 | |
| 980 | GlobalVariable *CreateMetadataGlobal(Constant *Initializer, |
| 981 | StringRef OriginalName); |
| 982 | void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata, |
| 983 | StringRef InternalSuffix); |
| 984 | Instruction *CreateAsanModuleDtor(); |
| 985 | |
| 986 | const GlobalVariable *getExcludedAliasedGlobal(const GlobalAlias &GA) const; |
| 987 | bool shouldInstrumentGlobal(GlobalVariable *G) const; |
| 988 | bool ShouldUseMachOGlobalsSection() const; |
| 989 | StringRef getGlobalMetadataSection() const; |
| 990 | void poisonOneInitializer(Function &GlobalInit); |
| 991 | void createInitializerPoisonCalls(); |
| 992 | uint64_t getMinRedzoneSizeForGlobal() const { |
| 993 | return getRedzoneSizeForScale(MappingScale: Mapping.Scale); |
| 994 | } |
| 995 | uint64_t getRedzoneSizeForGlobal(uint64_t SizeInBytes) const; |
| 996 | int GetAsanVersion() const; |
| 997 | GlobalVariable *getOrCreateModuleName(); |
| 998 | |
| 999 | Module &M; |
| 1000 | bool CompileKernel; |
| 1001 | bool InsertVersionCheck; |
| 1002 | bool Recover; |
| 1003 | bool UseGlobalsGC; |
| 1004 | bool UsePrivateAlias; |
| 1005 | bool UseOdrIndicator; |
| 1006 | bool UseCtorComdat; |
| 1007 | AsanDtorKind DestructorKind; |
| 1008 | AsanCtorKind ConstructorKind; |
| 1009 | Type *IntptrTy; |
| 1010 | PointerType *PtrTy; |
| 1011 | LLVMContext *C; |
| 1012 | Triple TargetTriple; |
| 1013 | ShadowMapping Mapping; |
| 1014 | FunctionCallee AsanPoisonGlobals; |
| 1015 | FunctionCallee AsanUnpoisonGlobals; |
| 1016 | FunctionCallee AsanRegisterGlobals; |
| 1017 | FunctionCallee AsanUnregisterGlobals; |
| 1018 | FunctionCallee AsanRegisterImageGlobals; |
| 1019 | FunctionCallee AsanUnregisterImageGlobals; |
| 1020 | FunctionCallee AsanRegisterElfGlobals; |
| 1021 | FunctionCallee AsanUnregisterElfGlobals; |
| 1022 | |
| 1023 | Function *AsanCtorFunction = nullptr; |
| 1024 | Function *AsanDtorFunction = nullptr; |
| 1025 | GlobalVariable *ModuleName = nullptr; |
| 1026 | }; |
| 1027 | |
| 1028 | // Stack poisoning does not play well with exception handling. |
| 1029 | // When an exception is thrown, we essentially bypass the code |
| 1030 | // that unpoisones the stack. This is why the run-time library has |
| 1031 | // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire |
| 1032 | // stack in the interceptor. This however does not work inside the |
| 1033 | // actual function which catches the exception. Most likely because the |
| 1034 | // compiler hoists the load of the shadow value somewhere too high. |
| 1035 | // This causes asan to report a non-existing bug on 453.povray. |
| 1036 | // It sounds like an LLVM bug. |
| 1037 | struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { |
| 1038 | Function &F; |
| 1039 | AddressSanitizer &ASan; |
| 1040 | RuntimeCallInserter &RTCI; |
| 1041 | DIBuilder DIB; |
| 1042 | LLVMContext *C; |
| 1043 | Type *IntptrTy; |
| 1044 | Type *IntptrPtrTy; |
| 1045 | ShadowMapping Mapping; |
| 1046 | |
| 1047 | SmallVector<AllocaInst *, 16> AllocaVec; |
| 1048 | SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp; |
| 1049 | SmallVector<Instruction *, 8> RetVec; |
| 1050 | |
| 1051 | FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1], |
| 1052 | AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1]; |
| 1053 | FunctionCallee AsanSetShadowFunc[0x100] = {}; |
| 1054 | FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc; |
| 1055 | FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc; |
| 1056 | |
| 1057 | // Stores a place and arguments of poisoning/unpoisoning call for alloca. |
| 1058 | struct AllocaPoisonCall { |
| 1059 | IntrinsicInst *InsBefore; |
| 1060 | AllocaInst *AI; |
| 1061 | uint64_t Size; |
| 1062 | bool DoPoison; |
| 1063 | }; |
| 1064 | SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec; |
| 1065 | SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec; |
| 1066 | bool HasUntracedLifetimeIntrinsic = false; |
| 1067 | |
| 1068 | SmallVector<AllocaInst *, 1> DynamicAllocaVec; |
| 1069 | SmallVector<IntrinsicInst *, 1> StackRestoreVec; |
| 1070 | AllocaInst *DynamicAllocaLayout = nullptr; |
| 1071 | IntrinsicInst *LocalEscapeCall = nullptr; |
| 1072 | |
| 1073 | bool HasInlineAsm = false; |
| 1074 | bool HasReturnsTwiceCall = false; |
| 1075 | bool PoisonStack; |
| 1076 | |
| 1077 | FunctionStackPoisoner(Function &F, AddressSanitizer &ASan, |
| 1078 | RuntimeCallInserter &RTCI) |
| 1079 | : F(F), ASan(ASan), RTCI(RTCI), |
| 1080 | DIB(*F.getParent(), /*AllowUnresolved*/ false), C(ASan.C), |
| 1081 | IntptrTy(ASan.IntptrTy), |
| 1082 | IntptrPtrTy(PointerType::get(C&: IntptrTy->getContext(), AddressSpace: 0)), |
| 1083 | Mapping(ASan.Mapping), |
| 1084 | PoisonStack(ClStack && !F.getParent()->getTargetTriple().isAMDGPU()) {} |
| 1085 | |
| 1086 | bool runOnFunction() { |
| 1087 | if (!PoisonStack) |
| 1088 | return false; |
| 1089 | |
| 1090 | if (ClRedzoneByvalArgs) |
| 1091 | copyArgsPassedByValToAllocas(); |
| 1092 | |
| 1093 | // Collect alloca, ret, lifetime instructions etc. |
| 1094 | for (BasicBlock *BB : depth_first(G: &F.getEntryBlock())) visit(BB&: *BB); |
| 1095 | |
| 1096 | if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false; |
| 1097 | |
| 1098 | initializeCallbacks(M&: *F.getParent()); |
| 1099 | |
| 1100 | if (HasUntracedLifetimeIntrinsic) { |
| 1101 | // If there are lifetime intrinsics which couldn't be traced back to an |
| 1102 | // alloca, we may not know exactly when a variable enters scope, and |
| 1103 | // therefore should "fail safe" by not poisoning them. |
| 1104 | StaticAllocaPoisonCallVec.clear(); |
| 1105 | DynamicAllocaPoisonCallVec.clear(); |
| 1106 | } |
| 1107 | |
| 1108 | processDynamicAllocas(); |
| 1109 | processStaticAllocas(); |
| 1110 | |
| 1111 | if (ClDebugStack) { |
| 1112 | LLVM_DEBUG(dbgs() << F); |
| 1113 | } |
| 1114 | return true; |
| 1115 | } |
| 1116 | |
| 1117 | // Arguments marked with the "byval" attribute are implicitly copied without |
| 1118 | // using an alloca instruction. To produce redzones for those arguments, we |
| 1119 | // copy them a second time into memory allocated with an alloca instruction. |
| 1120 | void copyArgsPassedByValToAllocas(); |
| 1121 | |
| 1122 | // Finds all Alloca instructions and puts |
| 1123 | // poisoned red zones around all of them. |
| 1124 | // Then unpoison everything back before the function returns. |
| 1125 | void processStaticAllocas(); |
| 1126 | void processDynamicAllocas(); |
| 1127 | |
| 1128 | void createDynamicAllocasInitStorage(); |
| 1129 | |
| 1130 | // ----------------------- Visitors. |
| 1131 | /// Collect all Ret instructions, or the musttail call instruction if it |
| 1132 | /// precedes the return instruction. |
| 1133 | void visitReturnInst(ReturnInst &RI) { |
| 1134 | if (CallInst *CI = RI.getParent()->getTerminatingMustTailCall()) |
| 1135 | RetVec.push_back(Elt: CI); |
| 1136 | else |
| 1137 | RetVec.push_back(Elt: &RI); |
| 1138 | } |
| 1139 | |
| 1140 | /// Collect all Resume instructions. |
| 1141 | void visitResumeInst(ResumeInst &RI) { RetVec.push_back(Elt: &RI); } |
| 1142 | |
| 1143 | /// Collect all CatchReturnInst instructions. |
| 1144 | void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(Elt: &CRI); } |
| 1145 | |
| 1146 | void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore, |
| 1147 | Value *SavedStack) { |
| 1148 | IRBuilder<> IRB(InstBefore); |
| 1149 | Value *DynamicAreaPtr = IRB.CreatePtrToInt(V: SavedStack, DestTy: IntptrTy); |
| 1150 | // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we |
| 1151 | // need to adjust extracted SP to compute the address of the most recent |
| 1152 | // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for |
| 1153 | // this purpose. |
| 1154 | if (!isa<ReturnInst>(Val: InstBefore)) { |
| 1155 | Value *DynamicAreaOffset = IRB.CreateIntrinsic( |
| 1156 | ID: Intrinsic::get_dynamic_area_offset, Types: {IntptrTy}, Args: {}); |
| 1157 | |
| 1158 | DynamicAreaPtr = IRB.CreateAdd(LHS: IRB.CreatePtrToInt(V: SavedStack, DestTy: IntptrTy), |
| 1159 | RHS: DynamicAreaOffset); |
| 1160 | } |
| 1161 | |
| 1162 | RTCI.createRuntimeCall( |
| 1163 | IRB, Callee: AsanAllocasUnpoisonFunc, |
| 1164 | Args: {IRB.CreateLoad(Ty: IntptrTy, Ptr: DynamicAllocaLayout), DynamicAreaPtr}); |
| 1165 | } |
| 1166 | |
| 1167 | // Unpoison dynamic allocas redzones. |
| 1168 | void unpoisonDynamicAllocas() { |
| 1169 | for (Instruction *Ret : RetVec) |
| 1170 | unpoisonDynamicAllocasBeforeInst(InstBefore: Ret, SavedStack: DynamicAllocaLayout); |
| 1171 | |
| 1172 | for (Instruction *StackRestoreInst : StackRestoreVec) |
| 1173 | unpoisonDynamicAllocasBeforeInst(InstBefore: StackRestoreInst, |
| 1174 | SavedStack: StackRestoreInst->getOperand(i: 0)); |
| 1175 | } |
| 1176 | |
| 1177 | // Deploy and poison redzones around dynamic alloca call. To do this, we |
| 1178 | // should replace this call with another one with changed parameters and |
| 1179 | // replace all its uses with new address, so |
| 1180 | // addr = alloca type, old_size, align |
| 1181 | // is replaced by |
| 1182 | // new_size = (old_size + additional_size) * sizeof(type) |
| 1183 | // tmp = alloca i8, new_size, max(align, 32) |
| 1184 | // addr = tmp + 32 (first 32 bytes are for the left redzone). |
| 1185 | // Additional_size is added to make new memory allocation contain not only |
| 1186 | // requested memory, but also left, partial and right redzones. |
| 1187 | void handleDynamicAllocaCall(AllocaInst *AI); |
| 1188 | |
| 1189 | /// Collect Alloca instructions we want (and can) handle. |
| 1190 | void visitAllocaInst(AllocaInst &AI) { |
| 1191 | // FIXME: Handle scalable vectors instead of ignoring them. |
| 1192 | const Type *AllocaType = AI.getAllocatedType(); |
| 1193 | const auto *STy = dyn_cast<StructType>(Val: AllocaType); |
| 1194 | if (!ASan.isInterestingAlloca(AI) || isa<ScalableVectorType>(Val: AllocaType) || |
| 1195 | (STy && STy->containsHomogeneousScalableVectorTypes())) { |
| 1196 | if (AI.isStaticAlloca()) { |
| 1197 | // Skip over allocas that are present *before* the first instrumented |
| 1198 | // alloca, we don't want to move those around. |
| 1199 | if (AllocaVec.empty()) |
| 1200 | return; |
| 1201 | |
| 1202 | StaticAllocasToMoveUp.push_back(Elt: &AI); |
| 1203 | } |
| 1204 | return; |
| 1205 | } |
| 1206 | |
| 1207 | if (!AI.isStaticAlloca()) |
| 1208 | DynamicAllocaVec.push_back(Elt: &AI); |
| 1209 | else |
| 1210 | AllocaVec.push_back(Elt: &AI); |
| 1211 | } |
| 1212 | |
| 1213 | /// Collect lifetime intrinsic calls to check for use-after-scope |
| 1214 | /// errors. |
| 1215 | void visitIntrinsicInst(IntrinsicInst &II) { |
| 1216 | Intrinsic::ID ID = II.getIntrinsicID(); |
| 1217 | if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(Elt: &II); |
| 1218 | if (ID == Intrinsic::localescape) LocalEscapeCall = &II; |
| 1219 | if (!ASan.UseAfterScope) |
| 1220 | return; |
| 1221 | if (!II.isLifetimeStartOrEnd()) |
| 1222 | return; |
| 1223 | // Found lifetime intrinsic, add ASan instrumentation if necessary. |
| 1224 | auto *Size = cast<ConstantInt>(Val: II.getArgOperand(i: 0)); |
| 1225 | // If size argument is undefined, don't do anything. |
| 1226 | if (Size->isMinusOne()) return; |
| 1227 | // Check that size doesn't saturate uint64_t and can |
| 1228 | // be stored in IntptrTy. |
| 1229 | const uint64_t SizeValue = Size->getValue().getLimitedValue(); |
| 1230 | if (SizeValue == ~0ULL || |
| 1231 | !ConstantInt::isValueValidForType(Ty: IntptrTy, V: SizeValue)) |
| 1232 | return; |
| 1233 | // Find alloca instruction that corresponds to llvm.lifetime argument. |
| 1234 | // Currently we can only handle lifetime markers pointing to the |
| 1235 | // beginning of the alloca. |
| 1236 | AllocaInst *AI = findAllocaForValue(V: II.getArgOperand(i: 1), OffsetZero: true); |
| 1237 | if (!AI) { |
| 1238 | HasUntracedLifetimeIntrinsic = true; |
| 1239 | return; |
| 1240 | } |
| 1241 | // We're interested only in allocas we can handle. |
| 1242 | if (!ASan.isInterestingAlloca(AI: *AI)) |
| 1243 | return; |
| 1244 | bool DoPoison = (ID == Intrinsic::lifetime_end); |
| 1245 | AllocaPoisonCall APC = {.InsBefore: &II, .AI: AI, .Size: SizeValue, .DoPoison: DoPoison}; |
| 1246 | if (AI->isStaticAlloca()) |
| 1247 | StaticAllocaPoisonCallVec.push_back(Elt: APC); |
| 1248 | else if (ClInstrumentDynamicAllocas) |
| 1249 | DynamicAllocaPoisonCallVec.push_back(Elt: APC); |
| 1250 | } |
| 1251 | |
| 1252 | void visitCallBase(CallBase &CB) { |
| 1253 | if (CallInst *CI = dyn_cast<CallInst>(Val: &CB)) { |
| 1254 | HasInlineAsm |= CI->isInlineAsm() && &CB != ASan.LocalDynamicShadow; |
| 1255 | HasReturnsTwiceCall |= CI->canReturnTwice(); |
| 1256 | } |
| 1257 | } |
| 1258 | |
| 1259 | // ---------------------- Helpers. |
| 1260 | void initializeCallbacks(Module &M); |
| 1261 | |
| 1262 | // Copies bytes from ShadowBytes into shadow memory for indexes where |
| 1263 | // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that |
| 1264 | // ShadowBytes[i] is constantly zero and doesn't need to be overwritten. |
| 1265 | void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, |
| 1266 | IRBuilder<> &IRB, Value *ShadowBase); |
| 1267 | void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, |
| 1268 | size_t Begin, size_t End, IRBuilder<> &IRB, |
| 1269 | Value *ShadowBase); |
| 1270 | void copyToShadowInline(ArrayRef<uint8_t> ShadowMask, |
| 1271 | ArrayRef<uint8_t> ShadowBytes, size_t Begin, |
| 1272 | size_t End, IRBuilder<> &IRB, Value *ShadowBase); |
| 1273 | |
| 1274 | void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison); |
| 1275 | |
| 1276 | Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L, |
| 1277 | bool Dynamic); |
| 1278 | PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue, |
| 1279 | Instruction *ThenTerm, Value *ValueIfFalse); |
| 1280 | }; |
| 1281 | |
| 1282 | } // end anonymous namespace |
| 1283 | |
| 1284 | void AddressSanitizerPass::printPipeline( |
| 1285 | raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { |
| 1286 | static_cast<PassInfoMixin<AddressSanitizerPass> *>(this)->printPipeline( |
| 1287 | OS, MapClassName2PassName); |
| 1288 | OS << '<'; |
| 1289 | if (Options.CompileKernel) |
| 1290 | OS << "kernel;" ; |
| 1291 | if (Options.UseAfterScope) |
| 1292 | OS << "use-after-scope" ; |
| 1293 | OS << '>'; |
| 1294 | } |
| 1295 | |
| 1296 | AddressSanitizerPass::AddressSanitizerPass( |
| 1297 | const AddressSanitizerOptions &Options, bool UseGlobalGC, |
| 1298 | bool UseOdrIndicator, AsanDtorKind DestructorKind, |
| 1299 | AsanCtorKind ConstructorKind) |
| 1300 | : Options(Options), UseGlobalGC(UseGlobalGC), |
| 1301 | UseOdrIndicator(UseOdrIndicator), DestructorKind(DestructorKind), |
| 1302 | ConstructorKind(ConstructorKind) {} |
| 1303 | |
| 1304 | PreservedAnalyses AddressSanitizerPass::run(Module &M, |
| 1305 | ModuleAnalysisManager &MAM) { |
| 1306 | // Return early if nosanitize_address module flag is present for the module. |
| 1307 | // This implies that asan pass has already run before. |
| 1308 | if (checkIfAlreadyInstrumented(M, Flag: "nosanitize_address" )) |
| 1309 | return PreservedAnalyses::all(); |
| 1310 | |
| 1311 | ModuleAddressSanitizer ModuleSanitizer( |
| 1312 | M, Options.InsertVersionCheck, Options.CompileKernel, Options.Recover, |
| 1313 | UseGlobalGC, UseOdrIndicator, DestructorKind, ConstructorKind); |
| 1314 | bool Modified = false; |
| 1315 | auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(IR&: M).getManager(); |
| 1316 | const StackSafetyGlobalInfo *const SSGI = |
| 1317 | ClUseStackSafety ? &MAM.getResult<StackSafetyGlobalAnalysis>(IR&: M) : nullptr; |
| 1318 | for (Function &F : M) { |
| 1319 | if (F.empty()) |
| 1320 | continue; |
| 1321 | if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) |
| 1322 | continue; |
| 1323 | if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) |
| 1324 | continue; |
| 1325 | if (F.getName().starts_with(Prefix: "__asan_" )) |
| 1326 | continue; |
| 1327 | if (F.isPresplitCoroutine()) |
| 1328 | continue; |
| 1329 | AddressSanitizer FunctionSanitizer( |
| 1330 | M, SSGI, Options.InstrumentationWithCallsThreshold, |
| 1331 | Options.MaxInlinePoisoningSize, Options.CompileKernel, Options.Recover, |
| 1332 | Options.UseAfterScope, Options.UseAfterReturn); |
| 1333 | const TargetLibraryInfo &TLI = FAM.getResult<TargetLibraryAnalysis>(IR&: F); |
| 1334 | Modified |= FunctionSanitizer.instrumentFunction(F, TLI: &TLI); |
| 1335 | } |
| 1336 | Modified |= ModuleSanitizer.instrumentModule(); |
| 1337 | if (!Modified) |
| 1338 | return PreservedAnalyses::all(); |
| 1339 | |
| 1340 | PreservedAnalyses PA = PreservedAnalyses::none(); |
| 1341 | // GlobalsAA is considered stateless and does not get invalidated unless |
| 1342 | // explicitly invalidated; PreservedAnalyses::none() is not enough. Sanitizers |
| 1343 | // make changes that require GlobalsAA to be invalidated. |
| 1344 | PA.abandon<GlobalsAA>(); |
| 1345 | return PA; |
| 1346 | } |
| 1347 | |
| 1348 | static size_t TypeStoreSizeToSizeIndex(uint32_t TypeSize) { |
| 1349 | size_t Res = llvm::countr_zero(Val: TypeSize / 8); |
| 1350 | assert(Res < kNumberOfAccessSizes); |
| 1351 | return Res; |
| 1352 | } |
| 1353 | |
| 1354 | /// Check if \p G has been created by a trusted compiler pass. |
| 1355 | static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) { |
| 1356 | // Do not instrument @llvm.global_ctors, @llvm.used, etc. |
| 1357 | if (G->getName().starts_with(Prefix: "llvm." ) || |
| 1358 | // Do not instrument gcov counter arrays. |
| 1359 | G->getName().starts_with(Prefix: "__llvm_gcov_ctr" ) || |
| 1360 | // Do not instrument rtti proxy symbols for function sanitizer. |
| 1361 | G->getName().starts_with(Prefix: "__llvm_rtti_proxy" )) |
| 1362 | return true; |
