| 1 | //===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | /// \file |
| 10 | /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow |
| 11 | /// analysis. |
| 12 | /// |
| 13 | /// Unlike other Sanitizer tools, this tool is not designed to detect a specific |
| 14 | /// class of bugs on its own. Instead, it provides a generic dynamic data flow |
| 15 | /// analysis framework to be used by clients to help detect application-specific |
| 16 | /// issues within their own code. |
| 17 | /// |
| 18 | /// The analysis is based on automatic propagation of data flow labels (also |
| 19 | /// known as taint labels) through a program as it performs computation. |
| 20 | /// |
| 21 | /// Argument and return value labels are passed through TLS variables |
| 22 | /// __dfsan_arg_tls and __dfsan_retval_tls. |
| 23 | /// |
| 24 | /// Each byte of application memory is backed by a shadow memory byte. The |
| 25 | /// shadow byte can represent up to 8 labels. On Linux/x86_64, memory is then |
| 26 | /// laid out as follows: |
| 27 | /// |
| 28 | /// +--------------------+ 0x800000000000 (top of memory) |
| 29 | /// | application 3 | |
| 30 | /// +--------------------+ 0x700000000000 |
| 31 | /// | invalid | |
| 32 | /// +--------------------+ 0x610000000000 |
| 33 | /// | origin 1 | |
| 34 | /// +--------------------+ 0x600000000000 |
| 35 | /// | application 2 | |
| 36 | /// +--------------------+ 0x510000000000 |
| 37 | /// | shadow 1 | |
| 38 | /// +--------------------+ 0x500000000000 |
| 39 | /// | invalid | |
| 40 | /// +--------------------+ 0x400000000000 |
| 41 | /// | origin 3 | |
| 42 | /// +--------------------+ 0x300000000000 |
| 43 | /// | shadow 3 | |
| 44 | /// +--------------------+ 0x200000000000 |
| 45 | /// | origin 2 | |
| 46 | /// +--------------------+ 0x110000000000 |
| 47 | /// | invalid | |
| 48 | /// +--------------------+ 0x100000000000 |
| 49 | /// | shadow 2 | |
| 50 | /// +--------------------+ 0x010000000000 |
| 51 | /// | application 1 | |
| 52 | /// +--------------------+ 0x000000000000 |
| 53 | /// |
| 54 | /// MEM_TO_SHADOW(mem) = mem ^ 0x500000000000 |
| 55 | /// SHADOW_TO_ORIGIN(shadow) = shadow + 0x100000000000 |
| 56 | /// |
| 57 | /// For more information, please refer to the design document: |
| 58 | /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html |
| 59 | // |
| 60 | //===----------------------------------------------------------------------===// |
| 61 | |
| 62 | #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" |
| 63 | #include "llvm/ADT/DenseMap.h" |
| 64 | #include "llvm/ADT/DenseSet.h" |
| 65 | #include "llvm/ADT/DepthFirstIterator.h" |
| 66 | #include "llvm/ADT/SmallPtrSet.h" |
| 67 | #include "llvm/ADT/SmallVector.h" |
| 68 | #include "llvm/ADT/StringRef.h" |
| 69 | #include "llvm/ADT/StringSet.h" |
| 70 | #include "llvm/ADT/iterator.h" |
| 71 | #include "llvm/Analysis/DomTreeUpdater.h" |
| 72 | #include "llvm/Analysis/GlobalsModRef.h" |
| 73 | #include "llvm/Analysis/TargetLibraryInfo.h" |
| 74 | #include "llvm/Analysis/ValueTracking.h" |
| 75 | #include "llvm/IR/Argument.h" |
| 76 | #include "llvm/IR/AttributeMask.h" |
| 77 | #include "llvm/IR/Attributes.h" |
| 78 | #include "llvm/IR/BasicBlock.h" |
| 79 | #include "llvm/IR/Constant.h" |
| 80 | #include "llvm/IR/Constants.h" |
| 81 | #include "llvm/IR/DataLayout.h" |
| 82 | #include "llvm/IR/DerivedTypes.h" |
| 83 | #include "llvm/IR/Dominators.h" |
| 84 | #include "llvm/IR/Function.h" |
| 85 | #include "llvm/IR/GlobalAlias.h" |
| 86 | #include "llvm/IR/GlobalValue.h" |
| 87 | #include "llvm/IR/GlobalVariable.h" |
| 88 | #include "llvm/IR/IRBuilder.h" |
| 89 | #include "llvm/IR/InstVisitor.h" |
| 90 | #include "llvm/IR/InstrTypes.h" |
| 91 | #include "llvm/IR/Instruction.h" |
| 92 | #include "llvm/IR/Instructions.h" |
| 93 | #include "llvm/IR/IntrinsicInst.h" |
| 94 | #include "llvm/IR/MDBuilder.h" |
| 95 | #include "llvm/IR/Module.h" |
| 96 | #include "llvm/IR/PassManager.h" |
| 97 | #include "llvm/IR/Type.h" |
| 98 | #include "llvm/IR/User.h" |
| 99 | #include "llvm/IR/Value.h" |
| 100 | #include "llvm/Support/Alignment.h" |
| 101 | #include "llvm/Support/Casting.h" |
| 102 | #include "llvm/Support/CommandLine.h" |
| 103 | #include "llvm/Support/ErrorHandling.h" |
| 104 | #include "llvm/Support/SpecialCaseList.h" |
| 105 | #include "llvm/Support/VirtualFileSystem.h" |
| 106 | #include "llvm/TargetParser/Triple.h" |
| 107 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 108 | #include "llvm/Transforms/Utils/Instrumentation.h" |
| 109 | #include "llvm/Transforms/Utils/Local.h" |
| 110 | #include <algorithm> |
| 111 | #include <cassert> |
| 112 | #include <cstddef> |
| 113 | #include <cstdint> |
| 114 | #include <memory> |
| 115 | #include <set> |
| 116 | #include <string> |
| 117 | #include <utility> |
| 118 | #include <vector> |
| 119 | |
| 120 | using namespace llvm; |
| 121 | |
| 122 | // This must be consistent with ShadowWidthBits. |
| 123 | static const Align ShadowTLSAlignment = Align(2); |
| 124 | |
| 125 | static const Align MinOriginAlignment = Align(4); |
| 126 | |
| 127 | // The size of TLS variables. These constants must be kept in sync with the ones |
| 128 | // in dfsan.cpp. |
| 129 | static const unsigned ArgTLSSize = 800; |
| 130 | static const unsigned RetvalTLSSize = 800; |
| 131 | |
| 132 | // The -dfsan-preserve-alignment flag controls whether this pass assumes that |
| 133 | // alignment requirements provided by the input IR are correct. For example, |
| 134 | // if the input IR contains a load with alignment 8, this flag will cause |
| 135 | // the shadow load to have alignment 16. This flag is disabled by default as |
| 136 | // we have unfortunately encountered too much code (including Clang itself; |
| 137 | // see PR14291) which performs misaligned access. |
| 138 | static cl::opt<bool> ClPreserveAlignment( |
| 139 | "dfsan-preserve-alignment" , |
| 140 | cl::desc("respect alignment requirements provided by input IR" ), cl::Hidden, |
| 141 | cl::init(Val: false)); |
| 142 | |
| 143 | // The ABI list files control how shadow parameters are passed. The pass treats |
| 144 | // every function labelled "uninstrumented" in the ABI list file as conforming |
| 145 | // to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains |
| 146 | // additional annotations for those functions, a call to one of those functions |
| 147 | // will produce a warning message, as the labelling behaviour of the function is |
| 148 | // unknown. The other supported annotations for uninstrumented functions are |
| 149 | // "functional" and "discard", which are described below under |
| 150 | // DataFlowSanitizer::WrapperKind. |
| 151 | // Functions will often be labelled with both "uninstrumented" and one of |
| 152 | // "functional" or "discard". This will leave the function unchanged by this |
| 153 | // pass, and create a wrapper function that will call the original. |
| 154 | // |
| 155 | // Instrumented functions can also be annotated as "force_zero_labels", which |
| 156 | // will make all shadow and return values set zero labels. |
| 157 | // Functions should never be labelled with both "force_zero_labels" and |
| 158 | // "uninstrumented" or any of the unistrumented wrapper kinds. |
| 159 | static cl::list<std::string> ClABIListFiles( |
| 160 | "dfsan-abilist" , |
| 161 | cl::desc("File listing native ABI functions and how the pass treats them" ), |
| 162 | cl::Hidden); |
| 163 | |
| 164 | // Controls whether the pass includes or ignores the labels of pointers in load |
| 165 | // instructions. |
| 166 | static cl::opt<bool> ClCombinePointerLabelsOnLoad( |
| 167 | "dfsan-combine-pointer-labels-on-load" , |
| 168 | cl::desc("Combine the label of the pointer with the label of the data when " |
| 169 | "loading from memory." ), |
| 170 | cl::Hidden, cl::init(Val: true)); |
| 171 | |
| 172 | // Controls whether the pass includes or ignores the labels of pointers in |
| 173 | // stores instructions. |
| 174 | static cl::opt<bool> ClCombinePointerLabelsOnStore( |
| 175 | "dfsan-combine-pointer-labels-on-store" , |
| 176 | cl::desc("Combine the label of the pointer with the label of the data when " |
| 177 | "storing in memory." ), |
| 178 | cl::Hidden, cl::init(Val: false)); |
| 179 | |
| 180 | // Controls whether the pass propagates labels of offsets in GEP instructions. |
| 181 | static cl::opt<bool> ClCombineOffsetLabelsOnGEP( |
| 182 | "dfsan-combine-offset-labels-on-gep" , |
| 183 | cl::desc( |
| 184 | "Combine the label of the offset with the label of the pointer when " |
| 185 | "doing pointer arithmetic." ), |
| 186 | cl::Hidden, cl::init(Val: true)); |
| 187 | |
| 188 | static cl::list<std::string> ClCombineTaintLookupTables( |
| 189 | "dfsan-combine-taint-lookup-table" , |
| 190 | cl::desc( |
| 191 | "When dfsan-combine-offset-labels-on-gep and/or " |
| 192 | "dfsan-combine-pointer-labels-on-load are false, this flag can " |
| 193 | "be used to re-enable combining offset and/or pointer taint when " |
| 194 | "loading specific constant global variables (i.e. lookup tables)." ), |
| 195 | cl::Hidden); |
| 196 | |
| 197 | static cl::opt<bool> ClDebugNonzeroLabels( |
| 198 | "dfsan-debug-nonzero-labels" , |
| 199 | cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, " |
| 200 | "load or return with a nonzero label" ), |
| 201 | cl::Hidden); |
| 202 | |
| 203 | // Experimental feature that inserts callbacks for certain data events. |
| 204 | // Currently callbacks are only inserted for loads, stores, memory transfers |
| 205 | // (i.e. memcpy and memmove), and comparisons. |
| 206 | // |
| 207 | // If this flag is set to true, the user must provide definitions for the |
| 208 | // following callback functions: |
| 209 | // void __dfsan_load_callback(dfsan_label Label, void* addr); |
| 210 | // void __dfsan_store_callback(dfsan_label Label, void* addr); |
| 211 | // void __dfsan_mem_transfer_callback(dfsan_label *Start, size_t Len); |
| 212 | // void __dfsan_cmp_callback(dfsan_label CombinedLabel); |
| 213 | static cl::opt<bool> ClEventCallbacks( |
| 214 | "dfsan-event-callbacks" , |
| 215 | cl::desc("Insert calls to __dfsan_*_callback functions on data events." ), |
| 216 | cl::Hidden, cl::init(Val: false)); |
| 217 | |
| 218 | // Experimental feature that inserts callbacks for conditionals, including: |
| 219 | // conditional branch, switch, select. |
| 220 | // This must be true for dfsan_set_conditional_callback() to have effect. |
| 221 | static cl::opt<bool> ClConditionalCallbacks( |
| 222 | "dfsan-conditional-callbacks" , |
| 223 | cl::desc("Insert calls to callback functions on conditionals." ), cl::Hidden, |
| 224 | cl::init(Val: false)); |
| 225 | |
| 226 | // Experimental feature that inserts callbacks for data reaching a function, |
| 227 | // either via function arguments and loads. |
| 228 | // This must be true for dfsan_set_reaches_function_callback() to have effect. |
| 229 | static cl::opt<bool> ClReachesFunctionCallbacks( |
| 230 | "dfsan-reaches-function-callbacks" , |
| 231 | cl::desc("Insert calls to callback functions on data reaching a function." ), |
| 232 | cl::Hidden, cl::init(Val: false)); |
| 233 | |
| 234 | // Controls whether the pass tracks the control flow of select instructions. |
| 235 | static cl::opt<bool> ClTrackSelectControlFlow( |
| 236 | "dfsan-track-select-control-flow" , |
| 237 | cl::desc("Propagate labels from condition values of select instructions " |
| 238 | "to results." ), |
| 239 | cl::Hidden, cl::init(Val: true)); |
| 240 | |
| 241 | // TODO: This default value follows MSan. DFSan may use a different value. |
| 242 | static cl::opt<int> ClInstrumentWithCallThreshold( |
| 243 | "dfsan-instrument-with-call-threshold" , |
| 244 | cl::desc("If the function being instrumented requires more than " |
| 245 | "this number of origin stores, use callbacks instead of " |
| 246 | "inline checks (-1 means never use callbacks)." ), |
| 247 | cl::Hidden, cl::init(Val: 3500)); |
| 248 | |
| 249 | // Controls how to track origins. |
| 250 | // * 0: do not track origins. |
| 251 | // * 1: track origins at memory store operations. |
| 252 | // * 2: track origins at memory load and store operations. |
| 253 | // TODO: track callsites. |
| 254 | static cl::opt<int> ClTrackOrigins("dfsan-track-origins" , |
| 255 | cl::desc("Track origins of labels" ), |
| 256 | cl::Hidden, cl::init(Val: 0)); |
| 257 | |
| 258 | static cl::opt<bool> ClIgnorePersonalityRoutine( |
| 259 | "dfsan-ignore-personality-routine" , |
| 260 | cl::desc("If a personality routine is marked uninstrumented from the ABI " |
| 261 | "list, do not create a wrapper for it." ), |
| 262 | cl::Hidden, cl::init(Val: false)); |
| 263 | |
| 264 | static StringRef getGlobalTypeString(const GlobalValue &G) { |
| 265 | // Types of GlobalVariables are always pointer types. |
| 266 | Type *GType = G.getValueType(); |
| 267 | // For now we support excluding struct types only. |
| 268 | if (StructType *SGType = dyn_cast<StructType>(Val: GType)) { |
| 269 | if (!SGType->isLiteral()) |
| 270 | return SGType->getName(); |
| 271 | } |
| 272 | return "<unknown type>" ; |
| 273 | } |
| 274 | |
| 275 | namespace { |
| 276 | |
| 277 | // Memory map parameters used in application-to-shadow address calculation. |
| 278 | // Offset = (Addr & ~AndMask) ^ XorMask |
| 279 | // Shadow = ShadowBase + Offset |
| 280 | // Origin = (OriginBase + Offset) & ~3ULL |
| 281 | struct MemoryMapParams { |
| 282 | uint64_t AndMask; |
| 283 | uint64_t XorMask; |
| 284 | uint64_t ShadowBase; |
| 285 | uint64_t OriginBase; |
| 286 | }; |
| 287 | |
| 288 | } // end anonymous namespace |
| 289 | |
| 290 | // NOLINTBEGIN(readability-identifier-naming) |
| 291 | // aarch64 Linux |
| 292 | const MemoryMapParams Linux_AArch64_MemoryMapParams = { |
| 293 | .AndMask: 0, // AndMask (not used) |
| 294 | .XorMask: 0x0B00000000000, // XorMask |
| 295 | .ShadowBase: 0, // ShadowBase (not used) |
| 296 | .OriginBase: 0x0200000000000, // OriginBase |
| 297 | }; |
| 298 | |
| 299 | // x86_64 Linux |
| 300 | const MemoryMapParams Linux_X86_64_MemoryMapParams = { |
| 301 | .AndMask: 0, // AndMask (not used) |
| 302 | .XorMask: 0x500000000000, // XorMask |
| 303 | .ShadowBase: 0, // ShadowBase (not used) |
| 304 | .OriginBase: 0x100000000000, // OriginBase |
| 305 | }; |
| 306 | // NOLINTEND(readability-identifier-naming) |
| 307 | |
| 308 | // loongarch64 Linux |
| 309 | const MemoryMapParams Linux_LoongArch64_MemoryMapParams = { |
| 310 | .AndMask: 0, // AndMask (not used) |
| 311 | .XorMask: 0x500000000000, // XorMask |
| 312 | .ShadowBase: 0, // ShadowBase (not used) |
| 313 | .OriginBase: 0x100000000000, // OriginBase |
| 314 | }; |
| 315 | |
| 316 | namespace { |
| 317 | |
| 318 | class DFSanABIList { |
| 319 | std::unique_ptr<SpecialCaseList> SCL; |
| 320 | |
| 321 | public: |
| 322 | DFSanABIList() = default; |
| 323 | |
| 324 | void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); } |
| 325 | |
| 326 | /// Returns whether either this function or its source file are listed in the |
| 327 | /// given category. |
| 328 | bool isIn(const Function &F, StringRef Category) const { |
| 329 | return isIn(M: *F.getParent(), Category) || |
| 330 | SCL->inSection(Section: "dataflow" , Prefix: "fun" , Query: F.getName(), Category); |
| 331 | } |
| 332 | |
| 333 | /// Returns whether this global alias is listed in the given category. |
| 334 | /// |
| 335 | /// If GA aliases a function, the alias's name is matched as a function name |
| 336 | /// would be. Similarly, aliases of globals are matched like globals. |
| 337 | bool isIn(const GlobalAlias &GA, StringRef Category) const { |
| 338 | if (isIn(M: *GA.getParent(), Category)) |
| 339 | return true; |
| 340 | |
| 341 | if (isa<FunctionType>(Val: GA.getValueType())) |
| 342 | return SCL->inSection(Section: "dataflow" , Prefix: "fun" , Query: GA.getName(), Category); |
| 343 | |
| 344 | return SCL->inSection(Section: "dataflow" , Prefix: "global" , Query: GA.getName(), Category) || |
| 345 | SCL->inSection(Section: "dataflow" , Prefix: "type" , Query: getGlobalTypeString(G: GA), |
| 346 | Category); |
| 347 | } |
| 348 | |
| 349 | /// Returns whether this module is listed in the given category. |
| 350 | bool isIn(const Module &M, StringRef Category) const { |
| 351 | return SCL->inSection(Section: "dataflow" , Prefix: "src" , Query: M.getModuleIdentifier(), Category); |
| 352 | } |
| 353 | }; |
| 354 | |
| 355 | /// TransformedFunction is used to express the result of transforming one |
| 356 | /// function type into another. This struct is immutable. It holds metadata |
| 357 | /// useful for updating calls of the old function to the new type. |
| 358 | struct TransformedFunction { |
| 359 | TransformedFunction(FunctionType *OriginalType, FunctionType *TransformedType, |
| 360 | const std::vector<unsigned> &ArgumentIndexMapping) |
| 361 | : OriginalType(OriginalType), TransformedType(TransformedType), |
| 362 | ArgumentIndexMapping(ArgumentIndexMapping) {} |
| 363 | |
| 364 | // Disallow copies. |
| 365 | TransformedFunction(const TransformedFunction &) = delete; |
| 366 | TransformedFunction &operator=(const TransformedFunction &) = delete; |
| 367 | |
| 368 | // Allow moves. |
| 369 | TransformedFunction(TransformedFunction &&) = default; |
| 370 | TransformedFunction &operator=(TransformedFunction &&) = default; |
| 371 | |
| 372 | /// Type of the function before the transformation. |
| 373 | FunctionType *OriginalType; |
| 374 | |
| 375 | /// Type of the function after the transformation. |
| 376 | FunctionType *TransformedType; |
| 377 | |
| 378 | /// Transforming a function may change the position of arguments. This |
| 379 | /// member records the mapping from each argument's old position to its new |
| 380 | /// position. Argument positions are zero-indexed. If the transformation |
| 381 | /// from F to F' made the first argument of F into the third argument of F', |
| 382 | /// then ArgumentIndexMapping[0] will equal 2. |
| 383 | std::vector<unsigned> ArgumentIndexMapping; |
| 384 | }; |
| 385 | |
| 386 | /// Given function attributes from a call site for the original function, |
| 387 | /// return function attributes appropriate for a call to the transformed |
| 388 | /// function. |
| 389 | AttributeList |
| 390 | transformFunctionAttributes(const TransformedFunction &TransformedFunction, |
| 391 | LLVMContext &Ctx, AttributeList CallSiteAttrs) { |
| 392 | |
| 393 | // Construct a vector of AttributeSet for each function argument. |
| 394 | std::vector<llvm::AttributeSet> ArgumentAttributes( |
| 395 | TransformedFunction.TransformedType->getNumParams()); |
| 396 | |
| 397 | // Copy attributes from the parameter of the original function to the |
| 398 | // transformed version. 'ArgumentIndexMapping' holds the mapping from |
| 399 | // old argument position to new. |
| 400 | for (unsigned I = 0, IE = TransformedFunction.ArgumentIndexMapping.size(); |
| 401 | I < IE; ++I) { |
| 402 | unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[I]; |
| 403 | ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttrs(ArgNo: I); |
| 404 | } |
| 405 | |
| 406 | // Copy annotations on varargs arguments. |
| 407 | for (unsigned I = TransformedFunction.OriginalType->getNumParams(), |
| 408 | IE = CallSiteAttrs.getNumAttrSets(); |
| 409 | I < IE; ++I) { |
| 410 | ArgumentAttributes.push_back(x: CallSiteAttrs.getParamAttrs(ArgNo: I)); |
| 411 | } |
| 412 | |
| 413 | return AttributeList::get(C&: Ctx, FnAttrs: CallSiteAttrs.getFnAttrs(), |
| 414 | RetAttrs: CallSiteAttrs.getRetAttrs(), |
| 415 | ArgAttrs: llvm::ArrayRef(ArgumentAttributes)); |
| 416 | } |
| 417 | |
| 418 | class DataFlowSanitizer { |
| 419 | friend struct DFSanFunction; |
| 420 | friend class DFSanVisitor; |
| 421 | |
| 422 | enum { ShadowWidthBits = 8, ShadowWidthBytes = ShadowWidthBits / 8 }; |
| 423 | |
| 424 | enum { OriginWidthBits = 32, OriginWidthBytes = OriginWidthBits / 8 }; |
| 425 | |
| 426 | /// How should calls to uninstrumented functions be handled? |
| 427 | enum WrapperKind { |
| 428 | /// This function is present in an uninstrumented form but we don't know |
| 429 | /// how it should be handled. Print a warning and call the function anyway. |
| 430 | /// Don't label the return value. |
| 431 | WK_Warning, |
| 432 | |
| 433 | /// This function does not write to (user-accessible) memory, and its return |
| 434 | /// value is unlabelled. |
| 435 | WK_Discard, |
| 436 | |
| 437 | /// This function does not write to (user-accessible) memory, and the label |
| 438 | /// of its return value is the union of the label of its arguments. |
