1 | //===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | /// \file |
10 | /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow |
11 | /// analysis. |
12 | /// |
13 | /// Unlike other Sanitizer tools, this tool is not designed to detect a specific |
14 | /// class of bugs on its own. Instead, it provides a generic dynamic data flow |
15 | /// analysis framework to be used by clients to help detect application-specific |
16 | /// issues within their own code. |
17 | /// |
18 | /// The analysis is based on automatic propagation of data flow labels (also |
19 | /// known as taint labels) through a program as it performs computation. |
20 | /// |
21 | /// Argument and return value labels are passed through TLS variables |
22 | /// __dfsan_arg_tls and __dfsan_retval_tls. |
23 | /// |
24 | /// Each byte of application memory is backed by a shadow memory byte. The |
25 | /// shadow byte can represent up to 8 labels. On Linux/x86_64, memory is then |
26 | /// laid out as follows: |
27 | /// |
28 | /// +--------------------+ 0x800000000000 (top of memory) |
29 | /// | application 3 | |
30 | /// +--------------------+ 0x700000000000 |
31 | /// | invalid | |
32 | /// +--------------------+ 0x610000000000 |
33 | /// | origin 1 | |
34 | /// +--------------------+ 0x600000000000 |
35 | /// | application 2 | |
36 | /// +--------------------+ 0x510000000000 |
37 | /// | shadow 1 | |
38 | /// +--------------------+ 0x500000000000 |
39 | /// | invalid | |
40 | /// +--------------------+ 0x400000000000 |
41 | /// | origin 3 | |
42 | /// +--------------------+ 0x300000000000 |
43 | /// | shadow 3 | |
44 | /// +--------------------+ 0x200000000000 |
45 | /// | origin 2 | |
46 | /// +--------------------+ 0x110000000000 |
47 | /// | invalid | |
48 | /// +--------------------+ 0x100000000000 |
49 | /// | shadow 2 | |
50 | /// +--------------------+ 0x010000000000 |
51 | /// | application 1 | |
52 | /// +--------------------+ 0x000000000000 |
53 | /// |
54 | /// MEM_TO_SHADOW(mem) = mem ^ 0x500000000000 |
55 | /// SHADOW_TO_ORIGIN(shadow) = shadow + 0x100000000000 |
56 | /// |
57 | /// For more information, please refer to the design document: |
58 | /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html |
59 | // |
60 | //===----------------------------------------------------------------------===// |
61 | |
62 | #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" |
63 | #include "llvm/ADT/DenseMap.h" |
64 | #include "llvm/ADT/DenseSet.h" |
65 | #include "llvm/ADT/DepthFirstIterator.h" |
66 | #include "llvm/ADT/SmallPtrSet.h" |
67 | #include "llvm/ADT/SmallVector.h" |
68 | #include "llvm/ADT/StringRef.h" |
69 | #include "llvm/ADT/StringSet.h" |
70 | #include "llvm/ADT/iterator.h" |
71 | #include "llvm/Analysis/DomTreeUpdater.h" |
72 | #include "llvm/Analysis/GlobalsModRef.h" |
73 | #include "llvm/Analysis/TargetLibraryInfo.h" |
74 | #include "llvm/Analysis/ValueTracking.h" |
75 | #include "llvm/IR/Argument.h" |
76 | #include "llvm/IR/AttributeMask.h" |
77 | #include "llvm/IR/Attributes.h" |
78 | #include "llvm/IR/BasicBlock.h" |
79 | #include "llvm/IR/Constant.h" |
80 | #include "llvm/IR/Constants.h" |
81 | #include "llvm/IR/DataLayout.h" |
82 | #include "llvm/IR/DerivedTypes.h" |
83 | #include "llvm/IR/Dominators.h" |
84 | #include "llvm/IR/Function.h" |
85 | #include "llvm/IR/GlobalAlias.h" |
86 | #include "llvm/IR/GlobalValue.h" |
87 | #include "llvm/IR/GlobalVariable.h" |
88 | #include "llvm/IR/IRBuilder.h" |
89 | #include "llvm/IR/InstVisitor.h" |
90 | #include "llvm/IR/InstrTypes.h" |
91 | #include "llvm/IR/Instruction.h" |
92 | #include "llvm/IR/Instructions.h" |
93 | #include "llvm/IR/IntrinsicInst.h" |
94 | #include "llvm/IR/MDBuilder.h" |
95 | #include "llvm/IR/Module.h" |
96 | #include "llvm/IR/PassManager.h" |
97 | #include "llvm/IR/Type.h" |
98 | #include "llvm/IR/User.h" |
99 | #include "llvm/IR/Value.h" |
100 | #include "llvm/Support/Alignment.h" |
101 | #include "llvm/Support/Casting.h" |
102 | #include "llvm/Support/CommandLine.h" |
103 | #include "llvm/Support/ErrorHandling.h" |
104 | #include "llvm/Support/SpecialCaseList.h" |
105 | #include "llvm/Support/VirtualFileSystem.h" |
106 | #include "llvm/TargetParser/Triple.h" |
107 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
108 | #include "llvm/Transforms/Utils/Instrumentation.h" |
109 | #include "llvm/Transforms/Utils/Local.h" |
110 | #include <algorithm> |
111 | #include <cassert> |
112 | #include <cstddef> |
113 | #include <cstdint> |
114 | #include <memory> |
115 | #include <set> |
116 | #include <string> |
117 | #include <utility> |
118 | #include <vector> |
119 | |
120 | using namespace llvm; |
121 | |
122 | // This must be consistent with ShadowWidthBits. |
123 | static const Align ShadowTLSAlignment = Align(2); |
124 | |
125 | static const Align MinOriginAlignment = Align(4); |
126 | |
127 | // The size of TLS variables. These constants must be kept in sync with the ones |
128 | // in dfsan.cpp. |
129 | static const unsigned ArgTLSSize = 800; |
130 | static const unsigned RetvalTLSSize = 800; |
131 | |
132 | // The -dfsan-preserve-alignment flag controls whether this pass assumes that |
133 | // alignment requirements provided by the input IR are correct. For example, |
134 | // if the input IR contains a load with alignment 8, this flag will cause |
135 | // the shadow load to have alignment 16. This flag is disabled by default as |
136 | // we have unfortunately encountered too much code (including Clang itself; |
137 | // see PR14291) which performs misaligned access. |
138 | static cl::opt<bool> ClPreserveAlignment( |
139 | "dfsan-preserve-alignment" , |
140 | cl::desc("respect alignment requirements provided by input IR" ), cl::Hidden, |
141 | cl::init(Val: false)); |
142 | |
143 | // The ABI list files control how shadow parameters are passed. The pass treats |
144 | // every function labelled "uninstrumented" in the ABI list file as conforming |
145 | // to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains |
146 | // additional annotations for those functions, a call to one of those functions |
147 | // will produce a warning message, as the labelling behaviour of the function is |
148 | // unknown. The other supported annotations for uninstrumented functions are |
149 | // "functional" and "discard", which are described below under |
150 | // DataFlowSanitizer::WrapperKind. |
151 | // Functions will often be labelled with both "uninstrumented" and one of |
152 | // "functional" or "discard". This will leave the function unchanged by this |
153 | // pass, and create a wrapper function that will call the original. |
154 | // |
155 | // Instrumented functions can also be annotated as "force_zero_labels", which |
156 | // will make all shadow and return values set zero labels. |
157 | // Functions should never be labelled with both "force_zero_labels" and |
158 | // "uninstrumented" or any of the unistrumented wrapper kinds. |
159 | static cl::list<std::string> ClABIListFiles( |
160 | "dfsan-abilist" , |
161 | cl::desc("File listing native ABI functions and how the pass treats them" ), |
162 | cl::Hidden); |
163 | |
164 | // Controls whether the pass includes or ignores the labels of pointers in load |
165 | // instructions. |
166 | static cl::opt<bool> ClCombinePointerLabelsOnLoad( |
167 | "dfsan-combine-pointer-labels-on-load" , |
168 | cl::desc("Combine the label of the pointer with the label of the data when " |
169 | "loading from memory." ), |
170 | cl::Hidden, cl::init(Val: true)); |
171 | |
172 | // Controls whether the pass includes or ignores the labels of pointers in |
173 | // stores instructions. |
174 | static cl::opt<bool> ClCombinePointerLabelsOnStore( |
175 | "dfsan-combine-pointer-labels-on-store" , |
176 | cl::desc("Combine the label of the pointer with the label of the data when " |
177 | "storing in memory." ), |
178 | cl::Hidden, cl::init(Val: false)); |
179 | |
180 | // Controls whether the pass propagates labels of offsets in GEP instructions. |
181 | static cl::opt<bool> ClCombineOffsetLabelsOnGEP( |
182 | "dfsan-combine-offset-labels-on-gep" , |
183 | cl::desc( |
184 | "Combine the label of the offset with the label of the pointer when " |
185 | "doing pointer arithmetic." ), |
186 | cl::Hidden, cl::init(Val: true)); |
187 | |
188 | static cl::list<std::string> ClCombineTaintLookupTables( |
189 | "dfsan-combine-taint-lookup-table" , |
190 | cl::desc( |
191 | "When dfsan-combine-offset-labels-on-gep and/or " |
192 | "dfsan-combine-pointer-labels-on-load are false, this flag can " |
193 | "be used to re-enable combining offset and/or pointer taint when " |
194 | "loading specific constant global variables (i.e. lookup tables)." ), |
195 | cl::Hidden); |
196 | |
197 | static cl::opt<bool> ClDebugNonzeroLabels( |
198 | "dfsan-debug-nonzero-labels" , |
199 | cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, " |
200 | "load or return with a nonzero label" ), |
201 | cl::Hidden); |
202 | |
203 | // Experimental feature that inserts callbacks for certain data events. |
204 | // Currently callbacks are only inserted for loads, stores, memory transfers |
205 | // (i.e. memcpy and memmove), and comparisons. |
206 | // |
207 | // If this flag is set to true, the user must provide definitions for the |
208 | // following callback functions: |
209 | // void __dfsan_load_callback(dfsan_label Label, void* addr); |
210 | // void __dfsan_store_callback(dfsan_label Label, void* addr); |
211 | // void __dfsan_mem_transfer_callback(dfsan_label *Start, size_t Len); |
212 | // void __dfsan_cmp_callback(dfsan_label CombinedLabel); |
213 | static cl::opt<bool> ClEventCallbacks( |
214 | "dfsan-event-callbacks" , |
215 | cl::desc("Insert calls to __dfsan_*_callback functions on data events." ), |
216 | cl::Hidden, cl::init(Val: false)); |
217 | |
218 | // Experimental feature that inserts callbacks for conditionals, including: |
219 | // conditional branch, switch, select. |
220 | // This must be true for dfsan_set_conditional_callback() to have effect. |
221 | static cl::opt<bool> ClConditionalCallbacks( |
222 | "dfsan-conditional-callbacks" , |
223 | cl::desc("Insert calls to callback functions on conditionals." ), cl::Hidden, |
224 | cl::init(Val: false)); |
225 | |
226 | // Experimental feature that inserts callbacks for data reaching a function, |
227 | // either via function arguments and loads. |
228 | // This must be true for dfsan_set_reaches_function_callback() to have effect. |
229 | static cl::opt<bool> ClReachesFunctionCallbacks( |
230 | "dfsan-reaches-function-callbacks" , |
231 | cl::desc("Insert calls to callback functions on data reaching a function." ), |
232 | cl::Hidden, cl::init(Val: false)); |
233 | |
234 | // Controls whether the pass tracks the control flow of select instructions. |
235 | static cl::opt<bool> ClTrackSelectControlFlow( |
236 | "dfsan-track-select-control-flow" , |
237 | cl::desc("Propagate labels from condition values of select instructions " |
238 | "to results." ), |
239 | cl::Hidden, cl::init(Val: true)); |
240 | |
241 | // TODO: This default value follows MSan. DFSan may use a different value. |
242 | static cl::opt<int> ClInstrumentWithCallThreshold( |
243 | "dfsan-instrument-with-call-threshold" , |
244 | cl::desc("If the function being instrumented requires more than " |
245 | "this number of origin stores, use callbacks instead of " |
246 | "inline checks (-1 means never use callbacks)." ), |
247 | cl::Hidden, cl::init(Val: 3500)); |
248 | |
249 | // Controls how to track origins. |
250 | // * 0: do not track origins. |
251 | // * 1: track origins at memory store operations. |
252 | // * 2: track origins at memory load and store operations. |
253 | // TODO: track callsites. |
254 | static cl::opt<int> ClTrackOrigins("dfsan-track-origins" , |
255 | cl::desc("Track origins of labels" ), |
256 | cl::Hidden, cl::init(Val: 0)); |
257 | |
258 | static cl::opt<bool> ClIgnorePersonalityRoutine( |
259 | "dfsan-ignore-personality-routine" , |
260 | cl::desc("If a personality routine is marked uninstrumented from the ABI " |
261 | "list, do not create a wrapper for it." ), |
262 | cl::Hidden, cl::init(Val: false)); |
263 | |
264 | static StringRef getGlobalTypeString(const GlobalValue &G) { |
265 | // Types of GlobalVariables are always pointer types. |
266 | Type *GType = G.getValueType(); |
267 | // For now we support excluding struct types only. |
268 | if (StructType *SGType = dyn_cast<StructType>(Val: GType)) { |
269 | if (!SGType->isLiteral()) |
270 | return SGType->getName(); |
271 | } |
272 | return "<unknown type>" ; |
273 | } |
274 | |
275 | namespace { |
276 | |
277 | // Memory map parameters used in application-to-shadow address calculation. |
278 | // Offset = (Addr & ~AndMask) ^ XorMask |
279 | // Shadow = ShadowBase + Offset |
280 | // Origin = (OriginBase + Offset) & ~3ULL |
281 | struct MemoryMapParams { |
282 | uint64_t AndMask; |
283 | uint64_t XorMask; |
284 | uint64_t ShadowBase; |
285 | uint64_t OriginBase; |
286 | }; |
287 | |
288 | } // end anonymous namespace |
289 | |
290 | // NOLINTBEGIN(readability-identifier-naming) |
291 | // aarch64 Linux |
292 | const MemoryMapParams Linux_AArch64_MemoryMapParams = { |
293 | .AndMask: 0, // AndMask (not used) |
294 | .XorMask: 0x0B00000000000, // XorMask |
295 | .ShadowBase: 0, // ShadowBase (not used) |
296 | .OriginBase: 0x0200000000000, // OriginBase |
297 | }; |
298 | |
299 | // x86_64 Linux |
300 | const MemoryMapParams Linux_X86_64_MemoryMapParams = { |
301 | .AndMask: 0, // AndMask (not used) |
302 | .XorMask: 0x500000000000, // XorMask |
303 | .ShadowBase: 0, // ShadowBase (not used) |
304 | .OriginBase: 0x100000000000, // OriginBase |
305 | }; |
306 | // NOLINTEND(readability-identifier-naming) |
307 | |
308 | // loongarch64 Linux |
309 | const MemoryMapParams Linux_LoongArch64_MemoryMapParams = { |
310 | .AndMask: 0, // AndMask (not used) |
311 | .XorMask: 0x500000000000, // XorMask |
312 | .ShadowBase: 0, // ShadowBase (not used) |
313 | .OriginBase: 0x100000000000, // OriginBase |
314 | }; |
315 | |
316 | namespace { |
317 | |
318 | class DFSanABIList { |
319 | std::unique_ptr<SpecialCaseList> SCL; |
320 | |
321 | public: |
322 | DFSanABIList() = default; |
323 | |
324 | void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); } |
325 | |
326 | /// Returns whether either this function or its source file are listed in the |
327 | /// given category. |
328 | bool isIn(const Function &F, StringRef Category) const { |
329 | return isIn(M: *F.getParent(), Category) || |
330 | SCL->inSection(Section: "dataflow" , Prefix: "fun" , Query: F.getName(), Category); |
331 | } |
332 | |
333 | /// Returns whether this global alias is listed in the given category. |
334 | /// |
335 | /// If GA aliases a function, the alias's name is matched as a function name |
336 | /// would be. Similarly, aliases of globals are matched like globals. |
337 | bool isIn(const GlobalAlias &GA, StringRef Category) const { |
338 | if (isIn(M: *GA.getParent(), Category)) |
339 | return true; |
340 | |
341 | if (isa<FunctionType>(Val: GA.getValueType())) |
342 | return SCL->inSection(Section: "dataflow" , Prefix: "fun" , Query: GA.getName(), Category); |
343 | |
344 | return SCL->inSection(Section: "dataflow" , Prefix: "global" , Query: GA.getName(), Category) || |
345 | SCL->inSection(Section: "dataflow" , Prefix: "type" , Query: getGlobalTypeString(G: GA), |
346 | Category); |
347 | } |
348 | |
349 | /// Returns whether this module is listed in the given category. |
350 | bool isIn(const Module &M, StringRef Category) const { |
351 | return SCL->inSection(Section: "dataflow" , Prefix: "src" , Query: M.getModuleIdentifier(), Category); |
352 | } |
353 | }; |
354 | |
355 | /// TransformedFunction is used to express the result of transforming one |
356 | /// function type into another. This struct is immutable. It holds metadata |
357 | /// useful for updating calls of the old function to the new type. |
358 | struct TransformedFunction { |
359 | TransformedFunction(FunctionType *OriginalType, FunctionType *TransformedType, |
360 | const std::vector<unsigned> &ArgumentIndexMapping) |
361 | : OriginalType(OriginalType), TransformedType(TransformedType), |
362 | ArgumentIndexMapping(ArgumentIndexMapping) {} |
363 | |
364 | // Disallow copies. |
365 | TransformedFunction(const TransformedFunction &) = delete; |
366 | TransformedFunction &operator=(const TransformedFunction &) = delete; |
367 | |
368 | // Allow moves. |
369 | TransformedFunction(TransformedFunction &&) = default; |
370 | TransformedFunction &operator=(TransformedFunction &&) = default; |
371 | |
372 | /// Type of the function before the transformation. |
373 | FunctionType *OriginalType; |
374 | |
375 | /// Type of the function after the transformation. |
376 | FunctionType *TransformedType; |
377 | |
378 | /// Transforming a function may change the position of arguments. This |
379 | /// member records the mapping from each argument's old position to its new |
380 | /// position. Argument positions are zero-indexed. If the transformation |
381 | /// from F to F' made the first argument of F into the third argument of F', |
382 | /// then ArgumentIndexMapping[0] will equal 2. |
383 | std::vector<unsigned> ArgumentIndexMapping; |
384 | }; |
385 | |
386 | /// Given function attributes from a call site for the original function, |
387 | /// return function attributes appropriate for a call to the transformed |
388 | /// function. |
389 | AttributeList |
390 | transformFunctionAttributes(const TransformedFunction &TransformedFunction, |
391 | LLVMContext &Ctx, AttributeList CallSiteAttrs) { |
392 | |
393 | // Construct a vector of AttributeSet for each function argument. |
394 | std::vector<llvm::AttributeSet> ArgumentAttributes( |
395 | TransformedFunction.TransformedType->getNumParams()); |
396 | |
397 | // Copy attributes from the parameter of the original function to the |
398 | // transformed version. 'ArgumentIndexMapping' holds the mapping from |
399 | // old argument position to new. |
400 | for (unsigned I = 0, IE = TransformedFunction.ArgumentIndexMapping.size(); |
401 | I < IE; ++I) { |
402 | unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[I]; |
403 | ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttrs(ArgNo: I); |
404 | } |
405 | |
406 | // Copy annotations on varargs arguments. |
407 | for (unsigned I = TransformedFunction.OriginalType->getNumParams(), |
408 | IE = CallSiteAttrs.getNumAttrSets(); |
409 | I < IE; ++I) { |
410 | ArgumentAttributes.push_back(x: CallSiteAttrs.getParamAttrs(ArgNo: I)); |
411 | } |
412 | |
413 | return AttributeList::get(C&: Ctx, FnAttrs: CallSiteAttrs.getFnAttrs(), |
414 | RetAttrs: CallSiteAttrs.getRetAttrs(), |
415 | ArgAttrs: llvm::ArrayRef(ArgumentAttributes)); |
416 | } |
417 | |
418 | class DataFlowSanitizer { |
419 | friend struct DFSanFunction; |
420 | friend class DFSanVisitor; |
421 | |
422 | enum { ShadowWidthBits = 8, ShadowWidthBytes = ShadowWidthBits / 8 }; |
423 | |
424 | enum { OriginWidthBits = 32, OriginWidthBytes = OriginWidthBits / 8 }; |
425 | |
426 | /// How should calls to uninstrumented functions be handled? |
427 | enum WrapperKind { |
428 | /// This function is present in an uninstrumented form but we don't know |
429 | /// how it should be handled. Print a warning and call the function anyway. |
430 | /// Don't label the return value. |
431 | WK_Warning, |
432 | |
433 | /// This function does not write to (user-accessible) memory, and its return |
434 | /// value is unlabelled. |
435 | WK_Discard, |
436 | |
437 | /// This function does not write to (user-accessible) memory, and the label |