| 1363 | |
| 1364 | // Do not instrument asan globals. |
| 1365 | if (G->getName().starts_with(Prefix: kAsanGenPrefix) || |
| 1366 | G->getName().starts_with(Prefix: kSanCovGenPrefix) || |
| 1367 | G->getName().starts_with(Prefix: kODRGenPrefix)) |
| 1368 | return true; |
| 1369 | |
| 1370 | return false; |
| 1371 | } |
| 1372 | |
| 1373 | static bool isUnsupportedAMDGPUAddrspace(Value *Addr) { |
| 1374 | Type *PtrTy = cast<PointerType>(Val: Addr->getType()->getScalarType()); |
| 1375 | unsigned int AddrSpace = PtrTy->getPointerAddressSpace(); |
| 1376 | if (AddrSpace == 3 || AddrSpace == 5) |
| 1377 | return true; |
| 1378 | return false; |
| 1379 | } |
| 1380 | |
| 1381 | Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { |
| 1382 | // Shadow >> scale |
| 1383 | Shadow = IRB.CreateLShr(LHS: Shadow, RHS: Mapping.Scale); |
| 1384 | if (Mapping.Offset == 0) return Shadow; |
| 1385 | // (Shadow >> scale) | offset |
| 1386 | Value *ShadowBase; |
| 1387 | if (LocalDynamicShadow) |
| 1388 | ShadowBase = LocalDynamicShadow; |
| 1389 | else |
| 1390 | ShadowBase = ConstantInt::get(Ty: IntptrTy, V: Mapping.Offset); |
| 1391 | if (Mapping.OrShadowOffset) |
| 1392 | return IRB.CreateOr(LHS: Shadow, RHS: ShadowBase); |
| 1393 | else |
| 1394 | return IRB.CreateAdd(LHS: Shadow, RHS: ShadowBase); |
| 1395 | } |
| 1396 | |
| 1397 | // Instrument memset/memmove/memcpy |
| 1398 | void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI, |
| 1399 | RuntimeCallInserter &RTCI) { |
| 1400 | InstrumentationIRBuilder IRB(MI); |
| 1401 | if (isa<MemTransferInst>(Val: MI)) { |
| 1402 | RTCI.createRuntimeCall( |
| 1403 | IRB, Callee: isa<MemMoveInst>(Val: MI) ? AsanMemmove : AsanMemcpy, |
| 1404 | Args: {IRB.CreateAddrSpaceCast(V: MI->getOperand(i_nocapture: 0), DestTy: PtrTy), |
| 1405 | IRB.CreateAddrSpaceCast(V: MI->getOperand(i_nocapture: 1), DestTy: PtrTy), |
| 1406 | IRB.CreateIntCast(V: MI->getOperand(i_nocapture: 2), DestTy: IntptrTy, isSigned: false)}); |
| 1407 | } else if (isa<MemSetInst>(Val: MI)) { |
| 1408 | RTCI.createRuntimeCall( |
| 1409 | IRB, Callee: AsanMemset, |
| 1410 | Args: {IRB.CreateAddrSpaceCast(V: MI->getOperand(i_nocapture: 0), DestTy: PtrTy), |
| 1411 | IRB.CreateIntCast(V: MI->getOperand(i_nocapture: 1), DestTy: IRB.getInt32Ty(), isSigned: false), |
| 1412 | IRB.CreateIntCast(V: MI->getOperand(i_nocapture: 2), DestTy: IntptrTy, isSigned: false)}); |
| 1413 | } |
| 1414 | MI->eraseFromParent(); |
| 1415 | } |
| 1416 | |
| 1417 | /// Check if we want (and can) handle this alloca. |
| 1418 | bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) { |
| 1419 | auto [It, Inserted] = ProcessedAllocas.try_emplace(Key: &AI); |
| 1420 | |
| 1421 | if (!Inserted) |
| 1422 | return It->getSecond(); |
| 1423 | |
| 1424 | bool IsInteresting = |
| 1425 | (AI.getAllocatedType()->isSized() && |
| 1426 | // alloca() may be called with 0 size, ignore it. |
| 1427 | ((!AI.isStaticAlloca()) || !getAllocaSizeInBytes(AI).isZero()) && |
| 1428 | // We are only interested in allocas not promotable to registers. |
| 1429 | // Promotable allocas are common under -O0. |
| 1430 | (!ClSkipPromotableAllocas || !isAllocaPromotable(AI: &AI)) && |
| 1431 | // inalloca allocas are not treated as static, and we don't want |
| 1432 | // dynamic alloca instrumentation for them as well. |
| 1433 | !AI.isUsedWithInAlloca() && |
| 1434 | // swifterror allocas are register promoted by ISel |
| 1435 | !AI.isSwiftError() && |
| 1436 | // safe allocas are not interesting |
| 1437 | !(SSGI && SSGI->isSafe(AI))); |
| 1438 | |
| 1439 | It->second = IsInteresting; |
| 1440 | return IsInteresting; |
| 1441 | } |
| 1442 | |
| 1443 | bool AddressSanitizer::ignoreAccess(Instruction *Inst, Value *Ptr) { |
| 1444 | // Instrument accesses from different address spaces only for AMDGPU. |
| 1445 | Type *PtrTy = cast<PointerType>(Val: Ptr->getType()->getScalarType()); |
| 1446 | if (PtrTy->getPointerAddressSpace() != 0 && |
| 1447 | !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(Addr: Ptr))) |
| 1448 | return true; |
| 1449 | |
| 1450 | // Ignore swifterror addresses. |
| 1451 | // swifterror memory addresses are mem2reg promoted by instruction |
| 1452 | // selection. As such they cannot have regular uses like an instrumentation |
| 1453 | // function and it makes no sense to track them as memory. |
| 1454 | if (Ptr->isSwiftError()) |
| 1455 | return true; |
| 1456 | |
| 1457 | // Treat memory accesses to promotable allocas as non-interesting since they |
| 1458 | // will not cause memory violations. This greatly speeds up the instrumented |
| 1459 | // executable at -O0. |
| 1460 | if (auto AI = dyn_cast_or_null<AllocaInst>(Val: Ptr)) |
| 1461 | if (ClSkipPromotableAllocas && !isInterestingAlloca(AI: *AI)) |
| 1462 | return true; |
| 1463 | |
| 1464 | if (SSGI != nullptr && SSGI->stackAccessIsSafe(I: *Inst) && |
| 1465 | findAllocaForValue(V: Ptr)) |
| 1466 | return true; |
| 1467 | |
| 1468 | return false; |
| 1469 | } |
| 1470 | |
| 1471 | void AddressSanitizer::getInterestingMemoryOperands( |
| 1472 | Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) { |
| 1473 | // Do not instrument the load fetching the dynamic shadow address. |
| 1474 | if (LocalDynamicShadow == I) |
| 1475 | return; |
| 1476 | |
| 1477 | if (LoadInst *LI = dyn_cast<LoadInst>(Val: I)) { |
| 1478 | if (!ClInstrumentReads || ignoreAccess(Inst: I, Ptr: LI->getPointerOperand())) |
| 1479 | return; |
| 1480 | Interesting.emplace_back(Args&: I, Args: LI->getPointerOperandIndex(), Args: false, |
| 1481 | Args: LI->getType(), Args: LI->getAlign()); |
| 1482 | } else if (StoreInst *SI = dyn_cast<StoreInst>(Val: I)) { |
| 1483 | if (!ClInstrumentWrites || ignoreAccess(Inst: I, Ptr: SI->getPointerOperand())) |
| 1484 | return; |
| 1485 | Interesting.emplace_back(Args&: I, Args: SI->getPointerOperandIndex(), Args: true, |
| 1486 | Args: SI->getValueOperand()->getType(), Args: SI->getAlign()); |
| 1487 | } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Val: I)) { |
| 1488 | if (!ClInstrumentAtomics || ignoreAccess(Inst: I, Ptr: RMW->getPointerOperand())) |
| 1489 | return; |
| 1490 | Interesting.emplace_back(Args&: I, Args: RMW->getPointerOperandIndex(), Args: true, |
| 1491 | Args: RMW->getValOperand()->getType(), Args: std::nullopt); |
| 1492 | } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(Val: I)) { |
| 1493 | if (!ClInstrumentAtomics || ignoreAccess(Inst: I, Ptr: XCHG->getPointerOperand())) |
| 1494 | return; |
| 1495 | Interesting.emplace_back(Args&: I, Args: XCHG->getPointerOperandIndex(), Args: true, |
| 1496 | Args: XCHG->getCompareOperand()->getType(), |
| 1497 | Args: std::nullopt); |
| 1498 | } else if (auto CI = dyn_cast<CallInst>(Val: I)) { |
| 1499 | switch (CI->getIntrinsicID()) { |
| 1500 | case Intrinsic::masked_load: |
| 1501 | case Intrinsic::masked_store: |
| 1502 | case Intrinsic::masked_gather: |
| 1503 | case Intrinsic::masked_scatter: { |
| 1504 | bool IsWrite = CI->getType()->isVoidTy(); |
| 1505 | // Masked store has an initial operand for the value. |
| 1506 | unsigned OpOffset = IsWrite ? 1 : 0; |
| 1507 | if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads) |
| 1508 | return; |
| 1509 | |
| 1510 | auto BasePtr = CI->getOperand(i_nocapture: OpOffset); |
| 1511 | if (ignoreAccess(Inst: I, Ptr: BasePtr)) |
| 1512 | return; |
| 1513 | Type *Ty = IsWrite ? CI->getArgOperand(i: 0)->getType() : CI->getType(); |
| 1514 | MaybeAlign Alignment = Align(1); |
| 1515 | // Otherwise no alignment guarantees. We probably got Undef. |
| 1516 | if (auto *Op = dyn_cast<ConstantInt>(Val: CI->getOperand(i_nocapture: 1 + OpOffset))) |
| 1517 | Alignment = Op->getMaybeAlignValue(); |
| 1518 | Value *Mask = CI->getOperand(i_nocapture: 2 + OpOffset); |
| 1519 | Interesting.emplace_back(Args&: I, Args&: OpOffset, Args&: IsWrite, Args&: Ty, Args&: Alignment, Args&: Mask); |
| 1520 | break; |
| 1521 | } |
| 1522 | case Intrinsic::masked_expandload: |
| 1523 | case Intrinsic::masked_compressstore: { |
| 1524 | bool IsWrite = CI->getIntrinsicID() == Intrinsic::masked_compressstore; |
| 1525 | unsigned OpOffset = IsWrite ? 1 : 0; |
| 1526 | if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads) |
| 1527 | return; |
| 1528 | auto BasePtr = CI->getOperand(i_nocapture: OpOffset); |
| 1529 | if (ignoreAccess(Inst: I, Ptr: BasePtr)) |
| 1530 | return; |
| 1531 | MaybeAlign Alignment = BasePtr->getPointerAlignment(DL: *DL); |
| 1532 | Type *Ty = IsWrite ? CI->getArgOperand(i: 0)->getType() : CI->getType(); |
| 1533 | |
| 1534 | IRBuilder IB(I); |
| 1535 | Value *Mask = CI->getOperand(i_nocapture: 1 + OpOffset); |
| 1536 | // Use the popcount of Mask as the effective vector length. |
| 1537 | Type *ExtTy = VectorType::get(ElementType: IntptrTy, Other: cast<VectorType>(Val: Ty)); |
| 1538 | Value *ExtMask = IB.CreateZExt(V: Mask, DestTy: ExtTy); |
| 1539 | Value *EVL = IB.CreateAddReduce(Src: ExtMask); |
| 1540 | Value *TrueMask = ConstantInt::get(Ty: Mask->getType(), V: 1); |
| 1541 | Interesting.emplace_back(Args&: I, Args&: OpOffset, Args&: IsWrite, Args&: Ty, Args&: Alignment, Args&: TrueMask, |
| 1542 | Args&: EVL); |
| 1543 | break; |
| 1544 | } |
| 1545 | case Intrinsic::vp_load: |
| 1546 | case Intrinsic::vp_store: |
| 1547 | case Intrinsic::experimental_vp_strided_load: |
| 1548 | case Intrinsic::experimental_vp_strided_store: { |
| 1549 | auto *VPI = cast<VPIntrinsic>(Val: CI); |
| 1550 | unsigned IID = CI->getIntrinsicID(); |
| 1551 | bool IsWrite = CI->getType()->isVoidTy(); |
| 1552 | if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads) |
| 1553 | return; |
| 1554 | unsigned PtrOpNo = *VPI->getMemoryPointerParamPos(IID); |
| 1555 | Type *Ty = IsWrite ? CI->getArgOperand(i: 0)->getType() : CI->getType(); |
| 1556 | MaybeAlign Alignment = VPI->getOperand(i_nocapture: PtrOpNo)->getPointerAlignment(DL: *DL); |
| 1557 | Value *Stride = nullptr; |
| 1558 | if (IID == Intrinsic::experimental_vp_strided_store || |
| 1559 | IID == Intrinsic::experimental_vp_strided_load) { |
| 1560 | Stride = VPI->getOperand(i_nocapture: PtrOpNo + 1); |
| 1561 | // Use the pointer alignment as the element alignment if the stride is a |
| 1562 | // mutiple of the pointer alignment. Otherwise, the element alignment |
| 1563 | // should be Align(1). |
| 1564 | unsigned PointerAlign = Alignment.valueOrOne().value(); |
| 1565 | if (!isa<ConstantInt>(Val: Stride) || |
| 1566 | cast<ConstantInt>(Val: Stride)->getZExtValue() % PointerAlign != 0) |
| 1567 | Alignment = Align(1); |
| 1568 | } |
| 1569 | Interesting.emplace_back(Args&: I, Args&: PtrOpNo, Args&: IsWrite, Args&: Ty, Args&: Alignment, |
| 1570 | Args: VPI->getMaskParam(), Args: VPI->getVectorLengthParam(), |
| 1571 | Args&: Stride); |
| 1572 | break; |
| 1573 | } |
| 1574 | case Intrinsic::vp_gather: |
| 1575 | case Intrinsic::vp_scatter: { |
| 1576 | auto *VPI = cast<VPIntrinsic>(Val: CI); |
| 1577 | unsigned IID = CI->getIntrinsicID(); |
| 1578 | bool IsWrite = IID == Intrinsic::vp_scatter; |
| 1579 | if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads) |
| 1580 | return; |
| 1581 | unsigned PtrOpNo = *VPI->getMemoryPointerParamPos(IID); |
| 1582 | Type *Ty = IsWrite ? CI->getArgOperand(i: 0)->getType() : CI->getType(); |
| 1583 | MaybeAlign Alignment = VPI->getPointerAlignment(); |
| 1584 | Interesting.emplace_back(Args&: I, Args&: PtrOpNo, Args&: IsWrite, Args&: Ty, Args&: Alignment, |
| 1585 | Args: VPI->getMaskParam(), |
| 1586 | Args: VPI->getVectorLengthParam()); |
| 1587 | break; |
| 1588 | } |
| 1589 | default: |
| 1590 | for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ArgNo++) { |
| 1591 | if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) || |
| 1592 | ignoreAccess(Inst: I, Ptr: CI->getArgOperand(i: ArgNo))) |
| 1593 | continue; |
| 1594 | Type *Ty = CI->getParamByValType(ArgNo); |
| 1595 | Interesting.emplace_back(Args&: I, Args&: ArgNo, Args: false, Args&: Ty, Args: Align(1)); |
| 1596 | } |
| 1597 | } |
| 1598 | } |
| 1599 | } |
| 1600 | |
| 1601 | static bool isPointerOperand(Value *V) { |
| 1602 | return V->getType()->isPointerTy() || isa<PtrToIntInst>(Val: V); |
| 1603 | } |
| 1604 | |
| 1605 | // This is a rough heuristic; it may cause both false positives and |
| 1606 | // false negatives. The proper implementation requires cooperation with |
| 1607 | // the frontend. |
| 1608 | static bool isInterestingPointerComparison(Instruction *I) { |
| 1609 | if (ICmpInst *Cmp = dyn_cast<ICmpInst>(Val: I)) { |
| 1610 | if (!Cmp->isRelational()) |
| 1611 | return false; |
| 1612 | } else { |
| 1613 | return false; |
| 1614 | } |
| 1615 | return isPointerOperand(V: I->getOperand(i: 0)) && |
| 1616 | isPointerOperand(V: I->getOperand(i: 1)); |
| 1617 | } |
| 1618 | |
| 1619 | // This is a rough heuristic; it may cause both false positives and |
| 1620 | // false negatives. The proper implementation requires cooperation with |
| 1621 | // the frontend. |
| 1622 | static bool isInterestingPointerSubtraction(Instruction *I) { |
| 1623 | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: I)) { |
| 1624 | if (BO->getOpcode() != Instruction::Sub) |
| 1625 | return false; |
| 1626 | } else { |
| 1627 | return false; |
| 1628 | } |
| 1629 | return isPointerOperand(V: I->getOperand(i: 0)) && |
| 1630 | isPointerOperand(V: I->getOperand(i: 1)); |
| 1631 | } |
| 1632 | |
| 1633 | bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) { |
| 1634 | // If a global variable does not have dynamic initialization we don't |
| 1635 | // have to instrument it. However, if a global does not have initializer |
| 1636 | // at all, we assume it has dynamic initializer (in other TU). |
| 1637 | if (!G->hasInitializer()) |
| 1638 | return false; |
| 1639 | |
| 1640 | if (G->hasSanitizerMetadata() && G->getSanitizerMetadata().IsDynInit) |
| 1641 | return false; |
| 1642 | |
| 1643 | return true; |
| 1644 | } |
| 1645 | |
| 1646 | void AddressSanitizer::instrumentPointerComparisonOrSubtraction( |
| 1647 | Instruction *I, RuntimeCallInserter &RTCI) { |
| 1648 | IRBuilder<> IRB(I); |
| 1649 | FunctionCallee F = isa<ICmpInst>(Val: I) ? AsanPtrCmpFunction : AsanPtrSubFunction; |
| 1650 | Value *Param[2] = {I->getOperand(i: 0), I->getOperand(i: 1)}; |
| 1651 | for (Value *&i : Param) { |
| 1652 | if (i->getType()->isPointerTy()) |
| 1653 | i = IRB.CreatePointerCast(V: i, DestTy: IntptrTy); |
| 1654 | } |
| 1655 | RTCI.createRuntimeCall(IRB, Callee: F, Args: Param); |
| 1656 | } |
| 1657 | |
| 1658 | static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I, |
| 1659 | Instruction *InsertBefore, Value *Addr, |
| 1660 | MaybeAlign Alignment, unsigned Granularity, |
| 1661 | TypeSize TypeStoreSize, bool IsWrite, |
| 1662 | Value *SizeArgument, bool UseCalls, |
| 1663 | uint32_t Exp, RuntimeCallInserter &RTCI) { |
| 1664 | // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check |
| 1665 | // if the data is properly aligned. |
| 1666 | if (!TypeStoreSize.isScalable()) { |
| 1667 | const auto FixedSize = TypeStoreSize.getFixedValue(); |
| 1668 | switch (FixedSize) { |
| 1669 | case 8: |
| 1670 | case 16: |
| 1671 | case 32: |
| 1672 | case 64: |
| 1673 | case 128: |
| 1674 | if (!Alignment || *Alignment >= Granularity || |
| 1675 | *Alignment >= FixedSize / 8) |
| 1676 | return Pass->instrumentAddress(OrigIns: I, InsertBefore, Addr, Alignment, |
| 1677 | TypeStoreSize: FixedSize, IsWrite, SizeArgument: nullptr, UseCalls, |
| 1678 | Exp, RTCI); |
| 1679 | } |
| 1680 | } |
| 1681 | Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeStoreSize, |
| 1682 | IsWrite, SizeArgument: nullptr, UseCalls, Exp, RTCI); |
| 1683 | } |
| 1684 | |
| 1685 | void AddressSanitizer::instrumentMaskedLoadOrStore( |
| 1686 | AddressSanitizer *Pass, const DataLayout &DL, Type *IntptrTy, Value *Mask, |
| 1687 | Value *EVL, Value *Stride, Instruction *I, Value *Addr, |
| 1688 | MaybeAlign Alignment, unsigned Granularity, Type *OpType, bool IsWrite, |
| 1689 | Value *SizeArgument, bool UseCalls, uint32_t Exp, |
| 1690 | RuntimeCallInserter &RTCI) { |
| 1691 | auto *VTy = cast<VectorType>(Val: OpType); |
| 1692 | TypeSize ElemTypeSize = DL.getTypeStoreSizeInBits(Ty: VTy->getScalarType()); |
| 1693 | auto Zero = ConstantInt::get(Ty: IntptrTy, V: 0); |
| 1694 | |
| 1695 | IRBuilder IB(I); |
| 1696 | Instruction *LoopInsertBefore = I; |
| 1697 | if (EVL) { |
| 1698 | // The end argument of SplitBlockAndInsertForLane is assumed bigger |
| 1699 | // than zero, so we should check whether EVL is zero here. |
| 1700 | Type *EVLType = EVL->getType(); |
| 1701 | Value *IsEVLZero = IB.CreateICmpNE(LHS: EVL, RHS: ConstantInt::get(Ty: EVLType, V: 0)); |
| 1702 | LoopInsertBefore = SplitBlockAndInsertIfThen(Cond: IsEVLZero, SplitBefore: I, Unreachable: false); |
| 1703 | IB.SetInsertPoint(LoopInsertBefore); |
| 1704 | // Cast EVL to IntptrTy. |
| 1705 | EVL = IB.CreateZExtOrTrunc(V: EVL, DestTy: IntptrTy); |
| 1706 | // To avoid undefined behavior for extracting with out of range index, use |
| 1707 | // the minimum of evl and element count as trip count. |
| 1708 | Value *EC = IB.CreateElementCount(Ty: IntptrTy, EC: VTy->getElementCount()); |
| 1709 | EVL = IB.CreateBinaryIntrinsic(ID: Intrinsic::umin, LHS: EVL, RHS: EC); |
| 1710 | } else { |
| 1711 | EVL = IB.CreateElementCount(Ty: IntptrTy, EC: VTy->getElementCount()); |
| 1712 | } |
| 1713 | |
| 1714 | // Cast Stride to IntptrTy. |
| 1715 | if (Stride) |
| 1716 | Stride = IB.CreateZExtOrTrunc(V: Stride, DestTy: IntptrTy); |
| 1717 | |
| 1718 | SplitBlockAndInsertForEachLane(End: EVL, InsertBefore: LoopInsertBefore->getIterator(), |
| 1719 | Func: [&](IRBuilderBase &IRB, Value *Index) { |
| 1720 | Value *MaskElem = IRB.CreateExtractElement(Vec: Mask, Idx: Index); |
| 1721 | if (auto *MaskElemC = dyn_cast<ConstantInt>(Val: MaskElem)) { |
