| 1 | //===- MemorySanitizer.cpp - detector of uninitialized reads --------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | /// \file |
| 10 | /// This file is a part of MemorySanitizer, a detector of uninitialized |
| 11 | /// reads. |
| 12 | /// |
| 13 | /// The algorithm of the tool is similar to Memcheck |
| 14 | /// (https://static.usenix.org/event/usenix05/tech/general/full_papers/seward/seward_html/usenix2005.html) |
| 15 | /// We associate a few shadow bits with every byte of the application memory, |
| 16 | /// poison the shadow of the malloc-ed or alloca-ed memory, load the shadow, |
| 17 | /// bits on every memory read, propagate the shadow bits through some of the |
| 18 | /// arithmetic instruction (including MOV), store the shadow bits on every |
| 19 | /// memory write, report a bug on some other instructions (e.g. JMP) if the |
| 20 | /// associated shadow is poisoned. |
| 21 | /// |
| 22 | /// But there are differences too. The first and the major one: |
| 23 | /// compiler instrumentation instead of binary instrumentation. This |
| 24 | /// gives us much better register allocation, possible compiler |
| 25 | /// optimizations and a fast start-up. But this brings the major issue |
| 26 | /// as well: msan needs to see all program events, including system |
| 27 | /// calls and reads/writes in system libraries, so we either need to |
| 28 | /// compile *everything* with msan or use a binary translation |
| 29 | /// component (e.g. DynamoRIO) to instrument pre-built libraries. |
| 30 | /// Another difference from Memcheck is that we use 8 shadow bits per |
| 31 | /// byte of application memory and use a direct shadow mapping. This |
| 32 | /// greatly simplifies the instrumentation code and avoids races on |
| 33 | /// shadow updates (Memcheck is single-threaded so races are not a |
| 34 | /// concern there. Memcheck uses 2 shadow bits per byte with a slow |
| 35 | /// path storage that uses 8 bits per byte). |
| 36 | /// |
| 37 | /// The default value of shadow is 0, which means "clean" (not poisoned). |
| 38 | /// |
| 39 | /// Every module initializer should call __msan_init to ensure that the |
| 40 | /// shadow memory is ready. On error, __msan_warning is called. Since |
| 41 | /// parameters and return values may be passed via registers, we have a |
| 42 | /// specialized thread-local shadow for return values |
| 43 | /// (__msan_retval_tls) and parameters (__msan_param_tls). |
| 44 | /// |
| 45 | /// Origin tracking. |
| 46 | /// |
| 47 | /// MemorySanitizer can track origins (allocation points) of all uninitialized |
| 48 | /// values. This behavior is controlled with a flag (msan-track-origins) and is |
| 49 | /// disabled by default. |
| 50 | /// |
| 51 | /// Origins are 4-byte values created and interpreted by the runtime library. |
| 52 | /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes |
| 53 | /// of application memory. Propagation of origins is basically a bunch of |
| 54 | /// "select" instructions that pick the origin of a dirty argument, if an |
| 55 | /// instruction has one. |
| 56 | /// |
| 57 | /// Every 4 aligned, consecutive bytes of application memory have one origin |
| 58 | /// value associated with them. If these bytes contain uninitialized data |
| 59 | /// coming from 2 different allocations, the last store wins. Because of this, |
| 60 | /// MemorySanitizer reports can show unrelated origins, but this is unlikely in |
| 61 | /// practice. |
| 62 | /// |
| 63 | /// Origins are meaningless for fully initialized values, so MemorySanitizer |
| 64 | /// avoids storing origin to memory when a fully initialized value is stored. |
| 65 | /// This way it avoids needless overwriting origin of the 4-byte region on |
| 66 | /// a short (i.e. 1 byte) clean store, and it is also good for performance. |
| 67 | /// |
| 68 | /// Atomic handling. |
| 69 | /// |
| 70 | /// Ideally, every atomic store of application value should update the |
| 71 | /// corresponding shadow location in an atomic way. Unfortunately, atomic store |
| 72 | /// of two disjoint locations can not be done without severe slowdown. |
| 73 | /// |
| 74 | /// Therefore, we implement an approximation that may err on the safe side. |
| 75 | /// In this implementation, every atomically accessed location in the program |
| 76 | /// may only change from (partially) uninitialized to fully initialized, but |
| 77 | /// not the other way around. We load the shadow _after_ the application load, |
| 78 | /// and we store the shadow _before_ the app store. Also, we always store clean |
| 79 | /// shadow (if the application store is atomic). This way, if the store-load |
| 80 | /// pair constitutes a happens-before arc, shadow store and load are correctly |
| 81 | /// ordered such that the load will get either the value that was stored, or |
| 82 | /// some later value (which is always clean). |
| 83 | /// |
| 84 | /// This does not work very well with Compare-And-Swap (CAS) and |
| 85 | /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW |
| 86 | /// must store the new shadow before the app operation, and load the shadow |
| 87 | /// after the app operation. Computers don't work this way. Current |
| 88 | /// implementation ignores the load aspect of CAS/RMW, always returning a clean |
| 89 | /// value. It implements the store part as a simple atomic store by storing a |
| 90 | /// clean shadow. |
| 91 | /// |
| 92 | /// Instrumenting inline assembly. |
| 93 | /// |
| 94 | /// For inline assembly code LLVM has little idea about which memory locations |
| 95 | /// become initialized depending on the arguments. It can be possible to figure |
| 96 | /// out which arguments are meant to point to inputs and outputs, but the |
| 97 | /// actual semantics can be only visible at runtime. In the Linux kernel it's |
| 98 | /// also possible that the arguments only indicate the offset for a base taken |
| 99 | /// from a segment register, so it's dangerous to treat any asm() arguments as |
| 100 | /// pointers. We take a conservative approach generating calls to |
| 101 | /// __msan_instrument_asm_store(ptr, size) |
| 102 | /// , which defer the memory unpoisoning to the runtime library. |
| 103 | /// The latter can perform more complex address checks to figure out whether |
| 104 | /// it's safe to touch the shadow memory. |
| 105 | /// Like with atomic operations, we call __msan_instrument_asm_store() before |
| 106 | /// the assembly call, so that changes to the shadow memory will be seen by |
| 107 | /// other threads together with main memory initialization. |
| 108 | /// |
| 109 | /// KernelMemorySanitizer (KMSAN) implementation. |
| 110 | /// |
| 111 | /// The major differences between KMSAN and MSan instrumentation are: |
| 112 | /// - KMSAN always tracks the origins and implies msan-keep-going=true; |
| 113 | /// - KMSAN allocates shadow and origin memory for each page separately, so |
| 114 | /// there are no explicit accesses to shadow and origin in the |
| 115 | /// instrumentation. |
| 116 | /// Shadow and origin values for a particular X-byte memory location |
| 117 | /// (X=1,2,4,8) are accessed through pointers obtained via the |
| 118 | /// __msan_metadata_ptr_for_load_X(ptr) |
| 119 | /// __msan_metadata_ptr_for_store_X(ptr) |
| 120 | /// functions. The corresponding functions check that the X-byte accesses |
| 121 | /// are possible and returns the pointers to shadow and origin memory. |
| 122 | /// Arbitrary sized accesses are handled with: |
| 123 | /// __msan_metadata_ptr_for_load_n(ptr, size) |
| 124 | /// __msan_metadata_ptr_for_store_n(ptr, size); |
| 125 | /// Note that the sanitizer code has to deal with how shadow/origin pairs |
| 126 | /// returned by the these functions are represented in different ABIs. In |
| 127 | /// the X86_64 ABI they are returned in RDX:RAX, in PowerPC64 they are |
| 128 | /// returned in r3 and r4, and in the SystemZ ABI they are written to memory |
| 129 | /// pointed to by a hidden parameter. |
| 130 | /// - TLS variables are stored in a single per-task struct. A call to a |
| 131 | /// function __msan_get_context_state() returning a pointer to that struct |
| 132 | /// is inserted into every instrumented function before the entry block; |
| 133 | /// - __msan_warning() takes a 32-bit origin parameter; |
| 134 | /// - local variables are poisoned with __msan_poison_alloca() upon function |
| 135 | /// entry and unpoisoned with __msan_unpoison_alloca() before leaving the |
| 136 | /// function; |
| 137 | /// - the pass doesn't declare any global variables or add global constructors |
| 138 | /// to the translation unit. |
| 139 | /// |
| 140 | /// Also, KMSAN currently ignores uninitialized memory passed into inline asm |
| 141 | /// calls, making sure we're on the safe side wrt. possible false positives. |
| 142 | /// |
| 143 | /// KernelMemorySanitizer only supports X86_64, SystemZ and PowerPC64 at the |
| 144 | /// moment. |
| 145 | /// |
| 146 | // |
| 147 | // FIXME: This sanitizer does not yet handle scalable vectors |
| 148 | // |
| 149 | //===----------------------------------------------------------------------===// |
| 150 | |
| 151 | #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" |
| 152 | #include "llvm/ADT/APInt.h" |
| 153 | #include "llvm/ADT/ArrayRef.h" |
| 154 | #include "llvm/ADT/DenseMap.h" |
| 155 | #include "llvm/ADT/DepthFirstIterator.h" |
| 156 | #include "llvm/ADT/SetVector.h" |
| 157 | #include "llvm/ADT/SmallPtrSet.h" |
| 158 | #include "llvm/ADT/SmallVector.h" |
| 159 | #include "llvm/ADT/StringExtras.h" |
| 160 | #include "llvm/ADT/StringRef.h" |
| 161 | #include "llvm/Analysis/GlobalsModRef.h" |
| 162 | #include "llvm/Analysis/TargetLibraryInfo.h" |
| 163 | #include "llvm/Analysis/ValueTracking.h" |
| 164 | #include "llvm/IR/Argument.h" |
| 165 | #include "llvm/IR/AttributeMask.h" |
| 166 | #include "llvm/IR/Attributes.h" |
| 167 | #include "llvm/IR/BasicBlock.h" |
| 168 | #include "llvm/IR/CallingConv.h" |
| 169 | #include "llvm/IR/Constant.h" |
| 170 | #include "llvm/IR/Constants.h" |
| 171 | #include "llvm/IR/DataLayout.h" |
| 172 | #include "llvm/IR/DerivedTypes.h" |
| 173 | #include "llvm/IR/Function.h" |
| 174 | #include "llvm/IR/GlobalValue.h" |
| 175 | #include "llvm/IR/GlobalVariable.h" |
| 176 | #include "llvm/IR/IRBuilder.h" |
| 177 | #include "llvm/IR/InlineAsm.h" |
| 178 | #include "llvm/IR/InstVisitor.h" |
| 179 | #include "llvm/IR/InstrTypes.h" |
| 180 | #include "llvm/IR/Instruction.h" |
| 181 | #include "llvm/IR/Instructions.h" |
| 182 | #include "llvm/IR/IntrinsicInst.h" |
| 183 | #include "llvm/IR/Intrinsics.h" |
| 184 | #include "llvm/IR/IntrinsicsAArch64.h" |
| 185 | #include "llvm/IR/IntrinsicsX86.h" |
| 186 | #include "llvm/IR/MDBuilder.h" |
| 187 | #include "llvm/IR/Module.h" |
| 188 | #include "llvm/IR/Type.h" |
| 189 | #include "llvm/IR/Value.h" |
| 190 | #include "llvm/IR/ValueMap.h" |
| 191 | #include "llvm/Support/Alignment.h" |
| 192 | #include "llvm/Support/AtomicOrdering.h" |
| 193 | #include "llvm/Support/Casting.h" |
| 194 | #include "llvm/Support/CommandLine.h" |
| 195 | #include "llvm/Support/Debug.h" |
| 196 | #include "llvm/Support/DebugCounter.h" |
| 197 | #include "llvm/Support/ErrorHandling.h" |
| 198 | #include "llvm/Support/MathExtras.h" |
| 199 | #include "llvm/Support/raw_ostream.h" |
| 200 | #include "llvm/TargetParser/Triple.h" |
| 201 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 202 | #include "llvm/Transforms/Utils/Instrumentation.h" |
| 203 | #include "llvm/Transforms/Utils/Local.h" |
| 204 | #include "llvm/Transforms/Utils/ModuleUtils.h" |
| 205 | #include <algorithm> |
| 206 | #include <cassert> |
| 207 | #include <cstddef> |
| 208 | #include <cstdint> |
| 209 | #include <memory> |
| 210 | #include <numeric> |
| 211 | #include <string> |
| 212 | #include <tuple> |
| 213 | |
| 214 | using namespace llvm; |
| 215 | |
| 216 | #define DEBUG_TYPE "msan" |
| 217 | |
| 218 | DEBUG_COUNTER(DebugInsertCheck, "msan-insert-check" , |
| 219 | "Controls which checks to insert" ); |
| 220 | |
| 221 | DEBUG_COUNTER(DebugInstrumentInstruction, "msan-instrument-instruction" , |
| 222 | "Controls which instruction to instrument" ); |
| 223 | |
| 224 | static const unsigned kOriginSize = 4; |
| 225 | static const Align kMinOriginAlignment = Align(4); |
| 226 | static const Align kShadowTLSAlignment = Align(8); |
| 227 | |
| 228 | // These constants must be kept in sync with the ones in msan.h. |
| 229 | static const unsigned kParamTLSSize = 800; |
| 230 | static const unsigned kRetvalTLSSize = 800; |
| 231 | |
| 232 | // Accesses sizes are powers of two: 1, 2, 4, 8. |
| 233 | static const size_t kNumberOfAccessSizes = 4; |
| 234 | |
| 235 | /// Track origins of uninitialized values. |
| 236 | /// |
| 237 | /// Adds a section to MemorySanitizer report that points to the allocation |
| 238 | /// (stack or heap) the uninitialized bits came from originally. |
| 239 | static cl::opt<int> ClTrackOrigins( |
| 240 | "msan-track-origins" , |
| 241 | cl::desc("Track origins (allocation sites) of poisoned memory" ), cl::Hidden, |
| 242 | cl::init(Val: 0)); |
| 243 | |
| 244 | static cl::opt<bool> ClKeepGoing("msan-keep-going" , |
| 245 | cl::desc("keep going after reporting a UMR" ), |
| 246 | cl::Hidden, cl::init(Val: false)); |
| 247 | |
| 248 | static cl::opt<bool> |
| 249 | ClPoisonStack("msan-poison-stack" , |
| 250 | cl::desc("poison uninitialized stack variables" ), cl::Hidden, |
| 251 | cl::init(Val: true)); |
| 252 | |
| 253 | static cl::opt<bool> ClPoisonStackWithCall( |
| 254 | "msan-poison-stack-with-call" , |
| 255 | cl::desc("poison uninitialized stack variables with a call" ), cl::Hidden, |
| 256 | cl::init(Val: false)); |
| 257 | |
| 258 | static cl::opt<int> ClPoisonStackPattern( |
| 259 | "msan-poison-stack-pattern" , |
| 260 | cl::desc("poison uninitialized stack variables with the given pattern" ), |
| 261 | cl::Hidden, cl::init(Val: 0xff)); |
| 262 | |
| 263 | static cl::opt<bool> |
| 264 | ClPrintStackNames("msan-print-stack-names" , |
| 265 | cl::desc("Print name of local stack variable" ), |
| 266 | cl::Hidden, cl::init(Val: true)); |
| 267 | |
| 268 | static cl::opt<bool> |
| 269 | ClPoisonUndef("msan-poison-undef" , |
| 270 | cl::desc("Poison fully undef temporary values. " |
| 271 | "Partially undefined constant vectors " |
| 272 | "are unaffected by this flag (see " |
| 273 | "-msan-poison-undef-vectors)." ), |
| 274 | cl::Hidden, cl::init(Val: true)); |
| 275 | |
| 276 | static cl::opt<bool> ClPoisonUndefVectors( |
| 277 | "msan-poison-undef-vectors" , |
| 278 | cl::desc("Precisely poison partially undefined constant vectors. " |
| 279 | "If false (legacy behavior), the entire vector is " |
| 280 | "considered fully initialized, which may lead to false " |
| 281 | "negatives. Fully undefined constant vectors are " |
| 282 | "unaffected by this flag (see -msan-poison-undef)." ), |
| 283 | cl::Hidden, cl::init(Val: false)); |
| 284 | |
| 285 | static cl::opt<bool> ClPreciseDisjointOr( |
| 286 | "msan-precise-disjoint-or" , |
| 287 | cl::desc("Precisely poison disjoint OR. If false (legacy behavior), " |
| 288 | "disjointedness is ignored (i.e., 1|1 is initialized)." ), |
| 289 | cl::Hidden, cl::init(Val: false)); |
| 290 | |
| 291 | static cl::opt<bool> |
| 292 | ClHandleICmp("msan-handle-icmp" , |
| 293 | cl::desc("propagate shadow through ICmpEQ and ICmpNE" ), |
| 294 | cl::Hidden, cl::init(Val: true)); |
| 295 | |
| 296 | static cl::opt<bool> |
| 297 | ClHandleICmpExact("msan-handle-icmp-exact" , |
| 298 | cl::desc("exact handling of relational integer ICmp" ), |
| 299 | cl::Hidden, cl::init(Val: true)); |
| 300 | |
| 301 | static cl::opt<bool> ClHandleLifetimeIntrinsics( |
| 302 | "msan-handle-lifetime-intrinsics" , |
| 303 | cl::desc( |
| 304 | "when possible, poison scoped variables at the beginning of the scope " |
| 305 | "(slower, but more precise)" ), |
| 306 | cl::Hidden, cl::init(Val: true)); |
| 307 | |
| 308 | // When compiling the Linux kernel, we sometimes see false positives related to |
| 309 | // MSan being unable to understand that inline assembly calls may initialize |
| 310 | // local variables. |
| 311 | // This flag makes the compiler conservatively unpoison every memory location |
| 312 | // passed into an assembly call. Note that this may cause false positives. |
| 313 | // Because it's impossible to figure out the array sizes, we can only unpoison |
| 314 | // the first sizeof(type) bytes for each type* pointer. |
| 315 | static cl::opt<bool> ClHandleAsmConservative( |
| 316 | "msan-handle-asm-conservative" , |
| 317 | cl::desc("conservative handling of inline assembly" ), cl::Hidden, |
| 318 | cl::init(Val: true)); |
| 319 | |
| 320 | // This flag controls whether we check the shadow of the address |
| 321 | // operand of load or store. Such bugs are very rare, since load from |
| 322 | // a garbage address typically results in SEGV, but still happen |
| 323 | // (e.g. only lower bits of address are garbage, or the access happens |
| 324 | // early at program startup where malloc-ed memory is more likely to |
| 325 | // be zeroed. As of 2012-08-28 this flag adds 20% slowdown. |
| 326 | static cl::opt<bool> ClCheckAccessAddress( |
| 327 | "msan-check-access-address" , |
| 328 | cl::desc("report accesses through a pointer which has poisoned shadow" ), |
| 329 | cl::Hidden, cl::init(Val: true)); |
| 330 | |
| 331 | static cl::opt<bool> ClEagerChecks( |
| 332 | "msan-eager-checks" , |
| 333 | cl::desc("check arguments and return values at function call boundaries" ), |
| 334 | cl::Hidden, cl::init(Val: false)); |
| 335 | |
| 336 | static cl::opt<bool> ClDumpStrictInstructions( |
| 337 | "msan-dump-strict-instructions" , |
| 338 | cl::desc("print out instructions with default strict semantics i.e.," |
| 339 | "check that all the inputs are fully initialized, and mark " |
| 340 | "the output as fully initialized. These semantics are applied " |
| 341 | "to instructions that could not be handled explicitly nor " |
| 342 | "heuristically." ), |
| 343 | cl::Hidden, cl::init(Val: false)); |
| 344 | |
| 345 | // Currently, all the heuristically handled instructions are specifically |
| 346 | // IntrinsicInst. However, we use the broader "HeuristicInstructions" name |
| 347 | // to parallel 'msan-dump-strict-instructions', and to keep the door open to |
| 348 | // handling non-intrinsic instructions heuristically. |
| 349 | static cl::opt<bool> ClDumpHeuristicInstructions( |
| 350 | "msan-dump-heuristic-instructions" , |
| 351 | cl::desc("Prints 'unknown' instructions that were handled heuristically. " |
| 352 | "Use -msan-dump-strict-instructions to print instructions that " |
| 353 | "could not be handled explicitly nor heuristically." ), |
| 354 | cl::Hidden, cl::init(Val: false)); |
| 355 | |
| 356 | static cl::opt<int> ClInstrumentationWithCallThreshold( |
| 357 | "msan-instrumentation-with-call-threshold" , |
| 358 | cl::desc( |
| 359 | "If the function being instrumented requires more than " |
| 360 | "this number of checks and origin stores, use callbacks instead of " |
| 361 | "inline checks (-1 means never use callbacks)." ), |
| 362 | cl::Hidden, cl::init(Val: 3500)); |
| 363 | |
| 364 | static cl::opt<bool> |
| 365 | ClEnableKmsan("msan-kernel" , |
| 366 | cl::desc("Enable KernelMemorySanitizer instrumentation" ), |
| 367 | cl::Hidden, cl::init(Val: false)); |
| 368 | |
| 369 | static cl::opt<bool> |
| 370 | ClDisableChecks("msan-disable-checks" , |
| 371 | cl::desc("Apply no_sanitize to the whole file" ), cl::Hidden, |
| 372 | cl::init(Val: false)); |
| 373 | |
| 374 | static cl::opt<bool> |
| 375 | ClCheckConstantShadow("msan-check-constant-shadow" , |
| 376 | cl::desc("Insert checks for constant shadow values" ), |
| 377 | cl::Hidden, cl::init(Val: true)); |
| 378 | |
| 379 | // This is off by default because of a bug in gold: |
| 380 | // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 |
| 381 | static cl::opt<bool> |
| 382 | ClWithComdat("msan-with-comdat" , |
| 383 | cl::desc("Place MSan constructors in comdat sections" ), |
| 384 | cl::Hidden, cl::init(Val: false)); |
| 385 | |
| 386 | // These options allow to specify custom memory map parameters |
| 387 | // See MemoryMapParams for details. |
| 388 | static cl::opt<uint64_t> ClAndMask("msan-and-mask" , |
| 389 | cl::desc("Define custom MSan AndMask" ), |
| 390 | cl::Hidden, cl::init(Val: 0)); |
| 391 | |
| 392 | static cl::opt<uint64_t> ClXorMask("msan-xor-mask" , |
| 393 | cl::desc("Define custom MSan XorMask" ), |
| 394 | cl::Hidden, cl::init(Val: 0)); |
| 395 | |
| 396 | static cl::opt<uint64_t> ClShadowBase("msan-shadow-base" , |
| 397 | cl::desc("Define custom MSan ShadowBase" ), |
| 398 | cl::Hidden, cl::init(Val: 0)); |
| 399 | |
| 400 | static cl::opt<uint64_t> ClOriginBase("msan-origin-base" , |
| 401 | cl::desc("Define custom MSan OriginBase" ), |
| 402 | cl::Hidden, cl::init(Val: 0)); |
| 403 | |
| 404 | static cl::opt<int> |
| 405 | ClDisambiguateWarning("msan-disambiguate-warning-threshold" , |
| 406 | cl::desc("Define threshold for number of checks per " |
| 407 | "debug location to force origin update." ), |
| 408 | cl::Hidden, cl::init(Val: 3)); |
| 409 | |
| 410 | const char kMsanModuleCtorName[] = "msan.module_ctor" ; |
| 411 | const char kMsanInitName[] = "__msan_init" ; |
| 412 | |
| 413 | namespace { |
| 414 | |
| 415 | // Memory map parameters used in application-to-shadow address calculation. |
| 416 | // Offset = (Addr & ~AndMask) ^ XorMask |
| 417 | // Shadow = ShadowBase + Offset |
| 418 | // Origin = OriginBase + Offset |
| 419 | struct MemoryMapParams { |
| 420 | uint64_t AndMask; |
| 421 | uint64_t XorMask; |
| 422 | uint64_t ShadowBase; |
| 423 | uint64_t OriginBase; |
| 424 | }; |
| 425 | |
| 426 | struct PlatformMemoryMapParams { |
| 427 | const MemoryMapParams *bits32; |
| 428 | const MemoryMapParams *bits64; |
| 429 | }; |
| 430 | |
| 431 | } // end anonymous namespace |
| 432 | |
| 433 | // i386 Linux |
| 434 | static const MemoryMapParams Linux_I386_MemoryMapParams = { |
| 435 | .AndMask: 0x000080000000, // AndMask |
| 436 | .XorMask: 0, // XorMask (not used) |
| 437 | .ShadowBase: 0, // ShadowBase (not used) |
| 438 | .OriginBase: 0x000040000000, // OriginBase |
| 439 | }; |
| 440 | |
| 441 | // x86_64 Linux |
| 442 | static const MemoryMapParams Linux_X86_64_MemoryMapParams = { |
| 443 | .AndMask: 0, // AndMask (not used) |
| 444 | .XorMask: 0x500000000000, // XorMask |
| 445 | .ShadowBase: 0, // ShadowBase (not used) |
| 446 | .OriginBase: 0x100000000000, // OriginBase |
| 447 | }; |
| 448 | |
| 449 | // mips32 Linux |
| 450 | // FIXME: Remove -msan-origin-base -msan-and-mask added by PR #109284 to tests |
| 451 | // after picking good constants |
| 452 | |
| 453 | // mips64 Linux |
| 454 | static const MemoryMapParams Linux_MIPS64_MemoryMapParams = { |
| 455 | .AndMask: 0, // AndMask (not used) |
| 456 | .XorMask: 0x008000000000, // XorMask |
| 457 | .ShadowBase: 0, // ShadowBase (not used) |
| 458 | .OriginBase: 0x002000000000, // OriginBase |
| 459 | }; |
| 460 | |
| 461 | // ppc32 Linux |
| 462 | // FIXME: Remove -msan-origin-base -msan-and-mask added by PR #109284 to tests |
| 463 | // after picking good constants |
| 464 | |
| 465 | // ppc64 Linux |
| 466 | static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = { |
| 467 | .AndMask: 0xE00000000000, // AndMask |
| 468 | .XorMask: 0x100000000000, // XorMask |
| 469 | .ShadowBase: 0x080000000000, // ShadowBase |
| 470 | .OriginBase: 0x1C0000000000, // OriginBase |
| 471 | }; |
| 472 | |
| 473 | // s390x Linux |
| 474 | static const MemoryMapParams Linux_S390X_MemoryMapParams = { |
| 475 | .AndMask: 0xC00000000000, // AndMask |
| 476 | .XorMask: 0, // XorMask (not used) |
| 477 | .ShadowBase: 0x080000000000, // ShadowBase |
| 478 | .OriginBase: 0x1C0000000000, // OriginBase |
| 479 | }; |
| 480 | |
| 481 | // arm32 Linux |
| 482 | // FIXME: Remove -msan-origin-base -msan-and-mask added by PR #109284 to tests |
| 483 | // after picking good constants |
| 484 | |
| 485 | // aarch64 Linux |
| 486 | static const MemoryMapParams Linux_AArch64_MemoryMapParams = { |
| 487 | .AndMask: 0, // AndMask (not used) |
| 488 | .XorMask: 0x0B00000000000, // XorMask |
| 489 | .ShadowBase: 0, // ShadowBase (not used) |
| 490 | .OriginBase: 0x0200000000000, // OriginBase |
| 491 | }; |
| 492 | |
| 493 | // loongarch64 Linux |
| 494 | static const MemoryMapParams Linux_LoongArch64_MemoryMapParams = { |
| 495 | .AndMask: 0, // AndMask (not used) |
| 496 | .XorMask: 0x500000000000, // XorMask |
| 497 | .ShadowBase: 0, // ShadowBase (not used) |
| 498 | .OriginBase: 0x100000000000, // OriginBase |
| 499 | }; |
| 500 | |
| 501 | // riscv32 Linux |
| 502 | // FIXME: Remove -msan-origin-base -msan-and-mask added by PR #109284 to tests |
| 503 | // after picking good constants |
| 504 | |
| 505 | // aarch64 FreeBSD |
| 506 | static const MemoryMapParams FreeBSD_AArch64_MemoryMapParams = { |
| 507 | .AndMask: 0x1800000000000, // AndMask |
| 508 | .XorMask: 0x0400000000000, // XorMask |
| 509 | .ShadowBase: 0x0200000000000, // ShadowBase |
| 510 | .OriginBase: 0x0700000000000, // OriginBase |
| 511 | }; |
| 512 | |
| 513 | // i386 FreeBSD |
| 514 | static const MemoryMapParams FreeBSD_I386_MemoryMapParams = { |
| 515 | .AndMask: 0x000180000000, // AndMask |
| 516 | .XorMask: 0x000040000000, // XorMask |
| 517 | .ShadowBase: 0x000020000000, // ShadowBase |
| 518 | .OriginBase: 0x000700000000, // OriginBase |
| 519 | }; |
| 520 | |
| 521 | // x86_64 FreeBSD |
| 522 | static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = { |
| 523 | .AndMask: 0xc00000000000, // AndMask |
| 524 | .XorMask: 0x200000000000, // XorMask |
| 525 | .ShadowBase: 0x100000000000, // ShadowBase |
| 526 | .OriginBase: 0x380000000000, // OriginBase |
| 527 | }; |
| 528 | |
| 529 | // x86_64 NetBSD |
| 530 | static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = { |
| 531 | .AndMask: 0, // AndMask |
| 532 | .XorMask: 0x500000000000, // XorMask |
| 533 | .ShadowBase: 0, // ShadowBase |
| 534 | .OriginBase: 0x100000000000, // OriginBase |
| 535 | }; |
| 536 | |
| 537 | static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = { |
| 538 | .bits32: &Linux_I386_MemoryMapParams, |
| 539 | .bits64: &Linux_X86_64_MemoryMapParams, |
| 540 | }; |
| 541 | |
| 542 | static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = { |
| 543 | .bits32: nullptr, |
| 544 | .bits64: &Linux_MIPS64_MemoryMapParams, |
| 545 | }; |
| 546 | |
| 547 | static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = { |
| 548 | .bits32: nullptr, |
| 549 | .bits64: &Linux_PowerPC64_MemoryMapParams, |
| 550 | }; |
| 551 | |
| 552 | static const PlatformMemoryMapParams Linux_S390_MemoryMapParams = { |
| 553 | .bits32: nullptr, |
| 554 | .bits64: &Linux_S390X_MemoryMapParams, |
| 555 | }; |
| 556 | |
| 557 | static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = { |
| 558 | .bits32: nullptr, |
| 559 | .bits64: &Linux_AArch64_MemoryMapParams, |
| 560 | }; |
| 561 | |
| 562 | static const PlatformMemoryMapParams Linux_LoongArch_MemoryMapParams = { |
| 563 | .bits32: nullptr, |
| 564 | .bits64: &Linux_LoongArch64_MemoryMapParams, |
| 565 | }; |
| 566 | |
| 567 | static const PlatformMemoryMapParams FreeBSD_ARM_MemoryMapParams = { |
| 568 | .bits32: nullptr, |
| 569 | .bits64: &FreeBSD_AArch64_MemoryMapParams, |
| 570 | }; |
| 571 | |
| 572 | static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = { |
| 573 | .bits32: &FreeBSD_I386_MemoryMapParams, |
| 574 | .bits64: &FreeBSD_X86_64_MemoryMapParams, |
| 575 | }; |
| 576 | |
| 577 | static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = { |
| 578 | .bits32: nullptr, |
| 579 | .bits64: &NetBSD_X86_64_MemoryMapParams, |
| 580 | }; |
| 581 | |
| 582 | namespace { |
| 583 | |
| 584 | /// Instrument functions of a module to detect uninitialized reads. |
| 585 | /// |
| 586 | /// Instantiating MemorySanitizer inserts the msan runtime library API function |
| 587 | /// declarations into the module if they don't exist already. Instantiating |
| 588 | /// ensures the __msan_init function is in the list of global constructors for |
| 589 | /// the module. |
| 590 | class MemorySanitizer { |
| 591 | public: |
| 592 | MemorySanitizer(Module &M, MemorySanitizerOptions Options) |
| 593 | : CompileKernel(Options.Kernel), TrackOrigins(Options.TrackOrigins), |
| 594 | Recover(Options.Recover), EagerChecks(Options.EagerChecks) { |
| 595 | initializeModule(M); |
| 596 | } |
| 597 | |
| 598 | // MSan cannot be moved or copied because of MapParams. |
| 599 | MemorySanitizer(MemorySanitizer &&) = delete; |
| 600 | MemorySanitizer &operator=(MemorySanitizer &&) = delete; |
| 601 | MemorySanitizer(const MemorySanitizer &) = delete; |
| 602 | MemorySanitizer &operator=(const MemorySanitizer &) = delete; |
| 603 | |
| 604 | bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI); |
| 605 | |
| 606 | private: |
| 607 | friend struct MemorySanitizerVisitor; |
| 608 | friend struct VarArgHelperBase; |
| 609 | friend struct VarArgAMD64Helper; |
| 610 | friend struct VarArgAArch64Helper; |
| 611 | friend struct VarArgPowerPC64Helper; |
| 612 | friend struct VarArgPowerPC32Helper; |
| 613 | friend struct VarArgSystemZHelper; |
| 614 | friend struct VarArgI386Helper; |
| 615 | friend struct VarArgGenericHelper; |
| 616 | |
| 617 | void initializeModule(Module &M); |
| 618 | void initializeCallbacks(Module &M, const TargetLibraryInfo &TLI); |
| 619 | void createKernelApi(Module &M, const TargetLibraryInfo &TLI); |
| 620 | void createUserspaceApi(Module &M, const TargetLibraryInfo &TLI); |
| 621 | |
| 622 | template <typename... ArgsTy> |
| 623 | FunctionCallee getOrInsertMsanMetadataFunction(Module &M, StringRef Name, |
| 624 | ArgsTy... Args); |
| 625 | |
| 626 | /// True if we're compiling the Linux kernel. |
| 627 | bool CompileKernel; |
| 628 | /// Track origins (allocation points) of uninitialized values. |
| 629 | int TrackOrigins; |
| 630 | bool Recover; |
| 631 | bool EagerChecks; |
| 632 | |
| 633 | Triple TargetTriple; |
| 634 | LLVMContext *C; |
| 635 | Type *IntptrTy; ///< Integer type with the size of a ptr in default AS. |
| 636 | Type *OriginTy; |
| 637 | PointerType *PtrTy; ///< Integer type with the size of a ptr in default AS. |
| 638 | |
| 639 | // XxxTLS variables represent the per-thread state in MSan and per-task state |
| 640 | // in KMSAN. |
| 641 | // For the userspace these point to thread-local globals. In the kernel land |
| 642 | // they point to the members of a per-task struct obtained via a call to |
| 643 | // __msan_get_context_state(). |
| 644 | |
| 645 | /// Thread-local shadow storage for function parameters. |
| 646 | Value *ParamTLS; |
| 647 | |
| 648 | /// Thread-local origin storage for function parameters. |
| 649 | Value *ParamOriginTLS; |
| 650 | |
| 651 | /// Thread-local shadow storage for function return value. |
| 652 | Value *RetvalTLS; |
| 653 | |
| 654 | /// Thread-local origin storage for function return value. |
| 655 | Value *RetvalOriginTLS; |
| 656 | |
| 657 | /// Thread-local shadow storage for in-register va_arg function. |
| 658 | Value *VAArgTLS; |
| 659 | |
| 660 | /// Thread-local shadow storage for in-register va_arg function. |
| 661 | Value *VAArgOriginTLS; |
| 662 | |
| 663 | /// Thread-local shadow storage for va_arg overflow area. |
| 664 | Value *VAArgOverflowSizeTLS; |
| 665 | |
| 666 | /// Are the instrumentation callbacks set up? |
| 667 | bool CallbacksInitialized = false; |
| 668 | |
| 669 | /// The run-time callback to print a warning. |
| 670 | FunctionCallee WarningFn; |
| 671 | |
| 672 | // These arrays are indexed by log2(AccessSize). |
| 673 | FunctionCallee MaybeWarningFn[kNumberOfAccessSizes]; |
| 674 | FunctionCallee MaybeWarningVarSizeFn; |
| 675 | FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes]; |
| 676 | |
| 677 | /// Run-time helper that generates a new origin value for a stack |
| 678 | /// allocation. |
| 679 | FunctionCallee MsanSetAllocaOriginWithDescriptionFn; |
| 680 | // No description version |
| 681 | FunctionCallee MsanSetAllocaOriginNoDescriptionFn; |
| 682 | |
| 683 | /// Run-time helper that poisons stack on function entry. |
| 684 | FunctionCallee MsanPoisonStackFn; |
| 685 | |
| 686 | /// Run-time helper that records a store (or any event) of an |
| 687 | /// uninitialized value and returns an updated origin id encoding this info. |
| 688 | FunctionCallee MsanChainOriginFn; |
| 689 | |
| 690 | /// Run-time helper that paints an origin over a region. |
| 691 | FunctionCallee MsanSetOriginFn; |
| 692 | |
| 693 | /// MSan runtime replacements for memmove, memcpy and memset. |
| 694 | FunctionCallee MemmoveFn, MemcpyFn, MemsetFn; |
| 695 | |
| 696 | /// KMSAN callback for task-local function argument shadow. |
| 697 | StructType *MsanContextStateTy; |
| 698 | FunctionCallee MsanGetContextStateFn; |
| 699 | |
| 700 | /// Functions for poisoning/unpoisoning local variables |
| 701 | FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn; |
| 702 | |
| 703 | /// Pair of shadow/origin pointers. |
| 704 | Type *MsanMetadata; |
| 705 | |
| 706 | /// Each of the MsanMetadataPtrXxx functions returns a MsanMetadata. |
| 707 | FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN; |
| 708 | FunctionCallee MsanMetadataPtrForLoad_1_8[4]; |
| 709 | FunctionCallee MsanMetadataPtrForStore_1_8[4]; |
| 710 | FunctionCallee MsanInstrumentAsmStoreFn; |
| 711 | |
| 712 | /// Storage for return values of the MsanMetadataPtrXxx functions. |
| 713 | Value *MsanMetadataAlloca; |
| 714 | |
| 715 | /// Helper to choose between different MsanMetadataPtrXxx(). |
| 716 | FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size); |
| 717 | |
| 718 | /// Memory map parameters used in application-to-shadow calculation. |
| 719 | const MemoryMapParams *MapParams; |
| 720 | |
| 721 | /// Custom memory map parameters used when -msan-shadow-base or |
| 722 | // -msan-origin-base is provided. |
| 723 | MemoryMapParams CustomMapParams; |
| 724 | |
| 725 | MDNode *ColdCallWeights; |
| 726 | |
| 727 | /// Branch weights for origin store. |
| 728 | MDNode *OriginStoreWeights; |
| 729 | }; |
| 730 | |
| 731 | void insertModuleCtor(Module &M) { |
| 732 | getOrCreateSanitizerCtorAndInitFunctions( |
| 733 | M, CtorName: kMsanModuleCtorName, InitName: kMsanInitName, |
| 734 | /*InitArgTypes=*/{}, |
| 735 | /*InitArgs=*/{}, |
| 736 | // This callback is invoked when the functions are created the first |
| 737 | // time. Hook them into the global ctors list in that case: |
| 738 | FunctionsCreatedCallback: [&](Function *Ctor, FunctionCallee) { |
| 739 | if (!ClWithComdat) { |
| 740 | appendToGlobalCtors(M, F: Ctor, Priority: 0); |
| 741 | return; |
| 742 | } |
| 743 | Comdat *MsanCtorComdat = M.getOrInsertComdat(Name: kMsanModuleCtorName); |
| 744 | Ctor->setComdat(MsanCtorComdat); |
| 745 | appendToGlobalCtors(M, F: Ctor, Priority: 0, Data: Ctor); |
| 746 | }); |
| 747 | } |
| 748 | |
| 749 | template <class T> T getOptOrDefault(const cl::opt<T> &Opt, T Default) { |
| 750 | return (Opt.getNumOccurrences() > 0) ? Opt : Default; |
| 751 | } |
| 752 | |
| 753 | } // end anonymous namespace |
| 754 | |
| 755 | MemorySanitizerOptions::MemorySanitizerOptions(int TO, bool R, bool K, |
| 756 | bool EagerChecks) |
| 757 | : Kernel(getOptOrDefault(Opt: ClEnableKmsan, Default: K)), |
| 758 | TrackOrigins(getOptOrDefault(Opt: ClTrackOrigins, Default: Kernel ? 2 : TO)), |
| 759 | Recover(getOptOrDefault(Opt: ClKeepGoing, Default: Kernel || R)), |
| 760 | EagerChecks(getOptOrDefault(Opt: ClEagerChecks, Default: EagerChecks)) {} |
| 761 | |
| 762 | PreservedAnalyses MemorySanitizerPass::run(Module &M, |
| 763 | ModuleAnalysisManager &AM) { |
| 764 | // Return early if nosanitize_memory module flag is present for the module. |
| 765 | if (checkIfAlreadyInstrumented(M, Flag: "nosanitize_memory" )) |
| 766 | return PreservedAnalyses::all(); |
| 767 | bool Modified = false; |
| 768 | if (!Options.Kernel) { |
| 769 | insertModuleCtor(M); |
| 770 | Modified = true; |
| 771 | } |
| 772 | |
| 773 | auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(IR&: M).getManager(); |
| 774 | for (Function &F : M) { |
| 775 | if (F.empty()) |
| 776 | continue; |
| 777 | MemorySanitizer Msan(*F.getParent(), Options); |
| 778 | Modified |= |
| 779 | Msan.sanitizeFunction(F, TLI&: FAM.getResult<TargetLibraryAnalysis>(IR&: F)); |
| 780 | } |
| 781 | |
| 782 | if (!Modified) |
| 783 | return PreservedAnalyses::all(); |
| 784 | |
| 785 | PreservedAnalyses PA = PreservedAnalyses::none(); |
| 786 | // GlobalsAA is considered stateless and does not get invalidated unless |
| 787 | // explicitly invalidated; PreservedAnalyses::none() is not enough. Sanitizers |
| 788 | // make changes that require GlobalsAA to be invalidated. |
| 789 | PA.abandon<GlobalsAA>(); |
| 790 | return PA; |
| 791 | } |
| 792 | |
| 793 | void MemorySanitizerPass::printPipeline( |
| 794 | raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { |
| 795 | static_cast<PassInfoMixin<MemorySanitizerPass> *>(this)->printPipeline( |
| 796 | OS, MapClassName2PassName); |
| 797 | OS << '<'; |
| 798 | if (Options.Recover) |
| 799 | OS << "recover;" ; |
| 800 | if (Options.Kernel) |
| 801 | OS << "kernel;" ; |
| 802 | if (Options.EagerChecks) |
| 803 | OS << "eager-checks;" ; |
| 804 | OS << "track-origins=" << Options.TrackOrigins; |
| 805 | OS << '>'; |
| 806 | } |
| 807 | |
| 808 | /// Create a non-const global initialized with the given string. |
| 809 | /// |
| 810 | /// Creates a writable global for Str so that we can pass it to the |
| 811 | /// run-time lib. Runtime uses first 4 bytes of the string to store the |
| 812 | /// frame ID, so the string needs to be mutable. |
| 813 | static GlobalVariable *createPrivateConstGlobalForString(Module &M, |
| 814 | StringRef Str) { |
| 815 | Constant *StrConst = ConstantDataArray::getString(Context&: M.getContext(), Initializer: Str); |
| 816 | return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/true, |
| 817 | GlobalValue::PrivateLinkage, StrConst, "" ); |
| 818 | } |
| 819 | |
| 820 | template <typename... ArgsTy> |
| 821 | FunctionCallee |
| 822 | MemorySanitizer::getOrInsertMsanMetadataFunction(Module &M, StringRef Name, |
| 823 | ArgsTy... Args) { |
| 824 | if (TargetTriple.getArch() == Triple::systemz) { |
| 825 | // SystemZ ABI: shadow/origin pair is returned via a hidden parameter. |
| 826 | return M.getOrInsertFunction(Name, Type::getVoidTy(C&: *C), PtrTy, |
| 827 | std::forward<ArgsTy>(Args)...); |
| 828 | } |
| 829 | |
| 830 | return M.getOrInsertFunction(Name, MsanMetadata, |
| 831 | std::forward<ArgsTy>(Args)...); |
| 832 | } |
| 833 | |
| 834 | /// Create KMSAN API callbacks. |
| 835 | void MemorySanitizer::createKernelApi(Module &M, const TargetLibraryInfo &TLI) { |
| 836 | IRBuilder<> IRB(*C); |
| 837 | |
| 838 | // These will be initialized in insertKmsanPrologue(). |
| 839 | RetvalTLS = nullptr; |
| 840 | RetvalOriginTLS = nullptr; |
| 841 | ParamTLS = nullptr; |
| 842 | ParamOriginTLS = nullptr; |
| 843 | VAArgTLS = nullptr; |
| 844 | VAArgOriginTLS = nullptr; |
| 845 | VAArgOverflowSizeTLS = nullptr; |
| 846 | |
| 847 | WarningFn = M.getOrInsertFunction(Name: "__msan_warning" , |
| 848 | AttributeList: TLI.getAttrList(C, ArgNos: {0}, /*Signed=*/false), |
| 849 | RetTy: IRB.getVoidTy(), Args: IRB.getInt32Ty()); |
| 850 | |
| 851 | // Requests the per-task context state (kmsan_context_state*) from the |
| 852 | // runtime library. |
| 853 | MsanContextStateTy = StructType::get( |
| 854 | elt1: ArrayType::get(ElementType: IRB.getInt64Ty(), NumElements: kParamTLSSize / 8), |