438 | /// of its return value is the union of the label of its arguments. |
439 | WK_Functional, |
440 | |
441 | /// Instead of calling the function, a custom wrapper __dfsw_F is called, |
442 | /// where F is the name of the function. This function may wrap the |
443 | /// original function or provide its own implementation. WK_Custom uses an |
444 | /// extra pointer argument to return the shadow. This allows the wrapped |
445 | /// form of the function type to be expressed in C. |
446 | WK_Custom |
447 | }; |
448 | |
449 | Module *Mod; |
450 | LLVMContext *Ctx; |
451 | Type *Int8Ptr; |
452 | IntegerType *OriginTy; |
453 | PointerType *OriginPtrTy; |
454 | ConstantInt *ZeroOrigin; |
455 | /// The shadow type for all primitive types and vector types. |
456 | IntegerType *PrimitiveShadowTy; |
457 | PointerType *PrimitiveShadowPtrTy; |
458 | IntegerType *IntptrTy; |
459 | ConstantInt *ZeroPrimitiveShadow; |
460 | Constant *ArgTLS; |
461 | ArrayType *ArgOriginTLSTy; |
462 | Constant *ArgOriginTLS; |
463 | Constant *RetvalTLS; |
464 | Constant *RetvalOriginTLS; |
465 | FunctionType *DFSanUnionLoadFnTy; |
466 | FunctionType *DFSanLoadLabelAndOriginFnTy; |
467 | FunctionType *DFSanUnimplementedFnTy; |
468 | FunctionType *DFSanWrapperExternWeakNullFnTy; |
469 | FunctionType *DFSanSetLabelFnTy; |
470 | FunctionType *DFSanNonzeroLabelFnTy; |
471 | FunctionType *DFSanVarargWrapperFnTy; |
472 | FunctionType *DFSanConditionalCallbackFnTy; |
473 | FunctionType *DFSanConditionalCallbackOriginFnTy; |
474 | FunctionType *DFSanReachesFunctionCallbackFnTy; |
475 | FunctionType *DFSanReachesFunctionCallbackOriginFnTy; |
476 | FunctionType *DFSanCmpCallbackFnTy; |
477 | FunctionType *DFSanLoadStoreCallbackFnTy; |
478 | FunctionType *DFSanMemTransferCallbackFnTy; |
479 | FunctionType *DFSanChainOriginFnTy; |
480 | FunctionType *DFSanChainOriginIfTaintedFnTy; |
481 | FunctionType *DFSanMemOriginTransferFnTy; |
482 | FunctionType *DFSanMemShadowOriginTransferFnTy; |
483 | FunctionType *DFSanMemShadowOriginConditionalExchangeFnTy; |
484 | FunctionType *DFSanMaybeStoreOriginFnTy; |
485 | FunctionCallee DFSanUnionLoadFn; |
486 | FunctionCallee DFSanLoadLabelAndOriginFn; |
487 | FunctionCallee DFSanUnimplementedFn; |
488 | FunctionCallee DFSanWrapperExternWeakNullFn; |
489 | FunctionCallee DFSanSetLabelFn; |
490 | FunctionCallee DFSanNonzeroLabelFn; |
491 | FunctionCallee DFSanVarargWrapperFn; |
492 | FunctionCallee DFSanLoadCallbackFn; |
493 | FunctionCallee DFSanStoreCallbackFn; |
494 | FunctionCallee DFSanMemTransferCallbackFn; |
495 | FunctionCallee DFSanConditionalCallbackFn; |
496 | FunctionCallee DFSanConditionalCallbackOriginFn; |
497 | FunctionCallee DFSanReachesFunctionCallbackFn; |
498 | FunctionCallee DFSanReachesFunctionCallbackOriginFn; |
499 | FunctionCallee DFSanCmpCallbackFn; |
500 | FunctionCallee DFSanChainOriginFn; |
501 | FunctionCallee DFSanChainOriginIfTaintedFn; |
502 | FunctionCallee DFSanMemOriginTransferFn; |
503 | FunctionCallee DFSanMemShadowOriginTransferFn; |
504 | FunctionCallee DFSanMemShadowOriginConditionalExchangeFn; |
505 | FunctionCallee DFSanMaybeStoreOriginFn; |
506 | SmallPtrSet<Value *, 16> DFSanRuntimeFunctions; |
507 | MDNode *ColdCallWeights; |
508 | MDNode *OriginStoreWeights; |
509 | DFSanABIList ABIList; |
510 | DenseMap<Value *, Function *> UnwrappedFnMap; |
511 | AttributeMask ReadOnlyNoneAttrs; |
512 | StringSet<> CombineTaintLookupTableNames; |
513 | |
514 | /// Memory map parameters used in calculation mapping application addresses |
515 | /// to shadow addresses and origin addresses. |
516 | const MemoryMapParams *MapParams; |
517 | |
518 | Value *getShadowOffset(Value *Addr, IRBuilder<> &IRB); |
519 | Value *getShadowAddress(Value *Addr, BasicBlock::iterator Pos); |
520 | Value *getShadowAddress(Value *Addr, BasicBlock::iterator Pos, |
521 | Value *ShadowOffset); |
522 | std::pair<Value *, Value *> getShadowOriginAddress(Value *Addr, |
523 | Align InstAlignment, |
524 | BasicBlock::iterator Pos); |
525 | bool isInstrumented(const Function *F); |
526 | bool isInstrumented(const GlobalAlias *GA); |
527 | bool isForceZeroLabels(const Function *F); |
528 | TransformedFunction getCustomFunctionType(FunctionType *T); |
529 | WrapperKind getWrapperKind(Function *F); |
530 | void addGlobalNameSuffix(GlobalValue *GV); |
531 | void buildExternWeakCheckIfNeeded(IRBuilder<> &IRB, Function *F); |
532 | Function *buildWrapperFunction(Function *F, StringRef NewFName, |
533 | GlobalValue::LinkageTypes NewFLink, |
534 | FunctionType *NewFT); |
535 | void initializeCallbackFunctions(Module &M); |
536 | void initializeRuntimeFunctions(Module &M); |
537 | bool initializeModule(Module &M); |
538 | |
539 | /// Advances \p OriginAddr to point to the next 32-bit origin and then loads |
540 | /// from it. Returns the origin's loaded value. |
541 | Value *loadNextOrigin(BasicBlock::iterator Pos, Align OriginAlign, |
542 | Value **OriginAddr); |
543 | |
544 | /// Returns whether the given load byte size is amenable to inlined |
545 | /// optimization patterns. |
546 | bool hasLoadSizeForFastPath(uint64_t Size); |
547 | |
548 | /// Returns whether the pass tracks origins. Supports only TLS ABI mode. |
549 | bool shouldTrackOrigins(); |
550 | |
551 | /// Returns a zero constant with the shadow type of OrigTy. |
552 | /// |
553 | /// getZeroShadow({T1,T2,...}) = {getZeroShadow(T1),getZeroShadow(T2,...} |
554 | /// getZeroShadow([n x T]) = [n x getZeroShadow(T)] |
555 | /// getZeroShadow(other type) = i16(0) |
556 | Constant *getZeroShadow(Type *OrigTy); |
557 | /// Returns a zero constant with the shadow type of V's type. |
558 | Constant *getZeroShadow(Value *V); |
559 | |
560 | /// Checks if V is a zero shadow. |
561 | bool isZeroShadow(Value *V); |
562 | |
563 | /// Returns the shadow type of OrigTy. |
564 | /// |
565 | /// getShadowTy({T1,T2,...}) = {getShadowTy(T1),getShadowTy(T2),...} |
566 | /// getShadowTy([n x T]) = [n x getShadowTy(T)] |
567 | /// getShadowTy(other type) = i16 |
568 | Type *getShadowTy(Type *OrigTy); |
569 | /// Returns the shadow type of V's type. |
570 | Type *getShadowTy(Value *V); |
571 | |
572 | const uint64_t NumOfElementsInArgOrgTLS = ArgTLSSize / OriginWidthBytes; |
573 | |
574 | public: |
575 | DataFlowSanitizer(const std::vector<std::string> &ABIListFiles); |
576 | |
577 | bool runImpl(Module &M, |
578 | llvm::function_ref<TargetLibraryInfo &(Function &)> GetTLI); |
579 | }; |
580 | |
581 | struct DFSanFunction { |
582 | DataFlowSanitizer &DFS; |
583 | Function *F; |
584 | DominatorTree DT; |
585 | bool IsNativeABI; |
586 | bool IsForceZeroLabels; |
587 | TargetLibraryInfo &TLI; |
588 | AllocaInst *LabelReturnAlloca = nullptr; |
589 | AllocaInst *OriginReturnAlloca = nullptr; |
590 | DenseMap<Value *, Value *> ValShadowMap; |
591 | DenseMap<Value *, Value *> ValOriginMap; |
592 | DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap; |
593 | DenseMap<AllocaInst *, AllocaInst *> AllocaOriginMap; |
594 | |
595 | struct PHIFixupElement { |
596 | PHINode *Phi; |
597 | PHINode *ShadowPhi; |
598 | PHINode *OriginPhi; |
599 | }; |
600 | std::vector<PHIFixupElement> PHIFixups; |
601 | |
602 | DenseSet<Instruction *> SkipInsts; |
603 | std::vector<Value *> NonZeroChecks; |
604 | |
605 | struct CachedShadow { |
606 | BasicBlock *Block; // The block where Shadow is defined. |
607 | Value *Shadow; |
608 | }; |
609 | /// Maps a value to its latest shadow value in terms of domination tree. |
610 | DenseMap<std::pair<Value *, Value *>, CachedShadow> CachedShadows; |
611 | /// Maps a value to its latest collapsed shadow value it was converted to in |
612 | /// terms of domination tree. When ClDebugNonzeroLabels is on, this cache is |
613 | /// used at a post process where CFG blocks are split. So it does not cache |
614 | /// BasicBlock like CachedShadows, but uses domination between values. |
615 | DenseMap<Value *, Value *> CachedCollapsedShadows; |
616 | DenseMap<Value *, std::set<Value *>> ShadowElements; |
617 | |
618 | DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI, |
619 | bool IsForceZeroLabels, TargetLibraryInfo &TLI) |
620 | : DFS(DFS), F(F), IsNativeABI(IsNativeABI), |
621 | IsForceZeroLabels(IsForceZeroLabels), TLI(TLI) { |
622 | DT.recalculate(Func&: *F); |
623 | } |
624 | |
625 | /// Computes the shadow address for a given function argument. |
626 | /// |
627 | /// Shadow = ArgTLS+ArgOffset. |
628 | Value *getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB); |
629 | |
630 | /// Computes the shadow address for a return value. |
631 | Value *getRetvalTLS(Type *T, IRBuilder<> &IRB); |
632 | |
633 | /// Computes the origin address for a given function argument. |
634 | /// |
635 | /// Origin = ArgOriginTLS[ArgNo]. |
636 | Value *getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB); |
637 | |
638 | /// Computes the origin address for a return value. |
639 | Value *getRetvalOriginTLS(); |
640 | |
641 | Value *getOrigin(Value *V); |
642 | void setOrigin(Instruction *I, Value *Origin); |
643 | /// Generates IR to compute the origin of the last operand with a taint label. |
644 | Value *combineOperandOrigins(Instruction *Inst); |
645 | /// Before the instruction Pos, generates IR to compute the last origin with a |
646 | /// taint label. Labels and origins are from vectors Shadows and Origins |
647 | /// correspondingly. The generated IR is like |
648 | /// Sn-1 != Zero ? On-1: ... S2 != Zero ? O2: S1 != Zero ? O1: O0 |
649 | /// When Zero is nullptr, it uses ZeroPrimitiveShadow. Otherwise it can be |
650 | /// zeros with other bitwidths. |
651 | Value *combineOrigins(const std::vector<Value *> &Shadows, |
652 | const std::vector<Value *> &Origins, |
653 | BasicBlock::iterator Pos, ConstantInt *Zero = nullptr); |
654 | |
655 | Value *getShadow(Value *V); |
656 | void setShadow(Instruction *I, Value *Shadow); |
657 | /// Generates IR to compute the union of the two given shadows, inserting it |
658 | /// before Pos. The combined value is with primitive type. |
659 | Value *combineShadows(Value *V1, Value *V2, BasicBlock::iterator Pos); |
660 | /// Combines the shadow values of V1 and V2, then converts the combined value |
661 | /// with primitive type into a shadow value with the original type T. |
662 | Value *combineShadowsThenConvert(Type *T, Value *V1, Value *V2, |
663 | BasicBlock::iterator Pos); |
664 | Value *combineOperandShadows(Instruction *Inst); |
665 | |
666 | /// Generates IR to load shadow and origin corresponding to bytes [\p |
667 | /// Addr, \p Addr + \p Size), where addr has alignment \p |
668 | /// InstAlignment, and take the union of each of those shadows. The returned |
669 | /// shadow always has primitive type. |
670 | /// |
671 | /// When tracking loads is enabled, the returned origin is a chain at the |
672 | /// current stack if the returned shadow is tainted. |
673 | std::pair<Value *, Value *> loadShadowOrigin(Value *Addr, uint64_t Size, |
674 | Align InstAlignment, |
675 | BasicBlock::iterator Pos); |
676 | |
677 | void storePrimitiveShadowOrigin(Value *Addr, uint64_t Size, |
678 | Align InstAlignment, Value *PrimitiveShadow, |
679 | Value *Origin, BasicBlock::iterator Pos); |
680 | /// Applies PrimitiveShadow to all primitive subtypes of T, returning |
681 | /// the expanded shadow value. |
682 | /// |
683 | /// EFP({T1,T2, ...}, PS) = {EFP(T1,PS),EFP(T2,PS),...} |
684 | /// EFP([n x T], PS) = [n x EFP(T,PS)] |
685 | /// EFP(other types, PS) = PS |
686 | Value *expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow, |
687 | BasicBlock::iterator Pos); |
688 | /// Collapses Shadow into a single primitive shadow value, unioning all |
689 | /// primitive shadow values in the process. Returns the final primitive |
690 | /// shadow value. |
691 | /// |
692 | /// CTP({V1,V2, ...}) = UNION(CFP(V1,PS),CFP(V2,PS),...) |
693 | /// CTP([V1,V2,...]) = UNION(CFP(V1,PS),CFP(V2,PS),...) |
694 | /// CTP(other types, PS) = PS |
695 | Value *collapseToPrimitiveShadow(Value *Shadow, BasicBlock::iterator Pos); |
696 | |
697 | void storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, Align ShadowAlign, |
698 | BasicBlock::iterator Pos); |
699 | |
700 | Align getShadowAlign(Align InstAlignment); |
701 | |
702 | // If ClConditionalCallbacks is enabled, insert a callback after a given |
703 | // branch instruction using the given conditional expression. |
704 | void addConditionalCallbacksIfEnabled(Instruction &I, Value *Condition); |
705 | |
706 | // If ClReachesFunctionCallbacks is enabled, insert a callback for each |
707 | // argument and load instruction. |
708 | void addReachesFunctionCallbacksIfEnabled(IRBuilder<> &IRB, Instruction &I, |
709 | Value *Data); |
710 | |
711 | bool isLookupTableConstant(Value *P); |
712 | |
713 | private: |
714 | /// Collapses the shadow with aggregate type into a single primitive shadow |
715 | /// value. |
716 | template <class AggregateType> |
717 | Value *collapseAggregateShadow(AggregateType *AT, Value *Shadow, |
718 | IRBuilder<> &IRB); |
719 | |
720 | Value *collapseToPrimitiveShadow(Value *Shadow, IRBuilder<> &IRB); |
721 | |
722 | /// Returns the shadow value of an argument A. |
723 | Value *getShadowForTLSArgument(Argument *A); |
724 | |
725 | /// The fast path of loading shadows. |
726 | std::pair<Value *, Value *> |
727 | loadShadowFast(Value *ShadowAddr, Value *OriginAddr, uint64_t Size, |
728 | Align ShadowAlign, Align OriginAlign, Value *FirstOrigin, |
729 | BasicBlock::iterator Pos); |
730 | |
731 | Align getOriginAlign(Align InstAlignment); |
732 | |
733 | /// Because 4 contiguous bytes share one 4-byte origin, the most accurate load |
734 | /// is __dfsan_load_label_and_origin. This function returns the union of all |
735 | /// labels and the origin of the first taint label. However this is an |
736 | /// additional call with many instructions. To ensure common cases are fast, |
737 | /// checks if it is possible to load labels and origins without using the |
738 | /// callback function. |
739 | /// |
740 | /// When enabling tracking load instructions, we always use |
741 | /// __dfsan_load_label_and_origin to reduce code size. |
742 | bool useCallbackLoadLabelAndOrigin(uint64_t Size, Align InstAlignment); |
743 | |
744 | /// Returns a chain at the current stack with previous origin V. |
745 | Value *updateOrigin(Value *V, IRBuilder<> &IRB); |
746 | |
747 | /// Returns a chain at the current stack with previous origin V if Shadow is |
748 | /// tainted. |
749 | Value *updateOriginIfTainted(Value *Shadow, Value *Origin, IRBuilder<> &IRB); |
750 | |
751 | /// Creates an Intptr = Origin | Origin << 32 if Intptr's size is 64. Returns |
752 | /// Origin otherwise. |
753 | Value *originToIntptr(IRBuilder<> &IRB, Value *Origin); |
754 | |
755 | /// Stores Origin into the address range [StoreOriginAddr, StoreOriginAddr + |
756 | /// Size). |
757 | void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *StoreOriginAddr, |
758 | uint64_t StoreOriginSize, Align Alignment); |
759 | |
760 | /// Stores Origin in terms of its Shadow value. |
761 | /// * Do not write origins for zero shadows because we do not trace origins |
762 | /// for untainted sinks. |
763 | /// * Use __dfsan_maybe_store_origin if there are too many origin store |
764 | /// instrumentations. |
765 | void storeOrigin(BasicBlock::iterator Pos, Value *Addr, uint64_t Size, |
766 | Value *Shadow, Value *Origin, Value *StoreOriginAddr, |
767 | Align InstAlignment); |
768 | |
769 | /// Convert a scalar value to an i1 by comparing with 0. |
770 | Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &Name = "" ); |
771 | |
772 | bool shouldInstrumentWithCall(); |
773 | |
774 | /// Generates IR to load shadow and origin corresponding to bytes [\p |
775 | /// Addr, \p Addr + \p Size), where addr has alignment \p |
776 | /// InstAlignment, and take the union of each of those shadows. The returned |
777 | /// shadow always has primitive type. |
778 | std::pair<Value *, Value *> |
779 | loadShadowOriginSansLoadTracking(Value *Addr, uint64_t Size, |
780 | Align InstAlignment, |
781 | BasicBlock::iterator Pos); |
782 | int NumOriginStores = 0; |
783 | }; |
784 | |
785 | class DFSanVisitor : public InstVisitor<DFSanVisitor> { |
786 | public: |
787 | DFSanFunction &DFSF; |
788 | |
789 | DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {} |
790 | |
791 | const DataLayout &getDataLayout() const { |
792 | return DFSF.F->getDataLayout(); |
793 | } |
794 | |
795 | // Combines shadow values and origins for all of I's operands. |
796 | void visitInstOperands(Instruction &I); |
797 | |
798 | void visitUnaryOperator(UnaryOperator &UO); |
799 | void visitBinaryOperator(BinaryOperator &BO); |
800 | void visitBitCastInst(BitCastInst &BCI); |
801 | void visitCastInst(CastInst &CI); |
802 | void visitCmpInst(CmpInst &CI); |
803 | void visitLandingPadInst(LandingPadInst &LPI); |
804 | void visitGetElementPtrInst(GetElementPtrInst &GEPI); |
805 | void visitLoadInst(LoadInst &LI); |
806 | void visitStoreInst(StoreInst &SI); |
807 | void visitAtomicRMWInst(AtomicRMWInst &I); |
808 | void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I); |
809 | void visitReturnInst(ReturnInst &RI); |
810 | void visitLibAtomicLoad(CallBase &CB); |
811 | void visitLibAtomicStore(CallBase &CB); |
812 | void visitLibAtomicExchange(CallBase &CB); |
813 | void visitLibAtomicCompareExchange(CallBase &CB); |
814 | void visitCallBase(CallBase &CB); |
815 | void visitPHINode(PHINode &PN); |
816 | void visitExtractElementInst(ExtractElementInst &I); |
817 | void visitInsertElementInst(InsertElementInst &I); |
818 | void visitShuffleVectorInst(ShuffleVectorInst &I); |
819 | void visitExtractValueInst(ExtractValueInst &I); |
820 | void visitInsertValueInst(InsertValueInst &I); |
821 | void visitAllocaInst(AllocaInst &I); |
822 | void visitSelectInst(SelectInst &I); |
823 | void visitMemSetInst(MemSetInst &I); |
824 | void visitMemTransferInst(MemTransferInst &I); |
825 | void visitBranchInst(BranchInst &BR); |
826 | void visitSwitchInst(SwitchInst &SW); |
827 | |
828 | private: |
829 | void visitCASOrRMW(Align InstAlignment, Instruction &I); |
830 | |
831 | // Returns false when this is an invoke of a custom function. |
832 | bool visitWrappedCallBase(Function &F, CallBase &CB); |
833 | |
834 | // Combines origins for all of I's operands. |
835 | void visitInstOperandOrigins(Instruction &I); |
836 | |
837 | void addShadowArguments(Function &F, CallBase &CB, std::vector<Value *> &Args, |
838 | IRBuilder<> &IRB); |
839 | |
840 | void addOriginArguments(Function &F, CallBase &CB, std::vector<Value *> &Args, |
841 | IRBuilder<> &IRB); |
842 | |
843 | Value *makeAddAcquireOrderingTable(IRBuilder<> &IRB); |
844 | Value *makeAddReleaseOrderingTable(IRBuilder<> &IRB); |
845 | }; |
846 | |
847 | bool LibAtomicFunction(const Function &F) { |
848 | // This is a bit of a hack because TargetLibraryInfo is a function pass. |
849 | // The DFSan pass would need to be refactored to be function pass oriented |
850 | // (like MSan is) in order to fit together nicely with TargetLibraryInfo. |
851 | // We need this check to prevent them from being instrumented, or wrapped. |
852 | // Match on name and number of arguments. |
853 | if (!F.hasName() || F.isVarArg()) |
854 | return false; |
855 | switch (F.arg_size()) { |
856 | case 4: |
857 | return F.getName() == "__atomic_load" || F.getName() == "__atomic_store" ; |
858 | case 5: |
859 | return F.getName() == "__atomic_exchange" ; |
860 | case 6: |
861 | return F.getName() == "__atomic_compare_exchange" ; |
862 | default: |
863 | return false; |
864 | } |
865 | } |
866 | |
867 | } // end anonymous namespace |
868 | |
869 | DataFlowSanitizer::DataFlowSanitizer( |
870 | const std::vector<std::string> &ABIListFiles) { |