| 1722 | if (MaskElemC->isZero()) |
| 1723 | // No check |
| 1724 | return; |
| 1725 | // Unconditional check |
| 1726 | } else { |
| 1727 | // Conditional check |
| 1728 | Instruction *ThenTerm = SplitBlockAndInsertIfThen( |
| 1729 | Cond: MaskElem, SplitBefore: &*IRB.GetInsertPoint(), Unreachable: false); |
| 1730 | IRB.SetInsertPoint(ThenTerm); |
| 1731 | } |
| 1732 | |
| 1733 | Value *InstrumentedAddress; |
| 1734 | if (isa<VectorType>(Val: Addr->getType())) { |
| 1735 | assert( |
| 1736 | cast<VectorType>(Addr->getType())->getElementType()->isPointerTy() && |
| 1737 | "Expected vector of pointer." ); |
| 1738 | InstrumentedAddress = IRB.CreateExtractElement(Vec: Addr, Idx: Index); |
| 1739 | } else if (Stride) { |
| 1740 | Index = IRB.CreateMul(LHS: Index, RHS: Stride); |
| 1741 | InstrumentedAddress = IRB.CreatePtrAdd(Ptr: Addr, Offset: Index); |
| 1742 | } else { |
| 1743 | InstrumentedAddress = IRB.CreateGEP(Ty: VTy, Ptr: Addr, IdxList: {Zero, Index}); |
| 1744 | } |
| 1745 | doInstrumentAddress(Pass, I, InsertBefore: &*IRB.GetInsertPoint(), Addr: InstrumentedAddress, |
| 1746 | Alignment, Granularity, TypeStoreSize: ElemTypeSize, IsWrite, |
| 1747 | SizeArgument, UseCalls, Exp, RTCI); |
| 1748 | }); |
| 1749 | } |
| 1750 | |
| 1751 | void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, |
| 1752 | InterestingMemoryOperand &O, bool UseCalls, |
| 1753 | const DataLayout &DL, |
| 1754 | RuntimeCallInserter &RTCI) { |
| 1755 | Value *Addr = O.getPtr(); |
| 1756 | |
| 1757 | // Optimization experiments. |
| 1758 | // The experiments can be used to evaluate potential optimizations that remove |
| 1759 | // instrumentation (assess false negatives). Instead of completely removing |
| 1760 | // some instrumentation, you set Exp to a non-zero value (mask of optimization |
| 1761 | // experiments that want to remove instrumentation of this instruction). |
| 1762 | // If Exp is non-zero, this pass will emit special calls into runtime |
| 1763 | // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls |
| 1764 | // make runtime terminate the program in a special way (with a different |
| 1765 | // exit status). Then you run the new compiler on a buggy corpus, collect |
| 1766 | // the special terminations (ideally, you don't see them at all -- no false |
| 1767 | // negatives) and make the decision on the optimization. |
| 1768 | uint32_t Exp = ClForceExperiment; |
| 1769 | |
| 1770 | if (ClOpt && ClOptGlobals) { |
| 1771 | // If initialization order checking is disabled, a simple access to a |
| 1772 | // dynamically initialized global is always valid. |
| 1773 | GlobalVariable *G = dyn_cast<GlobalVariable>(Val: getUnderlyingObject(V: Addr)); |
| 1774 | if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) && |
| 1775 | isSafeAccess(ObjSizeVis, Addr, TypeStoreSize: O.TypeStoreSize)) { |
| 1776 | NumOptimizedAccessesToGlobalVar++; |
| 1777 | return; |
| 1778 | } |
| 1779 | } |
| 1780 | |
| 1781 | if (ClOpt && ClOptStack) { |
| 1782 | // A direct inbounds access to a stack variable is always valid. |
| 1783 | if (isa<AllocaInst>(Val: getUnderlyingObject(V: Addr)) && |
| 1784 | isSafeAccess(ObjSizeVis, Addr, TypeStoreSize: O.TypeStoreSize)) { |
| 1785 | NumOptimizedAccessesToStackVar++; |
| 1786 | return; |
| 1787 | } |
| 1788 | } |
| 1789 | |
| 1790 | if (O.IsWrite) |
| 1791 | NumInstrumentedWrites++; |
| 1792 | else |
| 1793 | NumInstrumentedReads++; |
| 1794 | |
| 1795 | unsigned Granularity = 1 << Mapping.Scale; |
| 1796 | if (O.MaybeMask) { |
| 1797 | instrumentMaskedLoadOrStore(Pass: this, DL, IntptrTy, Mask: O.MaybeMask, EVL: O.MaybeEVL, |
| 1798 | Stride: O.MaybeStride, I: O.getInsn(), Addr, Alignment: O.Alignment, |
| 1799 | Granularity, OpType: O.OpType, IsWrite: O.IsWrite, SizeArgument: nullptr, |
| 1800 | UseCalls, Exp, RTCI); |
| 1801 | } else { |
| 1802 | doInstrumentAddress(Pass: this, I: O.getInsn(), InsertBefore: O.getInsn(), Addr, Alignment: O.Alignment, |
| 1803 | Granularity, TypeStoreSize: O.TypeStoreSize, IsWrite: O.IsWrite, SizeArgument: nullptr, |
| 1804 | UseCalls, Exp, RTCI); |
| 1805 | } |
| 1806 | } |
| 1807 | |
| 1808 | Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore, |
| 1809 | Value *Addr, bool IsWrite, |
| 1810 | size_t AccessSizeIndex, |
| 1811 | Value *SizeArgument, |
| 1812 | uint32_t Exp, |
| 1813 | RuntimeCallInserter &RTCI) { |
| 1814 | InstrumentationIRBuilder IRB(InsertBefore); |
| 1815 | Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(Ty: IRB.getInt32Ty(), V: Exp); |
| 1816 | CallInst *Call = nullptr; |
| 1817 | if (SizeArgument) { |
| 1818 | if (Exp == 0) |
| 1819 | Call = RTCI.createRuntimeCall(IRB, Callee: AsanErrorCallbackSized[IsWrite][0], |
| 1820 | Args: {Addr, SizeArgument}); |
| 1821 | else |
| 1822 | Call = RTCI.createRuntimeCall(IRB, Callee: AsanErrorCallbackSized[IsWrite][1], |
| 1823 | Args: {Addr, SizeArgument, ExpVal}); |
| 1824 | } else { |
| 1825 | if (Exp == 0) |
| 1826 | Call = RTCI.createRuntimeCall( |
| 1827 | IRB, Callee: AsanErrorCallback[IsWrite][0][AccessSizeIndex], Args: Addr); |
| 1828 | else |
| 1829 | Call = RTCI.createRuntimeCall( |
| 1830 | IRB, Callee: AsanErrorCallback[IsWrite][1][AccessSizeIndex], Args: {Addr, ExpVal}); |
| 1831 | } |
| 1832 | |
| 1833 | Call->setCannotMerge(); |
| 1834 | return Call; |
| 1835 | } |
| 1836 | |
| 1837 | Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, |
| 1838 | Value *ShadowValue, |
| 1839 | uint32_t TypeStoreSize) { |
| 1840 | size_t Granularity = static_cast<size_t>(1) << Mapping.Scale; |
| 1841 | // Addr & (Granularity - 1) |
| 1842 | Value *LastAccessedByte = |
| 1843 | IRB.CreateAnd(LHS: AddrLong, RHS: ConstantInt::get(Ty: IntptrTy, V: Granularity - 1)); |
| 1844 | // (Addr & (Granularity - 1)) + size - 1 |
| 1845 | if (TypeStoreSize / 8 > 1) |
| 1846 | LastAccessedByte = IRB.CreateAdd( |
| 1847 | LHS: LastAccessedByte, RHS: ConstantInt::get(Ty: IntptrTy, V: TypeStoreSize / 8 - 1)); |
| 1848 | // (uint8_t) ((Addr & (Granularity-1)) + size - 1) |
| 1849 | LastAccessedByte = |
| 1850 | IRB.CreateIntCast(V: LastAccessedByte, DestTy: ShadowValue->getType(), isSigned: false); |
| 1851 | // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue |
| 1852 | return IRB.CreateICmpSGE(LHS: LastAccessedByte, RHS: ShadowValue); |
| 1853 | } |
| 1854 | |
| 1855 | Instruction *AddressSanitizer::instrumentAMDGPUAddress( |
| 1856 | Instruction *OrigIns, Instruction *InsertBefore, Value *Addr, |
| 1857 | uint32_t TypeStoreSize, bool IsWrite, Value *SizeArgument) { |
| 1858 | // Do not instrument unsupported addrspaces. |
| 1859 | if (isUnsupportedAMDGPUAddrspace(Addr)) |
| 1860 | return nullptr; |
| 1861 | Type *PtrTy = cast<PointerType>(Val: Addr->getType()->getScalarType()); |
| 1862 | // Follow host instrumentation for global and constant addresses. |
| 1863 | if (PtrTy->getPointerAddressSpace() != 0) |
| 1864 | return InsertBefore; |
| 1865 | // Instrument generic addresses in supported addressspaces. |
| 1866 | IRBuilder<> IRB(InsertBefore); |
| 1867 | Value *IsShared = IRB.CreateCall(Callee: AMDGPUAddressShared, Args: {Addr}); |
| 1868 | Value *IsPrivate = IRB.CreateCall(Callee: AMDGPUAddressPrivate, Args: {Addr}); |
| 1869 | Value *IsSharedOrPrivate = IRB.CreateOr(LHS: IsShared, RHS: IsPrivate); |
| 1870 | Value *Cmp = IRB.CreateNot(V: IsSharedOrPrivate); |
| 1871 | Value *AddrSpaceZeroLanding = |
| 1872 | SplitBlockAndInsertIfThen(Cond: Cmp, SplitBefore: InsertBefore, Unreachable: false); |
| 1873 | InsertBefore = cast<Instruction>(Val: AddrSpaceZeroLanding); |
| 1874 | return InsertBefore; |
| 1875 | } |
| 1876 | |
| 1877 | Instruction *AddressSanitizer::genAMDGPUReportBlock(IRBuilder<> &IRB, |
| 1878 | Value *Cond, bool Recover) { |
| 1879 | Module &M = *IRB.GetInsertBlock()->getModule(); |
| 1880 | Value *ReportCond = Cond; |
| 1881 | if (!Recover) { |
| 1882 | auto Ballot = M.getOrInsertFunction(Name: kAMDGPUBallotName, RetTy: IRB.getInt64Ty(), |
| 1883 | Args: IRB.getInt1Ty()); |
| 1884 | ReportCond = IRB.CreateIsNotNull(Arg: IRB.CreateCall(Callee: Ballot, Args: {Cond})); |
| 1885 | } |
| 1886 | |
| 1887 | auto *Trm = |
| 1888 | SplitBlockAndInsertIfThen(Cond: ReportCond, SplitBefore: &*IRB.GetInsertPoint(), Unreachable: false, |
| 1889 | BranchWeights: MDBuilder(*C).createUnlikelyBranchWeights()); |
| 1890 | Trm->getParent()->setName("asan.report" ); |
| 1891 | |
| 1892 | if (Recover) |
| 1893 | return Trm; |
| 1894 | |
| 1895 | Trm = SplitBlockAndInsertIfThen(Cond, SplitBefore: Trm, Unreachable: false); |
| 1896 | IRB.SetInsertPoint(Trm); |
| 1897 | return IRB.CreateCall( |
| 1898 | Callee: M.getOrInsertFunction(Name: kAMDGPUUnreachableName, RetTy: IRB.getVoidTy()), Args: {}); |
| 1899 | } |
| 1900 | |
| 1901 | void AddressSanitizer::instrumentAddress(Instruction *OrigIns, |
| 1902 | Instruction *InsertBefore, Value *Addr, |
| 1903 | MaybeAlign Alignment, |
| 1904 | uint32_t TypeStoreSize, bool IsWrite, |
| 1905 | Value *SizeArgument, bool UseCalls, |
| 1906 | uint32_t Exp, |
| 1907 | RuntimeCallInserter &RTCI) { |
| 1908 | if (TargetTriple.isAMDGPU()) { |
| 1909 | InsertBefore = instrumentAMDGPUAddress(OrigIns, InsertBefore, Addr, |
| 1910 | TypeStoreSize, IsWrite, SizeArgument); |
| 1911 | if (!InsertBefore) |
| 1912 | return; |
| 1913 | } |
| 1914 | |
| 1915 | InstrumentationIRBuilder IRB(InsertBefore); |
| 1916 | size_t AccessSizeIndex = TypeStoreSizeToSizeIndex(TypeSize: TypeStoreSize); |
| 1917 | |
| 1918 | if (UseCalls && ClOptimizeCallbacks) { |
| 1919 | const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex); |
| 1920 | IRB.CreateIntrinsic(ID: Intrinsic::asan_check_memaccess, Types: {}, |
| 1921 | Args: {IRB.CreatePointerCast(V: Addr, DestTy: PtrTy), |
| 1922 | ConstantInt::get(Ty: Int32Ty, V: AccessInfo.Packed)}); |
| 1923 | return; |
| 1924 | } |
| 1925 | |
| 1926 | Value *AddrLong = IRB.CreatePointerCast(V: Addr, DestTy: IntptrTy); |
| 1927 | if (UseCalls) { |
| 1928 | if (Exp == 0) |
| 1929 | RTCI.createRuntimeCall( |
| 1930 | IRB, Callee: AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], Args: AddrLong); |
| 1931 | else |
| 1932 | RTCI.createRuntimeCall( |
| 1933 | IRB, Callee: AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex], |
| 1934 | Args: {AddrLong, ConstantInt::get(Ty: IRB.getInt32Ty(), V: Exp)}); |
| 1935 | return; |
| 1936 | } |
| 1937 | |
| 1938 | Type *ShadowTy = |
| 1939 | IntegerType::get(C&: *C, NumBits: std::max(a: 8U, b: TypeStoreSize >> Mapping.Scale)); |
| 1940 | Type *ShadowPtrTy = PointerType::get(C&: *C, AddressSpace: 0); |
| 1941 | Value *ShadowPtr = memToShadow(Shadow: AddrLong, IRB); |
| 1942 | const uint64_t ShadowAlign = |
| 1943 | std::max<uint64_t>(a: Alignment.valueOrOne().value() >> Mapping.Scale, b: 1); |
| 1944 | Value *ShadowValue = IRB.CreateAlignedLoad( |
| 1945 | Ty: ShadowTy, Ptr: IRB.CreateIntToPtr(V: ShadowPtr, DestTy: ShadowPtrTy), Align: Align(ShadowAlign)); |
| 1946 | |
| 1947 | Value *Cmp = IRB.CreateIsNotNull(Arg: ShadowValue); |
| 1948 | size_t Granularity = 1ULL << Mapping.Scale; |
| 1949 | Instruction *CrashTerm = nullptr; |
| 1950 | |
| 1951 | bool GenSlowPath = (ClAlwaysSlowPath || (TypeStoreSize < 8 * Granularity)); |
| 1952 | |
| 1953 | if (TargetTriple.isAMDGCN()) { |
| 1954 | if (GenSlowPath) { |
| 1955 | auto *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeStoreSize); |
| 1956 | Cmp = IRB.CreateAnd(LHS: Cmp, RHS: Cmp2); |
| 1957 | } |
| 1958 | CrashTerm = genAMDGPUReportBlock(IRB, Cond: Cmp, Recover); |
| 1959 | } else if (GenSlowPath) { |
| 1960 | // We use branch weights for the slow path check, to indicate that the slow |
| 1961 | // path is rarely taken. This seems to be the case for SPEC benchmarks. |
| 1962 | Instruction *CheckTerm = SplitBlockAndInsertIfThen( |
| 1963 | Cond: Cmp, SplitBefore: InsertBefore, Unreachable: false, BranchWeights: MDBuilder(*C).createUnlikelyBranchWeights()); |
| 1964 | assert(cast<BranchInst>(CheckTerm)->isUnconditional()); |
| 1965 | BasicBlock *NextBB = CheckTerm->getSuccessor(Idx: 0); |
| 1966 | IRB.SetInsertPoint(CheckTerm); |
| 1967 | Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeStoreSize); |
| 1968 | if (Recover) { |
| 1969 | CrashTerm = SplitBlockAndInsertIfThen(Cond: Cmp2, SplitBefore: CheckTerm, Unreachable: false); |
| 1970 | } else { |
| 1971 | BasicBlock *CrashBlock = |
| 1972 | BasicBlock::Create(Context&: *C, Name: "" , Parent: NextBB->getParent(), InsertBefore: NextBB); |
| 1973 | CrashTerm = new UnreachableInst(*C, CrashBlock); |
| 1974 | BranchInst *NewTerm = BranchInst::Create(IfTrue: CrashBlock, IfFalse: NextBB, Cond: Cmp2); |
| 1975 | ReplaceInstWithInst(From: CheckTerm, To: NewTerm); |
| 1976 | } |
| 1977 | } else { |
| 1978 | CrashTerm = SplitBlockAndInsertIfThen(Cond: Cmp, SplitBefore: InsertBefore, Unreachable: !Recover); |
| 1979 | } |
| 1980 | |
| 1981 | Instruction *Crash = generateCrashCode( |
| 1982 | InsertBefore: CrashTerm, Addr: AddrLong, IsWrite, AccessSizeIndex, SizeArgument, Exp, RTCI); |
| 1983 | if (OrigIns->getDebugLoc()) |
| 1984 | Crash->setDebugLoc(OrigIns->getDebugLoc()); |
| 1985 | } |
| 1986 | |
| 1987 | // Instrument unusual size or unusual alignment. |
| 1988 | // We can not do it with a single check, so we do 1-byte check for the first |
| 1989 | // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able |
| 1990 | // to report the actual access size. |
| 1991 | void AddressSanitizer::instrumentUnusualSizeOrAlignment( |
| 1992 | Instruction *I, Instruction *InsertBefore, Value *Addr, |
| 1993 | TypeSize TypeStoreSize, bool IsWrite, Value *SizeArgument, bool UseCalls, |
| 1994 | uint32_t Exp, RuntimeCallInserter &RTCI) { |
| 1995 | InstrumentationIRBuilder IRB(InsertBefore); |
| 1996 | Value *NumBits = IRB.CreateTypeSize(Ty: IntptrTy, Size: TypeStoreSize); |
| 1997 | Value *Size = IRB.CreateLShr(LHS: NumBits, RHS: ConstantInt::get(Ty: IntptrTy, V: 3)); |
| 1998 | |
| 1999 | Value *AddrLong = IRB.CreatePointerCast(V: Addr, DestTy: IntptrTy); |
| 2000 | if (UseCalls) { |
| 2001 | if (Exp == 0) |
| 2002 | RTCI.createRuntimeCall(IRB, Callee: AsanMemoryAccessCallbackSized[IsWrite][0], |
| 2003 | Args: {AddrLong, Size}); |
| 2004 | else |
| 2005 | RTCI.createRuntimeCall( |
| 2006 | IRB, Callee: AsanMemoryAccessCallbackSized[IsWrite][1], |
| 2007 | Args: {AddrLong, Size, ConstantInt::get(Ty: IRB.getInt32Ty(), V: Exp)}); |
| 2008 | } else { |
| 2009 | Value *SizeMinusOne = IRB.CreateSub(LHS: Size, RHS: ConstantInt::get(Ty: IntptrTy, V: 1)); |
| 2010 | Value *LastByte = IRB.CreateIntToPtr( |
| 2011 | V: IRB.CreateAdd(LHS: AddrLong, RHS: SizeMinusOne), |
| 2012 | DestTy: Addr->getType()); |
| 2013 | instrumentAddress(OrigIns: I, InsertBefore, Addr, Alignment: {}, TypeStoreSize: 8, IsWrite, SizeArgument: Size, UseCalls: false, Exp, |
| 2014 | RTCI); |
| 2015 | instrumentAddress(OrigIns: I, InsertBefore, Addr: LastByte, Alignment: {}, TypeStoreSize: 8, IsWrite, SizeArgument: Size, UseCalls: false, |
| 2016 | Exp, RTCI); |
| 2017 | } |
| 2018 | } |
| 2019 | |
| 2020 | void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit) { |
| 2021 | // Set up the arguments to our poison/unpoison functions. |
| 2022 | IRBuilder<> IRB(&GlobalInit.front(), |
| 2023 | GlobalInit.front().getFirstInsertionPt()); |
| 2024 | |
| 2025 | // Add a call to poison all external globals before the given function starts. |
| 2026 | Value *ModuleNameAddr = |
| 2027 | ConstantExpr::getPointerCast(C: getOrCreateModuleName(), Ty: IntptrTy); |
| 2028 | IRB.CreateCall(Callee: AsanPoisonGlobals, Args: ModuleNameAddr); |
| 2029 | |
| 2030 | // Add calls to unpoison all globals before each return instruction. |
| 2031 | for (auto &BB : GlobalInit) |
| 2032 | if (ReturnInst *RI = dyn_cast<ReturnInst>(Val: BB.getTerminator())) |
| 2033 | CallInst::Create(Func: AsanUnpoisonGlobals, NameStr: "" , InsertBefore: RI->getIterator()); |
| 2034 | } |
| 2035 | |
| 2036 | void ModuleAddressSanitizer::createInitializerPoisonCalls() { |
| 2037 | GlobalVariable *GV = M.getGlobalVariable(Name: "llvm.global_ctors" ); |
| 2038 | if (!GV) |
| 2039 | return; |
| 2040 | |
| 2041 | ConstantArray *CA = dyn_cast<ConstantArray>(Val: GV->getInitializer()); |
| 2042 | if (!CA) |
| 2043 | return; |
| 2044 | |
| 2045 | for (Use &OP : CA->operands()) { |
| 2046 | if (isa<ConstantAggregateZero>(Val: OP)) continue; |
| 2047 | ConstantStruct *CS = cast<ConstantStruct>(Val&: OP); |
| 2048 | |
| 2049 | // Must have a function or null ptr. |
| 2050 | if (Function *F = dyn_cast<Function>(Val: CS->getOperand(i_nocapture: 1))) { |
| 2051 | if (F->getName() == kAsanModuleCtorName) continue; |
| 2052 | auto *Priority = cast<ConstantInt>(Val: CS->getOperand(i_nocapture: 0)); |
| 2053 | // Don't instrument CTORs that will run before asan.module_ctor. |
| 2054 | if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple)) |
| 2055 | continue; |
| 2056 | poisonOneInitializer(GlobalInit&: *F); |
| 2057 | } |
| 2058 | } |
| 2059 | } |
| 2060 | |
| 2061 | const GlobalVariable * |
| 2062 | ModuleAddressSanitizer::getExcludedAliasedGlobal(const GlobalAlias &GA) const { |
| 2063 | // In case this function should be expanded to include rules that do not just |
| 2064 | // apply when CompileKernel is true, either guard all existing rules with an |
| 2065 | // 'if (CompileKernel) { ... }' or be absolutely sure that all these rules |
| 2066 | // should also apply to user space. |
| 2067 | assert(CompileKernel && "Only expecting to be called when compiling kernel" ); |
| 2068 | |
| 2069 | const Constant *C = GA.getAliasee(); |
| 2070 | |
| 2071 | // When compiling the kernel, globals that are aliased by symbols prefixed |
| 2072 | // by "__" are special and cannot be padded with a redzone. |
| 2073 | if (GA.getName().starts_with(Prefix: "__" )) |
| 2074 | return dyn_cast<GlobalVariable>(Val: C->stripPointerCastsAndAliases()); |