| 855 | elts: ArrayType::get(ElementType: IRB.getInt64Ty(), NumElements: kRetvalTLSSize / 8), |
| 856 | elts: ArrayType::get(ElementType: IRB.getInt64Ty(), NumElements: kParamTLSSize / 8), |
| 857 | elts: ArrayType::get(ElementType: IRB.getInt64Ty(), NumElements: kParamTLSSize / 8), /* va_arg_origin */ |
| 858 | elts: IRB.getInt64Ty(), elts: ArrayType::get(ElementType: OriginTy, NumElements: kParamTLSSize / 4), elts: OriginTy, |
| 859 | elts: OriginTy); |
| 860 | MsanGetContextStateFn = |
| 861 | M.getOrInsertFunction(Name: "__msan_get_context_state" , RetTy: PtrTy); |
| 862 | |
| 863 | MsanMetadata = StructType::get(elt1: PtrTy, elts: PtrTy); |
| 864 | |
| 865 | for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) { |
| 866 | std::string name_load = |
| 867 | "__msan_metadata_ptr_for_load_" + std::to_string(val: size); |
| 868 | std::string name_store = |
| 869 | "__msan_metadata_ptr_for_store_" + std::to_string(val: size); |
| 870 | MsanMetadataPtrForLoad_1_8[ind] = |
| 871 | getOrInsertMsanMetadataFunction(M, Name: name_load, Args: PtrTy); |
| 872 | MsanMetadataPtrForStore_1_8[ind] = |
| 873 | getOrInsertMsanMetadataFunction(M, Name: name_store, Args: PtrTy); |
| 874 | } |
| 875 | |
| 876 | MsanMetadataPtrForLoadN = getOrInsertMsanMetadataFunction( |
| 877 | M, Name: "__msan_metadata_ptr_for_load_n" , Args: PtrTy, Args: IntptrTy); |
| 878 | MsanMetadataPtrForStoreN = getOrInsertMsanMetadataFunction( |
| 879 | M, Name: "__msan_metadata_ptr_for_store_n" , Args: PtrTy, Args: IntptrTy); |
| 880 | |
| 881 | // Functions for poisoning and unpoisoning memory. |
| 882 | MsanPoisonAllocaFn = M.getOrInsertFunction( |
| 883 | Name: "__msan_poison_alloca" , RetTy: IRB.getVoidTy(), Args: PtrTy, Args: IntptrTy, Args: PtrTy); |
| 884 | MsanUnpoisonAllocaFn = M.getOrInsertFunction( |
| 885 | Name: "__msan_unpoison_alloca" , RetTy: IRB.getVoidTy(), Args: PtrTy, Args: IntptrTy); |
| 886 | } |
| 887 | |
| 888 | static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) { |
| 889 | return M.getOrInsertGlobal(Name, Ty, CreateGlobalCallback: [&] { |
| 890 | return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage, |
| 891 | nullptr, Name, nullptr, |
| 892 | GlobalVariable::InitialExecTLSModel); |
| 893 | }); |
| 894 | } |
| 895 | |
| 896 | /// Insert declarations for userspace-specific functions and globals. |
| 897 | void MemorySanitizer::createUserspaceApi(Module &M, |
| 898 | const TargetLibraryInfo &TLI) { |
| 899 | IRBuilder<> IRB(*C); |
| 900 | |
| 901 | // Create the callback. |
| 902 | // FIXME: this function should have "Cold" calling conv, |
| 903 | // which is not yet implemented. |
| 904 | if (TrackOrigins) { |
| 905 | StringRef WarningFnName = Recover ? "__msan_warning_with_origin" |
| 906 | : "__msan_warning_with_origin_noreturn" ; |
| 907 | WarningFn = M.getOrInsertFunction(Name: WarningFnName, |
| 908 | AttributeList: TLI.getAttrList(C, ArgNos: {0}, /*Signed=*/false), |
| 909 | RetTy: IRB.getVoidTy(), Args: IRB.getInt32Ty()); |
| 910 | } else { |
| 911 | StringRef WarningFnName = |
| 912 | Recover ? "__msan_warning" : "__msan_warning_noreturn" ; |
| 913 | WarningFn = M.getOrInsertFunction(Name: WarningFnName, RetTy: IRB.getVoidTy()); |
| 914 | } |
| 915 | |
| 916 | // Create the global TLS variables. |
| 917 | RetvalTLS = |
| 918 | getOrInsertGlobal(M, Name: "__msan_retval_tls" , |
| 919 | Ty: ArrayType::get(ElementType: IRB.getInt64Ty(), NumElements: kRetvalTLSSize / 8)); |
| 920 | |
| 921 | RetvalOriginTLS = getOrInsertGlobal(M, Name: "__msan_retval_origin_tls" , Ty: OriginTy); |
| 922 | |
| 923 | ParamTLS = |
| 924 | getOrInsertGlobal(M, Name: "__msan_param_tls" , |
| 925 | Ty: ArrayType::get(ElementType: IRB.getInt64Ty(), NumElements: kParamTLSSize / 8)); |
| 926 | |
| 927 | ParamOriginTLS = |
| 928 | getOrInsertGlobal(M, Name: "__msan_param_origin_tls" , |
| 929 | Ty: ArrayType::get(ElementType: OriginTy, NumElements: kParamTLSSize / 4)); |
| 930 | |
| 931 | VAArgTLS = |
| 932 | getOrInsertGlobal(M, Name: "__msan_va_arg_tls" , |
| 933 | Ty: ArrayType::get(ElementType: IRB.getInt64Ty(), NumElements: kParamTLSSize / 8)); |
| 934 | |
| 935 | VAArgOriginTLS = |
| 936 | getOrInsertGlobal(M, Name: "__msan_va_arg_origin_tls" , |
| 937 | Ty: ArrayType::get(ElementType: OriginTy, NumElements: kParamTLSSize / 4)); |
| 938 | |
| 939 | VAArgOverflowSizeTLS = getOrInsertGlobal(M, Name: "__msan_va_arg_overflow_size_tls" , |
| 940 | Ty: IRB.getIntPtrTy(DL: M.getDataLayout())); |
| 941 | |
| 942 | for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; |
| 943 | AccessSizeIndex++) { |
| 944 | unsigned AccessSize = 1 << AccessSizeIndex; |
| 945 | std::string FunctionName = "__msan_maybe_warning_" + itostr(X: AccessSize); |
| 946 | MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction( |
| 947 | Name: FunctionName, AttributeList: TLI.getAttrList(C, ArgNos: {0, 1}, /*Signed=*/false), |
| 948 | RetTy: IRB.getVoidTy(), Args: IRB.getIntNTy(N: AccessSize * 8), Args: IRB.getInt32Ty()); |
| 949 | MaybeWarningVarSizeFn = M.getOrInsertFunction( |
| 950 | Name: "__msan_maybe_warning_N" , AttributeList: TLI.getAttrList(C, ArgNos: {}, /*Signed=*/false), |
| 951 | RetTy: IRB.getVoidTy(), Args: PtrTy, Args: IRB.getInt64Ty(), Args: IRB.getInt32Ty()); |
| 952 | FunctionName = "__msan_maybe_store_origin_" + itostr(X: AccessSize); |
| 953 | MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction( |
| 954 | Name: FunctionName, AttributeList: TLI.getAttrList(C, ArgNos: {0, 2}, /*Signed=*/false), |
| 955 | RetTy: IRB.getVoidTy(), Args: IRB.getIntNTy(N: AccessSize * 8), Args: PtrTy, |
| 956 | Args: IRB.getInt32Ty()); |
| 957 | } |
| 958 | |
| 959 | MsanSetAllocaOriginWithDescriptionFn = |
| 960 | M.getOrInsertFunction(Name: "__msan_set_alloca_origin_with_descr" , |
| 961 | RetTy: IRB.getVoidTy(), Args: PtrTy, Args: IntptrTy, Args: PtrTy, Args: PtrTy); |
| 962 | MsanSetAllocaOriginNoDescriptionFn = |
| 963 | M.getOrInsertFunction(Name: "__msan_set_alloca_origin_no_descr" , |
| 964 | RetTy: IRB.getVoidTy(), Args: PtrTy, Args: IntptrTy, Args: PtrTy); |
| 965 | MsanPoisonStackFn = M.getOrInsertFunction(Name: "__msan_poison_stack" , |
| 966 | RetTy: IRB.getVoidTy(), Args: PtrTy, Args: IntptrTy); |
| 967 | } |
| 968 | |
| 969 | /// Insert extern declaration of runtime-provided functions and globals. |
| 970 | void MemorySanitizer::initializeCallbacks(Module &M, |
| 971 | const TargetLibraryInfo &TLI) { |
| 972 | // Only do this once. |
| 973 | if (CallbacksInitialized) |
| 974 | return; |
| 975 | |
| 976 | IRBuilder<> IRB(*C); |
| 977 | // Initialize callbacks that are common for kernel and userspace |
| 978 | // instrumentation. |
| 979 | MsanChainOriginFn = M.getOrInsertFunction( |
| 980 | Name: "__msan_chain_origin" , |
| 981 | AttributeList: TLI.getAttrList(C, ArgNos: {0}, /*Signed=*/false, /*Ret=*/true), RetTy: IRB.getInt32Ty(), |
| 982 | Args: IRB.getInt32Ty()); |
| 983 | MsanSetOriginFn = M.getOrInsertFunction( |
| 984 | Name: "__msan_set_origin" , AttributeList: TLI.getAttrList(C, ArgNos: {2}, /*Signed=*/false), |
| 985 | RetTy: IRB.getVoidTy(), Args: PtrTy, Args: IntptrTy, Args: IRB.getInt32Ty()); |
| 986 | MemmoveFn = |
| 987 | M.getOrInsertFunction(Name: "__msan_memmove" , RetTy: PtrTy, Args: PtrTy, Args: PtrTy, Args: IntptrTy); |
| 988 | MemcpyFn = |
| 989 | M.getOrInsertFunction(Name: "__msan_memcpy" , RetTy: PtrTy, Args: PtrTy, Args: PtrTy, Args: IntptrTy); |
| 990 | MemsetFn = M.getOrInsertFunction(Name: "__msan_memset" , |
| 991 | AttributeList: TLI.getAttrList(C, ArgNos: {1}, /*Signed=*/true), |
| 992 | RetTy: PtrTy, Args: PtrTy, Args: IRB.getInt32Ty(), Args: IntptrTy); |
| 993 | |
| 994 | MsanInstrumentAsmStoreFn = M.getOrInsertFunction( |
| 995 | Name: "__msan_instrument_asm_store" , RetTy: IRB.getVoidTy(), Args: PtrTy, Args: IntptrTy); |
| 996 | |
| 997 | if (CompileKernel) { |
| 998 | createKernelApi(M, TLI); |
| 999 | } else { |
| 1000 | createUserspaceApi(M, TLI); |
| 1001 | } |
| 1002 | CallbacksInitialized = true; |
| 1003 | } |
| 1004 | |
| 1005 | FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore, |
| 1006 | int size) { |
| 1007 | FunctionCallee *Fns = |
| 1008 | isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8; |
| 1009 | switch (size) { |
| 1010 | case 1: |
| 1011 | return Fns[0]; |
| 1012 | case 2: |
| 1013 | return Fns[1]; |
| 1014 | case 4: |
| 1015 | return Fns[2]; |
| 1016 | case 8: |
| 1017 | return Fns[3]; |
| 1018 | default: |
| 1019 | return nullptr; |
| 1020 | } |
| 1021 | } |
| 1022 | |
| 1023 | /// Module-level initialization. |
| 1024 | /// |
| 1025 | /// inserts a call to __msan_init to the module's constructor list. |
| 1026 | void MemorySanitizer::initializeModule(Module &M) { |
| 1027 | auto &DL = M.getDataLayout(); |
| 1028 | |
| 1029 | TargetTriple = M.getTargetTriple(); |
| 1030 | |
| 1031 | bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0; |
| 1032 | bool OriginPassed = ClOriginBase.getNumOccurrences() > 0; |
| 1033 | // Check the overrides first |
| 1034 | if (ShadowPassed || OriginPassed) { |
| 1035 | CustomMapParams.AndMask = ClAndMask; |
| 1036 | CustomMapParams.XorMask = ClXorMask; |
| 1037 | CustomMapParams.ShadowBase = ClShadowBase; |
| 1038 | CustomMapParams.OriginBase = ClOriginBase; |
| 1039 | MapParams = &CustomMapParams; |
| 1040 | } else { |
| 1041 | switch (TargetTriple.getOS()) { |
| 1042 | case Triple::FreeBSD: |
| 1043 | switch (TargetTriple.getArch()) { |
| 1044 | case Triple::aarch64: |
| 1045 | MapParams = FreeBSD_ARM_MemoryMapParams.bits64; |
| 1046 | break; |
| 1047 | case Triple::x86_64: |
| 1048 | MapParams = FreeBSD_X86_MemoryMapParams.bits64; |
| 1049 | break; |
| 1050 | case Triple::x86: |
| 1051 | MapParams = FreeBSD_X86_MemoryMapParams.bits32; |
| 1052 | break; |
| 1053 | default: |
| 1054 | report_fatal_error(reason: "unsupported architecture" ); |
| 1055 | } |
| 1056 | break; |
| 1057 | case Triple::NetBSD: |
| 1058 | switch (TargetTriple.getArch()) { |
| 1059 | case Triple::x86_64: |
| 1060 | MapParams = NetBSD_X86_MemoryMapParams.bits64; |
| 1061 | break; |
| 1062 | default: |
| 1063 | report_fatal_error(reason: "unsupported architecture" ); |
| 1064 | } |
| 1065 | break; |
| 1066 | case Triple::Linux: |
| 1067 | switch (TargetTriple.getArch()) { |
| 1068 | case Triple::x86_64: |
| 1069 | MapParams = Linux_X86_MemoryMapParams.bits64; |
| 1070 | break; |
| 1071 | case Triple::x86: |
| 1072 | MapParams = Linux_X86_MemoryMapParams.bits32; |
| 1073 | break; |
| 1074 | case Triple::mips64: |
| 1075 | case Triple::mips64el: |
| 1076 | MapParams = Linux_MIPS_MemoryMapParams.bits64; |
| 1077 | break; |
| 1078 | case Triple::ppc64: |
| 1079 | case Triple::ppc64le: |
| 1080 | MapParams = Linux_PowerPC_MemoryMapParams.bits64; |
| 1081 | break; |
| 1082 | case Triple::systemz: |
| 1083 | MapParams = Linux_S390_MemoryMapParams.bits64; |
| 1084 | break; |
| 1085 | case Triple::aarch64: |
| 1086 | case Triple::aarch64_be: |
| 1087 | MapParams = Linux_ARM_MemoryMapParams.bits64; |
| 1088 | break; |
| 1089 | case Triple::loongarch64: |
| 1090 | MapParams = Linux_LoongArch_MemoryMapParams.bits64; |
| 1091 | break; |
| 1092 | default: |
| 1093 | report_fatal_error(reason: "unsupported architecture" ); |
| 1094 | } |
| 1095 | break; |
| 1096 | default: |
| 1097 | report_fatal_error(reason: "unsupported operating system" ); |
| 1098 | } |
| 1099 | } |
| 1100 | |
| 1101 | C = &(M.getContext()); |
| 1102 | IRBuilder<> IRB(*C); |
| 1103 | IntptrTy = IRB.getIntPtrTy(DL); |
| 1104 | OriginTy = IRB.getInt32Ty(); |
| 1105 | PtrTy = IRB.getPtrTy(); |
| 1106 | |
| 1107 | ColdCallWeights = MDBuilder(*C).createUnlikelyBranchWeights(); |
| 1108 | OriginStoreWeights = MDBuilder(*C).createUnlikelyBranchWeights(); |
| 1109 | |
| 1110 | if (!CompileKernel) { |
| 1111 | if (TrackOrigins) |
| 1112 | M.getOrInsertGlobal(Name: "__msan_track_origins" , Ty: IRB.getInt32Ty(), CreateGlobalCallback: [&] { |
| 1113 | return new GlobalVariable( |
| 1114 | M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, |
| 1115 | IRB.getInt32(C: TrackOrigins), "__msan_track_origins" ); |
| 1116 | }); |
| 1117 | |
| 1118 | if (Recover) |
| 1119 | M.getOrInsertGlobal(Name: "__msan_keep_going" , Ty: IRB.getInt32Ty(), CreateGlobalCallback: [&] { |
| 1120 | return new GlobalVariable(M, IRB.getInt32Ty(), true, |
| 1121 | GlobalValue::WeakODRLinkage, |
| 1122 | IRB.getInt32(C: Recover), "__msan_keep_going" ); |
| 1123 | }); |
| 1124 | } |
| 1125 | } |
| 1126 | |
| 1127 | namespace { |
| 1128 | |
| 1129 | /// A helper class that handles instrumentation of VarArg |
| 1130 | /// functions on a particular platform. |
| 1131 | /// |
| 1132 | /// Implementations are expected to insert the instrumentation |
| 1133 | /// necessary to propagate argument shadow through VarArg function |
| 1134 | /// calls. Visit* methods are called during an InstVisitor pass over |
| 1135 | /// the function, and should avoid creating new basic blocks. A new |
| 1136 | /// instance of this class is created for each instrumented function. |
| 1137 | struct VarArgHelper { |
| 1138 | virtual ~VarArgHelper() = default; |
| 1139 | |
| 1140 | /// Visit a CallBase. |
| 1141 | virtual void visitCallBase(CallBase &CB, IRBuilder<> &IRB) = 0; |
| 1142 | |
| 1143 | /// Visit a va_start call. |
| 1144 | virtual void visitVAStartInst(VAStartInst &I) = 0; |
| 1145 | |
| 1146 | /// Visit a va_copy call. |
| 1147 | virtual void visitVACopyInst(VACopyInst &I) = 0; |
| 1148 | |
| 1149 | /// Finalize function instrumentation. |
| 1150 | /// |
| 1151 | /// This method is called after visiting all interesting (see above) |
| 1152 | /// instructions in a function. |
| 1153 | virtual void finalizeInstrumentation() = 0; |
| 1154 | }; |
| 1155 | |
| 1156 | struct MemorySanitizerVisitor; |
| 1157 | |
| 1158 | } // end anonymous namespace |
| 1159 | |
| 1160 | static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, |
| 1161 | MemorySanitizerVisitor &Visitor); |
| 1162 | |
| 1163 | static unsigned TypeSizeToSizeIndex(TypeSize TS) { |
| 1164 | if (TS.isScalable()) |
| 1165 | // Scalable types unconditionally take slowpaths. |
| 1166 | return kNumberOfAccessSizes; |
| 1167 | unsigned TypeSizeFixed = TS.getFixedValue(); |
| 1168 | if (TypeSizeFixed <= 8) |
| 1169 | return 0; |
| 1170 | return Log2_32_Ceil(Value: (TypeSizeFixed + 7) / 8); |
| 1171 | } |
| 1172 | |
| 1173 | namespace { |
| 1174 | |
| 1175 | /// Helper class to attach debug information of the given instruction onto new |
| 1176 | /// instructions inserted after. |
| 1177 | class NextNodeIRBuilder : public IRBuilder<> { |
| 1178 | public: |
| 1179 | explicit NextNodeIRBuilder(Instruction *IP) : IRBuilder<>(IP->getNextNode()) { |
| 1180 | SetCurrentDebugLocation(IP->getDebugLoc()); |
| 1181 | } |
| 1182 | }; |
| 1183 | |
| 1184 | /// This class does all the work for a given function. Store and Load |
| 1185 | /// instructions store and load corresponding shadow and origin |
| 1186 | /// values. Most instructions propagate shadow from arguments to their |
| 1187 | /// return values. Certain instructions (most importantly, BranchInst) |
| 1188 | /// test their argument shadow and print reports (with a runtime call) if it's |
| 1189 | /// non-zero. |
| 1190 | struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { |
| 1191 | Function &F; |
| 1192 | MemorySanitizer &MS; |
| 1193 | SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes; |
| 1194 | ValueMap<Value *, Value *> ShadowMap, OriginMap; |
| 1195 | std::unique_ptr<VarArgHelper> VAHelper; |
| 1196 | const TargetLibraryInfo *TLI; |
| 1197 | Instruction *FnPrologueEnd; |
| 1198 | SmallVector<Instruction *, 16> Instructions; |
| 1199 | |
| 1200 | // The following flags disable parts of MSan instrumentation based on |
| 1201 | // exclusion list contents and command-line options. |
| 1202 | bool InsertChecks; |
| 1203 | bool PropagateShadow; |
| 1204 | bool PoisonStack; |
| 1205 | bool PoisonUndef; |
| 1206 | bool PoisonUndefVectors; |
| 1207 | |
| 1208 | struct ShadowOriginAndInsertPoint { |
| 1209 | Value *Shadow; |
| 1210 | Value *Origin; |
| 1211 | Instruction *OrigIns; |
| 1212 | |
| 1213 | ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I) |
| 1214 | : Shadow(S), Origin(O), OrigIns(I) {} |
| 1215 | }; |
| 1216 | SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList; |
| 1217 | DenseMap<const DILocation *, int> LazyWarningDebugLocationCount; |
| 1218 | bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics; |
| 1219 | SmallSetVector<AllocaInst *, 16> AllocaSet; |
| 1220 | SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList; |
| 1221 | SmallVector<StoreInst *, 16> StoreList; |
| 1222 | int64_t SplittableBlocksCount = 0; |
| 1223 | |
| 1224 | MemorySanitizerVisitor(Function &F, MemorySanitizer &MS, |
| 1225 | const TargetLibraryInfo &TLI) |
| 1226 | : F(F), MS(MS), VAHelper(CreateVarArgHelper(Func&: F, Msan&: MS, Visitor&: *this)), TLI(&TLI) { |
| 1227 | bool SanitizeFunction = |
| 1228 | F.hasFnAttribute(Kind: Attribute::SanitizeMemory) && !ClDisableChecks; |
| 1229 | InsertChecks = SanitizeFunction; |
| 1230 | PropagateShadow = SanitizeFunction; |
| 1231 | PoisonStack = SanitizeFunction && ClPoisonStack; |
| 1232 | PoisonUndef = SanitizeFunction && ClPoisonUndef; |
| 1233 | PoisonUndefVectors = SanitizeFunction && ClPoisonUndefVectors; |
| 1234 | |
| 1235 | // In the presence of unreachable blocks, we may see Phi nodes with |
| 1236 | // incoming nodes from such blocks. Since InstVisitor skips unreachable |
| 1237 | // blocks, such nodes will not have any shadow value associated with them. |
| 1238 | // It's easier to remove unreachable blocks than deal with missing shadow. |
| 1239 | removeUnreachableBlocks(F); |
| 1240 | |
| 1241 | MS.initializeCallbacks(M&: *F.getParent(), TLI); |
| 1242 | FnPrologueEnd = |
| 1243 | IRBuilder<>(&F.getEntryBlock(), F.getEntryBlock().getFirstNonPHIIt()) |
| 1244 | .CreateIntrinsic(ID: Intrinsic::donothing, Args: {}); |
| 1245 | |
| 1246 | if (MS.CompileKernel) { |
| 1247 | IRBuilder<> IRB(FnPrologueEnd); |
| 1248 | insertKmsanPrologue(IRB); |
| 1249 | } |
| 1250 | |
| 1251 | LLVM_DEBUG(if (!InsertChecks) dbgs() |
| 1252 | << "MemorySanitizer is not inserting checks into '" |
| 1253 | << F.getName() << "'\n" ); |
| 1254 | } |
| 1255 | |
| 1256 | bool instrumentWithCalls(Value *V) { |
| 1257 | // Constants likely will be eliminated by follow-up passes. |
| 1258 | if (isa<Constant>(Val: V)) |
| 1259 | return false; |
| 1260 | ++SplittableBlocksCount; |
| 1261 | return ClInstrumentationWithCallThreshold >= 0 && |
| 1262 | SplittableBlocksCount > ClInstrumentationWithCallThreshold; |
| 1263 | } |
| 1264 | |
| 1265 | bool isInPrologue(Instruction &I) { |
| 1266 | return I.getParent() == FnPrologueEnd->getParent() && |
| 1267 | (&I == FnPrologueEnd || I.comesBefore(Other: FnPrologueEnd)); |
| 1268 | } |
| 1269 | |
| 1270 | // Creates a new origin and records the stack trace. In general we can call |
| 1271 | // this function for any origin manipulation we like. However it will cost |
| 1272 | // runtime resources. So use this wisely only if it can provide additional |
| 1273 | // information helpful to a user. |
| 1274 | Value *updateOrigin(Value *V, IRBuilder<> &IRB) { |
| 1275 | if (MS.TrackOrigins <= 1) |
| 1276 | return V; |
| 1277 | return IRB.CreateCall(Callee: MS.MsanChainOriginFn, Args: V); |
| 1278 | } |
| 1279 | |
| 1280 | Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) { |
| 1281 | const DataLayout &DL = F.getDataLayout(); |
| 1282 | unsigned IntptrSize = DL.getTypeStoreSize(Ty: MS.IntptrTy); |
| 1283 | if (IntptrSize == kOriginSize) |
| 1284 | return Origin; |
| 1285 | assert(IntptrSize == kOriginSize * 2); |
| 1286 | Origin = IRB.CreateIntCast(V: Origin, DestTy: MS.IntptrTy, /* isSigned */ false); |
| 1287 | return IRB.CreateOr(LHS: Origin, RHS: IRB.CreateShl(LHS: Origin, RHS: kOriginSize * 8)); |
| 1288 | } |
| 1289 | |
| 1290 | /// Fill memory range with the given origin value. |
| 1291 | void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr, |
| 1292 | TypeSize TS, Align Alignment) { |
| 1293 | const DataLayout &DL = F.getDataLayout(); |
| 1294 | const Align IntptrAlignment = DL.getABITypeAlign(Ty: MS.IntptrTy); |
| 1295 | unsigned IntptrSize = DL.getTypeStoreSize(Ty: MS.IntptrTy); |
| 1296 | assert(IntptrAlignment >= kMinOriginAlignment); |
| 1297 | assert(IntptrSize >= kOriginSize); |
| 1298 | |
| 1299 | // Note: The loop based formation works for fixed length vectors too, |
| 1300 | // however we prefer to unroll and specialize alignment below. |
| 1301 | if (TS.isScalable()) { |
| 1302 | Value *Size = IRB.CreateTypeSize(Ty: MS.IntptrTy, Size: TS); |
| 1303 | Value *RoundUp = |
| 1304 | IRB.CreateAdd(LHS: Size, RHS: ConstantInt::get(Ty: MS.IntptrTy, V: kOriginSize - 1)); |
| 1305 | Value *End = |
| 1306 | IRB.CreateUDiv(LHS: RoundUp, RHS: ConstantInt::get(Ty: MS.IntptrTy, V: kOriginSize)); |
| 1307 | auto [InsertPt, Index] = |
| 1308 | SplitBlockAndInsertSimpleForLoop(End, SplitBefore: IRB.GetInsertPoint()); |
| 1309 | IRB.SetInsertPoint(InsertPt); |
| 1310 | |
| 1311 | Value *GEP = IRB.CreateGEP(Ty: MS.OriginTy, Ptr: OriginPtr, IdxList: Index); |
| 1312 | IRB.CreateAlignedStore(Val: Origin, Ptr: GEP, Align: kMinOriginAlignment); |
| 1313 | return; |
| 1314 | } |
| 1315 | |
| 1316 | unsigned Size = TS.getFixedValue(); |
| 1317 | |
| 1318 | unsigned Ofs = 0; |
| 1319 | Align CurrentAlignment = Alignment; |
| 1320 | if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) { |
| 1321 | Value *IntptrOrigin = originToIntptr(IRB, Origin); |
| 1322 | Value *IntptrOriginPtr = IRB.CreatePointerCast(V: OriginPtr, DestTy: MS.PtrTy); |
| 1323 | for (unsigned i = 0; i < Size / IntptrSize; ++i) { |
| 1324 | Value *Ptr = i ? IRB.CreateConstGEP1_32(Ty: MS.IntptrTy, Ptr: IntptrOriginPtr, Idx0: i) |
| 1325 | : IntptrOriginPtr; |
| 1326 | IRB.CreateAlignedStore(Val: IntptrOrigin, Ptr, Align: CurrentAlignment); |
| 1327 | Ofs += IntptrSize / kOriginSize; |
| 1328 | CurrentAlignment = IntptrAlignment; |
| 1329 | } |
| 1330 | } |
| 1331 | |
| 1332 | for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) { |
| 1333 | Value *GEP = |
| 1334 | i ? IRB.CreateConstGEP1_32(Ty: MS.OriginTy, Ptr: OriginPtr, Idx0: i) : OriginPtr; |
| 1335 | IRB.CreateAlignedStore(Val: Origin, Ptr: GEP, Align: CurrentAlignment); |
| 1336 | CurrentAlignment = kMinOriginAlignment; |
| 1337 | } |
| 1338 | } |
| 1339 | |
| 1340 | void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin, |
| 1341 | Value *OriginPtr, Align Alignment) { |
| 1342 | const DataLayout &DL = F.getDataLayout(); |
| 1343 | const Align OriginAlignment = std::max(a: kMinOriginAlignment, b: Alignment); |
| 1344 | TypeSize StoreSize = DL.getTypeStoreSize(Ty: Shadow->getType()); |
| 1345 | // ZExt cannot convert between vector and scalar |
| 1346 | Value *ConvertedShadow = convertShadowToScalar(V: Shadow, IRB); |
| 1347 | if (auto *ConstantShadow = dyn_cast<Constant>(Val: ConvertedShadow)) { |
| 1348 | if (!ClCheckConstantShadow || ConstantShadow->isZeroValue()) { |
| 1349 | // Origin is not needed: value is initialized or const shadow is |
| 1350 | // ignored. |
| 1351 | return; |
| 1352 | } |
| 1353 | if (llvm::isKnownNonZero(V: ConvertedShadow, Q: DL)) { |
| 1354 | // Copy origin as the value is definitely uninitialized. |
| 1355 | paintOrigin(IRB, Origin: updateOrigin(V: Origin, IRB), OriginPtr, TS: StoreSize, |
| 1356 | Alignment: OriginAlignment); |
| 1357 | return; |
| 1358 | } |
| 1359 | // Fallback to runtime check, which still can be optimized out later. |
| 1360 | } |
| 1361 | |
| 1362 | TypeSize TypeSizeInBits = DL.getTypeSizeInBits(Ty: ConvertedShadow->getType()); |
| 1363 | unsigned SizeIndex = TypeSizeToSizeIndex(TS: TypeSizeInBits); |
| 1364 | if (instrumentWithCalls(V: ConvertedShadow) && |
| 1365 | SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { |
| 1366 | FunctionCallee Fn = MS.MaybeStoreOriginFn[SizeIndex]; |
| 1367 | Value *ConvertedShadow2 = |
| 1368 | IRB.CreateZExt(V: ConvertedShadow, DestTy: IRB.getIntNTy(N: 8 * (1 << SizeIndex))); |
| 1369 | CallBase *CB = IRB.CreateCall(Callee: Fn, Args: {ConvertedShadow2, Addr, Origin}); |
| 1370 | CB->addParamAttr(ArgNo: 0, Kind: Attribute::ZExt); |
| 1371 | CB->addParamAttr(ArgNo: 2, Kind: Attribute::ZExt); |
| 1372 | } else { |
| 1373 | Value *Cmp = convertToBool(V: ConvertedShadow, IRB, name: "_mscmp" ); |
| 1374 | Instruction *CheckTerm = SplitBlockAndInsertIfThen( |
| 1375 | Cond: Cmp, SplitBefore: &*IRB.GetInsertPoint(), Unreachable: false, BranchWeights: MS.OriginStoreWeights); |
| 1376 | IRBuilder<> IRBNew(CheckTerm); |
| 1377 | paintOrigin(IRB&: IRBNew, Origin: updateOrigin(V: Origin, IRB&: IRBNew), OriginPtr, TS: StoreSize, |
| 1378 | Alignment: OriginAlignment); |
| 1379 | } |
| 1380 | } |
| 1381 | |
| 1382 | void materializeStores() { |
| 1383 | for (StoreInst *SI : StoreList) { |
| 1384 | IRBuilder<> IRB(SI); |
| 1385 | Value *Val = SI->getValueOperand(); |
| 1386 | Value *Addr = SI->getPointerOperand(); |
| 1387 | Value *Shadow = SI->isAtomic() ? getCleanShadow(V: Val) : getShadow(V: Val); |
| 1388 | Value *ShadowPtr, *OriginPtr; |
| 1389 | Type *ShadowTy = Shadow->getType(); |
| 1390 | const Align Alignment = SI->getAlign(); |
| 1391 | const Align OriginAlignment = std::max(a: kMinOriginAlignment, b: Alignment); |
| 1392 | std::tie(args&: ShadowPtr, args&: OriginPtr) = |
| 1393 | getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true); |
| 1394 | |
| 1395 | [[maybe_unused]] StoreInst *NewSI = |
| 1396 | IRB.CreateAlignedStore(Val: Shadow, Ptr: ShadowPtr, Align: Alignment); |
| 1397 | LLVM_DEBUG(dbgs() << " STORE: " << *NewSI << "\n" ); |
| 1398 | |
| 1399 | if (SI->isAtomic()) |
| 1400 | SI->setOrdering(addReleaseOrdering(a: SI->getOrdering())); |
| 1401 | |
| 1402 | if (MS.TrackOrigins && !SI->isAtomic()) |
| 1403 | storeOrigin(IRB, Addr, Shadow, Origin: getOrigin(V: Val), OriginPtr, |
| 1404 | Alignment: OriginAlignment); |
| 1405 | } |
| 1406 | } |
| 1407 | |
| 1408 | // Returns true if Debug Location corresponds to multiple warnings. |
| 1409 | bool shouldDisambiguateWarningLocation(const DebugLoc &DebugLoc) { |
| 1410 | if (MS.TrackOrigins < 2) |
| 1411 | return false; |
| 1412 | |
| 1413 | if (LazyWarningDebugLocationCount.empty()) |
| 1414 | for (const auto &I : InstrumentationList) |
| 1415 | ++LazyWarningDebugLocationCount[I.OrigIns->getDebugLoc()]; |
| 1416 | |
| 1417 | return LazyWarningDebugLocationCount[DebugLoc] >= ClDisambiguateWarning; |
| 1418 | } |
| 1419 | |
| 1420 | /// Helper function to insert a warning at IRB's current insert point. |
| 1421 | void insertWarningFn(IRBuilder<> &IRB, Value *Origin) { |
| 1422 | if (!Origin) |
| 1423 | Origin = (Value *)IRB.getInt32(C: 0); |
| 1424 | assert(Origin->getType()->isIntegerTy()); |
| 1425 | |
| 1426 | if (shouldDisambiguateWarningLocation(DebugLoc: IRB.getCurrentDebugLocation())) { |
| 1427 | // Try to create additional origin with debug info of the last origin |
| 1428 | // instruction. It may provide additional information to the user. |
| 1429 | if (Instruction *OI = dyn_cast_or_null<Instruction>(Val: Origin)) { |
| 1430 | assert(MS.TrackOrigins); |
| 1431 | auto NewDebugLoc = OI->getDebugLoc(); |
| 1432 | // Origin update with missing or the same debug location provides no |
| 1433 | // additional value. |
| 1434 | if (NewDebugLoc && NewDebugLoc != IRB.getCurrentDebugLocation()) { |
| 1435 | // Insert update just before the check, so we call runtime only just |
| 1436 | // before the report. |
| 1437 | IRBuilder<> IRBOrigin(&*IRB.GetInsertPoint()); |
| 1438 | IRBOrigin.SetCurrentDebugLocation(NewDebugLoc); |
| 1439 | Origin = updateOrigin(V: Origin, IRB&: IRBOrigin); |
| 1440 | } |
| 1441 | } |
| 1442 | } |
| 1443 | |
| 1444 | if (MS.CompileKernel || MS.TrackOrigins) |
| 1445 | IRB.CreateCall(Callee: MS.WarningFn, Args: Origin)->setCannotMerge(); |
| 1446 | else |
| 1447 | IRB.CreateCall(Callee: MS.WarningFn)->setCannotMerge(); |
| 1448 | // FIXME: Insert UnreachableInst if !MS.Recover? |
| 1449 | // This may invalidate some of the following checks and needs to be done |
| 1450 | // at the very end. |
| 1451 | } |
| 1452 | |
| 1453 | void materializeOneCheck(IRBuilder<> &IRB, Value *ConvertedShadow, |
| 1454 | Value *Origin) { |
| 1455 | const DataLayout &DL = F.getDataLayout(); |
| 1456 | TypeSize TypeSizeInBits = DL.getTypeSizeInBits(Ty: ConvertedShadow->getType()); |
| 1457 | unsigned SizeIndex = TypeSizeToSizeIndex(TS: TypeSizeInBits); |
| 1458 | if (instrumentWithCalls(V: ConvertedShadow) && !MS.CompileKernel) { |
| 1459 | // ZExt cannot convert between vector and scalar |
| 1460 | ConvertedShadow = convertShadowToScalar(V: ConvertedShadow, IRB); |
| 1461 | Value *ConvertedShadow2 = |
| 1462 | IRB.CreateZExt(V: ConvertedShadow, DestTy: IRB.getIntNTy(N: 8 * (1 << SizeIndex))); |
| 1463 | |
| 1464 | if (SizeIndex < kNumberOfAccessSizes) { |
| 1465 | FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex]; |
| 1466 | CallBase *CB = IRB.CreateCall( |
| 1467 | Callee: Fn, |
| 1468 | Args: {ConvertedShadow2, |
| 1469 | MS.TrackOrigins && Origin ? Origin : (Value *)IRB.getInt32(C: 0)}); |
| 1470 | CB->addParamAttr(ArgNo: 0, Kind: Attribute::ZExt); |
| 1471 | CB->addParamAttr(ArgNo: 1, Kind: Attribute::ZExt); |
| 1472 | } else { |
| 1473 | FunctionCallee Fn = MS.MaybeWarningVarSizeFn; |
| 1474 | Value *ShadowAlloca = IRB.CreateAlloca(Ty: ConvertedShadow2->getType(), AddrSpace: 0u); |
| 1475 | IRB.CreateStore(Val: ConvertedShadow2, Ptr: ShadowAlloca); |
| 1476 | unsigned ShadowSize = DL.getTypeAllocSize(Ty: ConvertedShadow2->getType()); |
| 1477 | CallBase *CB = IRB.CreateCall( |
| 1478 | Callee: Fn, |
| 1479 | Args: {ShadowAlloca, ConstantInt::get(Ty: IRB.getInt64Ty(), V: ShadowSize), |
| 1480 | MS.TrackOrigins && Origin ? Origin : (Value *)IRB.getInt32(C: 0)}); |
| 1481 | CB->addParamAttr(ArgNo: 1, Kind: Attribute::ZExt); |
| 1482 | CB->addParamAttr(ArgNo: 2, Kind: Attribute::ZExt); |
| 1483 | } |
| 1484 | } else { |
| 1485 | Value *Cmp = convertToBool(V: ConvertedShadow, IRB, name: "_mscmp" ); |
| 1486 | Instruction *CheckTerm = SplitBlockAndInsertIfThen( |
| 1487 | Cond: Cmp, SplitBefore: &*IRB.GetInsertPoint(), |
| 1488 | /* Unreachable */ !MS.Recover, BranchWeights: MS.ColdCallWeights); |
| 1489 | |
| 1490 | IRB.SetInsertPoint(CheckTerm); |
| 1491 | insertWarningFn(IRB, Origin); |
| 1492 | LLVM_DEBUG(dbgs() << " CHECK: " << *Cmp << "\n" ); |
| 1493 | } |
| 1494 | } |
| 1495 | |
| 1496 | void materializeInstructionChecks( |
| 1497 | ArrayRef<ShadowOriginAndInsertPoint> InstructionChecks) { |
| 1498 | const DataLayout &DL = F.getDataLayout(); |
| 1499 | // Disable combining in some cases. TrackOrigins checks each shadow to pick |
| 1500 | // correct origin. |
| 1501 | bool Combine = !MS.TrackOrigins; |
| 1502 | Instruction *Instruction = InstructionChecks.front().OrigIns; |
| 1503 | Value *Shadow = nullptr; |
| 1504 | for (const auto &ShadowData : InstructionChecks) { |
| 1505 | assert(ShadowData.OrigIns == Instruction); |
| 1506 | IRBuilder<> IRB(Instruction); |
| 1507 | |
| 1508 | Value *ConvertedShadow = ShadowData.Shadow; |
| 1509 | |
| 1510 | if (auto *ConstantShadow = dyn_cast<Constant>(Val: ConvertedShadow)) { |
| 1511 | if (!ClCheckConstantShadow || ConstantShadow->isZeroValue()) { |
| 1512 | // Skip, value is initialized or const shadow is ignored. |
| 1513 | continue; |
| 1514 | } |
| 1515 | if (llvm::isKnownNonZero(V: ConvertedShadow, Q: DL)) { |
| 1516 | // Report as the value is definitely uninitialized. |
| 1517 | insertWarningFn(IRB, Origin: ShadowData.Origin); |
| 1518 | if (!MS.Recover) |
| 1519 | return; // Always fail and stop here, not need to check the rest. |
| 1520 | // Skip entire instruction, |
| 1521 | continue; |
| 1522 | } |
| 1523 | // Fallback to runtime check, which still can be optimized out later. |
| 1524 | } |
| 1525 | |
| 1526 | if (!Combine) { |
| 1527 | materializeOneCheck(IRB, ConvertedShadow, Origin: ShadowData.Origin); |
| 1528 | continue; |
| 1529 | } |
| 1530 | |
| 1531 | if (!Shadow) { |
| 1532 | Shadow = ConvertedShadow; |
| 1533 | continue; |
| 1534 | } |
| 1535 | |
| 1536 | Shadow = convertToBool(V: Shadow, IRB, name: "_mscmp" ); |
| 1537 | ConvertedShadow = convertToBool(V: ConvertedShadow, IRB, name: "_mscmp" ); |
| 1538 | Shadow = IRB.CreateOr(LHS: Shadow, RHS: ConvertedShadow, Name: "_msor" ); |
| 1539 | } |
| 1540 | |
| 1541 | if (Shadow) { |
| 1542 | assert(Combine); |
| 1543 | IRBuilder<> IRB(Instruction); |
| 1544 | materializeOneCheck(IRB, ConvertedShadow: Shadow, Origin: nullptr); |
| 1545 | } |
| 1546 | } |
| 1547 | |
| 1548 | void materializeChecks() { |
| 1549 | #ifndef NDEBUG |
| 1550 | // For assert below. |
| 1551 | SmallPtrSet<Instruction *, 16> Done; |
| 1552 | #endif |
| 1553 | |
| 1554 | for (auto I = InstrumentationList.begin(); |
| 1555 | I != InstrumentationList.end();) { |
| 1556 | auto OrigIns = I->OrigIns; |
| 1557 | // Checks are grouped by the original instruction. We call all |
| 1558 | // `insertShadowCheck` for an instruction at once. |
| 1559 | assert(Done.insert(OrigIns).second); |
| 1560 | auto J = std::find_if(first: I + 1, last: InstrumentationList.end(), |
| 1561 | pred: [OrigIns](const ShadowOriginAndInsertPoint &R) { |
| 1562 | return OrigIns != R.OrigIns; |
| 1563 | }); |
| 1564 | // Process all checks of instruction at once. |
| 1565 | materializeInstructionChecks(InstructionChecks: ArrayRef<ShadowOriginAndInsertPoint>(I, J)); |
| 1566 | I = J; |
| 1567 | } |
| 1568 | |
| 1569 | LLVM_DEBUG(dbgs() << "DONE:\n" << F); |
| 1570 | } |
| 1571 | |
| 1572 | // Returns the last instruction in the new prologue |
| 1573 | void insertKmsanPrologue(IRBuilder<> &IRB) { |
| 1574 | Value *ContextState = IRB.CreateCall(Callee: MS.MsanGetContextStateFn, Args: {}); |
| 1575 | Constant *Zero = IRB.getInt32(C: 0); |
| 1576 | MS.ParamTLS = IRB.CreateGEP(Ty: MS.MsanContextStateTy, Ptr: ContextState, |
| 1577 | IdxList: {Zero, IRB.getInt32(C: 0)}, Name: "param_shadow" ); |
| 1578 | MS.RetvalTLS = IRB.CreateGEP(Ty: MS.MsanContextStateTy, Ptr: ContextState, |
| 1579 | IdxList: {Zero, IRB.getInt32(C: 1)}, Name: "retval_shadow" ); |
| 1580 | MS.VAArgTLS = IRB.CreateGEP(Ty: MS.MsanContextStateTy, Ptr: ContextState, |
| 1581 | IdxList: {Zero, IRB.getInt32(C: 2)}, Name: "va_arg_shadow" ); |
| 1582 | MS.VAArgOriginTLS = IRB.CreateGEP(Ty: MS.MsanContextStateTy, Ptr: ContextState, |
| 1583 | IdxList: {Zero, IRB.getInt32(C: 3)}, Name: "va_arg_origin" ); |
| 1584 | MS.VAArgOverflowSizeTLS = |
| 1585 | IRB.CreateGEP(Ty: MS.MsanContextStateTy, Ptr: ContextState, |
| 1586 | IdxList: {Zero, IRB.getInt32(C: 4)}, Name: "va_arg_overflow_size" ); |
| 1587 | MS.ParamOriginTLS = IRB.CreateGEP(Ty: MS.MsanContextStateTy, Ptr: ContextState, |
| 1588 | IdxList: {Zero, IRB.getInt32(C: 5)}, Name: "param_origin" ); |
| 1589 | MS.RetvalOriginTLS = |
| 1590 | IRB.CreateGEP(Ty: MS.MsanContextStateTy, Ptr: ContextState, |
| 1591 | IdxList: {Zero, IRB.getInt32(C: 6)}, Name: "retval_origin" ); |
| 1592 | if (MS.TargetTriple.getArch() == Triple::systemz) |
| 1593 | MS.MsanMetadataAlloca = IRB.CreateAlloca(Ty: MS.MsanMetadata, AddrSpace: 0u); |
| 1594 | } |
| 1595 | |
| 1596 | /// Add MemorySanitizer instrumentation to a function. |
| 1597 | bool runOnFunction() { |
| 1598 | // Iterate all BBs in depth-first order and create shadow instructions |
| 1599 | // for all instructions (where applicable). |
| 1600 | // For PHI nodes we create dummy shadow PHIs which will be finalized later. |
| 1601 | for (BasicBlock *BB : depth_first(G: FnPrologueEnd->getParent())) |
| 1602 | visit(BB&: *BB); |
| 1603 | |
| 1604 | // `visit` above only collects instructions. Process them after iterating |
| 1605 | // CFG to avoid requirement on CFG transformations. |
| 1606 | for (Instruction *I : Instructions) |
| 1607 | InstVisitor<MemorySanitizerVisitor>::visit(I&: *I); |
| 1608 | |
| 1609 | // Finalize PHI nodes. |
| 1610 | for (PHINode *PN : ShadowPHINodes) { |
| 1611 | PHINode *PNS = cast<PHINode>(Val: getShadow(V: PN)); |
| 1612 | PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(Val: getOrigin(V: PN)) : nullptr; |
| 1613 | size_t NumValues = PN->getNumIncomingValues(); |
| 1614 | for (size_t v = 0; v < NumValues; v++) { |
| 1615 | PNS->addIncoming(V: getShadow(I: PN, i: v), BB: PN->getIncomingBlock(i: v)); |
| 1616 | if (PNO) |
| 1617 | PNO->addIncoming(V: getOrigin(I: PN, i: v), BB: PN->getIncomingBlock(i: v)); |
| 1618 | } |
| 1619 | } |
| 1620 | |
| 1621 | VAHelper->finalizeInstrumentation(); |
| 1622 | |
| 1623 | // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to |
| 1624 | // instrumenting only allocas. |
| 1625 | if (InstrumentLifetimeStart) { |
| 1626 | for (auto Item : LifetimeStartList) { |
| 1627 | instrumentAlloca(I&: *Item.second, InsPoint: Item.first); |
| 1628 | AllocaSet.remove(X: Item.second); |
| 1629 | } |
| 1630 | } |
| 1631 | // Poison the allocas for which we didn't instrument the corresponding |
| 1632 | // lifetime intrinsics. |
| 1633 | for (AllocaInst *AI : AllocaSet) |
| 1634 | instrumentAlloca(I&: *AI); |
| 1635 | |
| 1636 | // Insert shadow value checks. |
| 1637 | materializeChecks(); |
| 1638 | |
| 1639 | // Delayed instrumentation of StoreInst. |
| 1640 | // This may not add new address checks. |
| 1641 | materializeStores(); |
| 1642 | |
| 1643 | return true; |
| 1644 | } |
| 1645 | |
| 1646 | /// Compute the shadow type that corresponds to a given Value. |
| 1647 | Type *getShadowTy(Value *V) { return getShadowTy(OrigTy: V->getType()); } |
| 1648 | |
| 1649 | /// Compute the shadow type that corresponds to a given Type. |
| 1650 | Type *getShadowTy(Type *OrigTy) { |
| 1651 | if (!OrigTy->isSized()) { |
| 1652 | return nullptr; |
| 1653 | } |
| 1654 | // For integer type, shadow is the same as the original type. |
| 1655 | // This may return weird-sized types like i1. |
| 1656 | if (IntegerType *IT = dyn_cast<IntegerType>(Val: OrigTy)) |
| 1657 | return IT; |
| 1658 | const DataLayout &DL = F.getDataLayout(); |
| 1659 | if (VectorType *VT = dyn_cast<VectorType>(Val: OrigTy)) { |
| 1660 | uint32_t EltSize = DL.getTypeSizeInBits(Ty: VT->getElementType()); |
| 1661 | return VectorType::get(ElementType: IntegerType::get(C&: *MS.C, NumBits: EltSize), |
| 1662 | EC: VT->getElementCount()); |
| 1663 | } |
| 1664 | if (ArrayType *AT = dyn_cast<ArrayType>(Val: OrigTy)) { |
| 1665 | return ArrayType::get(ElementType: getShadowTy(OrigTy: AT->getElementType()), |
| 1666 | NumElements: AT->getNumElements()); |
| 1667 | } |
| 1668 | if (StructType *ST = dyn_cast<StructType>(Val: OrigTy)) { |
| 1669 | SmallVector<Type *, 4> Elements; |
| 1670 | for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) |
| 1671 | Elements.push_back(Elt: getShadowTy(OrigTy: ST->getElementType(N: i))); |
| 1672 | StructType *Res = StructType::get(Context&: *MS.C, Elements, isPacked: ST->isPacked()); |
| 1673 | LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n" ); |
| 1674 | return Res; |
| 1675 | } |
| 1676 | uint32_t TypeSize = DL.getTypeSizeInBits(Ty: OrigTy); |
| 1677 | return IntegerType::get(C&: *MS.C, NumBits: TypeSize); |
| 1678 | } |
| 1679 | |
| 1680 | /// Extract combined shadow of struct elements as a bool |
| 1681 | Value *collapseStructShadow(StructType *Struct, Value *Shadow, |
| 1682 | IRBuilder<> &IRB) { |
| 1683 | Value *FalseVal = IRB.getIntN(/* width */ N: 1, /* value */ C: 0); |
| 1684 | Value *Aggregator = FalseVal; |
| 1685 | |
| 1686 | for (unsigned Idx = 0; Idx < Struct->getNumElements(); Idx++) { |
| 1687 | // Combine by ORing together each element's bool shadow |
| 1688 | Value *ShadowItem = IRB.CreateExtractValue(Agg: Shadow, Idxs: Idx); |
| 1689 | Value *ShadowBool = convertToBool(V: ShadowItem, IRB); |
| 1690 | |