871 | std::vector<std::string> AllABIListFiles(std::move(ABIListFiles)); |
872 | llvm::append_range(C&: AllABIListFiles, R&: ClABIListFiles); |
873 | // FIXME: should we propagate vfs::FileSystem to this constructor? |
874 | ABIList.set( |
875 | SpecialCaseList::createOrDie(Paths: AllABIListFiles, FS&: *vfs::getRealFileSystem())); |
876 | |
877 | CombineTaintLookupTableNames.insert_range(R&: ClCombineTaintLookupTables); |
878 | } |
879 | |
880 | TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) { |
881 | SmallVector<Type *, 4> ArgTypes; |
882 | |
883 | // Some parameters of the custom function being constructed are |
884 | // parameters of T. Record the mapping from parameters of T to |
885 | // parameters of the custom function, so that parameter attributes |
886 | // at call sites can be updated. |
887 | std::vector<unsigned> ArgumentIndexMapping; |
888 | for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) { |
889 | Type *ParamType = T->getParamType(i: I); |
890 | ArgumentIndexMapping.push_back(x: ArgTypes.size()); |
891 | ArgTypes.push_back(Elt: ParamType); |
892 | } |
893 | for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) |
894 | ArgTypes.push_back(Elt: PrimitiveShadowTy); |
895 | if (T->isVarArg()) |
896 | ArgTypes.push_back(Elt: PrimitiveShadowPtrTy); |
897 | Type *RetType = T->getReturnType(); |
898 | if (!RetType->isVoidTy()) |
899 | ArgTypes.push_back(Elt: PrimitiveShadowPtrTy); |
900 | |
901 | if (shouldTrackOrigins()) { |
902 | for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) |
903 | ArgTypes.push_back(Elt: OriginTy); |
904 | if (T->isVarArg()) |
905 | ArgTypes.push_back(Elt: OriginPtrTy); |
906 | if (!RetType->isVoidTy()) |
907 | ArgTypes.push_back(Elt: OriginPtrTy); |
908 | } |
909 | |
910 | return TransformedFunction( |
911 | T, FunctionType::get(Result: T->getReturnType(), Params: ArgTypes, isVarArg: T->isVarArg()), |
912 | ArgumentIndexMapping); |
913 | } |
914 | |
915 | bool DataFlowSanitizer::isZeroShadow(Value *V) { |
916 | Type *T = V->getType(); |
917 | if (!isa<ArrayType>(Val: T) && !isa<StructType>(Val: T)) { |
918 | if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val: V)) |
919 | return CI->isZero(); |
920 | return false; |
921 | } |
922 | |
923 | return isa<ConstantAggregateZero>(Val: V); |
924 | } |
925 | |
926 | bool DataFlowSanitizer::hasLoadSizeForFastPath(uint64_t Size) { |
927 | uint64_t ShadowSize = Size * ShadowWidthBytes; |
928 | return ShadowSize % 8 == 0 || ShadowSize == 4; |
929 | } |
930 | |
931 | bool DataFlowSanitizer::shouldTrackOrigins() { |
932 | static const bool ShouldTrackOrigins = ClTrackOrigins; |
933 | return ShouldTrackOrigins; |
934 | } |
935 | |
936 | Constant *DataFlowSanitizer::getZeroShadow(Type *OrigTy) { |
937 | if (!isa<ArrayType>(Val: OrigTy) && !isa<StructType>(Val: OrigTy)) |
938 | return ZeroPrimitiveShadow; |
939 | Type *ShadowTy = getShadowTy(OrigTy); |
940 | return ConstantAggregateZero::get(Ty: ShadowTy); |
941 | } |
942 | |
943 | Constant *DataFlowSanitizer::getZeroShadow(Value *V) { |
944 | return getZeroShadow(OrigTy: V->getType()); |
945 | } |
946 | |
947 | static Value *expandFromPrimitiveShadowRecursive( |
948 | Value *Shadow, SmallVector<unsigned, 4> &Indices, Type *SubShadowTy, |
949 | Value *PrimitiveShadow, IRBuilder<> &IRB) { |
950 | if (!isa<ArrayType>(Val: SubShadowTy) && !isa<StructType>(Val: SubShadowTy)) |
951 | return IRB.CreateInsertValue(Agg: Shadow, Val: PrimitiveShadow, Idxs: Indices); |
952 | |
953 | if (ArrayType *AT = dyn_cast<ArrayType>(Val: SubShadowTy)) { |
954 | for (unsigned Idx = 0; Idx < AT->getNumElements(); Idx++) { |
955 | Indices.push_back(Elt: Idx); |
956 | Shadow = expandFromPrimitiveShadowRecursive( |
957 | Shadow, Indices, SubShadowTy: AT->getElementType(), PrimitiveShadow, IRB); |
958 | Indices.pop_back(); |
959 | } |
960 | return Shadow; |
961 | } |
962 | |
963 | if (StructType *ST = dyn_cast<StructType>(Val: SubShadowTy)) { |
964 | for (unsigned Idx = 0; Idx < ST->getNumElements(); Idx++) { |
965 | Indices.push_back(Elt: Idx); |
966 | Shadow = expandFromPrimitiveShadowRecursive( |
967 | Shadow, Indices, SubShadowTy: ST->getElementType(N: Idx), PrimitiveShadow, IRB); |
968 | Indices.pop_back(); |
969 | } |
970 | return Shadow; |
971 | } |
972 | llvm_unreachable("Unexpected shadow type" ); |
973 | } |
974 | |
975 | bool DFSanFunction::shouldInstrumentWithCall() { |
976 | return ClInstrumentWithCallThreshold >= 0 && |
977 | NumOriginStores >= ClInstrumentWithCallThreshold; |
978 | } |
979 | |
980 | Value *DFSanFunction::expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow, |
981 | BasicBlock::iterator Pos) { |
982 | Type *ShadowTy = DFS.getShadowTy(OrigTy: T); |
983 | |
984 | if (!isa<ArrayType>(Val: ShadowTy) && !isa<StructType>(Val: ShadowTy)) |
985 | return PrimitiveShadow; |
986 | |
987 | if (DFS.isZeroShadow(V: PrimitiveShadow)) |
988 | return DFS.getZeroShadow(OrigTy: ShadowTy); |
989 | |
990 | IRBuilder<> IRB(Pos->getParent(), Pos); |
991 | SmallVector<unsigned, 4> Indices; |
992 | Value *Shadow = UndefValue::get(T: ShadowTy); |
993 | Shadow = expandFromPrimitiveShadowRecursive(Shadow, Indices, SubShadowTy: ShadowTy, |
994 | PrimitiveShadow, IRB); |
995 | |
996 | // Caches the primitive shadow value that built the shadow value. |
997 | CachedCollapsedShadows[Shadow] = PrimitiveShadow; |
998 | return Shadow; |
999 | } |
1000 | |
1001 | template <class AggregateType> |
1002 | Value *DFSanFunction::collapseAggregateShadow(AggregateType *AT, Value *Shadow, |
1003 | IRBuilder<> &IRB) { |
1004 | if (!AT->getNumElements()) |
1005 | return DFS.ZeroPrimitiveShadow; |
1006 | |
1007 | Value *FirstItem = IRB.CreateExtractValue(Agg: Shadow, Idxs: 0); |
1008 | Value *Aggregator = collapseToPrimitiveShadow(Shadow: FirstItem, IRB); |
1009 | |
1010 | for (unsigned Idx = 1; Idx < AT->getNumElements(); Idx++) { |
1011 | Value *ShadowItem = IRB.CreateExtractValue(Agg: Shadow, Idxs: Idx); |
1012 | Value *ShadowInner = collapseToPrimitiveShadow(Shadow: ShadowItem, IRB); |
1013 | Aggregator = IRB.CreateOr(LHS: Aggregator, RHS: ShadowInner); |
1014 | } |
1015 | return Aggregator; |
1016 | } |
1017 | |
1018 | Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow, |
1019 | IRBuilder<> &IRB) { |
1020 | Type *ShadowTy = Shadow->getType(); |
1021 | if (!isa<ArrayType>(Val: ShadowTy) && !isa<StructType>(Val: ShadowTy)) |
1022 | return Shadow; |
1023 | if (ArrayType *AT = dyn_cast<ArrayType>(Val: ShadowTy)) |
1024 | return collapseAggregateShadow<>(AT, Shadow, IRB); |
1025 | if (StructType *ST = dyn_cast<StructType>(Val: ShadowTy)) |
1026 | return collapseAggregateShadow<>(AT: ST, Shadow, IRB); |
1027 | llvm_unreachable("Unexpected shadow type" ); |
1028 | } |
1029 | |
1030 | Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow, |
1031 | BasicBlock::iterator Pos) { |
1032 | Type *ShadowTy = Shadow->getType(); |
1033 | if (!isa<ArrayType>(Val: ShadowTy) && !isa<StructType>(Val: ShadowTy)) |
1034 | return Shadow; |
1035 | |
1036 | // Checks if the cached collapsed shadow value dominates Pos. |
1037 | Value *&CS = CachedCollapsedShadows[Shadow]; |
1038 | if (CS && DT.dominates(Def: CS, User: Pos)) |
1039 | return CS; |
1040 | |
1041 | IRBuilder<> IRB(Pos->getParent(), Pos); |
1042 | Value *PrimitiveShadow = collapseToPrimitiveShadow(Shadow, IRB); |
1043 | // Caches the converted primitive shadow value. |
1044 | CS = PrimitiveShadow; |
1045 | return PrimitiveShadow; |
1046 | } |
1047 | |
1048 | void DFSanFunction::addConditionalCallbacksIfEnabled(Instruction &I, |
1049 | Value *Condition) { |
1050 | if (!ClConditionalCallbacks) { |
1051 | return; |
1052 | } |
1053 | IRBuilder<> IRB(&I); |
1054 | Value *CondShadow = getShadow(V: Condition); |
1055 | CallInst *CI; |
1056 | if (DFS.shouldTrackOrigins()) { |
1057 | Value *CondOrigin = getOrigin(V: Condition); |
1058 | CI = IRB.CreateCall(Callee: DFS.DFSanConditionalCallbackOriginFn, |
1059 | Args: {CondShadow, CondOrigin}); |
1060 | } else { |
1061 | CI = IRB.CreateCall(Callee: DFS.DFSanConditionalCallbackFn, Args: {CondShadow}); |
1062 | } |
1063 | CI->addParamAttr(ArgNo: 0, Kind: Attribute::ZExt); |
1064 | } |
1065 | |
1066 | void DFSanFunction::addReachesFunctionCallbacksIfEnabled(IRBuilder<> &IRB, |
1067 | Instruction &I, |
1068 | Value *Data) { |
1069 | if (!ClReachesFunctionCallbacks) { |
1070 | return; |
1071 | } |
1072 | const DebugLoc &dbgloc = I.getDebugLoc(); |
1073 | Value *DataShadow = collapseToPrimitiveShadow(Shadow: getShadow(V: Data), IRB); |
1074 | ConstantInt *CILine; |
1075 | llvm::Value *FilePathPtr; |
1076 | |
1077 | if (dbgloc.get() == nullptr) { |
1078 | CILine = llvm::ConstantInt::get(Context&: I.getContext(), V: llvm::APInt(32, 0)); |
1079 | FilePathPtr = IRB.CreateGlobalString( |
1080 | Str: I.getFunction()->getParent()->getSourceFileName()); |
1081 | } else { |
1082 | CILine = llvm::ConstantInt::get(Context&: I.getContext(), |
1083 | V: llvm::APInt(32, dbgloc.getLine())); |
1084 | FilePathPtr = IRB.CreateGlobalString(Str: dbgloc->getFilename()); |
1085 | } |
1086 | |
1087 | llvm::Value *FunctionNamePtr = |
1088 | IRB.CreateGlobalString(Str: I.getFunction()->getName()); |
1089 | |
1090 | CallInst *CB; |
1091 | std::vector<Value *> args; |
1092 | |
1093 | if (DFS.shouldTrackOrigins()) { |
1094 | Value *DataOrigin = getOrigin(V: Data); |
1095 | args = { DataShadow, DataOrigin, FilePathPtr, CILine, FunctionNamePtr }; |
1096 | CB = IRB.CreateCall(Callee: DFS.DFSanReachesFunctionCallbackOriginFn, Args: args); |
1097 | } else { |
1098 | args = { DataShadow, FilePathPtr, CILine, FunctionNamePtr }; |
1099 | CB = IRB.CreateCall(Callee: DFS.DFSanReachesFunctionCallbackFn, Args: args); |
1100 | } |
1101 | CB->addParamAttr(ArgNo: 0, Kind: Attribute::ZExt); |
1102 | CB->setDebugLoc(dbgloc); |
1103 | } |
1104 | |
1105 | Type *DataFlowSanitizer::getShadowTy(Type *OrigTy) { |
1106 | if (!OrigTy->isSized()) |
1107 | return PrimitiveShadowTy; |
1108 | if (isa<IntegerType>(Val: OrigTy)) |
1109 | return PrimitiveShadowTy; |
1110 | if (isa<VectorType>(Val: OrigTy)) |
1111 | return PrimitiveShadowTy; |
1112 | if (ArrayType *AT = dyn_cast<ArrayType>(Val: OrigTy)) |
1113 | return ArrayType::get(ElementType: getShadowTy(OrigTy: AT->getElementType()), |
1114 | NumElements: AT->getNumElements()); |
1115 | if (StructType *ST = dyn_cast<StructType>(Val: OrigTy)) { |
1116 | SmallVector<Type *, 4> Elements; |
1117 | for (unsigned I = 0, N = ST->getNumElements(); I < N; ++I) |
1118 | Elements.push_back(Elt: getShadowTy(OrigTy: ST->getElementType(N: I))); |
1119 | return StructType::get(Context&: *Ctx, Elements); |
1120 | } |
1121 | return PrimitiveShadowTy; |
1122 | } |
1123 | |
1124 | Type *DataFlowSanitizer::getShadowTy(Value *V) { |
1125 | return getShadowTy(OrigTy: V->getType()); |
1126 | } |
1127 | |
1128 | bool DataFlowSanitizer::initializeModule(Module &M) { |
1129 | Triple TargetTriple(M.getTargetTriple()); |
1130 | const DataLayout &DL = M.getDataLayout(); |
1131 | |
1132 | if (TargetTriple.getOS() != Triple::Linux) |
1133 | report_fatal_error(reason: "unsupported operating system" ); |
1134 | switch (TargetTriple.getArch()) { |
1135 | case Triple::aarch64: |
1136 | MapParams = &Linux_AArch64_MemoryMapParams; |
1137 | break; |
1138 | case Triple::x86_64: |
1139 | MapParams = &Linux_X86_64_MemoryMapParams; |
1140 | break; |
1141 | case Triple::loongarch64: |
1142 | MapParams = &Linux_LoongArch64_MemoryMapParams; |
1143 | break; |
1144 | default: |
1145 | report_fatal_error(reason: "unsupported architecture" ); |
1146 | } |
1147 | |
1148 | Mod = &M; |
1149 | Ctx = &M.getContext(); |
1150 | Int8Ptr = PointerType::getUnqual(C&: *Ctx); |
1151 | OriginTy = IntegerType::get(C&: *Ctx, NumBits: OriginWidthBits); |
1152 | OriginPtrTy = PointerType::getUnqual(C&: *Ctx); |
1153 | PrimitiveShadowTy = IntegerType::get(C&: *Ctx, NumBits: ShadowWidthBits); |
1154 | PrimitiveShadowPtrTy = PointerType::getUnqual(C&: *Ctx); |
1155 | IntptrTy = DL.getIntPtrType(C&: *Ctx); |
1156 | ZeroPrimitiveShadow = ConstantInt::getSigned(Ty: PrimitiveShadowTy, V: 0); |
1157 | ZeroOrigin = ConstantInt::getSigned(Ty: OriginTy, V: 0); |
1158 | |
1159 | Type *DFSanUnionLoadArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; |
1160 | DFSanUnionLoadFnTy = FunctionType::get(Result: PrimitiveShadowTy, Params: DFSanUnionLoadArgs, |
1161 | /*isVarArg=*/false); |
1162 | Type *DFSanLoadLabelAndOriginArgs[2] = {Int8Ptr, IntptrTy}; |
1163 | DFSanLoadLabelAndOriginFnTy = |
1164 | FunctionType::get(Result: IntegerType::get(C&: *Ctx, NumBits: 64), Params: DFSanLoadLabelAndOriginArgs, |
1165 | /*isVarArg=*/false); |
1166 | DFSanUnimplementedFnTy = FunctionType::get( |
1167 | Result: Type::getVoidTy(C&: *Ctx), Params: PointerType::getUnqual(C&: *Ctx), /*isVarArg=*/false); |
1168 | Type *DFSanWrapperExternWeakNullArgs[2] = {Int8Ptr, Int8Ptr}; |
1169 | DFSanWrapperExternWeakNullFnTy = |
1170 | FunctionType::get(Result: Type::getVoidTy(C&: *Ctx), Params: DFSanWrapperExternWeakNullArgs, |
1171 | /*isVarArg=*/false); |
1172 | Type *DFSanSetLabelArgs[4] = {PrimitiveShadowTy, OriginTy, |
1173 | PointerType::getUnqual(C&: *Ctx), IntptrTy}; |
1174 | DFSanSetLabelFnTy = FunctionType::get(Result: Type::getVoidTy(C&: *Ctx), |
1175 | Params: DFSanSetLabelArgs, /*isVarArg=*/false); |
1176 | DFSanNonzeroLabelFnTy = FunctionType::get(Result: Type::getVoidTy(C&: *Ctx), Params: {}, |
1177 | /*isVarArg=*/false); |
1178 | DFSanVarargWrapperFnTy = FunctionType::get( |
1179 | Result: Type::getVoidTy(C&: *Ctx), Params: PointerType::getUnqual(C&: *Ctx), /*isVarArg=*/false); |
1180 | DFSanConditionalCallbackFnTy = |
1181 | FunctionType::get(Result: Type::getVoidTy(C&: *Ctx), Params: PrimitiveShadowTy, |
1182 | /*isVarArg=*/false); |
1183 | Type *DFSanConditionalCallbackOriginArgs[2] = {PrimitiveShadowTy, OriginTy}; |
1184 | DFSanConditionalCallbackOriginFnTy = FunctionType::get( |
1185 | Result: Type::getVoidTy(C&: *Ctx), Params: DFSanConditionalCallbackOriginArgs, |
1186 | /*isVarArg=*/false); |
1187 | Type *DFSanReachesFunctionCallbackArgs[4] = {PrimitiveShadowTy, Int8Ptr, |
1188 | OriginTy, Int8Ptr}; |
1189 | DFSanReachesFunctionCallbackFnTy = |
1190 | FunctionType::get(Result: Type::getVoidTy(C&: *Ctx), Params: DFSanReachesFunctionCallbackArgs, |
1191 | /*isVarArg=*/false); |
1192 | Type *DFSanReachesFunctionCallbackOriginArgs[5] = { |
1193 | PrimitiveShadowTy, OriginTy, Int8Ptr, OriginTy, Int8Ptr}; |
1194 | DFSanReachesFunctionCallbackOriginFnTy = FunctionType::get( |
1195 | Result: Type::getVoidTy(C&: *Ctx), Params: DFSanReachesFunctionCallbackOriginArgs, |
1196 | /*isVarArg=*/false); |
1197 | DFSanCmpCallbackFnTy = |
1198 | FunctionType::get(Result: Type::getVoidTy(C&: *Ctx), Params: PrimitiveShadowTy, |
1199 | /*isVarArg=*/false); |
1200 | DFSanChainOriginFnTy = |
1201 | FunctionType::get(Result: OriginTy, Params: OriginTy, /*isVarArg=*/false); |
1202 | Type *DFSanChainOriginIfTaintedArgs[2] = {PrimitiveShadowTy, OriginTy}; |
1203 | DFSanChainOriginIfTaintedFnTy = FunctionType::get( |
1204 | Result: OriginTy, Params: DFSanChainOriginIfTaintedArgs, /*isVarArg=*/false); |
1205 | Type *DFSanMaybeStoreOriginArgs[4] = {IntegerType::get(C&: *Ctx, NumBits: ShadowWidthBits), |
1206 | Int8Ptr, IntptrTy, OriginTy}; |
1207 | DFSanMaybeStoreOriginFnTy = FunctionType::get( |
1208 | Result: Type::getVoidTy(C&: *Ctx), Params: DFSanMaybeStoreOriginArgs, /*isVarArg=*/false); |
1209 | Type *DFSanMemOriginTransferArgs[3] = {Int8Ptr, Int8Ptr, IntptrTy}; |
1210 | DFSanMemOriginTransferFnTy = FunctionType::get( |
1211 | Result: Type::getVoidTy(C&: *Ctx), Params: DFSanMemOriginTransferArgs, /*isVarArg=*/false); |
1212 | Type *DFSanMemShadowOriginTransferArgs[3] = {Int8Ptr, Int8Ptr, IntptrTy}; |
1213 | DFSanMemShadowOriginTransferFnTy = |
1214 | FunctionType::get(Result: Type::getVoidTy(C&: *Ctx), Params: DFSanMemShadowOriginTransferArgs, |
1215 | /*isVarArg=*/false); |
1216 | Type *DFSanMemShadowOriginConditionalExchangeArgs[5] = { |
1217 | IntegerType::get(C&: *Ctx, NumBits: 8), Int8Ptr, Int8Ptr, Int8Ptr, IntptrTy}; |
1218 | DFSanMemShadowOriginConditionalExchangeFnTy = FunctionType::get( |
1219 | Result: Type::getVoidTy(C&: *Ctx), Params: DFSanMemShadowOriginConditionalExchangeArgs, |
1220 | /*isVarArg=*/false); |
1221 | Type *DFSanLoadStoreCallbackArgs[2] = {PrimitiveShadowTy, Int8Ptr}; |
1222 | DFSanLoadStoreCallbackFnTy = |
1223 | FunctionType::get(Result: Type::getVoidTy(C&: *Ctx), Params: DFSanLoadStoreCallbackArgs, |
1224 | /*isVarArg=*/false); |
1225 | Type *DFSanMemTransferCallbackArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; |
1226 | DFSanMemTransferCallbackFnTy = |
1227 | FunctionType::get(Result: Type::getVoidTy(C&: *Ctx), Params: DFSanMemTransferCallbackArgs, |
1228 | /*isVarArg=*/false); |
1229 | |
1230 | ColdCallWeights = MDBuilder(*Ctx).createUnlikelyBranchWeights(); |
1231 | OriginStoreWeights = MDBuilder(*Ctx).createUnlikelyBranchWeights(); |
1232 | return true; |
1233 | } |
1234 | |
1235 | bool DataFlowSanitizer::isInstrumented(const Function *F) { |
1236 | return !ABIList.isIn(F: *F, Category: "uninstrumented" ); |
1237 | } |
1238 | |
1239 | bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) { |
1240 | return !ABIList.isIn(GA: *GA, Category: "uninstrumented" ); |
1241 | } |
1242 | |
1243 | bool DataFlowSanitizer::isForceZeroLabels(const Function *F) { |
1244 | return ABIList.isIn(F: *F, Category: "force_zero_labels" ); |
1245 | } |
1246 | |
1247 | DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) { |
1248 | if (ABIList.isIn(F: *F, Category: "functional" )) |
1249 | return WK_Functional; |
1250 | if (ABIList.isIn(F: *F, Category: "discard" )) |
1251 | return WK_Discard; |
1252 | if (ABIList.isIn(F: *F, Category: "custom" )) |
1253 | return WK_Custom; |
1254 | |
1255 | return WK_Warning; |
1256 | } |
1257 | |
1258 | void DataFlowSanitizer::addGlobalNameSuffix(GlobalValue *GV) { |
1259 | std::string GVName = std::string(GV->getName()), Suffix = ".dfsan" ; |
1260 | GV->setName(GVName + Suffix); |
1261 | |
1262 | // Try to change the name of the function in module inline asm. We only do |
1263 | // this for specific asm directives, currently only ".symver", to try to avoid |
1264 | // corrupting asm which happens to contain the symbol name as a substring. |
1265 | // Note that the substitution for .symver assumes that the versioned symbol |
1266 | // also has an instrumented name. |
1267 | std::string Asm = GV->getParent()->getModuleInlineAsm(); |
1268 | std::string SearchStr = ".symver " + GVName + "," ; |
1269 | size_t Pos = Asm.find(str: SearchStr); |
1270 | if (Pos != std::string::npos) { |
1271 | Asm.replace(pos: Pos, n: SearchStr.size(), str: ".symver " + GVName + Suffix + "," ); |
1272 | Pos = Asm.find(c: '@'); |
1273 | |
1274 | if (Pos == std::string::npos) |
1275 | report_fatal_error(reason: Twine("unsupported .symver: " , Asm)); |
1276 | |
1277 | Asm.replace(pos: Pos, n: 1, str: Suffix + "@" ); |
1278 | GV->getParent()->setModuleInlineAsm(Asm); |
1279 | } |
1280 | } |
1281 | |
1282 | void DataFlowSanitizer::buildExternWeakCheckIfNeeded(IRBuilder<> &IRB, |
1283 | Function *F) { |
1284 | // If the function we are wrapping was ExternWeak, it may be null. |
1285 | // The original code before calling this wrapper may have checked for null, |
1286 | // but replacing with a known-to-not-be-null wrapper can break this check. |
1287 | // When replacing uses of the extern weak function with the wrapper we try |
1288 | // to avoid replacing uses in conditionals, but this is not perfect. |
1289 | // In the case where we fail, and accidentally optimize out a null check |
1290 | // for a extern weak function, add a check here to help identify the issue. |
1291 | if (GlobalValue::isExternalWeakLinkage(Linkage: F->getLinkage())) { |