| 2075 | |
| 2076 | return nullptr; |
| 2077 | } |
| 2078 | |
| 2079 | bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable *G) const { |
| 2080 | Type *Ty = G->getValueType(); |
| 2081 | LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n" ); |
| 2082 | |
| 2083 | if (G->hasSanitizerMetadata() && G->getSanitizerMetadata().NoAddress) |
| 2084 | return false; |
| 2085 | if (!Ty->isSized()) return false; |
| 2086 | if (!G->hasInitializer()) return false; |
| 2087 | // Globals in address space 1 and 4 are supported for AMDGPU. |
| 2088 | if (G->getAddressSpace() && |
| 2089 | !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(Addr: G))) |
| 2090 | return false; |
| 2091 | if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals. |
| 2092 | // Two problems with thread-locals: |
| 2093 | // - The address of the main thread's copy can't be computed at link-time. |
| 2094 | // - Need to poison all copies, not just the main thread's one. |
| 2095 | if (G->isThreadLocal()) return false; |
| 2096 | // For now, just ignore this Global if the alignment is large. |
| 2097 | if (G->getAlign() && *G->getAlign() > getMinRedzoneSizeForGlobal()) return false; |
| 2098 | |
| 2099 | // For non-COFF targets, only instrument globals known to be defined by this |
| 2100 | // TU. |
| 2101 | // FIXME: We can instrument comdat globals on ELF if we are using the |
| 2102 | // GC-friendly metadata scheme. |
| 2103 | if (!TargetTriple.isOSBinFormatCOFF()) { |
| 2104 | if (!G->hasExactDefinition() || G->hasComdat()) |
| 2105 | return false; |
| 2106 | } else { |
| 2107 | // On COFF, don't instrument non-ODR linkages. |
| 2108 | if (G->isInterposable()) |
| 2109 | return false; |
| 2110 | // If the global has AvailableExternally linkage, then it is not in this |
| 2111 | // module, which means it does not need to be instrumented. |
| 2112 | if (G->hasAvailableExternallyLinkage()) |
| 2113 | return false; |
| 2114 | } |
| 2115 | |
| 2116 | // If a comdat is present, it must have a selection kind that implies ODR |
| 2117 | // semantics: no duplicates, any, or exact match. |
| 2118 | if (Comdat *C = G->getComdat()) { |
| 2119 | switch (C->getSelectionKind()) { |
| 2120 | case Comdat::Any: |
| 2121 | case Comdat::ExactMatch: |
| 2122 | case Comdat::NoDeduplicate: |
| 2123 | break; |
| 2124 | case Comdat::Largest: |
| 2125 | case Comdat::SameSize: |
| 2126 | return false; |
| 2127 | } |
| 2128 | } |
| 2129 | |
| 2130 | if (G->hasSection()) { |
| 2131 | // The kernel uses explicit sections for mostly special global variables |
| 2132 | // that we should not instrument. E.g. the kernel may rely on their layout |
| 2133 | // without redzones, or remove them at link time ("discard.*"), etc. |
| 2134 | if (CompileKernel) |
| 2135 | return false; |
| 2136 | |
| 2137 | StringRef Section = G->getSection(); |
| 2138 | |
| 2139 | // Globals from llvm.metadata aren't emitted, do not instrument them. |
| 2140 | if (Section == "llvm.metadata" ) return false; |
| 2141 | // Do not instrument globals from special LLVM sections. |
| 2142 | if (Section.contains(Other: "__llvm" ) || Section.contains(Other: "__LLVM" )) |
| 2143 | return false; |
| 2144 | |
| 2145 | // Do not instrument function pointers to initialization and termination |
| 2146 | // routines: dynamic linker will not properly handle redzones. |
| 2147 | if (Section.starts_with(Prefix: ".preinit_array" ) || |
| 2148 | Section.starts_with(Prefix: ".init_array" ) || |
| 2149 | Section.starts_with(Prefix: ".fini_array" )) { |
| 2150 | return false; |
| 2151 | } |
| 2152 | |
| 2153 | // Do not instrument user-defined sections (with names resembling |
| 2154 | // valid C identifiers) |
| 2155 | if (TargetTriple.isOSBinFormatELF()) { |
| 2156 | if (llvm::all_of(Range&: Section, |
| 2157 | P: [](char c) { return llvm::isAlnum(C: c) || c == '_'; })) |
| 2158 | return false; |
| 2159 | } |
| 2160 | |
| 2161 | // On COFF, if the section name contains '$', it is highly likely that the |
| 2162 | // user is using section sorting to create an array of globals similar to |
| 2163 | // the way initialization callbacks are registered in .init_array and |
| 2164 | // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones |
| 2165 | // to such globals is counterproductive, because the intent is that they |
| 2166 | // will form an array, and out-of-bounds accesses are expected. |
| 2167 | // See https://github.com/google/sanitizers/issues/305 |
| 2168 | // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx |
| 2169 | if (TargetTriple.isOSBinFormatCOFF() && Section.contains(C: '$')) { |
| 2170 | LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): " |
| 2171 | << *G << "\n" ); |
| 2172 | return false; |
| 2173 | } |
| 2174 | |
| 2175 | if (TargetTriple.isOSBinFormatMachO()) { |
| 2176 | StringRef ParsedSegment, ParsedSection; |
| 2177 | unsigned TAA = 0, StubSize = 0; |
| 2178 | bool TAAParsed; |
| 2179 | cantFail(Err: MCSectionMachO::ParseSectionSpecifier( |
| 2180 | Spec: Section, Segment&: ParsedSegment, Section&: ParsedSection, TAA, TAAParsed, StubSize)); |
| 2181 | |
| 2182 | // Ignore the globals from the __OBJC section. The ObjC runtime assumes |
| 2183 | // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to |
| 2184 | // them. |
| 2185 | if (ParsedSegment == "__OBJC" || |
| 2186 | (ParsedSegment == "__DATA" && ParsedSection.starts_with(Prefix: "__objc_" ))) { |
| 2187 | LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n" ); |
| 2188 | return false; |
| 2189 | } |
| 2190 | // See https://github.com/google/sanitizers/issues/32 |
| 2191 | // Constant CFString instances are compiled in the following way: |
| 2192 | // -- the string buffer is emitted into |
| 2193 | // __TEXT,__cstring,cstring_literals |
| 2194 | // -- the constant NSConstantString structure referencing that buffer |
| 2195 | // is placed into __DATA,__cfstring |
| 2196 | // Therefore there's no point in placing redzones into __DATA,__cfstring. |
| 2197 | // Moreover, it causes the linker to crash on OS X 10.7 |
| 2198 | if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring" ) { |
| 2199 | LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n" ); |
| 2200 | return false; |
| 2201 | } |
| 2202 | // The linker merges the contents of cstring_literals and removes the |
| 2203 | // trailing zeroes. |
| 2204 | if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) { |
| 2205 | LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n" ); |
| 2206 | return false; |
| 2207 | } |
| 2208 | } |
| 2209 | } |
| 2210 | |
| 2211 | if (CompileKernel) { |
| 2212 | // Globals that prefixed by "__" are special and cannot be padded with a |
| 2213 | // redzone. |
| 2214 | if (G->getName().starts_with(Prefix: "__" )) |
| 2215 | return false; |
| 2216 | } |
| 2217 | |
| 2218 | return true; |
| 2219 | } |
| 2220 | |
| 2221 | // On Mach-O platforms, we emit global metadata in a separate section of the |
| 2222 | // binary in order to allow the linker to properly dead strip. This is only |
| 2223 | // supported on recent versions of ld64. |
| 2224 | bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const { |
| 2225 | if (!TargetTriple.isOSBinFormatMachO()) |
| 2226 | return false; |
| 2227 | |
| 2228 | if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(Major: 10, Minor: 11)) |
| 2229 | return true; |
| 2230 | if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(Major: 9)) |
| 2231 | return true; |
| 2232 | if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(Major: 2)) |
| 2233 | return true; |
| 2234 | if (TargetTriple.isDriverKit()) |
| 2235 | return true; |
| 2236 | if (TargetTriple.isXROS()) |
| 2237 | return true; |
| 2238 | |
| 2239 | return false; |
| 2240 | } |
| 2241 | |
| 2242 | StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const { |
| 2243 | switch (TargetTriple.getObjectFormat()) { |
| 2244 | case Triple::COFF: return ".ASAN$GL" ; |
| 2245 | case Triple::ELF: return "asan_globals" ; |
| 2246 | case Triple::MachO: return "__DATA,__asan_globals,regular" ; |
| 2247 | case Triple::Wasm: |
| 2248 | case Triple::GOFF: |
| 2249 | case Triple::SPIRV: |
| 2250 | case Triple::XCOFF: |
| 2251 | case Triple::DXContainer: |
| 2252 | report_fatal_error( |
| 2253 | reason: "ModuleAddressSanitizer not implemented for object file format" ); |
| 2254 | case Triple::UnknownObjectFormat: |
| 2255 | break; |
| 2256 | } |
| 2257 | llvm_unreachable("unsupported object format" ); |
| 2258 | } |
| 2259 | |
| 2260 | void ModuleAddressSanitizer::initializeCallbacks() { |
| 2261 | IRBuilder<> IRB(*C); |
| 2262 | |
| 2263 | // Declare our poisoning and unpoisoning functions. |
| 2264 | AsanPoisonGlobals = |
| 2265 | M.getOrInsertFunction(Name: kAsanPoisonGlobalsName, RetTy: IRB.getVoidTy(), Args: IntptrTy); |
| 2266 | AsanUnpoisonGlobals = |
| 2267 | M.getOrInsertFunction(Name: kAsanUnpoisonGlobalsName, RetTy: IRB.getVoidTy()); |
| 2268 | |
| 2269 | // Declare functions that register/unregister globals. |
| 2270 | AsanRegisterGlobals = M.getOrInsertFunction( |
| 2271 | Name: kAsanRegisterGlobalsName, RetTy: IRB.getVoidTy(), Args: IntptrTy, Args: IntptrTy); |
| 2272 | AsanUnregisterGlobals = M.getOrInsertFunction( |
| 2273 | Name: kAsanUnregisterGlobalsName, RetTy: IRB.getVoidTy(), Args: IntptrTy, Args: IntptrTy); |
| 2274 | |
| 2275 | // Declare the functions that find globals in a shared object and then invoke |
| 2276 | // the (un)register function on them. |
| 2277 | AsanRegisterImageGlobals = M.getOrInsertFunction( |
| 2278 | Name: kAsanRegisterImageGlobalsName, RetTy: IRB.getVoidTy(), Args: IntptrTy); |
| 2279 | AsanUnregisterImageGlobals = M.getOrInsertFunction( |
| 2280 | Name: kAsanUnregisterImageGlobalsName, RetTy: IRB.getVoidTy(), Args: IntptrTy); |
| 2281 | |
| 2282 | AsanRegisterElfGlobals = |
| 2283 | M.getOrInsertFunction(Name: kAsanRegisterElfGlobalsName, RetTy: IRB.getVoidTy(), |
| 2284 | Args: IntptrTy, Args: IntptrTy, Args: IntptrTy); |
| 2285 | AsanUnregisterElfGlobals = |
| 2286 | M.getOrInsertFunction(Name: kAsanUnregisterElfGlobalsName, RetTy: IRB.getVoidTy(), |
| 2287 | Args: IntptrTy, Args: IntptrTy, Args: IntptrTy); |
| 2288 | } |
| 2289 | |
| 2290 | // Put the metadata and the instrumented global in the same group. This ensures |
| 2291 | // that the metadata is discarded if the instrumented global is discarded. |
| 2292 | void ModuleAddressSanitizer::SetComdatForGlobalMetadata( |
| 2293 | GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) { |
| 2294 | Module &M = *G->getParent(); |
| 2295 | Comdat *C = G->getComdat(); |
| 2296 | if (!C) { |
| 2297 | if (!G->hasName()) { |
| 2298 | // If G is unnamed, it must be internal. Give it an artificial name |
| 2299 | // so we can put it in a comdat. |
| 2300 | assert(G->hasLocalLinkage()); |
| 2301 | G->setName(genName(suffix: "anon_global" )); |
| 2302 | } |
| 2303 | |
| 2304 | if (!InternalSuffix.empty() && G->hasLocalLinkage()) { |
| 2305 | std::string Name = std::string(G->getName()); |
| 2306 | Name += InternalSuffix; |
| 2307 | C = M.getOrInsertComdat(Name); |
| 2308 | } else { |
| 2309 | C = M.getOrInsertComdat(Name: G->getName()); |
| 2310 | } |
| 2311 | |
| 2312 | // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private |
| 2313 | // linkage to internal linkage so that a symbol table entry is emitted. This |
| 2314 | // is necessary in order to create the comdat group. |
| 2315 | if (TargetTriple.isOSBinFormatCOFF()) { |
| 2316 | C->setSelectionKind(Comdat::NoDeduplicate); |
| 2317 | if (G->hasPrivateLinkage()) |
| 2318 | G->setLinkage(GlobalValue::InternalLinkage); |
| 2319 | } |
| 2320 | G->setComdat(C); |
| 2321 | } |
| 2322 | |
| 2323 | assert(G->hasComdat()); |
| 2324 | Metadata->setComdat(G->getComdat()); |
| 2325 | } |
| 2326 | |
| 2327 | // Create a separate metadata global and put it in the appropriate ASan |
| 2328 | // global registration section. |
| 2329 | GlobalVariable * |
| 2330 | ModuleAddressSanitizer::CreateMetadataGlobal(Constant *Initializer, |
| 2331 | StringRef OriginalName) { |
| 2332 | auto Linkage = TargetTriple.isOSBinFormatMachO() |
| 2333 | ? GlobalVariable::InternalLinkage |
| 2334 | : GlobalVariable::PrivateLinkage; |
| 2335 | GlobalVariable *Metadata = new GlobalVariable( |
| 2336 | M, Initializer->getType(), false, Linkage, Initializer, |
| 2337 | Twine("__asan_global_" ) + GlobalValue::dropLLVMManglingEscape(Name: OriginalName)); |
| 2338 | Metadata->setSection(getGlobalMetadataSection()); |
| 2339 | // Place metadata in a large section for x86-64 ELF binaries to mitigate |
| 2340 | // relocation pressure. |
| 2341 | setGlobalVariableLargeSection(TargetTriple, GV&: *Metadata); |
| 2342 | return Metadata; |
| 2343 | } |
| 2344 | |
| 2345 | Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor() { |
| 2346 | AsanDtorFunction = Function::createWithDefaultAttr( |
| 2347 | Ty: FunctionType::get(Result: Type::getVoidTy(C&: *C), isVarArg: false), |
| 2348 | Linkage: GlobalValue::InternalLinkage, AddrSpace: 0, N: kAsanModuleDtorName, M: &M); |
| 2349 | AsanDtorFunction->addFnAttr(Kind: Attribute::NoUnwind); |
| 2350 | // Ensure Dtor cannot be discarded, even if in a comdat. |
| 2351 | appendToUsed(M, Values: {AsanDtorFunction}); |
| 2352 | BasicBlock *AsanDtorBB = BasicBlock::Create(Context&: *C, Name: "" , Parent: AsanDtorFunction); |
| 2353 | |
| 2354 | return ReturnInst::Create(C&: *C, InsertAtEnd: AsanDtorBB); |
| 2355 | } |
| 2356 | |
| 2357 | void ModuleAddressSanitizer::InstrumentGlobalsCOFF( |
| 2358 | IRBuilder<> &IRB, ArrayRef<GlobalVariable *> ExtendedGlobals, |
| 2359 | ArrayRef<Constant *> MetadataInitializers) { |
| 2360 | assert(ExtendedGlobals.size() == MetadataInitializers.size()); |
| 2361 | auto &DL = M.getDataLayout(); |
| 2362 | |
| 2363 | SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); |
| 2364 | for (size_t i = 0; i < ExtendedGlobals.size(); i++) { |
| 2365 | Constant *Initializer = MetadataInitializers[i]; |
| 2366 | GlobalVariable *G = ExtendedGlobals[i]; |
| 2367 | GlobalVariable *Metadata = CreateMetadataGlobal(Initializer, OriginalName: G->getName()); |
| 2368 | MDNode *MD = MDNode::get(Context&: M.getContext(), MDs: ValueAsMetadata::get(V: G)); |
| 2369 | Metadata->setMetadata(KindID: LLVMContext::MD_associated, Node: MD); |
| 2370 | MetadataGlobals[i] = Metadata; |
| 2371 | |
| 2372 | // The MSVC linker always inserts padding when linking incrementally. We |
| 2373 | // cope with that by aligning each struct to its size, which must be a power |
| 2374 | // of two. |
| 2375 | unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Ty: Initializer->getType()); |
| 2376 | assert(isPowerOf2_32(SizeOfGlobalStruct) && |
| 2377 | "global metadata will not be padded appropriately" ); |
| 2378 | Metadata->setAlignment(assumeAligned(Value: SizeOfGlobalStruct)); |
| 2379 | |
| 2380 | SetComdatForGlobalMetadata(G, Metadata, InternalSuffix: "" ); |
| 2381 | } |
| 2382 | |
| 2383 | // Update llvm.compiler.used, adding the new metadata globals. This is |
| 2384 | // needed so that during LTO these variables stay alive. |
| 2385 | if (!MetadataGlobals.empty()) |
| 2386 | appendToCompilerUsed(M, Values: MetadataGlobals); |
| 2387 | } |
| 2388 | |
| 2389 | void ModuleAddressSanitizer::instrumentGlobalsELF( |
| 2390 | IRBuilder<> &IRB, ArrayRef<GlobalVariable *> ExtendedGlobals, |
| 2391 | ArrayRef<Constant *> MetadataInitializers, |
| 2392 | const std::string &UniqueModuleId) { |
| 2393 | assert(ExtendedGlobals.size() == MetadataInitializers.size()); |
| 2394 | |
| 2395 | // Putting globals in a comdat changes the semantic and potentially cause |
| 2396 | // false negative odr violations at link time. If odr indicators are used, we |
| 2397 | // keep the comdat sections, as link time odr violations will be dectected on |
| 2398 | // the odr indicator symbols. |
| 2399 | bool UseComdatForGlobalsGC = UseOdrIndicator && !UniqueModuleId.empty(); |
| 2400 | |
| 2401 | SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); |
| 2402 | for (size_t i = 0; i < ExtendedGlobals.size(); i++) { |
| 2403 | GlobalVariable *G = ExtendedGlobals[i]; |
| 2404 | GlobalVariable *Metadata = |
| 2405 | CreateMetadataGlobal(Initializer: MetadataInitializers[i], OriginalName: G->getName()); |
| 2406 | MDNode *MD = MDNode::get(Context&: M.getContext(), MDs: ValueAsMetadata::get(V: G)); |
| 2407 | Metadata->setMetadata(KindID: LLVMContext::MD_associated, Node: MD); |
| 2408 | MetadataGlobals[i] = Metadata; |
| 2409 | |
| 2410 | if (UseComdatForGlobalsGC) |
| 2411 | SetComdatForGlobalMetadata(G, Metadata, InternalSuffix: UniqueModuleId); |
| 2412 | } |
| 2413 | |
| 2414 | // Update llvm.compiler.used, adding the new metadata globals. This is |
| 2415 | // needed so that during LTO these variables stay alive. |
| 2416 | if (!MetadataGlobals.empty()) |
| 2417 | appendToCompilerUsed(M, Values: MetadataGlobals); |
| 2418 | |
| 2419 | // RegisteredFlag serves two purposes. First, we can pass it to dladdr() |
| 2420 | // to look up the loaded image that contains it. Second, we can store in it |
| 2421 | // whether registration has already occurred, to prevent duplicate |
| 2422 | // registration. |
| 2423 | // |
| 2424 | // Common linkage ensures that there is only one global per shared library. |
| 2425 | GlobalVariable *RegisteredFlag = new GlobalVariable( |
| 2426 | M, IntptrTy, false, GlobalVariable::CommonLinkage, |
| 2427 | ConstantInt::get(Ty: IntptrTy, V: 0), kAsanGlobalsRegisteredFlagName); |
| 2428 | RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); |
| 2429 | |
| 2430 | // Create start and stop symbols. |
| 2431 | GlobalVariable *StartELFMetadata = new GlobalVariable( |
| 2432 | M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, |
| 2433 | "__start_" + getGlobalMetadataSection()); |