| 439 | WK_Functional, |
| 440 | |
| 441 | /// Instead of calling the function, a custom wrapper __dfsw_F is called, |
| 442 | /// where F is the name of the function. This function may wrap the |
| 443 | /// original function or provide its own implementation. WK_Custom uses an |
| 444 | /// extra pointer argument to return the shadow. This allows the wrapped |
| 445 | /// form of the function type to be expressed in C. |
| 446 | WK_Custom |
| 447 | }; |
| 448 | |
| 449 | Module *Mod; |
| 450 | LLVMContext *Ctx; |
| 451 | Type *Int8Ptr; |
| 452 | IntegerType *OriginTy; |
| 453 | PointerType *OriginPtrTy; |
| 454 | ConstantInt *ZeroOrigin; |
| 455 | /// The shadow type for all primitive types and vector types. |
| 456 | IntegerType *PrimitiveShadowTy; |
| 457 | PointerType *PrimitiveShadowPtrTy; |
| 458 | IntegerType *IntptrTy; |
| 459 | ConstantInt *ZeroPrimitiveShadow; |
| 460 | Constant *ArgTLS; |
| 461 | ArrayType *ArgOriginTLSTy; |
| 462 | Constant *ArgOriginTLS; |
| 463 | Constant *RetvalTLS; |
| 464 | Constant *RetvalOriginTLS; |
| 465 | FunctionType *DFSanUnionLoadFnTy; |
| 466 | FunctionType *DFSanLoadLabelAndOriginFnTy; |
| 467 | FunctionType *DFSanUnimplementedFnTy; |
| 468 | FunctionType *DFSanWrapperExternWeakNullFnTy; |
| 469 | FunctionType *DFSanSetLabelFnTy; |
| 470 | FunctionType *DFSanNonzeroLabelFnTy; |
| 471 | FunctionType *DFSanVarargWrapperFnTy; |
| 472 | FunctionType *DFSanConditionalCallbackFnTy; |
| 473 | FunctionType *DFSanConditionalCallbackOriginFnTy; |
| 474 | FunctionType *DFSanReachesFunctionCallbackFnTy; |
| 475 | FunctionType *DFSanReachesFunctionCallbackOriginFnTy; |
| 476 | FunctionType *DFSanCmpCallbackFnTy; |
| 477 | FunctionType *DFSanLoadStoreCallbackFnTy; |
| 478 | FunctionType *DFSanMemTransferCallbackFnTy; |
| 479 | FunctionType *DFSanChainOriginFnTy; |
| 480 | FunctionType *DFSanChainOriginIfTaintedFnTy; |
| 481 | FunctionType *DFSanMemOriginTransferFnTy; |
| 482 | FunctionType *DFSanMemShadowOriginTransferFnTy; |
| 483 | FunctionType *DFSanMemShadowOriginConditionalExchangeFnTy; |
| 484 | FunctionType *DFSanMaybeStoreOriginFnTy; |
| 485 | FunctionCallee DFSanUnionLoadFn; |
| 486 | FunctionCallee DFSanLoadLabelAndOriginFn; |
| 487 | FunctionCallee DFSanUnimplementedFn; |
| 488 | FunctionCallee DFSanWrapperExternWeakNullFn; |
| 489 | FunctionCallee DFSanSetLabelFn; |
| 490 | FunctionCallee DFSanNonzeroLabelFn; |
| 491 | FunctionCallee DFSanVarargWrapperFn; |
| 492 | FunctionCallee DFSanLoadCallbackFn; |
| 493 | FunctionCallee DFSanStoreCallbackFn; |
| 494 | FunctionCallee DFSanMemTransferCallbackFn; |
| 495 | FunctionCallee DFSanConditionalCallbackFn; |
| 496 | FunctionCallee DFSanConditionalCallbackOriginFn; |
| 497 | FunctionCallee DFSanReachesFunctionCallbackFn; |
| 498 | FunctionCallee DFSanReachesFunctionCallbackOriginFn; |
| 499 | FunctionCallee DFSanCmpCallbackFn; |
| 500 | FunctionCallee DFSanChainOriginFn; |
| 501 | FunctionCallee DFSanChainOriginIfTaintedFn; |
| 502 | FunctionCallee DFSanMemOriginTransferFn; |
| 503 | FunctionCallee DFSanMemShadowOriginTransferFn; |
| 504 | FunctionCallee DFSanMemShadowOriginConditionalExchangeFn; |
| 505 | FunctionCallee DFSanMaybeStoreOriginFn; |
| 506 | SmallPtrSet<Value *, 16> DFSanRuntimeFunctions; |
| 507 | MDNode *ColdCallWeights; |
| 508 | MDNode *OriginStoreWeights; |
| 509 | DFSanABIList ABIList; |
| 510 | DenseMap<Value *, Function *> UnwrappedFnMap; |
| 511 | AttributeMask ReadOnlyNoneAttrs; |
| 512 | StringSet<> CombineTaintLookupTableNames; |
| 513 | |
| 514 | /// Memory map parameters used in calculation mapping application addresses |
| 515 | /// to shadow addresses and origin addresses. |
| 516 | const MemoryMapParams *MapParams; |
| 517 | |
| 518 | Value *getShadowOffset(Value *Addr, IRBuilder<> &IRB); |
| 519 | Value *getShadowAddress(Value *Addr, BasicBlock::iterator Pos); |
| 520 | Value *getShadowAddress(Value *Addr, BasicBlock::iterator Pos, |
| 521 | Value *ShadowOffset); |
| 522 | std::pair<Value *, Value *> getShadowOriginAddress(Value *Addr, |
| 523 | Align InstAlignment, |
| 524 | BasicBlock::iterator Pos); |
| 525 | bool isInstrumented(const Function *F); |
| 526 | bool isInstrumented(const GlobalAlias *GA); |
| 527 | bool isForceZeroLabels(const Function *F); |
| 528 | TransformedFunction getCustomFunctionType(FunctionType *T); |
| 529 | WrapperKind getWrapperKind(Function *F); |
| 530 | void addGlobalNameSuffix(GlobalValue *GV); |
| 531 | void buildExternWeakCheckIfNeeded(IRBuilder<> &IRB, Function *F); |
| 532 | Function *buildWrapperFunction(Function *F, StringRef NewFName, |
| 533 | GlobalValue::LinkageTypes NewFLink, |
| 534 | FunctionType *NewFT); |
| 535 | void initializeCallbackFunctions(Module &M); |
| 536 | void initializeRuntimeFunctions(Module &M); |
| 537 | bool initializeModule(Module &M); |
| 538 | |
| 539 | /// Advances \p OriginAddr to point to the next 32-bit origin and then loads |
| 540 | /// from it. Returns the origin's loaded value. |
| 541 | Value *loadNextOrigin(BasicBlock::iterator Pos, Align OriginAlign, |
| 542 | Value **OriginAddr); |
| 543 | |
| 544 | /// Returns whether the given load byte size is amenable to inlined |
| 545 | /// optimization patterns. |
| 546 | bool hasLoadSizeForFastPath(uint64_t Size); |
| 547 | |
| 548 | /// Returns whether the pass tracks origins. Supports only TLS ABI mode. |
| 549 | bool shouldTrackOrigins(); |
| 550 | |
| 551 | /// Returns a zero constant with the shadow type of OrigTy. |
| 552 | /// |
| 553 | /// getZeroShadow({T1,T2,...}) = {getZeroShadow(T1),getZeroShadow(T2,...} |
| 554 | /// getZeroShadow([n x T]) = [n x getZeroShadow(T)] |
| 555 | /// getZeroShadow(other type) = i16(0) |
| 556 | Constant *getZeroShadow(Type *OrigTy); |
| 557 | /// Returns a zero constant with the shadow type of V's type. |
| 558 | Constant *getZeroShadow(Value *V); |
| 559 | |
| 560 | /// Checks if V is a zero shadow. |
| 561 | bool isZeroShadow(Value *V); |
| 562 | |
| 563 | /// Returns the shadow type of OrigTy. |
| 564 | /// |
| 565 | /// getShadowTy({T1,T2,...}) = {getShadowTy(T1),getShadowTy(T2),...} |
| 566 | /// getShadowTy([n x T]) = [n x getShadowTy(T)] |
| 567 | /// getShadowTy(other type) = i16 |
| 568 | Type *getShadowTy(Type *OrigTy); |
| 569 | /// Returns the shadow type of V's type. |
| 570 | Type *getShadowTy(Value *V); |
| 571 | |
| 572 | const uint64_t NumOfElementsInArgOrgTLS = ArgTLSSize / OriginWidthBytes; |
| 573 | |
| 574 | public: |
| 575 | DataFlowSanitizer(const std::vector<std::string> &ABIListFiles); |
| 576 | |
| 577 | bool runImpl(Module &M, |
| 578 | llvm::function_ref<TargetLibraryInfo &(Function &)> GetTLI); |
| 579 | }; |
| 580 | |
| 581 | struct DFSanFunction { |
| 582 | DataFlowSanitizer &DFS; |
| 583 | Function *F; |
| 584 | DominatorTree DT; |
| 585 | bool IsNativeABI; |
| 586 | bool IsForceZeroLabels; |
| 587 | TargetLibraryInfo &TLI; |
| 588 | AllocaInst *LabelReturnAlloca = nullptr; |
| 589 | AllocaInst *OriginReturnAlloca = nullptr; |
| 590 | DenseMap<Value *, Value *> ValShadowMap; |
| 591 | DenseMap<Value *, Value *> ValOriginMap; |
| 592 | DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap; |
| 593 | DenseMap<AllocaInst *, AllocaInst *> AllocaOriginMap; |
| 594 | |
| 595 | struct PHIFixupElement { |
| 596 | PHINode *Phi; |
| 597 | PHINode *ShadowPhi; |
| 598 | PHINode *OriginPhi; |
| 599 | }; |
| 600 | std::vector<PHIFixupElement> PHIFixups; |
| 601 | |
| 602 | DenseSet<Instruction *> SkipInsts; |
| 603 | std::vector<Value *> NonZeroChecks; |
| 604 | |
| 605 | struct CachedShadow { |
| 606 | BasicBlock *Block; // The block where Shadow is defined. |
| 607 | Value *Shadow; |
| 608 | }; |
| 609 | /// Maps a value to its latest shadow value in terms of domination tree. |
| 610 | DenseMap<std::pair<Value *, Value *>, CachedShadow> CachedShadows; |
| 611 | /// Maps a value to its latest collapsed shadow value it was converted to in |
| 612 | /// terms of domination tree. When ClDebugNonzeroLabels is on, this cache is |
| 613 | /// used at a post process where CFG blocks are split. So it does not cache |
| 614 | /// BasicBlock like CachedShadows, but uses domination between values. |
| 615 | DenseMap<Value *, Value *> CachedCollapsedShadows; |
| 616 | DenseMap<Value *, std::set<Value *>> ShadowElements; |
| 617 | |
| 618 | DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI, |
| 619 | bool IsForceZeroLabels, TargetLibraryInfo &TLI) |
| 620 | : DFS(DFS), F(F), IsNativeABI(IsNativeABI), |
| 621 | IsForceZeroLabels(IsForceZeroLabels), TLI(TLI) { |
| 622 | DT.recalculate(Func&: *F); |
| 623 | } |
| 624 | |
| 625 | /// Computes the shadow address for a given function argument. |
| 626 | /// |
| 627 | /// Shadow = ArgTLS+ArgOffset. |
| 628 | Value *getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB); |
| 629 | |
| 630 | /// Computes the shadow address for a return value. |
| 631 | Value *getRetvalTLS(Type *T, IRBuilder<> &IRB); |
| 632 | |
| 633 | /// Computes the origin address for a given function argument. |
| 634 | /// |
| 635 | /// Origin = ArgOriginTLS[ArgNo]. |
| 636 | Value *getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB); |
| 637 | |
| 638 | /// Computes the origin address for a return value. |
| 639 | Value *getRetvalOriginTLS(); |
| 640 | |
| 641 | Value *getOrigin(Value *V); |
| 642 | void setOrigin(Instruction *I, Value *Origin); |
| 643 | /// Generates IR to compute the origin of the last operand with a taint label. |
| 644 | Value *combineOperandOrigins(Instruction *Inst); |
| 645 | /// Before the instruction Pos, generates IR to compute the last origin with a |
| 646 | /// taint label. Labels and origins are from vectors Shadows and Origins |
| 647 | /// correspondingly. The generated IR is like |
| 648 | /// Sn-1 != Zero ? On-1: ... S2 != Zero ? O2: S1 != Zero ? O1: O0 |
| 649 | /// When Zero is nullptr, it uses ZeroPrimitiveShadow. Otherwise it can be |
| 650 | /// zeros with other bitwidths. |
| 651 | Value *combineOrigins(const std::vector<Value *> &Shadows, |
| 652 | const std::vector<Value *> &Origins, |
| 653 | BasicBlock::iterator Pos, ConstantInt *Zero = nullptr); |
| 654 | |
| 655 | Value *getShadow(Value *V); |
| 656 | void setShadow(Instruction *I, Value *Shadow); |
| 657 | /// Generates IR to compute the union of the two given shadows, inserting it |
| 658 | /// before Pos. The combined value is with primitive type. |
| 659 | Value *combineShadows(Value *V1, Value *V2, BasicBlock::iterator Pos); |
| 660 | /// Combines the shadow values of V1 and V2, then converts the combined value |
| 661 | /// with primitive type into a shadow value with the original type T. |
| 662 | Value *combineShadowsThenConvert(Type *T, Value *V1, Value *V2, |
| 663 | BasicBlock::iterator Pos); |
| 664 | Value *combineOperandShadows(Instruction *Inst); |
| 665 | |
| 666 | /// Generates IR to load shadow and origin corresponding to bytes [\p |
| 667 | /// Addr, \p Addr + \p Size), where addr has alignment \p |
| 668 | /// InstAlignment, and take the union of each of those shadows. The returned |
| 669 | /// shadow always has primitive type. |
| 670 | /// |
| 671 | /// When tracking loads is enabled, the returned origin is a chain at the |
| 672 | /// current stack if the returned shadow is tainted. |
| 673 | std::pair<Value *, Value *> loadShadowOrigin(Value *Addr, uint64_t Size, |
| 674 | Align InstAlignment, |
| 675 | BasicBlock::iterator Pos); |
| 676 | |
| 677 | void storePrimitiveShadowOrigin(Value *Addr, uint64_t Size, |
| 678 | Align InstAlignment, Value *PrimitiveShadow, |
| 679 | Value *Origin, BasicBlock::iterator Pos); |
| 680 | /// Applies PrimitiveShadow to all primitive subtypes of T, returning |
| 681 | /// the expanded shadow value. |
| 682 | /// |
| 683 | /// EFP({T1,T2, ...}, PS) = {EFP(T1,PS),EFP(T2,PS),...} |
| 684 | /// EFP([n x T], PS) = [n x EFP(T,PS)] |
| 685 | /// EFP(other types, PS) = PS |
| 686 | Value *expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow, |
| 687 | BasicBlock::iterator Pos); |
| 688 | /// Collapses Shadow into a single primitive shadow value, unioning all |
| 689 | /// primitive shadow values in the process. Returns the final primitive |
| 690 | /// shadow value. |
| 691 | /// |
| 692 | /// CTP({V1,V2, ...}) = UNION(CFP(V1,PS),CFP(V2,PS),...) |
| 693 | /// CTP([V1,V2,...]) = UNION(CFP(V1,PS),CFP(V2,PS),...) |
| 694 | /// CTP(other types, PS) = PS |
| 695 | Value *collapseToPrimitiveShadow(Value *Shadow, BasicBlock::iterator Pos); |
| 696 | |
| 697 | void storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, Align ShadowAlign, |
| 698 | BasicBlock::iterator Pos); |
| 699 | |
| 700 | Align getShadowAlign(Align InstAlignment); |
| 701 | |
| 702 | // If ClConditionalCallbacks is enabled, insert a callback after a given |
| 703 | // branch instruction using the given conditional expression. |
| 704 | void addConditionalCallbacksIfEnabled(Instruction &I, Value *Condition); |
| 705 | |
| 706 | // If ClReachesFunctionCallbacks is enabled, insert a callback for each |
| 707 | // argument and load instruction. |
| 708 | void addReachesFunctionCallbacksIfEnabled(IRBuilder<> &IRB, Instruction &I, |
| 709 | Value *Data); |
| 710 | |
| 711 | bool isLookupTableConstant(Value *P); |
| 712 | |
| 713 | private: |
| 714 | /// Collapses the shadow with aggregate type into a single primitive shadow |
| 715 | /// value. |
| 716 | template <class AggregateType> |
| 717 | Value *collapseAggregateShadow(AggregateType *AT, Value *Shadow, |
| 718 | IRBuilder<> &IRB); |
| 719 | |
| 720 | Value *collapseToPrimitiveShadow(Value *Shadow, IRBuilder<> &IRB); |
| 721 | |
| 722 | /// Returns the shadow value of an argument A. |
| 723 | Value *getShadowForTLSArgument(Argument *A); |
| 724 | |
| 725 | /// The fast path of loading shadows. |
| 726 | std::pair<Value *, Value *> |
| 727 | loadShadowFast(Value *ShadowAddr, Value *OriginAddr, uint64_t Size, |
| 728 | Align ShadowAlign, Align OriginAlign, Value *FirstOrigin, |
| 729 | BasicBlock::iterator Pos); |
| 730 | |
| 731 | Align getOriginAlign(Align InstAlignment); |
| 732 | |
| 733 | /// Because 4 contiguous bytes share one 4-byte origin, the most accurate load |
| 734 | /// is __dfsan_load_label_and_origin. This function returns the union of all |
| 735 | /// labels and the origin of the first taint label. However this is an |
| 736 | /// additional call with many instructions. To ensure common cases are fast, |
| 737 | /// checks if it is possible to load labels and origins without using the |
| 738 | /// callback function. |
| 739 | /// |
| 740 | /// When enabling tracking load instructions, we always use |
| 741 | /// __dfsan_load_label_and_origin to reduce code size. |
| 742 | bool useCallbackLoadLabelAndOrigin(uint64_t Size, Align InstAlignment); |
| 743 | |
| 744 | /// Returns a chain at the current stack with previous origin V. |
| 745 | Value *updateOrigin(Value *V, IRBuilder<> &IRB); |
| 746 | |
| 747 | /// Returns a chain at the current stack with previous origin V if Shadow is |
| 748 | /// tainted. |
| 749 | Value *updateOriginIfTainted(Value *Shadow, Value *Origin, IRBuilder<> &IRB); |
| 750 | |
| 751 | /// Creates an Intptr = Origin | Origin << 32 if Intptr's size is 64. Returns |
| 752 | /// Origin otherwise. |
| 753 | Value *originToIntptr(IRBuilder<> &IRB, Value *Origin); |
| 754 | |
| 755 | /// Stores Origin into the address range [StoreOriginAddr, StoreOriginAddr + |
| 756 | /// Size). |
| 757 | void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *StoreOriginAddr, |
| 758 | uint64_t StoreOriginSize, Align Alignment); |
| 759 | |
| 760 | /// Stores Origin in terms of its Shadow value. |
| 761 | /// * Do not write origins for zero shadows because we do not trace origins |
| 762 | /// for untainted sinks. |
| 763 | /// * Use __dfsan_maybe_store_origin if there are too many origin store |
| 764 | /// instrumentations. |
| 765 | void storeOrigin(BasicBlock::iterator Pos, Value *Addr, uint64_t Size, |
| 766 | Value *Shadow, Value *Origin, Value *StoreOriginAddr, |
| 767 | Align InstAlignment); |
| 768 | |
| 769 | /// Convert a scalar value to an i1 by comparing with 0. |
| 770 | Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &Name = "" ); |
| 771 | |
| 772 | bool shouldInstrumentWithCall(); |
| 773 | |
| 774 | /// Generates IR to load shadow and origin corresponding to bytes [\p |
| 775 | /// Addr, \p Addr + \p Size), where addr has alignment \p |
| 776 | /// InstAlignment, and take the union of each of those shadows. The returned |
| 777 | /// shadow always has primitive type. |
| 778 | std::pair<Value *, Value *> |
| 779 | loadShadowOriginSansLoadTracking(Value *Addr, uint64_t Size, |
| 780 | Align InstAlignment, |
| 781 | BasicBlock::iterator Pos); |
| 782 | int NumOriginStores = 0; |
| 783 | }; |
| 784 | |
| 785 | class DFSanVisitor : public InstVisitor<DFSanVisitor> { |
| 786 | public: |
| 787 | DFSanFunction &DFSF; |
| 788 | |
| 789 | DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {} |
| 790 | |
| 791 | const DataLayout &getDataLayout() const { |
| 792 | return DFSF.F->getDataLayout(); |
| 793 | } |
| 794 | |
| 795 | // Combines shadow values and origins for all of I's operands. |
| 796 | void visitInstOperands(Instruction &I); |
| 797 | |
| 798 | void visitUnaryOperator(UnaryOperator &UO); |
| 799 | void visitBinaryOperator(BinaryOperator &BO); |
| 800 | void visitBitCastInst(BitCastInst &BCI); |
| 801 | void visitCastInst(CastInst &CI); |
| 802 | void visitCmpInst(CmpInst &CI); |
| 803 | void visitLandingPadInst(LandingPadInst &LPI); |
| 804 | void visitGetElementPtrInst(GetElementPtrInst &GEPI); |
| 805 | void visitLoadInst(LoadInst &LI); |
| 806 | void visitStoreInst(StoreInst &SI); |
| 807 | void visitAtomicRMWInst(AtomicRMWInst &I); |
| 808 | void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I); |
| 809 | void visitReturnInst(ReturnInst &RI); |
| 810 | void visitLibAtomicLoad(CallBase &CB); |
| 811 | void visitLibAtomicStore(CallBase &CB); |
| 812 | void visitLibAtomicExchange(CallBase &CB); |
| 813 | void visitLibAtomicCompareExchange(CallBase &CB); |
| 814 | void visitCallBase(CallBase &CB); |
| 815 | void visitPHINode(PHINode &PN); |
| 816 | void visitExtractElementInst(ExtractElementInst &I); |
| 817 | void visitInsertElementInst(InsertElementInst &I); |
| 818 | void visitShuffleVectorInst(ShuffleVectorInst &I); |
| 819 | void visitExtractValueInst(ExtractValueInst &I); |
| 820 | void visitInsertValueInst(InsertValueInst &I); |
| 821 | void visitAllocaInst(AllocaInst &I); |
| 822 | void visitSelectInst(SelectInst &I); |
| 823 | void visitMemSetInst(MemSetInst &I); |
| 824 | void visitMemTransferInst(MemTransferInst &I); |
| 825 | void visitBranchInst(BranchInst &BR); |
| 826 | void visitSwitchInst(SwitchInst &SW); |
| 827 | |
| 828 | private: |
| 829 | void visitCASOrRMW(Align InstAlignment, Instruction &I); |
| 830 | |
| 831 | // Returns false when this is an invoke of a custom function. |
| 832 | bool visitWrappedCallBase(Function &F, CallBase &CB); |
| 833 | |
| 834 | // Combines origins for all of I's operands. |
| 835 | void visitInstOperandOrigins(Instruction &I); |
| 836 | |
| 837 | void addShadowArguments(Function &F, CallBase &CB, std::vector<Value *> &Args, |
| 838 | IRBuilder<> &IRB); |
| 839 | |
| 840 | void addOriginArguments(Function &F, CallBase &CB, std::vector<Value *> &Args, |
| 841 | IRBuilder<> &IRB); |
| 842 | |
| 843 | Value *makeAddAcquireOrderingTable(IRBuilder<> &IRB); |
| 844 | Value *makeAddReleaseOrderingTable(IRBuilder<> &IRB); |
| 845 | }; |
| 846 | |
| 847 | bool LibAtomicFunction(const Function &F) { |
| 848 | // This is a bit of a hack because TargetLibraryInfo is a function pass. |
| 849 | // The DFSan pass would need to be refactored to be function pass oriented |
| 850 | // (like MSan is) in order to fit together nicely with TargetLibraryInfo. |
| 851 | // We need this check to prevent them from being instrumented, or wrapped. |
| 852 | // Match on name and number of arguments. |
| 853 | if (!F.hasName() || F.isVarArg()) |
| 854 | return false; |
| 855 | switch (F.arg_size()) { |
| 856 | case 4: |
| 857 | return F.getName() == "__atomic_load" || F.getName() == "__atomic_store" ; |
| 858 | case 5: |
| 859 | return F.getName() == "__atomic_exchange" ; |
| 860 | case 6: |
| 861 | return F.getName() == "__atomic_compare_exchange" ; |
| 862 | default: |
| 863 | return false; |
| 864 | } |
| 865 | } |
| 866 | |
| 867 | } // end anonymous namespace |
| 868 | |
| 869 | DataFlowSanitizer::DataFlowSanitizer( |
| 870 | const std::vector<std::string> &ABIListFiles) { |