1292 | std::vector<Value *> Args; |
1293 | Args.push_back(x: F); |
1294 | Args.push_back(x: IRB.CreateGlobalString(Str: F->getName())); |
1295 | IRB.CreateCall(Callee: DFSanWrapperExternWeakNullFn, Args); |
1296 | } |
1297 | } |
1298 | |
1299 | Function * |
1300 | DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName, |
1301 | GlobalValue::LinkageTypes NewFLink, |
1302 | FunctionType *NewFT) { |
1303 | FunctionType *FT = F->getFunctionType(); |
1304 | Function *NewF = Function::Create(Ty: NewFT, Linkage: NewFLink, AddrSpace: F->getAddressSpace(), |
1305 | N: NewFName, M: F->getParent()); |
1306 | NewF->copyAttributesFrom(Src: F); |
1307 | NewF->removeRetAttrs(Attrs: AttributeFuncs::typeIncompatible( |
1308 | Ty: NewFT->getReturnType(), AS: NewF->getAttributes().getRetAttrs())); |
1309 | |
1310 | BasicBlock *BB = BasicBlock::Create(Context&: *Ctx, Name: "entry" , Parent: NewF); |
1311 | if (F->isVarArg()) { |
1312 | NewF->removeFnAttr(Kind: "split-stack" ); |
1313 | CallInst::Create(Func: DFSanVarargWrapperFn, |
1314 | Args: IRBuilder<>(BB).CreateGlobalString(Str: F->getName()), NameStr: "" , InsertBefore: BB); |
1315 | new UnreachableInst(*Ctx, BB); |
1316 | } else { |
1317 | auto ArgIt = pointer_iterator<Argument *>(NewF->arg_begin()); |
1318 | std::vector<Value *> Args(ArgIt, ArgIt + FT->getNumParams()); |
1319 | |
1320 | CallInst *CI = CallInst::Create(Func: F, Args, NameStr: "" , InsertBefore: BB); |
1321 | if (FT->getReturnType()->isVoidTy()) |
1322 | ReturnInst::Create(C&: *Ctx, InsertAtEnd: BB); |
1323 | else |
1324 | ReturnInst::Create(C&: *Ctx, retVal: CI, InsertBefore: BB); |
1325 | } |
1326 | |
1327 | return NewF; |
1328 | } |
1329 | |
1330 | // Initialize DataFlowSanitizer runtime functions and declare them in the module |
1331 | void DataFlowSanitizer::initializeRuntimeFunctions(Module &M) { |
1332 | LLVMContext &C = M.getContext(); |
1333 | { |
1334 | AttributeList AL; |
1335 | AL = AL.addFnAttribute(C, Kind: Attribute::NoUnwind); |
1336 | AL = AL.addFnAttribute( |
1337 | C, Attr: Attribute::getWithMemoryEffects(Context&: C, ME: MemoryEffects::readOnly())); |
1338 | AL = AL.addRetAttribute(C, Kind: Attribute::ZExt); |
1339 | DFSanUnionLoadFn = |
1340 | Mod->getOrInsertFunction(Name: "__dfsan_union_load" , T: DFSanUnionLoadFnTy, AttributeList: AL); |
1341 | } |
1342 | { |
1343 | AttributeList AL; |
1344 | AL = AL.addFnAttribute(C, Kind: Attribute::NoUnwind); |
1345 | AL = AL.addFnAttribute( |
1346 | C, Attr: Attribute::getWithMemoryEffects(Context&: C, ME: MemoryEffects::readOnly())); |
1347 | AL = AL.addRetAttribute(C, Kind: Attribute::ZExt); |
1348 | DFSanLoadLabelAndOriginFn = Mod->getOrInsertFunction( |
1349 | Name: "__dfsan_load_label_and_origin" , T: DFSanLoadLabelAndOriginFnTy, AttributeList: AL); |
1350 | } |
1351 | DFSanUnimplementedFn = |
1352 | Mod->getOrInsertFunction(Name: "__dfsan_unimplemented" , T: DFSanUnimplementedFnTy); |
1353 | DFSanWrapperExternWeakNullFn = Mod->getOrInsertFunction( |
1354 | Name: "__dfsan_wrapper_extern_weak_null" , T: DFSanWrapperExternWeakNullFnTy); |
1355 | { |
1356 | AttributeList AL; |
1357 | AL = AL.addParamAttribute(C&: M.getContext(), ArgNo: 0, Kind: Attribute::ZExt); |
1358 | AL = AL.addParamAttribute(C&: M.getContext(), ArgNo: 1, Kind: Attribute::ZExt); |
1359 | DFSanSetLabelFn = |
1360 | Mod->getOrInsertFunction(Name: "__dfsan_set_label" , T: DFSanSetLabelFnTy, AttributeList: AL); |
1361 | } |
1362 | DFSanNonzeroLabelFn = |
1363 | Mod->getOrInsertFunction(Name: "__dfsan_nonzero_label" , T: DFSanNonzeroLabelFnTy); |
1364 | DFSanVarargWrapperFn = Mod->getOrInsertFunction(Name: "__dfsan_vararg_wrapper" , |
1365 | T: DFSanVarargWrapperFnTy); |
1366 | { |
1367 | AttributeList AL; |
1368 | AL = AL.addParamAttribute(C&: M.getContext(), ArgNo: 0, Kind: Attribute::ZExt); |
1369 | AL = AL.addRetAttribute(C&: M.getContext(), Kind: Attribute::ZExt); |
1370 | DFSanChainOriginFn = Mod->getOrInsertFunction(Name: "__dfsan_chain_origin" , |
1371 | T: DFSanChainOriginFnTy, AttributeList: AL); |
1372 | } |
1373 | { |
1374 | AttributeList AL; |
1375 | AL = AL.addParamAttribute(C&: M.getContext(), ArgNo: 0, Kind: Attribute::ZExt); |
1376 | AL = AL.addParamAttribute(C&: M.getContext(), ArgNo: 1, Kind: Attribute::ZExt); |
1377 | AL = AL.addRetAttribute(C&: M.getContext(), Kind: Attribute::ZExt); |
1378 | DFSanChainOriginIfTaintedFn = Mod->getOrInsertFunction( |
1379 | Name: "__dfsan_chain_origin_if_tainted" , T: DFSanChainOriginIfTaintedFnTy, AttributeList: AL); |
1380 | } |
1381 | DFSanMemOriginTransferFn = Mod->getOrInsertFunction( |
1382 | Name: "__dfsan_mem_origin_transfer" , T: DFSanMemOriginTransferFnTy); |
1383 | |
1384 | DFSanMemShadowOriginTransferFn = Mod->getOrInsertFunction( |
1385 | Name: "__dfsan_mem_shadow_origin_transfer" , T: DFSanMemShadowOriginTransferFnTy); |
1386 | |
1387 | DFSanMemShadowOriginConditionalExchangeFn = |
1388 | Mod->getOrInsertFunction(Name: "__dfsan_mem_shadow_origin_conditional_exchange" , |
1389 | T: DFSanMemShadowOriginConditionalExchangeFnTy); |
1390 | |
1391 | { |
1392 | AttributeList AL; |
1393 | AL = AL.addParamAttribute(C&: M.getContext(), ArgNo: 0, Kind: Attribute::ZExt); |
1394 | AL = AL.addParamAttribute(C&: M.getContext(), ArgNo: 3, Kind: Attribute::ZExt); |
1395 | DFSanMaybeStoreOriginFn = Mod->getOrInsertFunction( |
1396 | Name: "__dfsan_maybe_store_origin" , T: DFSanMaybeStoreOriginFnTy, AttributeList: AL); |
1397 | } |
1398 | |
1399 | DFSanRuntimeFunctions.insert( |
1400 | Ptr: DFSanUnionLoadFn.getCallee()->stripPointerCasts()); |
1401 | DFSanRuntimeFunctions.insert( |
1402 | Ptr: DFSanLoadLabelAndOriginFn.getCallee()->stripPointerCasts()); |
1403 | DFSanRuntimeFunctions.insert( |
1404 | Ptr: DFSanUnimplementedFn.getCallee()->stripPointerCasts()); |
1405 | DFSanRuntimeFunctions.insert( |
1406 | Ptr: DFSanWrapperExternWeakNullFn.getCallee()->stripPointerCasts()); |
1407 | DFSanRuntimeFunctions.insert( |
1408 | Ptr: DFSanSetLabelFn.getCallee()->stripPointerCasts()); |
1409 | DFSanRuntimeFunctions.insert( |
1410 | Ptr: DFSanNonzeroLabelFn.getCallee()->stripPointerCasts()); |
1411 | DFSanRuntimeFunctions.insert( |
1412 | Ptr: DFSanVarargWrapperFn.getCallee()->stripPointerCasts()); |
1413 | DFSanRuntimeFunctions.insert( |
1414 | Ptr: DFSanLoadCallbackFn.getCallee()->stripPointerCasts()); |
1415 | DFSanRuntimeFunctions.insert( |
1416 | Ptr: DFSanStoreCallbackFn.getCallee()->stripPointerCasts()); |
1417 | DFSanRuntimeFunctions.insert( |
1418 | Ptr: DFSanMemTransferCallbackFn.getCallee()->stripPointerCasts()); |
1419 | DFSanRuntimeFunctions.insert( |
1420 | Ptr: DFSanConditionalCallbackFn.getCallee()->stripPointerCasts()); |
1421 | DFSanRuntimeFunctions.insert( |
1422 | Ptr: DFSanConditionalCallbackOriginFn.getCallee()->stripPointerCasts()); |
1423 | DFSanRuntimeFunctions.insert( |
1424 | Ptr: DFSanReachesFunctionCallbackFn.getCallee()->stripPointerCasts()); |
1425 | DFSanRuntimeFunctions.insert( |
1426 | Ptr: DFSanReachesFunctionCallbackOriginFn.getCallee()->stripPointerCasts()); |
1427 | DFSanRuntimeFunctions.insert( |
1428 | Ptr: DFSanCmpCallbackFn.getCallee()->stripPointerCasts()); |
1429 | DFSanRuntimeFunctions.insert( |
1430 | Ptr: DFSanChainOriginFn.getCallee()->stripPointerCasts()); |
1431 | DFSanRuntimeFunctions.insert( |
1432 | Ptr: DFSanChainOriginIfTaintedFn.getCallee()->stripPointerCasts()); |
1433 | DFSanRuntimeFunctions.insert( |
1434 | Ptr: DFSanMemOriginTransferFn.getCallee()->stripPointerCasts()); |
1435 | DFSanRuntimeFunctions.insert( |
1436 | Ptr: DFSanMemShadowOriginTransferFn.getCallee()->stripPointerCasts()); |
1437 | DFSanRuntimeFunctions.insert( |
1438 | Ptr: DFSanMemShadowOriginConditionalExchangeFn.getCallee() |
1439 | ->stripPointerCasts()); |
1440 | DFSanRuntimeFunctions.insert( |
1441 | Ptr: DFSanMaybeStoreOriginFn.getCallee()->stripPointerCasts()); |
1442 | } |
1443 | |
1444 | // Initializes event callback functions and declare them in the module |
1445 | void DataFlowSanitizer::initializeCallbackFunctions(Module &M) { |
1446 | { |
1447 | AttributeList AL; |
1448 | AL = AL.addParamAttribute(C&: M.getContext(), ArgNo: 0, Kind: Attribute::ZExt); |
1449 | DFSanLoadCallbackFn = Mod->getOrInsertFunction( |
1450 | Name: "__dfsan_load_callback" , T: DFSanLoadStoreCallbackFnTy, AttributeList: AL); |
1451 | } |
1452 | { |
1453 | AttributeList AL; |
1454 | AL = AL.addParamAttribute(C&: M.getContext(), ArgNo: 0, Kind: Attribute::ZExt); |
1455 | DFSanStoreCallbackFn = Mod->getOrInsertFunction( |
1456 | Name: "__dfsan_store_callback" , T: DFSanLoadStoreCallbackFnTy, AttributeList: AL); |
1457 | } |
1458 | DFSanMemTransferCallbackFn = Mod->getOrInsertFunction( |
1459 | Name: "__dfsan_mem_transfer_callback" , T: DFSanMemTransferCallbackFnTy); |
1460 | { |
1461 | AttributeList AL; |
1462 | AL = AL.addParamAttribute(C&: M.getContext(), ArgNo: 0, Kind: Attribute::ZExt); |
1463 | DFSanCmpCallbackFn = Mod->getOrInsertFunction(Name: "__dfsan_cmp_callback" , |
1464 | T: DFSanCmpCallbackFnTy, AttributeList: AL); |
1465 | } |
1466 | { |
1467 | AttributeList AL; |
1468 | AL = AL.addParamAttribute(C&: M.getContext(), ArgNo: 0, Kind: Attribute::ZExt); |
1469 | DFSanConditionalCallbackFn = Mod->getOrInsertFunction( |
1470 | Name: "__dfsan_conditional_callback" , T: DFSanConditionalCallbackFnTy, AttributeList: AL); |
1471 | } |
1472 | { |
1473 | AttributeList AL; |
1474 | AL = AL.addParamAttribute(C&: M.getContext(), ArgNo: 0, Kind: Attribute::ZExt); |
1475 | DFSanConditionalCallbackOriginFn = |
1476 | Mod->getOrInsertFunction(Name: "__dfsan_conditional_callback_origin" , |
1477 | T: DFSanConditionalCallbackOriginFnTy, AttributeList: AL); |
1478 | } |
1479 | { |
1480 | AttributeList AL; |
1481 | AL = AL.addParamAttribute(C&: M.getContext(), ArgNo: 0, Kind: Attribute::ZExt); |
1482 | DFSanReachesFunctionCallbackFn = |
1483 | Mod->getOrInsertFunction(Name: "__dfsan_reaches_function_callback" , |
1484 | T: DFSanReachesFunctionCallbackFnTy, AttributeList: AL); |
1485 | } |
1486 | { |
1487 | AttributeList AL; |
1488 | AL = AL.addParamAttribute(C&: M.getContext(), ArgNo: 0, Kind: Attribute::ZExt); |
1489 | DFSanReachesFunctionCallbackOriginFn = |
1490 | Mod->getOrInsertFunction(Name: "__dfsan_reaches_function_callback_origin" , |
1491 | T: DFSanReachesFunctionCallbackOriginFnTy, AttributeList: AL); |
1492 | } |
1493 | } |
1494 | |
1495 | bool DataFlowSanitizer::runImpl( |
1496 | Module &M, llvm::function_ref<TargetLibraryInfo &(Function &)> GetTLI) { |
1497 | initializeModule(M); |
1498 | |
1499 | if (ABIList.isIn(M, Category: "skip" )) |
1500 | return false; |
1501 | |
1502 | const unsigned InitialGlobalSize = M.global_size(); |
1503 | const unsigned InitialModuleSize = M.size(); |
1504 | |
1505 | bool Changed = false; |
1506 | |
1507 | auto GetOrInsertGlobal = [this, &Changed](StringRef Name, |
1508 | Type *Ty) -> Constant * { |
1509 | GlobalVariable *G = Mod->getOrInsertGlobal(Name, Ty); |
1510 | Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel; |
1511 | G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); |
1512 | return G; |
1513 | }; |
1514 | |
1515 | // These globals must be kept in sync with the ones in dfsan.cpp. |
1516 | ArgTLS = |
1517 | GetOrInsertGlobal("__dfsan_arg_tls" , |
1518 | ArrayType::get(ElementType: Type::getInt64Ty(C&: *Ctx), NumElements: ArgTLSSize / 8)); |
1519 | RetvalTLS = GetOrInsertGlobal( |
1520 | "__dfsan_retval_tls" , |
1521 | ArrayType::get(ElementType: Type::getInt64Ty(C&: *Ctx), NumElements: RetvalTLSSize / 8)); |
1522 | ArgOriginTLSTy = ArrayType::get(ElementType: OriginTy, NumElements: NumOfElementsInArgOrgTLS); |
1523 | ArgOriginTLS = GetOrInsertGlobal("__dfsan_arg_origin_tls" , ArgOriginTLSTy); |
1524 | RetvalOriginTLS = GetOrInsertGlobal("__dfsan_retval_origin_tls" , OriginTy); |
1525 | |
1526 | (void)Mod->getOrInsertGlobal(Name: "__dfsan_track_origins" , Ty: OriginTy, CreateGlobalCallback: [&] { |
1527 | Changed = true; |
1528 | return new GlobalVariable( |
1529 | M, OriginTy, true, GlobalValue::WeakODRLinkage, |
1530 | ConstantInt::getSigned(Ty: OriginTy, |
1531 | V: shouldTrackOrigins() ? ClTrackOrigins : 0), |
1532 | "__dfsan_track_origins" ); |
1533 | }); |
1534 | |
1535 | initializeCallbackFunctions(M); |
1536 | initializeRuntimeFunctions(M); |
1537 | |
1538 | std::vector<Function *> FnsToInstrument; |
1539 | SmallPtrSet<Function *, 2> FnsWithNativeABI; |
1540 | SmallPtrSet<Function *, 2> FnsWithForceZeroLabel; |
1541 | SmallPtrSet<Constant *, 1> PersonalityFns; |
1542 | for (Function &F : M) |
1543 | if (!F.isIntrinsic() && !DFSanRuntimeFunctions.contains(Ptr: &F) && |
1544 | !LibAtomicFunction(F) && |
1545 | !F.hasFnAttribute(Kind: Attribute::DisableSanitizerInstrumentation)) { |
1546 | FnsToInstrument.push_back(x: &F); |
1547 | if (F.hasPersonalityFn()) |
1548 | PersonalityFns.insert(Ptr: F.getPersonalityFn()->stripPointerCasts()); |
1549 | } |
1550 | |
1551 | if (ClIgnorePersonalityRoutine) { |
1552 | for (auto *C : PersonalityFns) { |
1553 | assert(isa<Function>(C) && "Personality routine is not a function!" ); |
1554 | Function *F = cast<Function>(Val: C); |
1555 | if (!isInstrumented(F)) |
1556 | llvm::erase(C&: FnsToInstrument, V: F); |
1557 | } |
1558 | } |
1559 | |
1560 | // Give function aliases prefixes when necessary, and build wrappers where the |
1561 | // instrumentedness is inconsistent. |
1562 | for (GlobalAlias &GA : llvm::make_early_inc_range(Range: M.aliases())) { |
1563 | // Don't stop on weak. We assume people aren't playing games with the |
1564 | // instrumentedness of overridden weak aliases. |
1565 | auto *F = dyn_cast<Function>(Val: GA.getAliaseeObject()); |
1566 | if (!F) |
1567 | continue; |
1568 | |
1569 | bool GAInst = isInstrumented(GA: &GA), FInst = isInstrumented(F); |
1570 | if (GAInst && FInst) { |
1571 | addGlobalNameSuffix(GV: &GA); |
1572 | } else if (GAInst != FInst) { |
1573 | // Non-instrumented alias of an instrumented function, or vice versa. |
1574 | // Replace the alias with a native-ABI wrapper of the aliasee. The pass |
1575 | // below will take care of instrumenting it. |
1576 | Function *NewF = |
1577 | buildWrapperFunction(F, NewFName: "" , NewFLink: GA.getLinkage(), NewFT: F->getFunctionType()); |
1578 | GA.replaceAllUsesWith(V: NewF); |
1579 | NewF->takeName(V: &GA); |
1580 | GA.eraseFromParent(); |
1581 | FnsToInstrument.push_back(x: NewF); |
1582 | } |
1583 | } |
1584 | |
1585 | // TODO: This could be more precise. |
1586 | ReadOnlyNoneAttrs.addAttribute(Val: Attribute::Memory); |
1587 | |
1588 | // First, change the ABI of every function in the module. ABI-listed |
1589 | // functions keep their original ABI and get a wrapper function. |
1590 | for (std::vector<Function *>::iterator FI = FnsToInstrument.begin(), |
1591 | FE = FnsToInstrument.end(); |
1592 | FI != FE; ++FI) { |
1593 | Function &F = **FI; |
1594 | FunctionType *FT = F.getFunctionType(); |
1595 | |
1596 | bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() && |
1597 | FT->getReturnType()->isVoidTy()); |
1598 | |
1599 | if (isInstrumented(F: &F)) { |
1600 | if (isForceZeroLabels(F: &F)) |
1601 | FnsWithForceZeroLabel.insert(Ptr: &F); |
1602 | |
1603 | // Instrumented functions get a '.dfsan' suffix. This allows us to more |
1604 | // easily identify cases of mismatching ABIs. This naming scheme is |
1605 | // mangling-compatible (see Itanium ABI), using a vendor-specific suffix. |
1606 | addGlobalNameSuffix(GV: &F); |
1607 | } else if (!IsZeroArgsVoidRet || getWrapperKind(F: &F) == WK_Custom) { |
1608 | // Build a wrapper function for F. The wrapper simply calls F, and is |
1609 | // added to FnsToInstrument so that any instrumentation according to its |
1610 | // WrapperKind is done in the second pass below. |
1611 | |
1612 | // If the function being wrapped has local linkage, then preserve the |
1613 | // function's linkage in the wrapper function. |
1614 | GlobalValue::LinkageTypes WrapperLinkage = |
1615 | F.hasLocalLinkage() ? F.getLinkage() |
1616 | : GlobalValue::LinkOnceODRLinkage; |
1617 | |
1618 | Function *NewF = buildWrapperFunction( |
1619 | F: &F, |
1620 | NewFName: (shouldTrackOrigins() ? std::string("dfso$" ) : std::string("dfsw$" )) + |
1621 | std::string(F.getName()), |
1622 | NewFLink: WrapperLinkage, NewFT: FT); |
1623 | NewF->removeFnAttrs(Attrs: ReadOnlyNoneAttrs); |
1624 | |
1625 | // Extern weak functions can sometimes be null at execution time. |
1626 | // Code will sometimes check if an extern weak function is null. |
1627 | // This could look something like: |
1628 | // declare extern_weak i8 @my_func(i8) |
1629 | // br i1 icmp ne (i8 (i8)* @my_func, i8 (i8)* null), label %use_my_func, |
1630 | // label %avoid_my_func |
1631 | // The @"dfsw$my_func" wrapper is never null, so if we replace this use |
1632 | // in the comparison, the icmp will simplify to false and we have |
1633 | // accidentally optimized away a null check that is necessary. |
1634 | // This can lead to a crash when the null extern_weak my_func is called. |
1635 | // |
1636 | // To prevent (the most common pattern of) this problem, |
1637 | // do not replace uses in comparisons with the wrapper. |
1638 | // We definitely want to replace uses in call instructions. |
1639 | // Other uses (e.g. store the function address somewhere) might be |
1640 | // called or compared or both - this case may not be handled correctly. |
1641 | // We will default to replacing with wrapper in cases we are unsure. |
1642 | auto IsNotCmpUse = [](Use &U) -> bool { |
1643 | User *Usr = U.getUser(); |
1644 | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Val: Usr)) { |
1645 | // This is the most common case for icmp ne null |
1646 | if (CE->getOpcode() == Instruction::ICmp) { |
1647 | return false; |
1648 | } |
1649 | } |
1650 | if (Instruction *I = dyn_cast<Instruction>(Val: Usr)) { |
1651 | if (I->getOpcode() == Instruction::ICmp) { |
1652 | return false; |
1653 | } |
1654 | } |
1655 | return true; |
1656 | }; |
1657 | F.replaceUsesWithIf(New: NewF, ShouldReplace: IsNotCmpUse); |
1658 | |
1659 | UnwrappedFnMap[NewF] = &F; |
1660 | *FI = NewF; |
1661 | |
1662 | if (!F.isDeclaration()) { |
1663 | // This function is probably defining an interposition of an |
1664 | // uninstrumented function and hence needs to keep the original ABI. |
1665 | // But any functions it may call need to use the instrumented ABI, so |
1666 | // we instrument it in a mode which preserves the original ABI. |
1667 | FnsWithNativeABI.insert(Ptr: &F); |
1668 | |
1669 | // This code needs to rebuild the iterators, as they may be invalidated |
1670 | // by the push_back, taking care that the new range does not include |
1671 | // any functions added by this code. |
1672 | size_t N = FI - FnsToInstrument.begin(), |
1673 | Count = FE - FnsToInstrument.begin(); |
1674 | FnsToInstrument.push_back(x: &F); |
1675 | FI = FnsToInstrument.begin() + N; |
1676 | FE = FnsToInstrument.begin() + Count; |
1677 | } |
1678 | // Hopefully, nobody will try to indirectly call a vararg |
1679 | // function... yet. |
1680 | } else if (FT->isVarArg()) { |
1681 | UnwrappedFnMap[&F] = &F; |
1682 | *FI = nullptr; |
1683 | } |
1684 | } |
1685 | |
1686 | for (Function *F : FnsToInstrument) { |
1687 | if (!F || F->isDeclaration()) |
1688 | continue; |
1689 | |
1690 | removeUnreachableBlocks(F&: *F); |
1691 | |
1692 | DFSanFunction DFSF(*this, F, FnsWithNativeABI.count(Ptr: F), |
1693 | FnsWithForceZeroLabel.count(Ptr: F), GetTLI(*F)); |
1694 | |
1695 | if (ClReachesFunctionCallbacks) { |
1696 | // Add callback for arguments reaching this function. |
1697 | for (auto &FArg : F->args()) { |
1698 | Instruction *Next = &F->getEntryBlock().front(); |
1699 | Value *FArgShadow = DFSF.getShadow(V: &FArg); |
1700 | if (isZeroShadow(V: FArgShadow)) |
1701 | continue; |
1702 | if (Instruction *FArgShadowInst = dyn_cast<Instruction>(Val: FArgShadow)) { |
1703 | Next = FArgShadowInst->getNextNode(); |
1704 | } |
1705 | if (shouldTrackOrigins()) { |
1706 | if (Instruction *Origin = |
1707 | dyn_cast<Instruction>(Val: DFSF.getOrigin(V: &FArg))) { |
1708 | // Ensure IRB insertion point is after loads for shadow and origin. |
1709 | Instruction *OriginNext = Origin->getNextNode(); |
1710 | if (Next->comesBefore(Other: OriginNext)) { |
1711 | Next = OriginNext; |
1712 | } |
1713 | } |
1714 | } |
1715 | IRBuilder<> IRB(Next); |
1716 | DFSF.addReachesFunctionCallbacksIfEnabled(IRB, I&: *Next, Data: &FArg); |
1717 | } |
1718 | } |
1719 | |
1720 | // DFSanVisitor may create new basic blocks, which confuses df_iterator. |
1721 | // Build a copy of the list before iterating over it. |
1722 | SmallVector<BasicBlock *, 4> BBList(depth_first(G: &F->getEntryBlock())); |
1723 | |
1724 | for (BasicBlock *BB : BBList) { |
1725 | Instruction *Inst = &BB->front(); |
1726 | while (true) { |
1727 | // DFSanVisitor may split the current basic block, changing the current |
1728 | // instruction's next pointer and moving the next instruction to the |
1729 | // tail block from which we should continue. |
1730 | Instruction *Next = Inst->getNextNode(); |
1731 | // DFSanVisitor may delete Inst, so keep track of whether it was a |
1732 | // terminator. |
1733 | bool IsTerminator = Inst->isTerminator(); |
1734 | if (!DFSF.SkipInsts.count(V: Inst)) |
1735 | DFSanVisitor(DFSF).visit(I: Inst); |
1736 | if (IsTerminator) |
1737 | break; |
1738 | Inst = Next; |
1739 | } |
1740 | } |
1741 | |
1742 | // We will not necessarily be able to compute the shadow for every phi node |
1743 | // until we have visited every block. Therefore, the code that handles phi |
1744 | // nodes adds them to the PHIFixups list so that they can be properly |
1745 | // handled here. |
1746 | for (DFSanFunction::PHIFixupElement &P : DFSF.PHIFixups) { |
1747 | for (unsigned Val = 0, N = P.Phi->getNumIncomingValues(); Val != N; |
1748 | ++Val) { |
1749 | P.ShadowPhi->setIncomingValue( |
1750 | i: Val, V: DFSF.getShadow(V: P.Phi->getIncomingValue(i: Val))); |
1751 | if (P.OriginPhi) |
1752 | P.OriginPhi->setIncomingValue( |
1753 | i: Val, V: DFSF.getOrigin(V: P.Phi->getIncomingValue(i: Val))); |
1754 | } |
1755 | } |
1756 | |
1757 | // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy |
1758 | // places (i.e. instructions in basic blocks we haven't even begun visiting |
1759 | // yet). To make our life easier, do this work in a pass after the main |
1760 | // instrumentation. |
1761 | if (ClDebugNonzeroLabels) { |
1762 | for (Value *V : DFSF.NonZeroChecks) { |
1763 | BasicBlock::iterator Pos; |
1764 | if (Instruction *I = dyn_cast<Instruction>(Val: V)) |
1765 | Pos = std::next(x: I->getIterator()); |
1766 | else |
1767 | Pos = DFSF.F->getEntryBlock().begin(); |
1768 | while (isa<PHINode>(Val: Pos) || isa<AllocaInst>(Val: Pos)) |
1769 | Pos = std::next(x: Pos->getIterator()); |
1770 | IRBuilder<> IRB(Pos->getParent(), Pos); |
1771 | Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow(Shadow: V, Pos); |
1772 | Value *Ne = |
1773 | IRB.CreateICmpNE(LHS: PrimitiveShadow, RHS: DFSF.DFS.ZeroPrimitiveShadow); |
1774 | BranchInst *BI = cast<BranchInst>(Val: SplitBlockAndInsertIfThen( |
1775 | Cond: Ne, SplitBefore: Pos, /*Unreachable=*/false, BranchWeights: ColdCallWeights)); |
1776 | IRBuilder<> ThenIRB(BI); |
1777 | ThenIRB.CreateCall(Callee: DFSF.DFS.DFSanNonzeroLabelFn, Args: {}); |
1778 | } |
1779 | } |
1780 | } |
1781 | |
1782 | return Changed || !FnsToInstrument.empty() || |
1783 | M.global_size() != InitialGlobalSize || M.size() != InitialModuleSize; |
1784 | } |
1785 | |
1786 | Value *DFSanFunction::getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB) { |
1787 | Value *Base = IRB.CreatePointerCast(V: DFS.ArgTLS, DestTy: DFS.IntptrTy); |
1788 | if (ArgOffset) |
1789 | Base = IRB.CreateAdd(LHS: Base, RHS: ConstantInt::get(Ty: DFS.IntptrTy, V: ArgOffset)); |
1790 | return IRB.CreateIntToPtr(V: Base, DestTy: PointerType::get(C&: *DFS.Ctx, AddressSpace: 0), Name: "_dfsarg" ); |
1791 | } |
1792 | |
1793 | Value *DFSanFunction::getRetvalTLS(Type *T, IRBuilder<> &IRB) { |
1794 | return IRB.CreatePointerCast(V: DFS.RetvalTLS, DestTy: PointerType::get(C&: *DFS.Ctx, AddressSpace: 0), |
1795 | Name: "_dfsret" ); |
1796 | } |
1797 | |
1798 | Value *DFSanFunction::getRetvalOriginTLS() { return DFS.RetvalOriginTLS; } |
1799 | |
1800 | Value *DFSanFunction::getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB) { |
1801 | return IRB.CreateConstInBoundsGEP2_64(Ty: DFS.ArgOriginTLSTy, Ptr: DFS.ArgOriginTLS, Idx0: 0, |
1802 | Idx1: ArgNo, Name: "_dfsarg_o" ); |
1803 | } |
1804 | |
1805 | Value *DFSanFunction::getOrigin(Value *V) { |
1806 | assert(DFS.shouldTrackOrigins()); |
1807 | if (!isa<Argument>(Val: V) && !isa<Instruction>(Val: V)) |
1808 | return DFS.ZeroOrigin; |
1809 | Value *&Origin = ValOriginMap[V]; |
1810 | if (!Origin) { |
1811 | if (Argument *A = dyn_cast<Argument>(Val: V)) { |
1812 | if (IsNativeABI) |
1813 | return DFS.ZeroOrigin; |
1814 | if (A->getArgNo() < DFS.NumOfElementsInArgOrgTLS) { |
1815 | Instruction *ArgOriginTLSPos = &*F->getEntryBlock().begin(); |
1816 | IRBuilder<> IRB(ArgOriginTLSPos); |
1817 | Value *ArgOriginPtr = getArgOriginTLS(ArgNo: A->getArgNo(), IRB); |
1818 | Origin = IRB.CreateLoad(Ty: DFS.OriginTy, Ptr: ArgOriginPtr); |
1819 | } else { |
1820 | // Overflow |
1821 | Origin = DFS.ZeroOrigin; |
1822 | } |
1823 | } else { |
1824 | Origin = DFS.ZeroOrigin; |
1825 | } |
1826 | } |
1827 | return Origin; |
1828 | } |
1829 | |
1830 | void DFSanFunction::setOrigin(Instruction *I, Value *Origin) { |
1831 | if (!DFS.shouldTrackOrigins()) |
1832 | return; |
1833 | assert(!ValOriginMap.count(I)); |
1834 | assert(Origin->getType() == DFS.OriginTy); |
1835 | ValOriginMap[I] = Origin; |
1836 | } |
1837 | |
1838 | Value *DFSanFunction::getShadowForTLSArgument(Argument *A) { |
1839 | unsigned ArgOffset = 0; |
1840 | const DataLayout &DL = F->getDataLayout(); |
1841 | for (auto &FArg : F->args()) { |
1842 | if (!FArg.getType()->isSized()) { |
1843 | if (A == &FArg) |
1844 | break; |
1845 | continue; |
1846 | } |
1847 | |
1848 | unsigned Size = DL.getTypeAllocSize(Ty: DFS.getShadowTy(V: &FArg)); |
1849 | if (A != &FArg) { |
1850 | ArgOffset += alignTo(Size, A: ShadowTLSAlignment); |
1851 | if (ArgOffset > ArgTLSSize) |
1852 | break; // ArgTLS overflows, uses a zero shadow. |
1853 | continue; |
1854 | } |
1855 | |
1856 | if (ArgOffset + Size > ArgTLSSize) |
1857 | break; // ArgTLS overflows, uses a zero shadow. |
1858 | |
1859 | Instruction *ArgTLSPos = &*F->getEntryBlock().begin(); |
1860 | IRBuilder<> IRB(ArgTLSPos); |
1861 | Value *ArgShadowPtr = getArgTLS(T: FArg.getType(), ArgOffset, IRB); |
1862 | return IRB.CreateAlignedLoad(Ty: DFS.getShadowTy(V: &FArg), Ptr: ArgShadowPtr, |
1863 | Align: ShadowTLSAlignment); |
1864 | } |
1865 | |
1866 | return DFS.getZeroShadow(V: A); |
1867 | } |
1868 | |
1869 | Value *DFSanFunction::getShadow(Value *V) { |
1870 | if (!isa<Argument>(Val: V) && !isa<Instruction>(Val: V)) |
1871 | return DFS.getZeroShadow(V); |
1872 | if (IsForceZeroLabels) |
1873 | return DFS.getZeroShadow(V); |
1874 | Value *&Shadow = ValShadowMap[V]; |
1875 | if (!Shadow) { |
1876 | if (Argument *A = dyn_cast<Argument>(Val: V)) { |
1877 | if (IsNativeABI) |
1878 | return DFS.getZeroShadow(V); |
1879 | Shadow = getShadowForTLSArgument(A); |
1880 | NonZeroChecks.push_back(x: Shadow); |
1881 | } else { |
1882 | Shadow = DFS.getZeroShadow(V); |
1883 | } |
1884 | } |
1885 | return Shadow; |
1886 | } |
1887 | |
1888 | void DFSanFunction::setShadow(Instruction *I, Value *Shadow) { |
1889 | assert(!ValShadowMap.count(I)); |
1890 | ValShadowMap[I] = Shadow; |
1891 | } |
1892 | |
1893 | /// Compute the integer shadow offset that corresponds to a given |
1894 | /// application address. |
1895 | /// |
1896 | /// Offset = (Addr & ~AndMask) ^ XorMask |
1897 | Value *DataFlowSanitizer::getShadowOffset(Value *Addr, IRBuilder<> &IRB) { |
1898 | assert(Addr != RetvalTLS && "Reinstrumenting?" ); |
1899 | Value *OffsetLong = IRB.CreatePointerCast(V: Addr, DestTy: IntptrTy); |
1900 | |
1901 | uint64_t AndMask = MapParams->AndMask; |
1902 | if (AndMask) |
1903 | OffsetLong = |
1904 | IRB.CreateAnd(LHS: OffsetLong, RHS: ConstantInt::get(Ty: IntptrTy, V: ~AndMask)); |
1905 | |
1906 | uint64_t XorMask = MapParams->XorMask; |
1907 | if (XorMask) |
1908 | OffsetLong = IRB.CreateXor(LHS: OffsetLong, RHS: ConstantInt::get(Ty: IntptrTy, V: XorMask)); |
1909 | return OffsetLong; |
1910 | } |
1911 | |
1912 | std::pair<Value *, Value *> |
1913 | DataFlowSanitizer::getShadowOriginAddress(Value *Addr, Align InstAlignment, |
1914 | BasicBlock::iterator Pos) { |
1915 | // Returns ((Addr & shadow_mask) + origin_base - shadow_base) & ~4UL |
1916 | IRBuilder<> IRB(Pos->getParent(), Pos); |
1917 | Value *ShadowOffset = getShadowOffset(Addr, IRB); |
1918 | Value *ShadowLong = ShadowOffset; |
1919 | uint64_t ShadowBase = MapParams->ShadowBase; |
1920 | if (ShadowBase != 0) { |
1921 | ShadowLong = |
1922 | IRB.CreateAdd(LHS: ShadowLong, RHS: ConstantInt::get(Ty: IntptrTy, V: ShadowBase)); |
1923 | } |
1924 | Value *ShadowPtr = IRB.CreateIntToPtr(V: ShadowLong, DestTy: PointerType::get(C&: *Ctx, AddressSpace: 0)); |
1925 | Value *OriginPtr = nullptr; |
1926 | if (shouldTrackOrigins()) { |
1927 | Value *OriginLong = ShadowOffset; |
1928 | uint64_t OriginBase = MapParams->OriginBase; |
1929 | if (OriginBase != 0) |
1930 | OriginLong = |
1931 | IRB.CreateAdd(LHS: OriginLong, RHS: ConstantInt::get(Ty: IntptrTy, V: OriginBase)); |
1932 | const Align Alignment = llvm::assumeAligned(Value: InstAlignment.value()); |
1933 | // When alignment is >= 4, Addr must be aligned to 4, otherwise it is UB. |
1934 | // So Mask is unnecessary. |
1935 | if (Alignment < MinOriginAlignment) { |
1936 | uint64_t Mask = MinOriginAlignment.value() - 1; |
1937 | OriginLong = IRB.CreateAnd(LHS: OriginLong, RHS: ConstantInt::get(Ty: IntptrTy, V: ~Mask)); |
1938 | } |
1939 | OriginPtr = IRB.CreateIntToPtr(V: OriginLong, DestTy: OriginPtrTy); |
1940 | } |
1941 | return std::make_pair(x&: ShadowPtr, y&: OriginPtr); |
1942 | } |
1943 | |
1944 | Value *DataFlowSanitizer::getShadowAddress(Value *Addr, |
1945 | BasicBlock::iterator Pos, |
1946 | Value *ShadowOffset) { |
1947 | IRBuilder<> IRB(Pos->getParent(), Pos); |
1948 | return IRB.CreateIntToPtr(V: ShadowOffset, DestTy: PrimitiveShadowPtrTy); |
1949 | } |
1950 | |
1951 | Value *DataFlowSanitizer::getShadowAddress(Value *Addr, |
1952 | BasicBlock::iterator Pos) { |
1953 | IRBuilder<> IRB(Pos->getParent(), Pos); |
1954 | Value *ShadowOffset = getShadowOffset(Addr, IRB); |
1955 | return getShadowAddress(Addr, Pos, ShadowOffset); |
1956 | } |
1957 | |
1958 | Value *DFSanFunction::combineShadowsThenConvert(Type *T, Value *V1, Value *V2, |
1959 | BasicBlock::iterator Pos) { |
1960 | Value *PrimitiveValue = combineShadows(V1, V2, Pos); |
1961 | return expandFromPrimitiveShadow(T, PrimitiveShadow: PrimitiveValue, Pos); |
1962 | } |
1963 | |
1964 | // Generates IR to compute the union of the two given shadows, inserting it |
1965 | // before Pos. The combined value is with primitive type. |
1966 | Value *DFSanFunction::combineShadows(Value *V1, Value *V2, |
1967 | BasicBlock::iterator Pos) { |
1968 | if (DFS.isZeroShadow(V: V1)) |
1969 | return collapseToPrimitiveShadow(Shadow: V2, Pos); |
1970 | if (DFS.isZeroShadow(V: V2)) |
1971 | return collapseToPrimitiveShadow(Shadow: V1, Pos); |
1972 | if (V1 == V2) |
1973 | return collapseToPrimitiveShadow(Shadow: V1, Pos); |
1974 | |
1975 | auto V1Elems = ShadowElements.find(Val: V1); |
1976 | auto V2Elems = ShadowElements.find(Val: V2); |
1977 | if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) { |
1978 | if (llvm::includes(Range1&: V1Elems->second, Range2&: V2Elems->second)) { |
1979 | return collapseToPrimitiveShadow(Shadow: V1, Pos); |
1980 | } |
1981 | if (llvm::includes(Range1&: V2Elems->second, Range2&: V1Elems->second)) { |
1982 | return collapseToPrimitiveShadow(Shadow: V2, Pos); |
1983 | } |
1984 | } else if (V1Elems != ShadowElements.end()) { |
1985 | if (V1Elems->second.count(x: V2)) |
1986 | return collapseToPrimitiveShadow(Shadow: V1, Pos); |
1987 | } else if (V2Elems != ShadowElements.end()) { |
1988 | if (V2Elems->second.count(x: V1)) |
1989 | return collapseToPrimitiveShadow(Shadow: V2, Pos); |
1990 | } |
1991 | |
1992 | auto Key = std::make_pair(x&: V1, y&: V2); |
1993 | if (V1 > V2) |
1994 | std::swap(a&: Key.first, b&: Key.second); |
1995 | CachedShadow &CCS = CachedShadows[Key]; |
1996 | if (CCS.Block && DT.dominates(A: CCS.Block, B: Pos->getParent())) |
1997 | return CCS.Shadow; |
1998 | |
1999 | // Converts inputs shadows to shadows with primitive types. |
2000 | Value *PV1 = collapseToPrimitiveShadow(Shadow: V1, Pos); |
2001 | Value *PV2 = collapseToPrimitiveShadow(Shadow: V2, Pos); |
2002 | |
2003 | IRBuilder<> IRB(Pos->getParent(), Pos); |
2004 | CCS.Block = Pos->getParent(); |
2005 | CCS.Shadow = IRB.CreateOr(LHS: PV1, RHS: PV2); |
2006 | |
2007 | std::set<Value *> UnionElems; |
2008 | if (V1Elems != ShadowElements.end()) { |
2009 | UnionElems = V1Elems->second; |
2010 | } else { |
2011 | UnionElems.insert(x: V1); |
2012 | } |
2013 | if (V2Elems != ShadowElements.end()) { |
2014 | UnionElems.insert(first: V2Elems->second.begin(), last: V2Elems->second.end()); |
2015 | } else { |
2016 | UnionElems.insert(x: V2); |
2017 | } |
2018 | ShadowElements[CCS.Shadow] = std::move(UnionElems); |
2019 | |
2020 | return CCS.Shadow; |
2021 | } |
2022 | |
2023 | // A convenience function which folds the shadows of each of the operands |
2024 | // of the provided instruction Inst, inserting the IR before Inst. Returns |
2025 | // the computed union Value. |
2026 | Value *DFSanFunction::combineOperandShadows(Instruction *Inst) { |
2027 | if (Inst->getNumOperands() == 0) |
2028 | return DFS.getZeroShadow(V: Inst); |
2029 | |
2030 | Value *Shadow = getShadow(V: Inst->getOperand(i: 0)); |
2031 | for (unsigned I = 1, N = Inst->getNumOperands(); I < N; ++I) |
2032 | Shadow = combineShadows(V1: Shadow, V2: getShadow(V: Inst->getOperand(i: I)), |
2033 | Pos: Inst->getIterator()); |
2034 | |
2035 | return expandFromPrimitiveShadow(T: Inst->getType(), PrimitiveShadow: Shadow, |
2036 | Pos: Inst->getIterator()); |
2037 | } |
2038 | |
2039 | void DFSanVisitor::visitInstOperands(Instruction &I) { |
2040 | Value *CombinedShadow = DFSF.combineOperandShadows(Inst: &I); |
2041 | DFSF.setShadow(I: &I, Shadow: CombinedShadow); |
2042 | visitInstOperandOrigins(I); |
2043 | } |
2044 | |
2045 | Value *DFSanFunction::combineOrigins(const std::vector<Value *> &Shadows, |
2046 | const std::vector<Value *> &Origins, |
2047 | BasicBlock::iterator Pos, |
2048 | ConstantInt *Zero) { |
2049 | assert(Shadows.size() == Origins.size()); |
2050 | size_t Size = Origins.size(); |
2051 | if (Size == 0) |
2052 | return DFS.ZeroOrigin; |
2053 | Value *Origin = nullptr; |
2054 | if (!Zero) |
2055 | Zero = DFS.ZeroPrimitiveShadow; |
2056 | for (size_t I = 0; I != Size; ++I) { |
2057 | Value *OpOrigin = Origins[I]; |
2058 | Constant *ConstOpOrigin = dyn_cast<Constant>(Val: OpOrigin); |
2059 | if (ConstOpOrigin && ConstOpOrigin->isNullValue()) |
2060 | continue; |
2061 | if (!Origin) { |
2062 | Origin = OpOrigin; |
2063 | continue; |
2064 | } |
2065 | Value *OpShadow = Shadows[I]; |
2066 | Value *PrimitiveShadow = collapseToPrimitiveShadow(Shadow: OpShadow, Pos); |
2067 | IRBuilder<> IRB(Pos->getParent(), Pos); |
2068 | Value *Cond = IRB.CreateICmpNE(LHS: PrimitiveShadow, RHS: Zero); |
2069 | Origin = IRB.CreateSelect(C: Cond, True: OpOrigin, False: Origin); |
2070 | } |
2071 | return Origin ? Origin : DFS.ZeroOrigin; |
2072 | } |
2073 | |
2074 | Value *DFSanFunction::combineOperandOrigins(Instruction *Inst) { |
2075 | size_t Size = Inst->getNumOperands(); |
2076 | std::vector<Value *> Shadows(Size); |
2077 | std::vector<Value *> Origins(Size); |
2078 | for (unsigned I = 0; I != Size; ++I) { |
2079 | Shadows[I] = getShadow(V: Inst->getOperand(i: I)); |
2080 | Origins[I] = getOrigin(V: Inst->getOperand(i: I)); |
2081 | } |
2082 | return combineOrigins(Shadows, Origins, Pos: Inst->getIterator()); |
2083 | } |
2084 | |
2085 | void DFSanVisitor::visitInstOperandOrigins(Instruction &I) { |
2086 | if (!DFSF.DFS.shouldTrackOrigins()) |
2087 | return; |
2088 | Value *CombinedOrigin = DFSF.combineOperandOrigins(Inst: &I); |
2089 | DFSF.setOrigin(I: &I, Origin: CombinedOrigin); |
2090 | } |
2091 | |
2092 | Align DFSanFunction::getShadowAlign(Align InstAlignment) { |
2093 | const Align Alignment = ClPreserveAlignment ? InstAlignment : Align(1); |
2094 | return Align(Alignment.value() * DFS.ShadowWidthBytes); |
2095 | } |
2096 | |
2097 | Align DFSanFunction::getOriginAlign(Align InstAlignment) { |
2098 | const Align Alignment = llvm::assumeAligned(Value: InstAlignment.value()); |
2099 | return Align(std::max(a: MinOriginAlignment, b: Alignment)); |
2100 | } |
2101 | |
2102 | bool DFSanFunction::isLookupTableConstant(Value *P) { |
2103 | if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Val: P->stripPointerCasts())) |
2104 | if (GV->isConstant() && GV->hasName()) |
2105 | return DFS.CombineTaintLookupTableNames.count(Key: GV->getName()); |
2106 | |
2107 | return false; |
2108 | } |
2109 | |
2110 | bool DFSanFunction::useCallbackLoadLabelAndOrigin(uint64_t Size, |
2111 | Align InstAlignment) { |
2112 | // When enabling tracking load instructions, we always use |
2113 | // __dfsan_load_label_and_origin to reduce code size. |
2114 | if (ClTrackOrigins == 2) |
2115 | return true; |
2116 | |
2117 | assert(Size != 0); |
2118 | // * if Size == 1, it is sufficient to load its origin aligned at 4. |
2119 | // * if Size == 2, we assume most cases Addr % 2 == 0, so it is sufficient to |
2120 | // load its origin aligned at 4. If not, although origins may be lost, it |
2121 | // should not happen very often. |
2122 | // * if align >= 4, Addr must be aligned to 4, otherwise it is UB. When |
2123 | // Size % 4 == 0, it is more efficient to load origins without callbacks. |
2124 | // * Otherwise we use __dfsan_load_label_and_origin. |
2125 | // This should ensure that common cases run efficiently. |
2126 | if (Size <= 2) |
2127 | return false; |
2128 | |
2129 | const Align Alignment = llvm::assumeAligned(Value: InstAlignment.value()); |
2130 | return Alignment < MinOriginAlignment || !DFS.hasLoadSizeForFastPath(Size); |
2131 | } |
2132 | |
2133 | Value *DataFlowSanitizer::loadNextOrigin(BasicBlock::iterator Pos, |
2134 | Align OriginAlign, |
2135 | Value **OriginAddr) { |
2136 | IRBuilder<> IRB(Pos->getParent(), Pos); |
2137 | *OriginAddr = |
2138 | IRB.CreateGEP(Ty: OriginTy, Ptr: *OriginAddr, IdxList: ConstantInt::get(Ty: IntptrTy, V: 1)); |
2139 | return IRB.CreateAlignedLoad(Ty: OriginTy, Ptr: *OriginAddr, Align: OriginAlign); |
2140 | } |
2141 | |
2142 | std::pair<Value *, Value *> DFSanFunction::loadShadowFast( |
2143 | Value *ShadowAddr, Value *OriginAddr, uint64_t Size, Align ShadowAlign, |
2144 | Align OriginAlign, Value *FirstOrigin, BasicBlock::iterator Pos) { |
2145 | const bool ShouldTrackOrigins = DFS.shouldTrackOrigins(); |
2146 | const uint64_t ShadowSize = Size * DFS.ShadowWidthBytes; |
2147 | |
2148 | assert(Size >= 4 && "Not large enough load size for fast path!" ); |
2149 | |
2150 | // Used for origin tracking. |
2151 | std::vector<Value *> Shadows; |
2152 | std::vector<Value *> Origins; |
2153 | |
2154 | // Load instructions in LLVM can have arbitrary byte sizes (e.g., 3, 12, 20) |