| 1691 | if (Aggregator != FalseVal) |
| 1692 | Aggregator = IRB.CreateOr(LHS: Aggregator, RHS: ShadowBool); |
| 1693 | else |
| 1694 | Aggregator = ShadowBool; |
| 1695 | } |
| 1696 | |
| 1697 | return Aggregator; |
| 1698 | } |
| 1699 | |
| 1700 | // Extract combined shadow of array elements |
| 1701 | Value *collapseArrayShadow(ArrayType *Array, Value *Shadow, |
| 1702 | IRBuilder<> &IRB) { |
| 1703 | if (!Array->getNumElements()) |
| 1704 | return IRB.getIntN(/* width */ N: 1, /* value */ C: 0); |
| 1705 | |
| 1706 | Value *FirstItem = IRB.CreateExtractValue(Agg: Shadow, Idxs: 0); |
| 1707 | Value *Aggregator = convertShadowToScalar(V: FirstItem, IRB); |
| 1708 | |
| 1709 | for (unsigned Idx = 1; Idx < Array->getNumElements(); Idx++) { |
| 1710 | Value *ShadowItem = IRB.CreateExtractValue(Agg: Shadow, Idxs: Idx); |
| 1711 | Value *ShadowInner = convertShadowToScalar(V: ShadowItem, IRB); |
| 1712 | Aggregator = IRB.CreateOr(LHS: Aggregator, RHS: ShadowInner); |
| 1713 | } |
| 1714 | return Aggregator; |
| 1715 | } |
| 1716 | |
| 1717 | /// Convert a shadow value to it's flattened variant. The resulting |
| 1718 | /// shadow may not necessarily have the same bit width as the input |
| 1719 | /// value, but it will always be comparable to zero. |
| 1720 | Value *convertShadowToScalar(Value *V, IRBuilder<> &IRB) { |
| 1721 | if (StructType *Struct = dyn_cast<StructType>(Val: V->getType())) |
| 1722 | return collapseStructShadow(Struct, Shadow: V, IRB); |
| 1723 | if (ArrayType *Array = dyn_cast<ArrayType>(Val: V->getType())) |
| 1724 | return collapseArrayShadow(Array, Shadow: V, IRB); |
| 1725 | if (isa<VectorType>(Val: V->getType())) { |
| 1726 | if (isa<ScalableVectorType>(Val: V->getType())) |
| 1727 | return convertShadowToScalar(V: IRB.CreateOrReduce(Src: V), IRB); |
| 1728 | unsigned BitWidth = |
| 1729 | V->getType()->getPrimitiveSizeInBits().getFixedValue(); |
| 1730 | return IRB.CreateBitCast(V, DestTy: IntegerType::get(C&: *MS.C, NumBits: BitWidth)); |
| 1731 | } |
| 1732 | return V; |
| 1733 | } |
| 1734 | |
| 1735 | // Convert a scalar value to an i1 by comparing with 0 |
| 1736 | Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &name = "" ) { |
| 1737 | Type *VTy = V->getType(); |
| 1738 | if (!VTy->isIntegerTy()) |
| 1739 | return convertToBool(V: convertShadowToScalar(V, IRB), IRB, name); |
| 1740 | if (VTy->getIntegerBitWidth() == 1) |
| 1741 | // Just converting a bool to a bool, so do nothing. |
| 1742 | return V; |
| 1743 | return IRB.CreateICmpNE(LHS: V, RHS: ConstantInt::get(Ty: VTy, V: 0), Name: name); |
| 1744 | } |
| 1745 | |
| 1746 | Type *ptrToIntPtrType(Type *PtrTy) const { |
| 1747 | if (VectorType *VectTy = dyn_cast<VectorType>(Val: PtrTy)) { |
| 1748 | return VectorType::get(ElementType: ptrToIntPtrType(PtrTy: VectTy->getElementType()), |
| 1749 | EC: VectTy->getElementCount()); |
| 1750 | } |
| 1751 | assert(PtrTy->isIntOrPtrTy()); |
| 1752 | return MS.IntptrTy; |
| 1753 | } |
| 1754 | |
| 1755 | Type *getPtrToShadowPtrType(Type *IntPtrTy, Type *ShadowTy) const { |
| 1756 | if (VectorType *VectTy = dyn_cast<VectorType>(Val: IntPtrTy)) { |
| 1757 | return VectorType::get( |
| 1758 | ElementType: getPtrToShadowPtrType(IntPtrTy: VectTy->getElementType(), ShadowTy), |
| 1759 | EC: VectTy->getElementCount()); |
| 1760 | } |
| 1761 | assert(IntPtrTy == MS.IntptrTy); |
| 1762 | return MS.PtrTy; |
| 1763 | } |
| 1764 | |
| 1765 | Constant *constToIntPtr(Type *IntPtrTy, uint64_t C) const { |
| 1766 | if (VectorType *VectTy = dyn_cast<VectorType>(Val: IntPtrTy)) { |
| 1767 | return ConstantVector::getSplat( |
| 1768 | EC: VectTy->getElementCount(), |
| 1769 | Elt: constToIntPtr(IntPtrTy: VectTy->getElementType(), C)); |
| 1770 | } |
| 1771 | assert(IntPtrTy == MS.IntptrTy); |
| 1772 | return ConstantInt::get(Ty: MS.IntptrTy, V: C); |
| 1773 | } |
| 1774 | |
| 1775 | /// Returns the integer shadow offset that corresponds to a given |
| 1776 | /// application address, whereby: |
| 1777 | /// |
| 1778 | /// Offset = (Addr & ~AndMask) ^ XorMask |
| 1779 | /// Shadow = ShadowBase + Offset |
| 1780 | /// Origin = (OriginBase + Offset) & ~Alignment |
| 1781 | /// |
| 1782 | /// Note: for efficiency, many shadow mappings only require use the XorMask |
| 1783 | /// and OriginBase; the AndMask and ShadowBase are often zero. |
| 1784 | Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) { |
| 1785 | Type *IntptrTy = ptrToIntPtrType(PtrTy: Addr->getType()); |
| 1786 | Value *OffsetLong = IRB.CreatePointerCast(V: Addr, DestTy: IntptrTy); |
| 1787 | |
| 1788 | if (uint64_t AndMask = MS.MapParams->AndMask) |
| 1789 | OffsetLong = IRB.CreateAnd(LHS: OffsetLong, RHS: constToIntPtr(IntPtrTy: IntptrTy, C: ~AndMask)); |
| 1790 | |
| 1791 | if (uint64_t XorMask = MS.MapParams->XorMask) |
| 1792 | OffsetLong = IRB.CreateXor(LHS: OffsetLong, RHS: constToIntPtr(IntPtrTy: IntptrTy, C: XorMask)); |
| 1793 | return OffsetLong; |
| 1794 | } |
| 1795 | |
| 1796 | /// Compute the shadow and origin addresses corresponding to a given |
| 1797 | /// application address. |
| 1798 | /// |
| 1799 | /// Shadow = ShadowBase + Offset |
| 1800 | /// Origin = (OriginBase + Offset) & ~3ULL |
| 1801 | /// Addr can be a ptr or <N x ptr>. In both cases ShadowTy the shadow type of |
| 1802 | /// a single pointee. |
| 1803 | /// Returns <shadow_ptr, origin_ptr> or <<N x shadow_ptr>, <N x origin_ptr>>. |
| 1804 | std::pair<Value *, Value *> |
| 1805 | getShadowOriginPtrUserspace(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy, |
| 1806 | MaybeAlign Alignment) { |
| 1807 | VectorType *VectTy = dyn_cast<VectorType>(Val: Addr->getType()); |
| 1808 | if (!VectTy) { |
| 1809 | assert(Addr->getType()->isPointerTy()); |
| 1810 | } else { |
| 1811 | assert(VectTy->getElementType()->isPointerTy()); |
| 1812 | } |
| 1813 | Type *IntptrTy = ptrToIntPtrType(PtrTy: Addr->getType()); |
| 1814 | Value *ShadowOffset = getShadowPtrOffset(Addr, IRB); |
| 1815 | Value *ShadowLong = ShadowOffset; |
| 1816 | if (uint64_t ShadowBase = MS.MapParams->ShadowBase) { |
| 1817 | ShadowLong = |
| 1818 | IRB.CreateAdd(LHS: ShadowLong, RHS: constToIntPtr(IntPtrTy: IntptrTy, C: ShadowBase)); |
| 1819 | } |
| 1820 | Value *ShadowPtr = IRB.CreateIntToPtr( |
| 1821 | V: ShadowLong, DestTy: getPtrToShadowPtrType(IntPtrTy: IntptrTy, ShadowTy)); |
| 1822 | |
| 1823 | Value *OriginPtr = nullptr; |
| 1824 | if (MS.TrackOrigins) { |
| 1825 | Value *OriginLong = ShadowOffset; |
| 1826 | uint64_t OriginBase = MS.MapParams->OriginBase; |
| 1827 | if (OriginBase != 0) |
| 1828 | OriginLong = |
| 1829 | IRB.CreateAdd(LHS: OriginLong, RHS: constToIntPtr(IntPtrTy: IntptrTy, C: OriginBase)); |
| 1830 | if (!Alignment || *Alignment < kMinOriginAlignment) { |
| 1831 | uint64_t Mask = kMinOriginAlignment.value() - 1; |
| 1832 | OriginLong = IRB.CreateAnd(LHS: OriginLong, RHS: constToIntPtr(IntPtrTy: IntptrTy, C: ~Mask)); |
| 1833 | } |
| 1834 | OriginPtr = IRB.CreateIntToPtr( |
| 1835 | V: OriginLong, DestTy: getPtrToShadowPtrType(IntPtrTy: IntptrTy, ShadowTy: MS.OriginTy)); |
| 1836 | } |
| 1837 | return std::make_pair(x&: ShadowPtr, y&: OriginPtr); |
| 1838 | } |
| 1839 | |
| 1840 | template <typename... ArgsTy> |
| 1841 | Value *createMetadataCall(IRBuilder<> &IRB, FunctionCallee Callee, |
| 1842 | ArgsTy... Args) { |
| 1843 | if (MS.TargetTriple.getArch() == Triple::systemz) { |
| 1844 | IRB.CreateCall(Callee, |
| 1845 | {MS.MsanMetadataAlloca, std::forward<ArgsTy>(Args)...}); |
| 1846 | return IRB.CreateLoad(Ty: MS.MsanMetadata, Ptr: MS.MsanMetadataAlloca); |
| 1847 | } |
| 1848 | |
| 1849 | return IRB.CreateCall(Callee, {std::forward<ArgsTy>(Args)...}); |
| 1850 | } |
| 1851 | |
| 1852 | std::pair<Value *, Value *> getShadowOriginPtrKernelNoVec(Value *Addr, |
| 1853 | IRBuilder<> &IRB, |
| 1854 | Type *ShadowTy, |
| 1855 | bool isStore) { |
| 1856 | Value *ShadowOriginPtrs; |
| 1857 | const DataLayout &DL = F.getDataLayout(); |
| 1858 | TypeSize Size = DL.getTypeStoreSize(Ty: ShadowTy); |
| 1859 | |
| 1860 | FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, size: Size); |
| 1861 | Value *AddrCast = IRB.CreatePointerCast(V: Addr, DestTy: MS.PtrTy); |
| 1862 | if (Getter) { |
| 1863 | ShadowOriginPtrs = createMetadataCall(IRB, Callee: Getter, Args: AddrCast); |
| 1864 | } else { |
| 1865 | Value *SizeVal = ConstantInt::get(Ty: MS.IntptrTy, V: Size); |
| 1866 | ShadowOriginPtrs = createMetadataCall( |
| 1867 | IRB, |
| 1868 | Callee: isStore ? MS.MsanMetadataPtrForStoreN : MS.MsanMetadataPtrForLoadN, |
| 1869 | Args: AddrCast, Args: SizeVal); |
| 1870 | } |
| 1871 | Value *ShadowPtr = IRB.CreateExtractValue(Agg: ShadowOriginPtrs, Idxs: 0); |
| 1872 | ShadowPtr = IRB.CreatePointerCast(V: ShadowPtr, DestTy: MS.PtrTy); |
| 1873 | Value *OriginPtr = IRB.CreateExtractValue(Agg: ShadowOriginPtrs, Idxs: 1); |
| 1874 | |
| 1875 | return std::make_pair(x&: ShadowPtr, y&: OriginPtr); |
| 1876 | } |
| 1877 | |
| 1878 | /// Addr can be a ptr or <N x ptr>. In both cases ShadowTy the shadow type of |
| 1879 | /// a single pointee. |
| 1880 | /// Returns <shadow_ptr, origin_ptr> or <<N x shadow_ptr>, <N x origin_ptr>>. |
| 1881 | std::pair<Value *, Value *> getShadowOriginPtrKernel(Value *Addr, |
| 1882 | IRBuilder<> &IRB, |
| 1883 | Type *ShadowTy, |
| 1884 | bool isStore) { |
| 1885 | VectorType *VectTy = dyn_cast<VectorType>(Val: Addr->getType()); |
| 1886 | if (!VectTy) { |
| 1887 | assert(Addr->getType()->isPointerTy()); |
| 1888 | return getShadowOriginPtrKernelNoVec(Addr, IRB, ShadowTy, isStore); |
| 1889 | } |
| 1890 | |
| 1891 | // TODO: Support callbacs with vectors of addresses. |
| 1892 | unsigned NumElements = cast<FixedVectorType>(Val: VectTy)->getNumElements(); |
| 1893 | Value *ShadowPtrs = ConstantInt::getNullValue( |
| 1894 | Ty: FixedVectorType::get(ElementType: IRB.getPtrTy(), NumElts: NumElements)); |
| 1895 | Value *OriginPtrs = nullptr; |
| 1896 | if (MS.TrackOrigins) |
| 1897 | OriginPtrs = ConstantInt::getNullValue( |
| 1898 | Ty: FixedVectorType::get(ElementType: IRB.getPtrTy(), NumElts: NumElements)); |
| 1899 | for (unsigned i = 0; i < NumElements; ++i) { |
| 1900 | Value *OneAddr = |
| 1901 | IRB.CreateExtractElement(Vec: Addr, Idx: ConstantInt::get(Ty: IRB.getInt32Ty(), V: i)); |
| 1902 | auto [ShadowPtr, OriginPtr] = |
| 1903 | getShadowOriginPtrKernelNoVec(Addr: OneAddr, IRB, ShadowTy, isStore); |
| 1904 | |
| 1905 | ShadowPtrs = IRB.CreateInsertElement( |
| 1906 | Vec: ShadowPtrs, NewElt: ShadowPtr, Idx: ConstantInt::get(Ty: IRB.getInt32Ty(), V: i)); |
| 1907 | if (MS.TrackOrigins) |
| 1908 | OriginPtrs = IRB.CreateInsertElement( |
| 1909 | Vec: OriginPtrs, NewElt: OriginPtr, Idx: ConstantInt::get(Ty: IRB.getInt32Ty(), V: i)); |
| 1910 | } |
| 1911 | return {ShadowPtrs, OriginPtrs}; |
| 1912 | } |
| 1913 | |
| 1914 | std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB, |
| 1915 | Type *ShadowTy, |
| 1916 | MaybeAlign Alignment, |
| 1917 | bool isStore) { |
| 1918 | if (MS.CompileKernel) |
| 1919 | return getShadowOriginPtrKernel(Addr, IRB, ShadowTy, isStore); |
| 1920 | return getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment); |
| 1921 | } |
| 1922 | |
| 1923 | /// Compute the shadow address for a given function argument. |
| 1924 | /// |
| 1925 | /// Shadow = ParamTLS+ArgOffset. |
| 1926 | Value *getShadowPtrForArgument(IRBuilder<> &IRB, int ArgOffset) { |
| 1927 | Value *Base = IRB.CreatePointerCast(V: MS.ParamTLS, DestTy: MS.IntptrTy); |
| 1928 | if (ArgOffset) |
| 1929 | Base = IRB.CreateAdd(LHS: Base, RHS: ConstantInt::get(Ty: MS.IntptrTy, V: ArgOffset)); |
| 1930 | return IRB.CreateIntToPtr(V: Base, DestTy: IRB.getPtrTy(AddrSpace: 0), Name: "_msarg" ); |
| 1931 | } |
| 1932 | |
| 1933 | /// Compute the origin address for a given function argument. |
| 1934 | Value *getOriginPtrForArgument(IRBuilder<> &IRB, int ArgOffset) { |
| 1935 | if (!MS.TrackOrigins) |
| 1936 | return nullptr; |
| 1937 | Value *Base = IRB.CreatePointerCast(V: MS.ParamOriginTLS, DestTy: MS.IntptrTy); |
| 1938 | if (ArgOffset) |
| 1939 | Base = IRB.CreateAdd(LHS: Base, RHS: ConstantInt::get(Ty: MS.IntptrTy, V: ArgOffset)); |
| 1940 | return IRB.CreateIntToPtr(V: Base, DestTy: IRB.getPtrTy(AddrSpace: 0), Name: "_msarg_o" ); |
| 1941 | } |
| 1942 | |
| 1943 | /// Compute the shadow address for a retval. |
| 1944 | Value *getShadowPtrForRetval(IRBuilder<> &IRB) { |
| 1945 | return IRB.CreatePointerCast(V: MS.RetvalTLS, DestTy: IRB.getPtrTy(AddrSpace: 0), Name: "_msret" ); |
| 1946 | } |
| 1947 | |
| 1948 | /// Compute the origin address for a retval. |
| 1949 | Value *getOriginPtrForRetval() { |
| 1950 | // We keep a single origin for the entire retval. Might be too optimistic. |
| 1951 | return MS.RetvalOriginTLS; |
| 1952 | } |
| 1953 | |
| 1954 | /// Set SV to be the shadow value for V. |
| 1955 | void setShadow(Value *V, Value *SV) { |
| 1956 | assert(!ShadowMap.count(V) && "Values may only have one shadow" ); |
| 1957 | ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V); |
| 1958 | } |
| 1959 | |
| 1960 | /// Set Origin to be the origin value for V. |
| 1961 | void setOrigin(Value *V, Value *Origin) { |
| 1962 | if (!MS.TrackOrigins) |
| 1963 | return; |
| 1964 | assert(!OriginMap.count(V) && "Values may only have one origin" ); |
| 1965 | LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n" ); |
| 1966 | OriginMap[V] = Origin; |
| 1967 | } |
| 1968 | |
| 1969 | Constant *getCleanShadow(Type *OrigTy) { |
| 1970 | Type *ShadowTy = getShadowTy(OrigTy); |
| 1971 | if (!ShadowTy) |
| 1972 | return nullptr; |
| 1973 | return Constant::getNullValue(Ty: ShadowTy); |
| 1974 | } |
| 1975 | |
| 1976 | /// Create a clean shadow value for a given value. |
| 1977 | /// |
| 1978 | /// Clean shadow (all zeroes) means all bits of the value are defined |
| 1979 | /// (initialized). |
| 1980 | Constant *getCleanShadow(Value *V) { return getCleanShadow(OrigTy: V->getType()); } |
| 1981 | |
| 1982 | /// Create a dirty shadow of a given shadow type. |
| 1983 | Constant *getPoisonedShadow(Type *ShadowTy) { |
| 1984 | assert(ShadowTy); |
| 1985 | if (isa<IntegerType>(Val: ShadowTy) || isa<VectorType>(Val: ShadowTy)) |
| 1986 | return Constant::getAllOnesValue(Ty: ShadowTy); |
| 1987 | if (ArrayType *AT = dyn_cast<ArrayType>(Val: ShadowTy)) { |
| 1988 | SmallVector<Constant *, 4> Vals(AT->getNumElements(), |
| 1989 | getPoisonedShadow(ShadowTy: AT->getElementType())); |
| 1990 | return ConstantArray::get(T: AT, V: Vals); |
| 1991 | } |
| 1992 | if (StructType *ST = dyn_cast<StructType>(Val: ShadowTy)) { |
| 1993 | SmallVector<Constant *, 4> Vals; |
| 1994 | for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) |
| 1995 | Vals.push_back(Elt: getPoisonedShadow(ShadowTy: ST->getElementType(N: i))); |
| 1996 | return ConstantStruct::get(T: ST, V: Vals); |
| 1997 | } |
| 1998 | llvm_unreachable("Unexpected shadow type" ); |
| 1999 | } |
| 2000 | |
| 2001 | /// Create a dirty shadow for a given value. |
| 2002 | Constant *getPoisonedShadow(Value *V) { |
| 2003 | Type *ShadowTy = getShadowTy(V); |
| 2004 | if (!ShadowTy) |
| 2005 | return nullptr; |
| 2006 | return getPoisonedShadow(ShadowTy); |
| 2007 | } |
| 2008 | |
| 2009 | /// Create a clean (zero) origin. |
| 2010 | Value *getCleanOrigin() { return Constant::getNullValue(Ty: MS.OriginTy); } |
| 2011 | |
| 2012 | /// Get the shadow value for a given Value. |
| 2013 | /// |
| 2014 | /// This function either returns the value set earlier with setShadow, |
| 2015 | /// or extracts if from ParamTLS (for function arguments). |
| 2016 | Value *getShadow(Value *V) { |
| 2017 | if (Instruction *I = dyn_cast<Instruction>(Val: V)) { |
| 2018 | if (!PropagateShadow || I->getMetadata(KindID: LLVMContext::MD_nosanitize)) |
| 2019 | return getCleanShadow(V); |
| 2020 | // For instructions the shadow is already stored in the map. |
| 2021 | Value *Shadow = ShadowMap[V]; |
| 2022 | if (!Shadow) { |
| 2023 | LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent())); |
| 2024 | assert(Shadow && "No shadow for a value" ); |
| 2025 | } |
| 2026 | return Shadow; |
| 2027 | } |
| 2028 | // Handle fully undefined values |
| 2029 | // (partially undefined constant vectors are handled later) |
| 2030 | if ([[maybe_unused]] UndefValue *U = dyn_cast<UndefValue>(Val: V)) { |
| 2031 | Value *AllOnes = (PropagateShadow && PoisonUndef) ? getPoisonedShadow(V) |
| 2032 | : getCleanShadow(V); |
| 2033 | LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n" ); |
| 2034 | return AllOnes; |
| 2035 | } |
| 2036 | if (Argument *A = dyn_cast<Argument>(Val: V)) { |
| 2037 | // For arguments we compute the shadow on demand and store it in the map. |
| 2038 | Value *&ShadowPtr = ShadowMap[V]; |
| 2039 | if (ShadowPtr) |
| 2040 | return ShadowPtr; |
| 2041 | Function *F = A->getParent(); |
| 2042 | IRBuilder<> EntryIRB(FnPrologueEnd); |
| 2043 | unsigned ArgOffset = 0; |
| 2044 | const DataLayout &DL = F->getDataLayout(); |
| 2045 | for (auto &FArg : F->args()) { |
| 2046 | if (!FArg.getType()->isSized() || FArg.getType()->isScalableTy()) { |
| 2047 | LLVM_DEBUG(dbgs() << (FArg.getType()->isScalableTy() |
| 2048 | ? "vscale not fully supported\n" |
| 2049 | : "Arg is not sized\n" )); |
| 2050 | if (A == &FArg) { |
| 2051 | ShadowPtr = getCleanShadow(V); |
| 2052 | setOrigin(V: A, Origin: getCleanOrigin()); |
| 2053 | break; |
| 2054 | } |
| 2055 | continue; |
| 2056 | } |
| 2057 | |
| 2058 | unsigned Size = FArg.hasByValAttr() |
| 2059 | ? DL.getTypeAllocSize(Ty: FArg.getParamByValType()) |
| 2060 | : DL.getTypeAllocSize(Ty: FArg.getType()); |
| 2061 | |
| 2062 | if (A == &FArg) { |
| 2063 | bool Overflow = ArgOffset + Size > kParamTLSSize; |
| 2064 | if (FArg.hasByValAttr()) { |
| 2065 | // ByVal pointer itself has clean shadow. We copy the actual |
| 2066 | // argument shadow to the underlying memory. |
| 2067 | // Figure out maximal valid memcpy alignment. |
| 2068 | const Align ArgAlign = DL.getValueOrABITypeAlignment( |
| 2069 | Alignment: FArg.getParamAlign(), Ty: FArg.getParamByValType()); |
| 2070 | Value *CpShadowPtr, *CpOriginPtr; |
| 2071 | std::tie(args&: CpShadowPtr, args&: CpOriginPtr) = |
| 2072 | getShadowOriginPtr(Addr: V, IRB&: EntryIRB, ShadowTy: EntryIRB.getInt8Ty(), Alignment: ArgAlign, |
| 2073 | /*isStore*/ true); |
| 2074 | if (!PropagateShadow || Overflow) { |
| 2075 | // ParamTLS overflow. |
| 2076 | EntryIRB.CreateMemSet( |
| 2077 | Ptr: CpShadowPtr, Val: Constant::getNullValue(Ty: EntryIRB.getInt8Ty()), |
| 2078 | Size, Align: ArgAlign); |
| 2079 | } else { |
| 2080 | Value *Base = getShadowPtrForArgument(IRB&: EntryIRB, ArgOffset); |
| 2081 | const Align CopyAlign = std::min(a: ArgAlign, b: kShadowTLSAlignment); |
| 2082 | [[maybe_unused]] Value *Cpy = EntryIRB.CreateMemCpy( |
| 2083 | Dst: CpShadowPtr, DstAlign: CopyAlign, Src: Base, SrcAlign: CopyAlign, Size); |
| 2084 | LLVM_DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n" ); |
| 2085 | |
| 2086 | if (MS.TrackOrigins) { |
| 2087 | Value *OriginPtr = getOriginPtrForArgument(IRB&: EntryIRB, ArgOffset); |
| 2088 | // FIXME: OriginSize should be: |
| 2089 | // alignTo(V % kMinOriginAlignment + Size, kMinOriginAlignment) |
| 2090 | unsigned OriginSize = alignTo(Size, A: kMinOriginAlignment); |
| 2091 | EntryIRB.CreateMemCpy( |
| 2092 | Dst: CpOriginPtr, |
| 2093 | /* by getShadowOriginPtr */ DstAlign: kMinOriginAlignment, Src: OriginPtr, |
| 2094 | /* by origin_tls[ArgOffset] */ SrcAlign: kMinOriginAlignment, |
| 2095 | Size: OriginSize); |
| 2096 | } |
| 2097 | } |
| 2098 | } |
| 2099 | |
| 2100 | if (!PropagateShadow || Overflow || FArg.hasByValAttr() || |
| 2101 | (MS.EagerChecks && FArg.hasAttribute(Kind: Attribute::NoUndef))) { |
| 2102 | ShadowPtr = getCleanShadow(V); |
| 2103 | setOrigin(V: A, Origin: getCleanOrigin()); |
| 2104 | } else { |
| 2105 | // Shadow over TLS |
| 2106 | Value *Base = getShadowPtrForArgument(IRB&: EntryIRB, ArgOffset); |
| 2107 | ShadowPtr = EntryIRB.CreateAlignedLoad(Ty: getShadowTy(V: &FArg), Ptr: Base, |
| 2108 | Align: kShadowTLSAlignment); |
| 2109 | if (MS.TrackOrigins) { |
| 2110 | Value *OriginPtr = getOriginPtrForArgument(IRB&: EntryIRB, ArgOffset); |
| 2111 | setOrigin(V: A, Origin: EntryIRB.CreateLoad(Ty: MS.OriginTy, Ptr: OriginPtr)); |
| 2112 | } |
| 2113 | } |
| 2114 | LLVM_DEBUG(dbgs() |
| 2115 | << " ARG: " << FArg << " ==> " << *ShadowPtr << "\n" ); |
| 2116 | break; |
| 2117 | } |
| 2118 | |
| 2119 | ArgOffset += alignTo(Size, A: kShadowTLSAlignment); |
| 2120 | } |
| 2121 | assert(ShadowPtr && "Could not find shadow for an argument" ); |
| 2122 | return ShadowPtr; |
| 2123 | } |
| 2124 | |
| 2125 | // Check for partially-undefined constant vectors |
| 2126 | // TODO: scalable vectors (this is hard because we do not have IRBuilder) |
| 2127 | if (isa<FixedVectorType>(Val: V->getType()) && isa<Constant>(Val: V) && |
| 2128 | cast<Constant>(Val: V)->containsUndefOrPoisonElement() && PropagateShadow && |
| 2129 | PoisonUndefVectors) { |
| 2130 | unsigned NumElems = cast<FixedVectorType>(Val: V->getType())->getNumElements(); |
| 2131 | SmallVector<Constant *, 32> ShadowVector(NumElems); |
| 2132 | for (unsigned i = 0; i != NumElems; ++i) { |
| 2133 | Constant *Elem = cast<Constant>(Val: V)->getAggregateElement(Elt: i); |
| 2134 | ShadowVector[i] = isa<UndefValue>(Val: Elem) ? getPoisonedShadow(V: Elem) |
| 2135 | : getCleanShadow(V: Elem); |
| 2136 | } |
| 2137 | |
| 2138 | Value *ShadowConstant = ConstantVector::get(V: ShadowVector); |
| 2139 | LLVM_DEBUG(dbgs() << "Partial undef constant vector: " << *V << " ==> " |
| 2140 | << *ShadowConstant << "\n" ); |
| 2141 | |
| 2142 | return ShadowConstant; |
| 2143 | } |
| 2144 | |
| 2145 | // TODO: partially-undefined constant arrays, structures, and nested types |
| 2146 | |
| 2147 | // For everything else the shadow is zero. |
| 2148 | return getCleanShadow(V); |
| 2149 | } |
| 2150 | |
| 2151 | /// Get the shadow for i-th argument of the instruction I. |
| 2152 | Value *getShadow(Instruction *I, int i) { |
| 2153 | return getShadow(V: I->getOperand(i)); |
| 2154 | } |
| 2155 | |
| 2156 | /// Get the origin for a value. |
| 2157 | Value *getOrigin(Value *V) { |
| 2158 | if (!MS.TrackOrigins) |
| 2159 | return nullptr; |
| 2160 | if (!PropagateShadow || isa<Constant>(Val: V) || isa<InlineAsm>(Val: V)) |
| 2161 | return getCleanOrigin(); |
| 2162 | assert((isa<Instruction>(V) || isa<Argument>(V)) && |
| 2163 | "Unexpected value type in getOrigin()" ); |
| 2164 | if (Instruction *I = dyn_cast<Instruction>(Val: V)) { |
| 2165 | if (I->getMetadata(KindID: LLVMContext::MD_nosanitize)) |
| 2166 | return getCleanOrigin(); |
| 2167 | } |
| 2168 | Value *Origin = OriginMap[V]; |
| 2169 | assert(Origin && "Missing origin" ); |
| 2170 | return Origin; |
| 2171 | } |
| 2172 | |
| 2173 | /// Get the origin for i-th argument of the instruction I. |
| 2174 | Value *getOrigin(Instruction *I, int i) { |
| 2175 | return getOrigin(V: I->getOperand(i)); |
| 2176 | } |
| 2177 | |
| 2178 | /// Remember the place where a shadow check should be inserted. |
| 2179 | /// |
| 2180 | /// This location will be later instrumented with a check that will print a |
| 2181 | /// UMR warning in runtime if the shadow value is not 0. |
| 2182 | void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) { |
| 2183 | assert(Shadow); |
| 2184 | if (!InsertChecks) |
| 2185 | return; |
| 2186 | |
| 2187 | if (!DebugCounter::shouldExecute(CounterName: DebugInsertCheck)) { |
| 2188 | LLVM_DEBUG(dbgs() << "Skipping check of " << *Shadow << " before " |
| 2189 | << *OrigIns << "\n" ); |
| 2190 | return; |
| 2191 | } |
| 2192 | #ifndef NDEBUG |
| 2193 | Type *ShadowTy = Shadow->getType(); |
| 2194 | assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy) || |
| 2195 | isa<StructType>(ShadowTy) || isa<ArrayType>(ShadowTy)) && |
| 2196 | "Can only insert checks for integer, vector, and aggregate shadow " |
| 2197 | "types" ); |
| 2198 | #endif |
| 2199 | InstrumentationList.push_back( |
| 2200 | Elt: ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns)); |
| 2201 | } |
| 2202 | |
| 2203 | /// Remember the place where a shadow check should be inserted. |
| 2204 | /// |
| 2205 | /// This location will be later instrumented with a check that will print a |
| 2206 | /// UMR warning in runtime if the value is not fully defined. |
| 2207 | void insertShadowCheck(Value *Val, Instruction *OrigIns) { |
| 2208 | assert(Val); |
| 2209 | Value *Shadow, *Origin; |
| 2210 | if (ClCheckConstantShadow) { |
| 2211 | Shadow = getShadow(V: Val); |
| 2212 | if (!Shadow) |
| 2213 | return; |
| 2214 | Origin = getOrigin(V: Val); |
| 2215 | } else { |
| 2216 | Shadow = dyn_cast_or_null<Instruction>(Val: getShadow(V: Val)); |
| 2217 | if (!Shadow) |
| 2218 | return; |
| 2219 | Origin = dyn_cast_or_null<Instruction>(Val: getOrigin(V: Val)); |
| 2220 | } |
| 2221 | insertShadowCheck(Shadow, Origin, OrigIns); |
| 2222 | } |
| 2223 | |
| 2224 | AtomicOrdering addReleaseOrdering(AtomicOrdering a) { |
| 2225 | switch (a) { |
| 2226 | case AtomicOrdering::NotAtomic: |
| 2227 | return AtomicOrdering::NotAtomic; |
| 2228 | case AtomicOrdering::Unordered: |
| 2229 | case AtomicOrdering::Monotonic: |
| 2230 | case AtomicOrdering::Release: |
| 2231 | return AtomicOrdering::Release; |
| 2232 | case AtomicOrdering::Acquire: |
| 2233 | case AtomicOrdering::AcquireRelease: |
| 2234 | return AtomicOrdering::AcquireRelease; |
| 2235 | case AtomicOrdering::SequentiallyConsistent: |
| 2236 | return AtomicOrdering::SequentiallyConsistent; |
| 2237 | } |
| 2238 | llvm_unreachable("Unknown ordering" ); |
| 2239 | } |
| 2240 | |
| 2241 | Value *makeAddReleaseOrderingTable(IRBuilder<> &IRB) { |
| 2242 | constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; |
| 2243 | uint32_t OrderingTable[NumOrderings] = {}; |
| 2244 | |
| 2245 | OrderingTable[(int)AtomicOrderingCABI::relaxed] = |
| 2246 | OrderingTable[(int)AtomicOrderingCABI::release] = |
| 2247 | (int)AtomicOrderingCABI::release; |
| 2248 | OrderingTable[(int)AtomicOrderingCABI::consume] = |
| 2249 | OrderingTable[(int)AtomicOrderingCABI::acquire] = |
| 2250 | OrderingTable[(int)AtomicOrderingCABI::acq_rel] = |
| 2251 | (int)AtomicOrderingCABI::acq_rel; |
| 2252 | OrderingTable[(int)AtomicOrderingCABI::seq_cst] = |
| 2253 | (int)AtomicOrderingCABI::seq_cst; |
| 2254 | |
| 2255 | return ConstantDataVector::get(Context&: IRB.getContext(), Elts: OrderingTable); |
| 2256 | } |
| 2257 | |
| 2258 | AtomicOrdering addAcquireOrdering(AtomicOrdering a) { |
| 2259 | switch (a) { |
| 2260 | case AtomicOrdering::NotAtomic: |
| 2261 | return AtomicOrdering::NotAtomic; |
| 2262 | case AtomicOrdering::Unordered: |
| 2263 | case AtomicOrdering::Monotonic: |
| 2264 | case AtomicOrdering::Acquire: |
| 2265 | return AtomicOrdering::Acquire; |
| 2266 | case AtomicOrdering::Release: |
| 2267 | case AtomicOrdering::AcquireRelease: |
| 2268 | return AtomicOrdering::AcquireRelease; |
| 2269 | case AtomicOrdering::SequentiallyConsistent: |
| 2270 | return AtomicOrdering::SequentiallyConsistent; |
| 2271 | } |
| 2272 | llvm_unreachable("Unknown ordering" ); |
| 2273 | } |
| 2274 | |
| 2275 | Value *makeAddAcquireOrderingTable(IRBuilder<> &IRB) { |
| 2276 | constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; |
| 2277 | uint32_t OrderingTable[NumOrderings] = {}; |
| 2278 | |
| 2279 | OrderingTable[(int)AtomicOrderingCABI::relaxed] = |
| 2280 | OrderingTable[(int)AtomicOrderingCABI::acquire] = |
| 2281 | OrderingTable[(int)AtomicOrderingCABI::consume] = |
| 2282 | (int)AtomicOrderingCABI::acquire; |
| 2283 | OrderingTable[(int)AtomicOrderingCABI::release] = |
| 2284 | OrderingTable[(int)AtomicOrderingCABI::acq_rel] = |
| 2285 | (int)AtomicOrderingCABI::acq_rel; |
| 2286 | OrderingTable[(int)AtomicOrderingCABI::seq_cst] = |
| 2287 | (int)AtomicOrderingCABI::seq_cst; |
| 2288 | |
| 2289 | return ConstantDataVector::get(Context&: IRB.getContext(), Elts: OrderingTable); |
| 2290 | } |
| 2291 | |
| 2292 | // ------------------- Visitors. |
| 2293 | using InstVisitor<MemorySanitizerVisitor>::visit; |
| 2294 | void visit(Instruction &I) { |
| 2295 | if (I.getMetadata(KindID: LLVMContext::MD_nosanitize)) |
| 2296 | return; |
| 2297 | // Don't want to visit if we're in the prologue |
| 2298 | if (isInPrologue(I)) |
| 2299 | return; |
| 2300 | if (!DebugCounter::shouldExecute(CounterName: DebugInstrumentInstruction)) { |
| 2301 | LLVM_DEBUG(dbgs() << "Skipping instruction: " << I << "\n" ); |
| 2302 | // We still need to set the shadow and origin to clean values. |
| 2303 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
| 2304 | setOrigin(V: &I, Origin: getCleanOrigin()); |
| 2305 | return; |
| 2306 | } |
| 2307 | |
| 2308 | Instructions.push_back(Elt: &I); |
| 2309 | } |
| 2310 | |
| 2311 | /// Instrument LoadInst |
| 2312 | /// |
| 2313 | /// Loads the corresponding shadow and (optionally) origin. |
| 2314 | /// Optionally, checks that the load address is fully defined. |
| 2315 | void visitLoadInst(LoadInst &I) { |
| 2316 | assert(I.getType()->isSized() && "Load type must have size" ); |
| 2317 | assert(!I.getMetadata(LLVMContext::MD_nosanitize)); |
| 2318 | NextNodeIRBuilder IRB(&I); |
| 2319 | Type *ShadowTy = getShadowTy(V: &I); |
| 2320 | Value *Addr = I.getPointerOperand(); |
| 2321 | Value *ShadowPtr = nullptr, *OriginPtr = nullptr; |
| 2322 | const Align Alignment = I.getAlign(); |
| 2323 | if (PropagateShadow) { |
| 2324 | std::tie(args&: ShadowPtr, args&: OriginPtr) = |
| 2325 | getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); |
| 2326 | setShadow(V: &I, |
| 2327 | SV: IRB.CreateAlignedLoad(Ty: ShadowTy, Ptr: ShadowPtr, Align: Alignment, Name: "_msld" )); |
| 2328 | } else { |
| 2329 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
| 2330 | } |
| 2331 | |
| 2332 | if (ClCheckAccessAddress) |
| 2333 | insertShadowCheck(Val: I.getPointerOperand(), OrigIns: &I); |
| 2334 | |
| 2335 | if (I.isAtomic()) |
| 2336 | I.setOrdering(addAcquireOrdering(a: I.getOrdering())); |
| 2337 | |
| 2338 | if (MS.TrackOrigins) { |
| 2339 | if (PropagateShadow) { |
| 2340 | const Align OriginAlignment = std::max(a: kMinOriginAlignment, b: Alignment); |
| 2341 | setOrigin( |
| 2342 | V: &I, Origin: IRB.CreateAlignedLoad(Ty: MS.OriginTy, Ptr: OriginPtr, Align: OriginAlignment)); |
| 2343 | } else { |
| 2344 | setOrigin(V: &I, Origin: getCleanOrigin()); |
| 2345 | } |
| 2346 | } |
| 2347 | } |
| 2348 | |
| 2349 | /// Instrument StoreInst |
| 2350 | /// |
| 2351 | /// Stores the corresponding shadow and (optionally) origin. |
| 2352 | /// Optionally, checks that the store address is fully defined. |
| 2353 | void visitStoreInst(StoreInst &I) { |
| 2354 | StoreList.push_back(Elt: &I); |
| 2355 | if (ClCheckAccessAddress) |
| 2356 | insertShadowCheck(Val: I.getPointerOperand(), OrigIns: &I); |
| 2357 | } |
| 2358 | |
| 2359 | void handleCASOrRMW(Instruction &I) { |
| 2360 | assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); |
| 2361 | |
| 2362 | IRBuilder<> IRB(&I); |
| 2363 | Value *Addr = I.getOperand(i: 0); |
| 2364 | Value *Val = I.getOperand(i: 1); |
| 2365 | Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, ShadowTy: getShadowTy(V: Val), Alignment: Align(1), |
| 2366 | /*isStore*/ true) |
| 2367 | .first; |
| 2368 | |
| 2369 | if (ClCheckAccessAddress) |
| 2370 | insertShadowCheck(Val: Addr, OrigIns: &I); |
| 2371 | |
| 2372 | // Only test the conditional argument of cmpxchg instruction. |
| 2373 | // The other argument can potentially be uninitialized, but we can not |
| 2374 | // detect this situation reliably without possible false positives. |
| 2375 | if (isa<AtomicCmpXchgInst>(Val: I)) |
| 2376 | insertShadowCheck(Val, OrigIns: &I); |
| 2377 | |
| 2378 | IRB.CreateStore(Val: getCleanShadow(V: Val), Ptr: ShadowPtr); |
| 2379 | |
| 2380 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
| 2381 | setOrigin(V: &I, Origin: getCleanOrigin()); |
| 2382 | } |
| 2383 | |
| 2384 | void visitAtomicRMWInst(AtomicRMWInst &I) { |
| 2385 | handleCASOrRMW(I); |
| 2386 | I.setOrdering(addReleaseOrdering(a: I.getOrdering())); |
| 2387 | } |
| 2388 | |
| 2389 | void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { |
| 2390 | handleCASOrRMW(I); |
| 2391 | I.setSuccessOrdering(addReleaseOrdering(a: I.getSuccessOrdering())); |
| 2392 | } |
| 2393 | |
| 2394 | // Vector manipulation. |
| 2395 | void (ExtractElementInst &I) { |
| 2396 | insertShadowCheck(Val: I.getOperand(i_nocapture: 1), OrigIns: &I); |
| 2397 | IRBuilder<> IRB(&I); |
| 2398 | setShadow(V: &I, SV: IRB.CreateExtractElement(Vec: getShadow(I: &I, i: 0), Idx: I.getOperand(i_nocapture: 1), |
| 2399 | Name: "_msprop" )); |
| 2400 | setOrigin(V: &I, Origin: getOrigin(I: &I, i: 0)); |
| 2401 | } |
| 2402 | |
| 2403 | void visitInsertElementInst(InsertElementInst &I) { |
| 2404 | insertShadowCheck(Val: I.getOperand(i_nocapture: 2), OrigIns: &I); |
| 2405 | IRBuilder<> IRB(&I); |
| 2406 | auto *Shadow0 = getShadow(I: &I, i: 0); |
| 2407 | auto *Shadow1 = getShadow(I: &I, i: 1); |
| 2408 | setShadow(V: &I, SV: IRB.CreateInsertElement(Vec: Shadow0, NewElt: Shadow1, Idx: I.getOperand(i_nocapture: 2), |
| 2409 | Name: "_msprop" )); |
| 2410 | setOriginForNaryOp(I); |
| 2411 | } |
| 2412 | |
| 2413 | void visitShuffleVectorInst(ShuffleVectorInst &I) { |
| 2414 | IRBuilder<> IRB(&I); |
| 2415 | auto *Shadow0 = getShadow(I: &I, i: 0); |
| 2416 | auto *Shadow1 = getShadow(I: &I, i: 1); |
| 2417 | setShadow(V: &I, SV: IRB.CreateShuffleVector(V1: Shadow0, V2: Shadow1, Mask: I.getShuffleMask(), |
| 2418 | Name: "_msprop" )); |
| 2419 | setOriginForNaryOp(I); |
| 2420 | } |
| 2421 | |
| 2422 | // Casts. |
| 2423 | void visitSExtInst(SExtInst &I) { |
| 2424 | IRBuilder<> IRB(&I); |
| 2425 | setShadow(V: &I, SV: IRB.CreateSExt(V: getShadow(I: &I, i: 0), DestTy: I.getType(), Name: "_msprop" )); |
| 2426 | setOrigin(V: &I, Origin: getOrigin(I: &I, i: 0)); |
| 2427 | } |
| 2428 | |
| 2429 | void visitZExtInst(ZExtInst &I) { |
| 2430 | IRBuilder<> IRB(&I); |
| 2431 | setShadow(V: &I, SV: IRB.CreateZExt(V: getShadow(I: &I, i: 0), DestTy: I.getType(), Name: "_msprop" )); |
| 2432 | setOrigin(V: &I, Origin: getOrigin(I: &I, i: 0)); |
| 2433 | } |
| 2434 | |
| 2435 | void visitTruncInst(TruncInst &I) { |
| 2436 | IRBuilder<> IRB(&I); |
| 2437 | setShadow(V: &I, SV: IRB.CreateTrunc(V: getShadow(I: &I, i: 0), DestTy: I.getType(), Name: "_msprop" )); |
| 2438 | setOrigin(V: &I, Origin: getOrigin(I: &I, i: 0)); |
| 2439 | } |
| 2440 | |
| 2441 | void visitBitCastInst(BitCastInst &I) { |
| 2442 | // Special case: if this is the bitcast (there is exactly 1 allowed) between |
| 2443 | // a musttail call and a ret, don't instrument. New instructions are not |
| 2444 | // allowed after a musttail call. |
| 2445 | if (auto *CI = dyn_cast<CallInst>(Val: I.getOperand(i_nocapture: 0))) |
| 2446 | if (CI->isMustTailCall()) |
| 2447 | return; |
| 2448 | IRBuilder<> IRB(&I); |
| 2449 | setShadow(V: &I, SV: IRB.CreateBitCast(V: getShadow(I: &I, i: 0), DestTy: getShadowTy(V: &I))); |
| 2450 | setOrigin(V: &I, Origin: getOrigin(I: &I, i: 0)); |
| 2451 | } |
| 2452 | |
| 2453 | void visitPtrToIntInst(PtrToIntInst &I) { |
| 2454 | IRBuilder<> IRB(&I); |
| 2455 | setShadow(V: &I, SV: IRB.CreateIntCast(V: getShadow(I: &I, i: 0), DestTy: getShadowTy(V: &I), isSigned: false, |
| 2456 | Name: "_msprop_ptrtoint" )); |
| 2457 | setOrigin(V: &I, Origin: getOrigin(I: &I, i: 0)); |
| 2458 | } |
| 2459 | |
| 2460 | void visitIntToPtrInst(IntToPtrInst &I) { |
| 2461 | IRBuilder<> IRB(&I); |
| 2462 | setShadow(V: &I, SV: IRB.CreateIntCast(V: getShadow(I: &I, i: 0), DestTy: getShadowTy(V: &I), isSigned: false, |
| 2463 | Name: "_msprop_inttoptr" )); |
| 2464 | setOrigin(V: &I, Origin: getOrigin(I: &I, i: 0)); |
| 2465 | } |
| 2466 | |
| 2467 | void visitFPToSIInst(CastInst &I) { handleShadowOr(I); } |
| 2468 | void visitFPToUIInst(CastInst &I) { handleShadowOr(I); } |
| 2469 | void visitSIToFPInst(CastInst &I) { handleShadowOr(I); } |
| 2470 | void visitUIToFPInst(CastInst &I) { handleShadowOr(I); } |
| 2471 | void visitFPExtInst(CastInst &I) { handleShadowOr(I); } |
| 2472 | void visitFPTruncInst(CastInst &I) { handleShadowOr(I); } |
| 2473 | |
| 2474 | /// Propagate shadow for bitwise AND. |
| 2475 | /// |
| 2476 | /// This code is exact, i.e. if, for example, a bit in the left argument |
| 2477 | /// is defined and 0, then neither the value not definedness of the |
| 2478 | /// corresponding bit in B don't affect the resulting shadow. |
| 2479 | void visitAnd(BinaryOperator &I) { |
| 2480 | IRBuilder<> IRB(&I); |
| 2481 | // "And" of 0 and a poisoned value results in unpoisoned value. |
| 2482 | // 1&1 => 1; 0&1 => 0; p&1 => p; |
| 2483 | // 1&0 => 0; 0&0 => 0; p&0 => 0; |
| 2484 | // 1&p => p; 0&p => 0; p&p => p; |
| 2485 | // S = (S1 & S2) | (V1 & S2) | (S1 & V2) |
| 2486 | Value *S1 = getShadow(I: &I, i: 0); |
| 2487 | Value *S2 = getShadow(I: &I, i: 1); |
| 2488 | Value *V1 = I.getOperand(i_nocapture: 0); |
| 2489 | Value *V2 = I.getOperand(i_nocapture: 1); |
| 2490 | if (V1->getType() != S1->getType()) { |
| 2491 | V1 = IRB.CreateIntCast(V: V1, DestTy: S1->getType(), isSigned: false); |
| 2492 | V2 = IRB.CreateIntCast(V: V2, DestTy: S2->getType(), isSigned: false); |
| 2493 | } |
| 2494 | Value *S1S2 = IRB.CreateAnd(LHS: S1, RHS: S2); |
| 2495 | Value *V1S2 = IRB.CreateAnd(LHS: V1, RHS: S2); |
| 2496 | Value *S1V2 = IRB.CreateAnd(LHS: S1, RHS: V2); |
| 2497 | setShadow(V: &I, SV: IRB.CreateOr(Ops: {S1S2, V1S2, S1V2})); |
| 2498 | setOriginForNaryOp(I); |
| 2499 | } |
| 2500 | |
| 2501 | void visitOr(BinaryOperator &I) { |
| 2502 | IRBuilder<> IRB(&I); |
| 2503 | // "Or" of 1 and a poisoned value results in unpoisoned value: |
| 2504 | // 1|1 => 1; 0|1 => 1; p|1 => 1; |
| 2505 | // 1|0 => 1; 0|0 => 0; p|0 => p; |
| 2506 | // 1|p => 1; 0|p => p; p|p => p; |
| 2507 | // |
| 2508 | // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2) |
| 2509 | // |
| 2510 | // Addendum if the "Or" is "disjoint": |
| 2511 | // 1|1 => p; |
| 2512 | // S = S | (V1 & V2) |
| 2513 | Value *S1 = getShadow(I: &I, i: 0); |
| 2514 | Value *S2 = getShadow(I: &I, i: 1); |
| 2515 | Value *V1 = I.getOperand(i_nocapture: 0); |
| 2516 | Value *V2 = I.getOperand(i_nocapture: 1); |
| 2517 | if (V1->getType() != S1->getType()) { |
| 2518 | V1 = IRB.CreateIntCast(V: V1, DestTy: S1->getType(), isSigned: false); |
| 2519 | V2 = IRB.CreateIntCast(V: V2, DestTy: S2->getType(), isSigned: false); |
| 2520 | } |
| 2521 | |
| 2522 | Value *NotV1 = IRB.CreateNot(V: V1); |
| 2523 | Value *NotV2 = IRB.CreateNot(V: V2); |
| 2524 | |
| 2525 | Value *S1S2 = IRB.CreateAnd(LHS: S1, RHS: S2); |
| 2526 | Value *S2NotV1 = IRB.CreateAnd(LHS: NotV1, RHS: S2); |
| 2527 | Value *S1NotV2 = IRB.CreateAnd(LHS: S1, RHS: NotV2); |
| 2528 | |
| 2529 | Value *S = IRB.CreateOr(Ops: {S1S2, S2NotV1, S1NotV2}); |
| 2530 | |
| 2531 | if (ClPreciseDisjointOr && cast<PossiblyDisjointInst>(Val: &I)->isDisjoint()) { |
| 2532 | Value *V1V2 = IRB.CreateAnd(LHS: V1, RHS: V2); |
| 2533 | S = IRB.CreateOr(LHS: S, RHS: V1V2, Name: "_ms_disjoint" ); |
| 2534 | } |
| 2535 | |
| 2536 | setShadow(V: &I, SV: S); |
| 2537 | setOriginForNaryOp(I); |
| 2538 | } |
| 2539 | |
| 2540 | /// Default propagation of shadow and/or origin. |
| 2541 | /// |
| 2542 | /// This class implements the general case of shadow propagation, used in all |
| 2543 | /// cases where we don't know and/or don't care about what the operation |
| 2544 | /// actually does. It converts all input shadow values to a common type |
| 2545 | /// (extending or truncating as necessary), and bitwise OR's them. |
| 2546 | /// |
| 2547 | /// This is much cheaper than inserting checks (i.e. requiring inputs to be |
| 2548 | /// fully initialized), and less prone to false positives. |