| 2434 | StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); |
| 2435 | GlobalVariable *StopELFMetadata = new GlobalVariable( |
| 2436 | M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, |
| 2437 | "__stop_" + getGlobalMetadataSection()); |
| 2438 | StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); |
| 2439 | |
| 2440 | // Create a call to register the globals with the runtime. |
| 2441 | if (ConstructorKind == AsanCtorKind::Global) |
| 2442 | IRB.CreateCall(Callee: AsanRegisterElfGlobals, |
| 2443 | Args: {IRB.CreatePointerCast(V: RegisteredFlag, DestTy: IntptrTy), |
| 2444 | IRB.CreatePointerCast(V: StartELFMetadata, DestTy: IntptrTy), |
| 2445 | IRB.CreatePointerCast(V: StopELFMetadata, DestTy: IntptrTy)}); |
| 2446 | |
| 2447 | // We also need to unregister globals at the end, e.g., when a shared library |
| 2448 | // gets closed. |
| 2449 | if (DestructorKind != AsanDtorKind::None && !MetadataGlobals.empty()) { |
| 2450 | IRBuilder<> IrbDtor(CreateAsanModuleDtor()); |
| 2451 | IrbDtor.CreateCall(Callee: AsanUnregisterElfGlobals, |
| 2452 | Args: {IRB.CreatePointerCast(V: RegisteredFlag, DestTy: IntptrTy), |
| 2453 | IRB.CreatePointerCast(V: StartELFMetadata, DestTy: IntptrTy), |
| 2454 | IRB.CreatePointerCast(V: StopELFMetadata, DestTy: IntptrTy)}); |
| 2455 | } |
| 2456 | } |
| 2457 | |
| 2458 | void ModuleAddressSanitizer::InstrumentGlobalsMachO( |
| 2459 | IRBuilder<> &IRB, ArrayRef<GlobalVariable *> ExtendedGlobals, |
| 2460 | ArrayRef<Constant *> MetadataInitializers) { |
| 2461 | assert(ExtendedGlobals.size() == MetadataInitializers.size()); |
| 2462 | |
| 2463 | // On recent Mach-O platforms, use a structure which binds the liveness of |
| 2464 | // the global variable to the metadata struct. Keep the list of "Liveness" GV |
| 2465 | // created to be added to llvm.compiler.used |
| 2466 | StructType *LivenessTy = StructType::get(elt1: IntptrTy, elts: IntptrTy); |
| 2467 | SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size()); |
| 2468 | |
| 2469 | for (size_t i = 0; i < ExtendedGlobals.size(); i++) { |
| 2470 | Constant *Initializer = MetadataInitializers[i]; |
| 2471 | GlobalVariable *G = ExtendedGlobals[i]; |
| 2472 | GlobalVariable *Metadata = CreateMetadataGlobal(Initializer, OriginalName: G->getName()); |
| 2473 | |
| 2474 | // On recent Mach-O platforms, we emit the global metadata in a way that |
| 2475 | // allows the linker to properly strip dead globals. |
| 2476 | auto LivenessBinder = |
| 2477 | ConstantStruct::get(T: LivenessTy, Vs: Initializer->getAggregateElement(Elt: 0u), |
| 2478 | Vs: ConstantExpr::getPointerCast(C: Metadata, Ty: IntptrTy)); |
| 2479 | GlobalVariable *Liveness = new GlobalVariable( |
| 2480 | M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder, |
| 2481 | Twine("__asan_binder_" ) + G->getName()); |
| 2482 | Liveness->setSection("__DATA,__asan_liveness,regular,live_support" ); |
| 2483 | LivenessGlobals[i] = Liveness; |
| 2484 | } |
| 2485 | |
| 2486 | // Update llvm.compiler.used, adding the new liveness globals. This is |
| 2487 | // needed so that during LTO these variables stay alive. The alternative |
| 2488 | // would be to have the linker handling the LTO symbols, but libLTO |
| 2489 | // current API does not expose access to the section for each symbol. |
| 2490 | if (!LivenessGlobals.empty()) |
| 2491 | appendToCompilerUsed(M, Values: LivenessGlobals); |
| 2492 | |
| 2493 | // RegisteredFlag serves two purposes. First, we can pass it to dladdr() |
| 2494 | // to look up the loaded image that contains it. Second, we can store in it |
| 2495 | // whether registration has already occurred, to prevent duplicate |
| 2496 | // registration. |
| 2497 | // |
| 2498 | // common linkage ensures that there is only one global per shared library. |
| 2499 | GlobalVariable *RegisteredFlag = new GlobalVariable( |
| 2500 | M, IntptrTy, false, GlobalVariable::CommonLinkage, |
| 2501 | ConstantInt::get(Ty: IntptrTy, V: 0), kAsanGlobalsRegisteredFlagName); |
| 2502 | RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); |
| 2503 | |
| 2504 | if (ConstructorKind == AsanCtorKind::Global) |
| 2505 | IRB.CreateCall(Callee: AsanRegisterImageGlobals, |
| 2506 | Args: {IRB.CreatePointerCast(V: RegisteredFlag, DestTy: IntptrTy)}); |
| 2507 | |
| 2508 | // We also need to unregister globals at the end, e.g., when a shared library |
| 2509 | // gets closed. |
| 2510 | if (DestructorKind != AsanDtorKind::None) { |
| 2511 | IRBuilder<> IrbDtor(CreateAsanModuleDtor()); |
| 2512 | IrbDtor.CreateCall(Callee: AsanUnregisterImageGlobals, |
| 2513 | Args: {IRB.CreatePointerCast(V: RegisteredFlag, DestTy: IntptrTy)}); |
| 2514 | } |
| 2515 | } |
| 2516 | |
| 2517 | void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray( |
| 2518 | IRBuilder<> &IRB, ArrayRef<GlobalVariable *> ExtendedGlobals, |
| 2519 | ArrayRef<Constant *> MetadataInitializers) { |
| 2520 | assert(ExtendedGlobals.size() == MetadataInitializers.size()); |
| 2521 | unsigned N = ExtendedGlobals.size(); |
| 2522 | assert(N > 0); |
| 2523 | |
| 2524 | // On platforms that don't have a custom metadata section, we emit an array |
| 2525 | // of global metadata structures. |
| 2526 | ArrayType *ArrayOfGlobalStructTy = |
| 2527 | ArrayType::get(ElementType: MetadataInitializers[0]->getType(), NumElements: N); |
| 2528 | auto AllGlobals = new GlobalVariable( |
| 2529 | M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, |
| 2530 | ConstantArray::get(T: ArrayOfGlobalStructTy, V: MetadataInitializers), "" ); |
| 2531 | if (Mapping.Scale > 3) |
| 2532 | AllGlobals->setAlignment(Align(1ULL << Mapping.Scale)); |
| 2533 | |
| 2534 | if (ConstructorKind == AsanCtorKind::Global) |
| 2535 | IRB.CreateCall(Callee: AsanRegisterGlobals, |
| 2536 | Args: {IRB.CreatePointerCast(V: AllGlobals, DestTy: IntptrTy), |
| 2537 | ConstantInt::get(Ty: IntptrTy, V: N)}); |
| 2538 | |
| 2539 | // We also need to unregister globals at the end, e.g., when a shared library |
| 2540 | // gets closed. |
| 2541 | if (DestructorKind != AsanDtorKind::None) { |
| 2542 | IRBuilder<> IrbDtor(CreateAsanModuleDtor()); |
| 2543 | IrbDtor.CreateCall(Callee: AsanUnregisterGlobals, |
| 2544 | Args: {IRB.CreatePointerCast(V: AllGlobals, DestTy: IntptrTy), |
| 2545 | ConstantInt::get(Ty: IntptrTy, V: N)}); |
| 2546 | } |
| 2547 | } |
| 2548 | |
| 2549 | // This function replaces all global variables with new variables that have |
| 2550 | // trailing redzones. It also creates a function that poisons |
| 2551 | // redzones and inserts this function into llvm.global_ctors. |
| 2552 | // Sets *CtorComdat to true if the global registration code emitted into the |
| 2553 | // asan constructor is comdat-compatible. |
| 2554 | void ModuleAddressSanitizer::instrumentGlobals(IRBuilder<> &IRB, |
| 2555 | bool *CtorComdat) { |
| 2556 | // Build set of globals that are aliased by some GA, where |
| 2557 | // getExcludedAliasedGlobal(GA) returns the relevant GlobalVariable. |
| 2558 | SmallPtrSet<const GlobalVariable *, 16> AliasedGlobalExclusions; |
| 2559 | if (CompileKernel) { |
| 2560 | for (auto &GA : M.aliases()) { |
| 2561 | if (const GlobalVariable *GV = getExcludedAliasedGlobal(GA)) |
| 2562 | AliasedGlobalExclusions.insert(Ptr: GV); |
| 2563 | } |
| 2564 | } |
| 2565 | |
| 2566 | SmallVector<GlobalVariable *, 16> GlobalsToChange; |
| 2567 | for (auto &G : M.globals()) { |
| 2568 | if (!AliasedGlobalExclusions.count(Ptr: &G) && shouldInstrumentGlobal(G: &G)) |
| 2569 | GlobalsToChange.push_back(Elt: &G); |
| 2570 | } |
| 2571 | |
| 2572 | size_t n = GlobalsToChange.size(); |
| 2573 | auto &DL = M.getDataLayout(); |
| 2574 | |
| 2575 | // A global is described by a structure |
| 2576 | // size_t beg; |
| 2577 | // size_t size; |
| 2578 | // size_t size_with_redzone; |
| 2579 | // const char *name; |
| 2580 | // const char *module_name; |
| 2581 | // size_t has_dynamic_init; |
| 2582 | // size_t padding_for_windows_msvc_incremental_link; |
| 2583 | // size_t odr_indicator; |
| 2584 | // We initialize an array of such structures and pass it to a run-time call. |
| 2585 | StructType *GlobalStructTy = |
| 2586 | StructType::get(elt1: IntptrTy, elts: IntptrTy, elts: IntptrTy, elts: IntptrTy, elts: IntptrTy, |
| 2587 | elts: IntptrTy, elts: IntptrTy, elts: IntptrTy); |
| 2588 | SmallVector<GlobalVariable *, 16> NewGlobals(n); |
| 2589 | SmallVector<Constant *, 16> Initializers(n); |
| 2590 | |
| 2591 | for (size_t i = 0; i < n; i++) { |
| 2592 | GlobalVariable *G = GlobalsToChange[i]; |
| 2593 | |
| 2594 | GlobalValue::SanitizerMetadata MD; |
| 2595 | if (G->hasSanitizerMetadata()) |
| 2596 | MD = G->getSanitizerMetadata(); |
| 2597 | |
| 2598 | // The runtime library tries demangling symbol names in the descriptor but |
| 2599 | // functionality like __cxa_demangle may be unavailable (e.g. |
| 2600 | // -static-libstdc++). So we demangle the symbol names here. |
| 2601 | std::string NameForGlobal = G->getName().str(); |
| 2602 | GlobalVariable *Name = |
| 2603 | createPrivateGlobalForString(M, Str: llvm::demangle(MangledName: NameForGlobal), |
| 2604 | /*AllowMerging*/ true, NamePrefix: genName(suffix: "global" )); |
| 2605 | |
| 2606 | Type *Ty = G->getValueType(); |
| 2607 | const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty); |
| 2608 | const uint64_t RightRedzoneSize = getRedzoneSizeForGlobal(SizeInBytes); |
| 2609 | Type *RightRedZoneTy = ArrayType::get(ElementType: IRB.getInt8Ty(), NumElements: RightRedzoneSize); |
| 2610 | |
| 2611 | StructType *NewTy = StructType::get(elt1: Ty, elts: RightRedZoneTy); |
| 2612 | Constant *NewInitializer = ConstantStruct::get( |
| 2613 | T: NewTy, Vs: G->getInitializer(), Vs: Constant::getNullValue(Ty: RightRedZoneTy)); |
| 2614 | |
| 2615 | // Create a new global variable with enough space for a redzone. |
| 2616 | GlobalValue::LinkageTypes Linkage = G->getLinkage(); |
| 2617 | if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) |
| 2618 | Linkage = GlobalValue::InternalLinkage; |
| 2619 | GlobalVariable *NewGlobal = new GlobalVariable( |
| 2620 | M, NewTy, G->isConstant(), Linkage, NewInitializer, "" , G, |
| 2621 | G->getThreadLocalMode(), G->getAddressSpace()); |
| 2622 | NewGlobal->copyAttributesFrom(Src: G); |
| 2623 | NewGlobal->setComdat(G->getComdat()); |
| 2624 | NewGlobal->setAlignment(Align(getMinRedzoneSizeForGlobal())); |
| 2625 | // Don't fold globals with redzones. ODR violation detector and redzone |
| 2626 | // poisoning implicitly creates a dependence on the global's address, so it |
| 2627 | // is no longer valid for it to be marked unnamed_addr. |
| 2628 | NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None); |
| 2629 | |
| 2630 | // Move null-terminated C strings to "__asan_cstring" section on Darwin. |
| 2631 | if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() && |
| 2632 | G->isConstant()) { |
| 2633 | auto Seq = dyn_cast<ConstantDataSequential>(Val: G->getInitializer()); |
| 2634 | if (Seq && Seq->isCString()) |
| 2635 | NewGlobal->setSection("__TEXT,__asan_cstring,regular" ); |
| 2636 | } |
| 2637 | |
| 2638 | // Transfer the debug info and type metadata. The payload starts at offset |
| 2639 | // zero so we can copy the metadata over as is. |
| 2640 | NewGlobal->copyMetadata(Src: G, Offset: 0); |
| 2641 | |
| 2642 | Value *Indices2[2]; |
| 2643 | Indices2[0] = IRB.getInt32(C: 0); |
| 2644 | Indices2[1] = IRB.getInt32(C: 0); |
| 2645 | |
| 2646 | G->replaceAllUsesWith( |
| 2647 | V: ConstantExpr::getGetElementPtr(Ty: NewTy, C: NewGlobal, IdxList: Indices2, NW: true)); |
| 2648 | NewGlobal->takeName(V: G); |
| 2649 | G->eraseFromParent(); |
| 2650 | NewGlobals[i] = NewGlobal; |
| 2651 | |
| 2652 | Constant *ODRIndicator = ConstantPointerNull::get(T: PtrTy); |
| 2653 | GlobalValue *InstrumentedGlobal = NewGlobal; |
| 2654 | |
| 2655 | bool CanUsePrivateAliases = |
| 2656 | TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() || |
| 2657 | TargetTriple.isOSBinFormatWasm(); |
| 2658 | if (CanUsePrivateAliases && UsePrivateAlias) { |
| 2659 | // Create local alias for NewGlobal to avoid crash on ODR between |
| 2660 | // instrumented and non-instrumented libraries. |
| 2661 | InstrumentedGlobal = |
| 2662 | GlobalAlias::create(Linkage: GlobalValue::PrivateLinkage, Name: "" , Aliasee: NewGlobal); |
| 2663 | } |
| 2664 | |
| 2665 | // ODR should not happen for local linkage. |
| 2666 | if (NewGlobal->hasLocalLinkage()) { |
| 2667 | ODRIndicator = |
| 2668 | ConstantExpr::getIntToPtr(C: ConstantInt::get(Ty: IntptrTy, V: -1), Ty: PtrTy); |
| 2669 | } else if (UseOdrIndicator) { |
| 2670 | // With local aliases, we need to provide another externally visible |
| 2671 | // symbol __odr_asan_XXX to detect ODR violation. |
| 2672 | auto *ODRIndicatorSym = |
| 2673 | new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage, |
| 2674 | Constant::getNullValue(Ty: IRB.getInt8Ty()), |
| 2675 | kODRGenPrefix + NameForGlobal, nullptr, |
| 2676 | NewGlobal->getThreadLocalMode()); |
| 2677 | |
| 2678 | // Set meaningful attributes for indicator symbol. |
| 2679 | ODRIndicatorSym->setVisibility(NewGlobal->getVisibility()); |
| 2680 | ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass()); |
| 2681 | ODRIndicatorSym->setAlignment(Align(1)); |
| 2682 | ODRIndicator = ODRIndicatorSym; |
| 2683 | } |
| 2684 | |
| 2685 | Constant *Initializer = ConstantStruct::get( |
| 2686 | T: GlobalStructTy, |
| 2687 | Vs: ConstantExpr::getPointerCast(C: InstrumentedGlobal, Ty: IntptrTy), |
| 2688 | Vs: ConstantInt::get(Ty: IntptrTy, V: SizeInBytes), |
| 2689 | Vs: ConstantInt::get(Ty: IntptrTy, V: SizeInBytes + RightRedzoneSize), |
| 2690 | Vs: ConstantExpr::getPointerCast(C: Name, Ty: IntptrTy), |
| 2691 | Vs: ConstantExpr::getPointerCast(C: getOrCreateModuleName(), Ty: IntptrTy), |
| 2692 | Vs: ConstantInt::get(Ty: IntptrTy, V: MD.IsDynInit), |
| 2693 | Vs: Constant::getNullValue(Ty: IntptrTy), |
| 2694 | Vs: ConstantExpr::getPointerCast(C: ODRIndicator, Ty: IntptrTy)); |
| 2695 | |
| 2696 | LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n" ); |
| 2697 | |
| 2698 | Initializers[i] = Initializer; |
| 2699 | } |
| 2700 | |
| 2701 | // Add instrumented globals to llvm.compiler.used list to avoid LTO from |
| 2702 | // ConstantMerge'ing them. |
| 2703 | SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList; |
| 2704 | for (size_t i = 0; i < n; i++) { |
| 2705 | GlobalVariable *G = NewGlobals[i]; |
| 2706 | if (G->getName().empty()) continue; |
| 2707 | GlobalsToAddToUsedList.push_back(Elt: G); |
| 2708 | } |
| 2709 | appendToCompilerUsed(M, Values: ArrayRef<GlobalValue *>(GlobalsToAddToUsedList)); |
| 2710 | |
| 2711 | if (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) { |
| 2712 | // Use COMDAT and register globals even if n == 0 to ensure that (a) the |
| 2713 | // linkage unit will only have one module constructor, and (b) the register |
| 2714 | // function will be called. The module destructor is not created when n == |
| 2715 | // 0. |
| 2716 | *CtorComdat = true; |
| 2717 | instrumentGlobalsELF(IRB, ExtendedGlobals: NewGlobals, MetadataInitializers: Initializers, UniqueModuleId: getUniqueModuleId(M: &M)); |
| 2718 | } else if (n == 0) { |
| 2719 | // When UseGlobalsGC is false, COMDAT can still be used if n == 0, because |
| 2720 | // all compile units will have identical module constructor/destructor. |
| 2721 | *CtorComdat = TargetTriple.isOSBinFormatELF(); |
| 2722 | } else { |
| 2723 | *CtorComdat = false; |
| 2724 | if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) { |
| 2725 | InstrumentGlobalsCOFF(IRB, ExtendedGlobals: NewGlobals, MetadataInitializers: Initializers); |
| 2726 | } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) { |
| 2727 | InstrumentGlobalsMachO(IRB, ExtendedGlobals: NewGlobals, MetadataInitializers: Initializers); |
| 2728 | } else { |
| 2729 | InstrumentGlobalsWithMetadataArray(IRB, ExtendedGlobals: NewGlobals, MetadataInitializers: Initializers); |
| 2730 | } |
| 2731 | } |
| 2732 | |
| 2733 | // Create calls for poisoning before initializers run and unpoisoning after. |
| 2734 | if (ClInitializers) |
| 2735 | createInitializerPoisonCalls(); |
| 2736 | |
| 2737 | LLVM_DEBUG(dbgs() << M); |
| 2738 | } |
| 2739 | |
| 2740 | uint64_t |
| 2741 | ModuleAddressSanitizer::getRedzoneSizeForGlobal(uint64_t SizeInBytes) const { |
| 2742 | constexpr uint64_t kMaxRZ = 1 << 18; |
| 2743 | const uint64_t MinRZ = getMinRedzoneSizeForGlobal(); |
| 2744 | |
| 2745 | uint64_t RZ = 0; |
| 2746 | if (SizeInBytes <= MinRZ / 2) { |
| 2747 | // Reduce redzone size for small size objects, e.g. int, char[1]. MinRZ is |
| 2748 | // at least 32 bytes, optimize when SizeInBytes is less than or equal to |
| 2749 | // half of MinRZ. |
| 2750 | RZ = MinRZ - SizeInBytes; |
| 2751 | } else { |
| 2752 | // Calculate RZ, where MinRZ <= RZ <= MaxRZ, and RZ ~ 1/4 * SizeInBytes. |
| 2753 | RZ = std::clamp(val: (SizeInBytes / MinRZ / 4) * MinRZ, lo: MinRZ, hi: kMaxRZ); |
| 2754 | |
| 2755 | // Round up to multiple of MinRZ. |
| 2756 | if (SizeInBytes % MinRZ) |
| 2757 | RZ += MinRZ - (SizeInBytes % MinRZ); |
| 2758 | } |
| 2759 | |
| 2760 | assert((RZ + SizeInBytes) % MinRZ == 0); |
| 2761 | |
| 2762 | return RZ; |
| 2763 | } |
| 2764 | |
| 2765 | int ModuleAddressSanitizer::GetAsanVersion() const { |
| 2766 | int LongSize = M.getDataLayout().getPointerSizeInBits(); |
| 2767 | bool isAndroid = M.getTargetTriple().isAndroid(); |
| 2768 | int Version = 8; |
| 2769 | // 32-bit Android is one version ahead because of the switch to dynamic |
| 2770 | // shadow. |
| 2771 | Version += (LongSize == 32 && isAndroid); |
| 2772 | return Version; |
| 2773 | } |
| 2774 | |
| 2775 | GlobalVariable *ModuleAddressSanitizer::getOrCreateModuleName() { |
| 2776 | if (!ModuleName) { |