2155 | // but this function is only used in a subset of cases that make it possible |
2156 | // to optimize the instrumentation. |
2157 | // |
2158 | // Specifically, when the shadow size in bytes (i.e., loaded bytes x shadow |
2159 | // per byte) is either: |
2160 | // - a multiple of 8 (common) |
2161 | // - equal to 4 (only for load32) |
2162 | // |
2163 | // For the second case, we can fit the wide shadow in a 32-bit integer. In all |
2164 | // other cases, we use a 64-bit integer to hold the wide shadow. |
2165 | Type *WideShadowTy = |
2166 | ShadowSize == 4 ? Type::getInt32Ty(C&: *DFS.Ctx) : Type::getInt64Ty(C&: *DFS.Ctx); |
2167 | |
2168 | IRBuilder<> IRB(Pos->getParent(), Pos); |
2169 | Value *CombinedWideShadow = |
2170 | IRB.CreateAlignedLoad(Ty: WideShadowTy, Ptr: ShadowAddr, Align: ShadowAlign); |
2171 | |
2172 | unsigned WideShadowBitWidth = WideShadowTy->getIntegerBitWidth(); |
2173 | const uint64_t BytesPerWideShadow = WideShadowBitWidth / DFS.ShadowWidthBits; |
2174 | |
2175 | auto AppendWideShadowAndOrigin = [&](Value *WideShadow, Value *Origin) { |
2176 | if (BytesPerWideShadow > 4) { |
2177 | assert(BytesPerWideShadow == 8); |
2178 | // The wide shadow relates to two origin pointers: one for the first four |
2179 | // application bytes, and one for the latest four. We use a left shift to |
2180 | // get just the shadow bytes that correspond to the first origin pointer, |
2181 | // and then the entire shadow for the second origin pointer (which will be |
2182 | // chosen by combineOrigins() iff the least-significant half of the wide |
2183 | // shadow was empty but the other half was not). |
2184 | Value *WideShadowLo = IRB.CreateShl( |
2185 | LHS: WideShadow, RHS: ConstantInt::get(Ty: WideShadowTy, V: WideShadowBitWidth / 2)); |
2186 | Shadows.push_back(x: WideShadow); |
2187 | Origins.push_back(x: DFS.loadNextOrigin(Pos, OriginAlign, OriginAddr: &OriginAddr)); |
2188 | |
2189 | Shadows.push_back(x: WideShadowLo); |
2190 | Origins.push_back(x: Origin); |
2191 | } else { |
2192 | Shadows.push_back(x: WideShadow); |
2193 | Origins.push_back(x: Origin); |
2194 | } |
2195 | }; |
2196 | |
2197 | if (ShouldTrackOrigins) |
2198 | AppendWideShadowAndOrigin(CombinedWideShadow, FirstOrigin); |
2199 | |
2200 | // First OR all the WideShadows (i.e., 64bit or 32bit shadow chunks) linearly; |
2201 | // then OR individual shadows within the combined WideShadow by binary ORing. |
2202 | // This is fewer instructions than ORing shadows individually, since it |
2203 | // needs logN shift/or instructions (N being the bytes of the combined wide |
2204 | // shadow). |
2205 | for (uint64_t ByteOfs = BytesPerWideShadow; ByteOfs < Size; |
2206 | ByteOfs += BytesPerWideShadow) { |
2207 | ShadowAddr = IRB.CreateGEP(Ty: WideShadowTy, Ptr: ShadowAddr, |
2208 | IdxList: ConstantInt::get(Ty: DFS.IntptrTy, V: 1)); |
2209 | Value *NextWideShadow = |
2210 | IRB.CreateAlignedLoad(Ty: WideShadowTy, Ptr: ShadowAddr, Align: ShadowAlign); |
2211 | CombinedWideShadow = IRB.CreateOr(LHS: CombinedWideShadow, RHS: NextWideShadow); |
2212 | if (ShouldTrackOrigins) { |
2213 | Value *NextOrigin = DFS.loadNextOrigin(Pos, OriginAlign, OriginAddr: &OriginAddr); |
2214 | AppendWideShadowAndOrigin(NextWideShadow, NextOrigin); |
2215 | } |
2216 | } |
2217 | for (unsigned Width = WideShadowBitWidth / 2; Width >= DFS.ShadowWidthBits; |
2218 | Width >>= 1) { |
2219 | Value *ShrShadow = IRB.CreateLShr(LHS: CombinedWideShadow, RHS: Width); |
2220 | CombinedWideShadow = IRB.CreateOr(LHS: CombinedWideShadow, RHS: ShrShadow); |
2221 | } |
2222 | return {IRB.CreateTrunc(V: CombinedWideShadow, DestTy: DFS.PrimitiveShadowTy), |
2223 | ShouldTrackOrigins |
2224 | ? combineOrigins(Shadows, Origins, Pos, |
2225 | Zero: ConstantInt::getSigned(Ty: IRB.getInt64Ty(), V: 0)) |
2226 | : DFS.ZeroOrigin}; |
2227 | } |
2228 | |
2229 | std::pair<Value *, Value *> DFSanFunction::loadShadowOriginSansLoadTracking( |
2230 | Value *Addr, uint64_t Size, Align InstAlignment, BasicBlock::iterator Pos) { |
2231 | const bool ShouldTrackOrigins = DFS.shouldTrackOrigins(); |
2232 | |
2233 | // Non-escaped loads. |
2234 | if (AllocaInst *AI = dyn_cast<AllocaInst>(Val: Addr)) { |
2235 | const auto SI = AllocaShadowMap.find(Val: AI); |
2236 | if (SI != AllocaShadowMap.end()) { |
2237 | IRBuilder<> IRB(Pos->getParent(), Pos); |
2238 | Value *ShadowLI = IRB.CreateLoad(Ty: DFS.PrimitiveShadowTy, Ptr: SI->second); |
2239 | const auto OI = AllocaOriginMap.find(Val: AI); |
2240 | assert(!ShouldTrackOrigins || OI != AllocaOriginMap.end()); |
2241 | return {ShadowLI, ShouldTrackOrigins |
2242 | ? IRB.CreateLoad(Ty: DFS.OriginTy, Ptr: OI->second) |
2243 | : nullptr}; |
2244 | } |
2245 | } |
2246 | |
2247 | // Load from constant addresses. |
2248 | SmallVector<const Value *, 2> Objs; |
2249 | getUnderlyingObjects(V: Addr, Objects&: Objs); |
2250 | bool AllConstants = true; |
2251 | for (const Value *Obj : Objs) { |
2252 | if (isa<Function>(Val: Obj) || isa<BlockAddress>(Val: Obj)) |
2253 | continue; |
2254 | if (isa<GlobalVariable>(Val: Obj) && cast<GlobalVariable>(Val: Obj)->isConstant()) |
2255 | continue; |
2256 | |
2257 | AllConstants = false; |
2258 | break; |
2259 | } |
2260 | if (AllConstants) |
2261 | return {DFS.ZeroPrimitiveShadow, |
2262 | ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr}; |
2263 | |
2264 | if (Size == 0) |
2265 | return {DFS.ZeroPrimitiveShadow, |
2266 | ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr}; |
2267 | |
2268 | // Use callback to load if this is not an optimizable case for origin |
2269 | // tracking. |
2270 | if (ShouldTrackOrigins && |
2271 | useCallbackLoadLabelAndOrigin(Size, InstAlignment)) { |
2272 | IRBuilder<> IRB(Pos->getParent(), Pos); |
2273 | CallInst *Call = |
2274 | IRB.CreateCall(Callee: DFS.DFSanLoadLabelAndOriginFn, |
2275 | Args: {Addr, ConstantInt::get(Ty: DFS.IntptrTy, V: Size)}); |
2276 | Call->addRetAttr(Kind: Attribute::ZExt); |
2277 | return {IRB.CreateTrunc(V: IRB.CreateLShr(LHS: Call, RHS: DFS.OriginWidthBits), |
2278 | DestTy: DFS.PrimitiveShadowTy), |
2279 | IRB.CreateTrunc(V: Call, DestTy: DFS.OriginTy)}; |
2280 | } |
2281 | |
2282 | // Other cases that support loading shadows or origins in a fast way. |
2283 | Value *ShadowAddr, *OriginAddr; |
2284 | std::tie(args&: ShadowAddr, args&: OriginAddr) = |
2285 | DFS.getShadowOriginAddress(Addr, InstAlignment, Pos); |
2286 | |
2287 | const Align ShadowAlign = getShadowAlign(InstAlignment); |
2288 | const Align OriginAlign = getOriginAlign(InstAlignment); |
2289 | Value *Origin = nullptr; |
2290 | if (ShouldTrackOrigins) { |
2291 | IRBuilder<> IRB(Pos->getParent(), Pos); |
2292 | Origin = IRB.CreateAlignedLoad(Ty: DFS.OriginTy, Ptr: OriginAddr, Align: OriginAlign); |
2293 | } |
2294 | |
2295 | // When the byte size is small enough, we can load the shadow directly with |
2296 | // just a few instructions. |
2297 | switch (Size) { |
2298 | case 1: { |
2299 | LoadInst *LI = new LoadInst(DFS.PrimitiveShadowTy, ShadowAddr, "" , Pos); |
2300 | LI->setAlignment(ShadowAlign); |
2301 | return {LI, Origin}; |
2302 | } |
2303 | case 2: { |
2304 | IRBuilder<> IRB(Pos->getParent(), Pos); |
2305 | Value *ShadowAddr1 = IRB.CreateGEP(Ty: DFS.PrimitiveShadowTy, Ptr: ShadowAddr, |
2306 | IdxList: ConstantInt::get(Ty: DFS.IntptrTy, V: 1)); |
2307 | Value *Load = |
2308 | IRB.CreateAlignedLoad(Ty: DFS.PrimitiveShadowTy, Ptr: ShadowAddr, Align: ShadowAlign); |
2309 | Value *Load1 = |
2310 | IRB.CreateAlignedLoad(Ty: DFS.PrimitiveShadowTy, Ptr: ShadowAddr1, Align: ShadowAlign); |
2311 | return {combineShadows(V1: Load, V2: Load1, Pos), Origin}; |
2312 | } |
2313 | } |
2314 | bool HasSizeForFastPath = DFS.hasLoadSizeForFastPath(Size); |
2315 | |
2316 | if (HasSizeForFastPath) |
2317 | return loadShadowFast(ShadowAddr, OriginAddr, Size, ShadowAlign, |
2318 | OriginAlign, FirstOrigin: Origin, Pos); |
2319 | |
2320 | IRBuilder<> IRB(Pos->getParent(), Pos); |
2321 | CallInst *FallbackCall = IRB.CreateCall( |
2322 | Callee: DFS.DFSanUnionLoadFn, Args: {ShadowAddr, ConstantInt::get(Ty: DFS.IntptrTy, V: Size)}); |
2323 | FallbackCall->addRetAttr(Kind: Attribute::ZExt); |
2324 | return {FallbackCall, Origin}; |
2325 | } |
2326 | |
2327 | std::pair<Value *, Value *> |
2328 | DFSanFunction::loadShadowOrigin(Value *Addr, uint64_t Size, Align InstAlignment, |
2329 | BasicBlock::iterator Pos) { |
2330 | Value *PrimitiveShadow, *Origin; |
2331 | std::tie(args&: PrimitiveShadow, args&: Origin) = |
2332 | loadShadowOriginSansLoadTracking(Addr, Size, InstAlignment, Pos); |
2333 | if (DFS.shouldTrackOrigins()) { |
2334 | if (ClTrackOrigins == 2) { |
2335 | IRBuilder<> IRB(Pos->getParent(), Pos); |
2336 | auto *ConstantShadow = dyn_cast<Constant>(Val: PrimitiveShadow); |
2337 | if (!ConstantShadow || !ConstantShadow->isZeroValue()) |
2338 | Origin = updateOriginIfTainted(Shadow: PrimitiveShadow, Origin, IRB); |
2339 | } |
2340 | } |
2341 | return {PrimitiveShadow, Origin}; |
2342 | } |
2343 | |
2344 | static AtomicOrdering addAcquireOrdering(AtomicOrdering AO) { |
2345 | switch (AO) { |
2346 | case AtomicOrdering::NotAtomic: |
2347 | return AtomicOrdering::NotAtomic; |
2348 | case AtomicOrdering::Unordered: |
2349 | case AtomicOrdering::Monotonic: |
2350 | case AtomicOrdering::Acquire: |
2351 | return AtomicOrdering::Acquire; |
2352 | case AtomicOrdering::Release: |
2353 | case AtomicOrdering::AcquireRelease: |
2354 | return AtomicOrdering::AcquireRelease; |
2355 | case AtomicOrdering::SequentiallyConsistent: |
2356 | return AtomicOrdering::SequentiallyConsistent; |
2357 | } |
2358 | llvm_unreachable("Unknown ordering" ); |
2359 | } |
2360 | |
2361 | Value *StripPointerGEPsAndCasts(Value *V) { |
2362 | if (!V->getType()->isPointerTy()) |
2363 | return V; |
2364 | |
2365 | // DFSan pass should be running on valid IR, but we'll |
2366 | // keep a seen set to ensure there are no issues. |
2367 | SmallPtrSet<const Value *, 4> Visited; |
2368 | Visited.insert(Ptr: V); |
2369 | do { |
2370 | if (auto *GEP = dyn_cast<GEPOperator>(Val: V)) { |
2371 | V = GEP->getPointerOperand(); |
2372 | } else if (Operator::getOpcode(V) == Instruction::BitCast) { |
2373 | V = cast<Operator>(Val: V)->getOperand(i: 0); |
2374 | if (!V->getType()->isPointerTy()) |
2375 | return V; |
2376 | } else if (isa<GlobalAlias>(Val: V)) { |
2377 | V = cast<GlobalAlias>(Val: V)->getAliasee(); |
2378 | } |
2379 | } while (Visited.insert(Ptr: V).second); |
2380 | |
2381 | return V; |
2382 | } |
2383 | |
2384 | void DFSanVisitor::visitLoadInst(LoadInst &LI) { |
2385 | auto &DL = LI.getDataLayout(); |
2386 | uint64_t Size = DL.getTypeStoreSize(Ty: LI.getType()); |
2387 | if (Size == 0) { |
2388 | DFSF.setShadow(I: &LI, Shadow: DFSF.DFS.getZeroShadow(V: &LI)); |
2389 | DFSF.setOrigin(I: &LI, Origin: DFSF.DFS.ZeroOrigin); |
2390 | return; |
2391 | } |
2392 | |
2393 | // When an application load is atomic, increase atomic ordering between |
2394 | // atomic application loads and stores to ensure happen-before order; load |
2395 | // shadow data after application data; store zero shadow data before |
2396 | // application data. This ensure shadow loads return either labels of the |
2397 | // initial application data or zeros. |
2398 | if (LI.isAtomic()) |
2399 | LI.setOrdering(addAcquireOrdering(AO: LI.getOrdering())); |
2400 | |
2401 | BasicBlock::iterator AfterLi = std::next(x: LI.getIterator()); |
2402 | BasicBlock::iterator Pos = LI.getIterator(); |
2403 | if (LI.isAtomic()) |
2404 | Pos = std::next(x: Pos); |
2405 | |
2406 | std::vector<Value *> Shadows; |
2407 | std::vector<Value *> Origins; |
2408 | Value *PrimitiveShadow, *Origin; |
2409 | std::tie(args&: PrimitiveShadow, args&: Origin) = |
2410 | DFSF.loadShadowOrigin(Addr: LI.getPointerOperand(), Size, InstAlignment: LI.getAlign(), Pos); |
2411 | const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); |
2412 | if (ShouldTrackOrigins) { |
2413 | Shadows.push_back(x: PrimitiveShadow); |
2414 | Origins.push_back(x: Origin); |
2415 | } |
2416 | if (ClCombinePointerLabelsOnLoad || |
2417 | DFSF.isLookupTableConstant( |
2418 | P: StripPointerGEPsAndCasts(V: LI.getPointerOperand()))) { |
2419 | Value *PtrShadow = DFSF.getShadow(V: LI.getPointerOperand()); |
2420 | PrimitiveShadow = DFSF.combineShadows(V1: PrimitiveShadow, V2: PtrShadow, Pos); |
2421 | if (ShouldTrackOrigins) { |
2422 | Shadows.push_back(x: PtrShadow); |
2423 | Origins.push_back(x: DFSF.getOrigin(V: LI.getPointerOperand())); |
2424 | } |
2425 | } |
2426 | if (!DFSF.DFS.isZeroShadow(V: PrimitiveShadow)) |
2427 | DFSF.NonZeroChecks.push_back(x: PrimitiveShadow); |
2428 | |
2429 | Value *Shadow = |
2430 | DFSF.expandFromPrimitiveShadow(T: LI.getType(), PrimitiveShadow, Pos); |
2431 | DFSF.setShadow(I: &LI, Shadow); |
2432 | |
2433 | if (ShouldTrackOrigins) { |
2434 | DFSF.setOrigin(I: &LI, Origin: DFSF.combineOrigins(Shadows, Origins, Pos)); |
2435 | } |
2436 | |
2437 | if (ClEventCallbacks) { |
2438 | IRBuilder<> IRB(Pos->getParent(), Pos); |
2439 | Value *Addr = LI.getPointerOperand(); |
2440 | CallInst *CI = |
2441 | IRB.CreateCall(Callee: DFSF.DFS.DFSanLoadCallbackFn, Args: {PrimitiveShadow, Addr}); |
2442 | CI->addParamAttr(ArgNo: 0, Kind: Attribute::ZExt); |
2443 | } |
2444 | |
2445 | IRBuilder<> IRB(AfterLi->getParent(), AfterLi); |
2446 | DFSF.addReachesFunctionCallbacksIfEnabled(IRB, I&: LI, Data: &LI); |
2447 | } |
2448 | |
2449 | Value *DFSanFunction::updateOriginIfTainted(Value *Shadow, Value *Origin, |
2450 | IRBuilder<> &IRB) { |
2451 | assert(DFS.shouldTrackOrigins()); |
2452 | return IRB.CreateCall(Callee: DFS.DFSanChainOriginIfTaintedFn, Args: {Shadow, Origin}); |
2453 | } |
2454 | |
2455 | Value *DFSanFunction::updateOrigin(Value *V, IRBuilder<> &IRB) { |
2456 | if (!DFS.shouldTrackOrigins()) |
2457 | return V; |
2458 | return IRB.CreateCall(Callee: DFS.DFSanChainOriginFn, Args: V); |
2459 | } |
2460 | |
2461 | Value *DFSanFunction::originToIntptr(IRBuilder<> &IRB, Value *Origin) { |
2462 | const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes; |
2463 | const DataLayout &DL = F->getDataLayout(); |
2464 | unsigned IntptrSize = DL.getTypeStoreSize(Ty: DFS.IntptrTy); |
2465 | if (IntptrSize == OriginSize) |
2466 | return Origin; |
2467 | assert(IntptrSize == OriginSize * 2); |
2468 | Origin = IRB.CreateIntCast(V: Origin, DestTy: DFS.IntptrTy, /* isSigned */ false); |
2469 | return IRB.CreateOr(LHS: Origin, RHS: IRB.CreateShl(LHS: Origin, RHS: OriginSize * 8)); |
2470 | } |
2471 | |
2472 | void DFSanFunction::paintOrigin(IRBuilder<> &IRB, Value *Origin, |
2473 | Value *StoreOriginAddr, |
2474 | uint64_t StoreOriginSize, Align Alignment) { |
2475 | const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes; |
2476 | const DataLayout &DL = F->getDataLayout(); |
2477 | const Align IntptrAlignment = DL.getABITypeAlign(Ty: DFS.IntptrTy); |
2478 | unsigned IntptrSize = DL.getTypeStoreSize(Ty: DFS.IntptrTy); |
2479 | assert(IntptrAlignment >= MinOriginAlignment); |
2480 | assert(IntptrSize >= OriginSize); |
2481 | |
2482 | unsigned Ofs = 0; |
2483 | Align CurrentAlignment = Alignment; |
2484 | if (Alignment >= IntptrAlignment && IntptrSize > OriginSize) { |
2485 | Value *IntptrOrigin = originToIntptr(IRB, Origin); |
2486 | Value *IntptrStoreOriginPtr = |
2487 | IRB.CreatePointerCast(V: StoreOriginAddr, DestTy: PointerType::get(C&: *DFS.Ctx, AddressSpace: 0)); |
2488 | for (unsigned I = 0; I < StoreOriginSize / IntptrSize; ++I) { |
2489 | Value *Ptr = |
2490 | I ? IRB.CreateConstGEP1_32(Ty: DFS.IntptrTy, Ptr: IntptrStoreOriginPtr, Idx0: I) |
2491 | : IntptrStoreOriginPtr; |
2492 | IRB.CreateAlignedStore(Val: IntptrOrigin, Ptr, Align: CurrentAlignment); |
2493 | Ofs += IntptrSize / OriginSize; |
2494 | CurrentAlignment = IntptrAlignment; |
2495 | } |
2496 | } |
2497 | |
2498 | for (unsigned I = Ofs; I < (StoreOriginSize + OriginSize - 1) / OriginSize; |
2499 | ++I) { |
2500 | Value *GEP = I ? IRB.CreateConstGEP1_32(Ty: DFS.OriginTy, Ptr: StoreOriginAddr, Idx0: I) |
2501 | : StoreOriginAddr; |
2502 | IRB.CreateAlignedStore(Val: Origin, Ptr: GEP, Align: CurrentAlignment); |
2503 | CurrentAlignment = MinOriginAlignment; |
2504 | } |
2505 | } |
2506 | |
2507 | Value *DFSanFunction::convertToBool(Value *V, IRBuilder<> &IRB, |
2508 | const Twine &Name) { |
2509 | Type *VTy = V->getType(); |
2510 | assert(VTy->isIntegerTy()); |
2511 | if (VTy->getIntegerBitWidth() == 1) |
2512 | // Just converting a bool to a bool, so do nothing. |
2513 | return V; |
2514 | return IRB.CreateICmpNE(LHS: V, RHS: ConstantInt::get(Ty: VTy, V: 0), Name); |
2515 | } |
2516 | |
2517 | void DFSanFunction::storeOrigin(BasicBlock::iterator Pos, Value *Addr, |
2518 | uint64_t Size, Value *Shadow, Value *Origin, |
2519 | Value *StoreOriginAddr, Align InstAlignment) { |
2520 | // Do not write origins for zero shadows because we do not trace origins for |
2521 | // untainted sinks. |
2522 | const Align OriginAlignment = getOriginAlign(InstAlignment); |
2523 | Value *CollapsedShadow = collapseToPrimitiveShadow(Shadow, Pos); |
2524 | IRBuilder<> IRB(Pos->getParent(), Pos); |
2525 | if (auto *ConstantShadow = dyn_cast<Constant>(Val: CollapsedShadow)) { |
2526 | if (!ConstantShadow->isZeroValue()) |
2527 | paintOrigin(IRB, Origin: updateOrigin(V: Origin, IRB), StoreOriginAddr, StoreOriginSize: Size, |
2528 | Alignment: OriginAlignment); |
2529 | return; |
2530 | } |
2531 | |
2532 | if (shouldInstrumentWithCall()) { |
2533 | IRB.CreateCall( |
2534 | Callee: DFS.DFSanMaybeStoreOriginFn, |
2535 | Args: {CollapsedShadow, Addr, ConstantInt::get(Ty: DFS.IntptrTy, V: Size), Origin}); |
2536 | } else { |
2537 | Value *Cmp = convertToBool(V: CollapsedShadow, IRB, Name: "_dfscmp" ); |
2538 | DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); |
2539 | Instruction *CheckTerm = SplitBlockAndInsertIfThen( |
2540 | Cond: Cmp, SplitBefore: &*IRB.GetInsertPoint(), Unreachable: false, BranchWeights: DFS.OriginStoreWeights, DTU: &DTU); |
2541 | IRBuilder<> IRBNew(CheckTerm); |
2542 | paintOrigin(IRB&: IRBNew, Origin: updateOrigin(V: Origin, IRB&: IRBNew), StoreOriginAddr, StoreOriginSize: Size, |
2543 | Alignment: OriginAlignment); |
2544 | ++NumOriginStores; |
2545 | } |
2546 | } |
2547 | |
2548 | void DFSanFunction::storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, |
2549 | Align ShadowAlign, |
2550 | BasicBlock::iterator Pos) { |
2551 | IRBuilder<> IRB(Pos->getParent(), Pos); |
2552 | IntegerType *ShadowTy = |
2553 | IntegerType::get(C&: *DFS.Ctx, NumBits: Size * DFS.ShadowWidthBits); |
2554 | Value *ExtZeroShadow = ConstantInt::get(Ty: ShadowTy, V: 0); |
2555 | Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); |
2556 | IRB.CreateAlignedStore(Val: ExtZeroShadow, Ptr: ShadowAddr, Align: ShadowAlign); |
2557 | // Do not write origins for 0 shadows because we do not trace origins for |
2558 | // untainted sinks. |
2559 | } |
2560 | |
2561 | void DFSanFunction::storePrimitiveShadowOrigin(Value *Addr, uint64_t Size, |
2562 | Align InstAlignment, |
2563 | Value *PrimitiveShadow, |
2564 | Value *Origin, |
2565 | BasicBlock::iterator Pos) { |
2566 | const bool ShouldTrackOrigins = DFS.shouldTrackOrigins() && Origin; |
2567 | |
2568 | if (AllocaInst *AI = dyn_cast<AllocaInst>(Val: Addr)) { |
2569 | const auto SI = AllocaShadowMap.find(Val: AI); |
2570 | if (SI != AllocaShadowMap.end()) { |
2571 | IRBuilder<> IRB(Pos->getParent(), Pos); |
2572 | IRB.CreateStore(Val: PrimitiveShadow, Ptr: SI->second); |
2573 | |
2574 | // Do not write origins for 0 shadows because we do not trace origins for |
2575 | // untainted sinks. |
2576 | if (ShouldTrackOrigins && !DFS.isZeroShadow(V: PrimitiveShadow)) { |
2577 | const auto OI = AllocaOriginMap.find(Val: AI); |
2578 | assert(OI != AllocaOriginMap.end() && Origin); |
2579 | IRB.CreateStore(Val: Origin, Ptr: OI->second); |
2580 | } |
2581 | return; |
2582 | } |
2583 | } |
2584 | |
2585 | const Align ShadowAlign = getShadowAlign(InstAlignment); |
2586 | if (DFS.isZeroShadow(V: PrimitiveShadow)) { |
2587 | storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, Pos); |
2588 | return; |
2589 | } |
2590 | |
2591 | IRBuilder<> IRB(Pos->getParent(), Pos); |
2592 | Value *ShadowAddr, *OriginAddr; |
2593 | std::tie(args&: ShadowAddr, args&: OriginAddr) = |
2594 | DFS.getShadowOriginAddress(Addr, InstAlignment, Pos); |
2595 | |
2596 | const unsigned ShadowVecSize = 8; |
2597 | assert(ShadowVecSize * DFS.ShadowWidthBits <= 128 && |
2598 | "Shadow vector is too large!" ); |
2599 | |
2600 | uint64_t Offset = 0; |
2601 | uint64_t LeftSize = Size; |
2602 | if (LeftSize >= ShadowVecSize) { |
2603 | auto *ShadowVecTy = |
2604 | FixedVectorType::get(ElementType: DFS.PrimitiveShadowTy, NumElts: ShadowVecSize); |
2605 | Value *ShadowVec = PoisonValue::get(T: ShadowVecTy); |
2606 | for (unsigned I = 0; I != ShadowVecSize; ++I) { |
2607 | ShadowVec = IRB.CreateInsertElement( |
2608 | Vec: ShadowVec, NewElt: PrimitiveShadow, |
2609 | Idx: ConstantInt::get(Ty: Type::getInt32Ty(C&: *DFS.Ctx), V: I)); |
2610 | } |
2611 | do { |
2612 | Value *CurShadowVecAddr = |
2613 | IRB.CreateConstGEP1_32(Ty: ShadowVecTy, Ptr: ShadowAddr, Idx0: Offset); |
2614 | IRB.CreateAlignedStore(Val: ShadowVec, Ptr: CurShadowVecAddr, Align: ShadowAlign); |
2615 | LeftSize -= ShadowVecSize; |
2616 | ++Offset; |
2617 | } while (LeftSize >= ShadowVecSize); |
2618 | Offset *= ShadowVecSize; |
2619 | } |
2620 | while (LeftSize > 0) { |
2621 | Value *CurShadowAddr = |
2622 | IRB.CreateConstGEP1_32(Ty: DFS.PrimitiveShadowTy, Ptr: ShadowAddr, Idx0: Offset); |
2623 | IRB.CreateAlignedStore(Val: PrimitiveShadow, Ptr: CurShadowAddr, Align: ShadowAlign); |
2624 | --LeftSize; |
2625 | ++Offset; |
2626 | } |
2627 | |
2628 | if (ShouldTrackOrigins) { |
2629 | storeOrigin(Pos, Addr, Size, Shadow: PrimitiveShadow, Origin, StoreOriginAddr: OriginAddr, |
2630 | InstAlignment); |
2631 | } |
2632 | } |
2633 | |
2634 | static AtomicOrdering addReleaseOrdering(AtomicOrdering AO) { |
2635 | switch (AO) { |
2636 | case AtomicOrdering::NotAtomic: |
2637 | return AtomicOrdering::NotAtomic; |
2638 | case AtomicOrdering::Unordered: |
2639 | case AtomicOrdering::Monotonic: |
2640 | case AtomicOrdering::Release: |
2641 | return AtomicOrdering::Release; |
2642 | case AtomicOrdering::Acquire: |
2643 | case AtomicOrdering::AcquireRelease: |
2644 | return AtomicOrdering::AcquireRelease; |
2645 | case AtomicOrdering::SequentiallyConsistent: |
2646 | return AtomicOrdering::SequentiallyConsistent; |
2647 | } |
2648 | llvm_unreachable("Unknown ordering" ); |
2649 | } |
2650 | |
2651 | void DFSanVisitor::visitStoreInst(StoreInst &SI) { |
2652 | auto &DL = SI.getDataLayout(); |
2653 | Value *Val = SI.getValueOperand(); |
2654 | uint64_t Size = DL.getTypeStoreSize(Ty: Val->getType()); |
2655 | if (Size == 0) |
2656 | return; |
2657 | |
2658 | // When an application store is atomic, increase atomic ordering between |
2659 | // atomic application loads and stores to ensure happen-before order; load |
2660 | // shadow data after application data; store zero shadow data before |
2661 | // application data. This ensure shadow loads return either labels of the |
2662 | // initial application data or zeros. |
2663 | if (SI.isAtomic()) |
2664 | SI.setOrdering(addReleaseOrdering(AO: SI.getOrdering())); |
2665 | |
2666 | const bool ShouldTrackOrigins = |
2667 | DFSF.DFS.shouldTrackOrigins() && !SI.isAtomic(); |
2668 | std::vector<Value *> Shadows; |
2669 | std::vector<Value *> Origins; |
2670 | |
2671 | Value *Shadow = |
2672 | SI.isAtomic() ? DFSF.DFS.getZeroShadow(V: Val) : DFSF.getShadow(V: Val); |
2673 | |
2674 | if (ShouldTrackOrigins) { |
2675 | Shadows.push_back(x: Shadow); |
2676 | Origins.push_back(x: DFSF.getOrigin(V: Val)); |
2677 | } |
2678 | |
2679 | Value *PrimitiveShadow; |
2680 | if (ClCombinePointerLabelsOnStore) { |
2681 | Value *PtrShadow = DFSF.getShadow(V: SI.getPointerOperand()); |
2682 | if (ShouldTrackOrigins) { |
2683 | Shadows.push_back(x: PtrShadow); |
2684 | Origins.push_back(x: DFSF.getOrigin(V: SI.getPointerOperand())); |
2685 | } |
2686 | PrimitiveShadow = DFSF.combineShadows(V1: Shadow, V2: PtrShadow, Pos: SI.getIterator()); |
2687 | } else { |
2688 | PrimitiveShadow = DFSF.collapseToPrimitiveShadow(Shadow, Pos: SI.getIterator()); |
2689 | } |
2690 | Value *Origin = nullptr; |
2691 | if (ShouldTrackOrigins) |
2692 | Origin = DFSF.combineOrigins(Shadows, Origins, Pos: SI.getIterator()); |
2693 | DFSF.storePrimitiveShadowOrigin(Addr: SI.getPointerOperand(), Size, InstAlignment: SI.getAlign(), |
2694 | PrimitiveShadow, Origin, Pos: SI.getIterator()); |
2695 | if (ClEventCallbacks) { |
2696 | IRBuilder<> IRB(&SI); |
2697 | Value *Addr = SI.getPointerOperand(); |
2698 | CallInst *CI = |
2699 | IRB.CreateCall(Callee: DFSF.DFS.DFSanStoreCallbackFn, Args: {PrimitiveShadow, Addr}); |
2700 | CI->addParamAttr(ArgNo: 0, Kind: Attribute::ZExt); |
2701 | } |
2702 | } |
2703 | |
2704 | void DFSanVisitor::visitCASOrRMW(Align InstAlignment, Instruction &I) { |
2705 | assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); |
2706 | |
2707 | Value *Val = I.getOperand(i: 1); |
2708 | const auto &DL = I.getDataLayout(); |
2709 | uint64_t Size = DL.getTypeStoreSize(Ty: Val->getType()); |
2710 | if (Size == 0) |
2711 | return; |
2712 | |
2713 | // Conservatively set data at stored addresses and return with zero shadow to |
2714 | // prevent shadow data races. |
2715 | IRBuilder<> IRB(&I); |
2716 | Value *Addr = I.getOperand(i: 0); |
2717 | const Align ShadowAlign = DFSF.getShadowAlign(InstAlignment); |
2718 | DFSF.storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, Pos: I.getIterator()); |
2719 | DFSF.setShadow(I: &I, Shadow: DFSF.DFS.getZeroShadow(V: &I)); |
2720 | DFSF.setOrigin(I: &I, Origin: DFSF.DFS.ZeroOrigin); |
2721 | } |
2722 | |
2723 | void DFSanVisitor::visitAtomicRMWInst(AtomicRMWInst &I) { |
2724 | visitCASOrRMW(InstAlignment: I.getAlign(), I); |
2725 | // TODO: The ordering change follows MSan. It is possible not to change |
2726 | // ordering because we always set and use 0 shadows. |
2727 | I.setOrdering(addReleaseOrdering(AO: I.getOrdering())); |
2728 | } |
2729 | |
2730 | void DFSanVisitor::visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { |
2731 | visitCASOrRMW(InstAlignment: I.getAlign(), I); |
2732 | // TODO: The ordering change follows MSan. It is possible not to change |
2733 | // ordering because we always set and use 0 shadows. |
2734 | I.setSuccessOrdering(addReleaseOrdering(AO: I.getSuccessOrdering())); |
2735 | } |
2736 | |
2737 | void DFSanVisitor::visitUnaryOperator(UnaryOperator &UO) { |
2738 | visitInstOperands(I&: UO); |
2739 | } |
2740 | |
2741 | void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) { |
2742 | visitInstOperands(I&: BO); |
2743 | } |
2744 | |
2745 | void DFSanVisitor::visitBitCastInst(BitCastInst &BCI) { |
2746 | // Special case: if this is the bitcast (there is exactly 1 allowed) between |
2747 | // a musttail call and a ret, don't instrument. New instructions are not |
2748 | // allowed after a musttail call. |
2749 | if (auto *CI = dyn_cast<CallInst>(Val: BCI.getOperand(i_nocapture: 0))) |
2750 | if (CI->isMustTailCall()) |
2751 | return; |
2752 | visitInstOperands(I&: BCI); |
2753 | } |
2754 | |
2755 | void DFSanVisitor::visitCastInst(CastInst &CI) { visitInstOperands(I&: CI); } |
2756 | |
2757 | void DFSanVisitor::visitCmpInst(CmpInst &CI) { |
2758 | visitInstOperands(I&: CI); |
2759 | if (ClEventCallbacks) { |
2760 | IRBuilder<> IRB(&CI); |
2761 | Value *CombinedShadow = DFSF.getShadow(V: &CI); |
2762 | CallInst *CallI = |
2763 | IRB.CreateCall(Callee: DFSF.DFS.DFSanCmpCallbackFn, Args: CombinedShadow); |
2764 | CallI->addParamAttr(ArgNo: 0, Kind: Attribute::ZExt); |
2765 | } |
2766 | } |
2767 | |
2768 | void DFSanVisitor::visitLandingPadInst(LandingPadInst &LPI) { |
2769 | // We do not need to track data through LandingPadInst. |
2770 | // |
2771 | // For the C++ exceptions, if a value is thrown, this value will be stored |
2772 | // in a memory location provided by __cxa_allocate_exception(...) (on the |
2773 | // throw side) or __cxa_begin_catch(...) (on the catch side). |
2774 | // This memory will have a shadow, so with the loads and stores we will be |
2775 | // able to propagate labels on data thrown through exceptions, without any |
2776 | // special handling of the LandingPadInst. |
2777 | // |
2778 | // The second element in the pair result of the LandingPadInst is a |
2779 | // register value, but it is for a type ID and should never be tainted. |
2780 | DFSF.setShadow(I: &LPI, Shadow: DFSF.DFS.getZeroShadow(V: &LPI)); |
2781 | DFSF.setOrigin(I: &LPI, Origin: DFSF.DFS.ZeroOrigin); |
2782 | } |
2783 | |
2784 | void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { |
2785 | if (ClCombineOffsetLabelsOnGEP || |
2786 | DFSF.isLookupTableConstant( |
2787 | P: StripPointerGEPsAndCasts(V: GEPI.getPointerOperand()))) { |
2788 | visitInstOperands(I&: GEPI); |
2789 | return; |
2790 | } |
2791 | |
2792 | // Only propagate shadow/origin of base pointer value but ignore those of |
2793 | // offset operands. |
2794 | Value *BasePointer = GEPI.getPointerOperand(); |
2795 | DFSF.setShadow(I: &GEPI, Shadow: DFSF.getShadow(V: BasePointer)); |
2796 | if (DFSF.DFS.shouldTrackOrigins()) |
2797 | DFSF.setOrigin(I: &GEPI, Origin: DFSF.getOrigin(V: BasePointer)); |
2798 | } |
2799 | |
2800 | void DFSanVisitor::(ExtractElementInst &I) { |
2801 | visitInstOperands(I); |
2802 | } |
2803 | |
2804 | void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) { |
2805 | visitInstOperands(I); |
2806 | } |
2807 | |
2808 | void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) { |
2809 | visitInstOperands(I); |
2810 | } |
2811 | |
2812 | void DFSanVisitor::(ExtractValueInst &I) { |
2813 | IRBuilder<> IRB(&I); |
2814 | Value *Agg = I.getAggregateOperand(); |
2815 | Value *AggShadow = DFSF.getShadow(V: Agg); |
2816 | Value *ResShadow = IRB.CreateExtractValue(Agg: AggShadow, Idxs: I.getIndices()); |
2817 | DFSF.setShadow(I: &I, Shadow: ResShadow); |
2818 | visitInstOperandOrigins(I); |
2819 | } |
2820 | |
2821 | void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) { |
2822 | IRBuilder<> IRB(&I); |
2823 | Value *AggShadow = DFSF.getShadow(V: I.getAggregateOperand()); |
2824 | Value *InsShadow = DFSF.getShadow(V: I.getInsertedValueOperand()); |
2825 | Value *Res = IRB.CreateInsertValue(Agg: AggShadow, Val: InsShadow, Idxs: I.getIndices()); |
2826 | DFSF.setShadow(I: &I, Shadow: Res); |
2827 | visitInstOperandOrigins(I); |
2828 | } |
2829 | |
2830 | void DFSanVisitor::visitAllocaInst(AllocaInst &I) { |
2831 | bool AllLoadsStores = true; |
2832 | for (User *U : I.users()) { |
2833 | if (isa<LoadInst>(Val: U)) |
2834 | continue; |
2835 | |
2836 | if (StoreInst *SI = dyn_cast<StoreInst>(Val: U)) { |
2837 | if (SI->getPointerOperand() == &I) |
2838 | continue; |
2839 | } |
2840 | |
2841 | AllLoadsStores = false; |
2842 | break; |
2843 | } |
2844 | if (AllLoadsStores) { |
2845 | IRBuilder<> IRB(&I); |
2846 | DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(Ty: DFSF.DFS.PrimitiveShadowTy); |
2847 | if (DFSF.DFS.shouldTrackOrigins()) { |
2848 | DFSF.AllocaOriginMap[&I] = |
2849 | IRB.CreateAlloca(Ty: DFSF.DFS.OriginTy, ArraySize: nullptr, Name: "_dfsa" ); |
2850 | } |
2851 | } |
2852 | DFSF.setShadow(I: &I, Shadow: DFSF.DFS.ZeroPrimitiveShadow); |
2853 | DFSF.setOrigin(I: &I, Origin: DFSF.DFS.ZeroOrigin); |
2854 | } |
2855 | |
2856 | void DFSanVisitor::visitSelectInst(SelectInst &I) { |
2857 | Value *CondShadow = DFSF.getShadow(V: I.getCondition()); |
2858 | Value *TrueShadow = DFSF.getShadow(V: I.getTrueValue()); |
2859 | Value *FalseShadow = DFSF.getShadow(V: I.getFalseValue()); |
2860 | Value *ShadowSel = nullptr; |
2861 | const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); |
2862 | std::vector<Value *> Shadows; |
2863 | std::vector<Value *> Origins; |
2864 | Value *TrueOrigin = |
2865 | ShouldTrackOrigins ? DFSF.getOrigin(V: I.getTrueValue()) : nullptr; |
2866 | Value *FalseOrigin = |
2867 | ShouldTrackOrigins ? DFSF.getOrigin(V: I.getFalseValue()) : nullptr; |
2868 | |
2869 | DFSF.addConditionalCallbacksIfEnabled(I, Condition: I.getCondition()); |
2870 | |
2871 | if (isa<VectorType>(Val: I.getCondition()->getType())) { |
2872 | ShadowSel = DFSF.combineShadowsThenConvert(T: I.getType(), V1: TrueShadow, |
2873 | V2: FalseShadow, Pos: I.getIterator()); |
2874 | if (ShouldTrackOrigins) { |
2875 | Shadows.push_back(x: TrueShadow); |
2876 | Shadows.push_back(x: FalseShadow); |
2877 | Origins.push_back(x: TrueOrigin); |
2878 | Origins.push_back(x: FalseOrigin); |
2879 | } |
2880 | } else { |
2881 | if (TrueShadow == FalseShadow) { |
2882 | ShadowSel = TrueShadow; |
2883 | if (ShouldTrackOrigins) { |
2884 | Shadows.push_back(x: TrueShadow); |
2885 | Origins.push_back(x: TrueOrigin); |
2886 | } |
2887 | } else { |
2888 | ShadowSel = SelectInst::Create(C: I.getCondition(), S1: TrueShadow, S2: FalseShadow, |
2889 | NameStr: "" , InsertBefore: I.getIterator()); |
2890 | if (ShouldTrackOrigins) { |
2891 | Shadows.push_back(x: ShadowSel); |
2892 | Origins.push_back(x: SelectInst::Create(C: I.getCondition(), S1: TrueOrigin, |
2893 | S2: FalseOrigin, NameStr: "" , InsertBefore: I.getIterator())); |
2894 | } |
2895 | } |
2896 | } |
2897 | DFSF.setShadow(I: &I, Shadow: ClTrackSelectControlFlow ? DFSF.combineShadowsThenConvert( |
2898 | T: I.getType(), V1: CondShadow, |
2899 | V2: ShadowSel, Pos: I.getIterator()) |
2900 | : ShadowSel); |
2901 | if (ShouldTrackOrigins) { |
2902 | if (ClTrackSelectControlFlow) { |
2903 | Shadows.push_back(x: CondShadow); |
2904 | Origins.push_back(x: DFSF.getOrigin(V: I.getCondition())); |
2905 | } |
2906 | DFSF.setOrigin(I: &I, Origin: DFSF.combineOrigins(Shadows, Origins, Pos: I.getIterator())); |
2907 | } |
2908 | } |
2909 | |
2910 | void DFSanVisitor::visitMemSetInst(MemSetInst &I) { |
2911 | IRBuilder<> IRB(&I); |
2912 | Value *ValShadow = DFSF.getShadow(V: I.getValue()); |
2913 | Value *ValOrigin = DFSF.DFS.shouldTrackOrigins() |
2914 | ? DFSF.getOrigin(V: I.getValue()) |
2915 | : DFSF.DFS.ZeroOrigin; |
2916 | IRB.CreateCall(Callee: DFSF.DFS.DFSanSetLabelFn, |
2917 | Args: {ValShadow, ValOrigin, I.getDest(), |
2918 | IRB.CreateZExtOrTrunc(V: I.getLength(), DestTy: DFSF.DFS.IntptrTy)}); |
2919 | } |
2920 | |
2921 | void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) { |
2922 | IRBuilder<> IRB(&I); |
2923 | |
2924 | // CopyOrMoveOrigin transfers origins by refering to their shadows. So we |
2925 | // need to move origins before moving shadows. |
2926 | if (DFSF.DFS.shouldTrackOrigins()) { |
2927 | IRB.CreateCall( |
2928 | Callee: DFSF.DFS.DFSanMemOriginTransferFn, |
2929 | Args: {I.getArgOperand(i: 0), I.getArgOperand(i: 1), |
2930 | IRB.CreateIntCast(V: I.getArgOperand(i: 2), DestTy: DFSF.DFS.IntptrTy, isSigned: false)}); |
2931 | } |
2932 | |
2933 | Value *DestShadow = DFSF.DFS.getShadowAddress(Addr: I.getDest(), Pos: I.getIterator()); |
2934 | Value *SrcShadow = DFSF.DFS.getShadowAddress(Addr: I.getSource(), Pos: I.getIterator()); |
2935 | Value *LenShadow = |
2936 | IRB.CreateMul(LHS: I.getLength(), RHS: ConstantInt::get(Ty: I.getLength()->getType(), |
2937 | V: DFSF.DFS.ShadowWidthBytes)); |
2938 | auto *MTI = cast<MemTransferInst>( |
2939 | Val: IRB.CreateCall(FTy: I.getFunctionType(), Callee: I.getCalledOperand(), |
2940 | Args: {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()})); |
2941 | MTI->setDestAlignment(DFSF.getShadowAlign(InstAlignment: I.getDestAlign().valueOrOne())); |
2942 | MTI->setSourceAlignment(DFSF.getShadowAlign(InstAlignment: I.getSourceAlign().valueOrOne())); |
2943 | if (ClEventCallbacks) { |
2944 | IRB.CreateCall( |
2945 | Callee: DFSF.DFS.DFSanMemTransferCallbackFn, |
2946 | Args: {DestShadow, IRB.CreateZExtOrTrunc(V: I.getLength(), DestTy: DFSF.DFS.IntptrTy)}); |
2947 | } |
2948 | } |
2949 | |
2950 | void DFSanVisitor::visitBranchInst(BranchInst &BR) { |
2951 | if (!BR.isConditional()) |
2952 | return; |
2953 | |
2954 | DFSF.addConditionalCallbacksIfEnabled(I&: BR, Condition: BR.getCondition()); |
2955 | } |
2956 | |
2957 | void DFSanVisitor::visitSwitchInst(SwitchInst &SW) { |
2958 | DFSF.addConditionalCallbacksIfEnabled(I&: SW, Condition: SW.getCondition()); |
2959 | } |
2960 | |
2961 | static bool isAMustTailRetVal(Value *RetVal) { |
2962 | // Tail call may have a bitcast between return. |
2963 | if (auto *I = dyn_cast<BitCastInst>(Val: RetVal)) { |
2964 | RetVal = I->getOperand(i_nocapture: 0); |
2965 | } |
2966 | if (auto *I = dyn_cast<CallInst>(Val: RetVal)) { |
2967 | return I->isMustTailCall(); |
2968 | } |
2969 | return false; |
2970 | } |
2971 | |
2972 | void DFSanVisitor::visitReturnInst(ReturnInst &RI) { |
2973 | if (!DFSF.IsNativeABI && RI.getReturnValue()) { |
2974 | // Don't emit the instrumentation for musttail call returns. |
2975 | if (isAMustTailRetVal(RetVal: RI.getReturnValue())) |
2976 | return; |
2977 | |
2978 | Value *S = DFSF.getShadow(V: RI.getReturnValue()); |
2979 | IRBuilder<> IRB(&RI); |
2980 | Type *RT = DFSF.F->getFunctionType()->getReturnType(); |
2981 | unsigned Size = getDataLayout().getTypeAllocSize(Ty: DFSF.DFS.getShadowTy(OrigTy: RT)); |
2982 | if (Size <= RetvalTLSSize) { |
2983 | // If the size overflows, stores nothing. At callsite, oversized return |
2984 | // shadows are set to zero. |
2985 | IRB.CreateAlignedStore(Val: S, Ptr: DFSF.getRetvalTLS(T: RT, IRB), Align: ShadowTLSAlignment); |
2986 | } |
2987 | if (DFSF.DFS.shouldTrackOrigins()) { |
2988 | Value *O = DFSF.getOrigin(V: RI.getReturnValue()); |
2989 | IRB.CreateStore(Val: O, Ptr: DFSF.getRetvalOriginTLS()); |
2990 | } |
2991 | } |
2992 | } |
2993 | |
2994 | void DFSanVisitor::addShadowArguments(Function &F, CallBase &CB, |
2995 | std::vector<Value *> &Args, |
2996 | IRBuilder<> &IRB) { |
2997 | FunctionType *FT = F.getFunctionType(); |
2998 | |
2999 | auto *I = CB.arg_begin(); |
3000 | |
3001 | // Adds non-variable argument shadows. |
3002 | for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) |
3003 | Args.push_back( |
3004 | x: DFSF.collapseToPrimitiveShadow(Shadow: DFSF.getShadow(V: *I), Pos: CB.getIterator())); |
3005 | |
3006 | // Adds variable argument shadows. |
3007 | if (FT->isVarArg()) { |
3008 | auto *LabelVATy = ArrayType::get(ElementType: DFSF.DFS.PrimitiveShadowTy, |
3009 | NumElements: CB.arg_size() - FT->getNumParams()); |
3010 | auto *LabelVAAlloca = |
3011 | new AllocaInst(LabelVATy, getDataLayout().getAllocaAddrSpace(), |
3012 | "labelva" , DFSF.F->getEntryBlock().begin()); |
3013 | |
3014 | for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) { |
3015 | auto *LabelVAPtr = IRB.CreateStructGEP(Ty: LabelVATy, Ptr: LabelVAAlloca, Idx: N); |
3016 | IRB.CreateStore( |
3017 | Val: DFSF.collapseToPrimitiveShadow(Shadow: DFSF.getShadow(V: *I), Pos: CB.getIterator()), |
3018 | Ptr: LabelVAPtr); |
3019 | } |
3020 | |
3021 | Args.push_back(x: IRB.CreateStructGEP(Ty: LabelVATy, Ptr: LabelVAAlloca, Idx: 0)); |
3022 | } |
3023 | |
3024 | // Adds the return value shadow. |
3025 | if (!FT->getReturnType()->isVoidTy()) { |
3026 | if (!DFSF.LabelReturnAlloca) { |
3027 | DFSF.LabelReturnAlloca = new AllocaInst( |
3028 | DFSF.DFS.PrimitiveShadowTy, getDataLayout().getAllocaAddrSpace(), |
3029 | "labelreturn" , DFSF.F->getEntryBlock().begin()); |
3030 | } |
3031 | Args.push_back(x: DFSF.LabelReturnAlloca); |
3032 | } |
3033 | } |
3034 | |
3035 | void DFSanVisitor::addOriginArguments(Function &F, CallBase &CB, |
3036 | std::vector<Value *> &Args, |