| 2549 | /// |
| 2550 | /// This class also implements the general case of origin propagation. For a |
| 2551 | /// Nary operation, result origin is set to the origin of an argument that is |
| 2552 | /// not entirely initialized. If there is more than one such arguments, the |
| 2553 | /// rightmost of them is picked. It does not matter which one is picked if all |
| 2554 | /// arguments are initialized. |
| 2555 | template <bool CombineShadow> class Combiner { |
| 2556 | Value *Shadow = nullptr; |
| 2557 | Value *Origin = nullptr; |
| 2558 | IRBuilder<> &IRB; |
| 2559 | MemorySanitizerVisitor *MSV; |
| 2560 | |
| 2561 | public: |
| 2562 | Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) |
| 2563 | : IRB(IRB), MSV(MSV) {} |
| 2564 | |
| 2565 | /// Add a pair of shadow and origin values to the mix. |
| 2566 | Combiner &Add(Value *OpShadow, Value *OpOrigin) { |
| 2567 | if (CombineShadow) { |
| 2568 | assert(OpShadow); |
| 2569 | if (!Shadow) |
| 2570 | Shadow = OpShadow; |
| 2571 | else { |
| 2572 | OpShadow = MSV->CreateShadowCast(IRB, V: OpShadow, dstTy: Shadow->getType()); |
| 2573 | Shadow = IRB.CreateOr(LHS: Shadow, RHS: OpShadow, Name: "_msprop" ); |
| 2574 | } |
| 2575 | } |
| 2576 | |
| 2577 | if (MSV->MS.TrackOrigins) { |
| 2578 | assert(OpOrigin); |
| 2579 | if (!Origin) { |
| 2580 | Origin = OpOrigin; |
| 2581 | } else { |
| 2582 | Constant *ConstOrigin = dyn_cast<Constant>(Val: OpOrigin); |
| 2583 | // No point in adding something that might result in 0 origin value. |
| 2584 | if (!ConstOrigin || !ConstOrigin->isNullValue()) { |
| 2585 | Value *Cond = MSV->convertToBool(V: OpShadow, IRB); |
| 2586 | Origin = IRB.CreateSelect(C: Cond, True: OpOrigin, False: Origin); |
| 2587 | } |
| 2588 | } |
| 2589 | } |
| 2590 | return *this; |
| 2591 | } |
| 2592 | |
| 2593 | /// Add an application value to the mix. |
| 2594 | Combiner &Add(Value *V) { |
| 2595 | Value *OpShadow = MSV->getShadow(V); |
| 2596 | Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr; |
| 2597 | return Add(OpShadow, OpOrigin); |
| 2598 | } |
| 2599 | |
| 2600 | /// Set the current combined values as the given instruction's shadow |
| 2601 | /// and origin. |
| 2602 | void Done(Instruction *I) { |
| 2603 | if (CombineShadow) { |
| 2604 | assert(Shadow); |
| 2605 | Shadow = MSV->CreateShadowCast(IRB, V: Shadow, dstTy: MSV->getShadowTy(V: I)); |
| 2606 | MSV->setShadow(V: I, SV: Shadow); |
| 2607 | } |
| 2608 | if (MSV->MS.TrackOrigins) { |
| 2609 | assert(Origin); |
| 2610 | MSV->setOrigin(V: I, Origin); |
| 2611 | } |
| 2612 | } |
| 2613 | |
| 2614 | /// Store the current combined value at the specified origin |
| 2615 | /// location. |
| 2616 | void DoneAndStoreOrigin(TypeSize TS, Value *OriginPtr) { |
| 2617 | if (MSV->MS.TrackOrigins) { |
| 2618 | assert(Origin); |
| 2619 | MSV->paintOrigin(IRB, Origin, OriginPtr, TS, Alignment: kMinOriginAlignment); |
| 2620 | } |
| 2621 | } |
| 2622 | }; |
| 2623 | |
| 2624 | using ShadowAndOriginCombiner = Combiner<true>; |
| 2625 | using OriginCombiner = Combiner<false>; |
| 2626 | |
| 2627 | /// Propagate origin for arbitrary operation. |
| 2628 | void setOriginForNaryOp(Instruction &I) { |
| 2629 | if (!MS.TrackOrigins) |
| 2630 | return; |
| 2631 | IRBuilder<> IRB(&I); |
| 2632 | OriginCombiner OC(this, IRB); |
| 2633 | for (Use &Op : I.operands()) |
| 2634 | OC.Add(V: Op.get()); |
| 2635 | OC.Done(I: &I); |
| 2636 | } |
| 2637 | |
| 2638 | size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) { |
| 2639 | assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && |
| 2640 | "Vector of pointers is not a valid shadow type" ); |
| 2641 | return Ty->isVectorTy() ? cast<FixedVectorType>(Val: Ty)->getNumElements() * |
| 2642 | Ty->getScalarSizeInBits() |
| 2643 | : Ty->getPrimitiveSizeInBits(); |
| 2644 | } |
| 2645 | |
| 2646 | /// Cast between two shadow types, extending or truncating as |
| 2647 | /// necessary. |
| 2648 | Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy, |
| 2649 | bool Signed = false) { |
| 2650 | Type *srcTy = V->getType(); |
| 2651 | if (srcTy == dstTy) |
| 2652 | return V; |
| 2653 | size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(Ty: srcTy); |
| 2654 | size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(Ty: dstTy); |
| 2655 | if (srcSizeInBits > 1 && dstSizeInBits == 1) |
| 2656 | return IRB.CreateICmpNE(LHS: V, RHS: getCleanShadow(V)); |
| 2657 | |
| 2658 | if (dstTy->isIntegerTy() && srcTy->isIntegerTy()) |
| 2659 | return IRB.CreateIntCast(V, DestTy: dstTy, isSigned: Signed); |
| 2660 | if (dstTy->isVectorTy() && srcTy->isVectorTy() && |
| 2661 | cast<VectorType>(Val: dstTy)->getElementCount() == |
| 2662 | cast<VectorType>(Val: srcTy)->getElementCount()) |
| 2663 | return IRB.CreateIntCast(V, DestTy: dstTy, isSigned: Signed); |
| 2664 | Value *V1 = IRB.CreateBitCast(V, DestTy: Type::getIntNTy(C&: *MS.C, N: srcSizeInBits)); |
| 2665 | Value *V2 = |
| 2666 | IRB.CreateIntCast(V: V1, DestTy: Type::getIntNTy(C&: *MS.C, N: dstSizeInBits), isSigned: Signed); |
| 2667 | return IRB.CreateBitCast(V: V2, DestTy: dstTy); |
| 2668 | // TODO: handle struct types. |
| 2669 | } |
| 2670 | |
| 2671 | /// Cast an application value to the type of its own shadow. |
| 2672 | Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) { |
| 2673 | Type *ShadowTy = getShadowTy(V); |
| 2674 | if (V->getType() == ShadowTy) |
| 2675 | return V; |
| 2676 | if (V->getType()->isPtrOrPtrVectorTy()) |
| 2677 | return IRB.CreatePtrToInt(V, DestTy: ShadowTy); |
| 2678 | else |
| 2679 | return IRB.CreateBitCast(V, DestTy: ShadowTy); |
| 2680 | } |
| 2681 | |
| 2682 | /// Propagate shadow for arbitrary operation. |
| 2683 | void handleShadowOr(Instruction &I) { |
| 2684 | IRBuilder<> IRB(&I); |
| 2685 | ShadowAndOriginCombiner SC(this, IRB); |
| 2686 | for (Use &Op : I.operands()) |
| 2687 | SC.Add(V: Op.get()); |
| 2688 | SC.Done(I: &I); |
| 2689 | } |
| 2690 | |
| 2691 | /// Propagate shadow for 1- or 2-vector intrinsics that combine adjacent |
| 2692 | /// fields. |
| 2693 | /// |
| 2694 | /// e.g., <2 x i32> @llvm.aarch64.neon.saddlp.v2i32.v4i16(<4 x i16>) |
| 2695 | /// <16 x i8> @llvm.aarch64.neon.addp.v16i8(<16 x i8>, <16 x i8>) |
| 2696 | void handlePairwiseShadowOrIntrinsic(IntrinsicInst &I) { |
| 2697 | assert(I.arg_size() == 1 || I.arg_size() == 2); |
| 2698 | |
| 2699 | assert(I.getType()->isVectorTy()); |
| 2700 | assert(I.getArgOperand(0)->getType()->isVectorTy()); |
| 2701 | |
| 2702 | FixedVectorType *ParamType = |
| 2703 | cast<FixedVectorType>(Val: I.getArgOperand(i: 0)->getType()); |
| 2704 | assert((I.arg_size() != 2) || |
| 2705 | (ParamType == cast<FixedVectorType>(I.getArgOperand(1)->getType()))); |
| 2706 | [[maybe_unused]] FixedVectorType *ReturnType = |
| 2707 | cast<FixedVectorType>(Val: I.getType()); |
| 2708 | assert(ParamType->getNumElements() * I.arg_size() == |
| 2709 | 2 * ReturnType->getNumElements()); |
| 2710 | |
| 2711 | IRBuilder<> IRB(&I); |
| 2712 | unsigned Width = ParamType->getNumElements() * I.arg_size(); |
| 2713 | |
| 2714 | // Horizontal OR of shadow |
| 2715 | SmallVector<int, 8> EvenMask; |
| 2716 | SmallVector<int, 8> OddMask; |
| 2717 | for (unsigned X = 0; X < Width; X += 2) { |
| 2718 | EvenMask.push_back(Elt: X); |
| 2719 | OddMask.push_back(Elt: X + 1); |
| 2720 | } |
| 2721 | |
| 2722 | Value *FirstArgShadow = getShadow(I: &I, i: 0); |
| 2723 | Value *EvenShadow; |
| 2724 | Value *OddShadow; |
| 2725 | if (I.arg_size() == 2) { |
| 2726 | Value *SecondArgShadow = getShadow(I: &I, i: 1); |
| 2727 | EvenShadow = |
| 2728 | IRB.CreateShuffleVector(V1: FirstArgShadow, V2: SecondArgShadow, Mask: EvenMask); |
| 2729 | OddShadow = |
| 2730 | IRB.CreateShuffleVector(V1: FirstArgShadow, V2: SecondArgShadow, Mask: OddMask); |
| 2731 | } else { |
| 2732 | EvenShadow = IRB.CreateShuffleVector(V: FirstArgShadow, Mask: EvenMask); |
| 2733 | OddShadow = IRB.CreateShuffleVector(V: FirstArgShadow, Mask: OddMask); |
| 2734 | } |
| 2735 | |
| 2736 | Value *OrShadow = IRB.CreateOr(LHS: EvenShadow, RHS: OddShadow); |
| 2737 | OrShadow = CreateShadowCast(IRB, V: OrShadow, dstTy: getShadowTy(V: &I)); |
| 2738 | |
| 2739 | setShadow(V: &I, SV: OrShadow); |
| 2740 | setOriginForNaryOp(I); |
| 2741 | } |
| 2742 | |
| 2743 | /// Propagate shadow for 1- or 2-vector intrinsics that combine adjacent |
| 2744 | /// fields, with the parameters reinterpreted to have elements of a specified |
| 2745 | /// width. For example: |
| 2746 | /// @llvm.x86.ssse3.phadd.w(<1 x i64> [[VAR1]], <1 x i64> [[VAR2]]) |
| 2747 | /// conceptually operates on |
| 2748 | /// (<4 x i16> [[VAR1]], <4 x i16> [[VAR2]]) |
| 2749 | /// and can be handled with ReinterpretElemWidth == 16. |
| 2750 | void handlePairwiseShadowOrIntrinsic(IntrinsicInst &I, |
| 2751 | int ReinterpretElemWidth) { |
| 2752 | assert(I.arg_size() == 1 || I.arg_size() == 2); |
| 2753 | |
| 2754 | assert(I.getType()->isVectorTy()); |
| 2755 | assert(I.getArgOperand(0)->getType()->isVectorTy()); |
| 2756 | |
| 2757 | FixedVectorType *ParamType = |
| 2758 | cast<FixedVectorType>(Val: I.getArgOperand(i: 0)->getType()); |
| 2759 | assert((I.arg_size() != 2) || |
| 2760 | (ParamType == cast<FixedVectorType>(I.getArgOperand(1)->getType()))); |
| 2761 | |
| 2762 | [[maybe_unused]] FixedVectorType *ReturnType = |
| 2763 | cast<FixedVectorType>(Val: I.getType()); |
| 2764 | assert(ParamType->getNumElements() * I.arg_size() == |
| 2765 | 2 * ReturnType->getNumElements()); |
| 2766 | |
| 2767 | IRBuilder<> IRB(&I); |
| 2768 | |
| 2769 | unsigned TotalNumElems = ParamType->getNumElements() * I.arg_size(); |
| 2770 | FixedVectorType *ReinterpretShadowTy = nullptr; |
| 2771 | assert(isAligned(Align(ReinterpretElemWidth), |
| 2772 | ParamType->getPrimitiveSizeInBits())); |
| 2773 | ReinterpretShadowTy = FixedVectorType::get( |
| 2774 | ElementType: IRB.getIntNTy(N: ReinterpretElemWidth), |
| 2775 | NumElts: ParamType->getPrimitiveSizeInBits() / ReinterpretElemWidth); |
| 2776 | TotalNumElems = ReinterpretShadowTy->getNumElements() * I.arg_size(); |
| 2777 | |
| 2778 | // Horizontal OR of shadow |
| 2779 | SmallVector<int, 8> EvenMask; |
| 2780 | SmallVector<int, 8> OddMask; |
| 2781 | for (unsigned X = 0; X < TotalNumElems - 1; X += 2) { |
| 2782 | EvenMask.push_back(Elt: X); |
| 2783 | OddMask.push_back(Elt: X + 1); |
| 2784 | } |
| 2785 | |
| 2786 | Value *FirstArgShadow = getShadow(I: &I, i: 0); |
| 2787 | FirstArgShadow = IRB.CreateBitCast(V: FirstArgShadow, DestTy: ReinterpretShadowTy); |
| 2788 | |
| 2789 | // If we had two parameters each with an odd number of elements, the total |
| 2790 | // number of elements is even, but we have never seen this in extant |
| 2791 | // instruction sets, so we enforce that each parameter must have an even |
| 2792 | // number of elements. |
| 2793 | assert(isAligned( |
| 2794 | Align(2), |
| 2795 | cast<FixedVectorType>(FirstArgShadow->getType())->getNumElements())); |
| 2796 | |
| 2797 | Value *EvenShadow; |
| 2798 | Value *OddShadow; |
| 2799 | if (I.arg_size() == 2) { |
| 2800 | Value *SecondArgShadow = getShadow(I: &I, i: 1); |
| 2801 | SecondArgShadow = IRB.CreateBitCast(V: SecondArgShadow, DestTy: ReinterpretShadowTy); |
| 2802 | |
| 2803 | EvenShadow = |
| 2804 | IRB.CreateShuffleVector(V1: FirstArgShadow, V2: SecondArgShadow, Mask: EvenMask); |
| 2805 | OddShadow = |
| 2806 | IRB.CreateShuffleVector(V1: FirstArgShadow, V2: SecondArgShadow, Mask: OddMask); |
| 2807 | } else { |
| 2808 | EvenShadow = IRB.CreateShuffleVector(V: FirstArgShadow, Mask: EvenMask); |
| 2809 | OddShadow = IRB.CreateShuffleVector(V: FirstArgShadow, Mask: OddMask); |
| 2810 | } |
| 2811 | |
| 2812 | Value *OrShadow = IRB.CreateOr(LHS: EvenShadow, RHS: OddShadow); |
| 2813 | OrShadow = CreateShadowCast(IRB, V: OrShadow, dstTy: getShadowTy(V: &I)); |
| 2814 | |
| 2815 | setShadow(V: &I, SV: OrShadow); |
| 2816 | setOriginForNaryOp(I); |
| 2817 | } |
| 2818 | |
| 2819 | void visitFNeg(UnaryOperator &I) { handleShadowOr(I); } |
| 2820 | |
| 2821 | // Handle multiplication by constant. |
| 2822 | // |
| 2823 | // Handle a special case of multiplication by constant that may have one or |
| 2824 | // more zeros in the lower bits. This makes corresponding number of lower bits |
| 2825 | // of the result zero as well. We model it by shifting the other operand |
| 2826 | // shadow left by the required number of bits. Effectively, we transform |
| 2827 | // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B). |
| 2828 | // We use multiplication by 2**N instead of shift to cover the case of |
| 2829 | // multiplication by 0, which may occur in some elements of a vector operand. |
| 2830 | void handleMulByConstant(BinaryOperator &I, Constant *ConstArg, |
| 2831 | Value *OtherArg) { |
| 2832 | Constant *ShadowMul; |
| 2833 | Type *Ty = ConstArg->getType(); |
| 2834 | if (auto *VTy = dyn_cast<VectorType>(Val: Ty)) { |
| 2835 | unsigned NumElements = cast<FixedVectorType>(Val: VTy)->getNumElements(); |
| 2836 | Type *EltTy = VTy->getElementType(); |
| 2837 | SmallVector<Constant *, 16> Elements; |
| 2838 | for (unsigned Idx = 0; Idx < NumElements; ++Idx) { |
| 2839 | if (ConstantInt *Elt = |
| 2840 | dyn_cast<ConstantInt>(Val: ConstArg->getAggregateElement(Elt: Idx))) { |
| 2841 | const APInt &V = Elt->getValue(); |
| 2842 | APInt V2 = APInt(V.getBitWidth(), 1) << V.countr_zero(); |
| 2843 | Elements.push_back(Elt: ConstantInt::get(Ty: EltTy, V: V2)); |
| 2844 | } else { |
| 2845 | Elements.push_back(Elt: ConstantInt::get(Ty: EltTy, V: 1)); |
| 2846 | } |
| 2847 | } |
| 2848 | ShadowMul = ConstantVector::get(V: Elements); |
| 2849 | } else { |
| 2850 | if (ConstantInt *Elt = dyn_cast<ConstantInt>(Val: ConstArg)) { |
| 2851 | const APInt &V = Elt->getValue(); |
| 2852 | APInt V2 = APInt(V.getBitWidth(), 1) << V.countr_zero(); |
| 2853 | ShadowMul = ConstantInt::get(Ty, V: V2); |
| 2854 | } else { |
| 2855 | ShadowMul = ConstantInt::get(Ty, V: 1); |
| 2856 | } |
| 2857 | } |
| 2858 | |
| 2859 | IRBuilder<> IRB(&I); |
| 2860 | setShadow(V: &I, |
| 2861 | SV: IRB.CreateMul(LHS: getShadow(V: OtherArg), RHS: ShadowMul, Name: "msprop_mul_cst" )); |
| 2862 | setOrigin(V: &I, Origin: getOrigin(V: OtherArg)); |
| 2863 | } |
| 2864 | |
| 2865 | void visitMul(BinaryOperator &I) { |
| 2866 | Constant *constOp0 = dyn_cast<Constant>(Val: I.getOperand(i_nocapture: 0)); |
| 2867 | Constant *constOp1 = dyn_cast<Constant>(Val: I.getOperand(i_nocapture: 1)); |
| 2868 | if (constOp0 && !constOp1) |
| 2869 | handleMulByConstant(I, ConstArg: constOp0, OtherArg: I.getOperand(i_nocapture: 1)); |
| 2870 | else if (constOp1 && !constOp0) |
| 2871 | handleMulByConstant(I, ConstArg: constOp1, OtherArg: I.getOperand(i_nocapture: 0)); |
| 2872 | else |
| 2873 | handleShadowOr(I); |
| 2874 | } |
| 2875 | |
| 2876 | void visitFAdd(BinaryOperator &I) { handleShadowOr(I); } |
| 2877 | void visitFSub(BinaryOperator &I) { handleShadowOr(I); } |
| 2878 | void visitFMul(BinaryOperator &I) { handleShadowOr(I); } |
| 2879 | void visitAdd(BinaryOperator &I) { handleShadowOr(I); } |
| 2880 | void visitSub(BinaryOperator &I) { handleShadowOr(I); } |
| 2881 | void visitXor(BinaryOperator &I) { handleShadowOr(I); } |
| 2882 | |
| 2883 | void handleIntegerDiv(Instruction &I) { |
| 2884 | IRBuilder<> IRB(&I); |
| 2885 | // Strict on the second argument. |
| 2886 | insertShadowCheck(Val: I.getOperand(i: 1), OrigIns: &I); |
| 2887 | setShadow(V: &I, SV: getShadow(I: &I, i: 0)); |
| 2888 | setOrigin(V: &I, Origin: getOrigin(I: &I, i: 0)); |
| 2889 | } |
| 2890 | |
| 2891 | void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); } |
| 2892 | void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); } |
| 2893 | void visitURem(BinaryOperator &I) { handleIntegerDiv(I); } |
| 2894 | void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); } |
| 2895 | |
| 2896 | // Floating point division is side-effect free. We can not require that the |
| 2897 | // divisor is fully initialized and must propagate shadow. See PR37523. |
| 2898 | void visitFDiv(BinaryOperator &I) { handleShadowOr(I); } |
| 2899 | void visitFRem(BinaryOperator &I) { handleShadowOr(I); } |
| 2900 | |
| 2901 | /// Instrument == and != comparisons. |
| 2902 | /// |
| 2903 | /// Sometimes the comparison result is known even if some of the bits of the |
| 2904 | /// arguments are not. |
| 2905 | void handleEqualityComparison(ICmpInst &I) { |
| 2906 | IRBuilder<> IRB(&I); |
| 2907 | Value *A = I.getOperand(i_nocapture: 0); |
| 2908 | Value *B = I.getOperand(i_nocapture: 1); |
| 2909 | Value *Sa = getShadow(V: A); |
| 2910 | Value *Sb = getShadow(V: B); |
| 2911 | |
| 2912 | // Get rid of pointers and vectors of pointers. |
| 2913 | // For ints (and vectors of ints), types of A and Sa match, |
| 2914 | // and this is a no-op. |
| 2915 | A = IRB.CreatePointerCast(V: A, DestTy: Sa->getType()); |
| 2916 | B = IRB.CreatePointerCast(V: B, DestTy: Sb->getType()); |
| 2917 | |
| 2918 | // A == B <==> (C = A^B) == 0 |
| 2919 | // A != B <==> (C = A^B) != 0 |
| 2920 | // Sc = Sa | Sb |
| 2921 | Value *C = IRB.CreateXor(LHS: A, RHS: B); |
| 2922 | Value *Sc = IRB.CreateOr(LHS: Sa, RHS: Sb); |
| 2923 | // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now) |
| 2924 | // Result is defined if one of the following is true |
| 2925 | // * there is a defined 1 bit in C |
| 2926 | // * C is fully defined |
| 2927 | // Si = !(C & ~Sc) && Sc |
| 2928 | Value *Zero = Constant::getNullValue(Ty: Sc->getType()); |
| 2929 | Value *MinusOne = Constant::getAllOnesValue(Ty: Sc->getType()); |
| 2930 | Value *LHS = IRB.CreateICmpNE(LHS: Sc, RHS: Zero); |
| 2931 | Value *RHS = |
| 2932 | IRB.CreateICmpEQ(LHS: IRB.CreateAnd(LHS: IRB.CreateXor(LHS: Sc, RHS: MinusOne), RHS: C), RHS: Zero); |
| 2933 | Value *Si = IRB.CreateAnd(LHS, RHS); |
| 2934 | Si->setName("_msprop_icmp" ); |
| 2935 | setShadow(V: &I, SV: Si); |
| 2936 | setOriginForNaryOp(I); |
| 2937 | } |
| 2938 | |
| 2939 | /// Instrument relational comparisons. |
| 2940 | /// |
| 2941 | /// This function does exact shadow propagation for all relational |
| 2942 | /// comparisons of integers, pointers and vectors of those. |
| 2943 | /// FIXME: output seems suboptimal when one of the operands is a constant |
| 2944 | void handleRelationalComparisonExact(ICmpInst &I) { |
| 2945 | IRBuilder<> IRB(&I); |
| 2946 | Value *A = I.getOperand(i_nocapture: 0); |
| 2947 | Value *B = I.getOperand(i_nocapture: 1); |
| 2948 | Value *Sa = getShadow(V: A); |
| 2949 | Value *Sb = getShadow(V: B); |
| 2950 | |
| 2951 | // Get rid of pointers and vectors of pointers. |
| 2952 | // For ints (and vectors of ints), types of A and Sa match, |
| 2953 | // and this is a no-op. |
| 2954 | A = IRB.CreatePointerCast(V: A, DestTy: Sa->getType()); |
| 2955 | B = IRB.CreatePointerCast(V: B, DestTy: Sb->getType()); |
| 2956 | |
| 2957 | // Let [a0, a1] be the interval of possible values of A, taking into account |
| 2958 | // its undefined bits. Let [b0, b1] be the interval of possible values of B. |
| 2959 | // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0). |
| 2960 | bool IsSigned = I.isSigned(); |
| 2961 | |
| 2962 | auto GetMinMaxUnsigned = [&](Value *V, Value *S) { |
| 2963 | if (IsSigned) { |
| 2964 | // Sign-flip to map from signed range to unsigned range. Relation A vs B |
| 2965 | // should be preserved, if checked with `getUnsignedPredicate()`. |
| 2966 | // Relationship between Amin, Amax, Bmin, Bmax also will not be |
| 2967 | // affected, as they are created by effectively adding/substructing from |
| 2968 | // A (or B) a value, derived from shadow, with no overflow, either |
| 2969 | // before or after sign flip. |
| 2970 | APInt MinVal = |
| 2971 | APInt::getSignedMinValue(numBits: V->getType()->getScalarSizeInBits()); |
| 2972 | V = IRB.CreateXor(LHS: V, RHS: ConstantInt::get(Ty: V->getType(), V: MinVal)); |
| 2973 | } |
| 2974 | // Minimize undefined bits. |
| 2975 | Value *Min = IRB.CreateAnd(LHS: V, RHS: IRB.CreateNot(V: S)); |
| 2976 | Value *Max = IRB.CreateOr(LHS: V, RHS: S); |
| 2977 | return std::make_pair(x&: Min, y&: Max); |
| 2978 | }; |
| 2979 | |
| 2980 | auto [Amin, Amax] = GetMinMaxUnsigned(A, Sa); |
| 2981 | auto [Bmin, Bmax] = GetMinMaxUnsigned(B, Sb); |
| 2982 | Value *S1 = IRB.CreateICmp(P: I.getUnsignedPredicate(), LHS: Amin, RHS: Bmax); |
| 2983 | Value *S2 = IRB.CreateICmp(P: I.getUnsignedPredicate(), LHS: Amax, RHS: Bmin); |
| 2984 | |
| 2985 | Value *Si = IRB.CreateXor(LHS: S1, RHS: S2); |
| 2986 | setShadow(V: &I, SV: Si); |
| 2987 | setOriginForNaryOp(I); |
| 2988 | } |
| 2989 | |
| 2990 | /// Instrument signed relational comparisons. |
| 2991 | /// |
| 2992 | /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest |
| 2993 | /// bit of the shadow. Everything else is delegated to handleShadowOr(). |
| 2994 | void handleSignedRelationalComparison(ICmpInst &I) { |
| 2995 | Constant *constOp; |
| 2996 | Value *op = nullptr; |
| 2997 | CmpInst::Predicate pre; |
| 2998 | if ((constOp = dyn_cast<Constant>(Val: I.getOperand(i_nocapture: 1)))) { |
| 2999 | op = I.getOperand(i_nocapture: 0); |
| 3000 | pre = I.getPredicate(); |
| 3001 | } else if ((constOp = dyn_cast<Constant>(Val: I.getOperand(i_nocapture: 0)))) { |
| 3002 | op = I.getOperand(i_nocapture: 1); |
| 3003 | pre = I.getSwappedPredicate(); |
| 3004 | } else { |
| 3005 | handleShadowOr(I); |
| 3006 | return; |
| 3007 | } |
| 3008 | |
| 3009 | if ((constOp->isNullValue() && |
| 3010 | (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) || |
| 3011 | (constOp->isAllOnesValue() && |
| 3012 | (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) { |
| 3013 | IRBuilder<> IRB(&I); |
| 3014 | Value *Shadow = IRB.CreateICmpSLT(LHS: getShadow(V: op), RHS: getCleanShadow(V: op), |
| 3015 | Name: "_msprop_icmp_s" ); |
| 3016 | setShadow(V: &I, SV: Shadow); |
| 3017 | setOrigin(V: &I, Origin: getOrigin(V: op)); |
| 3018 | } else { |
| 3019 | handleShadowOr(I); |
| 3020 | } |
| 3021 | } |
| 3022 | |
| 3023 | void visitICmpInst(ICmpInst &I) { |
| 3024 | if (!ClHandleICmp) { |
| 3025 | handleShadowOr(I); |
| 3026 | return; |
| 3027 | } |
| 3028 | if (I.isEquality()) { |
| 3029 | handleEqualityComparison(I); |
| 3030 | return; |
| 3031 | } |
| 3032 | |
| 3033 | assert(I.isRelational()); |
| 3034 | if (ClHandleICmpExact) { |
| 3035 | handleRelationalComparisonExact(I); |
| 3036 | return; |
| 3037 | } |
| 3038 | if (I.isSigned()) { |
| 3039 | handleSignedRelationalComparison(I); |
| 3040 | return; |
| 3041 | } |
| 3042 | |
| 3043 | assert(I.isUnsigned()); |
| 3044 | if ((isa<Constant>(Val: I.getOperand(i_nocapture: 0)) || isa<Constant>(Val: I.getOperand(i_nocapture: 1)))) { |
| 3045 | handleRelationalComparisonExact(I); |
| 3046 | return; |
| 3047 | } |
| 3048 | |
| 3049 | handleShadowOr(I); |
| 3050 | } |
| 3051 | |
| 3052 | void visitFCmpInst(FCmpInst &I) { handleShadowOr(I); } |
| 3053 | |
| 3054 | void handleShift(BinaryOperator &I) { |
| 3055 | IRBuilder<> IRB(&I); |
| 3056 | // If any of the S2 bits are poisoned, the whole thing is poisoned. |
| 3057 | // Otherwise perform the same shift on S1. |
| 3058 | Value *S1 = getShadow(I: &I, i: 0); |
| 3059 | Value *S2 = getShadow(I: &I, i: 1); |
| 3060 | Value *S2Conv = |
| 3061 | IRB.CreateSExt(V: IRB.CreateICmpNE(LHS: S2, RHS: getCleanShadow(V: S2)), DestTy: S2->getType()); |
| 3062 | Value *V2 = I.getOperand(i_nocapture: 1); |
| 3063 | Value *Shift = IRB.CreateBinOp(Opc: I.getOpcode(), LHS: S1, RHS: V2); |
| 3064 | setShadow(V: &I, SV: IRB.CreateOr(LHS: Shift, RHS: S2Conv)); |
| 3065 | setOriginForNaryOp(I); |
| 3066 | } |
| 3067 | |
| 3068 | void visitShl(BinaryOperator &I) { handleShift(I); } |
| 3069 | void visitAShr(BinaryOperator &I) { handleShift(I); } |
| 3070 | void visitLShr(BinaryOperator &I) { handleShift(I); } |
| 3071 | |
| 3072 | void handleFunnelShift(IntrinsicInst &I) { |
| 3073 | IRBuilder<> IRB(&I); |
| 3074 | // If any of the S2 bits are poisoned, the whole thing is poisoned. |
| 3075 | // Otherwise perform the same shift on S0 and S1. |
| 3076 | Value *S0 = getShadow(I: &I, i: 0); |
| 3077 | Value *S1 = getShadow(I: &I, i: 1); |
| 3078 | Value *S2 = getShadow(I: &I, i: 2); |
| 3079 | Value *S2Conv = |
| 3080 | IRB.CreateSExt(V: IRB.CreateICmpNE(LHS: S2, RHS: getCleanShadow(V: S2)), DestTy: S2->getType()); |
| 3081 | Value *V2 = I.getOperand(i_nocapture: 2); |
| 3082 | Value *Shift = IRB.CreateIntrinsic(ID: I.getIntrinsicID(), Types: S2Conv->getType(), |
| 3083 | Args: {S0, S1, V2}); |
| 3084 | setShadow(V: &I, SV: IRB.CreateOr(LHS: Shift, RHS: S2Conv)); |
| 3085 | setOriginForNaryOp(I); |
| 3086 | } |
| 3087 | |
| 3088 | /// Instrument llvm.memmove |
| 3089 | /// |
| 3090 | /// At this point we don't know if llvm.memmove will be inlined or not. |
| 3091 | /// If we don't instrument it and it gets inlined, |
| 3092 | /// our interceptor will not kick in and we will lose the memmove. |
| 3093 | /// If we instrument the call here, but it does not get inlined, |
| 3094 | /// we will memove the shadow twice: which is bad in case |
| 3095 | /// of overlapping regions. So, we simply lower the intrinsic to a call. |
| 3096 | /// |
| 3097 | /// Similar situation exists for memcpy and memset. |
| 3098 | void visitMemMoveInst(MemMoveInst &I) { |
| 3099 | getShadow(V: I.getArgOperand(i: 1)); // Ensure shadow initialized |
| 3100 | IRBuilder<> IRB(&I); |
| 3101 | IRB.CreateCall(Callee: MS.MemmoveFn, |
| 3102 | Args: {I.getArgOperand(i: 0), I.getArgOperand(i: 1), |
| 3103 | IRB.CreateIntCast(V: I.getArgOperand(i: 2), DestTy: MS.IntptrTy, isSigned: false)}); |
| 3104 | I.eraseFromParent(); |
| 3105 | } |
| 3106 | |
| 3107 | /// Instrument memcpy |
| 3108 | /// |
| 3109 | /// Similar to memmove: avoid copying shadow twice. This is somewhat |
| 3110 | /// unfortunate as it may slowdown small constant memcpys. |
| 3111 | /// FIXME: consider doing manual inline for small constant sizes and proper |
| 3112 | /// alignment. |
| 3113 | /// |
| 3114 | /// Note: This also handles memcpy.inline, which promises no calls to external |
| 3115 | /// functions as an optimization. However, with instrumentation enabled this |
| 3116 | /// is difficult to promise; additionally, we know that the MSan runtime |
| 3117 | /// exists and provides __msan_memcpy(). Therefore, we assume that with |
| 3118 | /// instrumentation it's safe to turn memcpy.inline into a call to |
| 3119 | /// __msan_memcpy(). Should this be wrong, such as when implementing memcpy() |
| 3120 | /// itself, instrumentation should be disabled with the no_sanitize attribute. |
| 3121 | void visitMemCpyInst(MemCpyInst &I) { |
| 3122 | getShadow(V: I.getArgOperand(i: 1)); // Ensure shadow initialized |
| 3123 | IRBuilder<> IRB(&I); |
| 3124 | IRB.CreateCall(Callee: MS.MemcpyFn, |
| 3125 | Args: {I.getArgOperand(i: 0), I.getArgOperand(i: 1), |
| 3126 | IRB.CreateIntCast(V: I.getArgOperand(i: 2), DestTy: MS.IntptrTy, isSigned: false)}); |
| 3127 | I.eraseFromParent(); |
| 3128 | } |
| 3129 | |
| 3130 | // Same as memcpy. |
| 3131 | void visitMemSetInst(MemSetInst &I) { |
| 3132 | IRBuilder<> IRB(&I); |
| 3133 | IRB.CreateCall( |
| 3134 | Callee: MS.MemsetFn, |
| 3135 | Args: {I.getArgOperand(i: 0), |
| 3136 | IRB.CreateIntCast(V: I.getArgOperand(i: 1), DestTy: IRB.getInt32Ty(), isSigned: false), |
| 3137 | IRB.CreateIntCast(V: I.getArgOperand(i: 2), DestTy: MS.IntptrTy, isSigned: false)}); |
| 3138 | I.eraseFromParent(); |
| 3139 | } |
| 3140 | |
| 3141 | void visitVAStartInst(VAStartInst &I) { VAHelper->visitVAStartInst(I); } |
| 3142 | |
| 3143 | void visitVACopyInst(VACopyInst &I) { VAHelper->visitVACopyInst(I); } |
| 3144 | |
| 3145 | /// Handle vector store-like intrinsics. |
| 3146 | /// |
| 3147 | /// Instrument intrinsics that look like a simple SIMD store: writes memory, |
| 3148 | /// has 1 pointer argument and 1 vector argument, returns void. |
| 3149 | bool handleVectorStoreIntrinsic(IntrinsicInst &I) { |
| 3150 | assert(I.arg_size() == 2); |
| 3151 | |
| 3152 | IRBuilder<> IRB(&I); |
| 3153 | Value *Addr = I.getArgOperand(i: 0); |
| 3154 | Value *Shadow = getShadow(I: &I, i: 1); |
| 3155 | Value *ShadowPtr, *OriginPtr; |
| 3156 | |
| 3157 | // We don't know the pointer alignment (could be unaligned SSE store!). |
| 3158 | // Have to assume to worst case. |
| 3159 | std::tie(args&: ShadowPtr, args&: OriginPtr) = getShadowOriginPtr( |
| 3160 | Addr, IRB, ShadowTy: Shadow->getType(), Alignment: Align(1), /*isStore*/ true); |
| 3161 | IRB.CreateAlignedStore(Val: Shadow, Ptr: ShadowPtr, Align: Align(1)); |
| 3162 | |
| 3163 | if (ClCheckAccessAddress) |
| 3164 | insertShadowCheck(Val: Addr, OrigIns: &I); |
| 3165 | |
| 3166 | // FIXME: factor out common code from materializeStores |
| 3167 | if (MS.TrackOrigins) |
| 3168 | IRB.CreateStore(Val: getOrigin(I: &I, i: 1), Ptr: OriginPtr); |
| 3169 | return true; |
| 3170 | } |
| 3171 | |
| 3172 | /// Handle vector load-like intrinsics. |
| 3173 | /// |
| 3174 | /// Instrument intrinsics that look like a simple SIMD load: reads memory, |
| 3175 | /// has 1 pointer argument, returns a vector. |
| 3176 | bool handleVectorLoadIntrinsic(IntrinsicInst &I) { |
| 3177 | assert(I.arg_size() == 1); |
| 3178 | |
| 3179 | IRBuilder<> IRB(&I); |
| 3180 | Value *Addr = I.getArgOperand(i: 0); |
| 3181 | |
| 3182 | Type *ShadowTy = getShadowTy(V: &I); |
| 3183 | Value *ShadowPtr = nullptr, *OriginPtr = nullptr; |
| 3184 | if (PropagateShadow) { |
| 3185 | // We don't know the pointer alignment (could be unaligned SSE load!). |
| 3186 | // Have to assume to worst case. |
| 3187 | const Align Alignment = Align(1); |
| 3188 | std::tie(args&: ShadowPtr, args&: OriginPtr) = |
| 3189 | getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); |
| 3190 | setShadow(V: &I, |
| 3191 | SV: IRB.CreateAlignedLoad(Ty: ShadowTy, Ptr: ShadowPtr, Align: Alignment, Name: "_msld" )); |
| 3192 | } else { |
| 3193 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
| 3194 | } |
| 3195 | |
| 3196 | if (ClCheckAccessAddress) |
| 3197 | insertShadowCheck(Val: Addr, OrigIns: &I); |
| 3198 | |
| 3199 | if (MS.TrackOrigins) { |
| 3200 | if (PropagateShadow) |
| 3201 | setOrigin(V: &I, Origin: IRB.CreateLoad(Ty: MS.OriginTy, Ptr: OriginPtr)); |
| 3202 | else |
| 3203 | setOrigin(V: &I, Origin: getCleanOrigin()); |
| 3204 | } |
| 3205 | return true; |
| 3206 | } |
| 3207 | |
| 3208 | /// Handle (SIMD arithmetic)-like intrinsics. |
| 3209 | /// |
| 3210 | /// Instrument intrinsics with any number of arguments of the same type [*], |
| 3211 | /// equal to the return type, plus a specified number of trailing flags of |
| 3212 | /// any type. |
| 3213 | /// |
| 3214 | /// [*] The type should be simple (no aggregates or pointers; vectors are |
| 3215 | /// fine). |
| 3216 | /// |
| 3217 | /// Caller guarantees that this intrinsic does not access memory. |
| 3218 | /// |
| 3219 | /// TODO: "horizontal"/"pairwise" intrinsics are often incorrectly matched by |
| 3220 | /// by this handler. |
| 3221 | [[maybe_unused]] bool |
| 3222 | maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I, |
| 3223 | unsigned int trailingFlags) { |
| 3224 | Type *RetTy = I.getType(); |
| 3225 | if (!(RetTy->isIntOrIntVectorTy() || RetTy->isFPOrFPVectorTy())) |
| 3226 | return false; |
| 3227 | |
| 3228 | unsigned NumArgOperands = I.arg_size(); |
| 3229 | assert(NumArgOperands >= trailingFlags); |
| 3230 | for (unsigned i = 0; i < NumArgOperands - trailingFlags; ++i) { |
| 3231 | Type *Ty = I.getArgOperand(i)->getType(); |
| 3232 | if (Ty != RetTy) |
| 3233 | return false; |
| 3234 | } |
| 3235 | |
| 3236 | IRBuilder<> IRB(&I); |
| 3237 | ShadowAndOriginCombiner SC(this, IRB); |
| 3238 | for (unsigned i = 0; i < NumArgOperands; ++i) |
| 3239 | SC.Add(V: I.getArgOperand(i)); |
| 3240 | SC.Done(I: &I); |
| 3241 | |
| 3242 | return true; |
| 3243 | } |
| 3244 | |
| 3245 | /// Heuristically instrument unknown intrinsics. |
| 3246 | /// |
| 3247 | /// The main purpose of this code is to do something reasonable with all |
| 3248 | /// random intrinsics we might encounter, most importantly - SIMD intrinsics. |
| 3249 | /// We recognize several classes of intrinsics by their argument types and |
| 3250 | /// ModRefBehaviour and apply special instrumentation when we are reasonably |
| 3251 | /// sure that we know what the intrinsic does. |
| 3252 | /// |
| 3253 | /// We special-case intrinsics where this approach fails. See llvm.bswap |
| 3254 | /// handling as an example of that. |
| 3255 | bool handleUnknownIntrinsicUnlogged(IntrinsicInst &I) { |
| 3256 | unsigned NumArgOperands = I.arg_size(); |
| 3257 | if (NumArgOperands == 0) |
| 3258 | return false; |
| 3259 | |
| 3260 | if (NumArgOperands == 2 && I.getArgOperand(i: 0)->getType()->isPointerTy() && |
| 3261 | I.getArgOperand(i: 1)->getType()->isVectorTy() && |
| 3262 | I.getType()->isVoidTy() && !I.onlyReadsMemory()) { |
| 3263 | // This looks like a vector store. |
| 3264 | return handleVectorStoreIntrinsic(I); |
| 3265 | } |
| 3266 | |
| 3267 | if (NumArgOperands == 1 && I.getArgOperand(i: 0)->getType()->isPointerTy() && |
| 3268 | I.getType()->isVectorTy() && I.onlyReadsMemory()) { |
| 3269 | // This looks like a vector load. |
| 3270 | return handleVectorLoadIntrinsic(I); |
| 3271 | } |
| 3272 | |
| 3273 | if (I.doesNotAccessMemory()) |
| 3274 | if (maybeHandleSimpleNomemIntrinsic(I, /*trailingFlags=*/0)) |
| 3275 | return true; |
| 3276 | |
| 3277 | // FIXME: detect and handle SSE maskstore/maskload? |
| 3278 | // Some cases are now handled in handleAVXMasked{Load,Store}. |
| 3279 | return false; |
| 3280 | } |
| 3281 | |
| 3282 | bool handleUnknownIntrinsic(IntrinsicInst &I) { |
| 3283 | if (handleUnknownIntrinsicUnlogged(I)) { |
| 3284 | if (ClDumpHeuristicInstructions) |
| 3285 | dumpInst(I); |
| 3286 | |
| 3287 | LLVM_DEBUG(dbgs() << "UNKNOWN INSTRUCTION HANDLED HEURISTICALLY: " << I |
| 3288 | << "\n" ); |
| 3289 | return true; |
| 3290 | } else |
| 3291 | return false; |
| 3292 | } |
| 3293 | |
| 3294 | void handleInvariantGroup(IntrinsicInst &I) { |
| 3295 | setShadow(V: &I, SV: getShadow(I: &I, i: 0)); |
| 3296 | setOrigin(V: &I, Origin: getOrigin(I: &I, i: 0)); |
| 3297 | } |
| 3298 | |
| 3299 | void handleLifetimeStart(IntrinsicInst &I) { |
| 3300 | if (!PoisonStack) |
| 3301 | return; |
| 3302 | AllocaInst *AI = llvm::findAllocaForValue(V: I.getArgOperand(i: 1)); |
| 3303 | if (!AI) |
| 3304 | InstrumentLifetimeStart = false; |
| 3305 | LifetimeStartList.push_back(Elt: std::make_pair(x: &I, y&: AI)); |
| 3306 | } |
| 3307 | |
| 3308 | void handleBswap(IntrinsicInst &I) { |
| 3309 | IRBuilder<> IRB(&I); |
| 3310 | Value *Op = I.getArgOperand(i: 0); |
| 3311 | Type *OpType = Op->getType(); |
| 3312 | setShadow(V: &I, SV: IRB.CreateIntrinsic(ID: Intrinsic::bswap, Types: ArrayRef(&OpType, 1), |
| 3313 | Args: getShadow(V: Op))); |
| 3314 | setOrigin(V: &I, Origin: getOrigin(V: Op)); |
| 3315 | } |
| 3316 | |
| 3317 | // Uninitialized bits are ok if they appear after the leading/trailing 0's |
| 3318 | // and a 1. If the input is all zero, it is fully initialized iff |
| 3319 | // !is_zero_poison. |
| 3320 | // |
| 3321 | // e.g., for ctlz, with little-endian, if 0/1 are initialized bits with |
| 3322 | // concrete value 0/1, and ? is an uninitialized bit: |
| 3323 | // - 0001 0??? is fully initialized |
| 3324 | // - 000? ???? is fully uninitialized (*) |
| 3325 | // - ???? ???? is fully uninitialized |
| 3326 | // - 0000 0000 is fully uninitialized if is_zero_poison, |
| 3327 | // fully initialized otherwise |
| 3328 | // |
| 3329 | // (*) TODO: arguably, since the number of zeros is in the range [3, 8], we |
| 3330 | // only need to poison 4 bits. |
| 3331 | // |
| 3332 | // OutputShadow = |
| 3333 | // ((ConcreteZerosCount >= ShadowZerosCount) && !AllZeroShadow) |
| 3334 | // || (is_zero_poison && AllZeroSrc) |
| 3335 | void handleCountLeadingTrailingZeros(IntrinsicInst &I) { |
| 3336 | IRBuilder<> IRB(&I); |
| 3337 | Value *Src = I.getArgOperand(i: 0); |
| 3338 | Value *SrcShadow = getShadow(V: Src); |
| 3339 | |
| 3340 | Value *False = IRB.getInt1(V: false); |
| 3341 | Value *ConcreteZerosCount = IRB.CreateIntrinsic( |
| 3342 | RetTy: I.getType(), ID: I.getIntrinsicID(), Args: {Src, /*is_zero_poison=*/False}); |
| 3343 | Value *ShadowZerosCount = IRB.CreateIntrinsic( |
| 3344 | RetTy: I.getType(), ID: I.getIntrinsicID(), Args: {SrcShadow, /*is_zero_poison=*/False}); |
| 3345 | |
| 3346 | Value *CompareConcreteZeros = IRB.CreateICmpUGE( |
| 3347 | LHS: ConcreteZerosCount, RHS: ShadowZerosCount, Name: "_mscz_cmp_zeros" ); |
| 3348 | |
| 3349 | Value *NotAllZeroShadow = |
| 3350 | IRB.CreateIsNotNull(Arg: SrcShadow, Name: "_mscz_shadow_not_null" ); |
| 3351 | Value *OutputShadow = |
| 3352 | IRB.CreateAnd(LHS: CompareConcreteZeros, RHS: NotAllZeroShadow, Name: "_mscz_main" ); |
| 3353 | |
| 3354 | // If zero poison is requested, mix in with the shadow |
| 3355 | Constant *IsZeroPoison = cast<Constant>(Val: I.getOperand(i_nocapture: 1)); |
| 3356 | if (!IsZeroPoison->isZeroValue()) { |
| 3357 | Value *BoolZeroPoison = IRB.CreateIsNull(Arg: Src, Name: "_mscz_bzp" ); |
| 3358 | OutputShadow = IRB.CreateOr(LHS: OutputShadow, RHS: BoolZeroPoison, Name: "_mscz_bs" ); |
| 3359 | } |
| 3360 | |
| 3361 | OutputShadow = IRB.CreateSExt(V: OutputShadow, DestTy: getShadowTy(V: Src), Name: "_mscz_os" ); |
| 3362 | |
| 3363 | setShadow(V: &I, SV: OutputShadow); |
| 3364 | setOriginForNaryOp(I); |
| 3365 | } |
| 3366 | |
| 3367 | /// Handle Arm NEON vector convert intrinsics. |
| 3368 | /// |
| 3369 | /// e.g., <4 x i32> @llvm.aarch64.neon.fcvtpu.v4i32.v4f32(<4 x float>) |
| 3370 | /// i32 @llvm.aarch64.neon.fcvtms.i32.f64(double) |
| 3371 | /// |
| 3372 | /// For x86 SSE vector convert intrinsics, see |
| 3373 | /// handleSSEVectorConvertIntrinsic(). |
| 3374 | void handleNEONVectorConvertIntrinsic(IntrinsicInst &I) { |
| 3375 | assert(I.arg_size() == 1); |
| 3376 | |
| 3377 | IRBuilder<> IRB(&I); |
| 3378 | Value *S0 = getShadow(I: &I, i: 0); |
| 3379 | |
| 3380 | /// For scalars: |
| 3381 | /// Since they are converting from floating-point to integer, the output is |
| 3382 | /// - fully uninitialized if *any* bit of the input is uninitialized |
| 3383 | /// - fully ininitialized if all bits of the input are ininitialized |
| 3384 | /// We apply the same principle on a per-field basis for vectors. |
| 3385 | Value *OutShadow = IRB.CreateSExt(V: IRB.CreateICmpNE(LHS: S0, RHS: getCleanShadow(V: S0)), |
| 3386 | DestTy: getShadowTy(V: &I)); |
| 3387 | setShadow(V: &I, SV: OutShadow); |
| 3388 | setOriginForNaryOp(I); |
| 3389 | } |
| 3390 | |
| 3391 | /// Handle x86 SSE vector conversion. |
| 3392 | /// |
| 3393 | /// e.g., single-precision to half-precision conversion: |
| 3394 | /// <8 x i16> @llvm.x86.vcvtps2ph.256(<8 x float> %a0, i32 0) |
| 3395 | /// <8 x i16> @llvm.x86.vcvtps2ph.128(<4 x float> %a0, i32 0) |
| 3396 | /// |
| 3397 | /// floating-point to integer: |
| 3398 | /// <4 x i32> @llvm.x86.sse2.cvtps2dq(<4 x float>) |
| 3399 | /// <4 x i32> @llvm.x86.sse2.cvtpd2dq(<2 x double>) |
| 3400 | /// |
| 3401 | /// Note: if the output has more elements, they are zero-initialized (and |
| 3402 | /// therefore the shadow will also be initialized). |
| 3403 | /// |
| 3404 | /// This differs from handleSSEVectorConvertIntrinsic() because it |
| 3405 | /// propagates uninitialized shadow (instead of checking the shadow). |
| 3406 | void handleSSEVectorConvertIntrinsicByProp(IntrinsicInst &I, |
| 3407 | bool HasRoundingMode) { |
| 3408 | if (HasRoundingMode) { |
| 3409 | assert(I.arg_size() == 2); |
| 3410 | [[maybe_unused]] Value *RoundingMode = I.getArgOperand(i: 1); |
| 3411 | assert(RoundingMode->getType()->isIntegerTy()); |
| 3412 | } else { |
| 3413 | assert(I.arg_size() == 1); |
| 3414 | } |
| 3415 | |
| 3416 | Value *Src = I.getArgOperand(i: 0); |
| 3417 | assert(Src->getType()->isVectorTy()); |
| 3418 | |
| 3419 | // The return type might have more elements than the input. |
| 3420 | // Temporarily shrink the return type's number of elements. |
| 3421 | VectorType *ShadowType = cast<VectorType>(Val: getShadowTy(V: &I)); |
| 3422 | if (ShadowType->getElementCount() == |
| 3423 | cast<VectorType>(Val: Src->getType())->getElementCount() * 2) |
| 3424 | ShadowType = VectorType::getHalfElementsVectorType(VTy: ShadowType); |
| 3425 | |
| 3426 | assert(ShadowType->getElementCount() == |
| 3427 | cast<VectorType>(Src->getType())->getElementCount()); |
| 3428 | |
| 3429 | IRBuilder<> IRB(&I); |
| 3430 | Value *S0 = getShadow(I: &I, i: 0); |
| 3431 | |
| 3432 | /// For scalars: |
| 3433 | /// Since they are converting to and/or from floating-point, the output is: |
| 3434 | /// - fully uninitialized if *any* bit of the input is uninitialized |
| 3435 | /// - fully ininitialized if all bits of the input are ininitialized |
| 3436 | /// We apply the same principle on a per-field basis for vectors. |
| 3437 | Value *Shadow = |
| 3438 | IRB.CreateSExt(V: IRB.CreateICmpNE(LHS: S0, RHS: getCleanShadow(V: S0)), DestTy: ShadowType); |
| 3439 | |
| 3440 | // The return type might have more elements than the input. |
| 3441 | // Extend the return type back to its original width if necessary. |
| 3442 | Value *FullShadow = getCleanShadow(V: &I); |
| 3443 | |
| 3444 | if (Shadow->getType() == FullShadow->getType()) { |
| 3445 | FullShadow = Shadow; |
| 3446 | } else { |
| 3447 | SmallVector<int, 8> ShadowMask( |
| 3448 | cast<FixedVectorType>(Val: FullShadow->getType())->getNumElements()); |
| 3449 | std::iota(first: ShadowMask.begin(), last: ShadowMask.end(), value: 0); |
| 3450 | |
| 3451 | // Append zeros |
| 3452 | FullShadow = |
| 3453 | IRB.CreateShuffleVector(V1: Shadow, V2: getCleanShadow(V: Shadow), Mask: ShadowMask); |
| 3454 | } |
| 3455 | |
| 3456 | setShadow(V: &I, SV: FullShadow); |
| 3457 | setOriginForNaryOp(I); |
| 3458 | } |
| 3459 | |
| 3460 | // Instrument x86 SSE vector convert intrinsic. |
| 3461 | // |
| 3462 | // This function instruments intrinsics like cvtsi2ss: |
| 3463 | // %Out = int_xxx_cvtyyy(%ConvertOp) |
| 3464 | // or |
| 3465 | // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp) |
| 3466 | // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same |
| 3467 | // number \p Out elements, and (if has 2 arguments) copies the rest of the |
| 3468 | // elements from \p CopyOp. |
| 3469 | // In most cases conversion involves floating-point value which may trigger a |
| 3470 | // hardware exception when not fully initialized. For this reason we require |
| 3471 | // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise. |
| 3472 | // We copy the shadow of \p CopyOp[NumUsedElements:] to \p |
| 3473 | // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always |
| 3474 | // return a fully initialized value. |
| 3475 | // |
| 3476 | // For Arm NEON vector convert intrinsics, see |
| 3477 | // handleNEONVectorConvertIntrinsic(). |
| 3478 | void handleSSEVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements, |
| 3479 | bool HasRoundingMode = false) { |
| 3480 | IRBuilder<> IRB(&I); |
| 3481 | Value *CopyOp, *ConvertOp; |
| 3482 | |
| 3483 | assert((!HasRoundingMode || |
| 3484 | isa<ConstantInt>(I.getArgOperand(I.arg_size() - 1))) && |
| 3485 | "Invalid rounding mode" ); |
| 3486 | |
| 3487 | switch (I.arg_size() - HasRoundingMode) { |
| 3488 | case 2: |
| 3489 | CopyOp = I.getArgOperand(i: 0); |
| 3490 | ConvertOp = I.getArgOperand(i: 1); |
| 3491 | break; |
| 3492 | case 1: |
| 3493 | ConvertOp = I.getArgOperand(i: 0); |
| 3494 | CopyOp = nullptr; |
| 3495 | break; |
| 3496 | default: |
| 3497 | llvm_unreachable("Cvt intrinsic with unsupported number of arguments." ); |
| 3498 | } |
| 3499 | |
| 3500 | // The first *NumUsedElements* elements of ConvertOp are converted to the |
| 3501 | // same number of output elements. The rest of the output is copied from |
| 3502 | // CopyOp, or (if not available) filled with zeroes. |
| 3503 | // Combine shadow for elements of ConvertOp that are used in this operation, |
| 3504 | // and insert a check. |
| 3505 | // FIXME: consider propagating shadow of ConvertOp, at least in the case of |
| 3506 | // int->any conversion. |
| 3507 | Value *ConvertShadow = getShadow(V: ConvertOp); |
| 3508 | Value *AggShadow = nullptr; |
| 3509 | if (ConvertOp->getType()->isVectorTy()) { |
| 3510 | AggShadow = IRB.CreateExtractElement( |
| 3511 | Vec: ConvertShadow, Idx: ConstantInt::get(Ty: IRB.getInt32Ty(), V: 0)); |
| 3512 | for (int i = 1; i < NumUsedElements; ++i) { |
| 3513 | Value *MoreShadow = IRB.CreateExtractElement( |
| 3514 | Vec: ConvertShadow, Idx: ConstantInt::get(Ty: IRB.getInt32Ty(), V: i)); |
| 3515 | AggShadow = IRB.CreateOr(LHS: AggShadow, RHS: MoreShadow); |
| 3516 | } |
| 3517 | } else { |
| 3518 | AggShadow = ConvertShadow; |
| 3519 | } |
| 3520 | assert(AggShadow->getType()->isIntegerTy()); |
| 3521 | insertShadowCheck(Shadow: AggShadow, Origin: getOrigin(V: ConvertOp), OrigIns: &I); |
| 3522 | |
| 3523 | // Build result shadow by zero-filling parts of CopyOp shadow that come from |
| 3524 | // ConvertOp. |
| 3525 | if (CopyOp) { |
| 3526 | assert(CopyOp->getType() == I.getType()); |
| 3527 | assert(CopyOp->getType()->isVectorTy()); |
| 3528 | Value *ResultShadow = getShadow(V: CopyOp); |
| 3529 | Type *EltTy = cast<VectorType>(Val: ResultShadow->getType())->getElementType(); |
| 3530 | for (int i = 0; i < NumUsedElements; ++i) { |
| 3531 | ResultShadow = IRB.CreateInsertElement( |
| 3532 | Vec: ResultShadow, NewElt: ConstantInt::getNullValue(Ty: EltTy), |
| 3533 | Idx: ConstantInt::get(Ty: IRB.getInt32Ty(), V: i)); |
| 3534 | } |
| 3535 | setShadow(V: &I, SV: ResultShadow); |
| 3536 | setOrigin(V: &I, Origin: getOrigin(V: CopyOp)); |
| 3537 | } else { |
| 3538 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
| 3539 | setOrigin(V: &I, Origin: getCleanOrigin()); |
| 3540 | } |
| 3541 | } |
| 3542 | |
| 3543 | // Given a scalar or vector, extract lower 64 bits (or less), and return all |
| 3544 | // zeroes if it is zero, and all ones otherwise. |
| 3545 | Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { |
| 3546 | if (S->getType()->isVectorTy()) |
| 3547 | S = CreateShadowCast(IRB, V: S, dstTy: IRB.getInt64Ty(), /* Signed */ true); |
| 3548 | assert(S->getType()->getPrimitiveSizeInBits() <= 64); |
| 3549 | Value *S2 = IRB.CreateICmpNE(LHS: S, RHS: getCleanShadow(V: S)); |
| 3550 | return CreateShadowCast(IRB, V: S2, dstTy: T, /* Signed */ true); |
| 3551 | } |
| 3552 | |
| 3553 | // Given a vector, extract its first element, and return all |
| 3554 | // zeroes if it is zero, and all ones otherwise. |
| 3555 | Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { |
| 3556 | Value *S1 = IRB.CreateExtractElement(Vec: S, Idx: (uint64_t)0); |
| 3557 | Value *S2 = IRB.CreateICmpNE(LHS: S1, RHS: getCleanShadow(V: S1)); |
| 3558 | return CreateShadowCast(IRB, V: S2, dstTy: T, /* Signed */ true); |
| 3559 | } |
| 3560 | |
| 3561 | Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) { |
| 3562 | Type *T = S->getType(); |
| 3563 | assert(T->isVectorTy()); |
| 3564 | Value *S2 = IRB.CreateICmpNE(LHS: S, RHS: getCleanShadow(V: S)); |
| 3565 | return IRB.CreateSExt(V: S2, DestTy: T); |
| 3566 | } |
| 3567 | |
| 3568 | // Instrument vector shift intrinsic. |
| 3569 | // |
| 3570 | // This function instruments intrinsics like int_x86_avx2_psll_w. |
| 3571 | // Intrinsic shifts %In by %ShiftSize bits. |
| 3572 | // %ShiftSize may be a vector. In that case the lower 64 bits determine shift |
| 3573 | // size, and the rest is ignored. Behavior is defined even if shift size is |
| 3574 | // greater than register (or field) width. |
| 3575 | void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) { |
| 3576 | assert(I.arg_size() == 2); |
| 3577 | IRBuilder<> IRB(&I); |
| 3578 | // If any of the S2 bits are poisoned, the whole thing is poisoned. |
| 3579 | // Otherwise perform the same shift on S1. |
| 3580 | Value *S1 = getShadow(I: &I, i: 0); |
| 3581 | Value *S2 = getShadow(I: &I, i: 1); |
| 3582 | Value *S2Conv = Variable ? VariableShadowExtend(IRB, S: S2) |
| 3583 | : Lower64ShadowExtend(IRB, S: S2, T: getShadowTy(V: &I)); |
| 3584 | Value *V1 = I.getOperand(i_nocapture: 0); |
| 3585 | Value *V2 = I.getOperand(i_nocapture: 1); |
| 3586 | Value *Shift = IRB.CreateCall(FTy: I.getFunctionType(), Callee: I.getCalledOperand(), |
| 3587 | Args: {IRB.CreateBitCast(V: S1, DestTy: V1->getType()), V2}); |
| 3588 | Shift = IRB.CreateBitCast(V: Shift, DestTy: getShadowTy(V: &I)); |
| 3589 | setShadow(V: &I, SV: IRB.CreateOr(LHS: Shift, RHS: S2Conv)); |
| 3590 | setOriginForNaryOp(I); |
| 3591 | } |
| 3592 | |
| 3593 | // Get an MMX-sized vector type. |
| 3594 | Type *getMMXVectorTy(unsigned EltSizeInBits) { |
| 3595 | const unsigned X86_MMXSizeInBits = 64; |
| 3596 | assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 && |
| 3597 | "Illegal MMX vector element size" ); |
| 3598 | return FixedVectorType::get(ElementType: IntegerType::get(C&: *MS.C, NumBits: EltSizeInBits), |
| 3599 | NumElts: X86_MMXSizeInBits / EltSizeInBits); |
| 3600 | } |
| 3601 | |
| 3602 | // Returns a signed counterpart for an (un)signed-saturate-and-pack |
| 3603 | // intrinsic. |
| 3604 | Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) { |
| 3605 | switch (id) { |
| 3606 | case Intrinsic::x86_sse2_packsswb_128: |
| 3607 | case Intrinsic::x86_sse2_packuswb_128: |
| 3608 | return Intrinsic::x86_sse2_packsswb_128; |
| 3609 | |
| 3610 | case Intrinsic::x86_sse2_packssdw_128: |
| 3611 | case Intrinsic::x86_sse41_packusdw: |
| 3612 | return Intrinsic::x86_sse2_packssdw_128; |
| 3613 | |
| 3614 | case Intrinsic::x86_avx2_packsswb: |
| 3615 | case Intrinsic::x86_avx2_packuswb: |
| 3616 | return Intrinsic::x86_avx2_packsswb; |
| 3617 | |
| 3618 | case Intrinsic::x86_avx2_packssdw: |
| 3619 | case Intrinsic::x86_avx2_packusdw: |
| 3620 | return Intrinsic::x86_avx2_packssdw; |
| 3621 | |
| 3622 | case Intrinsic::x86_mmx_packsswb: |
| 3623 | case Intrinsic::x86_mmx_packuswb: |
| 3624 | return Intrinsic::x86_mmx_packsswb; |
| 3625 | |
| 3626 | case Intrinsic::x86_mmx_packssdw: |
| 3627 | return Intrinsic::x86_mmx_packssdw; |
| 3628 | default: |
| 3629 | llvm_unreachable("unexpected intrinsic id" ); |
| 3630 | } |
| 3631 | } |
| 3632 | |
| 3633 | // Instrument vector pack intrinsic. |
| 3634 | // |
| 3635 | // This function instruments intrinsics like x86_mmx_packsswb, that |
| 3636 | // packs elements of 2 input vectors into half as many bits with saturation. |
| 3637 | // Shadow is propagated with the signed variant of the same intrinsic applied |
| 3638 | // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer). |
| 3639 | // MMXEltSizeInBits is used only for x86mmx arguments. |
| 3640 | void handleVectorPackIntrinsic(IntrinsicInst &I, |
| 3641 | unsigned MMXEltSizeInBits = 0) { |
| 3642 | assert(I.arg_size() == 2); |
| 3643 | IRBuilder<> IRB(&I); |
| 3644 | Value *S1 = getShadow(I: &I, i: 0); |
| 3645 | Value *S2 = getShadow(I: &I, i: 1); |
| 3646 | assert(S1->getType()->isVectorTy()); |
| 3647 | |
| 3648 | // SExt and ICmpNE below must apply to individual elements of input vectors. |
| 3649 | // In case of x86mmx arguments, cast them to appropriate vector types and |
| 3650 | // back. |
| 3651 | Type *T = |
| 3652 | MMXEltSizeInBits ? getMMXVectorTy(EltSizeInBits: MMXEltSizeInBits) : S1->getType(); |
| 3653 | if (MMXEltSizeInBits) { |
| 3654 | S1 = IRB.CreateBitCast(V: S1, DestTy: T); |
| 3655 | S2 = IRB.CreateBitCast(V: S2, DestTy: T); |
| 3656 | } |
| 3657 | Value *S1_ext = |
| 3658 | IRB.CreateSExt(V: IRB.CreateICmpNE(LHS: S1, RHS: Constant::getNullValue(Ty: T)), DestTy: T); |
| 3659 | Value *S2_ext = |
| 3660 | IRB.CreateSExt(V: IRB.CreateICmpNE(LHS: S2, RHS: Constant::getNullValue(Ty: T)), DestTy: T); |
| 3661 | if (MMXEltSizeInBits) { |
| 3662 | S1_ext = IRB.CreateBitCast(V: S1_ext, DestTy: getMMXVectorTy(EltSizeInBits: 64)); |
| 3663 | S2_ext = IRB.CreateBitCast(V: S2_ext, DestTy: getMMXVectorTy(EltSizeInBits: 64)); |
| 3664 | } |
| 3665 | |
| 3666 | Value *S = IRB.CreateIntrinsic(ID: getSignedPackIntrinsic(id: I.getIntrinsicID()), |
| 3667 | Args: {S1_ext, S2_ext}, /*FMFSource=*/nullptr, |
| 3668 | Name: "_msprop_vector_pack" ); |
| 3669 | if (MMXEltSizeInBits) |
| 3670 | S = IRB.CreateBitCast(V: S, DestTy: getShadowTy(V: &I)); |
| 3671 | setShadow(V: &I, SV: S); |
| 3672 | setOriginForNaryOp(I); |
| 3673 | } |
| 3674 | |
| 3675 | // Convert `Mask` into `<n x i1>`. |
| 3676 | Constant *createDppMask(unsigned Width, unsigned Mask) { |
| 3677 | SmallVector<Constant *, 4> R(Width); |
| 3678 | for (auto &M : R) { |
| 3679 | M = ConstantInt::getBool(Context&: F.getContext(), V: Mask & 1); |
| 3680 | Mask >>= 1; |
| 3681 | } |
| 3682 | return ConstantVector::get(V: R); |
| 3683 | } |
| 3684 | |
| 3685 | // Calculate output shadow as array of booleans `<n x i1>`, assuming if any |
| 3686 | // arg is poisoned, entire dot product is poisoned. |
| 3687 | Value *findDppPoisonedOutput(IRBuilder<> &IRB, Value *S, unsigned SrcMask, |
| 3688 | unsigned DstMask) { |
| 3689 | const unsigned Width = |
| 3690 | cast<FixedVectorType>(Val: S->getType())->getNumElements(); |
| 3691 | |
| 3692 | S = IRB.CreateSelect(C: createDppMask(Width, Mask: SrcMask), True: S, |
| 3693 | False: Constant::getNullValue(Ty: S->getType())); |
| 3694 | Value *SElem = IRB.CreateOrReduce(Src: S); |
| 3695 | Value *IsClean = IRB.CreateIsNull(Arg: SElem, Name: "_msdpp" ); |
| 3696 | Value *DstMaskV = createDppMask(Width, Mask: DstMask); |
| 3697 | |
| 3698 | return IRB.CreateSelect( |
| 3699 | C: IsClean, True: Constant::getNullValue(Ty: DstMaskV->getType()), False: DstMaskV); |
| 3700 | } |
| 3701 | |
| 3702 | // See `Intel Intrinsics Guide` for `_dp_p*` instructions. |
| 3703 | // |
| 3704 | // 2 and 4 element versions produce single scalar of dot product, and then |
| 3705 | // puts it into elements of output vector, selected by 4 lowest bits of the |
| 3706 | // mask. Top 4 bits of the mask control which elements of input to use for dot |
| 3707 | // product. |
| 3708 | // |
| 3709 | // 8 element version mask still has only 4 bit for input, and 4 bit for output |
| 3710 | // mask. According to the spec it just operates as 4 element version on first |
| 3711 | // 4 elements of inputs and output, and then on last 4 elements of inputs and |
| 3712 | // output. |
| 3713 | void handleDppIntrinsic(IntrinsicInst &I) { |
| 3714 | IRBuilder<> IRB(&I); |
| 3715 | |
| 3716 | Value *S0 = getShadow(I: &I, i: 0); |
| 3717 | Value *S1 = getShadow(I: &I, i: 1); |
| 3718 | Value *S = IRB.CreateOr(LHS: S0, RHS: S1); |
| 3719 | |
| 3720 | const unsigned Width = |
| 3721 | cast<FixedVectorType>(Val: S->getType())->getNumElements(); |
| 3722 | assert(Width == 2 || Width == 4 || Width == 8); |
| 3723 | |
| 3724 | const unsigned Mask = cast<ConstantInt>(Val: I.getArgOperand(i: 2))->getZExtValue(); |
| 3725 | const unsigned SrcMask = Mask >> 4; |
| 3726 | const unsigned DstMask = Mask & 0xf; |
| 3727 | |
| 3728 | // Calculate shadow as `<n x i1>`. |
| 3729 | Value *SI1 = findDppPoisonedOutput(IRB, S, SrcMask, DstMask); |
| 3730 | if (Width == 8) { |
| 3731 | // First 4 elements of shadow are already calculated. `makeDppShadow` |
| 3732 | // operats on 32 bit masks, so we can just shift masks, and repeat. |
| 3733 | SI1 = IRB.CreateOr( |
| 3734 | LHS: SI1, RHS: findDppPoisonedOutput(IRB, S, SrcMask: SrcMask << 4, DstMask: DstMask << 4)); |
| 3735 | } |
| 3736 | // Extend to real size of shadow, poisoning either all or none bits of an |
| 3737 | // element. |
| 3738 | S = IRB.CreateSExt(V: SI1, DestTy: S->getType(), Name: "_msdpp" ); |
| 3739 | |
| 3740 | setShadow(V: &I, SV: S); |
| 3741 | setOriginForNaryOp(I); |
| 3742 | } |
| 3743 | |
| 3744 | Value *convertBlendvToSelectMask(IRBuilder<> &IRB, Value *C) { |
| 3745 | C = CreateAppToShadowCast(IRB, V: C); |
| 3746 | FixedVectorType *FVT = cast<FixedVectorType>(Val: C->getType()); |
| 3747 | unsigned ElSize = FVT->getElementType()->getPrimitiveSizeInBits(); |
| 3748 | C = IRB.CreateAShr(LHS: C, RHS: ElSize - 1); |
| 3749 | FVT = FixedVectorType::get(ElementType: IRB.getInt1Ty(), NumElts: FVT->getNumElements()); |
| 3750 | return IRB.CreateTrunc(V: C, DestTy: FVT); |
| 3751 | } |
| 3752 | |
| 3753 | // `blendv(f, t, c)` is effectively `select(c[top_bit], t, f)`. |
| 3754 | void handleBlendvIntrinsic(IntrinsicInst &I) { |
| 3755 | Value *C = I.getOperand(i_nocapture: 2); |
| 3756 | Value *T = I.getOperand(i_nocapture: 1); |
| 3757 | Value *F = I.getOperand(i_nocapture: 0); |
| 3758 | |
| 3759 | Value *Sc = getShadow(I: &I, i: 2); |
| 3760 | Value *Oc = MS.TrackOrigins ? getOrigin(V: C) : nullptr; |
| 3761 | |
| 3762 | { |
| 3763 | IRBuilder<> IRB(&I); |
| 3764 | // Extract top bit from condition and its shadow. |
| 3765 | C = convertBlendvToSelectMask(IRB, C); |
| 3766 | Sc = convertBlendvToSelectMask(IRB, C: Sc); |
| 3767 | |
| 3768 | setShadow(V: C, SV: Sc); |
| 3769 | setOrigin(V: C, Origin: Oc); |
| 3770 | } |
| 3771 | |
| 3772 | handleSelectLikeInst(I, B: C, C: T, D: F); |
| 3773 | } |
| 3774 | |
| 3775 | // Instrument sum-of-absolute-differences intrinsic. |
| 3776 | void handleVectorSadIntrinsic(IntrinsicInst &I, bool IsMMX = false) { |
| 3777 | const unsigned SignificantBitsPerResultElement = 16; |
| 3778 | Type *ResTy = IsMMX ? IntegerType::get(C&: *MS.C, NumBits: 64) : I.getType(); |
| 3779 | unsigned ZeroBitsPerResultElement = |
| 3780 | ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement; |
| 3781 | |
| 3782 | IRBuilder<> IRB(&I); |
| 3783 | auto *Shadow0 = getShadow(I: &I, i: 0); |
| 3784 | auto *Shadow1 = getShadow(I: &I, i: 1); |
| 3785 | Value *S = IRB.CreateOr(LHS: Shadow0, RHS: Shadow1); |
| 3786 | S = IRB.CreateBitCast(V: S, DestTy: ResTy); |
| 3787 | S = IRB.CreateSExt(V: IRB.CreateICmpNE(LHS: S, RHS: Constant::getNullValue(Ty: ResTy)), |
| 3788 | DestTy: ResTy); |
| 3789 | S = IRB.CreateLShr(LHS: S, RHS: ZeroBitsPerResultElement); |
| 3790 | S = IRB.CreateBitCast(V: S, DestTy: getShadowTy(V: &I)); |
| 3791 | setShadow(V: &I, SV: S); |
| 3792 | setOriginForNaryOp(I); |
| 3793 | } |
| 3794 | |
| 3795 | // Instrument multiply-add intrinsic. |
| 3796 | void handleVectorPmaddIntrinsic(IntrinsicInst &I, |
| 3797 | unsigned MMXEltSizeInBits = 0) { |
| 3798 | Type *ResTy = |
| 3799 | MMXEltSizeInBits ? getMMXVectorTy(EltSizeInBits: MMXEltSizeInBits * 2) : I.getType(); |
| 3800 | IRBuilder<> IRB(&I); |
| 3801 | auto *Shadow0 = getShadow(I: &I, i: 0); |
| 3802 | auto *Shadow1 = getShadow(I: &I, i: 1); |
| 3803 | Value *S = IRB.CreateOr(LHS: Shadow0, RHS: Shadow1); |
| 3804 | S = IRB.CreateBitCast(V: S, DestTy: ResTy); |
| 3805 | S = IRB.CreateSExt(V: IRB.CreateICmpNE(LHS: S, RHS: Constant::getNullValue(Ty: ResTy)), |
| 3806 | DestTy: ResTy); |
| 3807 | S = IRB.CreateBitCast(V: S, DestTy: getShadowTy(V: &I)); |
| 3808 | setShadow(V: &I, SV: S); |
| 3809 | setOriginForNaryOp(I); |
| 3810 | } |
| 3811 | |
| 3812 | // Instrument compare-packed intrinsic. |
| 3813 | // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or |
| 3814 | // all-ones shadow. |
| 3815 | void handleVectorComparePackedIntrinsic(IntrinsicInst &I) { |
| 3816 | IRBuilder<> IRB(&I); |
| 3817 | Type *ResTy = getShadowTy(V: &I); |
| 3818 | auto *Shadow0 = getShadow(I: &I, i: 0); |
| 3819 | auto *Shadow1 = getShadow(I: &I, i: 1); |
| 3820 | Value *S0 = IRB.CreateOr(LHS: Shadow0, RHS: Shadow1); |
| 3821 | Value *S = IRB.CreateSExt( |
| 3822 | V: IRB.CreateICmpNE(LHS: S0, RHS: Constant::getNullValue(Ty: ResTy)), DestTy: ResTy); |
| 3823 | setShadow(V: &I, SV: S); |
| 3824 | setOriginForNaryOp(I); |
| 3825 | } |
| 3826 | |
| 3827 | // Instrument compare-scalar intrinsic. |
| 3828 | // This handles both cmp* intrinsics which return the result in the first |
| 3829 | // element of a vector, and comi* which return the result as i32. |
| 3830 | void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) { |
| 3831 | IRBuilder<> IRB(&I); |
| 3832 | auto *Shadow0 = getShadow(I: &I, i: 0); |
| 3833 | auto *Shadow1 = getShadow(I: &I, i: 1); |
| 3834 | Value *S0 = IRB.CreateOr(LHS: Shadow0, RHS: Shadow1); |
| 3835 | Value *S = LowerElementShadowExtend(IRB, S: S0, T: getShadowTy(V: &I)); |
| 3836 | setShadow(V: &I, SV: S); |
| 3837 | setOriginForNaryOp(I); |
| 3838 | } |
| 3839 | |
| 3840 | // Instrument generic vector reduction intrinsics |
| 3841 | // by ORing together all their fields. |
| 3842 | // |
| 3843 | // If AllowShadowCast is true, the return type does not need to be the same |
| 3844 | // type as the fields |
| 3845 | // e.g., declare i32 @llvm.aarch64.neon.uaddv.i32.v16i8(<16 x i8>) |
| 3846 | void handleVectorReduceIntrinsic(IntrinsicInst &I, bool AllowShadowCast) { |
| 3847 | assert(I.arg_size() == 1); |
| 3848 | |
| 3849 | IRBuilder<> IRB(&I); |
| 3850 | Value *S = IRB.CreateOrReduce(Src: getShadow(I: &I, i: 0)); |
| 3851 | if (AllowShadowCast) |
| 3852 | S = CreateShadowCast(IRB, V: S, dstTy: getShadowTy(V: &I)); |
| 3853 | else |
| 3854 | assert(S->getType() == getShadowTy(&I)); |
| 3855 | setShadow(V: &I, SV: S); |
| 3856 | setOriginForNaryOp(I); |
| 3857 | } |
| 3858 | |
| 3859 | // Similar to handleVectorReduceIntrinsic but with an initial starting value. |
| 3860 | // e.g., call float @llvm.vector.reduce.fadd.f32.v2f32(float %a0, <2 x float> |
| 3861 | // %a1) |
| 3862 | // shadow = shadow[a0] | shadow[a1.0] | shadow[a1.1] |
| 3863 | // |
| 3864 | // The type of the return value, initial starting value, and elements of the |
| 3865 | // vector must be identical. |
| 3866 | void handleVectorReduceWithStarterIntrinsic(IntrinsicInst &I) { |
| 3867 | assert(I.arg_size() == 2); |
| 3868 | |
| 3869 | IRBuilder<> IRB(&I); |
| 3870 | Value *Shadow0 = getShadow(I: &I, i: 0); |
| 3871 | Value *Shadow1 = IRB.CreateOrReduce(Src: getShadow(I: &I, i: 1)); |
| 3872 | assert(Shadow0->getType() == Shadow1->getType()); |
| 3873 | Value *S = IRB.CreateOr(LHS: Shadow0, RHS: Shadow1); |
| 3874 | assert(S->getType() == getShadowTy(&I)); |
| 3875 | setShadow(V: &I, SV: S); |
| 3876 | setOriginForNaryOp(I); |
| 3877 | } |
| 3878 | |
| 3879 | // Instrument vector.reduce.or intrinsic. |
| 3880 | // Valid (non-poisoned) set bits in the operand pull low the |
| 3881 | // corresponding shadow bits. |
| 3882 | void handleVectorReduceOrIntrinsic(IntrinsicInst &I) { |
| 3883 | assert(I.arg_size() == 1); |
| 3884 | |
| 3885 | IRBuilder<> IRB(&I); |
| 3886 | Value *OperandShadow = getShadow(I: &I, i: 0); |
| 3887 | Value *OperandUnsetBits = IRB.CreateNot(V: I.getOperand(i_nocapture: 0)); |
| 3888 | Value *OperandUnsetOrPoison = IRB.CreateOr(LHS: OperandUnsetBits, RHS: OperandShadow); |
| 3889 | // Bit N is clean if any field's bit N is 1 and unpoison |
| 3890 | Value *OutShadowMask = IRB.CreateAndReduce(Src: OperandUnsetOrPoison); |
| 3891 | // Otherwise, it is clean if every field's bit N is unpoison |
| 3892 | Value *OrShadow = IRB.CreateOrReduce(Src: OperandShadow); |
| 3893 | Value *S = IRB.CreateAnd(LHS: OutShadowMask, RHS: OrShadow); |
| 3894 | |
| 3895 | setShadow(V: &I, SV: S); |
| 3896 | setOrigin(V: &I, Origin: getOrigin(I: &I, i: 0)); |
| 3897 | } |
| 3898 | |
| 3899 | // Instrument vector.reduce.and intrinsic. |
| 3900 | // Valid (non-poisoned) unset bits in the operand pull down the |
| 3901 | // corresponding shadow bits. |
| 3902 | void handleVectorReduceAndIntrinsic(IntrinsicInst &I) { |
| 3903 | assert(I.arg_size() == 1); |
| 3904 | |
| 3905 | IRBuilder<> IRB(&I); |
| 3906 | Value *OperandShadow = getShadow(I: &I, i: 0); |
| 3907 | Value *OperandSetOrPoison = IRB.CreateOr(LHS: I.getOperand(i_nocapture: 0), RHS: OperandShadow); |
| 3908 | // Bit N is clean if any field's bit N is 0 and unpoison |
| 3909 | Value *OutShadowMask = IRB.CreateAndReduce(Src: OperandSetOrPoison); |
| 3910 | // Otherwise, it is clean if every field's bit N is unpoison |
| 3911 | Value *OrShadow = IRB.CreateOrReduce(Src: OperandShadow); |
| 3912 | Value *S = IRB.CreateAnd(LHS: OutShadowMask, RHS: OrShadow); |
| 3913 | |
| 3914 | setShadow(V: &I, SV: S); |
| 3915 | setOrigin(V: &I, Origin: getOrigin(I: &I, i: 0)); |
| 3916 | } |
| 3917 | |
| 3918 | void handleStmxcsr(IntrinsicInst &I) { |
| 3919 | IRBuilder<> IRB(&I); |
| 3920 | Value *Addr = I.getArgOperand(i: 0); |
| 3921 | Type *Ty = IRB.getInt32Ty(); |
| 3922 | Value *ShadowPtr = |
| 3923 | getShadowOriginPtr(Addr, IRB, ShadowTy: Ty, Alignment: Align(1), /*isStore*/ true).first; |
| 3924 | |
| 3925 | IRB.CreateStore(Val: getCleanShadow(OrigTy: Ty), Ptr: ShadowPtr); |
| 3926 | |
| 3927 | if (ClCheckAccessAddress) |
| 3928 | insertShadowCheck(Val: Addr, OrigIns: &I); |
| 3929 | } |
| 3930 | |
| 3931 | void handleLdmxcsr(IntrinsicInst &I) { |
| 3932 | if (!InsertChecks) |
| 3933 | return; |
| 3934 | |
| 3935 | IRBuilder<> IRB(&I); |
| 3936 | Value *Addr = I.getArgOperand(i: 0); |
| 3937 | Type *Ty = IRB.getInt32Ty(); |
| 3938 | const Align Alignment = Align(1); |
| 3939 | Value *ShadowPtr, *OriginPtr; |
| 3940 | std::tie(args&: ShadowPtr, args&: OriginPtr) = |
| 3941 | getShadowOriginPtr(Addr, IRB, ShadowTy: Ty, Alignment, /*isStore*/ false); |
| 3942 | |
| 3943 | if (ClCheckAccessAddress) |
| 3944 | insertShadowCheck(Val: Addr, OrigIns: &I); |
| 3945 | |
| 3946 | Value *Shadow = IRB.CreateAlignedLoad(Ty, Ptr: ShadowPtr, Align: Alignment, Name: "_ldmxcsr" ); |
| 3947 | Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(Ty: MS.OriginTy, Ptr: OriginPtr) |
| 3948 | : getCleanOrigin(); |
| 3949 | insertShadowCheck(Shadow, Origin, OrigIns: &I); |
| 3950 | } |
| 3951 | |
| 3952 | void handleMaskedExpandLoad(IntrinsicInst &I) { |
| 3953 | IRBuilder<> IRB(&I); |
| 3954 | Value *Ptr = I.getArgOperand(i: 0); |
| 3955 | MaybeAlign Align = I.getParamAlign(ArgNo: 0); |
| 3956 | Value *Mask = I.getArgOperand(i: 1); |
| 3957 | Value *PassThru = I.getArgOperand(i: 2); |
| 3958 | |
| 3959 | if (ClCheckAccessAddress) { |
| 3960 | insertShadowCheck(Val: Ptr, OrigIns: &I); |
| 3961 | insertShadowCheck(Val: Mask, OrigIns: &I); |
| 3962 | } |
| 3963 | |
| 3964 | if (!PropagateShadow) { |
| 3965 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
| 3966 | setOrigin(V: &I, Origin: getCleanOrigin()); |
| 3967 | return; |
| 3968 | } |
| 3969 | |
| 3970 | Type *ShadowTy = getShadowTy(V: &I); |
| 3971 | Type *ElementShadowTy = cast<VectorType>(Val: ShadowTy)->getElementType(); |
| 3972 | auto [ShadowPtr, OriginPtr] = |
| 3973 | getShadowOriginPtr(Addr: Ptr, IRB, ShadowTy: ElementShadowTy, Alignment: Align, /*isStore*/ false); |
| 3974 | |
| 3975 | Value *Shadow = |
| 3976 | IRB.CreateMaskedExpandLoad(Ty: ShadowTy, Ptr: ShadowPtr, Align, Mask, |
| 3977 | PassThru: getShadow(V: PassThru), Name: "_msmaskedexpload" ); |
| 3978 | |
| 3979 | setShadow(V: &I, SV: Shadow); |
| 3980 | |
| 3981 | // TODO: Store origins. |
| 3982 | setOrigin(V: &I, Origin: getCleanOrigin()); |
| 3983 | } |
| 3984 | |
| 3985 | void handleMaskedCompressStore(IntrinsicInst &I) { |
| 3986 | IRBuilder<> IRB(&I); |
| 3987 | Value *Values = I.getArgOperand(i: 0); |
| 3988 | Value *Ptr = I.getArgOperand(i: 1); |
| 3989 | MaybeAlign Align = I.getParamAlign(ArgNo: 1); |
| 3990 | Value *Mask = I.getArgOperand(i: 2); |
| 3991 | |
| 3992 | if (ClCheckAccessAddress) { |
| 3993 | insertShadowCheck(Val: Ptr, OrigIns: &I); |
| 3994 | insertShadowCheck(Val: Mask, OrigIns: &I); |
| 3995 | } |
| 3996 | |
| 3997 | Value *Shadow = getShadow(V: Values); |
| 3998 | Type *ElementShadowTy = |
| 3999 | getShadowTy(OrigTy: cast<VectorType>(Val: Values->getType())->getElementType()); |
| 4000 | auto [ShadowPtr, OriginPtrs] = |
| 4001 | getShadowOriginPtr(Addr: Ptr, IRB, ShadowTy: ElementShadowTy, Alignment: Align, /*isStore*/ true); |
| 4002 | |
| 4003 | IRB.CreateMaskedCompressStore(Val: Shadow, Ptr: ShadowPtr, Align, Mask); |
| 4004 | |
| 4005 | // TODO: Store origins. |
| 4006 | } |
| 4007 | |
| 4008 | void handleMaskedGather(IntrinsicInst &I) { |
| 4009 | IRBuilder<> IRB(&I); |
| 4010 | Value *Ptrs = I.getArgOperand(i: 0); |
| 4011 | const Align Alignment( |
| 4012 | cast<ConstantInt>(Val: I.getArgOperand(i: 1))->getZExtValue()); |
| 4013 | Value *Mask = I.getArgOperand(i: 2); |
| 4014 | Value *PassThru = I.getArgOperand(i: 3); |
| 4015 | |
| 4016 | Type *PtrsShadowTy = getShadowTy(V: Ptrs); |
| 4017 | if (ClCheckAccessAddress) { |
| 4018 | insertShadowCheck(Val: Mask, OrigIns: &I); |
| 4019 | Value *MaskedPtrShadow = IRB.CreateSelect( |
| 4020 | C: Mask, True: getShadow(V: Ptrs), False: Constant::getNullValue(Ty: (PtrsShadowTy)), |
| 4021 | Name: "_msmaskedptrs" ); |
| 4022 | insertShadowCheck(Shadow: MaskedPtrShadow, Origin: getOrigin(V: Ptrs), OrigIns: &I); |
| 4023 | } |
| 4024 | |
| 4025 | if (!PropagateShadow) { |
| 4026 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
| 4027 | setOrigin(V: &I, Origin: getCleanOrigin()); |
| 4028 | return; |
| 4029 | } |
| 4030 | |
| 4031 | Type *ShadowTy = getShadowTy(V: &I); |
| 4032 | Type *ElementShadowTy = cast<VectorType>(Val: ShadowTy)->getElementType(); |
| 4033 | auto [ShadowPtrs, OriginPtrs] = getShadowOriginPtr( |
| 4034 | Addr: Ptrs, IRB, ShadowTy: ElementShadowTy, Alignment, /*isStore*/ false); |
| 4035 | |
| 4036 | Value *Shadow = |
| 4037 | IRB.CreateMaskedGather(Ty: ShadowTy, Ptrs: ShadowPtrs, Alignment, Mask, |
| 4038 | PassThru: getShadow(V: PassThru), Name: "_msmaskedgather" ); |
| 4039 | |
| 4040 | setShadow(V: &I, SV: Shadow); |
| 4041 | |
| 4042 | // TODO: Store origins. |
| 4043 | setOrigin(V: &I, Origin: getCleanOrigin()); |
| 4044 | } |
| 4045 | |
| 4046 | void handleMaskedScatter(IntrinsicInst &I) { |
| 4047 | IRBuilder<> IRB(&I); |
| 4048 | Value *Values = I.getArgOperand(i: 0); |
| 4049 | Value *Ptrs = I.getArgOperand(i: 1); |
| 4050 | const Align Alignment( |
| 4051 | cast<ConstantInt>(Val: I.getArgOperand(i: 2))->getZExtValue()); |
| 4052 | Value *Mask = I.getArgOperand(i: 3); |
| 4053 | |
| 4054 | Type *PtrsShadowTy = getShadowTy(V: Ptrs); |
| 4055 | if (ClCheckAccessAddress) { |
| 4056 | insertShadowCheck(Val: Mask, OrigIns: &I); |
| 4057 | Value *MaskedPtrShadow = IRB.CreateSelect( |
| 4058 | C: Mask, True: getShadow(V: Ptrs), False: Constant::getNullValue(Ty: (PtrsShadowTy)), |
| 4059 | Name: "_msmaskedptrs" ); |
| 4060 | insertShadowCheck(Shadow: MaskedPtrShadow, Origin: getOrigin(V: Ptrs), OrigIns: &I); |
| 4061 | } |
| 4062 | |
| 4063 | Value *Shadow = getShadow(V: Values); |
| 4064 | Type *ElementShadowTy = |
| 4065 | getShadowTy(OrigTy: cast<VectorType>(Val: Values->getType())->getElementType()); |
| 4066 | auto [ShadowPtrs, OriginPtrs] = getShadowOriginPtr( |
| 4067 | Addr: Ptrs, IRB, ShadowTy: ElementShadowTy, Alignment, /*isStore*/ true); |
| 4068 | |
| 4069 | IRB.CreateMaskedScatter(Val: Shadow, Ptrs: ShadowPtrs, Alignment, Mask); |
| 4070 | |
| 4071 | // TODO: Store origin. |
| 4072 | } |
| 4073 | |
| 4074 | // Intrinsic::masked_store |
| 4075 | // |
| 4076 | // Note: handleAVXMaskedStore handles AVX/AVX2 variants, though AVX512 masked |
| 4077 | // stores are lowered to Intrinsic::masked_store. |
| 4078 | void handleMaskedStore(IntrinsicInst &I) { |
| 4079 | IRBuilder<> IRB(&I); |
| 4080 | Value *V = I.getArgOperand(i: 0); |
| 4081 | Value *Ptr = I.getArgOperand(i: 1); |
| 4082 | const Align Alignment( |
| 4083 | cast<ConstantInt>(Val: I.getArgOperand(i: 2))->getZExtValue()); |
| 4084 | Value *Mask = I.getArgOperand(i: 3); |
| 4085 | Value *Shadow = getShadow(V); |
| 4086 | |
| 4087 | if (ClCheckAccessAddress) { |
| 4088 | insertShadowCheck(Val: Ptr, OrigIns: &I); |
| 4089 | insertShadowCheck(Val: Mask, OrigIns: &I); |
| 4090 | } |
| 4091 | |
| 4092 | Value *ShadowPtr; |
| 4093 | Value *OriginPtr; |
| 4094 | std::tie(args&: ShadowPtr, args&: OriginPtr) = getShadowOriginPtr( |
| 4095 | Addr: Ptr, IRB, ShadowTy: Shadow->getType(), Alignment, /*isStore*/ true); |
| 4096 | |
| 4097 | IRB.CreateMaskedStore(Val: Shadow, Ptr: ShadowPtr, Alignment, Mask); |
| 4098 | |
| 4099 | if (!MS.TrackOrigins) |
| 4100 | return; |
| 4101 | |
| 4102 | auto &DL = F.getDataLayout(); |
| 4103 | paintOrigin(IRB, Origin: getOrigin(V), OriginPtr, |
| 4104 | TS: DL.getTypeStoreSize(Ty: Shadow->getType()), |
| 4105 | Alignment: std::max(a: Alignment, b: kMinOriginAlignment)); |
| 4106 | } |
| 4107 | |
| 4108 | // Intrinsic::masked_load |
| 4109 | // |
| 4110 | // Note: handleAVXMaskedLoad handles AVX/AVX2 variants, though AVX512 masked |
| 4111 | // loads are lowered to Intrinsic::masked_load. |
| 4112 | void handleMaskedLoad(IntrinsicInst &I) { |
| 4113 | IRBuilder<> IRB(&I); |
| 4114 | Value *Ptr = I.getArgOperand(i: 0); |
| 4115 | const Align Alignment( |
| 4116 | cast<ConstantInt>(Val: I.getArgOperand(i: 1))->getZExtValue()); |
| 4117 | Value *Mask = I.getArgOperand(i: 2); |
| 4118 | Value *PassThru = I.getArgOperand(i: 3); |
| 4119 | |
| 4120 | if (ClCheckAccessAddress) { |
| 4121 | insertShadowCheck(Val: Ptr, OrigIns: &I); |
| 4122 | insertShadowCheck(Val: Mask, OrigIns: &I); |
| 4123 | } |
| 4124 | |
| 4125 | if (!PropagateShadow) { |
| 4126 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
| 4127 | setOrigin(V: &I, Origin: getCleanOrigin()); |
| 4128 | return; |
| 4129 | } |
| 4130 | |
| 4131 | Type *ShadowTy = getShadowTy(V: &I); |
| 4132 | Value *ShadowPtr, *OriginPtr; |
| 4133 | std::tie(args&: ShadowPtr, args&: OriginPtr) = |
| 4134 | getShadowOriginPtr(Addr: Ptr, IRB, ShadowTy, Alignment, /*isStore*/ false); |
| 4135 | setShadow(V: &I, SV: IRB.CreateMaskedLoad(Ty: ShadowTy, Ptr: ShadowPtr, Alignment, Mask, |
| 4136 | PassThru: getShadow(V: PassThru), Name: "_msmaskedld" )); |
| 4137 | |
| 4138 | if (!MS.TrackOrigins) |
| 4139 | return; |
| 4140 | |
| 4141 | // Choose between PassThru's and the loaded value's origins. |
| 4142 | Value *MaskedPassThruShadow = IRB.CreateAnd( |
| 4143 | LHS: getShadow(V: PassThru), RHS: IRB.CreateSExt(V: IRB.CreateNeg(V: Mask), DestTy: ShadowTy)); |
| 4144 | |
| 4145 | Value *NotNull = convertToBool(V: MaskedPassThruShadow, IRB, name: "_mscmp" ); |
| 4146 | |
| 4147 | Value *PtrOrigin = IRB.CreateLoad(Ty: MS.OriginTy, Ptr: OriginPtr); |
| 4148 | Value *Origin = IRB.CreateSelect(C: NotNull, True: getOrigin(V: PassThru), False: PtrOrigin); |
| 4149 | |
| 4150 | setOrigin(V: &I, Origin); |
| 4151 | } |
| 4152 | |
| 4153 | // e.g., void @llvm.x86.avx.maskstore.ps.256(ptr, <8 x i32>, <8 x float>) |
| 4154 | // dst mask src |
| 4155 | // |
| 4156 | // AVX512 masked stores are lowered to Intrinsic::masked_load and are handled |
| 4157 | // by handleMaskedStore. |
| 4158 | // |
| 4159 | // This function handles AVX and AVX2 masked stores; these use the MSBs of a |
| 4160 | // vector of integers, unlike the LLVM masked intrinsics, which require a |
| 4161 | // vector of booleans. X86InstCombineIntrinsic.cpp::simplifyX86MaskedLoad |
| 4162 | // mentions that the x86 backend does not know how to efficiently convert |
| 4163 | // from a vector of booleans back into the AVX mask format; therefore, they |
| 4164 | // (and we) do not reduce AVX/AVX2 masked intrinsics into LLVM masked |
| 4165 | // intrinsics. |
| 4166 | void handleAVXMaskedStore(IntrinsicInst &I) { |
| 4167 | assert(I.arg_size() == 3); |
| 4168 | |
| 4169 | IRBuilder<> IRB(&I); |
| 4170 | |
| 4171 | Value *Dst = I.getArgOperand(i: 0); |
| 4172 | assert(Dst->getType()->isPointerTy() && "Destination is not a pointer!" ); |
| 4173 | |
| 4174 | Value *Mask = I.getArgOperand(i: 1); |
| 4175 | assert(isa<VectorType>(Mask->getType()) && "Mask is not a vector!" ); |
| 4176 | |
| 4177 | Value *Src = I.getArgOperand(i: 2); |
| 4178 | assert(isa<VectorType>(Src->getType()) && "Source is not a vector!" ); |
| 4179 | |
| 4180 | const Align Alignment = Align(1); |
| 4181 | |
| 4182 | Value *SrcShadow = getShadow(V: Src); |
| 4183 | |
| 4184 | if (ClCheckAccessAddress) { |
| 4185 | insertShadowCheck(Val: Dst, OrigIns: &I); |
| 4186 | insertShadowCheck(Val: Mask, OrigIns: &I); |
| 4187 | } |
| 4188 | |
| 4189 | Value *DstShadowPtr; |
| 4190 | Value *DstOriginPtr; |
| 4191 | std::tie(args&: DstShadowPtr, args&: DstOriginPtr) = getShadowOriginPtr( |
| 4192 | Addr: Dst, IRB, ShadowTy: SrcShadow->getType(), Alignment, /*isStore*/ true); |
| 4193 | |
| 4194 | SmallVector<Value *, 2> ShadowArgs; |
| 4195 | ShadowArgs.append(NumInputs: 1, Elt: DstShadowPtr); |
| 4196 | ShadowArgs.append(NumInputs: 1, Elt: Mask); |
| 4197 | // The intrinsic may require floating-point but shadows can be arbitrary |
| 4198 | // bit patterns, of which some would be interpreted as "invalid" |
| 4199 | // floating-point values (NaN etc.); we assume the intrinsic will happily |
| 4200 | // copy them. |
| 4201 | ShadowArgs.append(NumInputs: 1, Elt: IRB.CreateBitCast(V: SrcShadow, DestTy: Src->getType())); |
| 4202 | |
| 4203 | CallInst *CI = |
| 4204 | IRB.CreateIntrinsic(RetTy: IRB.getVoidTy(), ID: I.getIntrinsicID(), Args: ShadowArgs); |
| 4205 | setShadow(V: &I, SV: CI); |
| 4206 | |
| 4207 | if (!MS.TrackOrigins) |
| 4208 | return; |
| 4209 | |
| 4210 | // Approximation only |
| 4211 | auto &DL = F.getDataLayout(); |
| 4212 | paintOrigin(IRB, Origin: getOrigin(V: Src), OriginPtr: DstOriginPtr, |
| 4213 | TS: DL.getTypeStoreSize(Ty: SrcShadow->getType()), |
| 4214 | Alignment: std::max(a: Alignment, b: kMinOriginAlignment)); |
| 4215 | } |
| 4216 | |
| 4217 | // e.g., <8 x float> @llvm.x86.avx.maskload.ps.256(ptr, <8 x i32>) |
| 4218 | // return src mask |
| 4219 | // |
| 4220 | // Masked-off values are replaced with 0, which conveniently also represents |
| 4221 | // initialized memory. |
| 4222 | // |
| 4223 | // AVX512 masked stores are lowered to Intrinsic::masked_load and are handled |
| 4224 | // by handleMaskedStore. |
| 4225 | // |
| 4226 | // We do not combine this with handleMaskedLoad; see comment in |
| 4227 | // handleAVXMaskedStore for the rationale. |
| 4228 | // |
| 4229 | // This is subtly different than handleIntrinsicByApplyingToShadow(I, 1) |
| 4230 | // because we need to apply getShadowOriginPtr, not getShadow, to the first |
| 4231 | // parameter. |
| 4232 | void handleAVXMaskedLoad(IntrinsicInst &I) { |
| 4233 | assert(I.arg_size() == 2); |
| 4234 | |
| 4235 | IRBuilder<> IRB(&I); |
| 4236 | |
| 4237 | Value *Src = I.getArgOperand(i: 0); |
| 4238 | assert(Src->getType()->isPointerTy() && "Source is not a pointer!" ); |
| 4239 | |
| 4240 | Value *Mask = I.getArgOperand(i: 1); |
| 4241 | assert(isa<VectorType>(Mask->getType()) && "Mask is not a vector!" ); |
| 4242 | |
| 4243 | const Align Alignment = Align(1); |
| 4244 | |
| 4245 | if (ClCheckAccessAddress) { |
| 4246 | insertShadowCheck(Val: Mask, OrigIns: &I); |
| 4247 | } |
| 4248 | |
| 4249 | Type *SrcShadowTy = getShadowTy(V: Src); |
| 4250 | Value *SrcShadowPtr, *SrcOriginPtr; |
| 4251 | std::tie(args&: SrcShadowPtr, args&: SrcOriginPtr) = |
| 4252 | getShadowOriginPtr(Addr: Src, IRB, ShadowTy: SrcShadowTy, Alignment, /*isStore*/ false); |
| 4253 | |
| 4254 | SmallVector<Value *, 2> ShadowArgs; |
| 4255 | ShadowArgs.append(NumInputs: 1, Elt: SrcShadowPtr); |
| 4256 | ShadowArgs.append(NumInputs: 1, Elt: Mask); |
| 4257 | |
| 4258 | CallInst *CI = |
| 4259 | IRB.CreateIntrinsic(RetTy: I.getType(), ID: I.getIntrinsicID(), Args: ShadowArgs); |
| 4260 | // The AVX masked load intrinsics do not have integer variants. We use the |
| 4261 | // floating-point variants, which will happily copy the shadows even if |
| 4262 | // they are interpreted as "invalid" floating-point values (NaN etc.). |
| 4263 | setShadow(V: &I, SV: IRB.CreateBitCast(V: CI, DestTy: getShadowTy(V: &I))); |
| 4264 | |
| 4265 | if (!MS.TrackOrigins) |
| 4266 | return; |
| 4267 | |
| 4268 | // The "pass-through" value is always zero (initialized). To the extent |
| 4269 | // that that results in initialized aligned 4-byte chunks, the origin value |
| 4270 | // is ignored. It is therefore correct to simply copy the origin from src. |
| 4271 | Value *PtrSrcOrigin = IRB.CreateLoad(Ty: MS.OriginTy, Ptr: SrcOriginPtr); |
| 4272 | setOrigin(V: &I, Origin: PtrSrcOrigin); |
| 4273 | } |
| 4274 | |
| 4275 | // Instrument AVX permutation intrinsic. |
| 4276 | // We apply the same permutation (argument index 1) to the shadow. |
| 4277 | void handleAVXVpermilvar(IntrinsicInst &I) { |
| 4278 | IRBuilder<> IRB(&I); |
| 4279 | Value *Shadow = getShadow(I: &I, i: 0); |
| 4280 | insertShadowCheck(Val: I.getArgOperand(i: 1), OrigIns: &I); |
| 4281 | |
| 4282 | // Shadows are integer-ish types but some intrinsics require a |
| 4283 | // different (e.g., floating-point) type. |
| 4284 | Shadow = IRB.CreateBitCast(V: Shadow, DestTy: I.getArgOperand(i: 0)->getType()); |
| 4285 | CallInst *CI = IRB.CreateIntrinsic(RetTy: I.getType(), ID: I.getIntrinsicID(), |
| 4286 | Args: {Shadow, I.getArgOperand(i: 1)}); |
| 4287 | |
| 4288 | setShadow(V: &I, SV: IRB.CreateBitCast(V: CI, DestTy: getShadowTy(V: &I))); |
| 4289 | setOriginForNaryOp(I); |
| 4290 | } |
| 4291 | |
| 4292 | // Instrument BMI / BMI2 intrinsics. |
| 4293 | // All of these intrinsics are Z = I(X, Y) |
| 4294 | // where the types of all operands and the result match, and are either i32 or |
| 4295 | // i64. The following instrumentation happens to work for all of them: |
| 4296 | // Sz = I(Sx, Y) | (sext (Sy != 0)) |
| 4297 | void handleBmiIntrinsic(IntrinsicInst &I) { |
| 4298 | IRBuilder<> IRB(&I); |
| 4299 | Type *ShadowTy = getShadowTy(V: &I); |
| 4300 | |
| 4301 | // If any bit of the mask operand is poisoned, then the whole thing is. |
| 4302 | Value *SMask = getShadow(I: &I, i: 1); |
| 4303 | SMask = IRB.CreateSExt(V: IRB.CreateICmpNE(LHS: SMask, RHS: getCleanShadow(OrigTy: ShadowTy)), |
| 4304 | DestTy: ShadowTy); |
| 4305 | // Apply the same intrinsic to the shadow of the first operand. |
| 4306 | Value *S = IRB.CreateCall(Callee: I.getCalledFunction(), |
| 4307 | Args: {getShadow(I: &I, i: 0), I.getOperand(i_nocapture: 1)}); |
| 4308 | S = IRB.CreateOr(LHS: SMask, RHS: S); |
| 4309 | setShadow(V: &I, SV: S); |
| 4310 | setOriginForNaryOp(I); |
| 4311 | } |
| 4312 | |
| 4313 | static SmallVector<int, 8> getPclmulMask(unsigned Width, bool OddElements) { |
| 4314 | SmallVector<int, 8> Mask; |
| 4315 | for (unsigned X = OddElements ? 1 : 0; X < Width; X += 2) { |
| 4316 | Mask.append(NumInputs: 2, Elt: X); |
| 4317 | } |
| 4318 | return Mask; |
| 4319 | } |
| 4320 | |
| 4321 | // Instrument pclmul intrinsics. |
| 4322 | // These intrinsics operate either on odd or on even elements of the input |
| 4323 | // vectors, depending on the constant in the 3rd argument, ignoring the rest. |
| 4324 | // Replace the unused elements with copies of the used ones, ex: |
| 4325 | // (0, 1, 2, 3) -> (0, 0, 2, 2) (even case) |
| 4326 | // or |
| 4327 | // (0, 1, 2, 3) -> (1, 1, 3, 3) (odd case) |
| 4328 | // and then apply the usual shadow combining logic. |
| 4329 | void handlePclmulIntrinsic(IntrinsicInst &I) { |
| 4330 | IRBuilder<> IRB(&I); |
| 4331 | unsigned Width = |
| 4332 | cast<FixedVectorType>(Val: I.getArgOperand(i: 0)->getType())->getNumElements(); |
| 4333 | assert(isa<ConstantInt>(I.getArgOperand(2)) && |
| 4334 | "pclmul 3rd operand must be a constant" ); |
| 4335 | unsigned Imm = cast<ConstantInt>(Val: I.getArgOperand(i: 2))->getZExtValue(); |
| 4336 | Value *Shuf0 = IRB.CreateShuffleVector(V: getShadow(I: &I, i: 0), |
| 4337 | Mask: getPclmulMask(Width, OddElements: Imm & 0x01)); |
| 4338 | Value *Shuf1 = IRB.CreateShuffleVector(V: getShadow(I: &I, i: 1), |
| 4339 | Mask: getPclmulMask(Width, OddElements: Imm & 0x10)); |
| 4340 | ShadowAndOriginCombiner SOC(this, IRB); |
| 4341 | SOC.Add(OpShadow: Shuf0, OpOrigin: getOrigin(I: &I, i: 0)); |
| 4342 | SOC.Add(OpShadow: Shuf1, OpOrigin: getOrigin(I: &I, i: 1)); |
| 4343 | SOC.Done(I: &I); |
| 4344 | } |
| 4345 | |
| 4346 | // Instrument _mm_*_sd|ss intrinsics |
| 4347 | void handleUnarySdSsIntrinsic(IntrinsicInst &I) { |
| 4348 | IRBuilder<> IRB(&I); |
| 4349 | unsigned Width = |
| 4350 | cast<FixedVectorType>(Val: I.getArgOperand(i: 0)->getType())->getNumElements(); |
| 4351 | Value *First = getShadow(I: &I, i: 0); |
| 4352 | Value *Second = getShadow(I: &I, i: 1); |
| 4353 | // First element of second operand, remaining elements of first operand |
| 4354 | SmallVector<int, 16> Mask; |
| 4355 | Mask.push_back(Elt: Width); |
| 4356 | for (unsigned i = 1; i < Width; i++) |
| 4357 | Mask.push_back(Elt: i); |
| 4358 | Value *Shadow = IRB.CreateShuffleVector(V1: First, V2: Second, Mask); |
| 4359 | |
| 4360 | setShadow(V: &I, SV: Shadow); |
| 4361 | setOriginForNaryOp(I); |
| 4362 | } |
| 4363 | |
| 4364 | void handleVtestIntrinsic(IntrinsicInst &I) { |
| 4365 | IRBuilder<> IRB(&I); |
| 4366 | Value *Shadow0 = getShadow(I: &I, i: 0); |
| 4367 | Value *Shadow1 = getShadow(I: &I, i: 1); |
| 4368 | Value *Or = IRB.CreateOr(LHS: Shadow0, RHS: Shadow1); |
| 4369 | Value *NZ = IRB.CreateICmpNE(LHS: Or, RHS: Constant::getNullValue(Ty: Or->getType())); |
| 4370 | Value *Scalar = convertShadowToScalar(V: NZ, IRB); |
| 4371 | Value *Shadow = IRB.CreateZExt(V: Scalar, DestTy: getShadowTy(V: &I)); |
| 4372 | |
| 4373 | setShadow(V: &I, SV: Shadow); |
| 4374 | setOriginForNaryOp(I); |
| 4375 | } |
| 4376 | |
| 4377 | void handleBinarySdSsIntrinsic(IntrinsicInst &I) { |
| 4378 | IRBuilder<> IRB(&I); |
| 4379 | unsigned Width = |
| 4380 | cast<FixedVectorType>(Val: I.getArgOperand(i: 0)->getType())->getNumElements(); |
| 4381 | Value *First = getShadow(I: &I, i: 0); |
| 4382 | Value *Second = getShadow(I: &I, i: 1); |
| 4383 | Value *OrShadow = IRB.CreateOr(LHS: First, RHS: Second); |
| 4384 | // First element of both OR'd together, remaining elements of first operand |
| 4385 | SmallVector<int, 16> Mask; |
| 4386 | Mask.push_back(Elt: Width); |
| 4387 | for (unsigned i = 1; i < Width; i++) |
| 4388 | Mask.push_back(Elt: i); |
| 4389 | Value *Shadow = IRB.CreateShuffleVector(V1: First, V2: OrShadow, Mask); |
| 4390 | |
| 4391 | setShadow(V: &I, SV: Shadow); |
| 4392 | setOriginForNaryOp(I); |
| 4393 | } |
| 4394 | |
| 4395 | // _mm_round_ps / _mm_round_ps. |
| 4396 | // Similar to maybeHandleSimpleNomemIntrinsic except |
| 4397 | // the second argument is guranteed to be a constant integer. |
| 4398 | void handleRoundPdPsIntrinsic(IntrinsicInst &I) { |
| 4399 | assert(I.getArgOperand(0)->getType() == I.getType()); |
| 4400 | assert(I.arg_size() == 2); |
| 4401 | assert(isa<ConstantInt>(I.getArgOperand(1))); |
| 4402 | |
| 4403 | IRBuilder<> IRB(&I); |
| 4404 | ShadowAndOriginCombiner SC(this, IRB); |
| 4405 | SC.Add(V: I.getArgOperand(i: 0)); |
| 4406 | SC.Done(I: &I); |
| 4407 | } |
| 4408 | |
| 4409 | // Instrument abs intrinsic. |
| 4410 | // handleUnknownIntrinsic can't handle it because of the last |
| 4411 | // is_int_min_poison argument which does not match the result type. |
| 4412 | void handleAbsIntrinsic(IntrinsicInst &I) { |
| 4413 | assert(I.getType()->isIntOrIntVectorTy()); |
| 4414 | assert(I.getArgOperand(0)->getType() == I.getType()); |
| 4415 | |
| 4416 | // FIXME: Handle is_int_min_poison. |
| 4417 | IRBuilder<> IRB(&I); |
| 4418 | setShadow(V: &I, SV: getShadow(I: &I, i: 0)); |
| 4419 | setOrigin(V: &I, Origin: getOrigin(I: &I, i: 0)); |
| 4420 | } |
| 4421 | |
| 4422 | void handleIsFpClass(IntrinsicInst &I) { |
| 4423 | IRBuilder<> IRB(&I); |
| 4424 | Value *Shadow = getShadow(I: &I, i: 0); |
| 4425 | setShadow(V: &I, SV: IRB.CreateICmpNE(LHS: Shadow, RHS: getCleanShadow(V: Shadow))); |
| 4426 | setOrigin(V: &I, Origin: getOrigin(I: &I, i: 0)); |
| 4427 | } |
| 4428 | |
| 4429 | void handleArithmeticWithOverflow(IntrinsicInst &I) { |
| 4430 | IRBuilder<> IRB(&I); |
| 4431 | Value *Shadow0 = getShadow(I: &I, i: 0); |
| 4432 | Value *Shadow1 = getShadow(I: &I, i: 1); |
| 4433 | Value *ShadowElt0 = IRB.CreateOr(LHS: Shadow0, RHS: Shadow1); |
| 4434 | Value *ShadowElt1 = |
| 4435 | IRB.CreateICmpNE(LHS: ShadowElt0, RHS: getCleanShadow(V: ShadowElt0)); |
| 4436 | |
| 4437 | Value *Shadow = PoisonValue::get(T: getShadowTy(V: &I)); |
| 4438 | Shadow = IRB.CreateInsertValue(Agg: Shadow, Val: ShadowElt0, Idxs: 0); |
| 4439 | Shadow = IRB.CreateInsertValue(Agg: Shadow, Val: ShadowElt1, Idxs: 1); |
| 4440 | |
| 4441 | setShadow(V: &I, SV: Shadow); |
| 4442 | setOriginForNaryOp(I); |
| 4443 | } |
| 4444 | |
| 4445 | Value *extractLowerShadow(IRBuilder<> &IRB, Value *V) { |
| 4446 | assert(isa<FixedVectorType>(V->getType())); |
| 4447 | assert(cast<FixedVectorType>(V->getType())->getNumElements() > 0); |
| 4448 | Value *Shadow = getShadow(V); |
| 4449 | return IRB.CreateExtractElement(Vec: Shadow, |
| 4450 | Idx: ConstantInt::get(Ty: IRB.getInt32Ty(), V: 0)); |
| 4451 | } |
| 4452 | |
| 4453 | // For sh.* compiler intrinsics: |
| 4454 | // llvm.x86.avx512fp16.mask.{add/sub/mul/div/max/min}.sh.round |
| 4455 | // (<8 x half>, <8 x half>, <8 x half>, i8, i32) |
| 4456 | // A B WriteThru Mask RoundingMode |
| 4457 | // |
| 4458 | // DstShadow[0] = Mask[0] ? (AShadow[0] | BShadow[0]) : WriteThruShadow[0] |
| 4459 | // DstShadow[1..7] = AShadow[1..7] |
| 4460 | void visitGenericScalarHalfwordInst(IntrinsicInst &I) { |
| 4461 | IRBuilder<> IRB(&I); |
| 4462 | |
| 4463 | assert(I.arg_size() == 5); |
| 4464 | Value *A = I.getOperand(i_nocapture: 0); |
| 4465 | Value *B = I.getOperand(i_nocapture: 1); |
| 4466 | Value *WriteThrough = I.getOperand(i_nocapture: 2); |
| 4467 | Value *Mask = I.getOperand(i_nocapture: 3); |
| 4468 | Value *RoundingMode = I.getOperand(i_nocapture: 4); |
| 4469 | |
| 4470 | // Technically, we could probably just check whether the LSB is |
| 4471 | // initialized, but intuitively it feels like a partly uninitialized mask |
| 4472 | // is unintended, and we should warn the user immediately. |
| 4473 | insertShadowCheck(Val: Mask, OrigIns: &I); |
| 4474 | insertShadowCheck(Val: RoundingMode, OrigIns: &I); |
| 4475 | |
| 4476 | assert(isa<FixedVectorType>(A->getType())); |
| 4477 | unsigned NumElements = |
| 4478 | cast<FixedVectorType>(Val: A->getType())->getNumElements(); |
| 4479 | assert(NumElements == 8); |
| 4480 | assert(A->getType() == B->getType()); |
| 4481 | assert(B->getType() == WriteThrough->getType()); |
| 4482 | assert(Mask->getType()->getPrimitiveSizeInBits() == NumElements); |
| 4483 | assert(RoundingMode->getType()->isIntegerTy()); |
| 4484 | |
| 4485 | Value *ALowerShadow = extractLowerShadow(IRB, V: A); |
| 4486 | Value *BLowerShadow = extractLowerShadow(IRB, V: B); |
| 4487 | |
| 4488 | Value *ABLowerShadow = IRB.CreateOr(LHS: ALowerShadow, RHS: BLowerShadow); |
| 4489 | |
| 4490 | Value *WriteThroughLowerShadow = extractLowerShadow(IRB, V: WriteThrough); |
| 4491 | |
| 4492 | Mask = IRB.CreateBitCast( |
| 4493 | V: Mask, DestTy: FixedVectorType::get(ElementType: IRB.getInt1Ty(), NumElts: NumElements)); |
| 4494 | Value *MaskLower = |
| 4495 | IRB.CreateExtractElement(Vec: Mask, Idx: ConstantInt::get(Ty: IRB.getInt32Ty(), V: 0)); |
| 4496 | |
| 4497 | Value *AShadow = getShadow(V: A); |
| 4498 | Value *DstLowerShadow = |
| 4499 | IRB.CreateSelect(C: MaskLower, True: ABLowerShadow, False: WriteThroughLowerShadow); |
| 4500 | Value *DstShadow = IRB.CreateInsertElement( |
| 4501 | Vec: AShadow, NewElt: DstLowerShadow, Idx: ConstantInt::get(Ty: IRB.getInt32Ty(), V: 0), |
| 4502 | Name: "_msprop" ); |
| 4503 | |
| 4504 | setShadow(V: &I, SV: DstShadow); |
| 4505 | setOriginForNaryOp(I); |
| 4506 | } |
| 4507 | |
| 4508 | // Handle Arm NEON vector load intrinsics (vld*). |
| 4509 | // |
| 4510 | // The WithLane instructions (ld[234]lane) are similar to: |
| 4511 | // call {<4 x i32>, <4 x i32>, <4 x i32>} |
| 4512 | // @llvm.aarch64.neon.ld3lane.v4i32.p0 |
| 4513 | // (<4 x i32> %L1, <4 x i32> %L2, <4 x i32> %L3, i64 %lane, ptr |
| 4514 | // %A) |
| 4515 | // |
| 4516 | // The non-WithLane instructions (ld[234], ld1x[234], ld[234]r) are similar |
| 4517 | // to: |
| 4518 | // call {<8 x i8>, <8 x i8>} @llvm.aarch64.neon.ld2.v8i8.p0(ptr %A) |
| 4519 | void handleNEONVectorLoad(IntrinsicInst &I, bool WithLane) { |
| 4520 | unsigned int numArgs = I.arg_size(); |
| 4521 | |
| 4522 | // Return type is a struct of vectors of integers or floating-point |
| 4523 | assert(I.getType()->isStructTy()); |
| 4524 | [[maybe_unused]] StructType *RetTy = cast<StructType>(Val: I.getType()); |
| 4525 | assert(RetTy->getNumElements() > 0); |
| 4526 | assert(RetTy->getElementType(0)->isIntOrIntVectorTy() || |
| 4527 | RetTy->getElementType(0)->isFPOrFPVectorTy()); |
| 4528 | for (unsigned int i = 0; i < RetTy->getNumElements(); i++) |
| 4529 | assert(RetTy->getElementType(i) == RetTy->getElementType(0)); |
| 4530 | |
| 4531 | if (WithLane) { |
| 4532 | // 2, 3 or 4 vectors, plus lane number, plus input pointer |
| 4533 | assert(4 <= numArgs && numArgs <= 6); |
| 4534 | |
| 4535 | // Return type is a struct of the input vectors |
| 4536 | assert(RetTy->getNumElements() + 2 == numArgs); |
| 4537 | for (unsigned int i = 0; i < RetTy->getNumElements(); i++) |
| 4538 | assert(I.getArgOperand(i)->getType() == RetTy->getElementType(0)); |
| 4539 | } else { |
| 4540 | assert(numArgs == 1); |
| 4541 | } |
| 4542 | |
| 4543 | IRBuilder<> IRB(&I); |
| 4544 | |
| 4545 | SmallVector<Value *, 6> ShadowArgs; |
| 4546 | if (WithLane) { |
| 4547 | for (unsigned int i = 0; i < numArgs - 2; i++) |
| 4548 | ShadowArgs.push_back(Elt: getShadow(V: I.getArgOperand(i))); |
| 4549 | |
| 4550 | // Lane number, passed verbatim |
| 4551 | Value *LaneNumber = I.getArgOperand(i: numArgs - 2); |
| 4552 | ShadowArgs.push_back(Elt: LaneNumber); |
| 4553 | |
| 4554 | // TODO: blend shadow of lane number into output shadow? |
| 4555 | insertShadowCheck(Val: LaneNumber, OrigIns: &I); |
| 4556 | } |
| 4557 | |
| 4558 | Value *Src = I.getArgOperand(i: numArgs - 1); |
| 4559 | assert(Src->getType()->isPointerTy() && "Source is not a pointer!" ); |
| 4560 | |
| 4561 | Type *SrcShadowTy = getShadowTy(V: Src); |
| 4562 | auto [SrcShadowPtr, SrcOriginPtr] = |
| 4563 | getShadowOriginPtr(Addr: Src, IRB, ShadowTy: SrcShadowTy, Alignment: Align(1), /*isStore*/ false); |
| 4564 | ShadowArgs.push_back(Elt: SrcShadowPtr); |
| 4565 | |
| 4566 | // The NEON vector load instructions handled by this function all have |
| 4567 | // integer variants. It is easier to use those rather than trying to cast |
| 4568 | // a struct of vectors of floats into a struct of vectors of integers. |
| 4569 | CallInst *CI = |
| 4570 | IRB.CreateIntrinsic(RetTy: getShadowTy(V: &I), ID: I.getIntrinsicID(), Args: ShadowArgs); |
| 4571 | setShadow(V: &I, SV: CI); |
| 4572 | |
| 4573 | if (!MS.TrackOrigins) |
| 4574 | return; |
| 4575 | |
| 4576 | Value *PtrSrcOrigin = IRB.CreateLoad(Ty: MS.OriginTy, Ptr: SrcOriginPtr); |
| 4577 | setOrigin(V: &I, Origin: PtrSrcOrigin); |
| 4578 | } |
| 4579 | |
| 4580 | /// Handle Arm NEON vector store intrinsics (vst{2,3,4}, vst1x_{2,3,4}, |
| 4581 | /// and vst{2,3,4}lane). |
| 4582 | /// |
| 4583 | /// Arm NEON vector store intrinsics have the output address (pointer) as the |
| 4584 | /// last argument, with the initial arguments being the inputs (and lane |
| 4585 | /// number for vst{2,3,4}lane). They return void. |
| 4586 | /// |
| 4587 | /// - st4 interleaves the output e.g., st4 (inA, inB, inC, inD, outP) writes |
| 4588 | /// abcdabcdabcdabcd... into *outP |
| 4589 | /// - st1_x4 is non-interleaved e.g., st1_x4 (inA, inB, inC, inD, outP) |
| 4590 | /// writes aaaa...bbbb...cccc...dddd... into *outP |
| 4591 | /// - st4lane has arguments of (inA, inB, inC, inD, lane, outP) |
| 4592 | /// These instructions can all be instrumented with essentially the same |
| 4593 | /// MSan logic, simply by applying the corresponding intrinsic to the shadow. |
| 4594 | void handleNEONVectorStoreIntrinsic(IntrinsicInst &I, bool useLane) { |
| 4595 | IRBuilder<> IRB(&I); |
| 4596 | |
| 4597 | // Don't use getNumOperands() because it includes the callee |
| 4598 | int numArgOperands = I.arg_size(); |
| 4599 | |
| 4600 | // The last arg operand is the output (pointer) |
| 4601 | assert(numArgOperands >= 1); |
| 4602 | Value *Addr = I.getArgOperand(i: numArgOperands - 1); |
| 4603 | assert(Addr->getType()->isPointerTy()); |
| 4604 | int skipTrailingOperands = 1; |
| 4605 | |
| 4606 | if (ClCheckAccessAddress) |
| 4607 | insertShadowCheck(Val: Addr, OrigIns: &I); |
| 4608 | |
| 4609 | // Second-last operand is the lane number (for vst{2,3,4}lane) |
| 4610 | if (useLane) { |
| 4611 | skipTrailingOperands++; |
| 4612 | assert(numArgOperands >= static_cast<int>(skipTrailingOperands)); |
| 4613 | assert(isa<IntegerType>( |
| 4614 | I.getArgOperand(numArgOperands - skipTrailingOperands)->getType())); |
| 4615 | } |
| 4616 | |
| 4617 | SmallVector<Value *, 8> ShadowArgs; |
| 4618 | // All the initial operands are the inputs |
| 4619 | for (int i = 0; i < numArgOperands - skipTrailingOperands; i++) { |
| 4620 | assert(isa<FixedVectorType>(I.getArgOperand(i)->getType())); |
| 4621 | Value *Shadow = getShadow(I: &I, i); |
| 4622 | ShadowArgs.append(NumInputs: 1, Elt: Shadow); |
| 4623 | } |
| 4624 | |
| 4625 | // MSan's GetShadowTy assumes the LHS is the type we want the shadow for |
| 4626 | // e.g., for: |
| 4627 | // [[TMP5:%.*]] = bitcast <16 x i8> [[TMP2]] to i128 |
| 4628 | // we know the type of the output (and its shadow) is <16 x i8>. |
| 4629 | // |
| 4630 | // Arm NEON VST is unusual because the last argument is the output address: |
| 4631 | // define void @st2_16b(<16 x i8> %A, <16 x i8> %B, ptr %P) { |
| 4632 | // call void @llvm.aarch64.neon.st2.v16i8.p0 |
| 4633 | // (<16 x i8> [[A]], <16 x i8> [[B]], ptr [[P]]) |
| 4634 | // and we have no type information about P's operand. We must manually |
| 4635 | // compute the type (<16 x i8> x 2). |
| 4636 | FixedVectorType *OutputVectorTy = FixedVectorType::get( |
| 4637 | ElementType: cast<FixedVectorType>(Val: I.getArgOperand(i: 0)->getType())->getElementType(), |
| 4638 | NumElts: cast<FixedVectorType>(Val: I.getArgOperand(i: 0)->getType())->getNumElements() * |
| 4639 | (numArgOperands - skipTrailingOperands)); |
| 4640 | Type *OutputShadowTy = getShadowTy(OrigTy: OutputVectorTy); |
| 4641 | |
| 4642 | if (useLane) |
| 4643 | ShadowArgs.append(NumInputs: 1, |
| 4644 | Elt: I.getArgOperand(i: numArgOperands - skipTrailingOperands)); |
| 4645 | |
| 4646 | Value *OutputShadowPtr, *OutputOriginPtr; |
| 4647 | // AArch64 NEON does not need alignment (unless OS requires it) |
| 4648 | std::tie(args&: OutputShadowPtr, args&: OutputOriginPtr) = getShadowOriginPtr( |
| 4649 | Addr, IRB, ShadowTy: OutputShadowTy, Alignment: Align(1), /*isStore*/ true); |
| 4650 | ShadowArgs.append(NumInputs: 1, Elt: OutputShadowPtr); |
| 4651 | |
| 4652 | CallInst *CI = |
| 4653 | IRB.CreateIntrinsic(RetTy: IRB.getVoidTy(), ID: I.getIntrinsicID(), Args: ShadowArgs); |
| 4654 | setShadow(V: &I, SV: CI); |
| 4655 | |
| 4656 | if (MS.TrackOrigins) { |
| 4657 | // TODO: if we modelled the vst* instruction more precisely, we could |
| 4658 | // more accurately track the origins (e.g., if both inputs are |
| 4659 | // uninitialized for vst2, we currently blame the second input, even |
| 4660 | // though part of the output depends only on the first input). |
| 4661 | // |
| 4662 | // This is particularly imprecise for vst{2,3,4}lane, since only one |
| 4663 | // lane of each input is actually copied to the output. |
| 4664 | OriginCombiner OC(this, IRB); |
| 4665 | for (int i = 0; i < numArgOperands - skipTrailingOperands; i++) |
| 4666 | OC.Add(V: I.getArgOperand(i)); |
| 4667 | |
| 4668 | const DataLayout &DL = F.getDataLayout(); |
| 4669 | OC.DoneAndStoreOrigin(TS: DL.getTypeStoreSize(Ty: OutputVectorTy), |
| 4670 | OriginPtr: OutputOriginPtr); |
| 4671 | } |
| 4672 | } |
| 4673 | |
| 4674 | /// Handle intrinsics by applying the intrinsic to the shadows. |
| 4675 | /// |
| 4676 | /// The trailing arguments are passed verbatim to the intrinsic, though any |
| 4677 | /// uninitialized trailing arguments can also taint the shadow e.g., for an |
| 4678 | /// intrinsic with one trailing verbatim argument: |
| 4679 | /// out = intrinsic(var1, var2, opType) |
| 4680 | /// we compute: |
| 4681 | /// shadow[out] = |
| 4682 | /// intrinsic(shadow[var1], shadow[var2], opType) | shadow[opType] |
| 4683 | /// |
| 4684 | /// Typically, shadowIntrinsicID will be specified by the caller to be |
| 4685 | /// I.getIntrinsicID(), but the caller can choose to replace it with another |
| 4686 | /// intrinsic of the same type. |
| 4687 | /// |
| 4688 | /// CAUTION: this assumes that the intrinsic will handle arbitrary |
| 4689 | /// bit-patterns (for example, if the intrinsic accepts floats for |
| 4690 | /// var1, we require that it doesn't care if inputs are NaNs). |
| 4691 | /// |
| 4692 | /// For example, this can be applied to the Arm NEON vector table intrinsics |
| 4693 | /// (tbl{1,2,3,4}). |
| 4694 | /// |
| 4695 | /// The origin is approximated using setOriginForNaryOp. |
| 4696 | void handleIntrinsicByApplyingToShadow(IntrinsicInst &I, |
| 4697 | Intrinsic::ID shadowIntrinsicID, |
| 4698 | unsigned int trailingVerbatimArgs) { |
| 4699 | IRBuilder<> IRB(&I); |
| 4700 | |
| 4701 | assert(trailingVerbatimArgs < I.arg_size()); |
| 4702 | |
| 4703 | SmallVector<Value *, 8> ShadowArgs; |
| 4704 | // Don't use getNumOperands() because it includes the callee |
| 4705 | for (unsigned int i = 0; i < I.arg_size() - trailingVerbatimArgs; i++) { |
| 4706 | Value *Shadow = getShadow(I: &I, i); |
| 4707 | |
| 4708 | // Shadows are integer-ish types but some intrinsics require a |
| 4709 | // different (e.g., floating-point) type. |
| 4710 | ShadowArgs.push_back( |
| 4711 | Elt: IRB.CreateBitCast(V: Shadow, DestTy: I.getArgOperand(i)->getType())); |
| 4712 | } |
| 4713 | |
| 4714 | for (unsigned int i = I.arg_size() - trailingVerbatimArgs; i < I.arg_size(); |
| 4715 | i++) { |
| 4716 | Value *Arg = I.getArgOperand(i); |
| 4717 | ShadowArgs.push_back(Elt: Arg); |
| 4718 | } |
| 4719 | |
| 4720 | CallInst *CI = |
| 4721 | IRB.CreateIntrinsic(RetTy: I.getType(), ID: shadowIntrinsicID, Args: ShadowArgs); |
| 4722 | Value *CombinedShadow = CI; |
| 4723 | |
| 4724 | // Combine the computed shadow with the shadow of trailing args |
| 4725 | for (unsigned int i = I.arg_size() - trailingVerbatimArgs; i < I.arg_size(); |
| 4726 | i++) { |
| 4727 | Value *Shadow = |
| 4728 | CreateShadowCast(IRB, V: getShadow(I: &I, i), dstTy: CombinedShadow->getType()); |
| 4729 | CombinedShadow = IRB.CreateOr(LHS: Shadow, RHS: CombinedShadow, Name: "_msprop" ); |
| 4730 | } |
| 4731 | |
| 4732 | setShadow(V: &I, SV: IRB.CreateBitCast(V: CombinedShadow, DestTy: getShadowTy(V: &I))); |
| 4733 | |
| 4734 | setOriginForNaryOp(I); |
| 4735 | } |
| 4736 | |
| 4737 | // Approximation only |
| 4738 | // |
| 4739 | // e.g., <16 x i8> @llvm.aarch64.neon.pmull64(i64, i64) |
| 4740 | void handleNEONVectorMultiplyIntrinsic(IntrinsicInst &I) { |
| 4741 | assert(I.arg_size() == 2); |
| 4742 | |
| 4743 | handleShadowOr(I); |
| 4744 | } |
| 4745 | |
| 4746 | void visitIntrinsicInst(IntrinsicInst &I) { |
| 4747 | switch (I.getIntrinsicID()) { |
| 4748 | case Intrinsic::uadd_with_overflow: |
| 4749 | case Intrinsic::sadd_with_overflow: |
| 4750 | case Intrinsic::usub_with_overflow: |
| 4751 | case Intrinsic::ssub_with_overflow: |
| 4752 | case Intrinsic::umul_with_overflow: |
| 4753 | case Intrinsic::smul_with_overflow: |
| 4754 | handleArithmeticWithOverflow(I); |
| 4755 | break; |
| 4756 | case Intrinsic::abs: |
| 4757 | handleAbsIntrinsic(I); |
| 4758 | break; |
| 4759 | case Intrinsic::bitreverse: |
| 4760 | handleIntrinsicByApplyingToShadow(I, shadowIntrinsicID: I.getIntrinsicID(), |
| 4761 | /*trailingVerbatimArgs*/ 0); |
| 4762 | break; |
| 4763 | case Intrinsic::is_fpclass: |
| 4764 | handleIsFpClass(I); |
| 4765 | break; |
| 4766 | case Intrinsic::lifetime_start: |
| 4767 | handleLifetimeStart(I); |
| 4768 | break; |
| 4769 | case Intrinsic::launder_invariant_group: |
| 4770 | case Intrinsic::strip_invariant_group: |
| 4771 | handleInvariantGroup(I); |
| 4772 | break; |
| 4773 | case Intrinsic::bswap: |
| 4774 | handleBswap(I); |
| 4775 | break; |
| 4776 | case Intrinsic::ctlz: |
| 4777 | case Intrinsic::cttz: |
| 4778 | handleCountLeadingTrailingZeros(I); |
| 4779 | break; |
| 4780 | case Intrinsic::masked_compressstore: |
| 4781 | handleMaskedCompressStore(I); |
| 4782 | break; |
| 4783 | case Intrinsic::masked_expandload: |
| 4784 | handleMaskedExpandLoad(I); |
| 4785 | break; |
| 4786 | case Intrinsic::masked_gather: |
| 4787 | handleMaskedGather(I); |
| 4788 | break; |
| 4789 | case Intrinsic::masked_scatter: |
| 4790 | handleMaskedScatter(I); |
| 4791 | break; |
| 4792 | case Intrinsic::masked_store: |
| 4793 | handleMaskedStore(I); |
| 4794 | break; |
| 4795 | case Intrinsic::masked_load: |
| 4796 | handleMaskedLoad(I); |
| 4797 | break; |
| 4798 | case Intrinsic::vector_reduce_and: |
| 4799 | handleVectorReduceAndIntrinsic(I); |
| 4800 | break; |
| 4801 | case Intrinsic::vector_reduce_or: |
| 4802 | handleVectorReduceOrIntrinsic(I); |
| 4803 | break; |
| 4804 | |
| 4805 | case Intrinsic::vector_reduce_add: |
| 4806 | case Intrinsic::vector_reduce_xor: |
| 4807 | case Intrinsic::vector_reduce_mul: |
| 4808 | // Signed/Unsigned Min/Max |
| 4809 | // TODO: handling similarly to AND/OR may be more precise. |
| 4810 | case Intrinsic::vector_reduce_smax: |
| 4811 | case Intrinsic::vector_reduce_smin: |
| 4812 | case Intrinsic::vector_reduce_umax: |
| 4813 | case Intrinsic::vector_reduce_umin: |
| 4814 | // TODO: this has no false positives, but arguably we should check that all |
| 4815 | // the bits are initialized. |
| 4816 | case Intrinsic::vector_reduce_fmax: |
| 4817 | case Intrinsic::vector_reduce_fmin: |
| 4818 | handleVectorReduceIntrinsic(I, /*AllowShadowCast=*/false); |
| 4819 | break; |
| 4820 | |
| 4821 | case Intrinsic::vector_reduce_fadd: |
| 4822 | case Intrinsic::vector_reduce_fmul: |
| 4823 | handleVectorReduceWithStarterIntrinsic(I); |
| 4824 | break; |
| 4825 | |
| 4826 | case Intrinsic::x86_sse_stmxcsr: |
| 4827 | handleStmxcsr(I); |
| 4828 | break; |
| 4829 | case Intrinsic::x86_sse_ldmxcsr: |
| 4830 | handleLdmxcsr(I); |
| 4831 | break; |
| 4832 | case Intrinsic::x86_avx512_vcvtsd2usi64: |
| 4833 | case Intrinsic::x86_avx512_vcvtsd2usi32: |
| 4834 | case Intrinsic::x86_avx512_vcvtss2usi64: |
| 4835 | case Intrinsic::x86_avx512_vcvtss2usi32: |
| 4836 | case Intrinsic::x86_avx512_cvttss2usi64: |
| 4837 | case Intrinsic::x86_avx512_cvttss2usi: |
| 4838 | case Intrinsic::x86_avx512_cvttsd2usi64: |
| 4839 | case Intrinsic::x86_avx512_cvttsd2usi: |
| 4840 | case Intrinsic::x86_avx512_cvtusi2ss: |
| 4841 | case Intrinsic::x86_avx512_cvtusi642sd: |
| 4842 | case Intrinsic::x86_avx512_cvtusi642ss: |
| 4843 | handleSSEVectorConvertIntrinsic(I, NumUsedElements: 1, HasRoundingMode: true); |
| 4844 | break; |
| 4845 | case Intrinsic::x86_sse2_cvtsd2si64: |
| 4846 | case Intrinsic::x86_sse2_cvtsd2si: |
| 4847 | case Intrinsic::x86_sse2_cvtsd2ss: |
| 4848 | case Intrinsic::x86_sse2_cvttsd2si64: |
| 4849 | case Intrinsic::x86_sse2_cvttsd2si: |
| 4850 | case Intrinsic::x86_sse_cvtss2si64: |
| 4851 | case Intrinsic::x86_sse_cvtss2si: |
| 4852 | case Intrinsic::x86_sse_cvttss2si64: |
| 4853 | case Intrinsic::x86_sse_cvttss2si: |
| 4854 | handleSSEVectorConvertIntrinsic(I, NumUsedElements: 1); |
| 4855 | break; |
| 4856 | case Intrinsic::x86_sse_cvtps2pi: |
| 4857 | case Intrinsic::x86_sse_cvttps2pi: |
| 4858 | handleSSEVectorConvertIntrinsic(I, NumUsedElements: 2); |
| 4859 | break; |
| 4860 | |
| 4861 | // TODO: |
| 4862 | // <1 x i64> @llvm.x86.sse.cvtpd2pi(<2 x double>) |
| 4863 | // <2 x double> @llvm.x86.sse.cvtpi2pd(<1 x i64>) |
| 4864 | // <4 x float> @llvm.x86.sse.cvtpi2ps(<4 x float>, <1 x i64>) |
| 4865 | |
| 4866 | case Intrinsic::x86_vcvtps2ph_128: |
| 4867 | case Intrinsic::x86_vcvtps2ph_256: { |
| 4868 | handleSSEVectorConvertIntrinsicByProp(I, /*HasRoundingMode=*/true); |
| 4869 | break; |
| 4870 | } |
| 4871 | |
| 4872 | case Intrinsic::x86_sse2_cvtpd2ps: |
| 4873 | case Intrinsic::x86_sse2_cvtps2dq: |
| 4874 | case Intrinsic::x86_sse2_cvtpd2dq: |
| 4875 | case Intrinsic::x86_sse2_cvttps2dq: |
| 4876 | case Intrinsic::x86_sse2_cvttpd2dq: |
| 4877 | case Intrinsic::x86_avx_cvt_pd2_ps_256: |
| 4878 | case Intrinsic::x86_avx_cvt_ps2dq_256: |
| 4879 | case Intrinsic::x86_avx_cvt_pd2dq_256: |
| 4880 | case Intrinsic::x86_avx_cvtt_ps2dq_256: |
| 4881 | case Intrinsic::x86_avx_cvtt_pd2dq_256: { |
| 4882 | handleSSEVectorConvertIntrinsicByProp(I, /*HasRoundingMode=*/false); |
| 4883 | break; |
| 4884 | } |
| 4885 | |
| 4886 | case Intrinsic::x86_avx512_psll_w_512: |
| 4887 | case Intrinsic::x86_avx512_psll_d_512: |
| 4888 | case Intrinsic::x86_avx512_psll_q_512: |
| 4889 | case Intrinsic::x86_avx512_pslli_w_512: |
| 4890 | case Intrinsic::x86_avx512_pslli_d_512: |
| 4891 | case Intrinsic::x86_avx512_pslli_q_512: |
| 4892 | case Intrinsic::x86_avx512_psrl_w_512: |
| 4893 | case Intrinsic::x86_avx512_psrl_d_512: |
| 4894 | case Intrinsic::x86_avx512_psrl_q_512: |
| 4895 | case Intrinsic::x86_avx512_psra_w_512: |
| 4896 | case Intrinsic::x86_avx512_psra_d_512: |
| 4897 | case Intrinsic::x86_avx512_psra_q_512: |
| 4898 | case Intrinsic::x86_avx512_psrli_w_512: |
| 4899 | case Intrinsic::x86_avx512_psrli_d_512: |
| 4900 | case Intrinsic::x86_avx512_psrli_q_512: |
| 4901 | case Intrinsic::x86_avx512_psrai_w_512: |
| 4902 | case Intrinsic::x86_avx512_psrai_d_512: |
| 4903 | case Intrinsic::x86_avx512_psrai_q_512: |
| 4904 | case Intrinsic::x86_avx512_psra_q_256: |
| 4905 | case Intrinsic::x86_avx512_psra_q_128: |
| 4906 | case Intrinsic::x86_avx512_psrai_q_256: |
| 4907 | case Intrinsic::x86_avx512_psrai_q_128: |
| 4908 | case Intrinsic::x86_avx2_psll_w: |
| 4909 | case Intrinsic::x86_avx2_psll_d: |
| 4910 | case Intrinsic::x86_avx2_psll_q: |
| 4911 | case Intrinsic::x86_avx2_pslli_w: |
| 4912 | case Intrinsic::x86_avx2_pslli_d: |
| 4913 | case Intrinsic::x86_avx2_pslli_q: |
| 4914 | case Intrinsic::x86_avx2_psrl_w: |
| 4915 | case Intrinsic::x86_avx2_psrl_d: |
| 4916 | case Intrinsic::x86_avx2_psrl_q: |
| 4917 | case Intrinsic::x86_avx2_psra_w: |
| 4918 | case Intrinsic::x86_avx2_psra_d: |
| 4919 | case Intrinsic::x86_avx2_psrli_w: |
| 4920 | case Intrinsic::x86_avx2_psrli_d: |
| 4921 | case Intrinsic::x86_avx2_psrli_q: |
| 4922 | case Intrinsic::x86_avx2_psrai_w: |
| 4923 | case Intrinsic::x86_avx2_psrai_d: |
| 4924 | case Intrinsic::x86_sse2_psll_w: |
| 4925 | case Intrinsic::x86_sse2_psll_d: |
| 4926 | case Intrinsic::x86_sse2_psll_q: |
| 4927 | case Intrinsic::x86_sse2_pslli_w: |
| 4928 | case Intrinsic::x86_sse2_pslli_d: |
| 4929 | case Intrinsic::x86_sse2_pslli_q: |
| 4930 | case Intrinsic::x86_sse2_psrl_w: |
| 4931 | case Intrinsic::x86_sse2_psrl_d: |
| 4932 | case Intrinsic::x86_sse2_psrl_q: |
| 4933 | case Intrinsic::x86_sse2_psra_w: |
| 4934 | case Intrinsic::x86_sse2_psra_d: |
| 4935 | case Intrinsic::x86_sse2_psrli_w: |
| 4936 | case Intrinsic::x86_sse2_psrli_d: |
| 4937 | case Intrinsic::x86_sse2_psrli_q: |
| 4938 | case Intrinsic::x86_sse2_psrai_w: |
| 4939 | case Intrinsic::x86_sse2_psrai_d: |
| 4940 | case Intrinsic::x86_mmx_psll_w: |
| 4941 | case Intrinsic::x86_mmx_psll_d: |
| 4942 | case Intrinsic::x86_mmx_psll_q: |
| 4943 | case Intrinsic::x86_mmx_pslli_w: |
| 4944 | case Intrinsic::x86_mmx_pslli_d: |
| 4945 | case Intrinsic::x86_mmx_pslli_q: |
| 4946 | case Intrinsic::x86_mmx_psrl_w: |
| 4947 | case Intrinsic::x86_mmx_psrl_d: |
| 4948 | case Intrinsic::x86_mmx_psrl_q: |
| 4949 | case Intrinsic::x86_mmx_psra_w: |
| 4950 | case Intrinsic::x86_mmx_psra_d: |
| 4951 | case Intrinsic::x86_mmx_psrli_w: |
| 4952 | case Intrinsic::x86_mmx_psrli_d: |
| 4953 | case Intrinsic::x86_mmx_psrli_q: |
| 4954 | case Intrinsic::x86_mmx_psrai_w: |
| 4955 | case Intrinsic::x86_mmx_psrai_d: |
| 4956 | case Intrinsic::aarch64_neon_rshrn: |
| 4957 | case Intrinsic::aarch64_neon_sqrshl: |
| 4958 | case Intrinsic::aarch64_neon_sqrshrn: |
| 4959 | case Intrinsic::aarch64_neon_sqrshrun: |
| 4960 | case Intrinsic::aarch64_neon_sqshl: |
| 4961 | case Intrinsic::aarch64_neon_sqshlu: |
| 4962 | case Intrinsic::aarch64_neon_sqshrn: |
| 4963 | case Intrinsic::aarch64_neon_sqshrun: |
| 4964 | case Intrinsic::aarch64_neon_srshl: |
| 4965 | case Intrinsic::aarch64_neon_sshl: |
| 4966 | case Intrinsic::aarch64_neon_uqrshl: |
| 4967 | case Intrinsic::aarch64_neon_uqrshrn: |
| 4968 | case Intrinsic::aarch64_neon_uqshl: |
| 4969 | case Intrinsic::aarch64_neon_uqshrn: |
| 4970 | case Intrinsic::aarch64_neon_urshl: |
| 4971 | case Intrinsic::aarch64_neon_ushl: |
| 4972 | // Not handled here: aarch64_neon_vsli (vector shift left and insert) |
| 4973 | handleVectorShiftIntrinsic(I, /* Variable */ false); |
| 4974 | break; |
| 4975 | case Intrinsic::x86_avx2_psllv_d: |
| 4976 | case Intrinsic::x86_avx2_psllv_d_256: |
| 4977 | case Intrinsic::x86_avx512_psllv_d_512: |
| 4978 | case Intrinsic::x86_avx2_psllv_q: |
| 4979 | case Intrinsic::x86_avx2_psllv_q_256: |
| 4980 | case Intrinsic::x86_avx512_psllv_q_512: |
| 4981 | case Intrinsic::x86_avx2_psrlv_d: |
| 4982 | case Intrinsic::x86_avx2_psrlv_d_256: |
| 4983 | case Intrinsic::x86_avx512_psrlv_d_512: |
| 4984 | case Intrinsic::x86_avx2_psrlv_q: |
| 4985 | case Intrinsic::x86_avx2_psrlv_q_256: |
| 4986 | case Intrinsic::x86_avx512_psrlv_q_512: |
| 4987 | case Intrinsic::x86_avx2_psrav_d: |
| 4988 | case Intrinsic::x86_avx2_psrav_d_256: |
| 4989 | case Intrinsic::x86_avx512_psrav_d_512: |
| 4990 | case Intrinsic::x86_avx512_psrav_q_128: |
| 4991 | case Intrinsic::x86_avx512_psrav_q_256: |
| 4992 | case Intrinsic::x86_avx512_psrav_q_512: |
| 4993 | handleVectorShiftIntrinsic(I, /* Variable */ true); |
| 4994 | break; |
| 4995 | |
| 4996 | case Intrinsic::x86_sse2_packsswb_128: |
| 4997 | case Intrinsic::x86_sse2_packssdw_128: |
| 4998 | case Intrinsic::x86_sse2_packuswb_128: |
| 4999 | case Intrinsic::x86_sse41_packusdw: |
| 5000 | case Intrinsic::x86_avx2_packsswb: |
| 5001 | case Intrinsic::x86_avx2_packssdw: |
| 5002 | case Intrinsic::x86_avx2_packuswb: |
| 5003 | case Intrinsic::x86_avx2_packusdw: |
| 5004 | handleVectorPackIntrinsic(I); |
| 5005 | break; |
| 5006 | |
| 5007 | case Intrinsic::x86_sse41_pblendvb: |
| 5008 | case Intrinsic::x86_sse41_blendvpd: |
| 5009 | case Intrinsic::x86_sse41_blendvps: |
| 5010 | case Intrinsic::x86_avx_blendv_pd_256: |
| 5011 | case Intrinsic::x86_avx_blendv_ps_256: |
| 5012 | case Intrinsic::x86_avx2_pblendvb: |
| 5013 | handleBlendvIntrinsic(I); |
| 5014 | break; |
| 5015 | |
| 5016 | case Intrinsic::x86_avx_dp_ps_256: |
| 5017 | case Intrinsic::x86_sse41_dppd: |
| 5018 | case Intrinsic::x86_sse41_dpps: |
| 5019 | handleDppIntrinsic(I); |
| 5020 | break; |
| 5021 | |
| 5022 | case Intrinsic::x86_mmx_packsswb: |
| 5023 | case Intrinsic::x86_mmx_packuswb: |
| 5024 | handleVectorPackIntrinsic(I, MMXEltSizeInBits: 16); |
| 5025 | break; |
| 5026 | |
| 5027 | case Intrinsic::x86_mmx_packssdw: |
| 5028 | handleVectorPackIntrinsic(I, MMXEltSizeInBits: 32); |
| 5029 | break; |
| 5030 | |
| 5031 | case Intrinsic::x86_mmx_psad_bw: |
| 5032 | handleVectorSadIntrinsic(I, IsMMX: true); |
| 5033 | break; |
| 5034 | case Intrinsic::x86_sse2_psad_bw: |
| 5035 | case Intrinsic::x86_avx2_psad_bw: |
| 5036 | handleVectorSadIntrinsic(I); |
| 5037 | break; |
| 5038 | |
| 5039 | case Intrinsic::x86_sse2_pmadd_wd: |
| 5040 | case Intrinsic::x86_avx2_pmadd_wd: |
| 5041 | case Intrinsic::x86_ssse3_pmadd_ub_sw_128: |
| 5042 | case Intrinsic::x86_avx2_pmadd_ub_sw: |
| 5043 | handleVectorPmaddIntrinsic(I); |
| 5044 | break; |
| 5045 | |
| 5046 | case Intrinsic::x86_ssse3_pmadd_ub_sw: |
| 5047 | handleVectorPmaddIntrinsic(I, MMXEltSizeInBits: 8); |
| 5048 | break; |
| 5049 | |
| 5050 | case Intrinsic::x86_mmx_pmadd_wd: |
| 5051 | handleVectorPmaddIntrinsic(I, MMXEltSizeInBits: 16); |
| 5052 | break; |
| 5053 | |
| 5054 | case Intrinsic::x86_sse_cmp_ss: |
| 5055 | case Intrinsic::x86_sse2_cmp_sd: |
| 5056 | case Intrinsic::x86_sse_comieq_ss: |
| 5057 | case Intrinsic::x86_sse_comilt_ss: |
| 5058 | case Intrinsic::x86_sse_comile_ss: |
| 5059 | case Intrinsic::x86_sse_comigt_ss: |
| 5060 | case Intrinsic::x86_sse_comige_ss: |
| 5061 | case Intrinsic::x86_sse_comineq_ss: |
| 5062 | case Intrinsic::x86_sse_ucomieq_ss: |
| 5063 | case Intrinsic::x86_sse_ucomilt_ss: |
| 5064 | case Intrinsic::x86_sse_ucomile_ss: |
| 5065 | case Intrinsic::x86_sse_ucomigt_ss: |
| 5066 | case Intrinsic::x86_sse_ucomige_ss: |
| 5067 | case Intrinsic::x86_sse_ucomineq_ss: |
| 5068 | case Intrinsic::x86_sse2_comieq_sd: |
| 5069 | case Intrinsic::x86_sse2_comilt_sd: |
| 5070 | case Intrinsic::x86_sse2_comile_sd: |
| 5071 | case Intrinsic::x86_sse2_comigt_sd: |
| 5072 | case Intrinsic::x86_sse2_comige_sd: |
| 5073 | case Intrinsic::x86_sse2_comineq_sd: |
| 5074 | case Intrinsic::x86_sse2_ucomieq_sd: |
| 5075 | case Intrinsic::x86_sse2_ucomilt_sd: |
| 5076 | case Intrinsic::x86_sse2_ucomile_sd: |
| 5077 | case Intrinsic::x86_sse2_ucomigt_sd: |
| 5078 | case Intrinsic::x86_sse2_ucomige_sd: |
| 5079 | case Intrinsic::x86_sse2_ucomineq_sd: |
| 5080 | handleVectorCompareScalarIntrinsic(I); |
| 5081 | break; |
| 5082 | |
| 5083 | case Intrinsic::x86_avx_cmp_pd_256: |
| 5084 | case Intrinsic::x86_avx_cmp_ps_256: |
| 5085 | case Intrinsic::x86_sse2_cmp_pd: |
| 5086 | case Intrinsic::x86_sse_cmp_ps: |
| 5087 | handleVectorComparePackedIntrinsic(I); |
| 5088 | break; |
| 5089 | |
| 5090 | case Intrinsic::x86_bmi_bextr_32: |
| 5091 | case Intrinsic::x86_bmi_bextr_64: |
| 5092 | case Intrinsic::x86_bmi_bzhi_32: |
| 5093 | case Intrinsic::x86_bmi_bzhi_64: |
| 5094 | case Intrinsic::x86_bmi_pdep_32: |
| 5095 | case Intrinsic::x86_bmi_pdep_64: |
| 5096 | case Intrinsic::x86_bmi_pext_32: |
| 5097 | case Intrinsic::x86_bmi_pext_64: |
| 5098 | handleBmiIntrinsic(I); |
| 5099 | break; |
| 5100 | |
| 5101 | case Intrinsic::x86_pclmulqdq: |
| 5102 | case Intrinsic::x86_pclmulqdq_256: |
| 5103 | case Intrinsic::x86_pclmulqdq_512: |
| 5104 | handlePclmulIntrinsic(I); |
| 5105 | break; |
| 5106 | |
| 5107 | case Intrinsic::x86_avx_round_pd_256: |
| 5108 | case Intrinsic::x86_avx_round_ps_256: |
| 5109 | case Intrinsic::x86_sse41_round_pd: |
| 5110 | case Intrinsic::x86_sse41_round_ps: |
| 5111 | handleRoundPdPsIntrinsic(I); |
| 5112 | break; |
| 5113 | |
| 5114 | case Intrinsic::x86_sse41_round_sd: |
| 5115 | case Intrinsic::x86_sse41_round_ss: |
| 5116 | handleUnarySdSsIntrinsic(I); |
| 5117 | break; |
| 5118 | |
| 5119 | case Intrinsic::x86_sse2_max_sd: |
| 5120 | case Intrinsic::x86_sse_max_ss: |
| 5121 | case Intrinsic::x86_sse2_min_sd: |
| 5122 | case Intrinsic::x86_sse_min_ss: |
| 5123 | handleBinarySdSsIntrinsic(I); |
| 5124 | break; |
| 5125 | |
| 5126 | case Intrinsic::x86_avx_vtestc_pd: |
| 5127 | case Intrinsic::x86_avx_vtestc_pd_256: |
| 5128 | case Intrinsic::x86_avx_vtestc_ps: |
| 5129 | case Intrinsic::x86_avx_vtestc_ps_256: |
| 5130 | case Intrinsic::x86_avx_vtestnzc_pd: |
| 5131 | case Intrinsic::x86_avx_vtestnzc_pd_256: |
| 5132 | case Intrinsic::x86_avx_vtestnzc_ps: |
| 5133 | case Intrinsic::x86_avx_vtestnzc_ps_256: |
| 5134 | case Intrinsic::x86_avx_vtestz_pd: |
| 5135 | case Intrinsic::x86_avx_vtestz_pd_256: |
| 5136 | case Intrinsic::x86_avx_vtestz_ps: |
| 5137 | case Intrinsic::x86_avx_vtestz_ps_256: |
| 5138 | case Intrinsic::x86_avx_ptestc_256: |
| 5139 | case Intrinsic::x86_avx_ptestnzc_256: |
| 5140 | case Intrinsic::x86_avx_ptestz_256: |
| 5141 | case Intrinsic::x86_sse41_ptestc: |
| 5142 | case Intrinsic::x86_sse41_ptestnzc: |
| 5143 | case Intrinsic::x86_sse41_ptestz: |
| 5144 | handleVtestIntrinsic(I); |
| 5145 | break; |
| 5146 | |
| 5147 | // Packed Horizontal Add/Subtract |
| 5148 | case Intrinsic::x86_ssse3_phadd_w: |
| 5149 | case Intrinsic::x86_ssse3_phadd_w_128: |
| 5150 | case Intrinsic::x86_avx2_phadd_w: |
| 5151 | case Intrinsic::x86_ssse3_phsub_w: |
| 5152 | case Intrinsic::x86_ssse3_phsub_w_128: |
| 5153 | case Intrinsic::x86_avx2_phsub_w: { |
| 5154 | handlePairwiseShadowOrIntrinsic(I, /*ReinterpretElemWidth=*/16); |
| 5155 | break; |
| 5156 | } |
| 5157 | |
| 5158 | // Packed Horizontal Add/Subtract |
| 5159 | case Intrinsic::x86_ssse3_phadd_d: |
| 5160 | case Intrinsic::x86_ssse3_phadd_d_128: |
| 5161 | case Intrinsic::x86_avx2_phadd_d: |
| 5162 | case Intrinsic::x86_ssse3_phsub_d: |
| 5163 | case Intrinsic::x86_ssse3_phsub_d_128: |
| 5164 | case Intrinsic::x86_avx2_phsub_d: { |
| 5165 | handlePairwiseShadowOrIntrinsic(I, /*ReinterpretElemWidth=*/32); |
| 5166 | break; |
| 5167 | } |
| 5168 | |
| 5169 | // Packed Horizontal Add/Subtract and Saturate |
| 5170 | case Intrinsic::x86_ssse3_phadd_sw: |
| 5171 | case Intrinsic::x86_ssse3_phadd_sw_128: |
| 5172 | case Intrinsic::x86_avx2_phadd_sw: |
| 5173 | case Intrinsic::x86_ssse3_phsub_sw: |
| 5174 | case Intrinsic::x86_ssse3_phsub_sw_128: |
| 5175 | case Intrinsic::x86_avx2_phsub_sw: { |
| 5176 | handlePairwiseShadowOrIntrinsic(I, /*ReinterpretElemWidth=*/16); |
| 5177 | break; |
| 5178 | } |
| 5179 | |
| 5180 | // Packed Single/Double Precision Floating-Point Horizontal Add |
| 5181 | case Intrinsic::x86_sse3_hadd_ps: |
| 5182 | case Intrinsic::x86_sse3_hadd_pd: |
| 5183 | case Intrinsic::x86_avx_hadd_pd_256: |
| 5184 | case Intrinsic::x86_avx_hadd_ps_256: |
| 5185 | case Intrinsic::x86_sse3_hsub_ps: |
| 5186 | case Intrinsic::x86_sse3_hsub_pd: |
| 5187 | case Intrinsic::x86_avx_hsub_pd_256: |
| 5188 | case Intrinsic::x86_avx_hsub_ps_256: { |
| 5189 | handlePairwiseShadowOrIntrinsic(I); |
| 5190 | break; |
| 5191 | } |
| 5192 | |
| 5193 | case Intrinsic::x86_avx_maskstore_ps: |
| 5194 | case Intrinsic::x86_avx_maskstore_pd: |
| 5195 | case Intrinsic::x86_avx_maskstore_ps_256: |
| 5196 | case Intrinsic::x86_avx_maskstore_pd_256: |
| 5197 | case Intrinsic::x86_avx2_maskstore_d: |
| 5198 | case Intrinsic::x86_avx2_maskstore_q: |
| 5199 | case Intrinsic::x86_avx2_maskstore_d_256: |
| 5200 | case Intrinsic::x86_avx2_maskstore_q_256: { |
| 5201 | handleAVXMaskedStore(I); |
| 5202 | break; |
| 5203 | } |
| 5204 | |
| 5205 | case Intrinsic::x86_avx_maskload_ps: |
| 5206 | case Intrinsic::x86_avx_maskload_pd: |
| 5207 | case Intrinsic::x86_avx_maskload_ps_256: |
| 5208 | case Intrinsic::x86_avx_maskload_pd_256: |
| 5209 | case Intrinsic::x86_avx2_maskload_d: |
| 5210 | case Intrinsic::x86_avx2_maskload_q: |
| 5211 | case Intrinsic::x86_avx2_maskload_d_256: |
| 5212 | case Intrinsic::x86_avx2_maskload_q_256: { |
| 5213 | handleAVXMaskedLoad(I); |
| 5214 | break; |
| 5215 | } |
| 5216 | |
| 5217 | // Packed |
| 5218 | case Intrinsic::x86_avx512fp16_add_ph_512: |
| 5219 | case Intrinsic::x86_avx512fp16_sub_ph_512: |
| 5220 | case Intrinsic::x86_avx512fp16_mul_ph_512: |
| 5221 | case Intrinsic::x86_avx512fp16_div_ph_512: |
| 5222 | case Intrinsic::x86_avx512fp16_max_ph_512: |
| 5223 | case Intrinsic::x86_avx512fp16_min_ph_512: |
| 5224 | case Intrinsic::x86_avx512_min_ps_512: |
| 5225 | case Intrinsic::x86_avx512_min_pd_512: |
| 5226 | case Intrinsic::x86_avx512_max_ps_512: |
| 5227 | case Intrinsic::x86_avx512_max_pd_512: { |
| 5228 | // These AVX512 variants contain the rounding mode as a trailing flag. |
| 5229 | // Earlier variants do not have a trailing flag and are already handled |
| 5230 | // by maybeHandleSimpleNomemIntrinsic(I, 0) via handleUnknownIntrinsic. |
| 5231 | [[maybe_unused]] bool Success = |
| 5232 | maybeHandleSimpleNomemIntrinsic(I, /*trailingFlags=*/1); |
| 5233 | assert(Success); |
| 5234 | break; |
| 5235 | } |
| 5236 | |
| 5237 | case Intrinsic::x86_avx_vpermilvar_pd: |
| 5238 | case Intrinsic::x86_avx_vpermilvar_pd_256: |
| 5239 | case Intrinsic::x86_avx512_vpermilvar_pd_512: |
| 5240 | case Intrinsic::x86_avx_vpermilvar_ps: |
| 5241 | case Intrinsic::x86_avx_vpermilvar_ps_256: |
| 5242 | case Intrinsic::x86_avx512_vpermilvar_ps_512: { |
| 5243 | handleAVXVpermilvar(I); |
| 5244 | break; |
| 5245 | } |
| 5246 | |
| 5247 | case Intrinsic::x86_avx512fp16_mask_add_sh_round: |
| 5248 | case Intrinsic::x86_avx512fp16_mask_sub_sh_round: |
| 5249 | case Intrinsic::x86_avx512fp16_mask_mul_sh_round: |
| 5250 | case Intrinsic::x86_avx512fp16_mask_div_sh_round: |
| 5251 | case Intrinsic::x86_avx512fp16_mask_max_sh_round: |
| 5252 | case Intrinsic::x86_avx512fp16_mask_min_sh_round: { |
| 5253 | visitGenericScalarHalfwordInst(I); |
| 5254 | break; |
| 5255 | } |
| 5256 | |
| 5257 | case Intrinsic::fshl: |
| 5258 | case Intrinsic::fshr: |
| 5259 | handleFunnelShift(I); |
| 5260 | break; |
| 5261 | |
| 5262 | case Intrinsic::is_constant: |
| 5263 | // The result of llvm.is.constant() is always defined. |
| 5264 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
| 5265 | setOrigin(V: &I, Origin: getCleanOrigin()); |
| 5266 | break; |
| 5267 | |
| 5268 | // TODO: handling max/min similarly to AND/OR may be more precise |
| 5269 | // Floating-Point Maximum/Minimum Pairwise |
| 5270 | case Intrinsic::aarch64_neon_fmaxp: |
| 5271 | case Intrinsic::aarch64_neon_fminp: |
| 5272 | // Floating-Point Maximum/Minimum Number Pairwise |
| 5273 | case Intrinsic::aarch64_neon_fmaxnmp: |
| 5274 | case Intrinsic::aarch64_neon_fminnmp: |
| 5275 | // Signed/Unsigned Maximum/Minimum Pairwise |
| 5276 | case Intrinsic::aarch64_neon_smaxp: |
| 5277 | case Intrinsic::aarch64_neon_sminp: |
| 5278 | case Intrinsic::aarch64_neon_umaxp: |
| 5279 | case Intrinsic::aarch64_neon_uminp: |
| 5280 | // Add Pairwise |
| 5281 | case Intrinsic::aarch64_neon_addp: |
| 5282 | // Floating-point Add Pairwise |
| 5283 | case Intrinsic::aarch64_neon_faddp: |
| 5284 | // Add Long Pairwise |
| 5285 | case Intrinsic::aarch64_neon_saddlp: |
| 5286 | case Intrinsic::aarch64_neon_uaddlp: { |
| 5287 | handlePairwiseShadowOrIntrinsic(I); |
| 5288 | break; |
| 5289 | } |
| 5290 | |
| 5291 | // Floating-point Convert to integer, rounding to nearest with ties to Away |
| 5292 | case Intrinsic::aarch64_neon_fcvtas: |
| 5293 | case Intrinsic::aarch64_neon_fcvtau: |
| 5294 | // Floating-point convert to integer, rounding toward minus infinity |
| 5295 | case Intrinsic::aarch64_neon_fcvtms: |
| 5296 | case Intrinsic::aarch64_neon_fcvtmu: |
| 5297 | // Floating-point convert to integer, rounding to nearest with ties to even |
| 5298 | case Intrinsic::aarch64_neon_fcvtns: |
| 5299 | case Intrinsic::aarch64_neon_fcvtnu: |
| 5300 | // Floating-point convert to integer, rounding toward plus infinity |
| 5301 | case Intrinsic::aarch64_neon_fcvtps: |
| 5302 | case Intrinsic::aarch64_neon_fcvtpu: |
| 5303 | // Floating-point Convert to integer, rounding toward Zero |
| 5304 | case Intrinsic::aarch64_neon_fcvtzs: |
| 5305 | case Intrinsic::aarch64_neon_fcvtzu: |
| 5306 | // Floating-point convert to lower precision narrow, rounding to odd |
| 5307 | case Intrinsic::aarch64_neon_fcvtxn: { |
| 5308 | handleNEONVectorConvertIntrinsic(I); |
| 5309 | break; |
| 5310 | } |
| 5311 | |
| 5312 | // Add reduction to scalar |
| 5313 | case Intrinsic::aarch64_neon_faddv: |
| 5314 | case Intrinsic::aarch64_neon_saddv: |
| 5315 | case Intrinsic::aarch64_neon_uaddv: |
| 5316 | // Signed/Unsigned min/max (Vector) |
| 5317 | // TODO: handling similarly to AND/OR may be more precise. |
| 5318 | case Intrinsic::aarch64_neon_smaxv: |
| 5319 | case Intrinsic::aarch64_neon_sminv: |
| 5320 | case Intrinsic::aarch64_neon_umaxv: |
| 5321 | case Intrinsic::aarch64_neon_uminv: |
| 5322 | // Floating-point min/max (vector) |
| 5323 | // The f{min,max}"nm"v variants handle NaN differently than f{min,max}v, |
| 5324 | // but our shadow propagation is the same. |
| 5325 | case Intrinsic::aarch64_neon_fmaxv: |
| 5326 | case Intrinsic::aarch64_neon_fminv: |
| 5327 | case Intrinsic::aarch64_neon_fmaxnmv: |
| 5328 | case Intrinsic::aarch64_neon_fminnmv: |
| 5329 | // Sum long across vector |
| 5330 | case Intrinsic::aarch64_neon_saddlv: |
| 5331 | case Intrinsic::aarch64_neon_uaddlv: |
| 5332 | handleVectorReduceIntrinsic(I, /*AllowShadowCast=*/true); |
| 5333 | break; |
| 5334 | |
| 5335 | case Intrinsic::aarch64_neon_ld1x2: |
| 5336 | case Intrinsic::aarch64_neon_ld1x3: |
| 5337 | case Intrinsic::aarch64_neon_ld1x4: |
| 5338 | case Intrinsic::aarch64_neon_ld2: |
| 5339 | case Intrinsic::aarch64_neon_ld3: |
| 5340 | case Intrinsic::aarch64_neon_ld4: |
| 5341 | case Intrinsic::aarch64_neon_ld2r: |
| 5342 | case Intrinsic::aarch64_neon_ld3r: |
| 5343 | case Intrinsic::aarch64_neon_ld4r: { |
| 5344 | handleNEONVectorLoad(I, /*WithLane=*/false); |
| 5345 | break; |
| 5346 | } |
| 5347 | |
| 5348 | case Intrinsic::aarch64_neon_ld2lane: |
| 5349 | case Intrinsic::aarch64_neon_ld3lane: |
| 5350 | case Intrinsic::aarch64_neon_ld4lane: { |
| 5351 | handleNEONVectorLoad(I, /*WithLane=*/true); |
| 5352 | break; |
| 5353 | } |
| 5354 | |
| 5355 | // Saturating extract narrow |
| 5356 | case Intrinsic::aarch64_neon_sqxtn: |
| 5357 | case Intrinsic::aarch64_neon_sqxtun: |
| 5358 | case Intrinsic::aarch64_neon_uqxtn: |
| 5359 | // These only have one argument, but we (ab)use handleShadowOr because it |
| 5360 | // does work on single argument intrinsics and will typecast the shadow |
| 5361 | // (and update the origin). |
| 5362 | handleShadowOr(I); |
| 5363 | break; |
| 5364 | |
| 5365 | case Intrinsic::aarch64_neon_st1x2: |
| 5366 | case Intrinsic::aarch64_neon_st1x3: |
| 5367 | case Intrinsic::aarch64_neon_st1x4: |
| 5368 | case Intrinsic::aarch64_neon_st2: |
| 5369 | case Intrinsic::aarch64_neon_st3: |
| 5370 | case Intrinsic::aarch64_neon_st4: { |
| 5371 | handleNEONVectorStoreIntrinsic(I, useLane: false); |
| 5372 | break; |
| 5373 | } |
| 5374 | |
| 5375 | case Intrinsic::aarch64_neon_st2lane: |
| 5376 | case Intrinsic::aarch64_neon_st3lane: |
| 5377 | case Intrinsic::aarch64_neon_st4lane: { |
| 5378 | handleNEONVectorStoreIntrinsic(I, useLane: true); |
| 5379 | break; |
| 5380 | } |
| 5381 | |
| 5382 | // Arm NEON vector table intrinsics have the source/table register(s) as |
| 5383 | // arguments, followed by the index register. They return the output. |
| 5384 | // |
| 5385 | // 'TBL writes a zero if an index is out-of-range, while TBX leaves the |
| 5386 | // original value unchanged in the destination register.' |
| 5387 | // Conveniently, zero denotes a clean shadow, which means out-of-range |
| 5388 | // indices for TBL will initialize the user data with zero and also clean |
| 5389 | // the shadow. (For TBX, neither the user data nor the shadow will be |
| 5390 | // updated, which is also correct.) |
| 5391 | case Intrinsic::aarch64_neon_tbl1: |
| 5392 | case Intrinsic::aarch64_neon_tbl2: |
| 5393 | case Intrinsic::aarch64_neon_tbl3: |
| 5394 | case Intrinsic::aarch64_neon_tbl4: |
| 5395 | case Intrinsic::aarch64_neon_tbx1: |
| 5396 | case Intrinsic::aarch64_neon_tbx2: |
| 5397 | case Intrinsic::aarch64_neon_tbx3: |
| 5398 | case Intrinsic::aarch64_neon_tbx4: { |
| 5399 | // The last trailing argument (index register) should be handled verbatim |
| 5400 | handleIntrinsicByApplyingToShadow( |
| 5401 | I, /*shadowIntrinsicID=*/I.getIntrinsicID(), |
| 5402 | /*trailingVerbatimArgs*/ 1); |
| 5403 | break; |
| 5404 | } |
| 5405 | |
| 5406 | case Intrinsic::aarch64_neon_fmulx: |
| 5407 | case Intrinsic::aarch64_neon_pmul: |
| 5408 | case Intrinsic::aarch64_neon_pmull: |
| 5409 | case Intrinsic::aarch64_neon_smull: |
| 5410 | case Intrinsic::aarch64_neon_pmull64: |
| 5411 | case Intrinsic::aarch64_neon_umull: { |
| 5412 | handleNEONVectorMultiplyIntrinsic(I); |
| 5413 | break; |
| 5414 | } |
| 5415 | |
| 5416 | case Intrinsic::scmp: |
| 5417 | case Intrinsic::ucmp: { |
| 5418 | handleShadowOr(I); |
| 5419 | break; |
| 5420 | } |
| 5421 | |
| 5422 | default: |
| 5423 | if (!handleUnknownIntrinsic(I)) |
| 5424 | visitInstruction(I); |
| 5425 | break; |
| 5426 | } |
| 5427 | } |
| 5428 | |
| 5429 | void visitLibAtomicLoad(CallBase &CB) { |
| 5430 | // Since we use getNextNode here, we can't have CB terminate the BB. |
| 5431 | assert(isa<CallInst>(CB)); |
| 5432 | |
| 5433 | IRBuilder<> IRB(&CB); |
| 5434 | Value *Size = CB.getArgOperand(i: 0); |
| 5435 | Value *SrcPtr = CB.getArgOperand(i: 1); |
| 5436 | Value *DstPtr = CB.getArgOperand(i: 2); |
| 5437 | Value *Ordering = CB.getArgOperand(i: 3); |
| 5438 | // Convert the call to have at least Acquire ordering to make sure |
| 5439 | // the shadow operations aren't reordered before it. |
| 5440 | Value *NewOrdering = |
| 5441 | IRB.CreateExtractElement(Vec: makeAddAcquireOrderingTable(IRB), Idx: Ordering); |
| 5442 | CB.setArgOperand(i: 3, v: NewOrdering); |
| 5443 | |
| 5444 | NextNodeIRBuilder NextIRB(&CB); |
| 5445 | Value *SrcShadowPtr, *SrcOriginPtr; |
| 5446 | std::tie(args&: SrcShadowPtr, args&: SrcOriginPtr) = |
| 5447 | getShadowOriginPtr(Addr: SrcPtr, IRB&: NextIRB, ShadowTy: NextIRB.getInt8Ty(), Alignment: Align(1), |
| 5448 | /*isStore*/ false); |
| 5449 | Value *DstShadowPtr = |
| 5450 | getShadowOriginPtr(Addr: DstPtr, IRB&: NextIRB, ShadowTy: NextIRB.getInt8Ty(), Alignment: Align(1), |
| 5451 | /*isStore*/ true) |
| 5452 | .first; |
| 5453 | |
| 5454 | NextIRB.CreateMemCpy(Dst: DstShadowPtr, DstAlign: Align(1), Src: SrcShadowPtr, SrcAlign: Align(1), Size); |
| 5455 | if (MS.TrackOrigins) { |
| 5456 | Value *SrcOrigin = NextIRB.CreateAlignedLoad(Ty: MS.OriginTy, Ptr: SrcOriginPtr, |
| 5457 | Align: kMinOriginAlignment); |
| 5458 | Value *NewOrigin = updateOrigin(V: SrcOrigin, IRB&: NextIRB); |
| 5459 | NextIRB.CreateCall(Callee: MS.MsanSetOriginFn, Args: {DstPtr, Size, NewOrigin}); |
| 5460 | } |
| 5461 | } |
| 5462 | |
| 5463 | void visitLibAtomicStore(CallBase &CB) { |
| 5464 | IRBuilder<> IRB(&CB); |
| 5465 | Value *Size = CB.getArgOperand(i: 0); |
| 5466 | Value *DstPtr = CB.getArgOperand(i: 2); |
| 5467 | Value *Ordering = CB.getArgOperand(i: 3); |
| 5468 | // Convert the call to have at least Release ordering to make sure |
| 5469 | // the shadow operations aren't reordered after it. |
| 5470 | Value *NewOrdering = |
| 5471 | IRB.CreateExtractElement(Vec: makeAddReleaseOrderingTable(IRB), Idx: Ordering); |
| 5472 | CB.setArgOperand(i: 3, v: NewOrdering); |
| 5473 | |
| 5474 | Value *DstShadowPtr = |
| 5475 | getShadowOriginPtr(Addr: DstPtr, IRB, ShadowTy: IRB.getInt8Ty(), Alignment: Align(1), |
| 5476 | /*isStore*/ true) |
| 5477 | .first; |
| 5478 | |
| 5479 | // Atomic store always paints clean shadow/origin. See file header. |
| 5480 | IRB.CreateMemSet(Ptr: DstShadowPtr, Val: getCleanShadow(OrigTy: IRB.getInt8Ty()), Size, |
| 5481 | Align: Align(1)); |
| 5482 | } |
| 5483 | |
| 5484 | void visitCallBase(CallBase &CB) { |
| 5485 | assert(!CB.getMetadata(LLVMContext::MD_nosanitize)); |
| 5486 | if (CB.isInlineAsm()) { |
| 5487 | // For inline asm (either a call to asm function, or callbr instruction), |
| 5488 | // do the usual thing: check argument shadow and mark all outputs as |
| 5489 | // clean. Note that any side effects of the inline asm that are not |
| 5490 | // immediately visible in its constraints are not handled. |
| 5491 | if (ClHandleAsmConservative) |
| 5492 | visitAsmInstruction(I&: CB); |
| 5493 | else |
| 5494 | visitInstruction(I&: CB); |
| 5495 | return; |
| 5496 | } |
| 5497 | LibFunc LF; |
| 5498 | if (TLI->getLibFunc(CB, F&: LF)) { |
| 5499 | // libatomic.a functions need to have special handling because there isn't |
| 5500 | // a good way to intercept them or compile the library with |
| 5501 | // instrumentation. |
| 5502 | switch (LF) { |
| 5503 | case LibFunc_atomic_load: |
| 5504 | if (!isa<CallInst>(Val: CB)) { |
| 5505 | llvm::errs() << "MSAN -- cannot instrument invoke of libatomic load." |
| 5506 | "Ignoring!\n" ; |
| 5507 | break; |
| 5508 | } |
| 5509 | visitLibAtomicLoad(CB); |
| 5510 | return; |
| 5511 | case LibFunc_atomic_store: |
| 5512 | visitLibAtomicStore(CB); |
| 5513 | return; |
| 5514 | default: |
| 5515 | break; |
| 5516 | } |
| 5517 | } |
| 5518 | |
| 5519 | if (auto *Call = dyn_cast<CallInst>(Val: &CB)) { |
| 5520 | assert(!isa<IntrinsicInst>(Call) && "intrinsics are handled elsewhere" ); |
| 5521 | |
| 5522 | // We are going to insert code that relies on the fact that the callee |
| 5523 | // will become a non-readonly function after it is instrumented by us. To |
| 5524 | // prevent this code from being optimized out, mark that function |
| 5525 | // non-readonly in advance. |
| 5526 | // TODO: We can likely do better than dropping memory() completely here. |
| 5527 | AttributeMask B; |
| 5528 | B.addAttribute(Val: Attribute::Memory).addAttribute(Val: Attribute::Speculatable); |
| 5529 | |
| 5530 | Call->removeFnAttrs(AttrsToRemove: B); |
| 5531 | if (Function *Func = Call->getCalledFunction()) { |
| 5532 | Func->removeFnAttrs(Attrs: B); |
| 5533 | } |
| 5534 | |
| 5535 | maybeMarkSanitizerLibraryCallNoBuiltin(CI: Call, TLI); |
| 5536 | } |
| 5537 | IRBuilder<> IRB(&CB); |
| 5538 | bool MayCheckCall = MS.EagerChecks; |
| 5539 | if (Function *Func = CB.getCalledFunction()) { |
| 5540 | // __sanitizer_unaligned_{load,store} functions may be called by users |
| 5541 | // and always expects shadows in the TLS. So don't check them. |
| 5542 | MayCheckCall &= !Func->getName().starts_with(Prefix: "__sanitizer_unaligned_" ); |
| 5543 | } |
| 5544 | |
| 5545 | unsigned ArgOffset = 0; |
| 5546 | LLVM_DEBUG(dbgs() << " CallSite: " << CB << "\n" ); |
| 5547 | for (const auto &[i, A] : llvm::enumerate(First: CB.args())) { |
| 5548 | if (!A->getType()->isSized()) { |
| 5549 | LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << CB << "\n" ); |
| 5550 | continue; |
| 5551 | } |
| 5552 | |
| 5553 | if (A->getType()->isScalableTy()) { |
| 5554 | LLVM_DEBUG(dbgs() << "Arg " << i << " is vscale: " << CB << "\n" ); |
| 5555 | // Handle as noundef, but don't reserve tls slots. |
| 5556 | insertShadowCheck(Val: A, OrigIns: &CB); |
| 5557 | continue; |
| 5558 | } |
| 5559 | |
| 5560 | unsigned Size = 0; |
| 5561 | const DataLayout &DL = F.getDataLayout(); |
| 5562 | |
| 5563 | bool ByVal = CB.paramHasAttr(ArgNo: i, Kind: Attribute::ByVal); |
| 5564 | bool NoUndef = CB.paramHasAttr(ArgNo: i, Kind: Attribute::NoUndef); |
| 5565 | bool EagerCheck = MayCheckCall && !ByVal && NoUndef; |
| 5566 | |
| 5567 | if (EagerCheck) { |
| 5568 | insertShadowCheck(Val: A, OrigIns: &CB); |
| 5569 | Size = DL.getTypeAllocSize(Ty: A->getType()); |
| 5570 | } else { |
| 5571 | [[maybe_unused]] Value *Store = nullptr; |
| 5572 | // Compute the Shadow for arg even if it is ByVal, because |
| 5573 | // in that case getShadow() will copy the actual arg shadow to |
| 5574 | // __msan_param_tls. |
| 5575 | Value *ArgShadow = getShadow(V: A); |
| 5576 | Value *ArgShadowBase = getShadowPtrForArgument(IRB, ArgOffset); |
| 5577 | LLVM_DEBUG(dbgs() << " Arg#" << i << ": " << *A |
| 5578 | << " Shadow: " << *ArgShadow << "\n" ); |
| 5579 | if (ByVal) { |
| 5580 | // ByVal requires some special handling as it's too big for a single |
| 5581 | // load |
| 5582 | assert(A->getType()->isPointerTy() && |
| 5583 | "ByVal argument is not a pointer!" ); |
| 5584 | Size = DL.getTypeAllocSize(Ty: CB.getParamByValType(ArgNo: i)); |
| 5585 | if (ArgOffset + Size > kParamTLSSize) |
| 5586 | break; |
| 5587 | const MaybeAlign ParamAlignment(CB.getParamAlign(ArgNo: i)); |
| 5588 | MaybeAlign Alignment = std::nullopt; |
| 5589 | if (ParamAlignment) |
| 5590 | Alignment = std::min(a: *ParamAlignment, b: kShadowTLSAlignment); |
| 5591 | Value *AShadowPtr, *AOriginPtr; |
| 5592 | std::tie(args&: AShadowPtr, args&: AOriginPtr) = |
| 5593 | getShadowOriginPtr(Addr: A, IRB, ShadowTy: IRB.getInt8Ty(), Alignment, |
| 5594 | /*isStore*/ false); |
| 5595 | if (!PropagateShadow) { |
| 5596 | Store = IRB.CreateMemSet(Ptr: ArgShadowBase, |
| 5597 | Val: Constant::getNullValue(Ty: IRB.getInt8Ty()), |
| 5598 | Size, Align: Alignment); |
| 5599 | } else { |
| 5600 | Store = IRB.CreateMemCpy(Dst: ArgShadowBase, DstAlign: Alignment, Src: AShadowPtr, |
| 5601 | SrcAlign: Alignment, Size); |
| 5602 | if (MS.TrackOrigins) { |
| 5603 | Value *ArgOriginBase = getOriginPtrForArgument(IRB, ArgOffset); |
| 5604 | // FIXME: OriginSize should be: |
| 5605 | // alignTo(A % kMinOriginAlignment + Size, kMinOriginAlignment) |
| 5606 | unsigned OriginSize = alignTo(Size, A: kMinOriginAlignment); |
| 5607 | IRB.CreateMemCpy( |
| 5608 | Dst: ArgOriginBase, |
| 5609 | /* by origin_tls[ArgOffset] */ DstAlign: kMinOriginAlignment, |
| 5610 | Src: AOriginPtr, |
| 5611 | /* by getShadowOriginPtr */ SrcAlign: kMinOriginAlignment, Size: OriginSize); |
| 5612 | } |
| 5613 | } |
| 5614 | } else { |
| 5615 | // Any other parameters mean we need bit-grained tracking of uninit |
| 5616 | // data |
| 5617 | Size = DL.getTypeAllocSize(Ty: A->getType()); |
| 5618 | if (ArgOffset + Size > kParamTLSSize) |
| 5619 | break; |
| 5620 | Store = IRB.CreateAlignedStore(Val: ArgShadow, Ptr: ArgShadowBase, |
| 5621 | Align: kShadowTLSAlignment); |
| 5622 | Constant *Cst = dyn_cast<Constant>(Val: ArgShadow); |
| 5623 | if (MS.TrackOrigins && !(Cst && Cst->isNullValue())) { |
| 5624 | IRB.CreateStore(Val: getOrigin(V: A), |
| 5625 | Ptr: getOriginPtrForArgument(IRB, ArgOffset)); |
| 5626 | } |
| 5627 | } |
| 5628 | assert(Store != nullptr); |
| 5629 | LLVM_DEBUG(dbgs() << " Param:" << *Store << "\n" ); |
| 5630 | } |
| 5631 | assert(Size != 0); |
| 5632 | ArgOffset += alignTo(Size, A: kShadowTLSAlignment); |
| 5633 | } |
| 5634 | LLVM_DEBUG(dbgs() << " done with call args\n" ); |
| 5635 | |
| 5636 | FunctionType *FT = CB.getFunctionType(); |
| 5637 | if (FT->isVarArg()) { |
| 5638 | VAHelper->visitCallBase(CB, IRB); |
| 5639 | } |
| 5640 | |
| 5641 | // Now, get the shadow for the RetVal. |
| 5642 | if (!CB.getType()->isSized()) |
| 5643 | return; |
| 5644 | // Don't emit the epilogue for musttail call returns. |
| 5645 | if (isa<CallInst>(Val: CB) && cast<CallInst>(Val&: CB).isMustTailCall()) |
| 5646 | return; |
| 5647 | |
| 5648 | if (MayCheckCall && CB.hasRetAttr(Kind: Attribute::NoUndef)) { |
| 5649 | setShadow(V: &CB, SV: getCleanShadow(V: &CB)); |
| 5650 | setOrigin(V: &CB, Origin: getCleanOrigin()); |
| 5651 | return; |
| 5652 | } |
| 5653 | |
| 5654 | IRBuilder<> IRBBefore(&CB); |
| 5655 | // Until we have full dynamic coverage, make sure the retval shadow is 0. |
| 5656 | Value *Base = getShadowPtrForRetval(IRB&: IRBBefore); |
| 5657 | IRBBefore.CreateAlignedStore(Val: getCleanShadow(V: &CB), Ptr: Base, |
| 5658 | Align: kShadowTLSAlignment); |
| 5659 | BasicBlock::iterator NextInsn; |
| 5660 | if (isa<CallInst>(Val: CB)) { |
| 5661 | NextInsn = ++CB.getIterator(); |
| 5662 | assert(NextInsn != CB.getParent()->end()); |
| 5663 | } else { |
| 5664 | BasicBlock *NormalDest = cast<InvokeInst>(Val&: CB).getNormalDest(); |
| 5665 | if (!NormalDest->getSinglePredecessor()) { |
| 5666 | // FIXME: this case is tricky, so we are just conservative here. |
| 5667 | // Perhaps we need to split the edge between this BB and NormalDest, |
| 5668 | // but a naive attempt to use SplitEdge leads to a crash. |
| 5669 | setShadow(V: &CB, SV: getCleanShadow(V: &CB)); |
| 5670 | setOrigin(V: &CB, Origin: getCleanOrigin()); |
| 5671 | return; |
| 5672 | } |
| 5673 | // FIXME: NextInsn is likely in a basic block that has not been visited |
| 5674 | // yet. Anything inserted there will be instrumented by MSan later! |
| 5675 | NextInsn = NormalDest->getFirstInsertionPt(); |
| 5676 | assert(NextInsn != NormalDest->end() && |
| 5677 | "Could not find insertion point for retval shadow load" ); |
| 5678 | } |
| 5679 | IRBuilder<> IRBAfter(&*NextInsn); |
| 5680 | Value *RetvalShadow = IRBAfter.CreateAlignedLoad( |
| 5681 | Ty: getShadowTy(V: &CB), Ptr: getShadowPtrForRetval(IRB&: IRBAfter), Align: kShadowTLSAlignment, |
| 5682 | Name: "_msret" ); |
| 5683 | setShadow(V: &CB, SV: RetvalShadow); |
| 5684 | if (MS.TrackOrigins) |
| 5685 | setOrigin(V: &CB, Origin: IRBAfter.CreateLoad(Ty: MS.OriginTy, Ptr: getOriginPtrForRetval())); |
| 5686 | } |
| 5687 | |
| 5688 | bool isAMustTailRetVal(Value *RetVal) { |
| 5689 | if (auto *I = dyn_cast<BitCastInst>(Val: RetVal)) { |
| 5690 | RetVal = I->getOperand(i_nocapture: 0); |
| 5691 | } |
| 5692 | if (auto *I = dyn_cast<CallInst>(Val: RetVal)) { |
| 5693 | return I->isMustTailCall(); |
| 5694 | } |
| 5695 | return false; |
| 5696 | } |
| 5697 | |
| 5698 | void visitReturnInst(ReturnInst &I) { |
| 5699 | IRBuilder<> IRB(&I); |
| 5700 | Value *RetVal = I.getReturnValue(); |
| 5701 | if (!RetVal) |
| 5702 | return; |
| 5703 | // Don't emit the epilogue for musttail call returns. |
| 5704 | if (isAMustTailRetVal(RetVal)) |
| 5705 | return; |
| 5706 | Value *ShadowPtr = getShadowPtrForRetval(IRB); |
| 5707 | bool HasNoUndef = F.hasRetAttribute(Kind: Attribute::NoUndef); |
| 5708 | bool StoreShadow = !(MS.EagerChecks && HasNoUndef); |
| 5709 | // FIXME: Consider using SpecialCaseList to specify a list of functions that |
| 5710 | // must always return fully initialized values. For now, we hardcode "main". |
| 5711 | bool EagerCheck = (MS.EagerChecks && HasNoUndef) || (F.getName() == "main" ); |
| 5712 | |
| 5713 | Value *Shadow = getShadow(V: RetVal); |
| 5714 | bool StoreOrigin = true; |
| 5715 | if (EagerCheck) { |
| 5716 | insertShadowCheck(Val: RetVal, OrigIns: &I); |
| 5717 | Shadow = getCleanShadow(V: RetVal); |
| 5718 | StoreOrigin = false; |
| 5719 | } |
| 5720 | |
| 5721 | // The caller may still expect information passed over TLS if we pass our |
| 5722 | // check |
| 5723 | if (StoreShadow) { |
| 5724 | IRB.CreateAlignedStore(Val: Shadow, Ptr: ShadowPtr, Align: kShadowTLSAlignment); |
| 5725 | if (MS.TrackOrigins && StoreOrigin) |
| 5726 | IRB.CreateStore(Val: getOrigin(V: RetVal), Ptr: getOriginPtrForRetval()); |
| 5727 | } |
| 5728 | } |
| 5729 | |
| 5730 | void visitPHINode(PHINode &I) { |
| 5731 | IRBuilder<> IRB(&I); |
| 5732 | if (!PropagateShadow) { |
| 5733 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
| 5734 | setOrigin(V: &I, Origin: getCleanOrigin()); |
| 5735 | return; |
| 5736 | } |
| 5737 | |
| 5738 | ShadowPHINodes.push_back(Elt: &I); |
| 5739 | setShadow(V: &I, SV: IRB.CreatePHI(Ty: getShadowTy(V: &I), NumReservedValues: I.getNumIncomingValues(), |
| 5740 | Name: "_msphi_s" )); |
| 5741 | if (MS.TrackOrigins) |
| 5742 | setOrigin( |
| 5743 | V: &I, Origin: IRB.CreatePHI(Ty: MS.OriginTy, NumReservedValues: I.getNumIncomingValues(), Name: "_msphi_o" )); |
| 5744 | } |
| 5745 | |
| 5746 | Value *getLocalVarIdptr(AllocaInst &I) { |
| 5747 | ConstantInt *IntConst = |
| 5748 | ConstantInt::get(Ty: Type::getInt32Ty(C&: (*F.getParent()).getContext()), V: 0); |
| 5749 | return new GlobalVariable(*F.getParent(), IntConst->getType(), |
| 5750 | /*isConstant=*/false, GlobalValue::PrivateLinkage, |
| 5751 | IntConst); |
| 5752 | } |
| 5753 | |
| 5754 | Value *getLocalVarDescription(AllocaInst &I) { |
| 5755 | return createPrivateConstGlobalForString(M&: *F.getParent(), Str: I.getName()); |
| 5756 | } |
| 5757 | |
| 5758 | void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { |
| 5759 | if (PoisonStack && ClPoisonStackWithCall) { |
| 5760 | IRB.CreateCall(Callee: MS.MsanPoisonStackFn, Args: {&I, Len}); |
| 5761 | } else { |
| 5762 | Value *ShadowBase, *OriginBase; |
| 5763 | std::tie(args&: ShadowBase, args&: OriginBase) = getShadowOriginPtr( |
| 5764 | Addr: &I, IRB, ShadowTy: IRB.getInt8Ty(), Alignment: Align(1), /*isStore*/ true); |
| 5765 | |
| 5766 | Value *PoisonValue = IRB.getInt8(C: PoisonStack ? ClPoisonStackPattern : 0); |
| 5767 | IRB.CreateMemSet(Ptr: ShadowBase, Val: PoisonValue, Size: Len, Align: I.getAlign()); |
| 5768 | } |
| 5769 | |
| 5770 | if (PoisonStack && MS.TrackOrigins) { |
| 5771 | Value *Idptr = getLocalVarIdptr(I); |
| 5772 | if (ClPrintStackNames) { |
| 5773 | Value *Descr = getLocalVarDescription(I); |
| 5774 | IRB.CreateCall(Callee: MS.MsanSetAllocaOriginWithDescriptionFn, |
| 5775 | Args: {&I, Len, Idptr, Descr}); |
| 5776 | } else { |
| 5777 | IRB.CreateCall(Callee: MS.MsanSetAllocaOriginNoDescriptionFn, Args: {&I, Len, Idptr}); |
| 5778 | } |
| 5779 | } |
| 5780 | } |
| 5781 | |
| 5782 | void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { |
| 5783 | Value *Descr = getLocalVarDescription(I); |
| 5784 | if (PoisonStack) { |
| 5785 | IRB.CreateCall(Callee: MS.MsanPoisonAllocaFn, Args: {&I, Len, Descr}); |
| 5786 | } else { |
| 5787 | IRB.CreateCall(Callee: MS.MsanUnpoisonAllocaFn, Args: {&I, Len}); |
| 5788 | } |
| 5789 | } |
| 5790 | |
| 5791 | void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) { |
| 5792 | if (!InsPoint) |
| 5793 | InsPoint = &I; |
| 5794 | NextNodeIRBuilder IRB(InsPoint); |
| 5795 | const DataLayout &DL = F.getDataLayout(); |
| 5796 | TypeSize TS = DL.getTypeAllocSize(Ty: I.getAllocatedType()); |
| 5797 | Value *Len = IRB.CreateTypeSize(Ty: MS.IntptrTy, Size: TS); |
| 5798 | if (I.isArrayAllocation()) |
| 5799 | Len = IRB.CreateMul(LHS: Len, |
| 5800 | RHS: IRB.CreateZExtOrTrunc(V: I.getArraySize(), DestTy: MS.IntptrTy)); |
| 5801 | |
| 5802 | if (MS.CompileKernel) |
| 5803 | poisonAllocaKmsan(I, IRB, Len); |
| 5804 | else |
| 5805 | poisonAllocaUserspace(I, IRB, Len); |
| 5806 | } |
| 5807 | |
| 5808 | void visitAllocaInst(AllocaInst &I) { |
| 5809 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
| 5810 | setOrigin(V: &I, Origin: getCleanOrigin()); |
| 5811 | // We'll get to this alloca later unless it's poisoned at the corresponding |
| 5812 | // llvm.lifetime.start. |
| 5813 | AllocaSet.insert(X: &I); |
| 5814 | } |
| 5815 | |
| 5816 | void visitSelectInst(SelectInst &I) { |
| 5817 | // a = select b, c, d |
| 5818 | Value *B = I.getCondition(); |
| 5819 | Value *C = I.getTrueValue(); |
| 5820 | Value *D = I.getFalseValue(); |
| 5821 | |
| 5822 | handleSelectLikeInst(I, B, C, D); |
| 5823 | } |
| 5824 | |
| 5825 | void handleSelectLikeInst(Instruction &I, Value *B, Value *C, Value *D) { |
| 5826 | IRBuilder<> IRB(&I); |
| 5827 | |
| 5828 | Value *Sb = getShadow(V: B); |
| 5829 | Value *Sc = getShadow(V: C); |
| 5830 | Value *Sd = getShadow(V: D); |
| 5831 | |
| 5832 | Value *Ob = MS.TrackOrigins ? getOrigin(V: B) : nullptr; |
| 5833 | Value *Oc = MS.TrackOrigins ? getOrigin(V: C) : nullptr; |
| 5834 | Value *Od = MS.TrackOrigins ? getOrigin(V: D) : nullptr; |
| 5835 | |
| 5836 | // Result shadow if condition shadow is 0. |
| 5837 | Value *Sa0 = IRB.CreateSelect(C: B, True: Sc, False: Sd); |
| 5838 | Value *Sa1; |
| 5839 | if (I.getType()->isAggregateType()) { |
| 5840 | // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do |
| 5841 | // an extra "select". This results in much more compact IR. |
| 5842 | // Sa = select Sb, poisoned, (select b, Sc, Sd) |
| 5843 | Sa1 = getPoisonedShadow(ShadowTy: getShadowTy(OrigTy: I.getType())); |
| 5844 | } else { |
| 5845 | // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ] |
| 5846 | // If Sb (condition is poisoned), look for bits in c and d that are equal |
| 5847 | // and both unpoisoned. |
| 5848 | // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd. |
| 5849 | |
| 5850 | // Cast arguments to shadow-compatible type. |
| 5851 | C = CreateAppToShadowCast(IRB, V: C); |
| 5852 | D = CreateAppToShadowCast(IRB, V: D); |
| 5853 | |
| 5854 | // Result shadow if condition shadow is 1. |
| 5855 | Sa1 = IRB.CreateOr(Ops: {IRB.CreateXor(LHS: C, RHS: D), Sc, Sd}); |
| 5856 | } |
| 5857 | Value *Sa = IRB.CreateSelect(C: Sb, True: Sa1, False: Sa0, Name: "_msprop_select" ); |
| 5858 | setShadow(V: &I, SV: Sa); |
| 5859 | if (MS.TrackOrigins) { |
| 5860 | // Origins are always i32, so any vector conditions must be flattened. |
| 5861 | // FIXME: consider tracking vector origins for app vectors? |
| 5862 | if (B->getType()->isVectorTy()) { |
| 5863 | B = convertToBool(V: B, IRB); |
| 5864 | Sb = convertToBool(V: Sb, IRB); |
| 5865 | } |
| 5866 | // a = select b, c, d |
| 5867 | // Oa = Sb ? Ob : (b ? Oc : Od) |
| 5868 | setOrigin(V: &I, Origin: IRB.CreateSelect(C: Sb, True: Ob, False: IRB.CreateSelect(C: B, True: Oc, False: Od))); |
| 5869 | } |
| 5870 | } |
| 5871 | |
| 5872 | void visitLandingPadInst(LandingPadInst &I) { |
| 5873 | // Do nothing. |
| 5874 | // See https://github.com/google/sanitizers/issues/504 |
| 5875 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
| 5876 | setOrigin(V: &I, Origin: getCleanOrigin()); |
| 5877 | } |
| 5878 | |
| 5879 | void visitCatchSwitchInst(CatchSwitchInst &I) { |
| 5880 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
| 5881 | setOrigin(V: &I, Origin: getCleanOrigin()); |
| 5882 | } |
| 5883 | |
| 5884 | void visitFuncletPadInst(FuncletPadInst &I) { |
| 5885 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
| 5886 | setOrigin(V: &I, Origin: getCleanOrigin()); |
| 5887 | } |
| 5888 | |
| 5889 | void visitGetElementPtrInst(GetElementPtrInst &I) { handleShadowOr(I); } |
| 5890 | |
| 5891 | void (ExtractValueInst &I) { |
| 5892 | IRBuilder<> IRB(&I); |
| 5893 | Value *Agg = I.getAggregateOperand(); |
| 5894 | LLVM_DEBUG(dbgs() << "ExtractValue: " << I << "\n" ); |
| 5895 | Value *AggShadow = getShadow(V: Agg); |
| 5896 | LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n" ); |
| 5897 | Value *ResShadow = IRB.CreateExtractValue(Agg: AggShadow, Idxs: I.getIndices()); |
| 5898 | LLVM_DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n" ); |
| 5899 | setShadow(V: &I, SV: ResShadow); |
| 5900 | setOriginForNaryOp(I); |
| 5901 | } |
| 5902 | |
| 5903 | void visitInsertValueInst(InsertValueInst &I) { |
| 5904 | IRBuilder<> IRB(&I); |
| 5905 | LLVM_DEBUG(dbgs() << "InsertValue: " << I << "\n" ); |
| 5906 | Value *AggShadow = getShadow(V: I.getAggregateOperand()); |
| 5907 | Value *InsShadow = getShadow(V: I.getInsertedValueOperand()); |
| 5908 | LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n" ); |
| 5909 | LLVM_DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n" ); |
| 5910 | Value *Res = IRB.CreateInsertValue(Agg: AggShadow, Val: InsShadow, Idxs: I.getIndices()); |
| 5911 | LLVM_DEBUG(dbgs() << " Res: " << *Res << "\n" ); |
| 5912 | setShadow(V: &I, SV: Res); |
| 5913 | setOriginForNaryOp(I); |
| 5914 | } |
| 5915 | |
| 5916 | void dumpInst(Instruction &I) { |
| 5917 | if (CallInst *CI = dyn_cast<CallInst>(Val: &I)) { |
| 5918 | errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n" ; |
| 5919 | } else { |
| 5920 | errs() << "ZZZ " << I.getOpcodeName() << "\n" ; |
| 5921 | } |
| 5922 | errs() << "QQQ " << I << "\n" ; |
| 5923 | } |
| 5924 | |
| 5925 | void visitResumeInst(ResumeInst &I) { |
| 5926 | LLVM_DEBUG(dbgs() << "Resume: " << I << "\n" ); |
| 5927 | // Nothing to do here. |
| 5928 | } |
| 5929 | |
| 5930 | void visitCleanupReturnInst(CleanupReturnInst &CRI) { |
| 5931 | LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n" ); |
| 5932 | // Nothing to do here. |
| 5933 | } |
| 5934 | |
| 5935 | void visitCatchReturnInst(CatchReturnInst &CRI) { |
| 5936 | LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n" ); |
| 5937 | // Nothing to do here. |
| 5938 | } |
| 5939 | |
| 5940 | void instrumentAsmArgument(Value *Operand, Type *ElemTy, Instruction &I, |
| 5941 | IRBuilder<> &IRB, const DataLayout &DL, |
| 5942 | bool isOutput) { |
| 5943 | // For each assembly argument, we check its value for being initialized. |
| 5944 | // If the argument is a pointer, we assume it points to a single element |
| 5945 | // of the corresponding type (or to a 8-byte word, if the type is unsized). |
| 5946 | // Each such pointer is instrumented with a call to the runtime library. |
| 5947 | Type *OpType = Operand->getType(); |
| 5948 | // Check the operand value itself. |
| 5949 | insertShadowCheck(Val: Operand, OrigIns: &I); |
| 5950 | if (!OpType->isPointerTy() || !isOutput) { |
| 5951 | assert(!isOutput); |
| 5952 | return; |
| 5953 | } |
| 5954 | if (!ElemTy->isSized()) |
| 5955 | return; |
| 5956 | auto Size = DL.getTypeStoreSize(Ty: ElemTy); |
| 5957 | Value *SizeVal = IRB.CreateTypeSize(Ty: MS.IntptrTy, Size); |
| 5958 | if (MS.CompileKernel) { |
| 5959 | IRB.CreateCall(Callee: MS.MsanInstrumentAsmStoreFn, Args: {Operand, SizeVal}); |
| 5960 | } else { |
| 5961 | // ElemTy, derived from elementtype(), does not encode the alignment of |
| 5962 | // the pointer. Conservatively assume that the shadow memory is unaligned. |
| 5963 | // When Size is large, avoid StoreInst as it would expand to many |
| 5964 | // instructions. |
| 5965 | auto [ShadowPtr, _] = |
| 5966 | getShadowOriginPtrUserspace(Addr: Operand, IRB, ShadowTy: IRB.getInt8Ty(), Alignment: Align(1)); |
| 5967 | if (Size <= 32) |
| 5968 | IRB.CreateAlignedStore(Val: getCleanShadow(OrigTy: ElemTy), Ptr: ShadowPtr, Align: Align(1)); |
| 5969 | else |
| 5970 | IRB.CreateMemSet(Ptr: ShadowPtr, Val: ConstantInt::getNullValue(Ty: IRB.getInt8Ty()), |
| 5971 | Size: SizeVal, Align: Align(1)); |
| 5972 | } |
| 5973 | } |
| 5974 | |
| 5975 | /// Get the number of output arguments returned by pointers. |
| 5976 | int getNumOutputArgs(InlineAsm *IA, CallBase *CB) { |
| 5977 | int NumRetOutputs = 0; |
| 5978 | int NumOutputs = 0; |
| 5979 | Type *RetTy = cast<Value>(Val: CB)->getType(); |
| 5980 | if (!RetTy->isVoidTy()) { |
| 5981 | // Register outputs are returned via the CallInst return value. |
| 5982 | auto *ST = dyn_cast<StructType>(Val: RetTy); |
| 5983 | if (ST) |
| 5984 | NumRetOutputs = ST->getNumElements(); |
| 5985 | else |
| 5986 | NumRetOutputs = 1; |
| 5987 | } |
| 5988 | InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); |
| 5989 | for (const InlineAsm::ConstraintInfo &Info : Constraints) { |
| 5990 | switch (Info.Type) { |
| 5991 | case InlineAsm::isOutput: |
| 5992 | NumOutputs++; |
| 5993 | break; |
| 5994 | default: |
| 5995 | break; |
| 5996 | } |
| 5997 | } |
| 5998 | return NumOutputs - NumRetOutputs; |
| 5999 | } |
| 6000 | |
| 6001 | void visitAsmInstruction(Instruction &I) { |
| 6002 | // Conservative inline assembly handling: check for poisoned shadow of |
| 6003 | // asm() arguments, then unpoison the result and all the memory locations |
| 6004 | // pointed to by those arguments. |
| 6005 | // An inline asm() statement in C++ contains lists of input and output |
| 6006 | // arguments used by the assembly code. These are mapped to operands of the |
| 6007 | // CallInst as follows: |
| 6008 | // - nR register outputs ("=r) are returned by value in a single structure |
| 6009 | // (SSA value of the CallInst); |
| 6010 | // - nO other outputs ("=m" and others) are returned by pointer as first |
| 6011 | // nO operands of the CallInst; |
| 6012 | // - nI inputs ("r", "m" and others) are passed to CallInst as the |
| 6013 | // remaining nI operands. |
| 6014 | // The total number of asm() arguments in the source is nR+nO+nI, and the |
| 6015 | // corresponding CallInst has nO+nI+1 operands (the last operand is the |
| 6016 | // function to be called). |
| 6017 | const DataLayout &DL = F.getDataLayout(); |
| 6018 | CallBase *CB = cast<CallBase>(Val: &I); |
| 6019 | IRBuilder<> IRB(&I); |
| 6020 | InlineAsm *IA = cast<InlineAsm>(Val: CB->getCalledOperand()); |
| 6021 | int OutputArgs = getNumOutputArgs(IA, CB); |
| 6022 | // The last operand of a CallInst is the function itself. |
| 6023 | int NumOperands = CB->getNumOperands() - 1; |
| 6024 | |
| 6025 | // Check input arguments. Doing so before unpoisoning output arguments, so |
| 6026 | // that we won't overwrite uninit values before checking them. |
| 6027 | for (int i = OutputArgs; i < NumOperands; i++) { |
| 6028 | Value *Operand = CB->getOperand(i_nocapture: i); |
| 6029 | instrumentAsmArgument(Operand, ElemTy: CB->getParamElementType(ArgNo: i), I, IRB, DL, |
| 6030 | /*isOutput*/ false); |
| 6031 | } |
| 6032 | // Unpoison output arguments. This must happen before the actual InlineAsm |
| 6033 | // call, so that the shadow for memory published in the asm() statement |
| 6034 | // remains valid. |
| 6035 | for (int i = 0; i < OutputArgs; i++) { |
| 6036 | Value *Operand = CB->getOperand(i_nocapture: i); |
| 6037 | instrumentAsmArgument(Operand, ElemTy: CB->getParamElementType(ArgNo: i), I, IRB, DL, |
| 6038 | /*isOutput*/ true); |
| 6039 | } |
| 6040 | |
| 6041 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
| 6042 | setOrigin(V: &I, Origin: getCleanOrigin()); |
| 6043 | } |
| 6044 | |
| 6045 | void visitFreezeInst(FreezeInst &I) { |
| 6046 | // Freeze always returns a fully defined value. |
| 6047 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
| 6048 | setOrigin(V: &I, Origin: getCleanOrigin()); |
| 6049 | } |
| 6050 | |
| 6051 | void visitInstruction(Instruction &I) { |
| 6052 | // Everything else: stop propagating and check for poisoned shadow. |
| 6053 | if (ClDumpStrictInstructions) |
| 6054 | dumpInst(I); |
| 6055 | LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n" ); |
| 6056 | for (size_t i = 0, n = I.getNumOperands(); i < n; i++) { |
| 6057 | Value *Operand = I.getOperand(i); |
| 6058 | if (Operand->getType()->isSized()) |
| 6059 | insertShadowCheck(Val: Operand, OrigIns: &I); |
| 6060 | } |
| 6061 | setShadow(V: &I, SV: getCleanShadow(V: &I)); |
| 6062 | setOrigin(V: &I, Origin: getCleanOrigin()); |
| 6063 | } |
| 6064 | }; |
| 6065 | |
| 6066 | struct VarArgHelperBase : public VarArgHelper { |
| 6067 | Function &F; |
| 6068 | MemorySanitizer &MS; |
| 6069 | MemorySanitizerVisitor &MSV; |
| 6070 | SmallVector<CallInst *, 16> VAStartInstrumentationList; |
| 6071 | const unsigned VAListTagSize; |
| 6072 | |
| 6073 | VarArgHelperBase(Function &F, MemorySanitizer &MS, |
| 6074 | MemorySanitizerVisitor &MSV, unsigned VAListTagSize) |
| 6075 | : F(F), MS(MS), MSV(MSV), VAListTagSize(VAListTagSize) {} |
| 6076 | |
| 6077 | Value *getShadowAddrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset) { |
| 6078 | Value *Base = IRB.CreatePointerCast(V: MS.VAArgTLS, DestTy: MS.IntptrTy); |
| 6079 | return IRB.CreateAdd(LHS: Base, RHS: ConstantInt::get(Ty: MS.IntptrTy, V: ArgOffset)); |
| 6080 | } |
| 6081 | |
| 6082 | /// Compute the shadow address for a given va_arg. |
| 6083 | Value *getShadowPtrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset) { |
| 6084 | Value *Base = IRB.CreatePointerCast(V: MS.VAArgTLS, DestTy: MS.IntptrTy); |
| 6085 | Base = IRB.CreateAdd(LHS: Base, RHS: ConstantInt::get(Ty: MS.IntptrTy, V: ArgOffset)); |
| 6086 | return IRB.CreateIntToPtr(V: Base, DestTy: MS.PtrTy, Name: "_msarg_va_s" ); |
| 6087 | } |
| 6088 | |
| 6089 | /// Compute the shadow address for a given va_arg. |
| 6090 | Value *getShadowPtrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset, |
| 6091 | unsigned ArgSize) { |
| 6092 | // Make sure we don't overflow __msan_va_arg_tls. |
| 6093 | if (ArgOffset + ArgSize > kParamTLSSize) |
| 6094 | return nullptr; |
| 6095 | return getShadowPtrForVAArgument(IRB, ArgOffset); |
| 6096 | } |
| 6097 | |
| 6098 | /// Compute the origin address for a given va_arg. |
| 6099 | Value *getOriginPtrForVAArgument(IRBuilder<> &IRB, int ArgOffset) { |
| 6100 | Value *Base = IRB.CreatePointerCast(V: MS.VAArgOriginTLS, DestTy: MS.IntptrTy); |
| 6101 | // getOriginPtrForVAArgument() is always called after |
| 6102 | // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never |
| 6103 | // overflow. |
| 6104 | Base = IRB.CreateAdd(LHS: Base, RHS: ConstantInt::get(Ty: MS.IntptrTy, V: ArgOffset)); |
| 6105 | return IRB.CreateIntToPtr(V: Base, DestTy: MS.PtrTy, Name: "_msarg_va_o" ); |
| 6106 | } |
| 6107 | |
| 6108 | void CleanUnusedTLS(IRBuilder<> &IRB, Value *ShadowBase, |
| 6109 | unsigned BaseOffset) { |
| 6110 | // The tails of __msan_va_arg_tls is not large enough to fit full |
| 6111 | // value shadow, but it will be copied to backup anyway. Make it |
| 6112 | // clean. |
| 6113 | if (BaseOffset >= kParamTLSSize) |
| 6114 | return; |
| 6115 | Value *TailSize = |
| 6116 | ConstantInt::getSigned(Ty: IRB.getInt32Ty(), V: kParamTLSSize - BaseOffset); |
| 6117 | IRB.CreateMemSet(Ptr: ShadowBase, Val: ConstantInt::getNullValue(Ty: IRB.getInt8Ty()), |
| 6118 | Size: TailSize, Align: Align(8)); |
| 6119 | } |
| 6120 | |
| 6121 | void unpoisonVAListTagForInst(IntrinsicInst &I) { |
| 6122 | IRBuilder<> IRB(&I); |
| 6123 | Value *VAListTag = I.getArgOperand(i: 0); |
| 6124 | const Align Alignment = Align(8); |
| 6125 | auto [ShadowPtr, OriginPtr] = MSV.getShadowOriginPtr( |
| 6126 | Addr: VAListTag, IRB, ShadowTy: IRB.getInt8Ty(), Alignment, /*isStore*/ true); |
| 6127 | // Unpoison the whole __va_list_tag. |
| 6128 | IRB.CreateMemSet(Ptr: ShadowPtr, Val: Constant::getNullValue(Ty: IRB.getInt8Ty()), |
| 6129 | Size: VAListTagSize, Align: Alignment, isVolatile: false); |
| 6130 | } |
| 6131 | |
| 6132 | void visitVAStartInst(VAStartInst &I) override { |
| 6133 | if (F.getCallingConv() == CallingConv::Win64) |
| 6134 | return; |
| 6135 | VAStartInstrumentationList.push_back(Elt: &I); |
| 6136 | unpoisonVAListTagForInst(I); |
| 6137 | } |
| 6138 | |
| 6139 | void visitVACopyInst(VACopyInst &I) override { |
| 6140 | if (F.getCallingConv() == CallingConv::Win64) |
| 6141 | return; |
| 6142 | unpoisonVAListTagForInst(I); |
| 6143 | } |
| 6144 | }; |
| 6145 | |
| 6146 | /// AMD64-specific implementation of VarArgHelper. |
| 6147 | struct VarArgAMD64Helper : public VarArgHelperBase { |
| 6148 | // An unfortunate workaround for asymmetric lowering of va_arg stuff. |
| 6149 | // See a comment in visitCallBase for more details. |
| 6150 | static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7 |
| 6151 | static const unsigned AMD64FpEndOffsetSSE = 176; |
| 6152 | // If SSE is disabled, fp_offset in va_list is zero. |
| 6153 | static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset; |
| 6154 | |
| 6155 | unsigned AMD64FpEndOffset; |
| 6156 | AllocaInst *VAArgTLSCopy = nullptr; |
| 6157 | AllocaInst *VAArgTLSOriginCopy = nullptr; |
| 6158 | Value *VAArgOverflowSize = nullptr; |
| 6159 | |
| 6160 | enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; |
| 6161 | |
| 6162 | VarArgAMD64Helper(Function &F, MemorySanitizer &MS, |
| 6163 | MemorySanitizerVisitor &MSV) |
| 6164 | : VarArgHelperBase(F, MS, MSV, /*VAListTagSize=*/24) { |
| 6165 | AMD64FpEndOffset = AMD64FpEndOffsetSSE; |
| 6166 | for (const auto &Attr : F.getAttributes().getFnAttrs()) { |
| 6167 | if (Attr.isStringAttribute() && |
| 6168 | (Attr.getKindAsString() == "target-features" )) { |
| 6169 | if (Attr.getValueAsString().contains(Other: "-sse" )) |
| 6170 | AMD64FpEndOffset = AMD64FpEndOffsetNoSSE; |
| 6171 | break; |
| 6172 | } |
| 6173 | } |
| 6174 | } |
| 6175 | |
| 6176 | ArgKind classifyArgument(Value *arg) { |
| 6177 | // A very rough approximation of X86_64 argument classification rules. |
| 6178 | Type *T = arg->getType(); |
| 6179 | if (T->isX86_FP80Ty()) |
| 6180 | return AK_Memory; |
| 6181 | if (T->isFPOrFPVectorTy()) |
| 6182 | return AK_FloatingPoint; |
| 6183 | if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) |
| 6184 | return AK_GeneralPurpose; |
| 6185 | if (T->isPointerTy()) |
| 6186 | return AK_GeneralPurpose; |
| 6187 | return AK_Memory; |
| 6188 | } |
| 6189 | |
| 6190 | // For VarArg functions, store the argument shadow in an ABI-specific format |
| 6191 | // that corresponds to va_list layout. |
| 6192 | // We do this because Clang lowers va_arg in the frontend, and this pass |
| 6193 | // only sees the low level code that deals with va_list internals. |
| 6194 | // A much easier alternative (provided that Clang emits va_arg instructions) |
| 6195 | // would have been to associate each live instance of va_list with a copy of |
| 6196 | // MSanParamTLS, and extract shadow on va_arg() call in the argument list |
| 6197 | // order. |
| 6198 | void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { |
| 6199 | unsigned GpOffset = 0; |
| 6200 | unsigned FpOffset = AMD64GpEndOffset; |
| 6201 | unsigned OverflowOffset = AMD64FpEndOffset; |
| 6202 | const DataLayout &DL = F.getDataLayout(); |
| 6203 | |
| 6204 | for (const auto &[ArgNo, A] : llvm::enumerate(First: CB.args())) { |
| 6205 | bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); |
| 6206 | bool IsByVal = CB.paramHasAttr(ArgNo, Kind: Attribute::ByVal); |
| 6207 | if (IsByVal) { |
| 6208 | // ByVal arguments always go to the overflow area. |
| 6209 | // Fixed arguments passed through the overflow area will be stepped |
| 6210 | // over by va_start, so don't count them towards the offset. |
| 6211 | if (IsFixed) |
| 6212 | continue; |
| 6213 | assert(A->getType()->isPointerTy()); |
| 6214 | Type *RealTy = CB.getParamByValType(ArgNo); |
| 6215 | uint64_t ArgSize = DL.getTypeAllocSize(Ty: RealTy); |
| 6216 | uint64_t AlignedSize = alignTo(Value: ArgSize, Align: 8); |
| 6217 | unsigned BaseOffset = OverflowOffset; |
| 6218 | Value *ShadowBase = getShadowPtrForVAArgument(IRB, ArgOffset: OverflowOffset); |
| 6219 | Value *OriginBase = nullptr; |
| 6220 | if (MS.TrackOrigins) |
| 6221 | OriginBase = getOriginPtrForVAArgument(IRB, ArgOffset: OverflowOffset); |
| 6222 | OverflowOffset += AlignedSize; |
| 6223 | |
| 6224 | if (OverflowOffset > kParamTLSSize) { |
| 6225 | CleanUnusedTLS(IRB, ShadowBase, BaseOffset); |
| 6226 | continue; // We have no space to copy shadow there. |
| 6227 | } |
| 6228 | |
| 6229 | Value *ShadowPtr, *OriginPtr; |
| 6230 | std::tie(args&: ShadowPtr, args&: OriginPtr) = |
| 6231 | MSV.getShadowOriginPtr(Addr: A, IRB, ShadowTy: IRB.getInt8Ty(), Alignment: kShadowTLSAlignment, |
| 6232 | /*isStore*/ false); |
| 6233 | IRB.CreateMemCpy(Dst: ShadowBase, DstAlign: kShadowTLSAlignment, Src: ShadowPtr, |
| 6234 | SrcAlign: kShadowTLSAlignment, Size: ArgSize); |
| 6235 | if (MS.TrackOrigins) |
| 6236 | IRB.CreateMemCpy(Dst: OriginBase, DstAlign: kShadowTLSAlignment, Src: OriginPtr, |
| 6237 | SrcAlign: kShadowTLSAlignment, Size: ArgSize); |
| 6238 | } else { |
| 6239 | ArgKind AK = classifyArgument(arg: A); |
| 6240 | if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset) |
| 6241 | AK = AK_Memory; |
| 6242 | if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset) |
| 6243 | AK = AK_Memory; |
| 6244 | Value *ShadowBase, *OriginBase = nullptr; |
| 6245 | switch (AK) { |
| 6246 | case AK_GeneralPurpose: |
| 6247 | ShadowBase = getShadowPtrForVAArgument(IRB, ArgOffset: GpOffset); |
| 6248 | if (MS.TrackOrigins) |
| 6249 | OriginBase = getOriginPtrForVAArgument(IRB, ArgOffset: GpOffset); |
| 6250 | GpOffset += 8; |
| 6251 | assert(GpOffset <= kParamTLSSize); |
| 6252 | break; |
| 6253 | case AK_FloatingPoint: |
| 6254 | ShadowBase = getShadowPtrForVAArgument(IRB, ArgOffset: FpOffset); |
| 6255 | if (MS.TrackOrigins) |
| 6256 | OriginBase = getOriginPtrForVAArgument(IRB, ArgOffset: FpOffset); |
| 6257 | FpOffset += 16; |
| 6258 | assert(FpOffset <= kParamTLSSize); |
| 6259 | break; |
| 6260 | case AK_Memory: |
| 6261 | if (IsFixed) |
| 6262 | continue; |
| 6263 | uint64_t ArgSize = DL.getTypeAllocSize(Ty: A->getType()); |
| 6264 | uint64_t AlignedSize = alignTo(Value: ArgSize, Align: 8); |
| 6265 | unsigned BaseOffset = OverflowOffset; |
| 6266 | ShadowBase = getShadowPtrForVAArgument(IRB, ArgOffset: OverflowOffset); |
| 6267 | if (MS.TrackOrigins) { |
| 6268 | OriginBase = getOriginPtrForVAArgument(IRB, ArgOffset: OverflowOffset); |
| 6269 | } |
| 6270 | OverflowOffset += AlignedSize; |
| 6271 | if (OverflowOffset > kParamTLSSize) { |
| 6272 | // We have no space to copy shadow there. |
| 6273 | CleanUnusedTLS(IRB, ShadowBase, BaseOffset); |
| 6274 | continue; |
| 6275 | } |
| 6276 | } |
| 6277 | // Take fixed arguments into account for GpOffset and FpOffset, |
| 6278 | // but don't actually store shadows for them. |
| 6279 | // TODO(glider): don't call get*PtrForVAArgument() for them. |
| 6280 | if (IsFixed) |
| 6281 | continue; |
| 6282 | Value *Shadow = MSV.getShadow(V: A); |
| 6283 | IRB.CreateAlignedStore(Val: Shadow, Ptr: ShadowBase, Align: kShadowTLSAlignment); |
| 6284 | if (MS.TrackOrigins) { |
| 6285 | Value *Origin = MSV.getOrigin(V: A); |
| 6286 | TypeSize StoreSize = DL.getTypeStoreSize(Ty: Shadow->getType()); |
| 6287 | MSV.paintOrigin(IRB, Origin, OriginPtr: OriginBase, TS: StoreSize, |
| 6288 | Alignment: std::max(a: kShadowTLSAlignment, b: kMinOriginAlignment)); |
| 6289 | } |
| 6290 | } |
| 6291 | } |
| 6292 | Constant *OverflowSize = |
| 6293 | ConstantInt::get(Ty: IRB.getInt64Ty(), V: OverflowOffset - AMD64FpEndOffset); |
| 6294 | IRB.CreateStore(Val: OverflowSize, Ptr: MS.VAArgOverflowSizeTLS); |
| 6295 | } |
| 6296 | |
| 6297 | void finalizeInstrumentation() override { |
| 6298 | assert(!VAArgOverflowSize && !VAArgTLSCopy && |
| 6299 | "finalizeInstrumentation called twice" ); |
| 6300 | if (!VAStartInstrumentationList.empty()) { |
| 6301 | // If there is a va_start in this function, make a backup copy of |
| 6302 | // va_arg_tls somewhere in the function entry block. |
| 6303 | IRBuilder<> IRB(MSV.FnPrologueEnd); |
| 6304 | VAArgOverflowSize = |
| 6305 | IRB.CreateLoad(Ty: IRB.getInt64Ty(), Ptr: MS.VAArgOverflowSizeTLS); |
| 6306 | Value *CopySize = IRB.CreateAdd( |
| 6307 | LHS: ConstantInt::get(Ty: MS.IntptrTy, V: AMD64FpEndOffset), RHS: VAArgOverflowSize); |
| 6308 | VAArgTLSCopy = IRB.CreateAlloca(Ty: Type::getInt8Ty(C&: *MS.C), ArraySize: CopySize); |
| 6309 | VAArgTLSCopy->setAlignment(kShadowTLSAlignment); |
| 6310 | IRB.CreateMemSet(Ptr: VAArgTLSCopy, Val: Constant::getNullValue(Ty: IRB.getInt8Ty()), |
| 6311 | Size: CopySize, Align: kShadowTLSAlignment, isVolatile: false); |
| 6312 | |
| 6313 | Value *SrcSize = IRB.CreateBinaryIntrinsic( |
| 6314 | ID: Intrinsic::umin, LHS: CopySize, |
| 6315 | RHS: ConstantInt::get(Ty: MS.IntptrTy, V: kParamTLSSize)); |
| 6316 | IRB.CreateMemCpy(Dst: VAArgTLSCopy, DstAlign: kShadowTLSAlignment, Src: MS.VAArgTLS, |
| 6317 | SrcAlign: kShadowTLSAlignment, Size: SrcSize); |
| 6318 | if (MS.TrackOrigins) { |
| 6319 | VAArgTLSOriginCopy = IRB.CreateAlloca(Ty: Type::getInt8Ty(C&: *MS.C), ArraySize: CopySize); |
| 6320 | VAArgTLSOriginCopy->setAlignment(kShadowTLSAlignment); |
| 6321 | IRB.CreateMemCpy(Dst: VAArgTLSOriginCopy, DstAlign: kShadowTLSAlignment, |
| 6322 | Src: MS.VAArgOriginTLS, SrcAlign: kShadowTLSAlignment, Size: SrcSize); |
| 6323 | } |
| 6324 | } |
| 6325 | |
| 6326 | // Instrument va_start. |
| 6327 | // Copy va_list shadow from the backup copy of the TLS contents. |
| 6328 | for (CallInst *OrigInst : VAStartInstrumentationList) { |
| 6329 | NextNodeIRBuilder IRB(OrigInst); |
| 6330 | Value *VAListTag = OrigInst->getArgOperand(i: 0); |
| 6331 | |
| 6332 | Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( |
| 6333 | V: IRB.CreateAdd(LHS: IRB.CreatePtrToInt(V: VAListTag, DestTy: MS.IntptrTy), |
| 6334 | RHS: ConstantInt::get(Ty: MS.IntptrTy, V: 16)), |
| 6335 | DestTy: MS.PtrTy); |
| 6336 | Value *RegSaveAreaPtr = IRB.CreateLoad(Ty: MS.PtrTy, Ptr: RegSaveAreaPtrPtr); |
| 6337 | Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; |
| 6338 | const Align Alignment = Align(16); |
| 6339 | std::tie(args&: RegSaveAreaShadowPtr, args&: RegSaveAreaOriginPtr) = |
| 6340 | MSV.getShadowOriginPtr(Addr: RegSaveAreaPtr, IRB, ShadowTy: IRB.getInt8Ty(), |
| 6341 | Alignment, /*isStore*/ true); |
| 6342 | IRB.CreateMemCpy(Dst: RegSaveAreaShadowPtr, DstAlign: Alignment, Src: VAArgTLSCopy, SrcAlign: Alignment, |
| 6343 | Size: AMD64FpEndOffset); |
| 6344 | if (MS.TrackOrigins) |
| 6345 | IRB.CreateMemCpy(Dst: RegSaveAreaOriginPtr, DstAlign: Alignment, Src: VAArgTLSOriginCopy, |
| 6346 | SrcAlign: Alignment, Size: AMD64FpEndOffset); |
| 6347 | Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( |
| 6348 | V: IRB.CreateAdd(LHS: IRB.CreatePtrToInt(V: VAListTag, DestTy: MS.IntptrTy), |
| 6349 | RHS: ConstantInt::get(Ty: MS.IntptrTy, V: 8)), |
| 6350 | DestTy: MS.PtrTy); |
| 6351 | Value *OverflowArgAreaPtr = |
| 6352 | IRB.CreateLoad(Ty: MS.PtrTy, Ptr: OverflowArgAreaPtrPtr); |
| 6353 | Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; |
| 6354 | std::tie(args&: OverflowArgAreaShadowPtr, args&: OverflowArgAreaOriginPtr) = |
| 6355 | MSV.getShadowOriginPtr(Addr: OverflowArgAreaPtr, IRB, ShadowTy: IRB.getInt8Ty(), |
| 6356 | Alignment, /*isStore*/ true); |
| 6357 | Value *SrcPtr = IRB.CreateConstGEP1_32(Ty: IRB.getInt8Ty(), Ptr: VAArgTLSCopy, |
| 6358 | Idx0: AMD64FpEndOffset); |
| 6359 | IRB.CreateMemCpy(Dst: OverflowArgAreaShadowPtr, DstAlign: Alignment, Src: SrcPtr, SrcAlign: Alignment, |
| 6360 | Size: VAArgOverflowSize); |
| 6361 | if (MS.TrackOrigins) { |
| 6362 | SrcPtr = IRB.CreateConstGEP1_32(Ty: IRB.getInt8Ty(), Ptr: VAArgTLSOriginCopy, |
| 6363 | Idx0: AMD64FpEndOffset); |
| 6364 | IRB.CreateMemCpy(Dst: OverflowArgAreaOriginPtr, DstAlign: Alignment, Src: SrcPtr, SrcAlign: Alignment, |
| 6365 | Size: VAArgOverflowSize); |
| 6366 | } |
| 6367 | } |
| 6368 | } |
| 6369 | }; |
| 6370 | |
| 6371 | /// AArch64-specific implementation of VarArgHelper. |
| 6372 | struct VarArgAArch64Helper : public VarArgHelperBase { |
| 6373 | static const unsigned kAArch64GrArgSize = 64; |
| 6374 | static const unsigned kAArch64VrArgSize = 128; |
| 6375 | |
| 6376 | static const unsigned AArch64GrBegOffset = 0; |
| 6377 | static const unsigned AArch64GrEndOffset = kAArch64GrArgSize; |
| 6378 | // Make VR space aligned to 16 bytes. |
| 6379 | static const unsigned AArch64VrBegOffset = AArch64GrEndOffset; |
| 6380 | static const unsigned AArch64VrEndOffset = |
| 6381 | AArch64VrBegOffset + kAArch64VrArgSize; |
| 6382 | static const unsigned AArch64VAEndOffset = AArch64VrEndOffset; |
| 6383 | |
| 6384 | AllocaInst *VAArgTLSCopy = nullptr; |
| 6385 | Value *VAArgOverflowSize = nullptr; |
| 6386 | |
| 6387 | enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; |
| 6388 | |
| 6389 | VarArgAArch64Helper(Function &F, MemorySanitizer &MS, |
| 6390 | MemorySanitizerVisitor &MSV) |
| 6391 | : VarArgHelperBase(F, MS, MSV, /*VAListTagSize=*/32) {} |
| 6392 | |
| 6393 | // A very rough approximation of aarch64 argument classification rules. |
| 6394 | std::pair<ArgKind, uint64_t> classifyArgument(Type *T) { |
| 6395 | if (T->isIntOrPtrTy() && T->getPrimitiveSizeInBits() <= 64) |
| 6396 | return {AK_GeneralPurpose, 1}; |
| 6397 | if (T->isFloatingPointTy() && T->getPrimitiveSizeInBits() <= 128) |
| 6398 | return {AK_FloatingPoint, 1}; |
| 6399 | |
| 6400 | if (T->isArrayTy()) { |
| 6401 | auto R = classifyArgument(T: T->getArrayElementType()); |
| 6402 | R.second *= T->getScalarType()->getArrayNumElements(); |
| 6403 | return R; |
| 6404 | } |
| 6405 | |
| 6406 | if (const FixedVectorType *FV = dyn_cast<FixedVectorType>(Val: T)) { |
| 6407 | auto R = classifyArgument(T: FV->getScalarType()); |
| 6408 | R.second *= FV->getNumElements(); |
| 6409 | return R; |
| 6410 | } |
| 6411 | |
| 6412 | LLVM_DEBUG(errs() << "Unknown vararg type: " << *T << "\n" ); |
| 6413 | return {AK_Memory, 0}; |
| 6414 | } |
| 6415 | |
| 6416 | // The instrumentation stores the argument shadow in a non ABI-specific |
| 6417 | // format because it does not know which argument is named (since Clang, |
| 6418 | // like x86_64 case, lowers the va_args in the frontend and this pass only |
| 6419 | // sees the low level code that deals with va_list internals). |
| 6420 | // The first seven GR registers are saved in the first 56 bytes of the |
| 6421 | // va_arg tls arra, followed by the first 8 FP/SIMD registers, and then |
| 6422 | // the remaining arguments. |
| 6423 | // Using constant offset within the va_arg TLS array allows fast copy |
| 6424 | // in the finalize instrumentation. |
| 6425 | void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { |
| 6426 | unsigned GrOffset = AArch64GrBegOffset; |
| 6427 | unsigned VrOffset = AArch64VrBegOffset; |
| 6428 | unsigned OverflowOffset = AArch64VAEndOffset; |
| 6429 | |
| 6430 | const DataLayout &DL = F.getDataLayout(); |
| 6431 | for (const auto &[ArgNo, A] : llvm::enumerate(First: CB.args())) { |
| 6432 | bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); |
| 6433 | auto [AK, RegNum] = classifyArgument(T: A->getType()); |
| 6434 | if (AK == AK_GeneralPurpose && |
| 6435 | (GrOffset + RegNum * 8) > AArch64GrEndOffset) |
| 6436 | AK = AK_Memory; |
| 6437 | if (AK == AK_FloatingPoint && |
| 6438 | (VrOffset + RegNum * 16) > AArch64VrEndOffset) |
| 6439 | AK = AK_Memory; |
| 6440 | Value *Base; |
| 6441 | switch (AK) { |
| 6442 | case AK_GeneralPurpose: |
| 6443 | Base = getShadowPtrForVAArgument(IRB, ArgOffset: GrOffset); |
| 6444 | GrOffset += 8 * RegNum; |
| 6445 | break; |
| 6446 | case AK_FloatingPoint: |
| 6447 | Base = getShadowPtrForVAArgument(IRB, ArgOffset: VrOffset); |
| 6448 | VrOffset += 16 * RegNum; |
| 6449 | break; |
| 6450 | case AK_Memory: |
| 6451 | // Don't count fixed arguments in the overflow area - va_start will |
| 6452 | // skip right over them. |
| 6453 | if (IsFixed) |
| 6454 | continue; |
| 6455 | uint64_t ArgSize = DL.getTypeAllocSize(Ty: A->getType()); |
| 6456 | uint64_t AlignedSize = alignTo(Value: ArgSize, Align: 8); |
| 6457 | unsigned BaseOffset = OverflowOffset; |
| 6458 | Base = getShadowPtrForVAArgument(IRB, ArgOffset: BaseOffset); |
| 6459 | OverflowOffset += AlignedSize; |
| 6460 | if (OverflowOffset > kParamTLSSize) { |
| 6461 | // We have no space to copy shadow there. |
| 6462 | CleanUnusedTLS(IRB, ShadowBase: Base, BaseOffset); |
| 6463 | continue; |
| 6464 | } |
| 6465 | break; |
| 6466 | } |
| 6467 | // Count Gp/Vr fixed arguments to their respective offsets, but don't |
| 6468 | // bother to actually store a shadow. |
| 6469 | if (IsFixed) |
| 6470 | continue; |
| 6471 | IRB.CreateAlignedStore(Val: MSV.getShadow(V: A), Ptr: Base, Align: kShadowTLSAlignment); |
| 6472 | } |
| 6473 | Constant *OverflowSize = |
| 6474 | ConstantInt::get(Ty: IRB.getInt64Ty(), V: OverflowOffset - AArch64VAEndOffset); |
| 6475 | IRB.CreateStore(Val: OverflowSize, Ptr: MS.VAArgOverflowSizeTLS); |
| 6476 | } |
| 6477 | |
| 6478 | // Retrieve a va_list field of 'void*' size. |
| 6479 | Value *getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) { |
| 6480 | Value *SaveAreaPtrPtr = IRB.CreateIntToPtr( |
| 6481 | V: IRB.CreateAdd(LHS: IRB.CreatePtrToInt(V: VAListTag, DestTy: MS.IntptrTy), |
| 6482 | RHS: ConstantInt::get(Ty: MS.IntptrTy, V: offset)), |
| 6483 | DestTy: MS.PtrTy); |
| 6484 | return IRB.CreateLoad(Ty: Type::getInt64Ty(C&: *MS.C), Ptr: SaveAreaPtrPtr); |
| 6485 | } |
| 6486 | |
| 6487 | // Retrieve a va_list field of 'int' size. |
| 6488 | Value *getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) { |
| 6489 | Value *SaveAreaPtr = IRB.CreateIntToPtr( |
| 6490 | V: IRB.CreateAdd(LHS: IRB.CreatePtrToInt(V: VAListTag, DestTy: MS.IntptrTy), |
| 6491 | RHS: ConstantInt::get(Ty: MS.IntptrTy, V: offset)), |
| 6492 | DestTy: MS.PtrTy); |
| 6493 | Value *SaveArea32 = IRB.CreateLoad(Ty: IRB.getInt32Ty(), Ptr: SaveAreaPtr); |
| 6494 | return IRB.CreateSExt(V: SaveArea32, DestTy: MS.IntptrTy); |
| 6495 | } |
| 6496 | |
| 6497 | void finalizeInstrumentation() override { |
| 6498 | assert(!VAArgOverflowSize && !VAArgTLSCopy && |
| 6499 | "finalizeInstrumentation called twice" ); |
| 6500 | if (!VAStartInstrumentationList.empty()) { |
| 6501 | // If there is a va_start in this function, make a backup copy of |
| 6502 | // va_arg_tls somewhere in the function entry block. |
| 6503 | IRBuilder<> IRB(MSV.FnPrologueEnd); |
| 6504 | VAArgOverflowSize = |
| 6505 | IRB.CreateLoad(Ty: IRB.getInt64Ty(), Ptr: MS.VAArgOverflowSizeTLS); |
| 6506 | Value *CopySize = IRB.CreateAdd( |
| 6507 | LHS: ConstantInt::get(Ty: MS.IntptrTy, V: AArch64VAEndOffset), RHS: VAArgOverflowSize); |
| 6508 | VAArgTLSCopy = IRB.CreateAlloca(Ty: Type::getInt8Ty(C&: *MS.C), ArraySize: CopySize); |
| 6509 | VAArgTLSCopy->setAlignment(kShadowTLSAlignment); |
| 6510 | IRB.CreateMemSet(Ptr: VAArgTLSCopy, Val: Constant::getNullValue(Ty: IRB.getInt8Ty()), |
| 6511 | Size: CopySize, Align: kShadowTLSAlignment, isVolatile: false); |
| 6512 | |
| 6513 | Value *SrcSize = IRB.CreateBinaryIntrinsic( |
| 6514 | ID: Intrinsic::umin, LHS: CopySize, |
| 6515 | RHS: ConstantInt::get(Ty: MS.IntptrTy, V: kParamTLSSize)); |
| 6516 | IRB.CreateMemCpy(Dst: VAArgTLSCopy, DstAlign: kShadowTLSAlignment, Src: MS.VAArgTLS, |
| 6517 | SrcAlign: kShadowTLSAlignment, Size: SrcSize); |
| 6518 | } |
| 6519 | |
| 6520 | Value *GrArgSize = ConstantInt::get(Ty: MS.IntptrTy, V: kAArch64GrArgSize); |
| 6521 | Value *VrArgSize = ConstantInt::get(Ty: MS.IntptrTy, V: kAArch64VrArgSize); |
| 6522 | |
| 6523 | // Instrument va_start, copy va_list shadow from the backup copy of |
| 6524 | // the TLS contents. |
| 6525 | for (CallInst *OrigInst : VAStartInstrumentationList) { |
| 6526 | NextNodeIRBuilder IRB(OrigInst); |
| 6527 | |
| 6528 | Value *VAListTag = OrigInst->getArgOperand(i: 0); |
| 6529 | |
| 6530 | // The variadic ABI for AArch64 creates two areas to save the incoming |
| 6531 | // argument registers (one for 64-bit general register xn-x7 and another |
| 6532 | // for 128-bit FP/SIMD vn-v7). |
| 6533 | // We need then to propagate the shadow arguments on both regions |
| 6534 | // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'. |
| 6535 | // The remaining arguments are saved on shadow for 'va::stack'. |
| 6536 | // One caveat is it requires only to propagate the non-named arguments, |
| 6537 | // however on the call site instrumentation 'all' the arguments are |
| 6538 | // saved. So to copy the shadow values from the va_arg TLS array |
| 6539 | // we need to adjust the offset for both GR and VR fields based on |
| 6540 | // the __{gr,vr}_offs value (since they are stores based on incoming |
| 6541 | // named arguments). |
| 6542 | Type *RegSaveAreaPtrTy = IRB.getPtrTy(); |
| 6543 | |
| 6544 | // Read the stack pointer from the va_list. |
| 6545 | Value *StackSaveAreaPtr = |
| 6546 | IRB.CreateIntToPtr(V: getVAField64(IRB, VAListTag, offset: 0), DestTy: RegSaveAreaPtrTy); |
| 6547 | |
| 6548 | // Read both the __gr_top and __gr_off and add them up. |
| 6549 | Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, offset: 8); |
| 6550 | Value *GrOffSaveArea = getVAField32(IRB, VAListTag, offset: 24); |
| 6551 | |
| 6552 | Value *GrRegSaveAreaPtr = IRB.CreateIntToPtr( |
| 6553 | V: IRB.CreateAdd(LHS: GrTopSaveAreaPtr, RHS: GrOffSaveArea), DestTy: RegSaveAreaPtrTy); |
| 6554 | |
| 6555 | // Read both the __vr_top and __vr_off and add them up. |
| 6556 | Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, offset: 16); |
| 6557 | Value *VrOffSaveArea = getVAField32(IRB, VAListTag, offset: 28); |
| 6558 | |
| 6559 | Value *VrRegSaveAreaPtr = IRB.CreateIntToPtr( |
| 6560 | V: IRB.CreateAdd(LHS: VrTopSaveAreaPtr, RHS: VrOffSaveArea), DestTy: RegSaveAreaPtrTy); |
| 6561 | |
| 6562 | // It does not know how many named arguments is being used and, on the |
| 6563 | // callsite all the arguments were saved. Since __gr_off is defined as |
| 6564 | // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic |
| 6565 | // argument by ignoring the bytes of shadow from named arguments. |
| 6566 | Value *GrRegSaveAreaShadowPtrOff = |
| 6567 | IRB.CreateAdd(LHS: GrArgSize, RHS: GrOffSaveArea); |
| 6568 | |
| 6569 | Value *GrRegSaveAreaShadowPtr = |
| 6570 | MSV.getShadowOriginPtr(Addr: GrRegSaveAreaPtr, IRB, ShadowTy: IRB.getInt8Ty(), |
| 6571 | Alignment: Align(8), /*isStore*/ true) |
| 6572 | .first; |
| 6573 | |
| 6574 | Value *GrSrcPtr = |
| 6575 | IRB.CreateInBoundsPtrAdd(Ptr: VAArgTLSCopy, Offset: GrRegSaveAreaShadowPtrOff); |
| 6576 | Value *GrCopySize = IRB.CreateSub(LHS: GrArgSize, RHS: GrRegSaveAreaShadowPtrOff); |
| 6577 | |
| 6578 | IRB.CreateMemCpy(Dst: GrRegSaveAreaShadowPtr, DstAlign: Align(8), Src: GrSrcPtr, SrcAlign: Align(8), |
| 6579 | Size: GrCopySize); |
| 6580 | |
| 6581 | // Again, but for FP/SIMD values. |
| 6582 | Value *VrRegSaveAreaShadowPtrOff = |
| 6583 | IRB.CreateAdd(LHS: VrArgSize, RHS: VrOffSaveArea); |
| 6584 | |
| 6585 | Value *VrRegSaveAreaShadowPtr = |
| 6586 | MSV.getShadowOriginPtr(Addr: VrRegSaveAreaPtr, IRB, ShadowTy: IRB.getInt8Ty(), |
| 6587 | Alignment: Align(8), /*isStore*/ true) |
| 6588 | .first; |
| 6589 | |
| 6590 | Value *VrSrcPtr = IRB.CreateInBoundsPtrAdd( |
| 6591 | Ptr: IRB.CreateInBoundsPtrAdd(Ptr: VAArgTLSCopy, |
| 6592 | Offset: IRB.getInt32(C: AArch64VrBegOffset)), |
| 6593 | Offset: VrRegSaveAreaShadowPtrOff); |
| 6594 | Value *VrCopySize = IRB.CreateSub(LHS: VrArgSize, RHS: VrRegSaveAreaShadowPtrOff); |
| 6595 | |
| 6596 | IRB.CreateMemCpy(Dst: VrRegSaveAreaShadowPtr, DstAlign: Align(8), Src: VrSrcPtr, SrcAlign: Align(8), |
| 6597 | Size: VrCopySize); |
| 6598 | |
| 6599 | // And finally for remaining arguments. |
| 6600 | Value *StackSaveAreaShadowPtr = |
| 6601 | MSV.getShadowOriginPtr(Addr: StackSaveAreaPtr, IRB, ShadowTy: IRB.getInt8Ty(), |
| 6602 | Alignment: Align(16), /*isStore*/ true) |
| 6603 | .first; |
| 6604 | |
| 6605 | Value *StackSrcPtr = IRB.CreateInBoundsPtrAdd( |
| 6606 | Ptr: VAArgTLSCopy, Offset: IRB.getInt32(C: AArch64VAEndOffset)); |
| 6607 | |
| 6608 | IRB.CreateMemCpy(Dst: StackSaveAreaShadowPtr, DstAlign: Align(16), Src: StackSrcPtr, |
| 6609 | SrcAlign: Align(16), Size: VAArgOverflowSize); |
| 6610 | } |
| 6611 | } |
| 6612 | }; |
| 6613 | |
| 6614 | /// PowerPC64-specific implementation of VarArgHelper. |
| 6615 | struct VarArgPowerPC64Helper : public VarArgHelperBase { |
| 6616 | AllocaInst *VAArgTLSCopy = nullptr; |
| 6617 | Value *VAArgSize = nullptr; |
| 6618 | |
| 6619 | VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS, |
| 6620 | MemorySanitizerVisitor &MSV) |
| 6621 | : VarArgHelperBase(F, MS, MSV, /*VAListTagSize=*/8) {} |
| 6622 | |
| 6623 | void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { |
| 6624 | // For PowerPC, we need to deal with alignment of stack arguments - |
| 6625 | // they are mostly aligned to 8 bytes, but vectors and i128 arrays |
| 6626 | // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes, |
| 6627 | // For that reason, we compute current offset from stack pointer (which is |
| 6628 | // always properly aligned), and offset for the first vararg, then subtract |
| 6629 | // them. |
| 6630 | unsigned VAArgBase; |
| 6631 | Triple TargetTriple(F.getParent()->getTargetTriple()); |
| 6632 | // Parameter save area starts at 48 bytes from frame pointer for ABIv1, |
| 6633 | // and 32 bytes for ABIv2. This is usually determined by target |
| 6634 | // endianness, but in theory could be overridden by function attribute. |
| 6635 | if (TargetTriple.isPPC64ELFv2ABI()) |
| 6636 | VAArgBase = 32; |
| 6637 | else |
| 6638 | VAArgBase = 48; |
| 6639 | unsigned VAArgOffset = VAArgBase; |
| 6640 | const DataLayout &DL = F.getDataLayout(); |
| 6641 | for (const auto &[ArgNo, A] : llvm::enumerate(First: CB.args())) { |
| 6642 | bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); |
| 6643 | bool IsByVal = CB.paramHasAttr(ArgNo, Kind: Attribute::ByVal); |
| 6644 | if (IsByVal) { |
| 6645 | assert(A->getType()->isPointerTy()); |
| 6646 | Type *RealTy = CB.getParamByValType(ArgNo); |
| 6647 | uint64_t ArgSize = DL.getTypeAllocSize(Ty: RealTy); |
| 6648 | Align ArgAlign = CB.getParamAlign(ArgNo).value_or(u: Align(8)); |
| 6649 | if (ArgAlign < 8) |
| 6650 | ArgAlign = Align(8); |
| 6651 | VAArgOffset = alignTo(Size: VAArgOffset, A: ArgAlign); |
| 6652 | if (!IsFixed) { |
| 6653 | Value *Base = |
| 6654 | getShadowPtrForVAArgument(IRB, ArgOffset: VAArgOffset - VAArgBase, ArgSize); |
| 6655 | if (Base) { |
| 6656 | Value *AShadowPtr, *AOriginPtr; |
| 6657 | std::tie(args&: AShadowPtr, args&: AOriginPtr) = |
| 6658 | MSV.getShadowOriginPtr(Addr: A, IRB, ShadowTy: IRB.getInt8Ty(), |
| 6659 | Alignment: kShadowTLSAlignment, /*isStore*/ false); |
| 6660 | |
| 6661 | IRB.CreateMemCpy(Dst: Base, DstAlign: kShadowTLSAlignment, Src: AShadowPtr, |
| 6662 | SrcAlign: kShadowTLSAlignment, Size: ArgSize); |
| 6663 | } |
| 6664 | } |
| 6665 | VAArgOffset += alignTo(Size: ArgSize, A: Align(8)); |
| 6666 | } else { |
| 6667 | Value *Base; |
| 6668 | uint64_t ArgSize = DL.getTypeAllocSize(Ty: A->getType()); |
| 6669 | Align ArgAlign = Align(8); |
| 6670 | if (A->getType()->isArrayTy()) { |
| 6671 | // Arrays are aligned to element size, except for long double |
| 6672 | // arrays, which are aligned to 8 bytes. |
| 6673 | Type *ElementTy = A->getType()->getArrayElementType(); |
| 6674 | if (!ElementTy->isPPC_FP128Ty()) |
| 6675 | ArgAlign = Align(DL.getTypeAllocSize(Ty: ElementTy)); |
| 6676 | } else if (A->getType()->isVectorTy()) { |
| 6677 | // Vectors are naturally aligned. |
| 6678 | ArgAlign = Align(ArgSize); |
| 6679 | } |
| 6680 | if (ArgAlign < 8) |
| 6681 | ArgAlign = Align(8); |
| 6682 | VAArgOffset = alignTo(Size: VAArgOffset, A: ArgAlign); |
| 6683 | if (DL.isBigEndian()) { |
| 6684 | // Adjusting the shadow for argument with size < 8 to match the |
| 6685 | // placement of bits in big endian system |
| 6686 | if (ArgSize < 8) |
| 6687 | VAArgOffset += (8 - ArgSize); |
| 6688 | } |
| 6689 | if (!IsFixed) { |
| 6690 | Base = |
| 6691 | getShadowPtrForVAArgument(IRB, ArgOffset: VAArgOffset - VAArgBase, ArgSize); |
| 6692 | if (Base) |
| 6693 | IRB.CreateAlignedStore(Val: MSV.getShadow(V: A), Ptr: Base, Align: kShadowTLSAlignment); |
| 6694 | } |
| 6695 | VAArgOffset += ArgSize; |
| 6696 | VAArgOffset = alignTo(Size: VAArgOffset, A: Align(8)); |
| 6697 | } |
| 6698 | if (IsFixed) |
| 6699 | VAArgBase = VAArgOffset; |
| 6700 | } |
| 6701 | |
| 6702 | Constant *TotalVAArgSize = |
| 6703 | ConstantInt::get(Ty: MS.IntptrTy, V: VAArgOffset - VAArgBase); |
| 6704 | // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of |
| 6705 | // a new class member i.e. it is the total size of all VarArgs. |
| 6706 | IRB.CreateStore(Val: TotalVAArgSize, Ptr: MS.VAArgOverflowSizeTLS); |
| 6707 | } |
| 6708 | |
| 6709 | void finalizeInstrumentation() override { |
| 6710 | assert(!VAArgSize && !VAArgTLSCopy && |
| 6711 | "finalizeInstrumentation called twice" ); |
| 6712 | IRBuilder<> IRB(MSV.FnPrologueEnd); |
| 6713 | VAArgSize = IRB.CreateLoad(Ty: IRB.getInt64Ty(), Ptr: MS.VAArgOverflowSizeTLS); |
| 6714 | Value *CopySize = VAArgSize; |
| 6715 | |
| 6716 | if (!VAStartInstrumentationList.empty()) { |
| 6717 | // If there is a va_start in this function, make a backup copy of |
| 6718 | // va_arg_tls somewhere in the function entry block. |
| 6719 | |
| 6720 | VAArgTLSCopy = IRB.CreateAlloca(Ty: Type::getInt8Ty(C&: *MS.C), ArraySize: CopySize); |
| 6721 | VAArgTLSCopy->setAlignment(kShadowTLSAlignment); |
| 6722 | IRB.CreateMemSet(Ptr: VAArgTLSCopy, Val: Constant::getNullValue(Ty: IRB.getInt8Ty()), |
| 6723 | Size: CopySize, Align: kShadowTLSAlignment, isVolatile: false); |
| 6724 | |
| 6725 | Value *SrcSize = IRB.CreateBinaryIntrinsic( |
| 6726 | ID: Intrinsic::umin, LHS: CopySize, |
| 6727 | RHS: ConstantInt::get(Ty: IRB.getInt64Ty(), V: kParamTLSSize)); |
| 6728 | IRB.CreateMemCpy(Dst: VAArgTLSCopy, DstAlign: kShadowTLSAlignment, Src: MS.VAArgTLS, |
| 6729 | SrcAlign: kShadowTLSAlignment, Size: SrcSize); |
| 6730 | } |
| 6731 | |
| 6732 | // Instrument va_start. |
| 6733 | // Copy va_list shadow from the backup copy of the TLS contents. |
| 6734 | for (CallInst *OrigInst : VAStartInstrumentationList) { |
| 6735 | NextNodeIRBuilder IRB(OrigInst); |
| 6736 | Value *VAListTag = OrigInst->getArgOperand(i: 0); |
| 6737 | Value *RegSaveAreaPtrPtr = IRB.CreatePtrToInt(V: VAListTag, DestTy: MS.IntptrTy); |
| 6738 | |
| 6739 | RegSaveAreaPtrPtr = IRB.CreateIntToPtr(V: RegSaveAreaPtrPtr, DestTy: MS.PtrTy); |
| 6740 | |
| 6741 | Value *RegSaveAreaPtr = IRB.CreateLoad(Ty: MS.PtrTy, Ptr: RegSaveAreaPtrPtr); |
| 6742 | Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; |
| 6743 | const DataLayout &DL = F.getDataLayout(); |
| 6744 | unsigned IntptrSize = DL.getTypeStoreSize(Ty: MS.IntptrTy); |
| 6745 | const Align Alignment = Align(IntptrSize); |
| 6746 | std::tie(args&: RegSaveAreaShadowPtr, args&: RegSaveAreaOriginPtr) = |
| 6747 | MSV.getShadowOriginPtr(Addr: RegSaveAreaPtr, IRB, ShadowTy: IRB.getInt8Ty(), |
| 6748 | Alignment, /*isStore*/ true); |
| 6749 | IRB.CreateMemCpy(Dst: RegSaveAreaShadowPtr, DstAlign: Alignment, Src: VAArgTLSCopy, SrcAlign: Alignment, |
| 6750 | Size: CopySize); |
| 6751 | } |
| 6752 | } |
| 6753 | }; |
| 6754 | |
| 6755 | /// PowerPC32-specific implementation of VarArgHelper. |
| 6756 | struct VarArgPowerPC32Helper : public VarArgHelperBase { |
| 6757 | AllocaInst *VAArgTLSCopy = nullptr; |
| 6758 | Value *VAArgSize = nullptr; |
| 6759 | |
| 6760 | VarArgPowerPC32Helper(Function &F, MemorySanitizer &MS, |
| 6761 | MemorySanitizerVisitor &MSV) |
| 6762 | : VarArgHelperBase(F, MS, MSV, /*VAListTagSize=*/12) {} |
| 6763 | |
| 6764 | void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { |
| 6765 | unsigned VAArgBase; |
| 6766 | // Parameter save area is 8 bytes from frame pointer in PPC32 |
| 6767 | VAArgBase = 8; |
| 6768 | unsigned VAArgOffset = VAArgBase; |
| 6769 | const DataLayout &DL = F.getDataLayout(); |
| 6770 | unsigned IntptrSize = DL.getTypeStoreSize(Ty: MS.IntptrTy); |
| 6771 | for (const auto &[ArgNo, A] : llvm::enumerate(First: CB.args())) { |
| 6772 | bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); |
| 6773 | bool IsByVal = CB.paramHasAttr(ArgNo, Kind: Attribute::ByVal); |
| 6774 | if (IsByVal) { |
| 6775 | assert(A->getType()->isPointerTy()); |
| 6776 | Type *RealTy = CB.getParamByValType(ArgNo); |
| 6777 | uint64_t ArgSize = DL.getTypeAllocSize(Ty: RealTy); |
| 6778 | Align ArgAlign = CB.getParamAlign(ArgNo).value_or(u: Align(IntptrSize)); |
| 6779 | if (ArgAlign < IntptrSize) |
| 6780 | ArgAlign = Align(IntptrSize); |
| 6781 | VAArgOffset = alignTo(Size: VAArgOffset, A: ArgAlign); |
| 6782 | if (!IsFixed) { |
| 6783 | Value *Base = |
| 6784 | getShadowPtrForVAArgument(IRB, ArgOffset: VAArgOffset - VAArgBase, ArgSize); |
| 6785 | if (Base) { |
| 6786 | Value *AShadowPtr, *AOriginPtr; |
| 6787 | std::tie(args&: AShadowPtr, args&: AOriginPtr) = |
| 6788 | MSV.getShadowOriginPtr(Addr: A, IRB, ShadowTy: IRB.getInt8Ty(), |
| 6789 | Alignment: kShadowTLSAlignment, /*isStore*/ false); |
| 6790 | |
| 6791 | IRB.CreateMemCpy(Dst: Base, DstAlign: kShadowTLSAlignment, Src: AShadowPtr, |
| 6792 | SrcAlign: kShadowTLSAlignment, Size: ArgSize); |
| 6793 | } |
| 6794 | } |
| 6795 | VAArgOffset += alignTo(Size: ArgSize, A: Align(IntptrSize)); |
| 6796 | } else { |
| 6797 | Value *Base; |
| 6798 | Type *ArgTy = A->getType(); |
| 6799 | |
| 6800 | // On PPC 32 floating point variable arguments are stored in separate |
| 6801 | // area: fp_save_area = reg_save_area + 4*8. We do not copy shaodow for |
| 6802 | // them as they will be found when checking call arguments. |
| 6803 | if (!ArgTy->isFloatingPointTy()) { |
| 6804 | uint64_t ArgSize = DL.getTypeAllocSize(Ty: ArgTy); |
| 6805 | Align ArgAlign = Align(IntptrSize); |
| 6806 | if (ArgTy->isArrayTy()) { |
| 6807 | // Arrays are aligned to element size, except for long double |
| 6808 | // arrays, which are aligned to 8 bytes. |
| 6809 | Type *ElementTy = ArgTy->getArrayElementType(); |
| 6810 | if (!ElementTy->isPPC_FP128Ty()) |
| 6811 | ArgAlign = Align(DL.getTypeAllocSize(Ty: ElementTy)); |
| 6812 | } else if (ArgTy->isVectorTy()) { |
| 6813 | // Vectors are naturally aligned. |
| 6814 | ArgAlign = Align(ArgSize); |
| 6815 | } |
| 6816 | if (ArgAlign < IntptrSize) |
| 6817 | ArgAlign = