| 1 | //===- IndirectCallPromotion.cpp - Optimizations based on value profiling -===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the transformation that promotes indirect calls to |
| 10 | // conditional direct calls when the indirect-call value profile metadata is |
| 11 | // available. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "llvm/ADT/ArrayRef.h" |
| 16 | #include "llvm/ADT/DenseMap.h" |
| 17 | #include "llvm/ADT/Statistic.h" |
| 18 | #include "llvm/ADT/StringRef.h" |
| 19 | #include "llvm/Analysis/IndirectCallPromotionAnalysis.h" |
| 20 | #include "llvm/Analysis/IndirectCallVisitor.h" |
| 21 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| 22 | #include "llvm/Analysis/ProfileSummaryInfo.h" |
| 23 | #include "llvm/Analysis/TypeMetadataUtils.h" |
| 24 | #include "llvm/IR/DiagnosticInfo.h" |
| 25 | #include "llvm/IR/Dominators.h" |
| 26 | #include "llvm/IR/Function.h" |
| 27 | #include "llvm/IR/InstrTypes.h" |
| 28 | #include "llvm/IR/Instructions.h" |
| 29 | #include "llvm/IR/LLVMContext.h" |
| 30 | #include "llvm/IR/MDBuilder.h" |
| 31 | #include "llvm/IR/PassManager.h" |
| 32 | #include "llvm/IR/ProfDataUtils.h" |
| 33 | #include "llvm/IR/Value.h" |
| 34 | #include "llvm/ProfileData/InstrProf.h" |
| 35 | #include "llvm/Support/Casting.h" |
| 36 | #include "llvm/Support/CommandLine.h" |
| 37 | #include "llvm/Support/Debug.h" |
| 38 | #include "llvm/Support/Error.h" |
| 39 | #include "llvm/Support/raw_ostream.h" |
| 40 | #include "llvm/Transforms/Instrumentation/PGOInstrumentation.h" |
| 41 | #include "llvm/Transforms/Utils/CallPromotionUtils.h" |
| 42 | #include "llvm/Transforms/Utils/Instrumentation.h" |
| 43 | #include <cassert> |
| 44 | #include <cstdint> |
| 45 | #include <set> |
| 46 | #include <string> |
| 47 | #include <unordered_map> |
| 48 | #include <utility> |
| 49 | #include <vector> |
| 50 | |
| 51 | using namespace llvm; |
| 52 | |
| 53 | #define DEBUG_TYPE "pgo-icall-prom" |
| 54 | |
| 55 | STATISTIC(NumOfPGOICallPromotion, "Number of indirect call promotions." ); |
| 56 | STATISTIC(NumOfPGOICallsites, "Number of indirect call candidate sites." ); |
| 57 | |
| 58 | extern cl::opt<unsigned> MaxNumVTableAnnotations; |
| 59 | |
| 60 | namespace llvm { |
| 61 | extern cl::opt<bool> EnableVTableProfileUse; |
| 62 | } |
| 63 | |
| 64 | // Command line option to disable indirect-call promotion with the default as |
| 65 | // false. This is for debug purpose. |
| 66 | static cl::opt<bool> DisableICP("disable-icp" , cl::init(Val: false), cl::Hidden, |
| 67 | cl::desc("Disable indirect call promotion" )); |
| 68 | |
| 69 | // Set the cutoff value for the promotion. If the value is other than 0, we |
| 70 | // stop the transformation once the total number of promotions equals the cutoff |
| 71 | // value. |
| 72 | // For debug use only. |
| 73 | static cl::opt<unsigned> |
| 74 | ICPCutOff("icp-cutoff" , cl::init(Val: 0), cl::Hidden, |
| 75 | cl::desc("Max number of promotions for this compilation" )); |
| 76 | |
| 77 | // If ICPCSSkip is non zero, the first ICPCSSkip callsites will be skipped. |
| 78 | // For debug use only. |
| 79 | static cl::opt<unsigned> |
| 80 | ICPCSSkip("icp-csskip" , cl::init(Val: 0), cl::Hidden, |
| 81 | cl::desc("Skip Callsite up to this number for this compilation" )); |
| 82 | |
| 83 | // Set if the pass is called in LTO optimization. The difference for LTO mode |
| 84 | // is the pass won't prefix the source module name to the internal linkage |
| 85 | // symbols. |
| 86 | static cl::opt<bool> ICPLTOMode("icp-lto" , cl::init(Val: false), cl::Hidden, |
| 87 | cl::desc("Run indirect-call promotion in LTO " |
| 88 | "mode" )); |
| 89 | |
| 90 | // Set if the pass is called in SamplePGO mode. The difference for SamplePGO |
| 91 | // mode is it will add prof metadatato the created direct call. |
| 92 | static cl::opt<bool> |
| 93 | ICPSamplePGOMode("icp-samplepgo" , cl::init(Val: false), cl::Hidden, |
| 94 | cl::desc("Run indirect-call promotion in SamplePGO mode" )); |
| 95 | |
| 96 | // If the option is set to true, only call instructions will be considered for |
| 97 | // transformation -- invoke instructions will be ignored. |
| 98 | static cl::opt<bool> |
| 99 | ICPCallOnly("icp-call-only" , cl::init(Val: false), cl::Hidden, |
| 100 | cl::desc("Run indirect-call promotion for call instructions " |
| 101 | "only" )); |
| 102 | |
| 103 | // If the option is set to true, only invoke instructions will be considered for |
| 104 | // transformation -- call instructions will be ignored. |
| 105 | static cl::opt<bool> ICPInvokeOnly("icp-invoke-only" , cl::init(Val: false), |
| 106 | cl::Hidden, |
| 107 | cl::desc("Run indirect-call promotion for " |
| 108 | "invoke instruction only" )); |
| 109 | |
| 110 | // Dump the function level IR if the transformation happened in this |
| 111 | // function. For debug use only. |
| 112 | static cl::opt<bool> |
| 113 | ICPDUMPAFTER("icp-dumpafter" , cl::init(Val: false), cl::Hidden, |
| 114 | cl::desc("Dump IR after transformation happens" )); |
| 115 | |
| 116 | // Indirect call promotion pass will fall back to function-based comparison if |
| 117 | // vtable-count / function-count is smaller than this threshold. |
| 118 | static cl::opt<float> ICPVTablePercentageThreshold( |
| 119 | "icp-vtable-percentage-threshold" , cl::init(Val: 0.995), cl::Hidden, |
| 120 | cl::desc("The percentage threshold of vtable-count / function-count for " |
| 121 | "cost-benefit analysis." )); |
| 122 | |
| 123 | // Although comparing vtables can save a vtable load, we may need to compare |
| 124 | // vtable pointer with multiple vtable address points due to class inheritance. |
| 125 | // Comparing with multiple vtables inserts additional instructions on hot code |
| 126 | // path, and doing so for an earlier candidate delays the comparisons for later |
| 127 | // candidates. For the last candidate, only the fallback path is affected. |
| 128 | // We allow multiple vtable comparison for the last function candidate and use |
| 129 | // the option below to cap the number of vtables. |
| 130 | static cl::opt<int> ICPMaxNumVTableLastCandidate( |
| 131 | "icp-max-num-vtable-last-candidate" , cl::init(Val: 1), cl::Hidden, |