3037 | IRBuilder<> &IRB) { |
3038 | FunctionType *FT = F.getFunctionType(); |
3039 | |
3040 | auto *I = CB.arg_begin(); |
3041 | |
3042 | // Add non-variable argument origins. |
3043 | for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) |
3044 | Args.push_back(x: DFSF.getOrigin(V: *I)); |
3045 | |
3046 | // Add variable argument origins. |
3047 | if (FT->isVarArg()) { |
3048 | auto *OriginVATy = |
3049 | ArrayType::get(ElementType: DFSF.DFS.OriginTy, NumElements: CB.arg_size() - FT->getNumParams()); |
3050 | auto *OriginVAAlloca = |
3051 | new AllocaInst(OriginVATy, getDataLayout().getAllocaAddrSpace(), |
3052 | "originva" , DFSF.F->getEntryBlock().begin()); |
3053 | |
3054 | for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) { |
3055 | auto *OriginVAPtr = IRB.CreateStructGEP(Ty: OriginVATy, Ptr: OriginVAAlloca, Idx: N); |
3056 | IRB.CreateStore(Val: DFSF.getOrigin(V: *I), Ptr: OriginVAPtr); |
3057 | } |
3058 | |
3059 | Args.push_back(x: IRB.CreateStructGEP(Ty: OriginVATy, Ptr: OriginVAAlloca, Idx: 0)); |
3060 | } |
3061 | |
3062 | // Add the return value origin. |
3063 | if (!FT->getReturnType()->isVoidTy()) { |
3064 | if (!DFSF.OriginReturnAlloca) { |
3065 | DFSF.OriginReturnAlloca = new AllocaInst( |
3066 | DFSF.DFS.OriginTy, getDataLayout().getAllocaAddrSpace(), |
3067 | "originreturn" , DFSF.F->getEntryBlock().begin()); |
3068 | } |
3069 | Args.push_back(x: DFSF.OriginReturnAlloca); |
3070 | } |
3071 | } |
3072 | |
3073 | bool DFSanVisitor::visitWrappedCallBase(Function &F, CallBase &CB) { |
3074 | IRBuilder<> IRB(&CB); |
3075 | switch (DFSF.DFS.getWrapperKind(F: &F)) { |
3076 | case DataFlowSanitizer::WK_Warning: |
3077 | CB.setCalledFunction(&F); |
3078 | IRB.CreateCall(Callee: DFSF.DFS.DFSanUnimplementedFn, |
3079 | Args: IRB.CreateGlobalString(Str: F.getName())); |
3080 | DFSF.DFS.buildExternWeakCheckIfNeeded(IRB, F: &F); |
3081 | DFSF.setShadow(I: &CB, Shadow: DFSF.DFS.getZeroShadow(V: &CB)); |
3082 | DFSF.setOrigin(I: &CB, Origin: DFSF.DFS.ZeroOrigin); |
3083 | return true; |
3084 | case DataFlowSanitizer::WK_Discard: |
3085 | CB.setCalledFunction(&F); |
3086 | DFSF.DFS.buildExternWeakCheckIfNeeded(IRB, F: &F); |
3087 | DFSF.setShadow(I: &CB, Shadow: DFSF.DFS.getZeroShadow(V: &CB)); |
3088 | DFSF.setOrigin(I: &CB, Origin: DFSF.DFS.ZeroOrigin); |
3089 | return true; |
3090 | case DataFlowSanitizer::WK_Functional: |
3091 | CB.setCalledFunction(&F); |
3092 | DFSF.DFS.buildExternWeakCheckIfNeeded(IRB, F: &F); |
3093 | visitInstOperands(I&: CB); |
3094 | return true; |
3095 | case DataFlowSanitizer::WK_Custom: |
3096 | // Don't try to handle invokes of custom functions, it's too complicated. |
3097 | // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_ |
3098 | // wrapper. |
3099 | CallInst *CI = dyn_cast<CallInst>(Val: &CB); |
3100 | if (!CI) |
3101 | return false; |
3102 | |
3103 | const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); |
3104 | FunctionType *FT = F.getFunctionType(); |
3105 | TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(T: FT); |
3106 | std::string CustomFName = ShouldTrackOrigins ? "__dfso_" : "__dfsw_" ; |
3107 | CustomFName += F.getName(); |
3108 | FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction( |
3109 | Name: CustomFName, T: CustomFn.TransformedType); |
3110 | if (Function *CustomFn = dyn_cast<Function>(Val: CustomF.getCallee())) { |
3111 | CustomFn->copyAttributesFrom(Src: &F); |
3112 | |
3113 | // Custom functions returning non-void will write to the return label. |
3114 | if (!FT->getReturnType()->isVoidTy()) { |
3115 | CustomFn->removeFnAttrs(Attrs: DFSF.DFS.ReadOnlyNoneAttrs); |
3116 | } |
3117 | } |
3118 | |
3119 | std::vector<Value *> Args; |
3120 | |
3121 | // Adds non-variable arguments. |
3122 | auto *I = CB.arg_begin(); |
3123 | for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) { |
3124 | Args.push_back(x: *I); |
3125 | } |
3126 | |
3127 | // Adds shadow arguments. |
3128 | const unsigned ShadowArgStart = Args.size(); |
3129 | addShadowArguments(F, CB, Args, IRB); |
3130 | |
3131 | // Adds origin arguments. |
3132 | const unsigned OriginArgStart = Args.size(); |
3133 | if (ShouldTrackOrigins) |
3134 | addOriginArguments(F, CB, Args, IRB); |
3135 | |
3136 | // Adds variable arguments. |
3137 | append_range(C&: Args, R: drop_begin(RangeOrContainer: CB.args(), N: FT->getNumParams())); |
3138 | |
3139 | CallInst *CustomCI = IRB.CreateCall(Callee: CustomF, Args); |
3140 | CustomCI->setCallingConv(CI->getCallingConv()); |
3141 | CustomCI->setAttributes(transformFunctionAttributes( |
3142 | TransformedFunction: CustomFn, Ctx&: CI->getContext(), CallSiteAttrs: CI->getAttributes())); |
3143 | |
3144 | // Update the parameter attributes of the custom call instruction to |
3145 | // zero extend the shadow parameters. This is required for targets |
3146 | // which consider PrimitiveShadowTy an illegal type. |
3147 | for (unsigned N = 0; N < FT->getNumParams(); N++) { |
3148 | const unsigned ArgNo = ShadowArgStart + N; |
3149 | if (CustomCI->getArgOperand(i: ArgNo)->getType() == |
3150 | DFSF.DFS.PrimitiveShadowTy) |
3151 | CustomCI->addParamAttr(ArgNo, Kind: Attribute::ZExt); |
3152 | if (ShouldTrackOrigins) { |
3153 | const unsigned OriginArgNo = OriginArgStart + N; |
3154 | if (CustomCI->getArgOperand(i: OriginArgNo)->getType() == |
3155 | DFSF.DFS.OriginTy) |
3156 | CustomCI->addParamAttr(ArgNo: OriginArgNo, Kind: Attribute::ZExt); |
3157 | } |
3158 | } |
3159 | |
3160 | // Loads the return value shadow and origin. |
3161 | if (!FT->getReturnType()->isVoidTy()) { |
3162 | LoadInst *LabelLoad = |
3163 | IRB.CreateLoad(Ty: DFSF.DFS.PrimitiveShadowTy, Ptr: DFSF.LabelReturnAlloca); |
3164 | DFSF.setShadow(I: CustomCI, |
3165 | Shadow: DFSF.expandFromPrimitiveShadow( |
3166 | T: FT->getReturnType(), PrimitiveShadow: LabelLoad, Pos: CB.getIterator())); |
3167 | if (ShouldTrackOrigins) { |
3168 | LoadInst *OriginLoad = |
3169 | IRB.CreateLoad(Ty: DFSF.DFS.OriginTy, Ptr: DFSF.OriginReturnAlloca); |
3170 | DFSF.setOrigin(I: CustomCI, Origin: OriginLoad); |
3171 | } |
3172 | } |
3173 | |
3174 | CI->replaceAllUsesWith(V: CustomCI); |
3175 | CI->eraseFromParent(); |
3176 | return true; |
3177 | } |
3178 | return false; |
3179 | } |
3180 | |
3181 | Value *DFSanVisitor::makeAddAcquireOrderingTable(IRBuilder<> &IRB) { |
3182 | constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; |
3183 | uint32_t OrderingTable[NumOrderings] = {}; |
3184 | |
3185 | OrderingTable[(int)AtomicOrderingCABI::relaxed] = |
3186 | OrderingTable[(int)AtomicOrderingCABI::acquire] = |
3187 | OrderingTable[(int)AtomicOrderingCABI::consume] = |
3188 | (int)AtomicOrderingCABI::acquire; |
3189 | OrderingTable[(int)AtomicOrderingCABI::release] = |
3190 | OrderingTable[(int)AtomicOrderingCABI::acq_rel] = |
3191 | (int)AtomicOrderingCABI::acq_rel; |
3192 | OrderingTable[(int)AtomicOrderingCABI::seq_cst] = |
3193 | (int)AtomicOrderingCABI::seq_cst; |
3194 | |
3195 | return ConstantDataVector::get(Context&: IRB.getContext(), Elts: OrderingTable); |
3196 | } |
3197 | |
3198 | void DFSanVisitor::visitLibAtomicLoad(CallBase &CB) { |
3199 | // Since we use getNextNode here, we can't have CB terminate the BB. |
3200 | assert(isa<CallInst>(CB)); |
3201 | |
3202 | IRBuilder<> IRB(&CB); |
3203 | Value *Size = CB.getArgOperand(i: 0); |
3204 | Value *SrcPtr = CB.getArgOperand(i: 1); |
3205 | Value *DstPtr = CB.getArgOperand(i: 2); |
3206 | Value *Ordering = CB.getArgOperand(i: 3); |
3207 | // Convert the call to have at least Acquire ordering to make sure |
3208 | // the shadow operations aren't reordered before it. |
3209 | Value *NewOrdering = |
3210 | IRB.CreateExtractElement(Vec: makeAddAcquireOrderingTable(IRB), Idx: Ordering); |
3211 | CB.setArgOperand(i: 3, v: NewOrdering); |
3212 | |
3213 | IRBuilder<> NextIRB(CB.getNextNode()); |
3214 | NextIRB.SetCurrentDebugLocation(CB.getDebugLoc()); |
3215 | |
3216 | // TODO: Support ClCombinePointerLabelsOnLoad |
3217 | // TODO: Support ClEventCallbacks |
3218 | |
3219 | NextIRB.CreateCall( |
3220 | Callee: DFSF.DFS.DFSanMemShadowOriginTransferFn, |
3221 | Args: {DstPtr, SrcPtr, NextIRB.CreateIntCast(V: Size, DestTy: DFSF.DFS.IntptrTy, isSigned: false)}); |
3222 | } |
3223 | |
3224 | Value *DFSanVisitor::makeAddReleaseOrderingTable(IRBuilder<> &IRB) { |
3225 | constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; |
3226 | uint32_t OrderingTable[NumOrderings] = {}; |
3227 | |
3228 | OrderingTable[(int)AtomicOrderingCABI::relaxed] = |
3229 | OrderingTable[(int)AtomicOrderingCABI::release] = |
3230 | (int)AtomicOrderingCABI::release; |
3231 | OrderingTable[(int)AtomicOrderingCABI::consume] = |
3232 | OrderingTable[(int)AtomicOrderingCABI::acquire] = |
3233 | OrderingTable[(int)AtomicOrderingCABI::acq_rel] = |
3234 | (int)AtomicOrderingCABI::acq_rel; |
3235 | OrderingTable[(int)AtomicOrderingCABI::seq_cst] = |
3236 | (int)AtomicOrderingCABI::seq_cst; |
3237 | |
3238 | return ConstantDataVector::get(Context&: IRB.getContext(), Elts: OrderingTable); |
3239 | } |
3240 | |
3241 | void DFSanVisitor::visitLibAtomicStore(CallBase &CB) { |
3242 | IRBuilder<> IRB(&CB); |
3243 | Value *Size = CB.getArgOperand(i: 0); |
3244 | Value *SrcPtr = CB.getArgOperand(i: 1); |
3245 | Value *DstPtr = CB.getArgOperand(i: 2); |
3246 | Value *Ordering = CB.getArgOperand(i: 3); |
3247 | // Convert the call to have at least Release ordering to make sure |
3248 | // the shadow operations aren't reordered after it. |
3249 | Value *NewOrdering = |
3250 | IRB.CreateExtractElement(Vec: makeAddReleaseOrderingTable(IRB), Idx: Ordering); |
3251 | CB.setArgOperand(i: 3, v: NewOrdering); |
3252 | |
3253 | // TODO: Support ClCombinePointerLabelsOnStore |
3254 | // TODO: Support ClEventCallbacks |
3255 | |
3256 | IRB.CreateCall( |
3257 | Callee: DFSF.DFS.DFSanMemShadowOriginTransferFn, |
3258 | Args: {DstPtr, SrcPtr, IRB.CreateIntCast(V: Size, DestTy: DFSF.DFS.IntptrTy, isSigned: false)}); |
3259 | } |
3260 | |
3261 | void DFSanVisitor::visitLibAtomicExchange(CallBase &CB) { |
3262 | // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret, int |
3263 | // ordering) |
3264 | IRBuilder<> IRB(&CB); |
3265 | Value *Size = CB.getArgOperand(i: 0); |
3266 | Value *TargetPtr = CB.getArgOperand(i: 1); |
3267 | Value *SrcPtr = CB.getArgOperand(i: 2); |
3268 | Value *DstPtr = CB.getArgOperand(i: 3); |
3269 | |
3270 | // This operation is not atomic for the shadow and origin memory. |
3271 | // This could result in DFSan false positives or false negatives. |
3272 | // For now we will assume these operations are rare, and |
3273 | // the additional complexity to address this is not warrented. |
3274 | |
3275 | // Current Target to Dest |
3276 | IRB.CreateCall( |
3277 | Callee: DFSF.DFS.DFSanMemShadowOriginTransferFn, |
3278 | Args: {DstPtr, TargetPtr, IRB.CreateIntCast(V: Size, DestTy: DFSF.DFS.IntptrTy, isSigned: false)}); |
3279 | |
3280 | // Current Src to Target (overriding) |
3281 | IRB.CreateCall( |
3282 | Callee: DFSF.DFS.DFSanMemShadowOriginTransferFn, |
3283 | Args: {TargetPtr, SrcPtr, IRB.CreateIntCast(V: Size, DestTy: DFSF.DFS.IntptrTy, isSigned: false)}); |
3284 | } |
3285 | |
3286 | void DFSanVisitor::visitLibAtomicCompareExchange(CallBase &CB) { |
3287 | // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected, void |
3288 | // *desired, int success_order, int failure_order) |
3289 | Value *Size = CB.getArgOperand(i: 0); |
3290 | Value *TargetPtr = CB.getArgOperand(i: 1); |
3291 | Value *ExpectedPtr = CB.getArgOperand(i: 2); |
3292 | Value *DesiredPtr = CB.getArgOperand(i: 3); |
3293 | |
3294 | // This operation is not atomic for the shadow and origin memory. |
3295 | // This could result in DFSan false positives or false negatives. |
3296 | // For now we will assume these operations are rare, and |
3297 | // the additional complexity to address this is not warrented. |
3298 | |
3299 | IRBuilder<> NextIRB(CB.getNextNode()); |
3300 | NextIRB.SetCurrentDebugLocation(CB.getDebugLoc()); |
3301 | |
3302 | DFSF.setShadow(I: &CB, Shadow: DFSF.DFS.getZeroShadow(V: &CB)); |
3303 | |
3304 | // If original call returned true, copy Desired to Target. |
3305 | // If original call returned false, copy Target to Expected. |
3306 | NextIRB.CreateCall(Callee: DFSF.DFS.DFSanMemShadowOriginConditionalExchangeFn, |
3307 | Args: {NextIRB.CreateIntCast(V: &CB, DestTy: NextIRB.getInt8Ty(), isSigned: false), |
3308 | TargetPtr, ExpectedPtr, DesiredPtr, |
3309 | NextIRB.CreateIntCast(V: Size, DestTy: DFSF.DFS.IntptrTy, isSigned: false)}); |
3310 | } |
3311 | |
3312 | void DFSanVisitor::visitCallBase(CallBase &CB) { |
3313 | Function *F = CB.getCalledFunction(); |
3314 | if ((F && F->isIntrinsic()) || CB.isInlineAsm()) { |
3315 | visitInstOperands(I&: CB); |
3316 | return; |
3317 | } |
3318 | |
3319 | // Calls to this function are synthesized in wrappers, and we shouldn't |
3320 | // instrument them. |
3321 | if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts()) |
3322 | return; |
3323 | |
3324 | LibFunc LF; |
3325 | if (DFSF.TLI.getLibFunc(CB, F&: LF)) { |
3326 | // libatomic.a functions need to have special handling because there isn't |
3327 | // a good way to intercept them or compile the library with |
3328 | // instrumentation. |
3329 | switch (LF) { |
3330 | case LibFunc_atomic_load: |
3331 | if (!isa<CallInst>(Val: CB)) { |
3332 | llvm::errs() << "DFSAN -- cannot instrument invoke of libatomic load. " |
3333 | "Ignoring!\n" ; |
3334 | break; |
3335 | } |
3336 | visitLibAtomicLoad(CB); |
3337 | return; |
3338 | case LibFunc_atomic_store: |
3339 | visitLibAtomicStore(CB); |
3340 | return; |
3341 | default: |
3342 | break; |
3343 | } |
3344 | } |
3345 | |
3346 | // TODO: These are not supported by TLI? They are not in the enum. |
3347 | if (F && F->hasName() && !F->isVarArg()) { |
3348 | if (F->getName() == "__atomic_exchange" ) { |
3349 | visitLibAtomicExchange(CB); |
3350 | return; |
3351 | } |
3352 | if (F->getName() == "__atomic_compare_exchange" ) { |
3353 | visitLibAtomicCompareExchange(CB); |
3354 | return; |
3355 | } |
3356 | } |
3357 | |
3358 | DenseMap<Value *, Function *>::iterator UnwrappedFnIt = |
3359 | DFSF.DFS.UnwrappedFnMap.find(Val: CB.getCalledOperand()); |
3360 | if (UnwrappedFnIt != DFSF.DFS.UnwrappedFnMap.end()) |
3361 | if (visitWrappedCallBase(F&: *UnwrappedFnIt->second, CB)) |
3362 | return; |
3363 | |
3364 | IRBuilder<> IRB(&CB); |
3365 | |
3366 | const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); |
3367 | FunctionType *FT = CB.getFunctionType(); |
3368 | const DataLayout &DL = getDataLayout(); |
3369 | |
3370 | // Stores argument shadows. |
3371 | unsigned ArgOffset = 0; |
3372 | for (unsigned I = 0, N = FT->getNumParams(); I != N; ++I) { |
3373 | if (ShouldTrackOrigins) { |
3374 | // Ignore overflowed origins |
3375 | Value *ArgShadow = DFSF.getShadow(V: CB.getArgOperand(i: I)); |
3376 | if (I < DFSF.DFS.NumOfElementsInArgOrgTLS && |
3377 | !DFSF.DFS.isZeroShadow(V: ArgShadow)) |
3378 | IRB.CreateStore(Val: DFSF.getOrigin(V: CB.getArgOperand(i: I)), |
3379 | Ptr: DFSF.getArgOriginTLS(ArgNo: I, IRB)); |
3380 | } |
3381 | |
3382 | unsigned Size = |
3383 | DL.getTypeAllocSize(Ty: DFSF.DFS.getShadowTy(OrigTy: FT->getParamType(i: I))); |
3384 | // Stop storing if arguments' size overflows. Inside a function, arguments |
3385 | // after overflow have zero shadow values. |
3386 | if (ArgOffset + Size > ArgTLSSize) |
3387 | break; |
3388 | IRB.CreateAlignedStore(Val: DFSF.getShadow(V: CB.getArgOperand(i: I)), |
3389 | Ptr: DFSF.getArgTLS(T: FT->getParamType(i: I), ArgOffset, IRB), |
3390 | Align: ShadowTLSAlignment); |
3391 | ArgOffset += alignTo(Size, A: ShadowTLSAlignment); |
3392 | } |
3393 | |
3394 | Instruction *Next = nullptr; |
3395 | if (!CB.getType()->isVoidTy()) { |
3396 | if (InvokeInst *II = dyn_cast<InvokeInst>(Val: &CB)) { |
3397 | if (II->getNormalDest()->getSinglePredecessor()) { |
3398 | Next = &II->getNormalDest()->front(); |
3399 | } else { |
3400 | BasicBlock *NewBB = |
3401 | SplitEdge(From: II->getParent(), To: II->getNormalDest(), DT: &DFSF.DT); |
3402 | Next = &NewBB->front(); |
3403 | } |
3404 | } else { |
3405 | assert(CB.getIterator() != CB.getParent()->end()); |
3406 | Next = CB.getNextNode(); |
3407 | } |
3408 | |
3409 | // Don't emit the epilogue for musttail call returns. |
3410 | if (isa<CallInst>(Val: CB) && cast<CallInst>(Val&: CB).isMustTailCall()) |
3411 | return; |
3412 | |
3413 | // Loads the return value shadow. |
3414 | IRBuilder<> NextIRB(Next); |
3415 | unsigned Size = DL.getTypeAllocSize(Ty: DFSF.DFS.getShadowTy(V: &CB)); |
3416 | if (Size > RetvalTLSSize) { |
3417 | // Set overflowed return shadow to be zero. |
3418 | DFSF.setShadow(I: &CB, Shadow: DFSF.DFS.getZeroShadow(V: &CB)); |
3419 | } else { |
3420 | LoadInst *LI = NextIRB.CreateAlignedLoad( |
3421 | Ty: DFSF.DFS.getShadowTy(V: &CB), Ptr: DFSF.getRetvalTLS(T: CB.getType(), IRB&: NextIRB), |
3422 | Align: ShadowTLSAlignment, Name: "_dfsret" ); |
3423 | DFSF.SkipInsts.insert(V: LI); |
3424 | DFSF.setShadow(I: &CB, Shadow: LI); |
3425 | DFSF.NonZeroChecks.push_back(x: LI); |
3426 | } |
3427 | |
3428 | if (ShouldTrackOrigins) { |
3429 | LoadInst *LI = NextIRB.CreateLoad(Ty: DFSF.DFS.OriginTy, |
3430 | Ptr: DFSF.getRetvalOriginTLS(), Name: "_dfsret_o" ); |
3431 | DFSF.SkipInsts.insert(V: LI); |
3432 | DFSF.setOrigin(I: &CB, Origin: LI); |
3433 | } |
3434 | |
3435 | DFSF.addReachesFunctionCallbacksIfEnabled(IRB&: NextIRB, I&: CB, Data: &CB); |
3436 | } |
3437 | } |
3438 | |
3439 | void DFSanVisitor::visitPHINode(PHINode &PN) { |
3440 | Type *ShadowTy = DFSF.DFS.getShadowTy(V: &PN); |
3441 | PHINode *ShadowPN = PHINode::Create(Ty: ShadowTy, NumReservedValues: PN.getNumIncomingValues(), NameStr: "" , |
3442 | InsertBefore: PN.getIterator()); |
3443 | |
3444 | // Give the shadow phi node valid predecessors to fool SplitEdge into working. |
3445 | Value *PoisonShadow = PoisonValue::get(T: ShadowTy); |
3446 | for (BasicBlock *BB : PN.blocks()) |
3447 | ShadowPN->addIncoming(V: PoisonShadow, BB); |
3448 | |
3449 | DFSF.setShadow(I: &PN, Shadow: ShadowPN); |
3450 | |
3451 | PHINode *OriginPN = nullptr; |
3452 | if (DFSF.DFS.shouldTrackOrigins()) { |
3453 | OriginPN = PHINode::Create(Ty: DFSF.DFS.OriginTy, NumReservedValues: PN.getNumIncomingValues(), NameStr: "" , |
3454 | InsertBefore: PN.getIterator()); |
3455 | Value *PoisonOrigin = PoisonValue::get(T: DFSF.DFS.OriginTy); |
3456 | for (BasicBlock *BB : PN.blocks()) |
3457 | OriginPN->addIncoming(V: PoisonOrigin, BB); |
3458 | DFSF.setOrigin(I: &PN, Origin: OriginPN); |
3459 | } |
3460 | |
3461 | DFSF.PHIFixups.push_back(x: {.Phi: &PN, .ShadowPhi: ShadowPN, .OriginPhi: OriginPN}); |
3462 | } |
3463 | |
3464 | PreservedAnalyses DataFlowSanitizerPass::run(Module &M, |
3465 | ModuleAnalysisManager &AM) { |
3466 | // Return early if nosanitize_dataflow module flag is present for the module. |
3467 | if (checkIfAlreadyInstrumented(M, Flag: "nosanitize_dataflow" )) |
3468 | return PreservedAnalyses::all(); |
3469 | auto GetTLI = [&](Function &F) -> TargetLibraryInfo & { |
3470 | auto &FAM = |
3471 | AM.getResult<FunctionAnalysisManagerModuleProxy>(IR&: M).getManager(); |
3472 | return FAM.getResult<TargetLibraryAnalysis>(IR&: F); |
3473 | }; |
3474 | if (!DataFlowSanitizer(ABIListFiles).runImpl(M, GetTLI)) |
3475 | return PreservedAnalyses::all(); |
3476 | |
3477 | PreservedAnalyses PA = PreservedAnalyses::none(); |
3478 | // GlobalsAA is considered stateless and does not get invalidated unless |
3479 | // explicitly invalidated; PreservedAnalyses::none() is not enough. Sanitizers |
3480 | // make changes that require GlobalsAA to be invalidated. |
3481 | PA.abandon<GlobalsAA>(); |
3482 | return PA; |
3483 | } |
3484 | |