| 871 | std::vector<std::string> AllABIListFiles(std::move(ABIListFiles)); |
| 872 | llvm::append_range(C&: AllABIListFiles, R&: ClABIListFiles); |
| 873 | // FIXME: should we propagate vfs::FileSystem to this constructor? |
| 874 | ABIList.set( |
| 875 | SpecialCaseList::createOrDie(Paths: AllABIListFiles, FS&: *vfs::getRealFileSystem())); |
| 876 | |
| 877 | CombineTaintLookupTableNames.insert_range(R&: ClCombineTaintLookupTables); |
| 878 | } |
| 879 | |
| 880 | TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) { |
| 881 | SmallVector<Type *, 4> ArgTypes; |
| 882 | |
| 883 | // Some parameters of the custom function being constructed are |
| 884 | // parameters of T. Record the mapping from parameters of T to |
| 885 | // parameters of the custom function, so that parameter attributes |
| 886 | // at call sites can be updated. |
| 887 | std::vector<unsigned> ArgumentIndexMapping; |
| 888 | for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) { |
| 889 | Type *ParamType = T->getParamType(i: I); |
| 890 | ArgumentIndexMapping.push_back(x: ArgTypes.size()); |
| 891 | ArgTypes.push_back(Elt: ParamType); |
| 892 | } |
| 893 | for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) |
| 894 | ArgTypes.push_back(Elt: PrimitiveShadowTy); |
| 895 | if (T->isVarArg()) |
| 896 | ArgTypes.push_back(Elt: PrimitiveShadowPtrTy); |
| 897 | Type *RetType = T->getReturnType(); |
| 898 | if (!RetType->isVoidTy()) |
| 899 | ArgTypes.push_back(Elt: PrimitiveShadowPtrTy); |
| 900 | |
| 901 | if (shouldTrackOrigins()) { |
| 902 | for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) |
| 903 | ArgTypes.push_back(Elt: OriginTy); |
| 904 | if (T->isVarArg()) |
| 905 | ArgTypes.push_back(Elt: OriginPtrTy); |
| 906 | if (!RetType->isVoidTy()) |
| 907 | ArgTypes.push_back(Elt: OriginPtrTy); |
| 908 | } |
| 909 | |
| 910 | return TransformedFunction( |
| 911 | T, FunctionType::get(Result: T->getReturnType(), Params: ArgTypes, isVarArg: T->isVarArg()), |
| 912 | ArgumentIndexMapping); |
| 913 | } |
| 914 | |
| 915 | bool DataFlowSanitizer::isZeroShadow(Value *V) { |
| 916 | Type *T = V->getType(); |
| 917 | if (!isa<ArrayType>(Val: T) && !isa<StructType>(Val: T)) { |
| 918 | if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val: V)) |
| 919 | return CI->isZero(); |
| 920 | return false; |
| 921 | } |
| 922 | |
| 923 | return isa<ConstantAggregateZero>(Val: V); |
| 924 | } |
| 925 | |
| 926 | bool DataFlowSanitizer::hasLoadSizeForFastPath(uint64_t Size) { |
| 927 | uint64_t ShadowSize = Size * ShadowWidthBytes; |
| 928 | return ShadowSize % 8 == 0 || ShadowSize == 4; |
| 929 | } |
| 930 | |
| 931 | bool DataFlowSanitizer::shouldTrackOrigins() { |
| 932 | static const bool ShouldTrackOrigins = ClTrackOrigins; |
| 933 | return ShouldTrackOrigins; |
| 934 | } |
| 935 | |
| 936 | Constant *DataFlowSanitizer::getZeroShadow(Type *OrigTy) { |
| 937 | if (!isa<ArrayType>(Val: OrigTy) && !isa<StructType>(Val: OrigTy)) |
| 938 | return ZeroPrimitiveShadow; |
| 939 | Type *ShadowTy = getShadowTy(OrigTy); |
| 940 | return ConstantAggregateZero::get(Ty: ShadowTy); |
| 941 | } |
| 942 | |
| 943 | Constant *DataFlowSanitizer::getZeroShadow(Value *V) { |
| 944 | return getZeroShadow(OrigTy: V->getType()); |
| 945 | } |
| 946 | |
| 947 | static Value *expandFromPrimitiveShadowRecursive( |
| 948 | Value *Shadow, SmallVector<unsigned, 4> &Indices, Type *SubShadowTy, |
| 949 | Value *PrimitiveShadow, IRBuilder<> &IRB) { |
| 950 | if (!isa<ArrayType>(Val: SubShadowTy) && !isa<StructType>(Val: SubShadowTy)) |
| 951 | return IRB.CreateInsertValue(Agg: Shadow, Val: PrimitiveShadow, Idxs: Indices); |
| 952 | |
| 953 | if (ArrayType *AT = dyn_cast<ArrayType>(Val: SubShadowTy)) { |
| 954 | for (unsigned Idx = 0; Idx < AT->getNumElements(); Idx++) { |
| 955 | Indices.push_back(Elt: Idx); |
| 956 | Shadow = expandFromPrimitiveShadowRecursive( |
| 957 | Shadow, Indices, SubShadowTy: AT->getElementType(), PrimitiveShadow, IRB); |
| 958 | Indices.pop_back(); |
| 959 | } |
| 960 | return Shadow; |
| 961 | } |
| 962 | |
| 963 | if (StructType *ST = dyn_cast<StructType>(Val: SubShadowTy)) { |
| 964 | for (unsigned Idx = 0; Idx < ST->getNumElements(); Idx++) { |
| 965 | Indices.push_back(Elt: Idx); |
| 966 | Shadow = expandFromPrimitiveShadowRecursive( |
| 967 | Shadow, Indices, SubShadowTy: ST->getElementType(N: Idx), PrimitiveShadow, IRB); |
| 968 | Indices.pop_back(); |
| 969 | } |
| 970 | return Shadow; |
| 971 | } |
| 972 | llvm_unreachable("Unexpected shadow type" ); |
| 973 | } |
| 974 | |
| 975 | bool DFSanFunction::shouldInstrumentWithCall() { |
| 976 | return ClInstrumentWithCallThreshold >= 0 && |
| 977 | NumOriginStores >= ClInstrumentWithCallThreshold; |
| 978 | } |
| 979 | |
| 980 | Value *DFSanFunction::expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow, |
| 981 | BasicBlock::iterator Pos) { |
| 982 | Type *ShadowTy = DFS.getShadowTy(OrigTy: T); |
| 983 | |
| 984 | if (!isa<ArrayType>(Val: ShadowTy) && !isa<StructType>(Val: ShadowTy)) |
| 985 | return PrimitiveShadow; |
| 986 | |
| 987 | if (DFS.isZeroShadow(V: PrimitiveShadow)) |
| 988 | return DFS.getZeroShadow(OrigTy: ShadowTy); |
| 989 | |
| 990 | IRBuilder<> IRB(Pos->getParent(), Pos); |
| 991 | SmallVector<unsigned, 4> Indices; |
| 992 | Value *Shadow = UndefValue::get(T: ShadowTy); |
| 993 | Shadow = expandFromPrimitiveShadowRecursive(Shadow, Indices, SubShadowTy: ShadowTy, |
| 994 | PrimitiveShadow, IRB); |
| 995 | |
| 996 | // Caches the primitive shadow value that built the shadow value. |
| 997 | CachedCollapsedShadows[Shadow] = PrimitiveShadow; |
| 998 | return Shadow; |
| 999 | } |
| 1000 | |
| 1001 | template <class AggregateType> |
| 1002 | Value *DFSanFunction::collapseAggregateShadow(AggregateType *AT, Value *Shadow, |
| 1003 | IRBuilder<> &IRB) { |
| 1004 | if (!AT->getNumElements()) |
| 1005 | return DFS.ZeroPrimitiveShadow; |
| 1006 | |
| 1007 | Value *FirstItem = IRB.CreateExtractValue(Agg: Shadow, Idxs: 0); |
| 1008 | Value *Aggregator = collapseToPrimitiveShadow(Shadow: FirstItem, IRB); |
| 1009 | |
| 1010 | for (unsigned Idx = 1; Idx < AT->getNumElements(); Idx++) { |
| 1011 | Value *ShadowItem = IRB.CreateExtractValue(Agg: Shadow, Idxs: Idx); |
| 1012 | Value *ShadowInner = collapseToPrimitiveShadow(Shadow: ShadowItem, IRB); |
| 1013 | Aggregator = IRB.CreateOr(LHS: Aggregator, RHS: ShadowInner); |
| 1014 | } |
| 1015 | return Aggregator; |
| 1016 | } |
| 1017 | |
| 1018 | Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow, |
| 1019 | IRBuilder<> &IRB) { |
| 1020 | Type *ShadowTy = Shadow->getType(); |
| 1021 | if (!isa<ArrayType>(Val: ShadowTy) && !isa<StructType>(Val: ShadowTy)) |
| 1022 | return Shadow; |
| 1023 | if (ArrayType *AT = dyn_cast<ArrayType>(Val: ShadowTy)) |
| 1024 | return collapseAggregateShadow<>(AT, Shadow, IRB); |
| 1025 | if (StructType *ST = dyn_cast<StructType>(Val: ShadowTy)) |
| 1026 | return collapseAggregateShadow<>(AT: ST, Shadow, IRB); |
| 1027 | llvm_unreachable("Unexpected shadow type" ); |
| 1028 | } |
| 1029 | |
| 1030 | Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow, |
| 1031 | BasicBlock::iterator Pos) { |
| 1032 | Type *ShadowTy = Shadow->getType(); |
| 1033 | if (!isa<ArrayType>(Val: ShadowTy) && !isa<StructType>(Val: ShadowTy)) |
| 1034 | return Shadow; |
| 1035 | |
| 1036 | // Checks if the cached collapsed shadow value dominates Pos. |
| 1037 | Value *&CS = CachedCollapsedShadows[Shadow]; |
| 1038 | if (CS && DT.dominates(Def: CS, User: Pos)) |
| 1039 | return CS; |
| 1040 | |
| 1041 | IRBuilder<> IRB(Pos->getParent(), Pos); |
| 1042 | Value *PrimitiveShadow = collapseToPrimitiveShadow(Shadow, IRB); |
| 1043 | // Caches the converted primitive shadow value. |
| 1044 | CS = PrimitiveShadow; |
| 1045 | return PrimitiveShadow; |
| 1046 | } |
| 1047 | |
| 1048 | void DFSanFunction::addConditionalCallbacksIfEnabled(Instruction &I, |
| 1049 | Value *Condition) { |
| 1050 | if (!ClConditionalCallbacks) { |
| 1051 | return; |
| 1052 | } |
| 1053 | IRBuilder<> IRB(&I); |
| 1054 | Value *CondShadow = getShadow(V: Condition); |
| 1055 | CallInst *CI; |
| 1056 | if (DFS.shouldTrackOrigins()) { |
| 1057 | Value *CondOrigin = getOrigin(V: Condition); |
| 1058 | CI = IRB.CreateCall(Callee: DFS.DFSanConditionalCallbackOriginFn, |
| 1059 | Args: {CondShadow, CondOrigin}); |
| 1060 | } else { |
| 1061 | CI = IRB.CreateCall(Callee: DFS.DFSanConditionalCallbackFn, Args: {CondShadow}); |
| 1062 | } |
| 1063 | CI->addParamAttr(ArgNo: 0, Kind: Attribute::ZExt); |
| 1064 | } |
| 1065 | |
| 1066 | void DFSanFunction::addReachesFunctionCallbacksIfEnabled(IRBuilder<> &IRB, |
| 1067 | Instruction &I, |
| 1068 | Value *Data) { |
| 1069 | if (!ClReachesFunctionCallbacks) { |
| 1070 | return; |
| 1071 | } |
| 1072 | const DebugLoc &dbgloc = I.getDebugLoc(); |
| 1073 | Value *DataShadow = collapseToPrimitiveShadow(Shadow: getShadow(V: Data), IRB); |
| 1074 | ConstantInt *CILine; |
| 1075 | llvm::Value *FilePathPtr; |
| 1076 | |
| 1077 | if (dbgloc.get() == nullptr) { |
| 1078 | CILine = llvm::ConstantInt::get(Context&: I.getContext(), V: llvm::APInt(32, 0)); |
| 1079 | FilePathPtr = IRB.CreateGlobalString( |
| 1080 | Str: I.getFunction()->getParent()->getSourceFileName()); |
| 1081 | } else { |
| 1082 | CILine = llvm::ConstantInt::get(Context&: I.getContext(), |
| 1083 | V: llvm::APInt(32, dbgloc.getLine())); |
| 1084 | FilePathPtr = IRB.CreateGlobalString(Str: dbgloc->getFilename()); |
| 1085 | } |
| 1086 | |
| 1087 | llvm::Value *FunctionNamePtr = |
| 1088 | IRB.CreateGlobalString(Str: I.getFunction()->getName()); |
| 1089 | |
| 1090 | CallInst *CB; |
| 1091 | std::vector<Value *> args; |
| 1092 | |
| 1093 | if (DFS.shouldTrackOrigins()) { |
| 1094 | Value *DataOrigin = getOrigin(V: Data); |
| 1095 | args = { DataShadow, DataOrigin, FilePathPtr, CILine, FunctionNamePtr }; |
| 1096 | CB = IRB.CreateCall(Callee: DFS.DFSanReachesFunctionCallbackOriginFn, Args: args); |
| 1097 | } else { |
| 1098 | args = { DataShadow, FilePathPtr, CILine, FunctionNamePtr }; |
| 1099 | CB = IRB.CreateCall(Callee: DFS.DFSanReachesFunctionCallbackFn, Args: args); |
| 1100 | } |
| 1101 | CB->addParamAttr(ArgNo: 0, Kind: Attribute::ZExt); |
| 1102 | CB->setDebugLoc(dbgloc); |
| 1103 | } |
| 1104 | |
| 1105 | Type *DataFlowSanitizer::getShadowTy(Type *OrigTy) { |
| 1106 | if (!OrigTy->isSized()) |
| 1107 | return PrimitiveShadowTy; |
| 1108 | if (isa<IntegerType>(Val: OrigTy)) |
| 1109 | return PrimitiveShadowTy; |
| 1110 | if (isa<VectorType>(Val: OrigTy)) |
| 1111 | return PrimitiveShadowTy; |
| 1112 | if (ArrayType *AT = dyn_cast<ArrayType>(Val: OrigTy)) |
| 1113 | return ArrayType::get(ElementType: getShadowTy(OrigTy: AT->getElementType()), |
| 1114 | NumElements: AT->getNumElements()); |
| 1115 | if (StructType *ST = dyn_cast<StructType>(Val: OrigTy)) { |
| 1116 | SmallVector<Type *, 4> Elements; |
| 1117 | for (unsigned I = 0, N = ST->getNumElements(); I < N; ++I) |
| 1118 | Elements.push_back(Elt: getShadowTy(OrigTy: ST->getElementType(N: I))); |
| 1119 | return StructType::get(Context&: *Ctx, Elements); |
| 1120 | } |
| 1121 | return PrimitiveShadowTy; |
| 1122 | } |
| 1123 | |
| 1124 | Type *DataFlowSanitizer::getShadowTy(Value *V) { |
| 1125 | return getShadowTy(OrigTy: V->getType()); |
| 1126 | } |
| 1127 | |
| 1128 | bool DataFlowSanitizer::initializeModule(Module &M) { |
| 1129 | Triple TargetTriple(M.getTargetTriple()); |
| 1130 | const DataLayout &DL = M.getDataLayout(); |
| 1131 | |
| 1132 | if (TargetTriple.getOS() != Triple::Linux) |
| 1133 | report_fatal_error(reason: "unsupported operating system" ); |
| 1134 | switch (TargetTriple.getArch()) { |
| 1135 | case Triple::aarch64: |
| 1136 | MapParams = &Linux_AArch64_MemoryMapParams; |
| 1137 | break; |
| 1138 | case Triple::x86_64: |
| 1139 | MapParams = &Linux_X86_64_MemoryMapParams; |
| 1140 | break; |
| 1141 | case Triple::loongarch64: |
| 1142 | MapParams = &Linux_LoongArch64_MemoryMapParams; |
| 1143 | break; |
| 1144 | default: |
| 1145 | report_fatal_error(reason: "unsupported architecture" ); |
| 1146 | } |
| 1147 | |
| 1148 | Mod = &M; |
| 1149 | Ctx = &M.getContext(); |
| 1150 | Int8Ptr = PointerType::getUnqual(C&: *Ctx); |
| 1151 | OriginTy = IntegerType::get(C&: *Ctx, NumBits: OriginWidthBits); |
| 1152 | OriginPtrTy = PointerType::getUnqual(C&: *Ctx); |
| 1153 | PrimitiveShadowTy = IntegerType::get(C&: *Ctx, NumBits: ShadowWidthBits); |
| 1154 | PrimitiveShadowPtrTy = PointerType::getUnqual(C&: *Ctx); |
| 1155 | IntptrTy = DL.getIntPtrType(C&: *Ctx); |
| 1156 | ZeroPrimitiveShadow = ConstantInt::getSigned(Ty: PrimitiveShadowTy, V: 0); |
| 1157 | ZeroOrigin = ConstantInt::getSigned(Ty: OriginTy, V: 0); |
| 1158 | |
| 1159 | Type *DFSanUnionLoadArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; |
| 1160 | DFSanUnionLoadFnTy = FunctionType::get(Result: PrimitiveShadowTy, Params: DFSanUnionLoadArgs, |
| 1161 | /*isVarArg=*/false); |
| 1162 | Type *DFSanLoadLabelAndOriginArgs[2] = {Int8Ptr, IntptrTy}; |
| 1163 | DFSanLoadLabelAndOriginFnTy = |
| 1164 | FunctionType::get(Result: IntegerType::get(C&: *Ctx, NumBits: 64), Params: DFSanLoadLabelAndOriginArgs, |
| 1165 | /*isVarArg=*/false); |
| 1166 | DFSanUnimplementedFnTy = FunctionType::get( |
| 1167 | Result: Type::getVoidTy(C&: *Ctx), Params: PointerType::getUnqual(C&: *Ctx), /*isVarArg=*/false); |
| 1168 | Type *DFSanWrapperExternWeakNullArgs[2] = {Int8Ptr, Int8Ptr}; |
| 1169 | DFSanWrapperExternWeakNullFnTy = |
| 1170 | FunctionType::get(Result: Type::getVoidTy(C&: *Ctx), Params: DFSanWrapperExternWeakNullArgs, |
| 1171 | /*isVarArg=*/false); |
| 1172 | Type *DFSanSetLabelArgs[4] = {PrimitiveShadowTy, OriginTy, |
| 1173 | PointerType::getUnqual(C&: *Ctx), IntptrTy}; |
| 1174 | DFSanSetLabelFnTy = FunctionType::get(Result: Type::getVoidTy(C&: *Ctx), |
| 1175 | Params: DFSanSetLabelArgs, /*isVarArg=*/false); |
| 1176 | DFSanNonzeroLabelFnTy = FunctionType::get(Result: Type::getVoidTy(C&: *Ctx), Params: {}, |
| 1177 | /*isVarArg=*/false); |
| 1178 | DFSanVarargWrapperFnTy = FunctionType::get( |
| 1179 | Result: Type::getVoidTy(C&: *Ctx), Params: PointerType::getUnqual(C&: *Ctx), /*isVarArg=*/false); |
| 1180 | DFSanConditionalCallbackFnTy = |
| 1181 | FunctionType::get(Result: Type::getVoidTy(C&: *Ctx), Params: PrimitiveShadowTy, |
| 1182 | /*isVarArg=*/false); |
| 1183 | Type *DFSanConditionalCallbackOriginArgs[2] = {PrimitiveShadowTy, OriginTy}; |
| 1184 | DFSanConditionalCallbackOriginFnTy = FunctionType::get( |
| 1185 | Result: Type::getVoidTy(C&: *Ctx), Params: DFSanConditionalCallbackOriginArgs, |
| 1186 | /*isVarArg=*/false); |
| 1187 | Type *DFSanReachesFunctionCallbackArgs[4] = {PrimitiveShadowTy, Int8Ptr, |
| 1188 | OriginTy, Int8Ptr}; |
| 1189 | DFSanReachesFunctionCallbackFnTy = |
| 1190 | FunctionType::get(Result: Type::getVoidTy(C&: *Ctx), Params: DFSanReachesFunctionCallbackArgs, |
| 1191 | /*isVarArg=*/false); |
| 1192 | Type *DFSanReachesFunctionCallbackOriginArgs[5] = { |
| 1193 | PrimitiveShadowTy, OriginTy, Int8Ptr, OriginTy, Int8Ptr}; |
| 1194 | DFSanReachesFunctionCallbackOriginFnTy = FunctionType::get( |
| 1195 | Result: Type::getVoidTy(C&: *Ctx), Params: DFSanReachesFunctionCallbackOriginArgs, |
| 1196 | /*isVarArg=*/false); |
| 1197 | DFSanCmpCallbackFnTy = |
| 1198 | FunctionType::get(Result: Type::getVoidTy(C&: *Ctx), Params: PrimitiveShadowTy, |
| 1199 | /*isVarArg=*/false); |
| 1200 | DFSanChainOriginFnTy = |
| 1201 | FunctionType::get(Result: OriginTy, Params: OriginTy, /*isVarArg=*/false); |
| 1202 | Type *DFSanChainOriginIfTaintedArgs[2] = {PrimitiveShadowTy, OriginTy}; |
| 1203 | DFSanChainOriginIfTaintedFnTy = FunctionType::get( |
| 1204 | Result: OriginTy, Params: DFSanChainOriginIfTaintedArgs, /*isVarArg=*/false); |
| 1205 | Type *DFSanMaybeStoreOriginArgs[4] = {IntegerType::get(C&: *Ctx, NumBits: ShadowWidthBits), |
| 1206 | Int8Ptr, IntptrTy, OriginTy}; |
| 1207 | DFSanMaybeStoreOriginFnTy = FunctionType::get( |
| 1208 | Result: Type::getVoidTy(C&: *Ctx), Params: DFSanMaybeStoreOriginArgs, /*isVarArg=*/false); |
| 1209 | Type *DFSanMemOriginTransferArgs[3] = {Int8Ptr, Int8Ptr, IntptrTy}; |
| 1210 | DFSanMemOriginTransferFnTy = FunctionType::get( |
| 1211 | Result: Type::getVoidTy(C&: *Ctx), Params: DFSanMemOriginTransferArgs, /*isVarArg=*/false); |
| 1212 | Type *DFSanMemShadowOriginTransferArgs[3] = {Int8Ptr, Int8Ptr, IntptrTy}; |
| 1213 | DFSanMemShadowOriginTransferFnTy = |
| 1214 | FunctionType::get(Result: Type::getVoidTy(C&: *Ctx), Params: DFSanMemShadowOriginTransferArgs, |
| 1215 | /*isVarArg=*/false); |
| 1216 | Type *DFSanMemShadowOriginConditionalExchangeArgs[5] = { |
| 1217 | IntegerType::get(C&: *Ctx, NumBits: 8), Int8Ptr, Int8Ptr, Int8Ptr, IntptrTy}; |
| 1218 | DFSanMemShadowOriginConditionalExchangeFnTy = FunctionType::get( |
| 1219 | Result: Type::getVoidTy(C&: *Ctx), Params: DFSanMemShadowOriginConditionalExchangeArgs, |
| 1220 | /*isVarArg=*/false); |
| 1221 | Type *DFSanLoadStoreCallbackArgs[2] = {PrimitiveShadowTy, Int8Ptr}; |
| 1222 | DFSanLoadStoreCallbackFnTy = |
| 1223 | FunctionType::get(Result: Type::getVoidTy(C&: *Ctx), Params: DFSanLoadStoreCallbackArgs, |
| 1224 | /*isVarArg=*/false); |
| 1225 | Type *DFSanMemTransferCallbackArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; |
| 1226 | DFSanMemTransferCallbackFnTy = |
| 1227 | FunctionType::get(Result: Type::getVoidTy(C&: *Ctx), Params: DFSanMemTransferCallbackArgs, |
| 1228 | /*isVarArg=*/false); |
| 1229 | |
| 1230 | ColdCallWeights = MDBuilder(*Ctx).createUnlikelyBranchWeights(); |
| 1231 | OriginStoreWeights = MDBuilder(*Ctx).createUnlikelyBranchWeights(); |
| 1232 | return true; |
| 1233 | } |
| 1234 | |
| 1235 | bool DataFlowSanitizer::isInstrumented(const Function *F) { |
| 1236 | return !ABIList.isIn(F: *F, Category: "uninstrumented" ); |
| 1237 | } |
| 1238 | |
| 1239 | bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) { |
| 1240 | return !ABIList.isIn(GA: *GA, Category: "uninstrumented" ); |
| 1241 | } |
| 1242 | |
| 1243 | bool DataFlowSanitizer::isForceZeroLabels(const Function *F) { |
| 1244 | return ABIList.isIn(F: *F, Category: "force_zero_labels" ); |
| 1245 | } |
| 1246 | |
| 1247 | DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) { |
| 1248 | if (ABIList.isIn(F: *F, Category: "functional" )) |
| 1249 | return WK_Functional; |
| 1250 | if (ABIList.isIn(F: *F, Category: "discard" )) |
| 1251 | return WK_Discard; |
| 1252 | if (ABIList.isIn(F: *F, Category: "custom" )) |
| 1253 | return WK_Custom; |
| 1254 | |
| 1255 | return WK_Warning; |
| 1256 | } |
| 1257 | |
| 1258 | void DataFlowSanitizer::addGlobalNameSuffix(GlobalValue *GV) { |
| 1259 | std::string GVName = std::string(GV->getName()), Suffix = ".dfsan" ; |
| 1260 | GV->setName(GVName + Suffix); |
| 1261 | |
| 1262 | // Try to change the name of the function in module inline asm. We only do |
| 1263 | // this for specific asm directives, currently only ".symver", to try to avoid |
| 1264 | // corrupting asm which happens to contain the symbol name as a substring. |
| 1265 | // Note that the substitution for .symver assumes that the versioned symbol |
| 1266 | // also has an instrumented name. |
| 1267 | std::string Asm = GV->getParent()->getModuleInlineAsm(); |
| 1268 | std::string SearchStr = ".symver " + GVName + "," ; |
| 1269 | size_t Pos = Asm.find(str: SearchStr); |
| 1270 | if (Pos != std::string::npos) { |
| 1271 | Asm.replace(pos: Pos, n: SearchStr.size(), str: ".symver " + GVName + Suffix + "," ); |
| 1272 | Pos = Asm.find(c: '@'); |
| 1273 | |
| 1274 | if (Pos == std::string::npos) |
| 1275 | report_fatal_error(reason: Twine("unsupported .symver: " , Asm)); |
| 1276 | |
| 1277 | Asm.replace(pos: Pos, n: 1, str: Suffix + "@" ); |
| 1278 | GV->getParent()->setModuleInlineAsm(Asm); |
| 1279 | } |
| 1280 | } |
| 1281 | |
| 1282 | void DataFlowSanitizer::buildExternWeakCheckIfNeeded(IRBuilder<> &IRB, |
| 1283 | Function *F) { |
| 1284 | // If the function we are wrapping was ExternWeak, it may be null. |
| 1285 | // The original code before calling this wrapper may have checked for null, |
| 1286 | // but replacing with a known-to-not-be-null wrapper can break this check. |
| 1287 | // When replacing uses of the extern weak function with the wrapper we try |
| 1288 | // to avoid replacing uses in conditionals, but this is not perfect. |
| 1289 | // In the case where we fail, and accidentally optimize out a null check |
| 1290 | // for a extern weak function, add a check here to help identify the issue. |
| 1291 | if (GlobalValue::isExternalWeakLinkage(Linkage: F->getLinkage())) { |
| 1292 | std::vector<Value *> Args; |
| 1293 | Args.push_back(x: F); |
| 1294 | Args.push_back(x: IRB.CreateGlobalString(Str: F->getName())); |
| 1295 | IRB.CreateCall(Callee: DFSanWrapperExternWeakNullFn, Args); |
| 1296 | } |
| 1297 | } |
| 1298 | |
| 1299 | Function * |
| 1300 | DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName, |
| 1301 | GlobalValue::LinkageTypes NewFLink, |
| 1302 | FunctionType *NewFT) { |
| 1303 | FunctionType *FT = F->getFunctionType(); |
| 1304 | Function *NewF = Function::Create(Ty: NewFT, Linkage: NewFLink, AddrSpace: F->getAddressSpace(), |
| 1305 | N: NewFName, M: F->getParent()); |
| 1306 | NewF->copyAttributesFrom(Src: F); |
| 1307 | NewF->removeRetAttrs(Attrs: AttributeFuncs::typeIncompatible( |
| 1308 | Ty: NewFT->getReturnType(), AS: NewF->getAttributes().getRetAttrs())); |
| 1309 | |
| 1310 | BasicBlock *BB = BasicBlock::Create(Context&: *Ctx, Name: "entry" , Parent: NewF); |
| 1311 | if (F->isVarArg()) { |
| 1312 | NewF->removeFnAttr(Kind: "split-stack" ); |
| 1313 | CallInst::Create(Func: DFSanVarargWrapperFn, |
| 1314 | Args: IRBuilder<>(BB).CreateGlobalString(Str: F->getName()), NameStr: "" , InsertBefore: BB); |
| 1315 | new UnreachableInst(*Ctx, BB); |
| 1316 | } else { |
| 1317 | auto ArgIt = pointer_iterator<Argument *>(NewF->arg_begin()); |
| 1318 | std::vector<Value *> Args(ArgIt, ArgIt + FT->getNumParams()); |
| 1319 | |
| 1320 | CallInst *CI = CallInst::Create(Func: F, Args, NameStr: "" , InsertBefore: BB); |
| 1321 | if (FT->getReturnType()->isVoidTy()) |
| 1322 | ReturnInst::Create(C&: *Ctx, InsertAtEnd: BB); |
| 1323 | else |
| 1324 | ReturnInst::Create(C&: *Ctx, retVal: CI, InsertBefore: BB); |
| 1325 | } |
| 1326 | |
| 1327 | return NewF; |
| 1328 | } |
| 1329 | |
| 1330 | // Initialize DataFlowSanitizer runtime functions and declare them in the module |
| 1331 | void DataFlowSanitizer::initializeRuntimeFunctions(Module &M) { |
| 1332 | LLVMContext &C = M.getContext(); |
| 1333 | { |
| 1334 | AttributeList AL; |
| 1335 | AL = AL.addFnAttribute(C, Kind: Attribute::NoUnwind); |
| 1336 | AL = AL.addFnAttribute( |
| 1337 | C, Attr: Attribute::getWithMemoryEffects(Context&: C, ME: MemoryEffects::readOnly())); |
| 1338 | AL = AL.addRetAttribute(C, Kind: Attribute::ZExt); |
| 1339 | DFSanUnionLoadFn = |
| 1340 | Mod->getOrInsertFunction(Name: "__dfsan_union_load" , T: DFSanUnionLoadFnTy, AttributeList: AL); |
| 1341 | } |
| 1342 | { |
| 1343 | AttributeList AL; |
| 1344 | AL = AL.addFnAttribute(C, Kind: Attribute::NoUnwind); |
| 1345 | AL = AL.addFnAttribute( |
| 1346 | C, Attr: Attribute::getWithMemoryEffects(Context&: C, ME: MemoryEffects::readOnly())); |
| 1347 | AL = AL.addRetAttribute(C, Kind: Attribute::ZExt); |
| 1348 | DFSanLoadLabelAndOriginFn = Mod->getOrInsertFunction( |
| 1349 | Name: "__dfsan_load_label_and_origin" , T: DFSanLoadLabelAndOriginFnTy, AttributeList: AL); |
| 1350 | } |
| 1351 | DFSanUnimplementedFn = |
| 1352 | Mod->getOrInsertFunction(Name: "__dfsan_unimplemented" , T: DFSanUnimplementedFnTy); |
| 1353 | DFSanWrapperExternWeakNullFn = Mod->getOrInsertFunction( |
| 1354 | Name: "__dfsan_wrapper_extern_weak_null" , T: DFSanWrapperExternWeakNullFnTy); |
| 1355 | { |
| 1356 | AttributeList AL; |
| 1357 | AL = AL.addParamAttribute(C&: M.getContext(), ArgNo: 0, Kind: Attribute::ZExt); |
| 1358 | AL = AL.addParamAttribute(C&: M.getContext(), ArgNo: 1, Kind: Attribute::ZExt); |
| 1359 | DFSanSetLabelFn = |
| 1360 | Mod->getOrInsertFunction(Name: "__dfsan_set_label" , T: DFSanSetLabelFnTy, AttributeList: AL); |
| 1361 | } |
| 1362 | DFSanNonzeroLabelFn = |
| 1363 | Mod->getOrInsertFunction(Name: "__dfsan_nonzero_label" , T: DFSanNonzeroLabelFnTy); |
| 1364 | DFSanVarargWrapperFn = Mod->getOrInsertFunction(Name: "__dfsan_vararg_wrapper" , |
| 1365 | T: DFSanVarargWrapperFnTy); |
| 1366 | { |
| 1367 | AttributeList AL; |
| 1368 | AL = AL.addParamAttribute(C&: M.getContext(), ArgNo: 0, Kind: Attribute::ZExt); |
| 1369 | AL = AL.addRetAttribute(C&: M.getContext(), Kind: Attribute::ZExt); |
| 1370 | DFSanChainOriginFn = Mod->getOrInsertFunction(Name: "__dfsan_chain_origin" , |
| 1371 | T: DFSanChainOriginFnTy, AttributeList: AL); |
| 1372 | } |
| 1373 | { |
| 1374 | AttributeList AL; |
| 1375 | AL = AL.addParamAttribute(C&: M.getContext(), ArgNo: 0, Kind: Attribute::ZExt); |
| 1376 | AL = AL.addParamAttribute(C&: M.getContext(), ArgNo: 1, Kind: Attribute::ZExt); |
| 1377 | AL = AL.addRetAttribute(C&: M.getContext(), Kind: Attribute::ZExt); |
| 1378 | DFSanChainOriginIfTaintedFn = Mod->getOrInsertFunction( |
| 1379 | Name: "__dfsan_chain_origin_if_tainted" , T: DFSanChainOriginIfTaintedFnTy, AttributeList: AL); |
| 1380 | } |
| 1381 | DFSanMemOriginTransferFn = Mod->getOrInsertFunction( |
| 1382 | Name: "__dfsan_mem_origin_transfer" , T: DFSanMemOriginTransferFnTy); |
| 1383 | |
| 1384 | DFSanMemShadowOriginTransferFn = Mod->getOrInsertFunction( |
| 1385 | Name: "__dfsan_mem_shadow_origin_transfer" , T: DFSanMemShadowOriginTransferFnTy); |
| 1386 | |
| 1387 | DFSanMemShadowOriginConditionalExchangeFn = |
| 1388 | Mod->getOrInsertFunction(Name: "__dfsan_mem_shadow_origin_conditional_exchange" , |
| 1389 | T: DFSanMemShadowOriginConditionalExchangeFnTy); |
| 1390 | |
| 1391 | { |
| 1392 | AttributeList AL; |
| 1393 | AL = AL.addParamAttribute(C&: M.getContext(), ArgNo: 0, Kind: Attribute::ZExt); |
| 1394 | AL = AL.addParamAttribute(C&: M.getContext(), ArgNo: 3, Kind: Attribute::ZExt); |
| 1395 | DFSanMaybeStoreOriginFn = Mod->getOrInsertFunction( |
| 1396 | Name: "__dfsan_maybe_store_origin" , T: DFSanMaybeStoreOriginFnTy, AttributeList: AL); |
| 1397 | } |
| 1398 | |
| 1399 | DFSanRuntimeFunctions.insert( |
| 1400 | Ptr: DFSanUnionLoadFn.getCallee()->stripPointerCasts()); |
| 1401 | DFSanRuntimeFunctions.insert( |
| 1402 | Ptr: DFSanLoadLabelAndOriginFn.getCallee()->stripPointerCasts()); |
| 1403 | DFSanRuntimeFunctions.insert( |
| 1404 | Ptr: DFSanUnimplementedFn.getCallee()->stripPointerCasts()); |
| 1405 | DFSanRuntimeFunctions.insert( |
| 1406 | Ptr: DFSanWrapperExternWeakNullFn.getCallee()->stripPointerCasts()); |
| 1407 | DFSanRuntimeFunctions.insert( |
| 1408 | Ptr: DFSanSetLabelFn.getCallee()->stripPointerCasts()); |
| 1409 | DFSanRuntimeFunctions.insert( |
| 1410 | Ptr: DFSanNonzeroLabelFn.getCallee()->stripPointerCasts()); |
| 1411 | DFSanRuntimeFunctions.insert( |
| 1412 | Ptr: DFSanVarargWrapperFn.getCallee()->stripPointerCasts()); |
| 1413 | DFSanRuntimeFunctions.insert( |
| 1414 | Ptr: DFSanLoadCallbackFn.getCallee()->stripPointerCasts()); |
| 1415 | DFSanRuntimeFunctions.insert( |
| 1416 | Ptr: DFSanStoreCallbackFn.getCallee()->stripPointerCasts()); |
| 1417 | DFSanRuntimeFunctions.insert( |
| 1418 | Ptr: DFSanMemTransferCallbackFn.getCallee()->stripPointerCasts()); |
| 1419 | DFSanRuntimeFunctions.insert( |
| 1420 | Ptr: DFSanConditionalCallbackFn.getCallee()->stripPointerCasts()); |
| 1421 | DFSanRuntimeFunctions.insert( |
| 1422 | Ptr: DFSanConditionalCallbackOriginFn.getCallee()->stripPointerCasts()); |
| 1423 | DFSanRuntimeFunctions.insert( |
| 1424 | Ptr: DFSanReachesFunctionCallbackFn.getCallee()->stripPointerCasts()); |
| 1425 | DFSanRuntimeFunctions.insert( |
| 1426 | Ptr: DFSanReachesFunctionCallbackOriginFn.getCallee()->stripPointerCasts()); |
| 1427 | DFSanRuntimeFunctions.insert( |
| 1428 | Ptr: DFSanCmpCallbackFn.getCallee()->stripPointerCasts()); |
| 1429 | DFSanRuntimeFunctions.insert( |
| 1430 | Ptr: DFSanChainOriginFn.getCallee()->stripPointerCasts()); |
| 1431 | DFSanRuntimeFunctions.insert( |
| 1432 | Ptr: DFSanChainOriginIfTaintedFn.getCallee()->stripPointerCasts()); |
| 1433 | DFSanRuntimeFunctions.insert( |
| 1434 | Ptr: DFSanMemOriginTransferFn.getCallee()->stripPointerCasts()); |
| 1435 | DFSanRuntimeFunctions.insert( |
| 1436 | Ptr: DFSanMemShadowOriginTransferFn.getCallee()->stripPointerCasts()); |
| 1437 | DFSanRuntimeFunctions.insert( |
| 1438 | Ptr: DFSanMemShadowOriginConditionalExchangeFn.getCallee() |
| 1439 | ->stripPointerCasts()); |
| 1440 | DFSanRuntimeFunctions.insert( |
| 1441 | Ptr: DFSanMaybeStoreOriginFn.getCallee()->stripPointerCasts()); |
| 1442 | } |
| 1443 | |
| 1444 | // Initializes event callback functions and declare them in the module |
| 1445 | void DataFlowSanitizer::initializeCallbackFunctions(Module &M) { |
| 1446 | { |
| 1447 | AttributeList AL; |
| 1448 | AL = AL.addParamAttribute(C&: M.getContext(), ArgNo: 0, Kind: Attribute::ZExt); |
| 1449 | DFSanLoadCallbackFn = Mod->getOrInsertFunction( |
| 1450 | Name: "__dfsan_load_callback" , T: DFSanLoadStoreCallbackFnTy, AttributeList: AL); |
| 1451 | } |
| 1452 | { |
| 1453 | AttributeList AL; |
| 1454 | AL = AL.addParamAttribute(C&: M.getContext(), ArgNo: 0, Kind: Attribute::ZExt); |
| 1455 | DFSanStoreCallbackFn = Mod->getOrInsertFunction( |
| 1456 | Name: "__dfsan_store_callback" , T: DFSanLoadStoreCallbackFnTy, AttributeList: AL); |
| 1457 | } |
| 1458 | DFSanMemTransferCallbackFn = Mod->getOrInsertFunction( |
| 1459 | Name: "__dfsan_mem_transfer_callback" , T: DFSanMemTransferCallbackFnTy); |
| 1460 | { |
| 1461 | AttributeList AL; |
| 1462 | AL = AL.addParamAttribute(C&: M.getContext(), ArgNo: 0, Kind: Attribute::ZExt); |
| 1463 | DFSanCmpCallbackFn = Mod->getOrInsertFunction(Name: "__dfsan_cmp_callback" , |
| 1464 | T: DFSanCmpCallbackFnTy, AttributeList: AL); |
| 1465 | } |
| 1466 | { |
| 1467 | AttributeList AL; |
| 1468 | AL = AL.addParamAttribute(C&: M.getContext(), ArgNo: 0, Kind: Attribute::ZExt); |
| 1469 | DFSanConditionalCallbackFn = Mod->getOrInsertFunction( |
| 1470 | Name: "__dfsan_conditional_callback" , T: DFSanConditionalCallbackFnTy, AttributeList: AL); |
| 1471 | } |
| 1472 | { |
| 1473 | AttributeList AL; |
| 1474 | AL = AL.addParamAttribute(C&: M.getContext(), ArgNo: 0, Kind: Attribute::ZExt); |
| 1475 | DFSanConditionalCallbackOriginFn = |
| 1476 | Mod->getOrInsertFunction(Name: "__dfsan_conditional_callback_origin" , |
| 1477 | T: DFSanConditionalCallbackOriginFnTy, AttributeList: AL); |
| 1478 | } |
| 1479 | { |
| 1480 | AttributeList AL; |
| 1481 | AL = AL.addParamAttribute(C&: M.getContext(), ArgNo: 0, Kind: Attribute::ZExt); |
| 1482 | DFSanReachesFunctionCallbackFn = |
| 1483 | Mod->getOrInsertFunction(Name: "__dfsan_reaches_function_callback" , |
| 1484 | T: DFSanReachesFunctionCallbackFnTy, AttributeList: AL); |
| 1485 | } |
| 1486 | { |
| 1487 | AttributeList AL; |
| 1488 | AL = AL.addParamAttribute(C&: M.getContext(), ArgNo: 0, Kind: Attribute::ZExt); |
| 1489 | DFSanReachesFunctionCallbackOriginFn = |
| 1490 | Mod->getOrInsertFunction(Name: "__dfsan_reaches_function_callback_origin" , |
| 1491 | T: DFSanReachesFunctionCallbackOriginFnTy, AttributeList: AL); |
| 1492 | } |
| 1493 | } |
| 1494 | |
| 1495 | bool DataFlowSanitizer::runImpl( |
| 1496 | Module &M, llvm::function_ref<TargetLibraryInfo &(Function &)> GetTLI) { |
| 1497 | initializeModule(M); |
| 1498 | |
| 1499 | if (ABIList.isIn(M, Category: "skip" )) |
| 1500 | return false; |
| 1501 | |
| 1502 | const unsigned InitialGlobalSize = M.global_size(); |
| 1503 | const unsigned InitialModuleSize = M.size(); |
| 1504 | |
| 1505 | bool Changed = false; |
| 1506 | |
| 1507 | auto GetOrInsertGlobal = [this, &Changed](StringRef Name, |
| 1508 | Type *Ty) -> Constant * { |
| 1509 | GlobalVariable *G = Mod->getOrInsertGlobal(Name, Ty); |
| 1510 | Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel; |
| 1511 | G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); |
| 1512 | return G; |
| 1513 | }; |
| 1514 | |
| 1515 | // These globals must be kept in sync with the ones in dfsan.cpp. |
| 1516 | ArgTLS = |
| 1517 | GetOrInsertGlobal("__dfsan_arg_tls" , |
| 1518 | ArrayType::get(ElementType: Type::getInt64Ty(C&: *Ctx), NumElements: ArgTLSSize / 8)); |
| 1519 | RetvalTLS = GetOrInsertGlobal( |
| 1520 | "__dfsan_retval_tls" , |
| 1521 | ArrayType::get(ElementType: Type::getInt64Ty(C&: *Ctx), NumElements: RetvalTLSSize / 8)); |
| 1522 | ArgOriginTLSTy = ArrayType::get(ElementType: OriginTy, NumElements: NumOfElementsInArgOrgTLS); |
| 1523 | ArgOriginTLS = GetOrInsertGlobal("__dfsan_arg_origin_tls" , ArgOriginTLSTy); |
| 1524 | RetvalOriginTLS = GetOrInsertGlobal("__dfsan_retval_origin_tls" , OriginTy); |
| 1525 | |
| 1526 | (void)Mod->getOrInsertGlobal(Name: "__dfsan_track_origins" , Ty: OriginTy, CreateGlobalCallback: [&] { |
| 1527 | Changed = true; |
| 1528 | return new GlobalVariable( |
| 1529 | M, OriginTy, true, GlobalValue::WeakODRLinkage, |
| 1530 | ConstantInt::getSigned(Ty: OriginTy, |
| 1531 | V: shouldTrackOrigins() ? ClTrackOrigins : 0), |
| 1532 | "__dfsan_track_origins" ); |
| 1533 | }); |
| 1534 | |
| 1535 | initializeCallbackFunctions(M); |
| 1536 | initializeRuntimeFunctions(M); |
| 1537 | |
| 1538 | std::vector<Function *> FnsToInstrument; |
| 1539 | SmallPtrSet<Function *, 2> FnsWithNativeABI; |
| 1540 | SmallPtrSet<Function *, 2> FnsWithForceZeroLabel; |
| 1541 | SmallPtrSet<Constant *, 1> PersonalityFns; |
| 1542 | for (Function &F : M) |
| 1543 | if (!F.isIntrinsic() && !DFSanRuntimeFunctions.contains(Ptr: &F) && |
| 1544 | !LibAtomicFunction(F) && |
| 1545 | !F.hasFnAttribute(Kind: Attribute::DisableSanitizerInstrumentation)) { |
| 1546 | FnsToInstrument.push_back(x: &F); |
| 1547 | if (F.hasPersonalityFn()) |
| 1548 | PersonalityFns.insert(Ptr: F.getPersonalityFn()->stripPointerCasts()); |
| 1549 | } |
| 1550 | |
| 1551 | if (ClIgnorePersonalityRoutine) { |
| 1552 | for (auto *C : PersonalityFns) { |
| 1553 | assert(isa<Function>(C) && "Personality routine is not a function!" ); |
| 1554 | Function *F = cast<Function>(Val: C); |
| 1555 | if (!isInstrumented(F)) |
| 1556 | llvm::erase(C&: FnsToInstrument, V: F); |
| 1557 | } |
| 1558 | } |
| 1559 | |
| 1560 | // Give function aliases prefixes when necessary, and build wrappers where the |
| 1561 | // instrumentedness is inconsistent. |
| 1562 | for (GlobalAlias &GA : llvm::make_early_inc_range(Range: M.aliases())) { |
| 1563 | // Don't stop on weak. We assume people aren't playing games with the |
| 1564 | // instrumentedness of overridden weak aliases. |
| 1565 | auto *F = dyn_cast<Function>(Val: GA.getAliaseeObject()); |
| 1566 | if (!F) |
| 1567 | continue; |
| 1568 | |
| 1569 | bool GAInst = isInstrumented(GA: &GA), FInst = isInstrumented(F); |
| 1570 | if (GAInst && FInst) { |
| 1571 | addGlobalNameSuffix(GV: &GA); |
| 1572 | } else if (GAInst != FInst) { |
| 1573 | // Non-instrumented alias of an instrumented function, or vice versa. |
| 1574 | // Replace the alias with a native-ABI wrapper of the aliasee. The pass |
| 1575 | // below will take care of instrumenting it. |
| 1576 | Function *NewF = |
| 1577 | buildWrapperFunction(F, NewFName: "" , NewFLink: GA.getLinkage(), NewFT: F->getFunctionType()); |
| 1578 | GA.replaceAllUsesWith(V: NewF); |
| 1579 | NewF->takeName(V: &GA); |
| 1580 | GA.eraseFromParent(); |
| 1581 | FnsToInstrument.push_back(x: NewF); |
| 1582 | } |
| 1583 | } |
| 1584 | |
| 1585 | // TODO: This could be more precise. |
| 1586 | ReadOnlyNoneAttrs.addAttribute(Val: Attribute::Memory); |
| 1587 | |
| 1588 | // First, change the ABI of every function in the module. ABI-listed |
| 1589 | // functions keep their original ABI and get a wrapper function. |
| 1590 | for (std::vector<Function *>::iterator FI = FnsToInstrument.begin(), |
| 1591 | FE = FnsToInstrument.end(); |
| 1592 | FI != FE; ++FI) { |
| 1593 | Function &F = **FI; |
| 1594 | FunctionType *FT = F.getFunctionType(); |
| 1595 | |
| 1596 | bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() && |
| 1597 | FT->getReturnType()->isVoidTy()); |
| 1598 | |
| 1599 | if (isInstrumented(F: &F)) { |
| 1600 | if (isForceZeroLabels(F: &F)) |
| 1601 | FnsWithForceZeroLabel.insert(Ptr: &F); |
| 1602 | |
| 1603 | // Instrumented functions get a '.dfsan' suffix. This allows us to more |
| 1604 | // easily identify cases of mismatching ABIs. This naming scheme is |
| 1605 | // mangling-compatible (see Itanium ABI), using a vendor-specific suffix. |
| 1606 | addGlobalNameSuffix(GV: &F); |
| 1607 | } else if (!IsZeroArgsVoidRet || getWrapperKind(F: &F) == WK_Custom) { |
| 1608 | // Build a wrapper function for F. The wrapper simply calls F, and is |
| 1609 | // added to FnsToInstrument so that any instrumentation according to its |
| 1610 | // WrapperKind is done in the second pass below. |
| 1611 | |
| 1612 | // If the function being wrapped has local linkage, then preserve the |
| 1613 | // function's linkage in the wrapper function. |
| 1614 | GlobalValue::LinkageTypes WrapperLinkage = |
| 1615 | F.hasLocalLinkage() ? F.getLinkage() |
| 1616 | : GlobalValue::LinkOnceODRLinkage; |
| 1617 | |
| 1618 | Function *NewF = buildWrapperFunction( |
| 1619 | F: &F, |
| 1620 | NewFName: (shouldTrackOrigins() ? std::string("dfso$" ) : std::string("dfsw$" )) + |
| 1621 | std::string(F.getName()), |
| 1622 | NewFLink: WrapperLinkage, NewFT: FT); |
| 1623 | NewF->removeFnAttrs(Attrs: ReadOnlyNoneAttrs); |
| 1624 | |
| 1625 | // Extern weak functions can sometimes be null at execution time. |
| 1626 | // Code will sometimes check if an extern weak function is null. |
| 1627 | // This could look something like: |
| 1628 | // declare extern_weak i8 @my_func(i8) |
| 1629 | // br i1 icmp ne (i8 (i8)* @my_func, i8 (i8)* null), label %use_my_func, |
| 1630 | // label %avoid_my_func |
| 1631 | // The @"dfsw$my_func" wrapper is never null, so if we replace this use |
| 1632 | // in the comparison, the icmp will simplify to false and we have |
| 1633 | // accidentally optimized away a null check that is necessary. |
| 1634 | // This can lead to a crash when the null extern_weak my_func is called. |
| 1635 | // |
| 1636 | // To prevent (the most common pattern of) this problem, |
| 1637 | // do not replace uses in comparisons with the wrapper. |
| 1638 | // We definitely want to replace uses in call instructions. |
| 1639 | // Other uses (e.g. store the function address somewhere) might be |
| 1640 | // called or compared or both - this case may not be handled correctly. |
| 1641 | // We will default to replacing with wrapper in cases we are unsure. |
| 1642 | auto IsNotCmpUse = [](Use &U) -> bool { |
| 1643 | User *Usr = U.getUser(); |
| 1644 | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Val: Usr)) { |
| 1645 | // This is the most common case for icmp ne null |
| 1646 | if (CE->getOpcode() == Instruction::ICmp) { |
| 1647 | return false; |
| 1648 | } |
| 1649 | } |
| 1650 | if (Instruction *I = dyn_cast<Instruction>(Val: Usr)) { |
| 1651 | if (I->getOpcode() == Instruction::ICmp) { |
| 1652 | return false; |
| 1653 | } |
| 1654 | } |
| 1655 | return true; |
| 1656 | }; |
| 1657 | F.replaceUsesWithIf(New: NewF, ShouldReplace: IsNotCmpUse); |
| 1658 | |
| 1659 | UnwrappedFnMap[NewF] = &F; |
| 1660 | *FI = NewF; |
| 1661 | |
| 1662 | if (!F.isDeclaration()) { |
| 1663 | // This function is probably defining an interposition of an |
| 1664 | // uninstrumented function and hence needs to keep the original ABI. |
| 1665 | // But any functions it may call need to use the instrumented ABI, so |
| 1666 | // we instrument it in a mode which preserves the original ABI. |
| 1667 | FnsWithNativeABI.insert(Ptr: &F); |
| 1668 | |
| 1669 | // This code needs to rebuild the iterators, as they may be invalidated |
| 1670 | // by the push_back, taking care that the new range does not include |
| 1671 | // any functions added by this code. |
| 1672 | size_t N = FI - FnsToInstrument.begin(), |
| 1673 | Count = FE - FnsToInstrument.begin(); |
| 1674 | FnsToInstrument.push_back(x: &F); |
| 1675 | FI = FnsToInstrument.begin() + N; |
| 1676 | FE = FnsToInstrument.begin() + Count; |
| 1677 | } |
| 1678 | // Hopefully, nobody will try to indirectly call a vararg |
| 1679 | // function... yet. |
| 1680 | } else if (FT->isVarArg()) { |
| 1681 | UnwrappedFnMap[&F] = &F; |
| 1682 | *FI = nullptr; |
| 1683 | } |
| 1684 | } |
| 1685 | |
| 1686 | for (Function *F : FnsToInstrument) { |
| 1687 | if (!F || F->isDeclaration()) |
| 1688 | continue; |
| 1689 | |
| 1690 | removeUnreachableBlocks(F&: *F); |
| 1691 | |
| 1692 | DFSanFunction DFSF(*this, F, FnsWithNativeABI.count(Ptr: F), |
| 1693 | FnsWithForceZeroLabel.count(Ptr: F), GetTLI(*F)); |
| 1694 | |
| 1695 | if (ClReachesFunctionCallbacks) { |
| 1696 | // Add callback for arguments reaching this function. |
| 1697 | for (auto &FArg : F->args()) { |
| 1698 | Instruction *Next = &F->getEntryBlock().front(); |
| 1699 | Value *FArgShadow = DFSF.getShadow(V: &FArg); |
| 1700 | if (isZeroShadow(V: FArgShadow)) |
| 1701 | continue; |
| 1702 | if (Instruction *FArgShadowInst = dyn_cast<Instruction>(Val: FArgShadow)) { |
| 1703 | Next = FArgShadowInst->getNextNode(); |
| 1704 | } |
| 1705 | if (shouldTrackOrigins()) { |
| 1706 | if (Instruction *Origin = |
| 1707 | dyn_cast<Instruction>(Val: DFSF.getOrigin(V: &FArg))) { |
| 1708 | // Ensure IRB insertion point is after loads for shadow and origin. |
| 1709 | Instruction *OriginNext = Origin->getNextNode(); |
| 1710 | if (Next->comesBefore(Other: OriginNext)) { |
| 1711 | Next = OriginNext; |
| 1712 | } |
| 1713 | } |
| 1714 | } |
| 1715 | IRBuilder<> IRB(Next); |
| 1716 | DFSF.addReachesFunctionCallbacksIfEnabled(IRB, I&: *Next, Data: &FArg); |
| 1717 | } |
| 1718 | } |
| 1719 | |
| 1720 | // DFSanVisitor may create new basic blocks, which confuses df_iterator. |
| 1721 | // Build a copy of the list before iterating over it. |
| 1722 | SmallVector<BasicBlock *, 4> BBList(depth_first(G: &F->getEntryBlock())); |
| 1723 | |
| 1724 | for (BasicBlock *BB : BBList) { |
| 1725 | Instruction *Inst = &BB->front(); |
| 1726 | while (true) { |
| 1727 | // DFSanVisitor may split the current basic block, changing the current |
| 1728 | // instruction's next pointer and moving the next instruction to the |
| 1729 | // tail block from which we should continue. |
| 1730 | Instruction *Next = Inst->getNextNode(); |
| 1731 | // DFSanVisitor may delete Inst, so keep track of whether it was a |
| 1732 | // terminator. |
| 1733 | bool IsTerminator = Inst->isTerminator(); |
| 1734 | if (!DFSF.SkipInsts.count(V: Inst)) |
| 1735 | DFSanVisitor(DFSF).visit(I: Inst); |
| 1736 | if (IsTerminator) |
| 1737 | break; |
| 1738 | Inst = Next; |
| 1739 | } |
| 1740 | } |
| 1741 | |
| 1742 | // We will not necessarily be able to compute the shadow for every phi node |
| 1743 | // until we have visited every block. Therefore, the code that handles phi |
| 1744 | // nodes adds them to the PHIFixups list so that they can be properly |
| 1745 | // handled here. |
| 1746 | for (DFSanFunction::PHIFixupElement &P : DFSF.PHIFixups) { |
| 1747 | for (unsigned Val = 0, N = P.Phi->getNumIncomingValues(); Val != N; |
| 1748 | ++Val) { |
| 1749 | P.ShadowPhi->setIncomingValue( |
| 1750 | i: Val, V: DFSF.getShadow(V: P.Phi->getIncomingValue(i: Val))); |
| 1751 | if (P.OriginPhi) |
| 1752 | P.OriginPhi->setIncomingValue( |
| 1753 | i: Val, V: DFSF.getOrigin(V: P.Phi->getIncomingValue(i: Val))); |
| 1754 | } |
| 1755 | } |
| 1756 | |
| 1757 | // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy |
| 1758 | // places (i.e. instructions in basic blocks we haven't even begun visiting |
| 1759 | // yet). To make our life easier, do this work in a pass after the main |
| 1760 | // instrumentation. |
| 1761 | if (ClDebugNonzeroLabels) { |
| 1762 | for (Value *V : DFSF.NonZeroChecks) { |
| 1763 | BasicBlock::iterator Pos; |
| 1764 | if (Instruction *I = dyn_cast<Instruction>(Val: V)) |
| 1765 | Pos = std::next(x: I->getIterator()); |
| 1766 | else |
| 1767 | Pos = DFSF.F->getEntryBlock().begin(); |
| 1768 | while (isa<PHINode>(Val: Pos) || isa<AllocaInst>(Val: Pos)) |
| 1769 | Pos = std::next(x: Pos->getIterator()); |
| 1770 | IRBuilder<> IRB(Pos->getParent(), Pos); |
| 1771 | Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow(Shadow: V, Pos); |
| 1772 | Value *Ne = |
| 1773 | IRB.CreateICmpNE(LHS: PrimitiveShadow, RHS: DFSF.DFS.ZeroPrimitiveShadow); |
| 1774 | BranchInst *BI = cast<BranchInst>(Val: SplitBlockAndInsertIfThen( |
| 1775 | Cond: Ne, SplitBefore: Pos, /*Unreachable=*/false, BranchWeights: ColdCallWeights)); |
| 1776 | IRBuilder<> ThenIRB(BI); |
| 1777 | ThenIRB.CreateCall(Callee: DFSF.DFS.DFSanNonzeroLabelFn, Args: {}); |
| 1778 | } |
| 1779 | } |
| 1780 | } |
| 1781 | |
| 1782 | return Changed || !FnsToInstrument.empty() || |
| 1783 | M.global_size() != InitialGlobalSize || M.size() != InitialModuleSize; |
| 1784 | } |
| 1785 | |
| 1786 | Value *DFSanFunction::getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB) { |
| 1787 | Value *Base = IRB.CreatePointerCast(V: DFS.ArgTLS, DestTy: DFS.IntptrTy); |
| 1788 | if (ArgOffset) |
| 1789 | Base = IRB.CreateAdd(LHS: Base, RHS: ConstantInt::get(Ty: DFS.IntptrTy, V: ArgOffset)); |
| 1790 | return IRB.CreateIntToPtr(V: Base, DestTy: PointerType::get(C&: *DFS.Ctx, AddressSpace: 0), Name: "_dfsarg" ); |
| 1791 | } |
| 1792 | |
| 1793 | Value *DFSanFunction::getRetvalTLS(Type *T, IRBuilder<> &IRB) { |
| 1794 | return IRB.CreatePointerCast(V: DFS.RetvalTLS, DestTy: PointerType::get(C&: *DFS.Ctx, AddressSpace: 0), |
| 1795 | Name: "_dfsret" ); |
| 1796 | } |
| 1797 | |
| 1798 | Value *DFSanFunction::getRetvalOriginTLS() { return DFS.RetvalOriginTLS; } |
| 1799 | |
| 1800 | Value *DFSanFunction::getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB) { |
| 1801 | return IRB.CreateConstInBoundsGEP2_64(Ty: DFS.ArgOriginTLSTy, Ptr: DFS.ArgOriginTLS, Idx0: 0, |
| 1802 | Idx1: ArgNo, Name: "_dfsarg_o" ); |
| 1803 | } |
| 1804 | |
| 1805 | Value *DFSanFunction::getOrigin(Value *V) { |
| 1806 | assert(DFS.shouldTrackOrigins()); |
| 1807 | if (!isa<Argument>(Val: V) && !isa<Instruction>(Val: V)) |
| 1808 | return DFS.ZeroOrigin; |
| 1809 | Value *&Origin = ValOriginMap[V]; |
| 1810 | if (!Origin) { |
| 1811 | if (Argument *A = dyn_cast<Argument>(Val: V)) { |
| 1812 | if (IsNativeABI) |
| 1813 | return DFS.ZeroOrigin; |
| 1814 | if (A->getArgNo() < DFS.NumOfElementsInArgOrgTLS) { |
| 1815 | Instruction *ArgOriginTLSPos = &*F->getEntryBlock().begin(); |
| 1816 | IRBuilder<> IRB(ArgOriginTLSPos); |
| 1817 | Value *ArgOriginPtr = getArgOriginTLS(ArgNo: A->getArgNo(), IRB); |
| 1818 | Origin = IRB.CreateLoad(Ty: DFS.OriginTy, Ptr: ArgOriginPtr); |
| 1819 | } else { |
| 1820 | // Overflow |
| 1821 | Origin = DFS.ZeroOrigin; |
| 1822 | } |
| 1823 | } else { |
| 1824 | Origin = DFS.ZeroOrigin; |
| 1825 | } |
| 1826 | } |
| 1827 | return Origin; |
| 1828 | } |
| 1829 | |
| 1830 | void DFSanFunction::setOrigin(Instruction *I, Value *Origin) { |
| 1831 | if (!DFS.shouldTrackOrigins()) |
| 1832 | return; |
| 1833 | assert(!ValOriginMap.count(I)); |
| 1834 | assert(Origin->getType() == DFS.OriginTy); |
| 1835 | ValOriginMap[I] = Origin; |
| 1836 | } |
| 1837 | |
| 1838 | Value *DFSanFunction::getShadowForTLSArgument(Argument *A) { |
| 1839 | unsigned ArgOffset = 0; |
| 1840 | const DataLayout &DL = F->getDataLayout(); |
| 1841 | for (auto &FArg : F->args()) { |
| 1842 | if (!FArg.getType()->isSized()) { |
| 1843 | if (A == &FArg) |
| 1844 | break; |
| 1845 | continue; |
| 1846 | } |
| 1847 | |
| 1848 | unsigned Size = DL.getTypeAllocSize(Ty: DFS.getShadowTy(V: &FArg)); |
| 1849 | if (A != &FArg) { |
| 1850 | ArgOffset += alignTo(Size, A: ShadowTLSAlignment); |
| 1851 | if (ArgOffset > ArgTLSSize) |
| 1852 | break; // ArgTLS overflows, uses a zero shadow. |
| 1853 | continue; |
| 1854 | } |
| 1855 | |
| 1856 | if (ArgOffset + Size > ArgTLSSize) |
| 1857 | break; // ArgTLS overflows, uses a zero shadow. |
| 1858 | |
| 1859 | Instruction *ArgTLSPos = &*F->getEntryBlock().begin(); |
| 1860 | IRBuilder<> IRB(ArgTLSPos); |
| 1861 | Value *ArgShadowPtr = getArgTLS(T: FArg.getType(), ArgOffset, IRB); |
| 1862 | return IRB.CreateAlignedLoad(Ty: DFS.getShadowTy(V: &FArg), Ptr: ArgShadowPtr, |
| 1863 | Align: ShadowTLSAlignment); |
| 1864 | } |
| 1865 | |
| 1866 | return DFS.getZeroShadow(V: A); |
| 1867 | } |
| 1868 | |
| 1869 | Value *DFSanFunction::getShadow(Value *V) { |
| 1870 | if (!isa<Argument>(Val: V) && !isa<Instruction>(Val: V)) |
| 1871 | return DFS.getZeroShadow(V); |
| 1872 | if (IsForceZeroLabels) |
| 1873 | return DFS.getZeroShadow(V); |
| 1874 | Value *&Shadow = ValShadowMap[V]; |
| 1875 | if (!Shadow) { |
| 1876 | if (Argument *A = dyn_cast<Argument>(Val: V)) { |
| 1877 | if (IsNativeABI) |
| 1878 | return DFS.getZeroShadow(V); |
| 1879 | Shadow = getShadowForTLSArgument(A); |
| 1880 | NonZeroChecks.push_back(x: Shadow); |
| 1881 | } else { |
| 1882 | Shadow = DFS.getZeroShadow(V); |
| 1883 | } |
| 1884 | } |
| 1885 | return Shadow; |
| 1886 | } |
| 1887 | |
| 1888 | void DFSanFunction::setShadow(Instruction *I, Value *Shadow) { |
| 1889 | assert(!ValShadowMap.count(I)); |
| 1890 | ValShadowMap[I] = Shadow; |
| 1891 | } |
| 1892 | |
| 1893 | /// Compute the integer shadow offset that corresponds to a given |
| 1894 | /// application address. |
| 1895 | /// |
| 1896 | /// Offset = (Addr & ~AndMask) ^ XorMask |
| 1897 | Value *DataFlowSanitizer::getShadowOffset(Value *Addr, IRBuilder<> &IRB) { |
| 1898 | assert(Addr != RetvalTLS && "Reinstrumenting?" ); |
| 1899 | Value *OffsetLong = IRB.CreatePointerCast(V: Addr, DestTy: IntptrTy); |
| 1900 | |
| 1901 | uint64_t AndMask = MapParams->AndMask; |
| 1902 | if (AndMask) |
| 1903 | OffsetLong = |
| 1904 | IRB.CreateAnd(LHS: OffsetLong, RHS: ConstantInt::get(Ty: IntptrTy, V: ~AndMask)); |
| 1905 | |
| 1906 | uint64_t XorMask = MapParams->XorMask; |
| 1907 | if (XorMask) |
| 1908 | OffsetLong = IRB.CreateXor(LHS: OffsetLong, RHS: ConstantInt::get(Ty: IntptrTy, V: XorMask)); |
| 1909 | return OffsetLong; |
| 1910 | } |
| 1911 | |
| 1912 | std::pair<Value *, Value *> |
| 1913 | DataFlowSanitizer::getShadowOriginAddress(Value *Addr, Align InstAlignment, |
| 1914 | BasicBlock::iterator Pos) { |
| 1915 | // Returns ((Addr & shadow_mask) + origin_base - shadow_base) & ~4UL |
| 1916 | IRBuilder<> IRB(Pos->getParent(), Pos); |
| 1917 | Value *ShadowOffset = getShadowOffset(Addr, IRB); |
| 1918 | Value *ShadowLong = ShadowOffset; |
| 1919 | uint64_t ShadowBase = MapParams->ShadowBase; |
| 1920 | if (ShadowBase != 0) { |
| 1921 | ShadowLong = |
| 1922 | IRB.CreateAdd(LHS: ShadowLong, RHS: ConstantInt::get(Ty: IntptrTy, V: ShadowBase)); |
| 1923 | } |
| 1924 | Value *ShadowPtr = IRB.CreateIntToPtr(V: ShadowLong, DestTy: PointerType::get(C&: *Ctx, AddressSpace: 0)); |
| 1925 | Value *OriginPtr = nullptr; |
| 1926 | if (shouldTrackOrigins()) { |
| 1927 | Value *OriginLong = ShadowOffset; |
| 1928 | uint64_t OriginBase = MapParams->OriginBase; |
| 1929 | if (OriginBase != 0) |
| 1930 | OriginLong = |
| 1931 | IRB.CreateAdd(LHS: OriginLong, RHS: ConstantInt::get(Ty: IntptrTy, V: OriginBase)); |
| 1932 | const Align Alignment = llvm::assumeAligned(Value: InstAlignment.value()); |
| 1933 | // When alignment is >= 4, Addr must be aligned to 4, otherwise it is UB. |
| 1934 | // So Mask is unnecessary. |
| 1935 | if (Alignment < MinOriginAlignment) { |
| 1936 | uint64_t Mask = MinOriginAlignment.value() - 1; |
| 1937 | OriginLong = IRB.CreateAnd(LHS: OriginLong, RHS: ConstantInt::get(Ty: IntptrTy, V: ~Mask)); |
| 1938 | } |
| 1939 | OriginPtr = IRB.CreateIntToPtr(V: OriginLong, DestTy: OriginPtrTy); |
| 1940 | } |
| 1941 | return std::make_pair(x&: ShadowPtr, y&: OriginPtr); |
| 1942 | } |
| 1943 | |
| 1944 | Value *DataFlowSanitizer::getShadowAddress(Value *Addr, |
| 1945 | BasicBlock::iterator Pos, |
| 1946 | Value *ShadowOffset) { |
| 1947 | IRBuilder<> IRB(Pos->getParent(), Pos); |
| 1948 | return IRB.CreateIntToPtr(V: ShadowOffset, DestTy: PrimitiveShadowPtrTy); |
| 1949 | } |
| 1950 | |
| 1951 | Value *DataFlowSanitizer::getShadowAddress(Value *Addr, |
| 1952 | BasicBlock::iterator Pos) { |
| 1953 | IRBuilder<> IRB(Pos->getParent(), Pos); |
| 1954 | Value *ShadowOffset = getShadowOffset(Addr, IRB); |
| 1955 | return getShadowAddress(Addr, Pos, ShadowOffset); |
| 1956 | } |
| 1957 | |
| 1958 | Value *DFSanFunction::combineShadowsThenConvert(Type *T, Value *V1, Value *V2, |
| 1959 | BasicBlock::iterator Pos) { |
| 1960 | Value *PrimitiveValue = combineShadows(V1, V2, Pos); |
| 1961 | return expandFromPrimitiveShadow(T, PrimitiveShadow: PrimitiveValue, Pos); |
| 1962 | } |
| 1963 | |
| 1964 | // Generates IR to compute the union of the two given shadows, inserting it |
| 1965 | // before Pos. The combined value is with primitive type. |
| 1966 | Value *DFSanFunction::combineShadows(Value *V1, Value *V2, |
| 1967 | BasicBlock::iterator Pos) { |
| 1968 | if (DFS.isZeroShadow(V: V1)) |
| 1969 | return collapseToPrimitiveShadow(Shadow: V2, Pos); |
| 1970 | if (DFS.isZeroShadow(V: V2)) |
| 1971 | return collapseToPrimitiveShadow(Shadow: V1, Pos); |
| 1972 | if (V1 == V2) |
| 1973 | return collapseToPrimitiveShadow(Shadow: V1, Pos); |
| 1974 | |
| 1975 | auto V1Elems = ShadowElements.find(Val: V1); |
| 1976 | auto V2Elems = ShadowElements.find(Val: V2); |
| 1977 | if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) { |
| 1978 | if (llvm::includes(Range1&: V1Elems->second, Range2&: V2Elems->second)) { |
| 1979 | return collapseToPrimitiveShadow(Shadow: V1, Pos); |
| 1980 | } |
| 1981 | if (llvm::includes(Range1&: V2Elems->second, Range2&: V1Elems->second)) { |
| 1982 | return collapseToPrimitiveShadow(Shadow: V2, Pos); |
| 1983 | } |
| 1984 | } else if (V1Elems != ShadowElements.end()) { |
| 1985 | if (V1Elems->second.count(x: V2)) |
| 1986 | return collapseToPrimitiveShadow(Shadow: V1, Pos); |
| 1987 | } else if (V2Elems != ShadowElements.end()) { |
| 1988 | if (V2Elems->second.count(x: V1)) |
| 1989 | return collapseToPrimitiveShadow(Shadow: V2, Pos); |
| 1990 | } |
| 1991 | |
| 1992 | auto Key = std::make_pair(x&: V1, y&: V2); |
| 1993 | if (V1 > V2) |
| 1994 | std::swap(a&: Key.first, b&: Key.second); |
| 1995 | CachedShadow &CCS = CachedShadows[Key]; |
| 1996 | if (CCS.Block && DT.dominates(A: CCS.Block, B: Pos->getParent())) |
| 1997 | return CCS.Shadow; |
| 1998 | |
| 1999 | // Converts inputs shadows to shadows with primitive types. |
| 2000 | Value *PV1 = collapseToPrimitiveShadow(Shadow: V1, Pos); |
| 2001 | Value *PV2 = collapseToPrimitiveShadow(Shadow: V2, Pos); |
| 2002 | |
| 2003 | IRBuilder<> IRB(Pos->getParent(), Pos); |
| 2004 | CCS.Block = Pos->getParent(); |
| 2005 | CCS.Shadow = IRB.CreateOr(LHS: PV1, RHS: PV2); |
| 2006 | |
| 2007 | std::set<Value *> UnionElems; |
| 2008 | if (V1Elems != ShadowElements.end()) { |
| 2009 | UnionElems = V1Elems->second; |
| 2010 | } else { |
| 2011 | UnionElems.insert(x: V1); |
| 2012 | } |
| 2013 | if (V2Elems != ShadowElements.end()) { |
| 2014 | UnionElems.insert(first: V2Elems->second.begin(), last: V2Elems->second.end()); |
| 2015 | } else { |
| 2016 | UnionElems.insert(x: V2); |
| 2017 | } |
| 2018 | ShadowElements[CCS.Shadow] = std::move(UnionElems); |
| 2019 | |
| 2020 | return CCS.Shadow; |
| 2021 | } |
| 2022 | |
| 2023 | // A convenience function which folds the shadows of each of the operands |
| 2024 | // of the provided instruction Inst, inserting the IR before Inst. Returns |
| 2025 | // the computed union Value. |
| 2026 | Value *DFSanFunction::combineOperandShadows(Instruction *Inst) { |
| 2027 | if (Inst->getNumOperands() == 0) |
| 2028 | return DFS.getZeroShadow(V: Inst); |
| 2029 | |
| 2030 | Value *Shadow = getShadow(V: Inst->getOperand(i: 0)); |
| 2031 | for (unsigned I = 1, N = Inst->getNumOperands(); I < N; ++I) |
| 2032 | Shadow = combineShadows(V1: Shadow, V2: getShadow(V: Inst->getOperand(i: I)), |
| 2033 | Pos: Inst->getIterator()); |
| 2034 | |
| 2035 | return expandFromPrimitiveShadow(T: Inst->getType(), PrimitiveShadow: Shadow, |
| 2036 | Pos: Inst->getIterator()); |
| 2037 | } |
| 2038 | |
| 2039 | void DFSanVisitor::visitInstOperands(Instruction &I) { |
| 2040 | Value *CombinedShadow = DFSF.combineOperandShadows(Inst: &I); |
| 2041 | DFSF.setShadow(I: &I, Shadow: CombinedShadow); |
| 2042 | visitInstOperandOrigins(I); |
| 2043 | } |
| 2044 | |
| 2045 | Value *DFSanFunction::combineOrigins(const std::vector<Value *> &Shadows, |
| 2046 | const std::vector<Value *> &Origins, |
| 2047 | BasicBlock::iterator Pos, |
| 2048 | ConstantInt *Zero) { |
| 2049 | assert(Shadows.size() == Origins.size()); |
| 2050 | size_t Size = Origins.size(); |
| 2051 | if (Size == 0) |
| 2052 | return DFS.ZeroOrigin; |
| 2053 | Value *Origin = nullptr; |
| 2054 | if (!Zero) |
| 2055 | Zero = DFS.ZeroPrimitiveShadow; |
| 2056 | for (size_t I = 0; I != Size; ++I) { |
| 2057 | Value *OpOrigin = Origins[I]; |
| 2058 | Constant *ConstOpOrigin = dyn_cast<Constant>(Val: OpOrigin); |
| 2059 | if (ConstOpOrigin && ConstOpOrigin->isNullValue()) |
| 2060 | continue; |
| 2061 | if (!Origin) { |
| 2062 | Origin = OpOrigin; |
| 2063 | continue; |
| 2064 | } |
| 2065 | Value *OpShadow = Shadows[I]; |
| 2066 | Value *PrimitiveShadow = collapseToPrimitiveShadow(Shadow: OpShadow, Pos); |
| 2067 | IRBuilder<> IRB(Pos->getParent(), Pos); |
| 2068 | Value *Cond = IRB.CreateICmpNE(LHS: PrimitiveShadow, RHS: Zero); |
| 2069 | Origin = IRB.CreateSelect(C: Cond, True: OpOrigin, False: Origin); |
| 2070 | } |
| 2071 | return Origin ? Origin : DFS.ZeroOrigin; |
| 2072 | } |
| 2073 | |
| 2074 | Value *DFSanFunction::combineOperandOrigins(Instruction *Inst) { |
| 2075 | size_t Size = Inst->getNumOperands(); |
| 2076 | std::vector<Value *> Shadows(Size); |
| 2077 | std::vector<Value *> Origins(Size); |
| 2078 | for (unsigned I = 0; I != Size; ++I) { |
| 2079 | Shadows[I] = getShadow(V: Inst->getOperand(i: I)); |
| 2080 | Origins[I] = getOrigin(V: Inst->getOperand(i: I)); |
| 2081 | } |
| 2082 | return combineOrigins(Shadows, Origins, Pos: Inst->getIterator()); |
| 2083 | } |
| 2084 | |
| 2085 | void DFSanVisitor::visitInstOperandOrigins(Instruction &I) { |
| 2086 | if (!DFSF.DFS.shouldTrackOrigins()) |
| 2087 | return; |
| 2088 | Value *CombinedOrigin = DFSF.combineOperandOrigins(Inst: &I); |
| 2089 | DFSF.setOrigin(I: &I, Origin: CombinedOrigin); |
| 2090 | } |
| 2091 | |
| 2092 | Align DFSanFunction::getShadowAlign(Align InstAlignment) { |
| 2093 | const Align Alignment = ClPreserveAlignment ? InstAlignment : Align(1); |
| 2094 | return Align(Alignment.value() * DFS.ShadowWidthBytes); |
| 2095 | } |
| 2096 | |
| 2097 | Align DFSanFunction::getOriginAlign(Align InstAlignment) { |
| 2098 | const Align Alignment = llvm::assumeAligned(Value: InstAlignment.value()); |
| 2099 | return Align(std::max(a: MinOriginAlignment, b: Alignment)); |
| 2100 | } |
| 2101 | |
| 2102 | bool DFSanFunction::isLookupTableConstant(Value *P) { |
| 2103 | if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Val: P->stripPointerCasts())) |
| 2104 | if (GV->isConstant() && GV->hasName()) |
| 2105 | return DFS.CombineTaintLookupTableNames.count(Key: GV->getName()); |
| 2106 | |
| 2107 | return false; |
| 2108 | } |
| 2109 | |
| 2110 | bool DFSanFunction::useCallbackLoadLabelAndOrigin(uint64_t Size, |
| 2111 | Align InstAlignment) { |
| 2112 | // When enabling tracking load instructions, we always use |
| 2113 | // __dfsan_load_label_and_origin to reduce code size. |
| 2114 | if (ClTrackOrigins == 2) |
| 2115 | return true; |
| 2116 | |
| 2117 | assert(Size != 0); |
| 2118 | // * if Size == 1, it is sufficient to load its origin aligned at 4. |
| 2119 | // * if Size == 2, we assume most cases Addr % 2 == 0, so it is sufficient to |
| 2120 | // load its origin aligned at 4. If not, although origins may be lost, it |
| 2121 | // should not happen very often. |
| 2122 | // * if align >= 4, Addr must be aligned to 4, otherwise it is UB. When |
| 2123 | // Size % 4 == 0, it is more efficient to load origins without callbacks. |
| 2124 | // * Otherwise we use __dfsan_load_label_and_origin. |
| 2125 | // This should ensure that common cases run efficiently. |
| 2126 | if (Size <= 2) |
| 2127 | return false; |
| 2128 | |
| 2129 | const Align Alignment = llvm::assumeAligned(Value: InstAlignment.value()); |
| 2130 | return Alignment < MinOriginAlignment || !DFS.hasLoadSizeForFastPath(Size); |
| 2131 | } |
| 2132 | |
| 2133 | Value *DataFlowSanitizer::loadNextOrigin(BasicBlock::iterator Pos, |
| 2134 | Align OriginAlign, |
| 2135 | Value **OriginAddr) { |
| 2136 | IRBuilder<> IRB(Pos->getParent(), Pos); |
| 2137 | *OriginAddr = |
| 2138 | IRB.CreateGEP(Ty: OriginTy, Ptr: *OriginAddr, IdxList: ConstantInt::get(Ty: IntptrTy, V: 1)); |
| 2139 | return IRB.CreateAlignedLoad(Ty: OriginTy, Ptr: *OriginAddr, Align: OriginAlign); |
| 2140 | } |
| 2141 | |
| 2142 | std::pair<Value *, Value *> DFSanFunction::loadShadowFast( |
| 2143 | Value *ShadowAddr, Value *OriginAddr, uint64_t Size, Align ShadowAlign, |
| 2144 | Align OriginAlign, Value *FirstOrigin, BasicBlock::iterator Pos) { |
| 2145 | const bool ShouldTrackOrigins = DFS.shouldTrackOrigins(); |
| 2146 | const uint64_t ShadowSize = Size * DFS.ShadowWidthBytes; |
| 2147 | |
| 2148 | assert(Size >= 4 && "Not large enough load size for fast path!" ); |
| 2149 | |
| 2150 | // Used for origin tracking. |
| 2151 | std::vector<Value *> Shadows; |
| 2152 | std::vector<Value *> Origins; |
| 2153 | |
| 2154 | // Load instructions in LLVM can have arbitrary byte sizes (e.g., 3, 12, 20) |
| 2155 | // but this function is only used in a subset of cases that make it possible |
| 2156 | // to optimize the instrumentation. |
| 2157 | // |
| 2158 | // Specifically, when the shadow size in bytes (i.e., loaded bytes x shadow |
| 2159 | // per byte) is either: |
| 2160 | // - a multiple of 8 (common) |
| 2161 | // - equal to 4 (only for load32) |
| 2162 | // |
| 2163 | // For the second case, we can fit the wide shadow in a 32-bit integer. In all |
| 2164 | // other cases, we use a 64-bit integer to hold the wide shadow. |
| 2165 | Type *WideShadowTy = |
| 2166 | ShadowSize == 4 ? Type::getInt32Ty(C&: *DFS.Ctx) : Type::getInt64Ty(C&: *DFS.Ctx); |
| 2167 | |
| 2168 | IRBuilder<> IRB(Pos->getParent(), Pos); |
| 2169 | Value *CombinedWideShadow = |
| 2170 | IRB.CreateAlignedLoad(Ty: WideShadowTy, Ptr: ShadowAddr, Align: ShadowAlign); |
| 2171 | |
| 2172 | unsigned WideShadowBitWidth = WideShadowTy->getIntegerBitWidth(); |
| 2173 | const uint64_t BytesPerWideShadow = WideShadowBitWidth / DFS.ShadowWidthBits; |
| 2174 | |
| 2175 | auto AppendWideShadowAndOrigin = [&](Value *WideShadow, Value *Origin) { |
| 2176 | if (BytesPerWideShadow > 4) { |
| 2177 | assert(BytesPerWideShadow == 8); |
| 2178 | // The wide shadow relates to two origin pointers: one for the first four |
| 2179 | // application bytes, and one for the latest four. We use a left shift to |
| 2180 | // get just the shadow bytes that correspond to the first origin pointer, |
| 2181 | // and then the entire shadow for the second origin pointer (which will be |
| 2182 | // chosen by combineOrigins() iff the least-significant half of the wide |
| 2183 | // shadow was empty but the other half was not). |
| 2184 | Value *WideShadowLo = IRB.CreateShl( |
| 2185 | LHS: WideShadow, RHS: ConstantInt::get(Ty: WideShadowTy, V: WideShadowBitWidth / 2)); |
| 2186 | Shadows.push_back(x: WideShadow); |
| 2187 | Origins.push_back(x: DFS.loadNextOrigin(Pos, OriginAlign, OriginAddr: &OriginAddr)); |
| 2188 | |
| 2189 | Shadows.push_back(x: WideShadowLo); |
| 2190 | Origins.push_back(x: Origin); |
| 2191 | } else { |
| 2192 | Shadows.push_back(x: WideShadow); |
| 2193 | Origins.push_back(x: Origin); |
| 2194 | } |
| 2195 | }; |
| 2196 | |
| 2197 | if (ShouldTrackOrigins) |
| 2198 | AppendWideShadowAndOrigin(CombinedWideShadow, FirstOrigin); |
| 2199 | |
| 2200 | // First OR all the WideShadows (i.e., 64bit or 32bit shadow chunks) linearly; |
| 2201 | // then OR individual shadows within the combined WideShadow by binary ORing. |
| 2202 | // This is fewer instructions than ORing shadows individually, since it |
| 2203 | // needs logN shift/or instructions (N being the bytes of the combined wide |
| 2204 | // shadow). |
| 2205 | for (uint64_t ByteOfs = BytesPerWideShadow; ByteOfs < Size; |
| 2206 | ByteOfs += BytesPerWideShadow) { |
| 2207 | ShadowAddr = IRB.CreateGEP(Ty: WideShadowTy, Ptr: ShadowAddr, |
| 2208 | IdxList: ConstantInt::get(Ty: DFS.IntptrTy, V: 1)); |
| 2209 | Value *NextWideShadow = |
| 2210 | IRB.CreateAlignedLoad(Ty: WideShadowTy, Ptr: ShadowAddr, Align: ShadowAlign); |
| 2211 | CombinedWideShadow = IRB.CreateOr(LHS: CombinedWideShadow, RHS: NextWideShadow); |
| 2212 | if (ShouldTrackOrigins) { |
| 2213 | Value *NextOrigin = DFS.loadNextOrigin(Pos, OriginAlign, OriginAddr: &OriginAddr); |
| 2214 | AppendWideShadowAndOrigin(NextWideShadow, NextOrigin); |
| 2215 | } |
| 2216 | } |
| 2217 | for (unsigned Width = WideShadowBitWidth / 2; Width >= DFS.ShadowWidthBits; |
| 2218 | Width >>= 1) { |
| 2219 | Value *ShrShadow = IRB.CreateLShr(LHS: CombinedWideShadow, RHS: Width); |
| 2220 | CombinedWideShadow = IRB.CreateOr(LHS: CombinedWideShadow, RHS: ShrShadow); |
| 2221 | } |
| 2222 | return {IRB.CreateTrunc(V: CombinedWideShadow, DestTy: DFS.PrimitiveShadowTy), |
| 2223 | ShouldTrackOrigins |
| 2224 | ? combineOrigins(Shadows, Origins, Pos, |
| 2225 | Zero: ConstantInt::getSigned(Ty: IRB.getInt64Ty(), V: 0)) |
| 2226 | : DFS.ZeroOrigin}; |
| 2227 | } |
| 2228 | |
| 2229 | std::pair<Value *, Value *> DFSanFunction::loadShadowOriginSansLoadTracking( |
| 2230 | Value *Addr, uint64_t Size, Align InstAlignment, BasicBlock::iterator Pos) { |
| 2231 | const bool ShouldTrackOrigins = DFS.shouldTrackOrigins(); |
| 2232 | |
| 2233 | // Non-escaped loads. |
| 2234 | if (AllocaInst *AI = dyn_cast<AllocaInst>(Val: Addr)) { |
| 2235 | const auto SI = AllocaShadowMap.find(Val: AI); |
| 2236 | if (SI != AllocaShadowMap.end()) { |
| 2237 | IRBuilder<> IRB(Pos->getParent(), Pos); |
| 2238 | Value *ShadowLI = IRB.CreateLoad(Ty: DFS.PrimitiveShadowTy, Ptr: SI->second); |
| 2239 | const auto OI = AllocaOriginMap.find(Val: AI); |
| 2240 | assert(!ShouldTrackOrigins || OI != AllocaOriginMap.end()); |
| 2241 | return {ShadowLI, ShouldTrackOrigins |
| 2242 | ? IRB.CreateLoad(Ty: DFS.OriginTy, Ptr: OI->second) |
| 2243 | : nullptr}; |
| 2244 | } |
| 2245 | } |
| 2246 | |
| 2247 | // Load from constant addresses. |
| 2248 | SmallVector<const Value *, 2> Objs; |
| 2249 | getUnderlyingObjects(V: Addr, Objects&: Objs); |
| 2250 | bool AllConstants = true; |
| 2251 | for (const Value *Obj : Objs) { |
| 2252 | if (isa<Function>(Val: Obj) || isa<BlockAddress>(Val: Obj)) |
| 2253 | continue; |
| 2254 | if (isa<GlobalVariable>(Val: Obj) && cast<GlobalVariable>(Val: Obj)->isConstant()) |
| 2255 | continue; |
| 2256 | |
| 2257 | AllConstants = false; |
| 2258 | break; |
| 2259 | } |
| 2260 | if (AllConstants) |
| 2261 | return {DFS.ZeroPrimitiveShadow, |
| 2262 | ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr}; |
| 2263 | |
| 2264 | if (Size == 0) |
| 2265 | return {DFS.ZeroPrimitiveShadow, |
| 2266 | ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr}; |
| 2267 | |
| 2268 | // Use callback to load if this is not an optimizable case for origin |
| 2269 | // tracking. |
| 2270 | if (ShouldTrackOrigins && |
| 2271 | useCallbackLoadLabelAndOrigin(Size, InstAlignment)) { |
| 2272 | IRBuilder<> IRB(Pos->getParent(), Pos); |
| 2273 | CallInst *Call = |
| 2274 | IRB.CreateCall(Callee: DFS.DFSanLoadLabelAndOriginFn, |
| 2275 | Args: {Addr, ConstantInt::get(Ty: DFS.IntptrTy, V: Size)}); |
| 2276 | Call->addRetAttr(Kind: Attribute::ZExt); |
| 2277 | return {IRB.CreateTrunc(V: IRB.CreateLShr(LHS: Call, RHS: DFS.OriginWidthBits), |
| 2278 | DestTy: DFS.PrimitiveShadowTy), |
| 2279 | IRB.CreateTrunc(V: Call, DestTy: DFS.OriginTy)}; |
| 2280 | } |
| 2281 | |
| 2282 | // Other cases that support loading shadows or origins in a fast way. |
| 2283 | Value *ShadowAddr, *OriginAddr; |
| 2284 | std::tie(args&: ShadowAddr, args&: OriginAddr) = |
| 2285 | DFS.getShadowOriginAddress(Addr, InstAlignment, Pos); |
| 2286 | |
| 2287 | const Align ShadowAlign = getShadowAlign(InstAlignment); |
| 2288 | const Align OriginAlign = getOriginAlign(InstAlignment); |
| 2289 | Value *Origin = nullptr; |
| 2290 | if (ShouldTrackOrigins) { |
| 2291 | IRBuilder<> IRB(Pos->getParent(), Pos); |
| 2292 | Origin = IRB.CreateAlignedLoad(Ty: DFS.OriginTy, Ptr: OriginAddr, Align: OriginAlign); |
| 2293 | } |
| 2294 | |
| 2295 | // When the byte size is small enough, we can load the shadow directly with |
| 2296 | // just a few instructions. |
| 2297 | switch (Size) { |
| 2298 | case 1: { |
| 2299 | LoadInst *LI = new LoadInst(DFS.PrimitiveShadowTy, ShadowAddr, "" , Pos); |
| 2300 | LI->setAlignment(ShadowAlign); |
| 2301 | return {LI, Origin}; |
| 2302 | } |
| 2303 | case 2: { |
| 2304 | IRBuilder<> IRB(Pos->getParent(), Pos); |
| 2305 | Value *ShadowAddr1 = IRB.CreateGEP(Ty: DFS.PrimitiveShadowTy, Ptr: ShadowAddr, |
| 2306 | IdxList: ConstantInt::get(Ty: DFS.IntptrTy, V: 1)); |
| 2307 | Value *Load = |
| 2308 | IRB.CreateAlignedLoad(Ty: DFS.PrimitiveShadowTy, Ptr: ShadowAddr, Align: ShadowAlign); |
| 2309 | Value *Load1 = |
| 2310 | IRB.CreateAlignedLoad(Ty: DFS.PrimitiveShadowTy, Ptr: ShadowAddr1, Align: ShadowAlign); |
| 2311 | return {combineShadows(V1: Load, V2: Load1, Pos), Origin}; |
| 2312 | } |
| 2313 | } |
| 2314 | bool HasSizeForFastPath = DFS.hasLoadSizeForFastPath(Size); |
| 2315 | |
| 2316 | if (HasSizeForFastPath) |
| 2317 | return loadShadowFast(ShadowAddr, OriginAddr, Size, ShadowAlign, |
| 2318 | OriginAlign, FirstOrigin: Origin, Pos); |
| 2319 | |
| 2320 | IRBuilder<> IRB(Pos->getParent(), Pos); |
| 2321 | CallInst *FallbackCall = IRB.CreateCall( |
| 2322 | Callee: DFS.DFSanUnionLoadFn, Args: {ShadowAddr, ConstantInt::get(Ty: DFS.IntptrTy, V: Size)}); |
| 2323 | FallbackCall->addRetAttr(Kind: Attribute::ZExt); |
| 2324 | return {FallbackCall, Origin}; |
| 2325 | } |
| 2326 | |
| 2327 | std::pair<Value *, Value *> |
| 2328 | DFSanFunction::loadShadowOrigin(Value *Addr, uint64_t Size, Align InstAlignment, |
| 2329 | BasicBlock::iterator Pos) { |
| 2330 | Value *PrimitiveShadow, *Origin; |
| 2331 | std::tie(args&: PrimitiveShadow, args&: Origin) = |
| 2332 | loadShadowOriginSansLoadTracking(Addr, Size, InstAlignment, Pos); |
| 2333 | if (DFS.shouldTrackOrigins()) { |
| 2334 | if (ClTrackOrigins == 2) { |
| 2335 | IRBuilder<> IRB(Pos->getParent(), Pos); |
| 2336 | auto *ConstantShadow = dyn_cast<Constant>(Val: PrimitiveShadow); |
| 2337 | if (!ConstantShadow || !ConstantShadow->isZeroValue()) |
| 2338 | Origin = updateOriginIfTainted(Shadow: PrimitiveShadow, Origin, IRB); |
| 2339 | } |
| 2340 | } |
| 2341 | return {PrimitiveShadow, Origin}; |
| 2342 | } |
| 2343 | |
| 2344 | static AtomicOrdering addAcquireOrdering(AtomicOrdering AO) { |
| 2345 | switch (AO) { |
| 2346 | case AtomicOrdering::NotAtomic: |
| 2347 | return AtomicOrdering::NotAtomic; |
| 2348 | case AtomicOrdering::Unordered: |
| 2349 | case AtomicOrdering::Monotonic: |
| 2350 | case AtomicOrdering::Acquire: |
| 2351 | return AtomicOrdering::Acquire; |
| 2352 | case AtomicOrdering::Release: |
| 2353 | case AtomicOrdering::AcquireRelease: |
| 2354 | return AtomicOrdering::AcquireRelease; |
| 2355 | case AtomicOrdering::SequentiallyConsistent: |
| 2356 | return AtomicOrdering::SequentiallyConsistent; |
| 2357 | } |
| 2358 | llvm_unreachable("Unknown ordering" ); |
| 2359 | } |
| 2360 | |
| 2361 | Value *StripPointerGEPsAndCasts(Value *V) { |
| 2362 | if (!V->getType()->isPointerTy()) |
| 2363 | return V; |
| 2364 | |
| 2365 | // DFSan pass should be running on valid IR, but we'll |
| 2366 | // keep a seen set to ensure there are no issues. |
| 2367 | SmallPtrSet<const Value *, 4> Visited; |
| 2368 | Visited.insert(Ptr: V); |
| 2369 | do { |
| 2370 | if (auto *GEP = dyn_cast<GEPOperator>(Val: V)) { |
| 2371 | V = GEP->getPointerOperand(); |
| 2372 | } else if (Operator::getOpcode(V) == Instruction::BitCast) { |
| 2373 | V = cast<Operator>(Val: V)->getOperand(i: 0); |
| 2374 | if (!V->getType()->isPointerTy()) |
| 2375 | return V; |
| 2376 | } else if (isa<GlobalAlias>(Val: V)) { |
| 2377 | V = cast<GlobalAlias>(Val: V)->getAliasee(); |
| 2378 | } |
| 2379 | } while (Visited.insert(Ptr: V).second); |
| 2380 | |
| 2381 | return V; |
| 2382 | } |
| 2383 | |
| 2384 | void DFSanVisitor::visitLoadInst(LoadInst &LI) { |
| 2385 | auto &DL = LI.getDataLayout(); |
| 2386 | uint64_t Size = DL.getTypeStoreSize(Ty: LI.getType()); |
| 2387 | if (Size == 0) { |
| 2388 | DFSF.setShadow(I: &LI, Shadow: DFSF.DFS.getZeroShadow(V: &LI)); |
| 2389 | DFSF.setOrigin(I: &LI, Origin: DFSF.DFS.ZeroOrigin); |
| 2390 | return; |
| 2391 | } |
| 2392 | |
| 2393 | // When an application load is atomic, increase atomic ordering between |
| 2394 | // atomic application loads and stores to ensure happen-before order; load |
| 2395 | // shadow data after application data; store zero shadow data before |
| 2396 | // application data. This ensure shadow loads return either labels of the |
| 2397 | // initial application data or zeros. |
| 2398 | if (LI.isAtomic()) |
| 2399 | LI.setOrdering(addAcquireOrdering(AO: LI.getOrdering())); |
| 2400 | |
| 2401 | BasicBlock::iterator AfterLi = std::next(x: LI.getIterator()); |
| 2402 | BasicBlock::iterator Pos = LI.getIterator(); |
| 2403 | if (LI.isAtomic()) |
| 2404 | Pos = std::next(x: Pos); |
| 2405 | |
| 2406 | std::vector<Value *> Shadows; |
| 2407 | std::vector<Value *> Origins; |
| 2408 | Value *PrimitiveShadow, *Origin; |
| 2409 | std::tie(args&: PrimitiveShadow, args&: Origin) = |
| 2410 | DFSF.loadShadowOrigin(Addr: LI.getPointerOperand(), Size, InstAlignment: LI.getAlign(), Pos); |
| 2411 | const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); |
| 2412 | if (ShouldTrackOrigins) { |
| 2413 | Shadows.push_back(x: PrimitiveShadow); |
| 2414 | Origins.push_back(x: Origin); |
| 2415 | } |
| 2416 | if (ClCombinePointerLabelsOnLoad || |
| 2417 | DFSF.isLookupTableConstant( |
| 2418 | P: StripPointerGEPsAndCasts(V: LI.getPointerOperand()))) { |
| 2419 | Value *PtrShadow = DFSF.getShadow(V: LI.getPointerOperand()); |
| 2420 | PrimitiveShadow = DFSF.combineShadows(V1: PrimitiveShadow, V2: PtrShadow, Pos); |
| 2421 | if (ShouldTrackOrigins) { |
| 2422 | Shadows.push_back(x: PtrShadow); |
| 2423 | Origins.push_back(x: DFSF.getOrigin(V: LI.getPointerOperand())); |
| 2424 | } |
| 2425 | } |
| 2426 | if (!DFSF.DFS.isZeroShadow(V: PrimitiveShadow)) |
| 2427 | DFSF.NonZeroChecks.push_back(x: PrimitiveShadow); |
| 2428 | |
| 2429 | Value *Shadow = |
| 2430 | DFSF.expandFromPrimitiveShadow(T: LI.getType(), PrimitiveShadow, Pos); |
| 2431 | DFSF.setShadow(I: &LI, Shadow); |
| 2432 | |
| 2433 | if (ShouldTrackOrigins) { |
| 2434 | DFSF.setOrigin(I: &LI, Origin: DFSF.combineOrigins(Shadows, Origins, Pos)); |
| 2435 | } |
| 2436 | |
| 2437 | if (ClEventCallbacks) { |
| 2438 | IRBuilder<> IRB(Pos->getParent(), Pos); |
| 2439 | Value *Addr = LI.getPointerOperand(); |
| 2440 | CallInst *CI = |
| 2441 | IRB.CreateCall(Callee: DFSF.DFS.DFSanLoadCallbackFn, Args: {PrimitiveShadow, Addr}); |
| 2442 | CI->addParamAttr(ArgNo: 0, Kind: Attribute::ZExt); |
| 2443 | } |
| 2444 | |
| 2445 | IRBuilder<> IRB(AfterLi->getParent(), AfterLi); |
| 2446 | DFSF.addReachesFunctionCallbacksIfEnabled(IRB, I&: LI, Data: &LI); |
| 2447 | } |
| 2448 | |
| 2449 | Value *DFSanFunction::updateOriginIfTainted(Value *Shadow, Value *Origin, |
| 2450 | IRBuilder<> &IRB) { |
| 2451 | assert(DFS.shouldTrackOrigins()); |
| 2452 | return IRB.CreateCall(Callee: DFS.DFSanChainOriginIfTaintedFn, Args: {Shadow, Origin}); |
| 2453 | } |
| 2454 | |
| 2455 | Value *DFSanFunction::updateOrigin(Value *V, IRBuilder<> &IRB) { |
| 2456 | if (!DFS.shouldTrackOrigins()) |
| 2457 | return V; |
| 2458 | return IRB.CreateCall(Callee: DFS.DFSanChainOriginFn, Args: V); |
| 2459 | } |
| 2460 | |
| 2461 | Value *DFSanFunction::originToIntptr(IRBuilder<> &IRB, Value *Origin) { |
| 2462 | const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes; |
| 2463 | const DataLayout &DL = F->getDataLayout(); |
| 2464 | unsigned IntptrSize = DL.getTypeStoreSize(Ty: DFS.IntptrTy); |
| 2465 | if (IntptrSize == OriginSize) |
| 2466 | return Origin; |
| 2467 | assert(IntptrSize == OriginSize * 2); |
| 2468 | Origin = IRB.CreateIntCast(V: Origin, DestTy: DFS.IntptrTy, /* isSigned */ false); |
| 2469 | return IRB.CreateOr(LHS: Origin, RHS: IRB.CreateShl(LHS: Origin, RHS: OriginSize * 8)); |
| 2470 | } |
| 2471 | |
| 2472 | void DFSanFunction::paintOrigin(IRBuilder<> &IRB, Value *Origin, |
| 2473 | Value *StoreOriginAddr, |
| 2474 | uint64_t StoreOriginSize, Align Alignment) { |
| 2475 | const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes; |
| 2476 | const DataLayout &DL = F->getDataLayout(); |
| 2477 | const Align IntptrAlignment = DL.getABITypeAlign(Ty: DFS.IntptrTy); |
| 2478 | unsigned IntptrSize = DL.getTypeStoreSize(Ty: DFS.IntptrTy); |
| 2479 | assert(IntptrAlignment >= MinOriginAlignment); |
| 2480 | assert(IntptrSize >= OriginSize); |
| 2481 | |
| 2482 | unsigned Ofs = 0; |
| 2483 | Align CurrentAlignment = Alignment; |
| 2484 | if (Alignment >= IntptrAlignment && IntptrSize > OriginSize) { |
| 2485 | Value *IntptrOrigin = originToIntptr(IRB, Origin); |
| 2486 | Value *IntptrStoreOriginPtr = |
| 2487 | IRB.CreatePointerCast(V: StoreOriginAddr, DestTy: PointerType::get(C&: *DFS.Ctx, AddressSpace: 0)); |
| 2488 | for (unsigned I = 0; I < StoreOriginSize / IntptrSize; ++I) { |
| 2489 | Value *Ptr = |
| 2490 | I ? IRB.CreateConstGEP1_32(Ty: DFS.IntptrTy, Ptr: IntptrStoreOriginPtr, Idx0: I) |
| 2491 | : IntptrStoreOriginPtr; |
| 2492 | IRB.CreateAlignedStore(Val: IntptrOrigin, Ptr, Align: CurrentAlignment); |
| 2493 | Ofs += IntptrSize / OriginSize; |
| 2494 | CurrentAlignment = IntptrAlignment; |
| 2495 | } |
| 2496 | } |
| 2497 | |
| 2498 | for (unsigned I = Ofs; I < (StoreOriginSize + OriginSize - 1) / OriginSize; |
| 2499 | ++I) { |
| 2500 | Value *GEP = I ? IRB.CreateConstGEP1_32(Ty: DFS.OriginTy, Ptr: StoreOriginAddr, Idx0: I) |
| 2501 | : StoreOriginAddr; |
| 2502 | IRB.CreateAlignedStore(Val: Origin, Ptr: GEP, Align: CurrentAlignment); |
| 2503 | CurrentAlignment = MinOriginAlignment; |
| 2504 | } |
| 2505 | } |
| 2506 | |
| 2507 | Value *DFSanFunction::convertToBool(Value *V, IRBuilder<> &IRB, |
| 2508 | const Twine &Name) { |
| 2509 | Type *VTy = V->getType(); |
| 2510 | assert(VTy->isIntegerTy()); |
| 2511 | if (VTy->getIntegerBitWidth() == 1) |
| 2512 | // Just converting a bool to a bool, so do nothing. |
| 2513 | return V; |
| 2514 | return IRB.CreateICmpNE(LHS: V, RHS: ConstantInt::get(Ty: VTy, V: 0), Name); |
| 2515 | } |
| 2516 | |
| 2517 | void DFSanFunction::storeOrigin(BasicBlock::iterator Pos, Value *Addr, |
| 2518 | uint64_t Size, Value *Shadow, Value *Origin, |
| 2519 | Value *StoreOriginAddr, Align InstAlignment) { |
| 2520 | // Do not write origins for zero shadows because we do not trace origins for |
| 2521 | // untainted sinks. |
| 2522 | const Align OriginAlignment = getOriginAlign(InstAlignment); |
| 2523 | Value *CollapsedShadow = collapseToPrimitiveShadow(Shadow, Pos); |
| 2524 | IRBuilder<> IRB(Pos->getParent(), Pos); |
| 2525 | if (auto *ConstantShadow = dyn_cast<Constant>(Val: CollapsedShadow)) { |
| 2526 | if (!ConstantShadow->isZeroValue()) |
| 2527 | paintOrigin(IRB, Origin: updateOrigin(V: Origin, IRB), StoreOriginAddr, StoreOriginSize: Size, |
| 2528 | Alignment: OriginAlignment); |
| 2529 | return; |
| 2530 | } |
| 2531 | |
| 2532 | if (shouldInstrumentWithCall()) { |
| 2533 | IRB.CreateCall( |
| 2534 | Callee: DFS.DFSanMaybeStoreOriginFn, |
| 2535 | Args: {CollapsedShadow, Addr, ConstantInt::get(Ty: DFS.IntptrTy, V: Size), Origin}); |
| 2536 | } else { |
| 2537 | Value *Cmp = convertToBool(V: CollapsedShadow, IRB, Name: "_dfscmp" ); |
| 2538 | DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); |
| 2539 | Instruction *CheckTerm = SplitBlockAndInsertIfThen( |
| 2540 | Cond: Cmp, SplitBefore: &*IRB.GetInsertPoint(), Unreachable: false, BranchWeights: DFS.OriginStoreWeights, DTU: &DTU); |
| 2541 | IRBuilder<> IRBNew(CheckTerm); |
| 2542 | paintOrigin(IRB&: IRBNew, Origin: updateOrigin(V: Origin, IRB&: IRBNew), StoreOriginAddr, StoreOriginSize: Size, |
| 2543 | Alignment: OriginAlignment); |
| 2544 | ++NumOriginStores; |
| 2545 | } |
| 2546 | } |
| 2547 | |
| 2548 | void DFSanFunction::storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, |
| 2549 | Align ShadowAlign, |
| 2550 | BasicBlock::iterator Pos) { |
| 2551 | IRBuilder<> IRB(Pos->getParent(), Pos); |
| 2552 | IntegerType *ShadowTy = |
| 2553 | IntegerType::get(C&: *DFS.Ctx, NumBits: Size * DFS.ShadowWidthBits); |
| 2554 | Value *ExtZeroShadow = ConstantInt::get(Ty: ShadowTy, V: 0); |
| 2555 | Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); |
| 2556 | IRB.CreateAlignedStore(Val: ExtZeroShadow, Ptr: ShadowAddr, Align: ShadowAlign); |
| 2557 | // Do not write origins for 0 shadows because we do not trace origins for |
| 2558 | // untainted sinks. |
| 2559 | } |
| 2560 | |
| 2561 | void DFSanFunction::storePrimitiveShadowOrigin(Value *Addr, uint64_t Size, |
| 2562 | Align InstAlignment, |
| 2563 | Value *PrimitiveShadow, |
| 2564 | Value *Origin, |
| 2565 | BasicBlock::iterator Pos) { |
| 2566 | const bool ShouldTrackOrigins = DFS.shouldTrackOrigins() && Origin; |
| 2567 | |
| 2568 | if (AllocaInst *AI = dyn_cast<AllocaInst>(Val: Addr)) { |
| 2569 | const auto SI = AllocaShadowMap.find(Val: AI); |
| 2570 | if (SI != AllocaShadowMap.end()) { |
| 2571 | IRBuilder<> IRB(Pos->getParent(), Pos); |
| 2572 | IRB.CreateStore(Val: PrimitiveShadow, Ptr: SI->second); |
| 2573 | |
| 2574 | // Do not write origins for 0 shadows because we do not trace origins for |
| 2575 | // untainted sinks. |
| 2576 | if (ShouldTrackOrigins && !DFS.isZeroShadow(V: PrimitiveShadow)) { |
| 2577 | const auto OI = AllocaOriginMap.find(Val: AI); |
| 2578 | assert(OI != AllocaOriginMap.end() && Origin); |
| 2579 | IRB.CreateStore(Val: Origin, Ptr: OI->second); |
| 2580 | } |