| 2777 | // We shouldn't merge same module names, as this string serves as unique |
| 2778 | // module ID in runtime. |
| 2779 | ModuleName = |
| 2780 | createPrivateGlobalForString(M, Str: M.getModuleIdentifier(), |
| 2781 | /*AllowMerging*/ false, NamePrefix: genName(suffix: "module" )); |
| 2782 | } |
| 2783 | return ModuleName; |
| 2784 | } |
| 2785 | |
| 2786 | bool ModuleAddressSanitizer::instrumentModule() { |
| 2787 | initializeCallbacks(); |
| 2788 | |
| 2789 | for (Function &F : M) |
| 2790 | removeASanIncompatibleFnAttributes(F, /*ReadsArgMem=*/false); |
| 2791 | |
| 2792 | // Create a module constructor. A destructor is created lazily because not all |
| 2793 | // platforms, and not all modules need it. |
| 2794 | if (ConstructorKind == AsanCtorKind::Global) { |
| 2795 | if (CompileKernel) { |
| 2796 | // The kernel always builds with its own runtime, and therefore does not |
| 2797 | // need the init and version check calls. |
| 2798 | AsanCtorFunction = createSanitizerCtor(M, CtorName: kAsanModuleCtorName); |
| 2799 | } else { |
| 2800 | std::string AsanVersion = std::to_string(val: GetAsanVersion()); |
| 2801 | std::string VersionCheckName = |
| 2802 | InsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : "" ; |
| 2803 | std::tie(args&: AsanCtorFunction, args: std::ignore) = |
| 2804 | createSanitizerCtorAndInitFunctions( |
| 2805 | M, CtorName: kAsanModuleCtorName, InitName: kAsanInitName, /*InitArgTypes=*/{}, |
| 2806 | /*InitArgs=*/{}, VersionCheckName); |
| 2807 | } |
| 2808 | } |
| 2809 | |
| 2810 | bool CtorComdat = true; |
| 2811 | if (ClGlobals) { |
| 2812 | assert(AsanCtorFunction || ConstructorKind == AsanCtorKind::None); |
| 2813 | if (AsanCtorFunction) { |
| 2814 | IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator()); |
| 2815 | instrumentGlobals(IRB, CtorComdat: &CtorComdat); |
| 2816 | } else { |
| 2817 | IRBuilder<> IRB(*C); |
| 2818 | instrumentGlobals(IRB, CtorComdat: &CtorComdat); |
| 2819 | } |
| 2820 | } |
| 2821 | |
| 2822 | const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple); |
| 2823 | |
| 2824 | // Put the constructor and destructor in comdat if both |
| 2825 | // (1) global instrumentation is not TU-specific |
| 2826 | // (2) target is ELF. |
| 2827 | if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) { |
| 2828 | if (AsanCtorFunction) { |
| 2829 | AsanCtorFunction->setComdat(M.getOrInsertComdat(Name: kAsanModuleCtorName)); |
| 2830 | appendToGlobalCtors(M, F: AsanCtorFunction, Priority, Data: AsanCtorFunction); |
| 2831 | } |
| 2832 | if (AsanDtorFunction) { |
| 2833 | AsanDtorFunction->setComdat(M.getOrInsertComdat(Name: kAsanModuleDtorName)); |
| 2834 | appendToGlobalDtors(M, F: AsanDtorFunction, Priority, Data: AsanDtorFunction); |
| 2835 | } |
| 2836 | } else { |
| 2837 | if (AsanCtorFunction) |
| 2838 | appendToGlobalCtors(M, F: AsanCtorFunction, Priority); |
| 2839 | if (AsanDtorFunction) |
| 2840 | appendToGlobalDtors(M, F: AsanDtorFunction, Priority); |
| 2841 | } |
| 2842 | |
| 2843 | return true; |
| 2844 | } |
| 2845 | |
| 2846 | void AddressSanitizer::initializeCallbacks(const TargetLibraryInfo *TLI) { |
| 2847 | IRBuilder<> IRB(*C); |
| 2848 | // Create __asan_report* callbacks. |
| 2849 | // IsWrite, TypeSize and Exp are encoded in the function name. |
| 2850 | for (int Exp = 0; Exp < 2; Exp++) { |
| 2851 | for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { |
| 2852 | const std::string TypeStr = AccessIsWrite ? "store" : "load" ; |
| 2853 | const std::string ExpStr = Exp ? "exp_" : "" ; |
| 2854 | const std::string EndingStr = Recover ? "_noabort" : "" ; |
| 2855 | |
| 2856 | SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy}; |
| 2857 | SmallVector<Type *, 2> Args1{1, IntptrTy}; |
| 2858 | AttributeList AL2; |
| 2859 | AttributeList AL1; |
| 2860 | if (Exp) { |
| 2861 | Type *ExpType = Type::getInt32Ty(C&: *C); |
| 2862 | Args2.push_back(Elt: ExpType); |
| 2863 | Args1.push_back(Elt: ExpType); |
| 2864 | if (auto AK = TLI->getExtAttrForI32Param(Signed: false)) { |
| 2865 | AL2 = AL2.addParamAttribute(C&: *C, ArgNo: 2, Kind: AK); |
| 2866 | AL1 = AL1.addParamAttribute(C&: *C, ArgNo: 1, Kind: AK); |
| 2867 | } |
| 2868 | } |
| 2869 | AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( |
| 2870 | Name: kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr, |
| 2871 | T: FunctionType::get(Result: IRB.getVoidTy(), Params: Args2, isVarArg: false), AttributeList: AL2); |
| 2872 | |
| 2873 | AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( |
| 2874 | Name: ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr, |
| 2875 | T: FunctionType::get(Result: IRB.getVoidTy(), Params: Args2, isVarArg: false), AttributeList: AL2); |
| 2876 | |
| 2877 | for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; |
| 2878 | AccessSizeIndex++) { |
| 2879 | const std::string Suffix = TypeStr + itostr(X: 1ULL << AccessSizeIndex); |
| 2880 | AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] = |
| 2881 | M.getOrInsertFunction( |
| 2882 | Name: kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr, |
| 2883 | T: FunctionType::get(Result: IRB.getVoidTy(), Params: Args1, isVarArg: false), AttributeList: AL1); |
| 2884 | |
| 2885 | AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] = |
| 2886 | M.getOrInsertFunction( |
| 2887 | Name: ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr, |
| 2888 | T: FunctionType::get(Result: IRB.getVoidTy(), Params: Args1, isVarArg: false), AttributeList: AL1); |
| 2889 | } |
| 2890 | } |
| 2891 | } |
| 2892 | |
| 2893 | const std::string MemIntrinCallbackPrefix = |
| 2894 | (CompileKernel && !ClKasanMemIntrinCallbackPrefix) |
| 2895 | ? std::string("" ) |
| 2896 | : ClMemoryAccessCallbackPrefix; |
| 2897 | AsanMemmove = M.getOrInsertFunction(Name: MemIntrinCallbackPrefix + "memmove" , |
| 2898 | RetTy: PtrTy, Args: PtrTy, Args: PtrTy, Args: IntptrTy); |
| 2899 | AsanMemcpy = M.getOrInsertFunction(Name: MemIntrinCallbackPrefix + "memcpy" , RetTy: PtrTy, |
| 2900 | Args: PtrTy, Args: PtrTy, Args: IntptrTy); |
| 2901 | AsanMemset = M.getOrInsertFunction(Name: MemIntrinCallbackPrefix + "memset" , |
| 2902 | AttributeList: TLI->getAttrList(C, ArgNos: {1}, /*Signed=*/false), |
| 2903 | RetTy: PtrTy, Args: PtrTy, Args: IRB.getInt32Ty(), Args: IntptrTy); |
| 2904 | |
| 2905 | AsanHandleNoReturnFunc = |
| 2906 | M.getOrInsertFunction(Name: kAsanHandleNoReturnName, RetTy: IRB.getVoidTy()); |
| 2907 | |
| 2908 | AsanPtrCmpFunction = |
| 2909 | M.getOrInsertFunction(Name: kAsanPtrCmp, RetTy: IRB.getVoidTy(), Args: IntptrTy, Args: IntptrTy); |
| 2910 | AsanPtrSubFunction = |
| 2911 | M.getOrInsertFunction(Name: kAsanPtrSub, RetTy: IRB.getVoidTy(), Args: IntptrTy, Args: IntptrTy); |
| 2912 | if (Mapping.InGlobal) |
| 2913 | AsanShadowGlobal = M.getOrInsertGlobal(Name: "__asan_shadow" , |
| 2914 | Ty: ArrayType::get(ElementType: IRB.getInt8Ty(), NumElements: 0)); |
| 2915 | |
| 2916 | AMDGPUAddressShared = |
| 2917 | M.getOrInsertFunction(Name: kAMDGPUAddressSharedName, RetTy: IRB.getInt1Ty(), Args: PtrTy); |
| 2918 | AMDGPUAddressPrivate = |
| 2919 | M.getOrInsertFunction(Name: kAMDGPUAddressPrivateName, RetTy: IRB.getInt1Ty(), Args: PtrTy); |
| 2920 | } |
| 2921 | |
| 2922 | bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { |
| 2923 | // For each NSObject descendant having a +load method, this method is invoked |
| 2924 | // by the ObjC runtime before any of the static constructors is called. |
| 2925 | // Therefore we need to instrument such methods with a call to __asan_init |
| 2926 | // at the beginning in order to initialize our runtime before any access to |
| 2927 | // the shadow memory. |
| 2928 | // We cannot just ignore these methods, because they may call other |
| 2929 | // instrumented functions. |
| 2930 | if (F.getName().contains(Other: " load]" )) { |
| 2931 | FunctionCallee AsanInitFunction = |
| 2932 | declareSanitizerInitFunction(M&: *F.getParent(), InitName: kAsanInitName, InitArgTypes: {}); |
| 2933 | IRBuilder<> IRB(&F.front(), F.front().begin()); |
| 2934 | IRB.CreateCall(Callee: AsanInitFunction, Args: {}); |
| 2935 | return true; |
| 2936 | } |
| 2937 | return false; |
| 2938 | } |
| 2939 | |
| 2940 | bool AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) { |
| 2941 | // Generate code only when dynamic addressing is needed. |
| 2942 | if (Mapping.Offset != kDynamicShadowSentinel) |
| 2943 | return false; |
| 2944 | |
| 2945 | IRBuilder<> IRB(&F.front().front()); |
| 2946 | if (Mapping.InGlobal) { |
| 2947 | if (ClWithIfuncSuppressRemat) { |
| 2948 | // An empty inline asm with input reg == output reg. |
| 2949 | // An opaque pointer-to-int cast, basically. |
| 2950 | InlineAsm *Asm = InlineAsm::get( |
| 2951 | Ty: FunctionType::get(Result: IntptrTy, Params: {AsanShadowGlobal->getType()}, isVarArg: false), |
| 2952 | AsmString: StringRef("" ), Constraints: StringRef("=r,0" ), |
| 2953 | /*hasSideEffects=*/false); |
| 2954 | LocalDynamicShadow = |
| 2955 | IRB.CreateCall(Callee: Asm, Args: {AsanShadowGlobal}, Name: ".asan.shadow" ); |
| 2956 | } else { |
| 2957 | LocalDynamicShadow = |
| 2958 | IRB.CreatePointerCast(V: AsanShadowGlobal, DestTy: IntptrTy, Name: ".asan.shadow" ); |
| 2959 | } |
| 2960 | } else { |
| 2961 | Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal( |
| 2962 | Name: kAsanShadowMemoryDynamicAddress, Ty: IntptrTy); |
| 2963 | LocalDynamicShadow = IRB.CreateLoad(Ty: IntptrTy, Ptr: GlobalDynamicAddress); |
| 2964 | } |
| 2965 | return true; |
| 2966 | } |
| 2967 | |
| 2968 | void AddressSanitizer::markEscapedLocalAllocas(Function &F) { |
| 2969 | // Find the one possible call to llvm.localescape and pre-mark allocas passed |
| 2970 | // to it as uninteresting. This assumes we haven't started processing allocas |
| 2971 | // yet. This check is done up front because iterating the use list in |
| 2972 | // isInterestingAlloca would be algorithmically slower. |
| 2973 | assert(ProcessedAllocas.empty() && "must process localescape before allocas" ); |
| 2974 | |
| 2975 | // Try to get the declaration of llvm.localescape. If it's not in the module, |
| 2976 | // we can exit early. |
| 2977 | if (!F.getParent()->getFunction(Name: "llvm.localescape" )) return; |
| 2978 | |
| 2979 | // Look for a call to llvm.localescape call in the entry block. It can't be in |
| 2980 | // any other block. |
| 2981 | for (Instruction &I : F.getEntryBlock()) { |
| 2982 | IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: &I); |
| 2983 | if (II && II->getIntrinsicID() == Intrinsic::localescape) { |
| 2984 | // We found a call. Mark all the allocas passed in as uninteresting. |
| 2985 | for (Value *Arg : II->args()) { |
| 2986 | AllocaInst *AI = dyn_cast<AllocaInst>(Val: Arg->stripPointerCasts()); |
| 2987 | assert(AI && AI->isStaticAlloca() && |
| 2988 | "non-static alloca arg to localescape" ); |
| 2989 | ProcessedAllocas[AI] = false; |
| 2990 | } |
| 2991 | break; |
| 2992 | } |
| 2993 | } |
| 2994 | } |
| 2995 | |
| 2996 | bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented) { |
| 2997 | bool ShouldInstrument = |
| 2998 | ClDebugMin < 0 || ClDebugMax < 0 || |
| 2999 | (Instrumented >= ClDebugMin && Instrumented <= ClDebugMax); |
| 3000 | Instrumented++; |
| 3001 | return !ShouldInstrument; |
| 3002 | } |
| 3003 | |
| 3004 | bool AddressSanitizer::instrumentFunction(Function &F, |
| 3005 | const TargetLibraryInfo *TLI) { |
| 3006 | bool FunctionModified = false; |
| 3007 | |
| 3008 | // Do not apply any instrumentation for naked functions. |
| 3009 | if (F.hasFnAttribute(Kind: Attribute::Naked)) |
| 3010 | return FunctionModified; |
| 3011 | |
| 3012 | // If needed, insert __asan_init before checking for SanitizeAddress attr. |
| 3013 | // This function needs to be called even if the function body is not |
| 3014 | // instrumented. |
| 3015 | if (maybeInsertAsanInitAtFunctionEntry(F)) |
| 3016 | FunctionModified = true; |
| 3017 | |
| 3018 | // Leave if the function doesn't need instrumentation. |
| 3019 | if (!F.hasFnAttribute(Kind: Attribute::SanitizeAddress)) return FunctionModified; |
| 3020 | |
| 3021 | if (F.hasFnAttribute(Kind: Attribute::DisableSanitizerInstrumentation)) |
| 3022 | return FunctionModified; |
| 3023 | |
| 3024 | LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n" ); |
| 3025 | |
| 3026 | initializeCallbacks(TLI); |
| 3027 | |
| 3028 | FunctionStateRAII CleanupObj(this); |
| 3029 | |
| 3030 | RuntimeCallInserter RTCI(F); |
| 3031 | |
| 3032 | FunctionModified |= maybeInsertDynamicShadowAtFunctionEntry(F); |
| 3033 | |
| 3034 | // We can't instrument allocas used with llvm.localescape. Only static allocas |
| 3035 | // can be passed to that intrinsic. |
| 3036 | markEscapedLocalAllocas(F); |
| 3037 | |
| 3038 | // We want to instrument every address only once per basic block (unless there |
| 3039 | // are calls between uses). |
| 3040 | SmallPtrSet<Value *, 16> TempsToInstrument; |
| 3041 | SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument; |
| 3042 | SmallVector<MemIntrinsic *, 16> IntrinToInstrument; |
| 3043 | SmallVector<Instruction *, 8> NoReturnCalls; |
| 3044 | SmallVector<BasicBlock *, 16> AllBlocks; |
| 3045 | SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts; |
| 3046 | |
| 3047 | // Fill the set of memory operations to instrument. |
| 3048 | for (auto &BB : F) { |
| 3049 | AllBlocks.push_back(Elt: &BB); |
| 3050 | TempsToInstrument.clear(); |
| 3051 | int NumInsnsPerBB = 0; |
| 3052 | for (auto &Inst : BB) { |
| 3053 | if (LooksLikeCodeInBug11395(I: &Inst)) return false; |
| 3054 | // Skip instructions inserted by another instrumentation. |
| 3055 | if (Inst.hasMetadata(KindID: LLVMContext::MD_nosanitize)) |
| 3056 | continue; |
| 3057 | SmallVector<InterestingMemoryOperand, 1> InterestingOperands; |
| 3058 | getInterestingMemoryOperands(I: &Inst, Interesting&: InterestingOperands); |
| 3059 | |
| 3060 | if (!InterestingOperands.empty()) { |
| 3061 | for (auto &Operand : InterestingOperands) { |
| 3062 | if (ClOpt && ClOptSameTemp) { |
| 3063 | Value *Ptr = Operand.getPtr(); |
| 3064 | // If we have a mask, skip instrumentation if we've already |
| 3065 | // instrumented the full object. But don't add to TempsToInstrument |
| 3066 | // because we might get another load/store with a different mask. |
| 3067 | if (Operand.MaybeMask) { |
| 3068 | if (TempsToInstrument.count(Ptr)) |
| 3069 | continue; // We've seen this (whole) temp in the current BB. |
| 3070 | } else { |
| 3071 | if (!TempsToInstrument.insert(Ptr).second) |
| 3072 | continue; // We've seen this temp in the current BB. |
| 3073 | } |
| 3074 | } |
| 3075 | OperandsToInstrument.push_back(Elt: Operand); |
| 3076 | NumInsnsPerBB++; |
| 3077 | } |
| 3078 | } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) && |
| 3079 | isInterestingPointerComparison(I: &Inst)) || |
| 3080 | ((ClInvalidPointerPairs || ClInvalidPointerSub) && |
| 3081 | isInterestingPointerSubtraction(I: &Inst))) { |
| 3082 | PointerComparisonsOrSubtracts.push_back(Elt: &Inst); |
| 3083 | } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(Val: &Inst)) { |
| 3084 | // ok, take it. |
| 3085 | IntrinToInstrument.push_back(Elt: MI); |
| 3086 | NumInsnsPerBB++; |
| 3087 | } else { |
| 3088 | if (auto *CB = dyn_cast<CallBase>(Val: &Inst)) { |
| 3089 | // A call inside BB. |
| 3090 | TempsToInstrument.clear(); |
| 3091 | if (CB->doesNotReturn()) |
| 3092 | NoReturnCalls.push_back(Elt: CB); |
| 3093 | } |
| 3094 | if (CallInst *CI = dyn_cast<CallInst>(Val: &Inst)) |
| 3095 | maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); |
| 3096 | } |
| 3097 | if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break; |
| 3098 | } |
| 3099 | } |
| 3100 | |
| 3101 | bool UseCalls = (InstrumentationWithCallsThreshold >= 0 && |
| 3102 | OperandsToInstrument.size() + IntrinToInstrument.size() > |
| 3103 | (unsigned)InstrumentationWithCallsThreshold); |
| 3104 | const DataLayout &DL = F.getDataLayout(); |
| 3105 | ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext()); |
| 3106 | |
| 3107 | // Instrument. |
| 3108 | int NumInstrumented = 0; |
| 3109 | for (auto &Operand : OperandsToInstrument) { |
| 3110 | if (!suppressInstrumentationSiteForDebug(Instrumented&: NumInstrumented)) |
| 3111 | instrumentMop(ObjSizeVis, O&: Operand, UseCalls, |
| 3112 | DL: F.getDataLayout(), RTCI); |
| 3113 | FunctionModified = true; |
| 3114 | } |
| 3115 | for (auto *Inst : IntrinToInstrument) { |
| 3116 | if (!suppressInstrumentationSiteForDebug(Instrumented&: NumInstrumented)) |
| 3117 | instrumentMemIntrinsic(MI: Inst, RTCI); |
| 3118 | FunctionModified = true; |
| 3119 | } |
| 3120 | |
| 3121 | FunctionStackPoisoner FSP(F, *this, RTCI); |
| 3122 | bool ChangedStack = FSP.runOnFunction(); |
| 3123 | |
| 3124 | // We must unpoison the stack before NoReturn calls (throw, _exit, etc). |
| 3125 | // See e.g. https://github.com/google/sanitizers/issues/37 |
| 3126 | for (auto *CI : NoReturnCalls) { |
| 3127 | IRBuilder<> IRB(CI); |
| 3128 | RTCI.createRuntimeCall(IRB, Callee: AsanHandleNoReturnFunc, Args: {}); |
| 3129 | } |
| 3130 | |
| 3131 | for (auto *Inst : PointerComparisonsOrSubtracts) { |
| 3132 | instrumentPointerComparisonOrSubtraction(I: Inst, RTCI); |
| 3133 | FunctionModified = true; |
| 3134 | } |
| 3135 | |
| 3136 | if (ChangedStack || !NoReturnCalls.empty()) |
| 3137 | FunctionModified = true; |
| 3138 | |
| 3139 | LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " " |
| 3140 | << F << "\n" ); |
| 3141 | |
| 3142 | return FunctionModified; |
| 3143 | } |
| 3144 | |
| 3145 | // Workaround for bug 11395: we don't want to instrument stack in functions |
| 3146 | // with large assembly blobs (32-bit only), otherwise reg alloc may crash. |
| 3147 | // FIXME: remove once the bug 11395 is fixed. |