| 132 | cl::desc("The maximum number of vtable for the last candidate." )); |
| 133 | |
| 134 | static cl::list<std::string> ICPIgnoredBaseTypes( |
| 135 | "icp-ignored-base-types" , cl::Hidden, |
| 136 | cl::desc( |
| 137 | "A list of mangled vtable type info names. Classes specified by the " |
| 138 | "type info names and their derived ones will not be vtable-ICP'ed. " |
| 139 | "Useful when the profiled types and actual types in the optimized " |
| 140 | "binary could be different due to profiling limitations. Type info " |
| 141 | "names are those string literals used in LLVM type metadata" )); |
| 142 | |
| 143 | namespace { |
| 144 | |
| 145 | // The key is a vtable global variable, and the value is a map. |
| 146 | // In the inner map, the key represents address point offsets and the value is a |
| 147 | // constant for this address point. |
| 148 | using VTableAddressPointOffsetValMap = |
| 149 | SmallDenseMap<const GlobalVariable *, std::unordered_map<int, Constant *>>; |
| 150 | |
| 151 | // A struct to collect type information for a virtual call site. |
| 152 | struct VirtualCallSiteInfo { |
| 153 | // The offset from the address point to virtual function in the vtable. |
| 154 | uint64_t FunctionOffset; |
| 155 | // The instruction that computes the address point of vtable. |
| 156 | Instruction *VPtr; |
| 157 | // The compatible type used in LLVM type intrinsics. |
| 158 | StringRef CompatibleTypeStr; |
| 159 | }; |
| 160 | |
| 161 | // The key is a virtual call, and value is its type information. |
| 162 | using VirtualCallSiteTypeInfoMap = |
| 163 | SmallDenseMap<const CallBase *, VirtualCallSiteInfo>; |
| 164 | |
| 165 | // The key is vtable GUID, and value is its value profile count. |
| 166 | using VTableGUIDCountsMap = SmallDenseMap<uint64_t, uint64_t, 16>; |
| 167 | |
| 168 | // Return the address point offset of the given compatible type. |
| 169 | // |
| 170 | // Type metadata of a vtable specifies the types that can contain a pointer to |
| 171 | // this vtable, for example, `Base*` can be a pointer to an derived type |
| 172 | // but not vice versa. See also https://llvm.org/docs/TypeMetadata.html |
| 173 | static std::optional<uint64_t> |
| 174 | getAddressPointOffset(const GlobalVariable &VTableVar, |
| 175 | StringRef CompatibleType) { |
| 176 | SmallVector<MDNode *> Types; |
| 177 | VTableVar.getMetadata(KindID: LLVMContext::MD_type, MDs&: Types); |
| 178 | |
| 179 | for (MDNode *Type : Types) |
| 180 | if (auto *TypeId = dyn_cast<MDString>(Val: Type->getOperand(I: 1).get()); |
| 181 | TypeId && TypeId->getString() == CompatibleType) |
| 182 | return cast<ConstantInt>( |
| 183 | Val: cast<ConstantAsMetadata>(Val: Type->getOperand(I: 0))->getValue()) |
| 184 | ->getZExtValue(); |
| 185 | |
| 186 | return std::nullopt; |
| 187 | } |
| 188 | |
| 189 | // Return a constant representing the vtable's address point specified by the |
| 190 | // offset. |
| 191 | static Constant *getVTableAddressPointOffset(GlobalVariable *VTable, |
| 192 | uint32_t AddressPointOffset) { |
| 193 | Module &M = *VTable->getParent(); |
| 194 | LLVMContext &Context = M.getContext(); |
| 195 | assert(AddressPointOffset < |
| 196 | M.getDataLayout().getTypeAllocSize(VTable->getValueType()) && |
| 197 | "Out-of-bound access" ); |
| 198 | |
| 199 | return ConstantExpr::getInBoundsGetElementPtr( |
| 200 | Ty: Type::getInt8Ty(C&: Context), C: VTable, |
| 201 | Idx: llvm::ConstantInt::get(Ty: Type::getInt32Ty(C&: Context), V: AddressPointOffset)); |
| 202 | } |
| 203 | |
| 204 | // Return the basic block in which Use `U` is used via its `UserInst`. |
| 205 | static BasicBlock *getUserBasicBlock(Use &U, Instruction *UserInst) { |
| 206 | if (PHINode *PN = dyn_cast<PHINode>(Val: UserInst)) |
| 207 | return PN->getIncomingBlock(U); |
| 208 | |
| 209 | return UserInst->getParent(); |
| 210 | } |
| 211 | |
| 212 | // `DestBB` is a suitable basic block to sink `Inst` into when `Inst` have users |
| 213 | // and all users are in `DestBB`. The caller guarantees that `Inst->getParent()` |
| 214 | // is the sole predecessor of `DestBB` and `DestBB` is dominated by |
| 215 | // `Inst->getParent()`. |
| 216 | static bool isDestBBSuitableForSink(Instruction *Inst, BasicBlock *DestBB) { |
| 217 | // 'BB' is used only by assert. |
| 218 | [[maybe_unused]] BasicBlock *BB = Inst->getParent(); |
| 219 | |
| 220 | assert(BB != DestBB && BB->getTerminator()->getNumSuccessors() == 2 && |
| 221 | DestBB->getUniquePredecessor() == BB && |
| 222 | "Guaranteed by ICP transformation" ); |
| 223 | |
| 224 | BasicBlock *UserBB = nullptr; |
| 225 | for (Use &Use : Inst->uses()) { |
| 226 | User *User = Use.getUser(); |
| 227 | // Do checked cast since IR verifier guarantees that the user of an |
| 228 | // instruction must be an instruction. See `Verifier::visitInstruction`. |
| 229 | Instruction *UserInst = cast<Instruction>(Val: User); |
| 230 | // We can sink debug or pseudo instructions together with Inst. |
| 231 | if (UserInst->isDebugOrPseudoInst()) |
| 232 | continue; |
| 233 | UserBB = getUserBasicBlock(U&: Use, UserInst); |
| 234 | // Do not sink if Inst is used in a basic block that is not DestBB. |
| 235 | // TODO: Sink to the common dominator of all user blocks. |
| 236 | if (UserBB != DestBB) |
| 237 | return false; |
| 238 | } |
| 239 | return UserBB != nullptr; |
| 240 | } |
| 241 | |
| 242 | // For the virtual call dispatch sequence, try to sink vtable load instructions |
| 243 | // to the cold indirect call fallback. |
| 244 | // FIXME: Move the sink eligibility check below to a utility function in |
| 245 | // Transforms/Utils/ directory. |
| 246 | static bool tryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { |
| 247 | if (!isDestBBSuitableForSink(Inst: I, DestBB: DestBlock)) |
| 248 | return false; |
| 249 | |
| 250 | // Do not move control-flow-involving, volatile loads, vaarg, alloca |
| 251 | // instructions, etc. |
| 252 | if (isa<PHINode>(Val: I) || I->isEHPad() || I->mayThrow() || !I->willReturn() || |
| 253 | isa<AllocaInst>(Val: I)) |
| 254 | return false; |
| 255 | |
| 256 | // Do not sink convergent call instructions. |
| 257 | if (const auto *C = dyn_cast<CallBase>(Val: I)) |
| 258 | if (C->isInlineAsm() || C->cannotMerge() || C->isConvergent()) |