| 2581 | return; |
| 2582 | } |
| 2583 | } |
| 2584 | |
| 2585 | const Align ShadowAlign = getShadowAlign(InstAlignment); |
| 2586 | if (DFS.isZeroShadow(V: PrimitiveShadow)) { |
| 2587 | storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, Pos); |
| 2588 | return; |
| 2589 | } |
| 2590 | |
| 2591 | IRBuilder<> IRB(Pos->getParent(), Pos); |
| 2592 | Value *ShadowAddr, *OriginAddr; |
| 2593 | std::tie(args&: ShadowAddr, args&: OriginAddr) = |
| 2594 | DFS.getShadowOriginAddress(Addr, InstAlignment, Pos); |
| 2595 | |
| 2596 | const unsigned ShadowVecSize = 8; |
| 2597 | assert(ShadowVecSize * DFS.ShadowWidthBits <= 128 && |
| 2598 | "Shadow vector is too large!" ); |
| 2599 | |
| 2600 | uint64_t Offset = 0; |
| 2601 | uint64_t LeftSize = Size; |
| 2602 | if (LeftSize >= ShadowVecSize) { |
| 2603 | auto *ShadowVecTy = |
| 2604 | FixedVectorType::get(ElementType: DFS.PrimitiveShadowTy, NumElts: ShadowVecSize); |
| 2605 | Value *ShadowVec = PoisonValue::get(T: ShadowVecTy); |
| 2606 | for (unsigned I = 0; I != ShadowVecSize; ++I) { |
| 2607 | ShadowVec = IRB.CreateInsertElement( |
| 2608 | Vec: ShadowVec, NewElt: PrimitiveShadow, |
| 2609 | Idx: ConstantInt::get(Ty: Type::getInt32Ty(C&: *DFS.Ctx), V: I)); |
| 2610 | } |
| 2611 | do { |
| 2612 | Value *CurShadowVecAddr = |
| 2613 | IRB.CreateConstGEP1_32(Ty: ShadowVecTy, Ptr: ShadowAddr, Idx0: Offset); |
| 2614 | IRB.CreateAlignedStore(Val: ShadowVec, Ptr: CurShadowVecAddr, Align: ShadowAlign); |
| 2615 | LeftSize -= ShadowVecSize; |
| 2616 | ++Offset; |
| 2617 | } while (LeftSize >= ShadowVecSize); |
| 2618 | Offset *= ShadowVecSize; |
| 2619 | } |
| 2620 | while (LeftSize > 0) { |
| 2621 | Value *CurShadowAddr = |
| 2622 | IRB.CreateConstGEP1_32(Ty: DFS.PrimitiveShadowTy, Ptr: ShadowAddr, Idx0: Offset); |
| 2623 | IRB.CreateAlignedStore(Val: PrimitiveShadow, Ptr: CurShadowAddr, Align: ShadowAlign); |
| 2624 | --LeftSize; |
| 2625 | ++Offset; |
| 2626 | } |
| 2627 | |
| 2628 | if (ShouldTrackOrigins) { |
| 2629 | storeOrigin(Pos, Addr, Size, Shadow: PrimitiveShadow, Origin, StoreOriginAddr: OriginAddr, |
| 2630 | InstAlignment); |
| 2631 | } |
| 2632 | } |
| 2633 | |
| 2634 | static AtomicOrdering addReleaseOrdering(AtomicOrdering AO) { |
| 2635 | switch (AO) { |
| 2636 | case AtomicOrdering::NotAtomic: |
| 2637 | return AtomicOrdering::NotAtomic; |
| 2638 | case AtomicOrdering::Unordered: |
| 2639 | case AtomicOrdering::Monotonic: |
| 2640 | case AtomicOrdering::Release: |
| 2641 | return AtomicOrdering::Release; |
| 2642 | case AtomicOrdering::Acquire: |
| 2643 | case AtomicOrdering::AcquireRelease: |
| 2644 | return AtomicOrdering::AcquireRelease; |
| 2645 | case AtomicOrdering::SequentiallyConsistent: |
| 2646 | return AtomicOrdering::SequentiallyConsistent; |
| 2647 | } |
| 2648 | llvm_unreachable("Unknown ordering" ); |
| 2649 | } |
| 2650 | |
| 2651 | void DFSanVisitor::visitStoreInst(StoreInst &SI) { |
| 2652 | auto &DL = SI.getDataLayout(); |
| 2653 | Value *Val = SI.getValueOperand(); |
| 2654 | uint64_t Size = DL.getTypeStoreSize(Ty: Val->getType()); |
| 2655 | if (Size == 0) |
| 2656 | return; |
| 2657 | |
| 2658 | // When an application store is atomic, increase atomic ordering between |
| 2659 | // atomic application loads and stores to ensure happen-before order; load |
| 2660 | // shadow data after application data; store zero shadow data before |
| 2661 | // application data. This ensure shadow loads return either labels of the |
| 2662 | // initial application data or zeros. |
| 2663 | if (SI.isAtomic()) |
| 2664 | SI.setOrdering(addReleaseOrdering(AO: SI.getOrdering())); |
| 2665 | |
| 2666 | const bool ShouldTrackOrigins = |
| 2667 | DFSF.DFS.shouldTrackOrigins() && !SI.isAtomic(); |
| 2668 | std::vector<Value *> Shadows; |
| 2669 | std::vector<Value *> Origins; |
| 2670 | |
| 2671 | Value *Shadow = |
| 2672 | SI.isAtomic() ? DFSF.DFS.getZeroShadow(V: Val) : DFSF.getShadow(V: Val); |
| 2673 | |
| 2674 | if (ShouldTrackOrigins) { |
| 2675 | Shadows.push_back(x: Shadow); |
| 2676 | Origins.push_back(x: DFSF.getOrigin(V: Val)); |
| 2677 | } |
| 2678 | |
| 2679 | Value *PrimitiveShadow; |
| 2680 | if (ClCombinePointerLabelsOnStore) { |
| 2681 | Value *PtrShadow = DFSF.getShadow(V: SI.getPointerOperand()); |
| 2682 | if (ShouldTrackOrigins) { |
| 2683 | Shadows.push_back(x: PtrShadow); |
| 2684 | Origins.push_back(x: DFSF.getOrigin(V: SI.getPointerOperand())); |
| 2685 | } |
| 2686 | PrimitiveShadow = DFSF.combineShadows(V1: Shadow, V2: PtrShadow, Pos: SI.getIterator()); |
| 2687 | } else { |
| 2688 | PrimitiveShadow = DFSF.collapseToPrimitiveShadow(Shadow, Pos: SI.getIterator()); |
| 2689 | } |
| 2690 | Value *Origin = nullptr; |
| 2691 | if (ShouldTrackOrigins) |
| 2692 | Origin = DFSF.combineOrigins(Shadows, Origins, Pos: SI.getIterator()); |
| 2693 | DFSF.storePrimitiveShadowOrigin(Addr: SI.getPointerOperand(), Size, InstAlignment: SI.getAlign(), |
| 2694 | PrimitiveShadow, Origin, Pos: SI.getIterator()); |
| 2695 | if (ClEventCallbacks) { |
| 2696 | IRBuilder<> IRB(&SI); |
| 2697 | Value *Addr = SI.getPointerOperand(); |
| 2698 | CallInst *CI = |
| 2699 | IRB.CreateCall(Callee: DFSF.DFS.DFSanStoreCallbackFn, Args: {PrimitiveShadow, Addr}); |
| 2700 | CI->addParamAttr(ArgNo: 0, Kind: Attribute::ZExt); |
| 2701 | } |
| 2702 | } |
| 2703 | |
| 2704 | void DFSanVisitor::visitCASOrRMW(Align InstAlignment, Instruction &I) { |
| 2705 | assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); |
| 2706 | |
| 2707 | Value *Val = I.getOperand(i: 1); |
| 2708 | const auto &DL = I.getDataLayout(); |
| 2709 | uint64_t Size = DL.getTypeStoreSize(Ty: Val->getType()); |
| 2710 | if (Size == 0) |
| 2711 | return; |
| 2712 | |
| 2713 | // Conservatively set data at stored addresses and return with zero shadow to |
| 2714 | // prevent shadow data races. |
| 2715 | IRBuilder<> IRB(&I); |
| 2716 | Value *Addr = I.getOperand(i: 0); |
| 2717 | const Align ShadowAlign = DFSF.getShadowAlign(InstAlignment); |
| 2718 | DFSF.storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, Pos: I.getIterator()); |
| 2719 | DFSF.setShadow(I: &I, Shadow: DFSF.DFS.getZeroShadow(V: &I)); |
| 2720 | DFSF.setOrigin(I: &I, Origin: DFSF.DFS.ZeroOrigin); |
| 2721 | } |
| 2722 | |
| 2723 | void DFSanVisitor::visitAtomicRMWInst(AtomicRMWInst &I) { |
| 2724 | visitCASOrRMW(InstAlignment: I.getAlign(), I); |
| 2725 | // TODO: The ordering change follows MSan. It is possible not to change |
| 2726 | // ordering because we always set and use 0 shadows. |
| 2727 | I.setOrdering(addReleaseOrdering(AO: I.getOrdering())); |
| 2728 | } |
| 2729 | |
| 2730 | void DFSanVisitor::visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { |
| 2731 | visitCASOrRMW(InstAlignment: I.getAlign(), I); |
| 2732 | // TODO: The ordering change follows MSan. It is possible not to change |
| 2733 | // ordering because we always set and use 0 shadows. |
| 2734 | I.setSuccessOrdering(addReleaseOrdering(AO: I.getSuccessOrdering())); |
| 2735 | } |
| 2736 | |
| 2737 | void DFSanVisitor::visitUnaryOperator(UnaryOperator &UO) { |
| 2738 | visitInstOperands(I&: UO); |
| 2739 | } |
| 2740 | |
| 2741 | void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) { |
| 2742 | visitInstOperands(I&: BO); |
| 2743 | } |
| 2744 | |
| 2745 | void DFSanVisitor::visitBitCastInst(BitCastInst &BCI) { |
| 2746 | // Special case: if this is the bitcast (there is exactly 1 allowed) between |
| 2747 | // a musttail call and a ret, don't instrument. New instructions are not |
| 2748 | // allowed after a musttail call. |
| 2749 | if (auto *CI = dyn_cast<CallInst>(Val: BCI.getOperand(i_nocapture: 0))) |
| 2750 | if (CI->isMustTailCall()) |
| 2751 | return; |
| 2752 | visitInstOperands(I&: BCI); |
| 2753 | } |
| 2754 | |
| 2755 | void DFSanVisitor::visitCastInst(CastInst &CI) { visitInstOperands(I&: CI); } |
| 2756 | |
| 2757 | void DFSanVisitor::visitCmpInst(CmpInst &CI) { |
| 2758 | visitInstOperands(I&: CI); |
| 2759 | if (ClEventCallbacks) { |
| 2760 | IRBuilder<> IRB(&CI); |
| 2761 | Value *CombinedShadow = DFSF.getShadow(V: &CI); |
| 2762 | CallInst *CallI = |
| 2763 | IRB.CreateCall(Callee: DFSF.DFS.DFSanCmpCallbackFn, Args: CombinedShadow); |
| 2764 | CallI->addParamAttr(ArgNo: 0, Kind: Attribute::ZExt); |
| 2765 | } |
| 2766 | } |
| 2767 | |
| 2768 | void DFSanVisitor::visitLandingPadInst(LandingPadInst &LPI) { |
| 2769 | // We do not need to track data through LandingPadInst. |
| 2770 | // |
| 2771 | // For the C++ exceptions, if a value is thrown, this value will be stored |
| 2772 | // in a memory location provided by __cxa_allocate_exception(...) (on the |
| 2773 | // throw side) or __cxa_begin_catch(...) (on the catch side). |
| 2774 | // This memory will have a shadow, so with the loads and stores we will be |
| 2775 | // able to propagate labels on data thrown through exceptions, without any |
| 2776 | // special handling of the LandingPadInst. |
| 2777 | // |
| 2778 | // The second element in the pair result of the LandingPadInst is a |
| 2779 | // register value, but it is for a type ID and should never be tainted. |
| 2780 | DFSF.setShadow(I: &LPI, Shadow: DFSF.DFS.getZeroShadow(V: &LPI)); |
| 2781 | DFSF.setOrigin(I: &LPI, Origin: DFSF.DFS.ZeroOrigin); |
| 2782 | } |
| 2783 | |
| 2784 | void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { |
| 2785 | if (ClCombineOffsetLabelsOnGEP || |
| 2786 | DFSF.isLookupTableConstant( |
| 2787 | P: StripPointerGEPsAndCasts(V: GEPI.getPointerOperand()))) { |
| 2788 | visitInstOperands(I&: GEPI); |
| 2789 | return; |
| 2790 | } |
| 2791 | |
| 2792 | // Only propagate shadow/origin of base pointer value but ignore those of |
| 2793 | // offset operands. |
| 2794 | Value *BasePointer = GEPI.getPointerOperand(); |
| 2795 | DFSF.setShadow(I: &GEPI, Shadow: DFSF.getShadow(V: BasePointer)); |
| 2796 | if (DFSF.DFS.shouldTrackOrigins()) |
| 2797 | DFSF.setOrigin(I: &GEPI, Origin: DFSF.getOrigin(V: BasePointer)); |
| 2798 | } |
| 2799 | |
| 2800 | void DFSanVisitor::(ExtractElementInst &I) { |
| 2801 | visitInstOperands(I); |
| 2802 | } |
| 2803 | |
| 2804 | void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) { |
| 2805 | visitInstOperands(I); |
| 2806 | } |
| 2807 | |
| 2808 | void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) { |
| 2809 | visitInstOperands(I); |
| 2810 | } |
| 2811 | |
| 2812 | void DFSanVisitor::(ExtractValueInst &I) { |
| 2813 | IRBuilder<> IRB(&I); |
| 2814 | Value *Agg = I.getAggregateOperand(); |
| 2815 | Value *AggShadow = DFSF.getShadow(V: Agg); |
| 2816 | Value *ResShadow = IRB.CreateExtractValue(Agg: AggShadow, Idxs: I.getIndices()); |
| 2817 | DFSF.setShadow(I: &I, Shadow: ResShadow); |
| 2818 | visitInstOperandOrigins(I); |
| 2819 | } |
| 2820 | |
| 2821 | void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) { |
| 2822 | IRBuilder<> IRB(&I); |
| 2823 | Value *AggShadow = DFSF.getShadow(V: I.getAggregateOperand()); |
| 2824 | Value *InsShadow = DFSF.getShadow(V: I.getInsertedValueOperand()); |
| 2825 | Value *Res = IRB.CreateInsertValue(Agg: AggShadow, Val: InsShadow, Idxs: I.getIndices()); |
| 2826 | DFSF.setShadow(I: &I, Shadow: Res); |
| 2827 | visitInstOperandOrigins(I); |
| 2828 | } |
| 2829 | |
| 2830 | void DFSanVisitor::visitAllocaInst(AllocaInst &I) { |
| 2831 | bool AllLoadsStores = true; |
| 2832 | for (User *U : I.users()) { |
| 2833 | if (isa<LoadInst>(Val: U)) |
| 2834 | continue; |
| 2835 | |
| 2836 | if (StoreInst *SI = dyn_cast<StoreInst>(Val: U)) { |
| 2837 | if (SI->getPointerOperand() == &I) |
| 2838 | continue; |
| 2839 | } |
| 2840 | |
| 2841 | AllLoadsStores = false; |
| 2842 | break; |
| 2843 | } |
| 2844 | if (AllLoadsStores) { |
| 2845 | IRBuilder<> IRB(&I); |
| 2846 | DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(Ty: DFSF.DFS.PrimitiveShadowTy); |
| 2847 | if (DFSF.DFS.shouldTrackOrigins()) { |
| 2848 | DFSF.AllocaOriginMap[&I] = |
| 2849 | IRB.CreateAlloca(Ty: DFSF.DFS.OriginTy, ArraySize: nullptr, Name: "_dfsa" ); |
| 2850 | } |
| 2851 | } |
| 2852 | DFSF.setShadow(I: &I, Shadow: DFSF.DFS.ZeroPrimitiveShadow); |
| 2853 | DFSF.setOrigin(I: &I, Origin: DFSF.DFS.ZeroOrigin); |
| 2854 | } |
| 2855 | |
| 2856 | void DFSanVisitor::visitSelectInst(SelectInst &I) { |
| 2857 | Value *CondShadow = DFSF.getShadow(V: I.getCondition()); |
| 2858 | Value *TrueShadow = DFSF.getShadow(V: I.getTrueValue()); |
| 2859 | Value *FalseShadow = DFSF.getShadow(V: I.getFalseValue()); |
| 2860 | Value *ShadowSel = nullptr; |
| 2861 | const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); |
| 2862 | std::vector<Value *> Shadows; |
| 2863 | std::vector<Value *> Origins; |
| 2864 | Value *TrueOrigin = |
| 2865 | ShouldTrackOrigins ? DFSF.getOrigin(V: I.getTrueValue()) : nullptr; |
| 2866 | Value *FalseOrigin = |
| 2867 | ShouldTrackOrigins ? DFSF.getOrigin(V: I.getFalseValue()) : nullptr; |
| 2868 | |
| 2869 | DFSF.addConditionalCallbacksIfEnabled(I, Condition: I.getCondition()); |
| 2870 | |
| 2871 | if (isa<VectorType>(Val: I.getCondition()->getType())) { |
| 2872 | ShadowSel = DFSF.combineShadowsThenConvert(T: I.getType(), V1: TrueShadow, |
| 2873 | V2: FalseShadow, Pos: I.getIterator()); |
| 2874 | if (ShouldTrackOrigins) { |
| 2875 | Shadows.push_back(x: TrueShadow); |
| 2876 | Shadows.push_back(x: FalseShadow); |
| 2877 | Origins.push_back(x: TrueOrigin); |
| 2878 | Origins.push_back(x: FalseOrigin); |
| 2879 | } |
| 2880 | } else { |
| 2881 | if (TrueShadow == FalseShadow) { |
| 2882 | ShadowSel = TrueShadow; |
| 2883 | if (ShouldTrackOrigins) { |
| 2884 | Shadows.push_back(x: TrueShadow); |
| 2885 | Origins.push_back(x: TrueOrigin); |
| 2886 | } |
| 2887 | } else { |
| 2888 | ShadowSel = SelectInst::Create(C: I.getCondition(), S1: TrueShadow, S2: FalseShadow, |
| 2889 | NameStr: "" , InsertBefore: I.getIterator()); |
| 2890 | if (ShouldTrackOrigins) { |
| 2891 | Shadows.push_back(x: ShadowSel); |
| 2892 | Origins.push_back(x: SelectInst::Create(C: I.getCondition(), S1: TrueOrigin, |
| 2893 | S2: FalseOrigin, NameStr: "" , InsertBefore: I.getIterator())); |
| 2894 | } |
| 2895 | } |
| 2896 | } |
| 2897 | DFSF.setShadow(I: &I, Shadow: ClTrackSelectControlFlow ? DFSF.combineShadowsThenConvert( |
| 2898 | T: I.getType(), V1: CondShadow, |
| 2899 | V2: ShadowSel, Pos: I.getIterator()) |
| 2900 | : ShadowSel); |
| 2901 | if (ShouldTrackOrigins) { |
| 2902 | if (ClTrackSelectControlFlow) { |
| 2903 | Shadows.push_back(x: CondShadow); |
| 2904 | Origins.push_back(x: DFSF.getOrigin(V: I.getCondition())); |
| 2905 | } |
| 2906 | DFSF.setOrigin(I: &I, Origin: DFSF.combineOrigins(Shadows, Origins, Pos: I.getIterator())); |
| 2907 | } |
| 2908 | } |
| 2909 | |
| 2910 | void DFSanVisitor::visitMemSetInst(MemSetInst &I) { |
| 2911 | IRBuilder<> IRB(&I); |
| 2912 | Value *ValShadow = DFSF.getShadow(V: I.getValue()); |
| 2913 | Value *ValOrigin = DFSF.DFS.shouldTrackOrigins() |
| 2914 | ? DFSF.getOrigin(V: I.getValue()) |
| 2915 | : DFSF.DFS.ZeroOrigin; |
| 2916 | IRB.CreateCall(Callee: DFSF.DFS.DFSanSetLabelFn, |
| 2917 | Args: {ValShadow, ValOrigin, I.getDest(), |
| 2918 | IRB.CreateZExtOrTrunc(V: I.getLength(), DestTy: DFSF.DFS.IntptrTy)}); |
| 2919 | } |
| 2920 | |
| 2921 | void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) { |
| 2922 | IRBuilder<> IRB(&I); |
| 2923 | |
| 2924 | // CopyOrMoveOrigin transfers origins by refering to their shadows. So we |
| 2925 | // need to move origins before moving shadows. |
| 2926 | if (DFSF.DFS.shouldTrackOrigins()) { |
| 2927 | IRB.CreateCall( |
| 2928 | Callee: DFSF.DFS.DFSanMemOriginTransferFn, |
| 2929 | Args: {I.getArgOperand(i: 0), I.getArgOperand(i: 1), |
| 2930 | IRB.CreateIntCast(V: I.getArgOperand(i: 2), DestTy: DFSF.DFS.IntptrTy, isSigned: false)}); |
| 2931 | } |
| 2932 | |
| 2933 | Value *DestShadow = DFSF.DFS.getShadowAddress(Addr: I.getDest(), Pos: I.getIterator()); |
| 2934 | Value *SrcShadow = DFSF.DFS.getShadowAddress(Addr: I.getSource(), Pos: I.getIterator()); |
| 2935 | Value *LenShadow = |
| 2936 | IRB.CreateMul(LHS: I.getLength(), RHS: ConstantInt::get(Ty: I.getLength()->getType(), |
| 2937 | V: DFSF.DFS.ShadowWidthBytes)); |
| 2938 | auto *MTI = cast<MemTransferInst>( |
| 2939 | Val: IRB.CreateCall(FTy: I.getFunctionType(), Callee: I.getCalledOperand(), |
| 2940 | Args: {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()})); |
| 2941 | MTI->setDestAlignment(DFSF.getShadowAlign(InstAlignment: I.getDestAlign().valueOrOne())); |
| 2942 | MTI->setSourceAlignment(DFSF.getShadowAlign(InstAlignment: I.getSourceAlign().valueOrOne())); |
| 2943 | if (ClEventCallbacks) { |
| 2944 | IRB.CreateCall( |
| 2945 | Callee: DFSF.DFS.DFSanMemTransferCallbackFn, |
| 2946 | Args: {DestShadow, IRB.CreateZExtOrTrunc(V: I.getLength(), DestTy: DFSF.DFS.IntptrTy)}); |
| 2947 | } |
| 2948 | } |
| 2949 | |
| 2950 | void DFSanVisitor::visitBranchInst(BranchInst &BR) { |
| 2951 | if (!BR.isConditional()) |
| 2952 | return; |
| 2953 | |
| 2954 | DFSF.addConditionalCallbacksIfEnabled(I&: BR, Condition: BR.getCondition()); |
| 2955 | } |
| 2956 | |
| 2957 | void DFSanVisitor::visitSwitchInst(SwitchInst &SW) { |
| 2958 | DFSF.addConditionalCallbacksIfEnabled(I&: SW, Condition: SW.getCondition()); |
| 2959 | } |
| 2960 | |
| 2961 | static bool isAMustTailRetVal(Value *RetVal) { |
| 2962 | // Tail call may have a bitcast between return. |
| 2963 | if (auto *I = dyn_cast<BitCastInst>(Val: RetVal)) { |
| 2964 | RetVal = I->getOperand(i_nocapture: 0); |
| 2965 | } |
| 2966 | if (auto *I = dyn_cast<CallInst>(Val: RetVal)) { |
| 2967 | return I->isMustTailCall(); |
| 2968 | } |
| 2969 | return false; |
| 2970 | } |
| 2971 | |
| 2972 | void DFSanVisitor::visitReturnInst(ReturnInst &RI) { |
| 2973 | if (!DFSF.IsNativeABI && RI.getReturnValue()) { |
| 2974 | // Don't emit the instrumentation for musttail call returns. |
| 2975 | if (isAMustTailRetVal(RetVal: RI.getReturnValue())) |
| 2976 | return; |
| 2977 | |
| 2978 | Value *S = DFSF.getShadow(V: RI.getReturnValue()); |
| 2979 | IRBuilder<> IRB(&RI); |
| 2980 | Type *RT = DFSF.F->getFunctionType()->getReturnType(); |
| 2981 | unsigned Size = getDataLayout().getTypeAllocSize(Ty: DFSF.DFS.getShadowTy(OrigTy: RT)); |
| 2982 | if (Size <= RetvalTLSSize) { |
| 2983 | // If the size overflows, stores nothing. At callsite, oversized return |
| 2984 | // shadows are set to zero. |
| 2985 | IRB.CreateAlignedStore(Val: S, Ptr: DFSF.getRetvalTLS(T: RT, IRB), Align: ShadowTLSAlignment); |
| 2986 | } |
| 2987 | if (DFSF.DFS.shouldTrackOrigins()) { |
| 2988 | Value *O = DFSF.getOrigin(V: RI.getReturnValue()); |
| 2989 | IRB.CreateStore(Val: O, Ptr: DFSF.getRetvalOriginTLS()); |
| 2990 | } |
| 2991 | } |
| 2992 | } |
| 2993 | |
| 2994 | void DFSanVisitor::addShadowArguments(Function &F, CallBase &CB, |
| 2995 | std::vector<Value *> &Args, |
| 2996 | IRBuilder<> &IRB) { |
| 2997 | FunctionType *FT = F.getFunctionType(); |
| 2998 | |
| 2999 | auto *I = CB.arg_begin(); |
| 3000 | |
| 3001 | // Adds non-variable argument shadows. |
| 3002 | for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) |
| 3003 | Args.push_back( |
| 3004 | x: DFSF.collapseToPrimitiveShadow(Shadow: DFSF.getShadow(V: *I), Pos: CB.getIterator())); |
| 3005 | |
| 3006 | // Adds variable argument shadows. |
| 3007 | if (FT->isVarArg()) { |
| 3008 | auto *LabelVATy = ArrayType::get(ElementType: DFSF.DFS.PrimitiveShadowTy, |
| 3009 | NumElements: CB.arg_size() - FT->getNumParams()); |
| 3010 | auto *LabelVAAlloca = |
| 3011 | new AllocaInst(LabelVATy, getDataLayout().getAllocaAddrSpace(), |
| 3012 | "labelva" , DFSF.F->getEntryBlock().begin()); |
| 3013 | |
| 3014 | for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) { |
| 3015 | auto *LabelVAPtr = IRB.CreateStructGEP(Ty: LabelVATy, Ptr: LabelVAAlloca, Idx: N); |
| 3016 | IRB.CreateStore( |
| 3017 | Val: DFSF.collapseToPrimitiveShadow(Shadow: DFSF.getShadow(V: *I), Pos: CB.getIterator()), |
| 3018 | Ptr: LabelVAPtr); |
| 3019 | } |
| 3020 | |
| 3021 | Args.push_back(x: IRB.CreateStructGEP(Ty: LabelVATy, Ptr: LabelVAAlloca, Idx: 0)); |
| 3022 | } |
| 3023 | |
| 3024 | // Adds the return value shadow. |
| 3025 | if (!FT->getReturnType()->isVoidTy()) { |
| 3026 | if (!DFSF.LabelReturnAlloca) { |
| 3027 | DFSF.LabelReturnAlloca = new AllocaInst( |
| 3028 | DFSF.DFS.PrimitiveShadowTy, getDataLayout().getAllocaAddrSpace(), |
| 3029 | "labelreturn" , DFSF.F->getEntryBlock().begin()); |
| 3030 | } |
| 3031 | Args.push_back(x: DFSF.LabelReturnAlloca); |
| 3032 | } |
| 3033 | } |
| 3034 | |
| 3035 | void DFSanVisitor::addOriginArguments(Function &F, CallBase &CB, |
| 3036 | std::vector<Value *> &Args, |
| 3037 | IRBuilder<> &IRB) { |
| 3038 | FunctionType *FT = F.getFunctionType(); |
| 3039 | |
| 3040 | auto *I = CB.arg_begin(); |
| 3041 | |
| 3042 | // Add non-variable argument origins. |
| 3043 | for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) |
| 3044 | Args.push_back(x: DFSF.getOrigin(V: *I)); |
| 3045 | |
| 3046 | // Add variable argument origins. |
| 3047 | if (FT->isVarArg()) { |
| 3048 | auto *OriginVATy = |
| 3049 | ArrayType::get(ElementType: DFSF.DFS.OriginTy, NumElements: CB.arg_size() - FT->getNumParams()); |
| 3050 | auto *OriginVAAlloca = |
| 3051 | new AllocaInst(OriginVATy, getDataLayout().getAllocaAddrSpace(), |
| 3052 | "originva" , DFSF.F->getEntryBlock().begin()); |
| 3053 | |
| 3054 | for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) { |
| 3055 | auto *OriginVAPtr = IRB.CreateStructGEP(Ty: OriginVATy, Ptr: OriginVAAlloca, Idx: N); |
| 3056 | IRB.CreateStore(Val: DFSF.getOrigin(V: *I), Ptr: OriginVAPtr); |
| 3057 | } |
| 3058 | |
| 3059 | Args.push_back(x: IRB.CreateStructGEP(Ty: OriginVATy, Ptr: OriginVAAlloca, Idx: 0)); |
| 3060 | } |
| 3061 | |
| 3062 | // Add the return value origin. |
| 3063 | if (!FT->getReturnType()->isVoidTy()) { |
| 3064 | if (!DFSF.OriginReturnAlloca) { |
| 3065 | DFSF.OriginReturnAlloca = new AllocaInst( |
| 3066 | DFSF.DFS.OriginTy, getDataLayout().getAllocaAddrSpace(), |
| 3067 | "originreturn" , DFSF.F->getEntryBlock().begin()); |
| 3068 | } |
| 3069 | Args.push_back(x: DFSF.OriginReturnAlloca); |
| 3070 | } |
| 3071 | } |
| 3072 | |
| 3073 | bool DFSanVisitor::visitWrappedCallBase(Function &F, CallBase &CB) { |
| 3074 | IRBuilder<> IRB(&CB); |
| 3075 | switch (DFSF.DFS.getWrapperKind(F: &F)) { |
| 3076 | case DataFlowSanitizer::WK_Warning: |
| 3077 | CB.setCalledFunction(&F); |
| 3078 | IRB.CreateCall(Callee: DFSF.DFS.DFSanUnimplementedFn, |
| 3079 | Args: IRB.CreateGlobalString(Str: F.getName())); |
| 3080 | DFSF.DFS.buildExternWeakCheckIfNeeded(IRB, F: &F); |
| 3081 | DFSF.setShadow(I: &CB, Shadow: DFSF.DFS.getZeroShadow(V: &CB)); |
| 3082 | DFSF.setOrigin(I: &CB, Origin: DFSF.DFS.ZeroOrigin); |
| 3083 | return true; |
| 3084 | case DataFlowSanitizer::WK_Discard: |
| 3085 | CB.setCalledFunction(&F); |
| 3086 | DFSF.DFS.buildExternWeakCheckIfNeeded(IRB, F: &F); |
| 3087 | DFSF.setShadow(I: &CB, Shadow: DFSF.DFS.getZeroShadow(V: &CB)); |
| 3088 | DFSF.setOrigin(I: &CB, Origin: DFSF.DFS.ZeroOrigin); |
| 3089 | return true; |
| 3090 | case DataFlowSanitizer::WK_Functional: |
| 3091 | CB.setCalledFunction(&F); |
| 3092 | DFSF.DFS.buildExternWeakCheckIfNeeded(IRB, F: &F); |
| 3093 | visitInstOperands(I&: CB); |
| 3094 | return true; |
| 3095 | case DataFlowSanitizer::WK_Custom: |
| 3096 | // Don't try to handle invokes of custom functions, it's too complicated. |
| 3097 | // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_ |
| 3098 | // wrapper. |
| 3099 | CallInst *CI = dyn_cast<CallInst>(Val: &CB); |
| 3100 | if (!CI) |
| 3101 | return false; |
| 3102 | |
| 3103 | const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); |
| 3104 | FunctionType *FT = F.getFunctionType(); |
| 3105 | TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(T: FT); |
| 3106 | std::string CustomFName = ShouldTrackOrigins ? "__dfso_" : "__dfsw_" ; |
| 3107 | CustomFName += F.getName(); |
| 3108 | FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction( |
| 3109 | Name: CustomFName, T: CustomFn.TransformedType); |
| 3110 | if (Function *CustomFn = dyn_cast<Function>(Val: CustomF.getCallee())) { |
| 3111 | CustomFn->copyAttributesFrom(Src: &F); |
| 3112 | |
| 3113 | // Custom functions returning non-void will write to the return label. |
| 3114 | if (!FT->getReturnType()->isVoidTy()) { |
| 3115 | CustomFn->removeFnAttrs(Attrs: DFSF.DFS.ReadOnlyNoneAttrs); |
| 3116 | } |
| 3117 | } |
| 3118 | |
| 3119 | std::vector<Value *> Args; |
| 3120 | |
| 3121 | // Adds non-variable arguments. |
| 3122 | auto *I = CB.arg_begin(); |
| 3123 | for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) { |
| 3124 | Args.push_back(x: *I); |
| 3125 | } |
| 3126 | |
| 3127 | // Adds shadow arguments. |
| 3128 | const unsigned ShadowArgStart = Args.size(); |
| 3129 | addShadowArguments(F, CB, Args, IRB); |
| 3130 | |
| 3131 | // Adds origin arguments. |
| 3132 | const unsigned OriginArgStart = Args.size(); |
| 3133 | if (ShouldTrackOrigins) |
| 3134 | addOriginArguments(F, CB, Args, IRB); |
| 3135 | |
| 3136 | // Adds variable arguments. |
| 3137 | append_range(C&: Args, R: drop_begin(RangeOrContainer: CB.args(), N: FT->getNumParams())); |
| 3138 | |
| 3139 | CallInst *CustomCI = IRB.CreateCall(Callee: CustomF, Args); |
| 3140 | CustomCI->setCallingConv(CI->getCallingConv()); |
| 3141 | CustomCI->setAttributes(transformFunctionAttributes( |
| 3142 | TransformedFunction: CustomFn, Ctx&: CI->getContext(), CallSiteAttrs: CI->getAttributes())); |
| 3143 | |
| 3144 | // Update the parameter attributes of the custom call instruction to |
| 3145 | // zero extend the shadow parameters. This is required for targets |
| 3146 | // which consider PrimitiveShadowTy an illegal type. |
| 3147 | for (unsigned N = 0; N < FT->getNumParams(); N++) { |
| 3148 | const unsigned ArgNo = ShadowArgStart + N; |
| 3149 | if (CustomCI->getArgOperand(i: ArgNo)->getType() == |
| 3150 | DFSF.DFS.PrimitiveShadowTy) |
| 3151 | CustomCI->addParamAttr(ArgNo, Kind: Attribute::ZExt); |
| 3152 | if (ShouldTrackOrigins) { |
| 3153 | const unsigned OriginArgNo = OriginArgStart + N; |
| 3154 | if (CustomCI->getArgOperand(i: OriginArgNo)->getType() == |
| 3155 | DFSF.DFS.OriginTy) |
| 3156 | CustomCI->addParamAttr(ArgNo: OriginArgNo, Kind: Attribute::ZExt); |
| 3157 | } |
| 3158 | } |
| 3159 | |
| 3160 | // Loads the return value shadow and origin. |
| 3161 | if (!FT->getReturnType()->isVoidTy()) { |
| 3162 | LoadInst *LabelLoad = |
| 3163 | IRB.CreateLoad(Ty: DFSF.DFS.PrimitiveShadowTy, Ptr: DFSF.LabelReturnAlloca); |
| 3164 | DFSF.setShadow(I: CustomCI, |
| 3165 | Shadow: DFSF.expandFromPrimitiveShadow( |
| 3166 | T: FT->getReturnType(), PrimitiveShadow: LabelLoad, Pos: CB.getIterator())); |
| 3167 | if (ShouldTrackOrigins) { |
| 3168 | LoadInst *OriginLoad = |
| 3169 | IRB.CreateLoad(Ty: DFSF.DFS.OriginTy, Ptr: DFSF.OriginReturnAlloca); |
| 3170 | DFSF.setOrigin(I: CustomCI, Origin: OriginLoad); |
| 3171 | } |
| 3172 | } |
| 3173 | |
| 3174 | CI->replaceAllUsesWith(V: CustomCI); |
| 3175 | CI->eraseFromParent(); |
| 3176 | return true; |
| 3177 | } |
| 3178 | return false; |
| 3179 | } |
| 3180 | |
| 3181 | Value *DFSanVisitor::makeAddAcquireOrderingTable(IRBuilder<> &IRB) { |
| 3182 | constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; |
| 3183 | uint32_t OrderingTable[NumOrderings] = {}; |
| 3184 | |
| 3185 | OrderingTable[(int)AtomicOrderingCABI::relaxed] = |
| 3186 | OrderingTable[(int)AtomicOrderingCABI::acquire] = |
| 3187 | OrderingTable[(int)AtomicOrderingCABI::consume] = |
| 3188 | (int)AtomicOrderingCABI::acquire; |
| 3189 | OrderingTable[(int)AtomicOrderingCABI::release] = |
| 3190 | OrderingTable[(int)AtomicOrderingCABI::acq_rel] = |
| 3191 | (int)AtomicOrderingCABI::acq_rel; |
| 3192 | OrderingTable[(int)AtomicOrderingCABI::seq_cst] = |
| 3193 | (int)AtomicOrderingCABI::seq_cst; |
| 3194 | |
| 3195 | return ConstantDataVector::get(Context&: IRB.getContext(), Elts: OrderingTable); |
| 3196 | } |
| 3197 | |
| 3198 | void DFSanVisitor::visitLibAtomicLoad(CallBase &CB) { |
| 3199 | // Since we use getNextNode here, we can't have CB terminate the BB. |
| 3200 | assert(isa<CallInst>(CB)); |
| 3201 | |
| 3202 | IRBuilder<> IRB(&CB); |
| 3203 | Value *Size = CB.getArgOperand(i: 0); |
| 3204 | Value *SrcPtr = CB.getArgOperand(i: 1); |
| 3205 | Value *DstPtr = CB.getArgOperand(i: 2); |
| 3206 | Value *Ordering = CB.getArgOperand(i: 3); |
| 3207 | // Convert the call to have at least Acquire ordering to make sure |
| 3208 | // the shadow operations aren't reordered before it. |
| 3209 | Value *NewOrdering = |
| 3210 | IRB.CreateExtractElement(Vec: makeAddAcquireOrderingTable(IRB), Idx: Ordering); |
| 3211 | CB.setArgOperand(i: 3, v: NewOrdering); |
| 3212 | |
| 3213 | IRBuilder<> NextIRB(CB.getNextNode()); |
| 3214 | NextIRB.SetCurrentDebugLocation(CB.getDebugLoc()); |
| 3215 | |
| 3216 | // TODO: Support ClCombinePointerLabelsOnLoad |
| 3217 | // TODO: Support ClEventCallbacks |
| 3218 | |
| 3219 | NextIRB.CreateCall( |
| 3220 | Callee: DFSF.DFS.DFSanMemShadowOriginTransferFn, |
| 3221 | Args: {DstPtr, SrcPtr, NextIRB.CreateIntCast(V: Size, DestTy: DFSF.DFS.IntptrTy, isSigned: false)}); |
| 3222 | } |
| 3223 | |
| 3224 | Value *DFSanVisitor::makeAddReleaseOrderingTable(IRBuilder<> &IRB) { |
| 3225 | constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; |
| 3226 | uint32_t OrderingTable[NumOrderings] = {}; |
| 3227 | |
| 3228 | OrderingTable[(int)AtomicOrderingCABI::relaxed] = |
| 3229 | OrderingTable[(int)AtomicOrderingCABI::release] = |
| 3230 | (int)AtomicOrderingCABI::release; |
| 3231 | OrderingTable[(int)AtomicOrderingCABI::consume] = |
| 3232 | OrderingTable[(int)AtomicOrderingCABI::acquire] = |
| 3233 | OrderingTable[(int)AtomicOrderingCABI::acq_rel] = |
| 3234 | (int)AtomicOrderingCABI::acq_rel; |
| 3235 | OrderingTable[(int)AtomicOrderingCABI::seq_cst] = |
| 3236 | (int)AtomicOrderingCABI::seq_cst; |
| 3237 | |
| 3238 | return ConstantDataVector::get(Context&: IRB.getContext(), Elts: OrderingTable); |
| 3239 | } |
| 3240 | |
| 3241 | void DFSanVisitor::visitLibAtomicStore(CallBase &CB) { |
| 3242 | IRBuilder<> IRB(&CB); |
| 3243 | Value *Size = CB.getArgOperand(i: 0); |
| 3244 | Value *SrcPtr = CB.getArgOperand(i: 1); |
| 3245 | Value *DstPtr = CB.getArgOperand(i: 2); |
| 3246 | Value *Ordering = CB.getArgOperand(i: 3); |
| 3247 | // Convert the call to have at least Release ordering to make sure |
| 3248 | // the shadow operations aren't reordered after it. |
| 3249 | Value *NewOrdering = |
| 3250 | IRB.CreateExtractElement(Vec: makeAddReleaseOrderingTable(IRB), Idx: Ordering); |
| 3251 | CB.setArgOperand(i: 3, v: NewOrdering); |
| 3252 | |
| 3253 | // TODO: Support ClCombinePointerLabelsOnStore |
| 3254 | // TODO: Support ClEventCallbacks |
| 3255 | |
| 3256 | IRB.CreateCall( |
| 3257 | Callee: DFSF.DFS.DFSanMemShadowOriginTransferFn, |
| 3258 | Args: {DstPtr, SrcPtr, IRB.CreateIntCast(V: Size, DestTy: DFSF.DFS.IntptrTy, isSigned: false)}); |
| 3259 | } |
| 3260 | |
| 3261 | void DFSanVisitor::visitLibAtomicExchange(CallBase &CB) { |
| 3262 | // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret, int |
| 3263 | // ordering) |
| 3264 | IRBuilder<> IRB(&CB); |
| 3265 | Value *Size = CB.getArgOperand(i: 0); |
| 3266 | Value *TargetPtr = CB.getArgOperand(i: 1); |
| 3267 | Value *SrcPtr = CB.getArgOperand(i: 2); |
| 3268 | Value *DstPtr = CB.getArgOperand(i: 3); |
| 3269 | |
| 3270 | // This operation is not atomic for the shadow and origin memory. |
| 3271 | // This could result in DFSan false positives or false negatives. |
| 3272 | // For now we will assume these operations are rare, and |
| 3273 | // the additional complexity to address this is not warrented. |
| 3274 | |
| 3275 | // Current Target to Dest |
| 3276 | IRB.CreateCall( |
| 3277 | Callee: DFSF.DFS.DFSanMemShadowOriginTransferFn, |
| 3278 | Args: {DstPtr, TargetPtr, IRB.CreateIntCast(V: Size, DestTy: DFSF.DFS.IntptrTy, isSigned: false)}); |
| 3279 | |
| 3280 | // Current Src to Target (overriding) |
| 3281 | IRB.CreateCall( |
| 3282 | Callee: DFSF.DFS.DFSanMemShadowOriginTransferFn, |
| 3283 | Args: {TargetPtr, SrcPtr, IRB.CreateIntCast(V: Size, DestTy: DFSF.DFS.IntptrTy, isSigned: false)}); |
| 3284 | } |
| 3285 | |
| 3286 | void DFSanVisitor::visitLibAtomicCompareExchange(CallBase &CB) { |
| 3287 | // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected, void |
| 3288 | // *desired, int success_order, int failure_order) |
| 3289 | Value *Size = CB.getArgOperand(i: 0); |
| 3290 | Value *TargetPtr = CB.getArgOperand(i: 1); |
| 3291 | Value *ExpectedPtr = CB.getArgOperand(i: 2); |
| 3292 | Value *DesiredPtr = CB.getArgOperand(i: 3); |
| 3293 | |
| 3294 | // This operation is not atomic for the shadow and origin memory. |
| 3295 | // This could result in DFSan false positives or false negatives. |
| 3296 | // For now we will assume these operations are rare, and |
| 3297 | // the additional complexity to address this is not warrented. |
| 3298 | |
| 3299 | IRBuilder<> NextIRB(CB.getNextNode()); |
| 3300 | NextIRB.SetCurrentDebugLocation(CB.getDebugLoc()); |
| 3301 | |
| 3302 | DFSF.setShadow(I: &CB, Shadow: DFSF.DFS.getZeroShadow(V: &CB)); |
| 3303 | |
| 3304 | // If original call returned true, copy Desired to Target. |
| 3305 | // If original call returned false, copy Target to Expected. |
| 3306 | NextIRB.CreateCall(Callee: DFSF.DFS.DFSanMemShadowOriginConditionalExchangeFn, |
| 3307 | Args: {NextIRB.CreateIntCast(V: &CB, DestTy: NextIRB.getInt8Ty(), isSigned: false), |
| 3308 | TargetPtr, ExpectedPtr, DesiredPtr, |
| 3309 | NextIRB.CreateIntCast(V: Size, DestTy: DFSF.DFS.IntptrTy, isSigned: false)}); |
| 3310 | } |
| 3311 | |
| 3312 | void DFSanVisitor::visitCallBase(CallBase &CB) { |
| 3313 | Function *F = CB.getCalledFunction(); |
| 3314 | if ((F && F->isIntrinsic()) || CB.isInlineAsm()) { |
| 3315 | visitInstOperands(I&: CB); |
| 3316 | return; |
| 3317 | } |
| 3318 | |
| 3319 | // Calls to this function are synthesized in wrappers, and we shouldn't |
| 3320 | // instrument them. |
| 3321 | if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts()) |
| 3322 | return; |
| 3323 | |
| 3324 | LibFunc LF; |
| 3325 | if (DFSF.TLI.getLibFunc(CB, F&: LF)) { |
| 3326 | // libatomic.a functions need to have special handling because there isn't |
| 3327 | // a good way to intercept them or compile the library with |
| 3328 | // instrumentation. |
| 3329 | switch (LF) { |
| 3330 | case LibFunc_atomic_load: |
| 3331 | if (!isa<CallInst>(Val: CB)) { |
| 3332 | llvm::errs() << "DFSAN -- cannot instrument invoke of libatomic load. " |
| 3333 | "Ignoring!\n" ; |
| 3334 | break; |
| 3335 | } |
| 3336 | visitLibAtomicLoad(CB); |
| 3337 | return; |
| 3338 | case LibFunc_atomic_store: |
| 3339 | visitLibAtomicStore(CB); |
| 3340 | return; |
| 3341 | default: |
| 3342 | break; |
| 3343 | } |
| 3344 | } |
| 3345 | |
| 3346 | // TODO: These are not supported by TLI? They are not in the enum. |
| 3347 | if (F && F->hasName() && !F->isVarArg()) { |
| 3348 | if (F->getName() == "__atomic_exchange" ) { |
| 3349 | visitLibAtomicExchange(CB); |
| 3350 | return; |
| 3351 | } |
| 3352 | if (F->getName() == "__atomic_compare_exchange" ) { |
| 3353 | visitLibAtomicCompareExchange(CB); |
| 3354 | return; |
| 3355 | } |
| 3356 | } |
| 3357 | |
| 3358 | DenseMap<Value *, Function *>::iterator UnwrappedFnIt = |
| 3359 | DFSF.DFS.UnwrappedFnMap.find(Val: CB.getCalledOperand()); |
| 3360 | if (UnwrappedFnIt != DFSF.DFS.UnwrappedFnMap.end()) |
| 3361 | if (visitWrappedCallBase(F&: *UnwrappedFnIt->second, CB)) |
| 3362 | return; |
| 3363 | |
| 3364 | IRBuilder<> IRB(&CB); |
| 3365 | |
| 3366 | const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); |
| 3367 | FunctionType *FT = CB.getFunctionType(); |
| 3368 | const DataLayout &DL = getDataLayout(); |
| 3369 | |
| 3370 | // Stores argument shadows. |
| 3371 | unsigned ArgOffset = 0; |
| 3372 | for (unsigned I = 0, N = FT->getNumParams(); I != N; ++I) { |
| 3373 | if (ShouldTrackOrigins) { |
| 3374 | // Ignore overflowed origins |
| 3375 | Value *ArgShadow = DFSF.getShadow(V: CB.getArgOperand(i: I)); |
| 3376 | if (I < DFSF.DFS.NumOfElementsInArgOrgTLS && |
| 3377 | !DFSF.DFS.isZeroShadow(V: ArgShadow)) |
| 3378 | IRB.CreateStore(Val: DFSF.getOrigin(V: CB.getArgOperand(i: I)), |
| 3379 | Ptr: DFSF.getArgOriginTLS(ArgNo: I, IRB)); |
| 3380 | } |
| 3381 | |
| 3382 | unsigned Size = |
| 3383 | DL.getTypeAllocSize(Ty: DFSF.DFS.getShadowTy(OrigTy: FT->getParamType(i: I))); |
| 3384 | // Stop storing if arguments' size overflows. Inside a function, arguments |
| 3385 | // after overflow have zero shadow values. |
| 3386 | if (ArgOffset + Size > ArgTLSSize) |
| 3387 | break; |
| 3388 | IRB.CreateAlignedStore(Val: DFSF.getShadow(V: CB.getArgOperand(i: I)), |
| 3389 | Ptr: DFSF.getArgTLS(T: FT->getParamType(i: I), ArgOffset, IRB), |
| 3390 | Align: ShadowTLSAlignment); |
| 3391 | ArgOffset += alignTo(Size, A: ShadowTLSAlignment); |
| 3392 | } |
| 3393 | |
| 3394 | Instruction *Next = nullptr; |
| 3395 | if (!CB.getType()->isVoidTy()) { |
| 3396 | if (InvokeInst *II = dyn_cast<InvokeInst>(Val: &CB)) { |
| 3397 | if (II->getNormalDest()->getSinglePredecessor()) { |
| 3398 | Next = &II->getNormalDest()->front(); |
| 3399 | } else { |
| 3400 | BasicBlock *NewBB = |
| 3401 | SplitEdge(From: II->getParent(), To: II->getNormalDest(), DT: &DFSF.DT); |
| 3402 | Next = &NewBB->front(); |
| 3403 | } |
| 3404 | } else { |
| 3405 | assert(CB.getIterator() != CB.getParent()->end()); |
| 3406 | Next = CB.getNextNode(); |
| 3407 | } |
| 3408 | |
| 3409 | // Don't emit the epilogue for musttail call returns. |
| 3410 | if (isa<CallInst>(Val: CB) && cast<CallInst>(Val&: CB).isMustTailCall()) |
| 3411 | return; |
| 3412 | |
| 3413 | // Loads the return value shadow. |
| 3414 | IRBuilder<> NextIRB(Next); |
| 3415 | unsigned Size = DL.getTypeAllocSize(Ty: DFSF.DFS.getShadowTy(V: &CB)); |
| 3416 | if (Size > RetvalTLSSize) { |
| 3417 | // Set overflowed return shadow to be zero. |
| 3418 | DFSF.setShadow(I: &CB, Shadow: DFSF.DFS.getZeroShadow(V: &CB)); |
| 3419 | } else { |
| 3420 | LoadInst *LI = NextIRB.CreateAlignedLoad( |
| 3421 | Ty: DFSF.DFS.getShadowTy(V: &CB), Ptr: DFSF.getRetvalTLS(T: CB.getType(), IRB&: NextIRB), |
| 3422 | Align: ShadowTLSAlignment, Name: "_dfsret" ); |
| 3423 | DFSF.SkipInsts.insert(V: LI); |
| 3424 | DFSF.setShadow(I: &CB, Shadow: LI); |
| 3425 | DFSF.NonZeroChecks.push_back(x: LI); |
| 3426 | } |
| 3427 | |
| 3428 | if (ShouldTrackOrigins) { |
| 3429 | LoadInst *LI = NextIRB.CreateLoad(Ty: DFSF.DFS.OriginTy, |
| 3430 | Ptr: DFSF.getRetvalOriginTLS(), Name: "_dfsret_o" ); |
| 3431 | DFSF.SkipInsts.insert(V: LI); |
| 3432 | DFSF.setOrigin(I: &CB, Origin: LI); |
| 3433 | } |
| 3434 | |
| 3435 | DFSF.addReachesFunctionCallbacksIfEnabled(IRB&: NextIRB, I&: CB, Data: &CB); |
| 3436 | } |
| 3437 | } |
| 3438 | |
| 3439 | void DFSanVisitor::visitPHINode(PHINode &PN) { |
| 3440 | Type *ShadowTy = DFSF.DFS.getShadowTy(V: &PN); |
| 3441 | PHINode *ShadowPN = PHINode::Create(Ty: ShadowTy, NumReservedValues: PN.getNumIncomingValues(), NameStr: "" , |
| 3442 | InsertBefore: PN.getIterator()); |
| 3443 | |
| 3444 | // Give the shadow phi node valid predecessors to fool SplitEdge into working. |
| 3445 | Value *PoisonShadow = PoisonValue::get(T: ShadowTy); |
| 3446 | for (BasicBlock *BB : PN.blocks()) |
| 3447 | ShadowPN->addIncoming(V: PoisonShadow, BB); |
| 3448 | |
| 3449 | DFSF.setShadow(I: &PN, Shadow: ShadowPN); |
| 3450 | |
| 3451 | PHINode *OriginPN = nullptr; |
| 3452 | if (DFSF.DFS.shouldTrackOrigins()) { |
| 3453 | OriginPN = PHINode::Create(Ty: DFSF.DFS.OriginTy, NumReservedValues: PN.getNumIncomingValues(), NameStr: "" , |
| 3454 | InsertBefore: PN.getIterator()); |
| 3455 | Value *PoisonOrigin = PoisonValue::get(T: DFSF.DFS.OriginTy); |
| 3456 | for (BasicBlock *BB : PN.blocks()) |
| 3457 | OriginPN->addIncoming(V: PoisonOrigin, BB); |
| 3458 | DFSF.setOrigin(I: &PN, Origin: OriginPN); |
| 3459 | } |
| 3460 | |
| 3461 | DFSF.PHIFixups.push_back(x: {.Phi: &PN, .ShadowPhi: ShadowPN, .OriginPhi: OriginPN}); |
| 3462 | } |
| 3463 | |
| 3464 | PreservedAnalyses DataFlowSanitizerPass::run(Module &M, |
| 3465 | ModuleAnalysisManager &AM) { |
| 3466 | // Return early if nosanitize_dataflow module flag is present for the module. |
| 3467 | if (checkIfAlreadyInstrumented(M, Flag: "nosanitize_dataflow" )) |
| 3468 | return PreservedAnalyses::all(); |
| 3469 | auto GetTLI = [&](Function &F) -> TargetLibraryInfo & { |
| 3470 | auto &FAM = |
| 3471 | AM.getResult<FunctionAnalysisManagerModuleProxy>(IR&: M).getManager(); |
| 3472 | return FAM.getResult<TargetLibraryAnalysis>(IR&: F); |
| 3473 | }; |
| 3474 | if (!DataFlowSanitizer(ABIListFiles).runImpl(M, GetTLI)) |
| 3475 | return PreservedAnalyses::all(); |
| 3476 | |
| 3477 | PreservedAnalyses PA = PreservedAnalyses::none(); |
| 3478 | // GlobalsAA is considered stateless and does not get invalidated unless |
| 3479 | // explicitly invalidated; PreservedAnalyses::none() is not enough. Sanitizers |
| 3480 | // make changes that require GlobalsAA to be invalidated. |
| 3481 | PA.abandon<GlobalsAA>(); |
| 3482 | return PA; |
| 3483 | } |
| 3484 | |