| 3148 | bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { |
| 3149 | if (LongSize != 32) return false; |
| 3150 | CallInst *CI = dyn_cast<CallInst>(Val: I); |
| 3151 | if (!CI || !CI->isInlineAsm()) return false; |
| 3152 | if (CI->arg_size() <= 5) |
| 3153 | return false; |
| 3154 | // We have inline assembly with quite a few arguments. |
| 3155 | return true; |
| 3156 | } |
| 3157 | |
| 3158 | void FunctionStackPoisoner::initializeCallbacks(Module &M) { |
| 3159 | IRBuilder<> IRB(*C); |
| 3160 | if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always || |
| 3161 | ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) { |
| 3162 | const char *MallocNameTemplate = |
| 3163 | ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always |
| 3164 | ? kAsanStackMallocAlwaysNameTemplate |
| 3165 | : kAsanStackMallocNameTemplate; |
| 3166 | for (int Index = 0; Index <= kMaxAsanStackMallocSizeClass; Index++) { |
| 3167 | std::string Suffix = itostr(X: Index); |
| 3168 | AsanStackMallocFunc[Index] = M.getOrInsertFunction( |
| 3169 | Name: MallocNameTemplate + Suffix, RetTy: IntptrTy, Args: IntptrTy); |
| 3170 | AsanStackFreeFunc[Index] = |
| 3171 | M.getOrInsertFunction(Name: kAsanStackFreeNameTemplate + Suffix, |
| 3172 | RetTy: IRB.getVoidTy(), Args: IntptrTy, Args: IntptrTy); |
| 3173 | } |
| 3174 | } |
| 3175 | if (ASan.UseAfterScope) { |
| 3176 | AsanPoisonStackMemoryFunc = M.getOrInsertFunction( |
| 3177 | Name: kAsanPoisonStackMemoryName, RetTy: IRB.getVoidTy(), Args: IntptrTy, Args: IntptrTy); |
| 3178 | AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction( |
| 3179 | Name: kAsanUnpoisonStackMemoryName, RetTy: IRB.getVoidTy(), Args: IntptrTy, Args: IntptrTy); |
| 3180 | } |
| 3181 | |
| 3182 | for (size_t Val : {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0xf1, 0xf2, |
| 3183 | 0xf3, 0xf5, 0xf8}) { |
| 3184 | std::ostringstream Name; |
| 3185 | Name << kAsanSetShadowPrefix; |
| 3186 | Name << std::setw(2) << std::setfill('0') << std::hex << Val; |
| 3187 | AsanSetShadowFunc[Val] = |
| 3188 | M.getOrInsertFunction(Name: Name.str(), RetTy: IRB.getVoidTy(), Args: IntptrTy, Args: IntptrTy); |
| 3189 | } |
| 3190 | |
| 3191 | AsanAllocaPoisonFunc = M.getOrInsertFunction( |
| 3192 | Name: kAsanAllocaPoison, RetTy: IRB.getVoidTy(), Args: IntptrTy, Args: IntptrTy); |
| 3193 | AsanAllocasUnpoisonFunc = M.getOrInsertFunction( |
| 3194 | Name: kAsanAllocasUnpoison, RetTy: IRB.getVoidTy(), Args: IntptrTy, Args: IntptrTy); |
| 3195 | } |
| 3196 | |
| 3197 | void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask, |
| 3198 | ArrayRef<uint8_t> ShadowBytes, |
| 3199 | size_t Begin, size_t End, |
| 3200 | IRBuilder<> &IRB, |
| 3201 | Value *ShadowBase) { |
| 3202 | if (Begin >= End) |
| 3203 | return; |
| 3204 | |
| 3205 | const size_t LargestStoreSizeInBytes = |
| 3206 | std::min<size_t>(a: sizeof(uint64_t), b: ASan.LongSize / 8); |
| 3207 | |
| 3208 | const bool IsLittleEndian = F.getDataLayout().isLittleEndian(); |
| 3209 | |
| 3210 | // Poison given range in shadow using larges store size with out leading and |
| 3211 | // trailing zeros in ShadowMask. Zeros never change, so they need neither |
| 3212 | // poisoning nor up-poisoning. Still we don't mind if some of them get into a |
| 3213 | // middle of a store. |
| 3214 | for (size_t i = Begin; i < End;) { |
| 3215 | if (!ShadowMask[i]) { |
| 3216 | assert(!ShadowBytes[i]); |
| 3217 | ++i; |
| 3218 | continue; |
| 3219 | } |
| 3220 | |
| 3221 | size_t StoreSizeInBytes = LargestStoreSizeInBytes; |
| 3222 | // Fit store size into the range. |
| 3223 | while (StoreSizeInBytes > End - i) |
| 3224 | StoreSizeInBytes /= 2; |
| 3225 | |
| 3226 | // Minimize store size by trimming trailing zeros. |
| 3227 | for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) { |
| 3228 | while (j <= StoreSizeInBytes / 2) |
| 3229 | StoreSizeInBytes /= 2; |
| 3230 | } |
| 3231 | |
| 3232 | uint64_t Val = 0; |
| 3233 | for (size_t j = 0; j < StoreSizeInBytes; j++) { |
| 3234 | if (IsLittleEndian) |
| 3235 | Val |= (uint64_t)ShadowBytes[i + j] << (8 * j); |
| 3236 | else |
| 3237 | Val = (Val << 8) | ShadowBytes[i + j]; |
| 3238 | } |
| 3239 | |
| 3240 | Value *Ptr = IRB.CreateAdd(LHS: ShadowBase, RHS: ConstantInt::get(Ty: IntptrTy, V: i)); |
| 3241 | Value *Poison = IRB.getIntN(N: StoreSizeInBytes * 8, C: Val); |
| 3242 | IRB.CreateAlignedStore( |
| 3243 | Val: Poison, Ptr: IRB.CreateIntToPtr(V: Ptr, DestTy: PointerType::getUnqual(C&: Poison->getContext())), |
| 3244 | Align: Align(1)); |
| 3245 | |
| 3246 | i += StoreSizeInBytes; |
| 3247 | } |
| 3248 | } |
| 3249 | |
| 3250 | void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, |
| 3251 | ArrayRef<uint8_t> ShadowBytes, |
| 3252 | IRBuilder<> &IRB, Value *ShadowBase) { |
| 3253 | copyToShadow(ShadowMask, ShadowBytes, Begin: 0, End: ShadowMask.size(), IRB, ShadowBase); |
| 3254 | } |
| 3255 | |
| 3256 | void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, |
| 3257 | ArrayRef<uint8_t> ShadowBytes, |
| 3258 | size_t Begin, size_t End, |
| 3259 | IRBuilder<> &IRB, Value *ShadowBase) { |
| 3260 | assert(ShadowMask.size() == ShadowBytes.size()); |
| 3261 | size_t Done = Begin; |
| 3262 | for (size_t i = Begin, j = Begin + 1; i < End; i = j++) { |
| 3263 | if (!ShadowMask[i]) { |
| 3264 | assert(!ShadowBytes[i]); |
| 3265 | continue; |
| 3266 | } |
| 3267 | uint8_t Val = ShadowBytes[i]; |
| 3268 | if (!AsanSetShadowFunc[Val]) |
| 3269 | continue; |
| 3270 | |
| 3271 | // Skip same values. |
| 3272 | for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) { |
| 3273 | } |
| 3274 | |
| 3275 | if (j - i >= ASan.MaxInlinePoisoningSize) { |
| 3276 | copyToShadowInline(ShadowMask, ShadowBytes, Begin: Done, End: i, IRB, ShadowBase); |
| 3277 | RTCI.createRuntimeCall( |
| 3278 | IRB, Callee: AsanSetShadowFunc[Val], |
| 3279 | Args: {IRB.CreateAdd(LHS: ShadowBase, RHS: ConstantInt::get(Ty: IntptrTy, V: i)), |
| 3280 | ConstantInt::get(Ty: IntptrTy, V: j - i)}); |
| 3281 | Done = j; |
| 3282 | } |
| 3283 | } |
| 3284 | |
| 3285 | copyToShadowInline(ShadowMask, ShadowBytes, Begin: Done, End, IRB, ShadowBase); |
| 3286 | } |
| 3287 | |
| 3288 | // Fake stack allocator (asan_fake_stack.h) has 11 size classes |
| 3289 | // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass |
| 3290 | static int StackMallocSizeClass(uint64_t LocalStackSize) { |
| 3291 | assert(LocalStackSize <= kMaxStackMallocSize); |
| 3292 | uint64_t MaxSize = kMinStackMallocSize; |
| 3293 | for (int i = 0;; i++, MaxSize *= 2) |
| 3294 | if (LocalStackSize <= MaxSize) return i; |
| 3295 | llvm_unreachable("impossible LocalStackSize" ); |
| 3296 | } |
| 3297 | |
| 3298 | void FunctionStackPoisoner::copyArgsPassedByValToAllocas() { |
| 3299 | Instruction *CopyInsertPoint = &F.front().front(); |
| 3300 | if (CopyInsertPoint == ASan.LocalDynamicShadow) { |
| 3301 | // Insert after the dynamic shadow location is determined |
| 3302 | CopyInsertPoint = CopyInsertPoint->getNextNode(); |
| 3303 | assert(CopyInsertPoint); |
| 3304 | } |
| 3305 | IRBuilder<> IRB(CopyInsertPoint); |
| 3306 | const DataLayout &DL = F.getDataLayout(); |
| 3307 | for (Argument &Arg : F.args()) { |
| 3308 | if (Arg.hasByValAttr()) { |
| 3309 | Type *Ty = Arg.getParamByValType(); |
| 3310 | const Align Alignment = |
| 3311 | DL.getValueOrABITypeAlignment(Alignment: Arg.getParamAlign(), Ty); |
| 3312 | |
| 3313 | AllocaInst *AI = IRB.CreateAlloca( |
| 3314 | Ty, ArraySize: nullptr, |
| 3315 | Name: (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) + |
| 3316 | ".byval" ); |
| 3317 | AI->setAlignment(Alignment); |
| 3318 | Arg.replaceAllUsesWith(V: AI); |
| 3319 | |
| 3320 | uint64_t AllocSize = DL.getTypeAllocSize(Ty); |
| 3321 | IRB.CreateMemCpy(Dst: AI, DstAlign: Alignment, Src: &Arg, SrcAlign: Alignment, Size: AllocSize); |
| 3322 | } |
| 3323 | } |
| 3324 | } |
| 3325 | |
| 3326 | PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond, |
| 3327 | Value *ValueIfTrue, |
| 3328 | Instruction *ThenTerm, |
| 3329 | Value *ValueIfFalse) { |
| 3330 | PHINode *PHI = IRB.CreatePHI(Ty: IntptrTy, NumReservedValues: 2); |
| 3331 | BasicBlock *CondBlock = cast<Instruction>(Val: Cond)->getParent(); |
| 3332 | PHI->addIncoming(V: ValueIfFalse, BB: CondBlock); |
| 3333 | BasicBlock *ThenBlock = ThenTerm->getParent(); |
| 3334 | PHI->addIncoming(V: ValueIfTrue, BB: ThenBlock); |
| 3335 | return PHI; |
| 3336 | } |
| 3337 | |
| 3338 | Value *FunctionStackPoisoner::createAllocaForLayout( |
| 3339 | IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) { |
| 3340 | AllocaInst *Alloca; |
| 3341 | if (Dynamic) { |
| 3342 | Alloca = IRB.CreateAlloca(Ty: IRB.getInt8Ty(), |
| 3343 | ArraySize: ConstantInt::get(Ty: IRB.getInt64Ty(), V: L.FrameSize), |
| 3344 | Name: "MyAlloca" ); |
| 3345 | } else { |
| 3346 | Alloca = IRB.CreateAlloca(Ty: ArrayType::get(ElementType: IRB.getInt8Ty(), NumElements: L.FrameSize), |
| 3347 | ArraySize: nullptr, Name: "MyAlloca" ); |
| 3348 | assert(Alloca->isStaticAlloca()); |
| 3349 | } |
| 3350 | assert((ClRealignStack & (ClRealignStack - 1)) == 0); |
| 3351 | uint64_t FrameAlignment = std::max(a: L.FrameAlignment, b: uint64_t(ClRealignStack)); |
| 3352 | Alloca->setAlignment(Align(FrameAlignment)); |
| 3353 | return IRB.CreatePointerCast(V: Alloca, DestTy: IntptrTy); |
| 3354 | } |
| 3355 | |
| 3356 | void FunctionStackPoisoner::createDynamicAllocasInitStorage() { |
| 3357 | BasicBlock &FirstBB = *F.begin(); |
| 3358 | IRBuilder<> IRB(dyn_cast<Instruction>(Val: FirstBB.begin())); |
| 3359 | DynamicAllocaLayout = IRB.CreateAlloca(Ty: IntptrTy, ArraySize: nullptr); |
| 3360 | IRB.CreateStore(Val: Constant::getNullValue(Ty: IntptrTy), Ptr: DynamicAllocaLayout); |
| 3361 | DynamicAllocaLayout->setAlignment(Align(32)); |
| 3362 | } |
| 3363 | |
| 3364 | void FunctionStackPoisoner::processDynamicAllocas() { |
| 3365 | if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) { |
| 3366 | assert(DynamicAllocaPoisonCallVec.empty()); |
| 3367 | return; |
| 3368 | } |
| 3369 | |
| 3370 | // Insert poison calls for lifetime intrinsics for dynamic allocas. |
| 3371 | for (const auto &APC : DynamicAllocaPoisonCallVec) { |
| 3372 | assert(APC.InsBefore); |
| 3373 | assert(APC.AI); |
| 3374 | assert(ASan.isInterestingAlloca(*APC.AI)); |
| 3375 | assert(!APC.AI->isStaticAlloca()); |
| 3376 | |
| 3377 | IRBuilder<> IRB(APC.InsBefore); |
| 3378 | poisonAlloca(V: APC.AI, Size: APC.Size, IRB, DoPoison: APC.DoPoison); |
| 3379 | // Dynamic allocas will be unpoisoned unconditionally below in |
| 3380 | // unpoisonDynamicAllocas. |
| 3381 | // Flag that we need unpoison static allocas. |
| 3382 | } |
| 3383 | |
| 3384 | // Handle dynamic allocas. |
| 3385 | createDynamicAllocasInitStorage(); |
| 3386 | for (auto &AI : DynamicAllocaVec) |
| 3387 | handleDynamicAllocaCall(AI); |
| 3388 | unpoisonDynamicAllocas(); |
| 3389 | } |
| 3390 | |
| 3391 | /// Collect instructions in the entry block after \p InsBefore which initialize |
| 3392 | /// permanent storage for a function argument. These instructions must remain in |
| 3393 | /// the entry block so that uninitialized values do not appear in backtraces. An |
| 3394 | /// added benefit is that this conserves spill slots. This does not move stores |
| 3395 | /// before instrumented / "interesting" allocas. |
| 3396 | static void findStoresToUninstrumentedArgAllocas( |
| 3397 | AddressSanitizer &ASan, Instruction &InsBefore, |
| 3398 | SmallVectorImpl<Instruction *> &InitInsts) { |
| 3399 | Instruction *Start = InsBefore.getNextNonDebugInstruction(); |
| 3400 | for (Instruction *It = Start; It; It = It->getNextNonDebugInstruction()) { |
| 3401 | // Argument initialization looks like: |
| 3402 | // 1) store <Argument>, <Alloca> OR |
| 3403 | // 2) <CastArgument> = cast <Argument> to ... |
| 3404 | // store <CastArgument> to <Alloca> |
| 3405 | // Do not consider any other kind of instruction. |
| 3406 | // |
| 3407 | // Note: This covers all known cases, but may not be exhaustive. An |
| 3408 | // alternative to pattern-matching stores is to DFS over all Argument uses: |
| 3409 | // this might be more general, but is probably much more complicated. |
| 3410 | if (isa<AllocaInst>(Val: It) || isa<CastInst>(Val: It)) |
| 3411 | continue; |
| 3412 | if (auto *Store = dyn_cast<StoreInst>(Val: It)) { |
| 3413 | // The store destination must be an alloca that isn't interesting for |
| 3414 | // ASan to instrument. These are moved up before InsBefore, and they're |
| 3415 | // not interesting because allocas for arguments can be mem2reg'd. |
| 3416 | auto *Alloca = dyn_cast<AllocaInst>(Val: Store->getPointerOperand()); |
| 3417 | if (!Alloca || ASan.isInterestingAlloca(AI: *Alloca)) |
| 3418 | continue; |
| 3419 | |
| 3420 | Value *Val = Store->getValueOperand(); |
| 3421 | bool IsDirectArgInit = isa<Argument>(Val); |
| 3422 | bool IsArgInitViaCast = |
| 3423 | isa<CastInst>(Val) && |
| 3424 | isa<Argument>(Val: cast<CastInst>(Val)->getOperand(i_nocapture: 0)) && |
| 3425 | // Check that the cast appears directly before the store. Otherwise |
| 3426 | // moving the cast before InsBefore may break the IR. |
| 3427 | Val == It->getPrevNonDebugInstruction(); |
| 3428 | bool IsArgInit = IsDirectArgInit || IsArgInitViaCast; |
| 3429 | if (!IsArgInit) |
| 3430 | continue; |
| 3431 | |
| 3432 | if (IsArgInitViaCast) |
| 3433 | InitInsts.push_back(Elt: cast<Instruction>(Val)); |
| 3434 | InitInsts.push_back(Elt: Store); |
| 3435 | continue; |
| 3436 | } |
| 3437 | |
| 3438 | // Do not reorder past unknown instructions: argument initialization should |
| 3439 | // only involve casts and stores. |
| 3440 | return; |
| 3441 | } |
| 3442 | } |
| 3443 | |
| 3444 | static StringRef getAllocaName(AllocaInst *AI) { |
| 3445 | // Alloca could have been renamed for uniqueness. Its true name will have been |
| 3446 | // recorded as an annotation. |
| 3447 | if (AI->hasMetadata(KindID: LLVMContext::MD_annotation)) { |
| 3448 | MDTuple *AllocaAnnotations = |
| 3449 | cast<MDTuple>(Val: AI->getMetadata(KindID: LLVMContext::MD_annotation)); |
| 3450 | for (auto &Annotation : AllocaAnnotations->operands()) { |
| 3451 | if (!isa<MDTuple>(Val: Annotation)) |
| 3452 | continue; |
| 3453 | auto AnnotationTuple = cast<MDTuple>(Val: Annotation); |
| 3454 | for (unsigned Index = 0; Index < AnnotationTuple->getNumOperands(); |
| 3455 | Index++) { |
| 3456 | // All annotations are strings |
| 3457 | auto MetadataString = |
| 3458 | cast<MDString>(Val: AnnotationTuple->getOperand(I: Index)); |
| 3459 | if (MetadataString->getString() == "alloca_name_altered" ) |
| 3460 | return cast<MDString>(Val: AnnotationTuple->getOperand(I: Index + 1)) |
| 3461 | ->getString(); |
| 3462 | } |
| 3463 | } |
| 3464 | } |
| 3465 | return AI->getName(); |
| 3466 | } |
| 3467 | |
| 3468 | void FunctionStackPoisoner::processStaticAllocas() { |
| 3469 | if (AllocaVec.empty()) { |
| 3470 | assert(StaticAllocaPoisonCallVec.empty()); |
| 3471 | return; |
| 3472 | } |
| 3473 | |
| 3474 | int StackMallocIdx = -1; |
| 3475 | DebugLoc EntryDebugLocation; |
| 3476 | if (auto SP = F.getSubprogram()) |
| 3477 | EntryDebugLocation = |
| 3478 | DILocation::get(Context&: SP->getContext(), Line: SP->getScopeLine(), Column: 0, Scope: SP); |
| 3479 | |
| 3480 | Instruction *InsBefore = AllocaVec[0]; |
| 3481 | IRBuilder<> IRB(InsBefore); |
| 3482 | |
| 3483 | // Make sure non-instrumented allocas stay in the entry block. Otherwise, |
| 3484 | // debug info is broken, because only entry-block allocas are treated as |
| 3485 | // regular stack slots. |
| 3486 | auto InsBeforeB = InsBefore->getParent(); |
| 3487 | assert(InsBeforeB == &F.getEntryBlock()); |
| 3488 | for (auto *AI : StaticAllocasToMoveUp) |
| 3489 | if (AI->getParent() == InsBeforeB) |
| 3490 | AI->moveBefore(InsertPos: InsBefore->getIterator()); |
| 3491 | |
| 3492 | // Move stores of arguments into entry-block allocas as well. This prevents |
| 3493 | // extra stack slots from being generated (to house the argument values until |
| 3494 | // they can be stored into the allocas). This also prevents uninitialized |
| 3495 | // values from being shown in backtraces. |
| 3496 | SmallVector<Instruction *, 8> ArgInitInsts; |
| 3497 | findStoresToUninstrumentedArgAllocas(ASan, InsBefore&: *InsBefore, InitInsts&: ArgInitInsts); |
| 3498 | for (Instruction *ArgInitInst : ArgInitInsts) |
| 3499 | ArgInitInst->moveBefore(InsertPos: InsBefore->getIterator()); |
| 3500 | |
| 3501 | // If we have a call to llvm.localescape, keep it in the entry block. |
| 3502 | if (LocalEscapeCall) |
| 3503 | LocalEscapeCall->moveBefore(InsertPos: InsBefore->getIterator()); |
| 3504 | |
| 3505 | SmallVector<ASanStackVariableDescription, 16> SVD; |
| 3506 | SVD.reserve(N: AllocaVec.size()); |
| 3507 | for (AllocaInst *AI : AllocaVec) { |
| 3508 | StringRef Name = getAllocaName(AI); |
| 3509 | ASanStackVariableDescription D = {.Name: Name.data(), |
| 3510 | .Size: ASan.getAllocaSizeInBytes(AI: *AI), |
| 3511 | .LifetimeSize: 0, |
| 3512 | .Alignment: AI->getAlign().value(), |
| 3513 | .AI: AI, |
| 3514 | .Offset: 0, |
| 3515 | .Line: 0}; |
| 3516 | SVD.push_back(Elt: D); |
| 3517 | } |
| 3518 | |
| 3519 | // Minimal header size (left redzone) is 4 pointers, |
| 3520 | // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms. |
| 3521 | uint64_t Granularity = 1ULL << Mapping.Scale; |
| 3522 | uint64_t = std::max(a: (uint64_t)ASan.LongSize / 2, b: Granularity); |
| 3523 | const ASanStackFrameLayout &L = |
| 3524 | ComputeASanStackFrameLayout(Vars&: SVD, Granularity, MinHeaderSize); |
| 3525 | |
| 3526 | // Build AllocaToSVDMap for ASanStackVariableDescription lookup. |
| 3527 | DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap; |
| 3528 | for (auto &Desc : SVD) |
| 3529 | AllocaToSVDMap[Desc.AI] = &Desc; |
| 3530 | |
| 3531 | // Update SVD with information from lifetime intrinsics. |
| 3532 | for (const auto &APC : StaticAllocaPoisonCallVec) { |
| 3533 | assert(APC.InsBefore); |
| 3534 | assert(APC.AI); |
| 3535 | assert(ASan.isInterestingAlloca(*APC.AI)); |
| 3536 | assert(APC.AI->isStaticAlloca()); |
| 3537 | |
| 3538 | ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; |
| 3539 | Desc.LifetimeSize = Desc.Size; |
| 3540 | if (const DILocation *FnLoc = EntryDebugLocation.get()) { |
| 3541 | if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) { |
| 3542 | if (LifetimeLoc->getFile() == FnLoc->getFile()) |
| 3543 | if (unsigned Line = LifetimeLoc->getLine()) |
| 3544 | Desc.Line = std::min(a: Desc.Line ? Desc.Line : Line, b: Line); |
| 3545 | } |
| 3546 | } |
| 3547 | } |
| 3548 | |
| 3549 | auto DescriptionString = ComputeASanStackFrameDescription(Vars: SVD); |
| 3550 | LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n" ); |
| 3551 | uint64_t LocalStackSize = L.FrameSize; |
| 3552 | bool DoStackMalloc = |
| 3553 | ASan.UseAfterReturn != AsanDetectStackUseAfterReturnMode::Never && |
| 3554 | !ASan.CompileKernel && LocalStackSize <= kMaxStackMallocSize; |
| 3555 | bool DoDynamicAlloca = ClDynamicAllocaStack; |
| 3556 | // Don't do dynamic alloca or stack malloc if: |
| 3557 | // 1) There is inline asm: too often it makes assumptions on which registers |
| 3558 | // are available. |
| 3559 | // 2) There is a returns_twice call (typically setjmp), which is |
| 3560 | // optimization-hostile, and doesn't play well with introduced indirect |
| 3561 | // register-relative calculation of local variable addresses. |
| 3562 | DoDynamicAlloca &= !HasInlineAsm && !HasReturnsTwiceCall; |
| 3563 | DoStackMalloc &= !HasInlineAsm && !HasReturnsTwiceCall; |
| 3564 | |
| 3565 | Value *StaticAlloca = |
| 3566 | DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, Dynamic: false); |
| 3567 | |
| 3568 | Value *FakeStack; |
| 3569 | Value *LocalStackBase; |
| 3570 | Value *LocalStackBaseAlloca; |
| 3571 | uint8_t DIExprFlags = DIExpression::ApplyOffset; |
| 3572 | |
| 3573 | if (DoStackMalloc) { |
| 3574 | LocalStackBaseAlloca = |
| 3575 | IRB.CreateAlloca(Ty: IntptrTy, ArraySize: nullptr, Name: "asan_local_stack_base" ); |
| 3576 | if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) { |
| 3577 | // void *FakeStack = __asan_option_detect_stack_use_after_return |
| 3578 | // ? __asan_stack_malloc_N(LocalStackSize) |
| 3579 | // : nullptr; |
| 3580 | // void *LocalStackBase = (FakeStack) ? FakeStack : |
| 3581 | // alloca(LocalStackSize); |
| 3582 | Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal( |
| 3583 | Name: kAsanOptionDetectUseAfterReturn, Ty: IRB.getInt32Ty()); |
| 3584 | Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE( |
| 3585 | LHS: IRB.CreateLoad(Ty: IRB.getInt32Ty(), Ptr: OptionDetectUseAfterReturn), |
| 3586 | RHS: Constant::getNullValue(Ty: IRB.getInt32Ty())); |
| 3587 | Instruction *Term = |
| 3588 | SplitBlockAndInsertIfThen(Cond: UseAfterReturnIsEnabled, SplitBefore: InsBefore, Unreachable: false); |
| 3589 | IRBuilder<> IRBIf(Term); |
| 3590 | StackMallocIdx = StackMallocSizeClass(LocalStackSize); |
| 3591 | assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass); |
| 3592 | Value *FakeStackValue = |
| 3593 | RTCI.createRuntimeCall(IRB&: IRBIf, Callee: AsanStackMallocFunc[StackMallocIdx], |
| 3594 | Args: ConstantInt::get(Ty: IntptrTy, V: LocalStackSize)); |
| 3595 | IRB.SetInsertPoint(InsBefore); |
| 3596 | FakeStack = createPHI(IRB, Cond: UseAfterReturnIsEnabled, ValueIfTrue: FakeStackValue, ThenTerm: Term, |
| 3597 | ValueIfFalse: ConstantInt::get(Ty: IntptrTy, V: 0)); |
| 3598 | } else { |
| 3599 | // assert(ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode:Always) |
| 3600 | // void *FakeStack = __asan_stack_malloc_N(LocalStackSize); |
| 3601 | // void *LocalStackBase = (FakeStack) ? FakeStack : |
| 3602 | // alloca(LocalStackSize); |
| 3603 | StackMallocIdx = StackMallocSizeClass(LocalStackSize); |
| 3604 | FakeStack = |
| 3605 | RTCI.createRuntimeCall(IRB, Callee: AsanStackMallocFunc[StackMallocIdx], |
| 3606 | Args: ConstantInt::get(Ty: IntptrTy, V: LocalStackSize)); |
| 3607 | } |
| 3608 | Value *NoFakeStack = |
| 3609 | IRB.CreateICmpEQ(LHS: FakeStack, RHS: Constant::getNullValue(Ty: IntptrTy)); |
| 3610 | Instruction *Term = |
| 3611 | SplitBlockAndInsertIfThen(Cond: NoFakeStack, SplitBefore: InsBefore, Unreachable: false); |
| 3612 | IRBuilder<> IRBIf(Term); |
| 3613 | Value *AllocaValue = |
| 3614 | DoDynamicAlloca ? createAllocaForLayout(IRB&: IRBIf, L, Dynamic: true) : StaticAlloca; |
| 3615 | |
| 3616 | IRB.SetInsertPoint(InsBefore); |
| 3617 | LocalStackBase = createPHI(IRB, Cond: NoFakeStack, ValueIfTrue: AllocaValue, ThenTerm: Term, ValueIfFalse: FakeStack); |
| 3618 | IRB.CreateStore(Val: LocalStackBase, Ptr: LocalStackBaseAlloca); |
| 3619 | DIExprFlags |= DIExpression::DerefBefore; |
| 3620 | } else { |
| 3621 | // void *FakeStack = nullptr; |
| 3622 | // void *LocalStackBase = alloca(LocalStackSize); |
| 3623 | FakeStack = ConstantInt::get(Ty: IntptrTy, V: 0); |
| 3624 | LocalStackBase = |
| 3625 | DoDynamicAlloca ? createAllocaForLayout(IRB, L, Dynamic: true) : StaticAlloca; |
| 3626 | LocalStackBaseAlloca = LocalStackBase; |
| 3627 | } |
| 3628 | |
| 3629 | // It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the |
| 3630 | // dbg.declare address opereand, but passing a `ptrtoint` seems to confuse |
| 3631 | // later passes and can result in dropped variable coverage in debug info. |
| 3632 | Value *LocalStackBaseAllocaPtr = |
| 3633 | isa<PtrToIntInst>(Val: LocalStackBaseAlloca) |
| 3634 | ? cast<PtrToIntInst>(Val: LocalStackBaseAlloca)->getPointerOperand() |
| 3635 | : LocalStackBaseAlloca; |
| 3636 | assert(isa<AllocaInst>(LocalStackBaseAllocaPtr) && |
| 3637 | "Variable descriptions relative to ASan stack base will be dropped" ); |
| 3638 | |
| 3639 | // Replace Alloca instructions with base+offset. |
| 3640 | for (const auto &Desc : SVD) { |
| 3641 | AllocaInst *AI = Desc.AI; |
| 3642 | replaceDbgDeclare(Address: AI, NewAddress: LocalStackBaseAllocaPtr, Builder&: DIB, DIExprFlags, |
| 3643 | Offset: Desc.Offset); |
| 3644 | Value *NewAllocaPtr = IRB.CreateIntToPtr( |
| 3645 | V: IRB.CreateAdd(LHS: LocalStackBase, RHS: ConstantInt::get(Ty: IntptrTy, V: Desc.Offset)), |
| 3646 | DestTy: AI->getType()); |
| 3647 | AI->replaceAllUsesWith(V: NewAllocaPtr); |
| 3648 | } |
| 3649 | |
| 3650 | // The left-most redzone has enough space for at least 4 pointers. |
| 3651 | // Write the Magic value to redzone[0]. |
| 3652 | Value *BasePlus0 = IRB.CreateIntToPtr(V: LocalStackBase, DestTy: IntptrPtrTy); |
| 3653 | IRB.CreateStore(Val: ConstantInt::get(Ty: IntptrTy, V: kCurrentStackFrameMagic), |
| 3654 | Ptr: BasePlus0); |
| 3655 | // Write the frame description constant to redzone[1]. |
| 3656 | Value *BasePlus1 = IRB.CreateIntToPtr( |
| 3657 | V: IRB.CreateAdd(LHS: LocalStackBase, |
| 3658 | RHS: ConstantInt::get(Ty: IntptrTy, V: ASan.LongSize / 8)), |
| 3659 | DestTy: IntptrPtrTy); |
| 3660 | GlobalVariable *StackDescriptionGlobal = |
| 3661 | createPrivateGlobalForString(M&: *F.getParent(), Str: DescriptionString, |
| 3662 | /*AllowMerging*/ true, NamePrefix: genName(suffix: "stack" )); |
| 3663 | Value *Description = IRB.CreatePointerCast(V: StackDescriptionGlobal, DestTy: IntptrTy); |
| 3664 | IRB.CreateStore(Val: Description, Ptr: BasePlus1); |
| 3665 | // Write the PC to redzone[2]. |
| 3666 | Value *BasePlus2 = IRB.CreateIntToPtr( |
| 3667 | V: IRB.CreateAdd(LHS: LocalStackBase, |
| 3668 | RHS: ConstantInt::get(Ty: IntptrTy, V: 2 * ASan.LongSize / 8)), |
| 3669 | DestTy: IntptrPtrTy); |
| 3670 | IRB.CreateStore(Val: IRB.CreatePointerCast(V: &F, DestTy: IntptrTy), Ptr: BasePlus2); |
| 3671 | |
| 3672 | const auto &ShadowAfterScope = GetShadowBytesAfterScope(Vars: SVD, Layout: L); |
| 3673 | |
| 3674 | // Poison the stack red zones at the entry. |
| 3675 | Value *ShadowBase = ASan.memToShadow(Shadow: LocalStackBase, IRB); |
| 3676 | // As mask we must use most poisoned case: red zones and after scope. |
| 3677 | // As bytes we can use either the same or just red zones only. |
| 3678 | copyToShadow(ShadowMask: ShadowAfterScope, ShadowBytes: ShadowAfterScope, IRB, ShadowBase); |
| 3679 | |
| 3680 | if (!StaticAllocaPoisonCallVec.empty()) { |
| 3681 | const auto &ShadowInScope = GetShadowBytes(Vars: SVD, Layout: L); |
| 3682 | |
| 3683 | // Poison static allocas near lifetime intrinsics. |
| 3684 | for (const auto &APC : StaticAllocaPoisonCallVec) { |
| 3685 | const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; |
| 3686 | assert(Desc.Offset % L.Granularity == 0); |
| 3687 | size_t Begin = Desc.Offset / L.Granularity; |
| 3688 | size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity; |
| 3689 | |
| 3690 | IRBuilder<> IRB(APC.InsBefore); |
| 3691 | copyToShadow(ShadowMask: ShadowAfterScope, |
| 3692 | ShadowBytes: APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End, |
| 3693 | IRB, ShadowBase); |
| 3694 | } |
| 3695 | } |
| 3696 | |
| 3697 | SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0); |
| 3698 | SmallVector<uint8_t, 64> ShadowAfterReturn; |
| 3699 | |
| 3700 | // (Un)poison the stack before all ret instructions. |
| 3701 | for (Instruction *Ret : RetVec) { |
| 3702 | IRBuilder<> IRBRet(Ret); |
| 3703 | // Mark the current frame as retired. |
| 3704 | IRBRet.CreateStore(Val: ConstantInt::get(Ty: IntptrTy, V: kRetiredStackFrameMagic), |
| 3705 | Ptr: BasePlus0); |
| 3706 | if (DoStackMalloc) { |
| 3707 | assert(StackMallocIdx >= 0); |
| 3708 | // if FakeStack != 0 // LocalStackBase == FakeStack |
| 3709 | // // In use-after-return mode, poison the whole stack frame. |
| 3710 | // if StackMallocIdx <= 4 |
| 3711 | // // For small sizes inline the whole thing: |
| 3712 | // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize); |
| 3713 | // **SavedFlagPtr(FakeStack) = 0 |
| 3714 | // else |
| 3715 | // __asan_stack_free_N(FakeStack, LocalStackSize) |
| 3716 | // else |
| 3717 | // <This is not a fake stack; unpoison the redzones> |
| 3718 | Value *Cmp = |
| 3719 | IRBRet.CreateICmpNE(LHS: FakeStack, RHS: Constant::getNullValue(Ty: IntptrTy)); |
| 3720 | Instruction *ThenTerm, *ElseTerm; |
| 3721 | SplitBlockAndInsertIfThenElse(Cond: Cmp, SplitBefore: Ret, ThenTerm: &ThenTerm, ElseTerm: &ElseTerm); |
| 3722 | |
| 3723 | IRBuilder<> IRBPoison(ThenTerm); |
| 3724 | if (ASan.MaxInlinePoisoningSize != 0 && StackMallocIdx <= 4) { |
| 3725 | int ClassSize = kMinStackMallocSize << StackMallocIdx; |
| 3726 | ShadowAfterReturn.resize(N: ClassSize / L.Granularity, |
| 3727 | NV: kAsanStackUseAfterReturnMagic); |
| 3728 | copyToShadow(ShadowMask: ShadowAfterReturn, ShadowBytes: ShadowAfterReturn, IRB&: IRBPoison, |
| 3729 | ShadowBase); |
| 3730 | Value *SavedFlagPtrPtr = IRBPoison.CreateAdd( |
| 3731 | LHS: FakeStack, |
| 3732 | RHS: ConstantInt::get(Ty: IntptrTy, V: ClassSize - ASan.LongSize / 8)); |
| 3733 | Value *SavedFlagPtr = IRBPoison.CreateLoad( |
| 3734 | Ty: IntptrTy, Ptr: IRBPoison.CreateIntToPtr(V: SavedFlagPtrPtr, DestTy: IntptrPtrTy)); |
| 3735 | IRBPoison.CreateStore( |
| 3736 | Val: Constant::getNullValue(Ty: IRBPoison.getInt8Ty()), |
| 3737 | Ptr: IRBPoison.CreateIntToPtr(V: SavedFlagPtr, DestTy: IRBPoison.getPtrTy())); |
| 3738 | } else { |
| 3739 | // For larger frames call __asan_stack_free_*. |
| 3740 | RTCI.createRuntimeCall( |
| 3741 | IRB&: IRBPoison, Callee: AsanStackFreeFunc[StackMallocIdx], |
| 3742 | Args: {FakeStack, ConstantInt::get(Ty: IntptrTy, V: LocalStackSize)}); |
| 3743 | } |
| 3744 | |
| 3745 | IRBuilder<> IRBElse(ElseTerm); |
| 3746 | copyToShadow(ShadowMask: ShadowAfterScope, ShadowBytes: ShadowClean, IRB&: IRBElse, ShadowBase); |
| 3747 | } else { |
| 3748 | copyToShadow(ShadowMask: ShadowAfterScope, ShadowBytes: ShadowClean, IRB&: IRBRet, ShadowBase); |
| 3749 | } |
| 3750 | } |
| 3751 | |
| 3752 | // We are done. Remove the old unused alloca instructions. |
| 3753 | for (auto *AI : AllocaVec) |
| 3754 | AI->eraseFromParent(); |
| 3755 | } |
| 3756 | |
| 3757 | void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, |
| 3758 | IRBuilder<> &IRB, bool DoPoison) { |
| 3759 | // For now just insert the call to ASan runtime. |
| 3760 | Value *AddrArg = IRB.CreatePointerCast(V, DestTy: IntptrTy); |
| 3761 | Value *SizeArg = ConstantInt::get(Ty: IntptrTy, V: Size); |
| 3762 | RTCI.createRuntimeCall( |
| 3763 | IRB, Callee: DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc, |
| 3764 | Args: {AddrArg, SizeArg}); |
| 3765 | } |
| 3766 | |
| 3767 | // Handling llvm.lifetime intrinsics for a given %alloca: |
| 3768 | // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. |
| 3769 | // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect |
| 3770 | // invalid accesses) and unpoison it for llvm.lifetime.start (the memory |
| 3771 | // could be poisoned by previous llvm.lifetime.end instruction, as the |
| 3772 | // variable may go in and out of scope several times, e.g. in loops). |
| 3773 | // (3) if we poisoned at least one %alloca in a function, |
| 3774 | // unpoison the whole stack frame at function exit. |
| 3775 | void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) { |
| 3776 | IRBuilder<> IRB(AI); |
| 3777 | |
| 3778 | const Align Alignment = std::max(a: Align(kAllocaRzSize), b: AI->getAlign()); |
| 3779 | const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1; |
| 3780 | |
| 3781 | Value *Zero = Constant::getNullValue(Ty: IntptrTy); |
| 3782 | Value *AllocaRzSize = ConstantInt::get(Ty: IntptrTy, V: kAllocaRzSize); |
| 3783 | Value *AllocaRzMask = ConstantInt::get(Ty: IntptrTy, V: AllocaRedzoneMask); |
| 3784 | |
| 3785 | // Since we need to extend alloca with additional memory to locate |
| 3786 | // redzones, and OldSize is number of allocated blocks with |
| 3787 | // ElementSize size, get allocated memory size in bytes by |
| 3788 | // OldSize * ElementSize. |
| 3789 | const unsigned ElementSize = |
| 3790 | F.getDataLayout().getTypeAllocSize(Ty: AI->getAllocatedType()); |
| 3791 | Value *OldSize = |
| 3792 | IRB.CreateMul(LHS: IRB.CreateIntCast(V: AI->getArraySize(), DestTy: IntptrTy, isSigned: false), |
| 3793 | RHS: ConstantInt::get(Ty: IntptrTy, V: ElementSize)); |
| 3794 | |
| 3795 | // PartialSize = OldSize % 32 |
| 3796 | Value *PartialSize = IRB.CreateAnd(LHS: OldSize, RHS: AllocaRzMask); |
| 3797 | |
| 3798 | // Misalign = kAllocaRzSize - PartialSize; |
| 3799 | Value *Misalign = IRB.CreateSub(LHS: AllocaRzSize, RHS: PartialSize); |
| 3800 | |
| 3801 | // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0; |
| 3802 | Value *Cond = IRB.CreateICmpNE(LHS: Misalign, RHS: AllocaRzSize); |
| 3803 | Value *PartialPadding = IRB.CreateSelect(C: Cond, True: Misalign, False: Zero); |
| 3804 | |
| 3805 | // AdditionalChunkSize = Alignment + PartialPadding + kAllocaRzSize |
| 3806 | // Alignment is added to locate left redzone, PartialPadding for possible |
| 3807 | // partial redzone and kAllocaRzSize for right redzone respectively. |
| 3808 | Value *AdditionalChunkSize = IRB.CreateAdd( |
| 3809 | LHS: ConstantInt::get(Ty: IntptrTy, V: Alignment.value() + kAllocaRzSize), |
| 3810 | RHS: PartialPadding); |
| 3811 | |
| 3812 | Value *NewSize = IRB.CreateAdd(LHS: OldSize, RHS: AdditionalChunkSize); |
| 3813 | |
| 3814 | // Insert new alloca with new NewSize and Alignment params. |
| 3815 | AllocaInst *NewAlloca = IRB.CreateAlloca(Ty: IRB.getInt8Ty(), ArraySize: NewSize); |
| 3816 | NewAlloca->setAlignment(Alignment); |
| 3817 | |
| 3818 | // NewAddress = Address + Alignment |
| 3819 | Value *NewAddress = |
| 3820 | IRB.CreateAdd(LHS: IRB.CreatePtrToInt(V: NewAlloca, DestTy: IntptrTy), |
| 3821 | RHS: ConstantInt::get(Ty: IntptrTy, V: Alignment.value())); |
| 3822 | |
| 3823 | // Insert __asan_alloca_poison call for new created alloca. |
| 3824 | RTCI.createRuntimeCall(IRB, Callee: AsanAllocaPoisonFunc, Args: {NewAddress, OldSize}); |
| 3825 | |
| 3826 | // Store the last alloca's address to DynamicAllocaLayout. We'll need this |
| 3827 | // for unpoisoning stuff. |
| 3828 | IRB.CreateStore(Val: IRB.CreatePtrToInt(V: NewAlloca, DestTy: IntptrTy), Ptr: DynamicAllocaLayout); |
| 3829 | |
| 3830 | Value *NewAddressPtr = IRB.CreateIntToPtr(V: NewAddress, DestTy: AI->getType()); |
| 3831 | |
| 3832 | // Replace all uses of AddessReturnedByAlloca with NewAddressPtr. |
| 3833 | AI->replaceAllUsesWith(V: NewAddressPtr); |
| 3834 | |
| 3835 | // We are done. Erase old alloca from parent. |
| 3836 | AI->eraseFromParent(); |
| 3837 | } |
| 3838 | |
| 3839 | // isSafeAccess returns true if Addr is always inbounds with respect to its |
| 3840 | // base object. For example, it is a field access or an array access with |
| 3841 | // constant inbounds index. |
| 3842 | bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, |
| 3843 | Value *Addr, TypeSize TypeStoreSize) const { |
| 3844 | if (TypeStoreSize.isScalable()) |
| 3845 | // TODO: We can use vscale_range to convert a scalable value to an |
| 3846 | // upper bound on the access size. |
| 3847 | return false; |
| 3848 | |
| 3849 | SizeOffsetAPInt SizeOffset = ObjSizeVis.compute(V: Addr); |
| 3850 | if (!SizeOffset.bothKnown()) |
| 3851 | return false; |
| 3852 | |
| 3853 | uint64_t Size = SizeOffset.Size.getZExtValue(); |
| 3854 | int64_t Offset = SizeOffset.Offset.getSExtValue(); |
| 3855 | |
| 3856 | // Three checks are required to ensure safety: |
| 3857 | // . Offset >= 0 (since the offset is given from the base ptr) |
| 3858 | // . Size >= Offset (unsigned) |
| 3859 | // . Size - Offset >= NeededSize (unsigned) |
| 3860 | return Offset >= 0 && Size >= uint64_t(Offset) && |
| 3861 | Size - uint64_t(Offset) >= TypeStoreSize / 8; |
| 3862 | } |
| 3863 | |