| 259 | return false; |
| 260 | |
| 261 | // Do not move an instruction that may write to memory. |
| 262 | if (I->mayWriteToMemory()) |
| 263 | return false; |
| 264 | |
| 265 | // We can only sink load instructions if there is nothing between the load and |
| 266 | // the end of block that could change the value. |
| 267 | if (I->mayReadFromMemory()) { |
| 268 | // We already know that SrcBlock is the unique predecessor of DestBlock. |
| 269 | for (BasicBlock::iterator Scan = std::next(x: I->getIterator()), |
| 270 | E = I->getParent()->end(); |
| 271 | Scan != E; ++Scan) { |
| 272 | // Note analysis analysis can tell whether two pointers can point to the |
| 273 | // same object in memory or not thereby find further opportunities to |
| 274 | // sink. |
| 275 | if (Scan->mayWriteToMemory()) |
| 276 | return false; |
| 277 | } |
| 278 | } |
| 279 | |
| 280 | BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); |
| 281 | I->moveBefore(BB&: *DestBlock, I: InsertPos); |
| 282 | |
| 283 | // TODO: Sink debug intrinsic users of I to 'DestBlock'. |
| 284 | // 'InstCombinerImpl::tryToSinkInstructionDbgValues' and |
| 285 | // 'InstCombinerImpl::tryToSinkInstructionDbgVariableRecords' already have |
| 286 | // the core logic to do this. |
| 287 | return true; |
| 288 | } |
| 289 | |
| 290 | // Try to sink instructions after VPtr to the indirect call fallback. |
| 291 | // Return the number of sunk IR instructions. |
| 292 | static int tryToSinkInstructions(BasicBlock *OriginalBB, |
| 293 | BasicBlock *IndirectCallBB) { |
| 294 | int SinkCount = 0; |
| 295 | // Do not sink across a critical edge for simplicity. |
| 296 | if (IndirectCallBB->getUniquePredecessor() != OriginalBB) |
| 297 | return SinkCount; |
| 298 | // Sink all eligible instructions in OriginalBB in reverse order. |
| 299 | for (Instruction &I : |
| 300 | llvm::make_early_inc_range(Range: llvm::drop_begin(RangeOrContainer: llvm::reverse(C&: *OriginalBB)))) |
| 301 | if (tryToSinkInstruction(I: &I, DestBlock: IndirectCallBB)) |
| 302 | SinkCount++; |
| 303 | |
| 304 | return SinkCount; |
| 305 | } |
| 306 | |
| 307 | // Promote indirect calls to conditional direct calls, keeping track of |
| 308 | // thresholds. |
| 309 | class IndirectCallPromoter { |
| 310 | private: |
| 311 | Function &F; |
| 312 | Module &M; |
| 313 | |
| 314 | // Symtab that maps indirect call profile values to function names and |
| 315 | // defines. |
| 316 | InstrProfSymtab *const Symtab; |
| 317 | |
| 318 | const bool SamplePGO; |
| 319 | |
| 320 | // A map from a virtual call to its type information. |
| 321 | const VirtualCallSiteTypeInfoMap &VirtualCSInfo; |
| 322 | |
| 323 | VTableAddressPointOffsetValMap &VTableAddressPointOffsetVal; |
| 324 | |
| 325 | OptimizationRemarkEmitter &ORE; |
| 326 | |
| 327 | const DenseSet<StringRef> &IgnoredBaseTypes; |
| 328 | |
| 329 | // A struct that records the direct target and it's call count. |
| 330 | struct PromotionCandidate { |
| 331 | Function *const TargetFunction; |
| 332 | const uint64_t Count; |
| 333 | |
| 334 | // The following fields only exists for promotion candidates with vtable |
| 335 | // information. |
| 336 | // |
| 337 | // Due to class inheritance, one virtual call candidate can come from |
| 338 | // multiple vtables. `VTableGUIDAndCounts` tracks the vtable GUIDs and |
| 339 | // counts for 'TargetFunction'. `AddressPoints` stores the vtable address |
| 340 | // points for comparison. |
| 341 | VTableGUIDCountsMap VTableGUIDAndCounts; |
| 342 | SmallVector<Constant *> AddressPoints; |
| 343 | |
| 344 | PromotionCandidate(Function *F, uint64_t C) : TargetFunction(F), Count(C) {} |
| 345 | }; |
| 346 | |
| 347 | // Check if the indirect-call call site should be promoted. Return the number |
| 348 | // of promotions. Inst is the candidate indirect call, ValueDataRef |
| 349 | // contains the array of value profile data for profiled targets, |
| 350 | // TotalCount is the total profiled count of call executions, and |
| 351 | // NumCandidates is the number of candidate entries in ValueDataRef. |
| 352 | std::vector<PromotionCandidate> getPromotionCandidatesForCallSite( |
| 353 | const CallBase &CB, ArrayRef<InstrProfValueData> ValueDataRef, |
| 354 | uint64_t TotalCount, uint32_t NumCandidates); |
| 355 | |
| 356 | // Promote a list of targets for one indirect-call callsite by comparing |
| 357 | // indirect callee with functions. Return true if there are IR |
| 358 | // transformations and false otherwise. |
| 359 | bool tryToPromoteWithFuncCmp(CallBase &CB, Instruction *VPtr, |
| 360 | ArrayRef<PromotionCandidate> Candidates, |
| 361 | uint64_t TotalCount, |
| 362 | ArrayRef<InstrProfValueData> ICallProfDataRef, |
| 363 | uint32_t NumCandidates, |
| 364 | VTableGUIDCountsMap &VTableGUIDCounts); |
| 365 | |
| 366 | // Promote a list of targets for one indirect call by comparing vtables with |
| 367 | // functions. Return true if there are IR transformations and false |
| 368 | // otherwise. |
| 369 | bool tryToPromoteWithVTableCmp( |
| 370 | CallBase &CB, Instruction *VPtr, ArrayRef<PromotionCandidate> Candidates, |
| 371 | uint64_t TotalFuncCount, uint32_t NumCandidates, |
| 372 | MutableArrayRef<InstrProfValueData> ICallProfDataRef, |
| 373 | VTableGUIDCountsMap &VTableGUIDCounts); |
| 374 | |
| 375 | // Return true if it's profitable to compare vtables for the callsite. |
| 376 | bool isProfitableToCompareVTables(const CallBase &CB, |
| 377 | ArrayRef<PromotionCandidate> Candidates); |
| 378 | |
| 379 | // Return true if the vtable corresponding to VTableGUID should be skipped |
| 380 | // for vtable-based comparison. |
| 381 | bool shouldSkipVTable(uint64_t VTableGUID); |
| 382 | |
| 383 | // Given an indirect callsite and the list of function candidates, compute |
| 384 | // the following vtable information in output parameters and return vtable |
| 385 | // pointer if type profiles exist. |
| 386 | // - Populate `VTableGUIDCounts` with <vtable-guid, count> using !prof |
| 387 | // metadata attached on the vtable pointer. |
| 388 | // - For each function candidate, finds out the vtables from which it gets |
| 389 | // called and stores the <vtable-guid, count> in promotion candidate. |
| 390 | Instruction *computeVTableInfos(const CallBase *CB, |
| 391 | VTableGUIDCountsMap &VTableGUIDCounts, |
| 392 | std::vector<PromotionCandidate> &Candidates); |
| 393 | |
| 394 | Constant *getOrCreateVTableAddressPointVar(GlobalVariable *GV, |
| 395 | uint64_t AddressPointOffset); |
| 396 | |
| 397 | void updateFuncValueProfiles(CallBase &CB, ArrayRef<InstrProfValueData> VDs, |
| 398 | uint64_t Sum, uint32_t MaxMDCount); |
| 399 | |
| 400 | void updateVPtrValueProfiles(Instruction *VPtr, |
| 401 | VTableGUIDCountsMap &VTableGUIDCounts); |
| 402 | |
| 403 | public: |
| 404 | IndirectCallPromoter( |
| 405 | Function &Func, Module &M, InstrProfSymtab *Symtab, bool SamplePGO, |
| 406 | const VirtualCallSiteTypeInfoMap &VirtualCSInfo, |
| 407 | VTableAddressPointOffsetValMap &VTableAddressPointOffsetVal, |
| 408 | const DenseSet<StringRef> &IgnoredBaseTypes, |
| 409 | OptimizationRemarkEmitter &ORE) |
| 410 | : F(Func), M(M), Symtab(Symtab), SamplePGO(SamplePGO), |
| 411 | VirtualCSInfo(VirtualCSInfo), |
| 412 | VTableAddressPointOffsetVal(VTableAddressPointOffsetVal), ORE(ORE), |
| 413 | IgnoredBaseTypes(IgnoredBaseTypes) {} |
| 414 | IndirectCallPromoter(const IndirectCallPromoter &) = delete; |
| 415 | IndirectCallPromoter &operator=(const IndirectCallPromoter &) = delete; |
| 416 | |
| 417 | bool processFunction(ProfileSummaryInfo *PSI); |
| 418 | }; |
| 419 | |
| 420 | } // end anonymous namespace |
| 421 | |
| 422 | // Indirect-call promotion heuristic. The direct targets are sorted based on |
| 423 | // the count. Stop at the first target that is not promoted. |
| 424 | std::vector<IndirectCallPromoter::PromotionCandidate> |
| 425 | IndirectCallPromoter::getPromotionCandidatesForCallSite( |
| 426 | const CallBase &CB, ArrayRef<InstrProfValueData> ValueDataRef, |
| 427 | uint64_t TotalCount, uint32_t NumCandidates) { |
| 428 | std::vector<PromotionCandidate> Ret; |
| 429 | |
| 430 | LLVM_DEBUG(dbgs() << " \nWork on callsite #" << NumOfPGOICallsites << CB |
| 431 | << " Num_targets: " << ValueDataRef.size() |
| 432 | << " Num_candidates: " << NumCandidates << "\n" ); |
| 433 | NumOfPGOICallsites++; |
| 434 | if (ICPCSSkip != 0 && NumOfPGOICallsites <= ICPCSSkip) { |
| 435 | LLVM_DEBUG(dbgs() << " Skip: User options.\n" ); |
| 436 | return Ret; |
| 437 | } |
| 438 | |
| 439 | for (uint32_t I = 0; I < NumCandidates; I++) { |
| 440 | uint64_t Count = ValueDataRef[I].Count; |
| 441 | assert(Count <= TotalCount); |
| 442 | (void)TotalCount; |
| 443 | uint64_t Target = ValueDataRef[I].Value; |
| 444 | LLVM_DEBUG(dbgs() << " Candidate " << I << " Count=" << Count |
| 445 | << " Target_func: " << Target << "\n" ); |
| 446 | |
| 447 | if (ICPInvokeOnly && isa<CallInst>(Val: CB)) { |
| 448 | LLVM_DEBUG(dbgs() << " Not promote: User options.\n" ); |
| 449 | ORE.emit(RemarkBuilder: [&]() { |
| 450 | return OptimizationRemarkMissed(DEBUG_TYPE, "UserOptions" , &CB) |
| 451 | << " Not promote: User options" ; |
| 452 | }); |
| 453 | break; |
| 454 | } |
| 455 | if (ICPCallOnly && isa<InvokeInst>(Val: CB)) { |
| 456 | LLVM_DEBUG(dbgs() << " Not promote: User option.\n" ); |
| 457 | ORE.emit(RemarkBuilder: [&]() { |
| 458 | return OptimizationRemarkMissed(DEBUG_TYPE, "UserOptions" , &CB) |
| 459 | << " Not promote: User options" ; |
| 460 | }); |
| 461 | break; |
| 462 | } |
| 463 | if (ICPCutOff != 0 && NumOfPGOICallPromotion >= ICPCutOff) { |
| 464 | LLVM_DEBUG(dbgs() << " Not promote: Cutoff reached.\n" ); |
| 465 | ORE.emit(RemarkBuilder: [&]() { |
| 466 | return OptimizationRemarkMissed(DEBUG_TYPE, "CutOffReached" , &CB) |
| 467 | << " Not promote: Cutoff reached" ; |
| 468 | }); |
| 469 | break; |
| 470 | } |
| 471 | |
| 472 | // Don't promote if the symbol is not defined in the module. This avoids |
| 473 | // creating a reference to a symbol that doesn't exist in the module |
| 474 | // This can happen when we compile with a sample profile collected from |
| 475 | // one binary but used for another, which may have profiled targets that |
| 476 | // aren't used in the new binary. We might have a declaration initially in |
| 477 | // the case where the symbol is globally dead in the binary and removed by |
| 478 | // ThinLTO. |
| 479 | Function *TargetFunction = Symtab->getFunction(FuncMD5Hash: Target); |
| 480 | if (TargetFunction == nullptr || TargetFunction->isDeclaration()) { |
| 481 | LLVM_DEBUG(dbgs() << " Not promote: Cannot find the target\n" ); |
| 482 | ORE.emit(RemarkBuilder: [&]() { |
| 483 | return OptimizationRemarkMissed(DEBUG_TYPE, "UnableToFindTarget" , &CB) |
| 484 | << "Cannot promote indirect call: target with md5sum " |
| 485 | << ore::NV("target md5sum" , Target) << " not found" ; |
| 486 | }); |
| 487 | break; |
| 488 | } |
| 489 | |
| 490 | const char *Reason = nullptr; |
| 491 | if (!isLegalToPromote(CB, Callee: TargetFunction, FailureReason: &Reason)) { |
| 492 | using namespace ore; |
| 493 | |
| 494 | ORE.emit(RemarkBuilder: [&]() { |
| 495 | return OptimizationRemarkMissed(DEBUG_TYPE, "UnableToPromote" , &CB) |
| 496 | << "Cannot promote indirect call to " |
| 497 | << NV("TargetFunction" , TargetFunction) << " with count of " |
| 498 | << NV("Count" , Count) << ": " << Reason; |
| 499 | }); |
| 500 | break; |
| 501 | } |
| 502 | |
| 503 | Ret.push_back(x: PromotionCandidate(TargetFunction, Count)); |
| 504 | TotalCount -= Count; |
| 505 | } |
| 506 | return Ret; |
| 507 | } |
| 508 | |
| 509 | Constant *IndirectCallPromoter::getOrCreateVTableAddressPointVar( |
| 510 | GlobalVariable *GV, uint64_t AddressPointOffset) { |
| 511 | auto [Iter, Inserted] = |
| 512 | VTableAddressPointOffsetVal[GV].try_emplace(k: AddressPointOffset, args: nullptr); |
| 513 | if (Inserted) |
| 514 | Iter->second = getVTableAddressPointOffset(VTable: GV, AddressPointOffset); |
| 515 | return Iter->second; |
| 516 | } |
| 517 | |
| 518 | Instruction *IndirectCallPromoter::computeVTableInfos( |
| 519 | const CallBase *CB, VTableGUIDCountsMap &GUIDCountsMap, |
| 520 | std::vector<PromotionCandidate> &Candidates) { |
| 521 | if (!EnableVTableProfileUse) |
| 522 | return nullptr; |
| 523 | |
| 524 | // Take the following code sequence as an example, here is how the code works |
| 525 | // @vtable1 = {[n x ptr] [... ptr @func1]} |
| 526 | // @vtable2 = {[m x ptr] [... ptr @func2]} |
| 527 | // |
| 528 | // %vptr = load ptr, ptr %d, !prof !0 |
| 529 | // %0 = tail call i1 @llvm.type.test(ptr %vptr, metadata !"vtable1") |
| 530 | // tail call void @llvm.assume(i1 %0) |
| 531 | // %vfn = getelementptr inbounds ptr, ptr %vptr, i64 1 |
| 532 | // %1 = load ptr, ptr %vfn |
| 533 | // call void %1(ptr %d), !prof !1 |
| 534 | // |
| 535 | // !0 = !{!"VP", i32 2, i64 100, i64 123, i64 50, i64 456, i64 50} |
| 536 | // !1 = !{!"VP", i32 0, i64 100, i64 789, i64 50, i64 579, i64 50} |
| 537 | // |
| 538 | // Step 1. Find out the %vptr instruction for indirect call and use its !prof |
| 539 | // to populate `GUIDCountsMap`. |
| 540 | // Step 2. For each vtable-guid, look up its definition from symtab. LTO can |
| 541 | // make vtable definitions visible across modules. |
| 542 | // Step 3. Compute the byte offset of the virtual call, by adding vtable |
| 543 | // address point offset and function's offset relative to vtable address |
| 544 | // point. For each function candidate, this step tells us the vtable from |
| 545 | // which it comes from, and the vtable address point to compare %vptr with. |
| 546 | |
| 547 | // Only virtual calls have virtual call site info. |
| 548 | auto Iter = VirtualCSInfo.find(Val: CB); |
| 549 | if (Iter == VirtualCSInfo.end()) |
| 550 | return nullptr; |
| 551 | |
| 552 | LLVM_DEBUG(dbgs() << "\nComputing vtable infos for callsite #" |
| 553 | << NumOfPGOICallsites << "\n" ); |
| 554 | |
| 555 | const auto &VirtualCallInfo = Iter->second; |
| 556 | Instruction *VPtr = VirtualCallInfo.VPtr; |
| 557 | |
| 558 | SmallDenseMap<Function *, int, 4> CalleeIndexMap; |
| 559 | for (size_t I = 0; I < Candidates.size(); I++) |
| 560 | CalleeIndexMap[Candidates[I].TargetFunction] = I; |
| 561 | |
| 562 | uint64_t TotalVTableCount = 0; |
| 563 | auto VTableValueDataArray = |
| 564 | getValueProfDataFromInst(Inst: *VirtualCallInfo.VPtr, ValueKind: IPVK_VTableTarget, |
| 565 | MaxNumValueData: MaxNumVTableAnnotations, TotalC&: TotalVTableCount); |
| 566 | if (VTableValueDataArray.empty()) |
| 567 | return VPtr; |
| 568 | |
| 569 | // Compute the functions and counts from by each vtable. |
| 570 | for (const auto &V : VTableValueDataArray) { |
| 571 | uint64_t VTableVal = V.Value; |
| 572 | GUIDCountsMap[VTableVal] = V.Count; |
| 573 | GlobalVariable *VTableVar = Symtab->getGlobalVariable(MD5Hash: VTableVal); |
| 574 | if (!VTableVar) { |
| 575 | LLVM_DEBUG(dbgs() << " Cannot find vtable definition for " << VTableVal |
| 576 | << "; maybe the vtable isn't imported\n" ); |
| 577 | continue; |
| 578 | } |
| 579 | |
| 580 | std::optional<uint64_t> MaybeAddressPointOffset = |
| 581 | getAddressPointOffset(VTableVar: *VTableVar, CompatibleType: VirtualCallInfo.CompatibleTypeStr); |
| 582 | if (!MaybeAddressPointOffset) |
| 583 | continue; |
| 584 | |
| 585 | const uint64_t AddressPointOffset = *MaybeAddressPointOffset; |
| 586 | |
| 587 | Function *Callee = nullptr; |
| 588 | std::tie(args&: Callee, args: std::ignore) = getFunctionAtVTableOffset( |
| 589 | GV: VTableVar, Offset: AddressPointOffset + VirtualCallInfo.FunctionOffset, M); |
| 590 | if (!Callee) |
| 591 | continue; |
| 592 | auto CalleeIndexIter = CalleeIndexMap.find(Val: Callee); |
| 593 | if (CalleeIndexIter == CalleeIndexMap.end()) |
| 594 | continue; |
| 595 | |
| 596 | auto &Candidate = Candidates[CalleeIndexIter->second]; |
| 597 | // There shouldn't be duplicate GUIDs in one !prof metadata (except |
| 598 | // duplicated zeros), so assign counters directly won't cause overwrite or |
| 599 | // counter loss. |
| 600 | Candidate.VTableGUIDAndCounts[VTableVal] = V.Count; |
| 601 | Candidate.AddressPoints.push_back( |
| 602 | Elt: getOrCreateVTableAddressPointVar(GV: VTableVar, AddressPointOffset)); |
| 603 | } |
| 604 | |
| 605 | return VPtr; |
| 606 | } |
| 607 | |
| 608 | // Creates 'branch_weights' prof metadata using TrueWeight and FalseWeight. |
| 609 | // Scales uint64_t counters down to uint32_t if necessary to prevent overflow. |
| 610 | static MDNode *createBranchWeights(LLVMContext &Context, uint64_t TrueWeight, |
| 611 | uint64_t FalseWeight) { |
| 612 | MDBuilder MDB(Context); |
| 613 | uint64_t Scale = calculateCountScale(MaxCount: std::max(a: TrueWeight, b: FalseWeight)); |
| 614 | return MDB.createBranchWeights(TrueWeight: scaleBranchCount(Count: TrueWeight, Scale), |
| 615 | FalseWeight: scaleBranchCount(Count: FalseWeight, Scale)); |
| 616 | } |
| 617 | |
| 618 | CallBase &llvm::pgo::(CallBase &CB, Function *DirectCallee, |
| 619 | uint64_t Count, uint64_t TotalCount, |
| 620 | bool AttachProfToDirectCall, |
| 621 | OptimizationRemarkEmitter *ORE) { |
| 622 | CallBase &NewInst = promoteCallWithIfThenElse( |
| 623 | CB, Callee: DirectCallee, |
| 624 | BranchWeights: createBranchWeights(Context&: CB.getContext(), TrueWeight: Count, FalseWeight: TotalCount - Count)); |
| 625 | |
| 626 | if (AttachProfToDirectCall) |
| 627 | setBranchWeights(I&: NewInst, Weights: {static_cast<uint32_t>(Count)}, |
| 628 | /*IsExpected=*/false); |
| 629 | |
| 630 | using namespace ore; |
| 631 | |
| 632 | if (ORE) |
| 633 | ORE->emit(RemarkBuilder: [&]() { |
| 634 | return OptimizationRemark(DEBUG_TYPE, "Promoted" , &CB) |
| 635 | << "Promote indirect call to " << NV("DirectCallee" , DirectCallee) |
| 636 | << " with count " << NV("Count" , Count) << " out of " |
| 637 | << NV("TotalCount" , TotalCount); |
| 638 | }); |
| 639 | return NewInst; |
| 640 | } |
| 641 | |
| 642 | // Promote indirect-call to conditional direct-call for one callsite. |
| 643 | bool IndirectCallPromoter::tryToPromoteWithFuncCmp( |
| 644 | CallBase &CB, Instruction *VPtr, ArrayRef<PromotionCandidate> Candidates, |
| 645 | uint64_t TotalCount, ArrayRef<InstrProfValueData> ICallProfDataRef, |
| 646 | uint32_t NumCandidates, VTableGUIDCountsMap &VTableGUIDCounts) { |
| 647 | uint32_t NumPromoted = 0; |
| 648 | |
| 649 | for (const auto &C : Candidates) { |
| 650 | uint64_t FuncCount = C.Count; |
| 651 | pgo::promoteIndirectCall(CB, DirectCallee: C.TargetFunction, Count: FuncCount, TotalCount, |
| 652 | AttachProfToDirectCall: SamplePGO, ORE: &ORE); |
| 653 | assert(TotalCount >= FuncCount); |
| 654 | TotalCount -= FuncCount; |
| 655 | NumOfPGOICallPromotion++; |
| 656 | NumPromoted++; |
| 657 | |
| 658 | if (!EnableVTableProfileUse || C.VTableGUIDAndCounts.empty()) |
| 659 | continue; |
| 660 | |
| 661 | // After a virtual call candidate gets promoted, update the vtable's counts |
| 662 | // proportionally. Each vtable-guid in `C.VTableGUIDAndCounts` represents |
| 663 | // a vtable from which the virtual call is loaded. Compute the sum and use |
| 664 | // 128-bit APInt to improve accuracy. |
| 665 | uint64_t SumVTableCount = 0; |
| 666 | for (const auto &[GUID, VTableCount] : C.VTableGUIDAndCounts) |
| 667 | SumVTableCount += VTableCount; |
| 668 | |
| 669 | for (const auto &[GUID, VTableCount] : C.VTableGUIDAndCounts) { |
| 670 | APInt APFuncCount((unsigned)128, FuncCount, false /*signed*/); |
| 671 | APFuncCount *= VTableCount; |
| 672 | VTableGUIDCounts[GUID] -= APFuncCount.udiv(RHS: SumVTableCount).getZExtValue(); |
| 673 | } |
| 674 | } |
| 675 | if (NumPromoted == 0) |
| 676 | return false; |
| 677 | |
| 678 | assert(NumPromoted <= ICallProfDataRef.size() && |
| 679 | "Number of promoted functions should not be greater than the number " |
| 680 | "of values in profile metadata" ); |
| 681 | |
| 682 | // Update value profiles on the indirect call. |
| 683 | updateFuncValueProfiles(CB, VDs: ICallProfDataRef.slice(N: NumPromoted), Sum: TotalCount, |
| 684 | MaxMDCount: NumCandidates); |
| 685 | updateVPtrValueProfiles(VPtr, VTableGUIDCounts); |
| 686 | return true; |
| 687 | } |
| 688 | |
| 689 | void IndirectCallPromoter::updateFuncValueProfiles( |
| 690 | CallBase &CB, ArrayRef<InstrProfValueData> CallVDs, uint64_t TotalCount, |
| 691 | uint32_t MaxMDCount) { |
| 692 | // First clear the existing !prof. |
| 693 | CB.setMetadata(KindID: LLVMContext::MD_prof, Node: nullptr); |
| 694 | // Annotate the remaining value profiles if counter is not zero. |
| 695 | if (TotalCount != 0) |
| 696 | annotateValueSite(M, Inst&: CB, VDs: CallVDs, Sum: TotalCount, ValueKind: IPVK_IndirectCallTarget, |
| 697 | MaxMDCount); |
| 698 | } |
| 699 | |
| 700 | void IndirectCallPromoter::updateVPtrValueProfiles( |
| 701 | Instruction *VPtr, VTableGUIDCountsMap &VTableGUIDCounts) { |
| 702 | if (!EnableVTableProfileUse || VPtr == nullptr || |
| 703 | !VPtr->getMetadata(KindID: LLVMContext::MD_prof)) |
| 704 | return; |
| 705 | VPtr->setMetadata(KindID: LLVMContext::MD_prof, Node: nullptr); |
| 706 | std::vector<InstrProfValueData> VTableValueProfiles; |
| 707 | uint64_t TotalVTableCount = 0; |
| 708 | for (auto [GUID, Count] : VTableGUIDCounts) { |
| 709 | if (Count == 0) |
| 710 | continue; |
| 711 | |
| 712 | VTableValueProfiles.push_back(x: {.Value: GUID, .Count: Count}); |
| 713 | TotalVTableCount += Count; |
| 714 | } |
| 715 | llvm::sort(C&: VTableValueProfiles, |
| 716 | Comp: [](const InstrProfValueData &LHS, const InstrProfValueData &RHS) { |
| 717 | return LHS.Count > RHS.Count; |
| 718 | }); |
| 719 | |
| 720 | annotateValueSite(M, Inst&: *VPtr, VDs: VTableValueProfiles, Sum: TotalVTableCount, |
| 721 | ValueKind: IPVK_VTableTarget, MaxMDCount: VTableValueProfiles.size()); |
| 722 | } |
| 723 | |
| 724 | bool IndirectCallPromoter::tryToPromoteWithVTableCmp( |
| 725 | CallBase &CB, Instruction *VPtr, ArrayRef<PromotionCandidate> Candidates, |
| 726 | uint64_t TotalFuncCount, uint32_t NumCandidates, |
| 727 | MutableArrayRef<InstrProfValueData> ICallProfDataRef, |
| 728 | VTableGUIDCountsMap &VTableGUIDCounts) { |
| 729 | SmallVector<uint64_t, 4> PromotedFuncCount; |
| 730 | |
| 731 | for (const auto &Candidate : Candidates) { |
| 732 | for (auto &[GUID, Count] : Candidate.VTableGUIDAndCounts) |
| 733 | VTableGUIDCounts[GUID] -= Count; |
| 734 | |
| 735 | // 'OriginalBB' is the basic block of indirect call. After each candidate |
| 736 | // is promoted, a new basic block is created for the indirect fallback basic |
| 737 | // block and indirect call `CB` is moved into this new BB. |
| 738 | BasicBlock *OriginalBB = CB.getParent(); |
| 739 | promoteCallWithVTableCmp( |
| 740 | CB, VPtr, Callee: Candidate.TargetFunction, AddressPoints: Candidate.AddressPoints, |
| 741 | BranchWeights: createBranchWeights(Context&: CB.getContext(), TrueWeight: Candidate.Count, |
| 742 | FalseWeight: TotalFuncCount - Candidate.Count)); |
| 743 | |
| 744 | int SinkCount = tryToSinkInstructions(OriginalBB, IndirectCallBB: CB.getParent()); |
| 745 | |
| 746 | ORE.emit(RemarkBuilder: [&]() { |
| 747 | OptimizationRemark (DEBUG_TYPE, "Promoted" , &CB); |
| 748 | |
| 749 | const auto &VTableGUIDAndCounts = Candidate.VTableGUIDAndCounts; |
| 750 | Remark << "Promote indirect call to " |
| 751 | << ore::NV("DirectCallee" , Candidate.TargetFunction) |
| 752 | << " with count " << ore::NV("Count" , Candidate.Count) |
| 753 | << " out of " << ore::NV("TotalCount" , TotalFuncCount) << ", sink " |
| 754 | << ore::NV("SinkCount" , SinkCount) |
| 755 | << " instruction(s) and compare " |
| 756 | << ore::NV("VTable" , VTableGUIDAndCounts.size()) |
| 757 | << " vtable(s): {" ; |
| 758 | |
| 759 | // Sort GUIDs so remark message is deterministic. |
| 760 | std::set<uint64_t> GUIDSet; |
| 761 | for (auto [GUID, Count] : VTableGUIDAndCounts) |
| 762 | GUIDSet.insert(x: GUID); |
| 763 | for (auto Iter = GUIDSet.begin(); Iter != GUIDSet.end(); Iter++) { |
| 764 | if (Iter != GUIDSet.begin()) |
| 765 | Remark << ", " ; |
| 766 | Remark << ore::NV("VTable" , Symtab->getGlobalVariable(MD5Hash: *Iter)); |
| 767 | } |
| 768 | |
| 769 | Remark << "}" ; |
| 770 | |
| 771 | return Remark; |
| 772 | }); |
| 773 | |
| 774 | PromotedFuncCount.push_back(Elt: Candidate.Count); |
| 775 | |
| 776 | assert(TotalFuncCount >= Candidate.Count && |
| 777 | "Within one prof metadata, total count is the sum of counts from " |
| 778 | "individual <target, count> pairs" ); |
| 779 | // Use std::min since 'TotalFuncCount' is the saturated sum of individual |
| 780 | // counts, see |
| 781 | // https://github.com/llvm/llvm-project/blob/abedb3b8356d5d56f1c575c4f7682fba2cb19787/llvm/lib/ProfileData/InstrProf.cpp#L1281-L1288 |
| 782 | TotalFuncCount -= std::min(a: TotalFuncCount, b: Candidate.Count); |
| 783 | NumOfPGOICallPromotion++; |
| 784 | } |
| 785 | |
| 786 | if (PromotedFuncCount.empty()) |
| 787 | return false; |
| 788 | |
| 789 | // Update value profiles for 'CB' and 'VPtr', assuming that each 'CB' has a |
| 790 | // a distinct 'VPtr'. |
| 791 | // FIXME: When Clang `-fstrict-vtable-pointers` is enabled, a vtable might be |
| 792 | // used to load multiple virtual functions. The vtable profiles needs to be |
| 793 | // updated properly in that case (e.g, for each indirect call annotate both |
| 794 | // type profiles and function profiles in one !prof). |
| 795 | for (size_t I = 0; I < PromotedFuncCount.size(); I++) |
| 796 | ICallProfDataRef[I].Count -= |
| 797 | std::max(a: PromotedFuncCount[I], b: ICallProfDataRef[I].Count); |
| 798 | // Sort value profiles by count in descending order. |
| 799 | llvm::stable_sort(Range&: ICallProfDataRef, C: [](const InstrProfValueData &LHS, |
| 800 | const InstrProfValueData &RHS) { |
| 801 | return LHS.Count > RHS.Count; |
| 802 | }); |
| 803 | // Drop the <target-value, count> pair if count is zero. |
| 804 | ArrayRef<InstrProfValueData> VDs( |
| 805 | ICallProfDataRef.begin(), |
| 806 | llvm::upper_bound(Range&: ICallProfDataRef, Value: 0U, |
| 807 | C: [](uint64_t Count, const InstrProfValueData &ProfData) { |
| 808 | return ProfData.Count <= Count; |
| 809 | })); |
| 810 | updateFuncValueProfiles(CB, CallVDs: VDs, TotalCount: TotalFuncCount, MaxMDCount: NumCandidates); |
| 811 | updateVPtrValueProfiles(VPtr, VTableGUIDCounts); |
| 812 | return true; |
| 813 | } |
| 814 | |
| 815 | // Traverse all the indirect-call callsite and get the value profile |
| 816 | // annotation to perform indirect-call promotion. |
| 817 | bool IndirectCallPromoter::processFunction(ProfileSummaryInfo *PSI) { |
| 818 | bool Changed = false; |
| 819 | ICallPromotionAnalysis ICallAnalysis; |
| 820 | for (auto *CB : findIndirectCalls(F)) { |
| 821 | uint32_t NumCandidates; |
| 822 | uint64_t TotalCount; |
| 823 | auto ICallProfDataRef = ICallAnalysis.getPromotionCandidatesForInstruction( |
| 824 | I: CB, TotalCount, NumCandidates); |
| 825 | if (!NumCandidates || |
| 826 | (PSI && PSI->hasProfileSummary() && !PSI->isHotCount(C: TotalCount))) |
| 827 | continue; |
| 828 | |
| 829 | auto PromotionCandidates = getPromotionCandidatesForCallSite( |
| 830 | CB: *CB, ValueDataRef: ICallProfDataRef, TotalCount, NumCandidates); |
| 831 | |
| 832 | VTableGUIDCountsMap VTableGUIDCounts; |
| 833 | Instruction *VPtr = |
| 834 | computeVTableInfos(CB, GUIDCountsMap&: VTableGUIDCounts, Candidates&: PromotionCandidates); |
| 835 | |
| 836 | if (isProfitableToCompareVTables(CB: *CB, Candidates: PromotionCandidates)) |
| 837 | Changed |= tryToPromoteWithVTableCmp(CB&: *CB, VPtr, Candidates: PromotionCandidates, |
| 838 | TotalFuncCount: TotalCount, NumCandidates, |
| 839 | ICallProfDataRef, VTableGUIDCounts); |
| 840 | else |
| 841 | Changed |= tryToPromoteWithFuncCmp(CB&: *CB, VPtr, Candidates: PromotionCandidates, |
| 842 | TotalCount, ICallProfDataRef, |
| 843 | NumCandidates, VTableGUIDCounts); |
| 844 | } |
| 845 | return Changed; |
| 846 | } |
| 847 | |
| 848 | // TODO: Return false if the function addressing and vtable load instructions |
| 849 | // cannot sink to indirect fallback. |
| 850 | bool IndirectCallPromoter::isProfitableToCompareVTables( |
| 851 | const CallBase &CB, ArrayRef<PromotionCandidate> Candidates) { |
| 852 | if (!EnableVTableProfileUse || Candidates.empty()) |
| 853 | return false; |
| 854 | LLVM_DEBUG(dbgs() << "\nEvaluating vtable profitability for callsite #" |
| 855 | << NumOfPGOICallsites << CB << "\n" ); |
| 856 | const size_t CandidateSize = Candidates.size(); |
| 857 | for (size_t I = 0; I < CandidateSize; I++) { |
| 858 | auto &Candidate = Candidates[I]; |
| 859 | auto &VTableGUIDAndCounts = Candidate.VTableGUIDAndCounts; |
| 860 | |
| 861 | LLVM_DEBUG({ |
| 862 | dbgs() << " Candidate " << I << " FunctionCount: " << Candidate.Count |
| 863 | << ", VTableCounts:" ; |
| 864 | for (const auto &[GUID, Count] : VTableGUIDAndCounts) |
| 865 | dbgs() << " {" << Symtab->getGlobalVariable(GUID)->getName() << ", " |
| 866 | << Count << "}" ; |
| 867 | dbgs() << "\n" ; |
| 868 | }); |
| 869 | |
| 870 | uint64_t CandidateVTableCount = 0; |
| 871 | |
| 872 | for (auto &[GUID, Count] : VTableGUIDAndCounts) { |
| 873 | CandidateVTableCount += Count; |
| 874 | |
| 875 | if (shouldSkipVTable(VTableGUID: GUID)) |
| 876 | return false; |
| 877 | } |
| 878 | |
| 879 | if (CandidateVTableCount < Candidate.Count * ICPVTablePercentageThreshold) { |
| 880 | LLVM_DEBUG( |
| 881 | dbgs() << " function count " << Candidate.Count |
| 882 | << " and its vtable sum count " << CandidateVTableCount |
| 883 | << " have discrepancies. Bail out vtable comparison.\n" ); |
| 884 | return false; |
| 885 | } |
| 886 | |
| 887 | // 'MaxNumVTable' limits the number of vtables to make vtable comparison |
| 888 | // profitable. Comparing multiple vtables for one function candidate will |
| 889 | // insert additional instructions on the hot path, and allowing more than |
| 890 | // one vtable for non last candidates may or may not elongate the dependency |
| 891 | // chain for the subsequent candidates. Set its value to 1 for non-last |
| 892 | // candidate and allow option to override it for the last candidate. |
| 893 | int MaxNumVTable = 1; |
| 894 | if (I == CandidateSize - 1) |
| 895 | MaxNumVTable = ICPMaxNumVTableLastCandidate; |
| 896 | |
| 897 | if ((int)Candidate.AddressPoints.size() > MaxNumVTable) { |
| 898 | LLVM_DEBUG(dbgs() << " allow at most " << MaxNumVTable << " and got " |
| 899 | << Candidate.AddressPoints.size() |
| 900 | << " vtables. Bail out for vtable comparison.\n" ); |
| 901 | return false; |
| 902 | } |
| 903 | } |
| 904 | |
| 905 | return true; |
| 906 | } |
| 907 | |
| 908 | bool IndirectCallPromoter::shouldSkipVTable(uint64_t VTableGUID) { |
| 909 | if (IgnoredBaseTypes.empty()) |
| 910 | return false; |
| 911 | |
| 912 | auto *VTableVar = Symtab->getGlobalVariable(MD5Hash: VTableGUID); |
| 913 | |
| 914 | assert(VTableVar && "VTableVar must exist for GUID in VTableGUIDAndCounts" ); |
| 915 | |
| 916 | SmallVector<MDNode *, 2> Types; |
| 917 | VTableVar->getMetadata(KindID: LLVMContext::MD_type, MDs&: Types); |
| 918 | |
| 919 | for (auto *Type : Types) |
| 920 | if (auto *TypeId = dyn_cast<MDString>(Val: Type->getOperand(I: 1).get())) |
| 921 | if (IgnoredBaseTypes.contains(V: TypeId->getString())) { |
| 922 | LLVM_DEBUG(dbgs() << " vtable profiles should be ignored. Bail " |
| 923 | "out of vtable comparison." ); |
| 924 | return true; |
| 925 | } |
| 926 | return false; |
| 927 | } |
| 928 | |
| 929 | // For virtual calls in the module, collect per-callsite information which will |
| 930 | // be used to associate an ICP candidate with a vtable and a specific function |
| 931 | // in the vtable. With type intrinsics (llvm.type.test), we can find virtual |
| 932 | // calls in a compile-time efficient manner (by iterating its users) and more |
| 933 | // importantly use the compatible type later to figure out the function byte |
| 934 | // offset relative to the start of vtables. |
| 935 | static void |
| 936 | computeVirtualCallSiteTypeInfoMap(Module &M, ModuleAnalysisManager &MAM, |
| 937 | VirtualCallSiteTypeInfoMap &VirtualCSInfo) { |
| 938 | // Right now only llvm.type.test is used to find out virtual call sites. |
| 939 | // With ThinLTO and whole-program-devirtualization, llvm.type.test and |
| 940 | // llvm.public.type.test are emitted, and llvm.public.type.test is either |
| 941 | // refined to llvm.type.test or dropped before indirect-call-promotion pass. |
| 942 | // |
| 943 | // FIXME: For fullLTO with VFE, `llvm.type.checked.load intrinsic` is emitted. |
| 944 | // Find out virtual calls by looking at users of llvm.type.checked.load in |
| 945 | // that case. |
| 946 | Function *TypeTestFunc = |
| 947 | Intrinsic::getDeclarationIfExists(M: &M, id: Intrinsic::type_test); |
| 948 | if (!TypeTestFunc || TypeTestFunc->use_empty()) |
| 949 | return; |
| 950 | |
| 951 | auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(IR&: M).getManager(); |
| 952 | auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & { |
| 953 | return FAM.getResult<DominatorTreeAnalysis>(IR&: F); |
| 954 | }; |
| 955 | // Iterate all type.test calls to find all indirect calls. |
| 956 | for (Use &U : llvm::make_early_inc_range(Range: TypeTestFunc->uses())) { |
| 957 | auto *CI = dyn_cast<CallInst>(Val: U.getUser()); |
| 958 | if (!CI) |
| 959 | continue; |
| 960 | auto *TypeMDVal = cast<MetadataAsValue>(Val: CI->getArgOperand(i: 1)); |
| 961 | if (!TypeMDVal) |
| 962 | continue; |
| 963 | auto *CompatibleTypeId = dyn_cast<MDString>(Val: TypeMDVal->getMetadata()); |
| 964 | if (!CompatibleTypeId) |
| 965 | continue; |
| 966 | |
| 967 | // Find out all devirtualizable call sites given a llvm.type.test |
| 968 | // intrinsic call. |
| 969 | SmallVector<DevirtCallSite, 1> DevirtCalls; |
| 970 | SmallVector<CallInst *, 1> Assumes; |
| 971 | auto &DT = LookupDomTree(*CI->getFunction()); |
| 972 | findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT); |
| 973 | |
| 974 | for (auto &DevirtCall : DevirtCalls) { |
| 975 | CallBase &CB = DevirtCall.CB; |
| 976 | // Given an indirect call, try find the instruction which loads a |
| 977 | // pointer to virtual table. |
| 978 | Instruction *VTablePtr = |
| 979 | PGOIndirectCallVisitor::tryGetVTableInstruction(CB: &CB); |
| 980 | if (!VTablePtr) |
| 981 | continue; |
| 982 | VirtualCSInfo[&CB] = {.FunctionOffset: DevirtCall.Offset, .VPtr: VTablePtr, |
| 983 | .CompatibleTypeStr: CompatibleTypeId->getString()}; |
| 984 | } |
| 985 | } |
| 986 | } |
| 987 | |
| 988 | // A wrapper function that does the actual work. |
| 989 | static bool promoteIndirectCalls(Module &M, ProfileSummaryInfo *PSI, bool InLTO, |
| 990 | bool SamplePGO, ModuleAnalysisManager &MAM) { |
| 991 | if (DisableICP) |
| 992 | return false; |
| 993 | InstrProfSymtab Symtab; |
| 994 | if (Error E = Symtab.create(M, InLTO)) { |
| 995 | std::string SymtabFailure = toString(E: std::move(E)); |
| 996 | M.getContext().emitError(ErrorStr: "Failed to create symtab: " + SymtabFailure); |
| 997 | return false; |
| 998 | } |
| 999 | bool Changed = false; |
| 1000 | VirtualCallSiteTypeInfoMap VirtualCSInfo; |
| 1001 | |
| 1002 | DenseSet<StringRef> IgnoredBaseTypes; |
| 1003 | |
| 1004 | if (EnableVTableProfileUse) { |
| 1005 | computeVirtualCallSiteTypeInfoMap(M, MAM, VirtualCSInfo); |
| 1006 | |
| 1007 | IgnoredBaseTypes.insert_range(R&: ICPIgnoredBaseTypes); |
| 1008 | } |
| 1009 | |
| 1010 | // VTableAddressPointOffsetVal stores the vtable address points. The vtable |
| 1011 | // address point of a given <vtable, address point offset> is static (doesn't |
| 1012 | // change after being computed once). |
| 1013 | // IndirectCallPromoter::getOrCreateVTableAddressPointVar creates the map |
| 1014 | // entry the first time a <vtable, offset> pair is seen, as |
| 1015 | // promoteIndirectCalls processes an IR module and calls IndirectCallPromoter |
| 1016 | // repeatedly on each function. |
| 1017 | VTableAddressPointOffsetValMap VTableAddressPointOffsetVal; |
| 1018 | |
| 1019 | for (auto &F : M) { |
| 1020 | if (F.isDeclaration() || F.hasOptNone()) |
| 1021 | continue; |
| 1022 | |
| 1023 | auto &FAM = |
| 1024 | MAM.getResult<FunctionAnalysisManagerModuleProxy>(IR&: M).getManager(); |
| 1025 | auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(IR&: F); |
| 1026 | |
| 1027 | IndirectCallPromoter CallPromoter(F, M, &Symtab, SamplePGO, VirtualCSInfo, |
| 1028 | VTableAddressPointOffsetVal, |
| 1029 | IgnoredBaseTypes, ORE); |
| 1030 | bool FuncChanged = CallPromoter.processFunction(PSI); |
| 1031 | if (ICPDUMPAFTER && FuncChanged) { |
| 1032 | LLVM_DEBUG(dbgs() << "\n== IR Dump After ==" ; F.print(dbgs())); |
| 1033 | LLVM_DEBUG(dbgs() << "\n" ); |
| 1034 | } |
| 1035 | Changed |= FuncChanged; |
| 1036 | if (ICPCutOff != 0 && NumOfPGOICallPromotion >= ICPCutOff) { |
| 1037 | LLVM_DEBUG(dbgs() << " Stop: Cutoff reached.\n" ); |
| 1038 | break; |
| 1039 | } |
| 1040 | } |
| 1041 | return Changed; |
| 1042 | } |
| 1043 | |
| 1044 | PreservedAnalyses PGOIndirectCallPromotion::run(Module &M, |
| 1045 | ModuleAnalysisManager &MAM) { |
| 1046 | ProfileSummaryInfo *PSI = &MAM.getResult<ProfileSummaryAnalysis>(IR&: M); |
| 1047 | |
| 1048 | if (!promoteIndirectCalls(M, PSI, InLTO: InLTO | ICPLTOMode, |
| 1049 | SamplePGO: SamplePGO | ICPSamplePGOMode, MAM)) |
| 1050 | return PreservedAnalyses::all(); |
| 1051 | |
| 1052 | return PreservedAnalyses::none(); |
| 1053 | } |
| 1054 | |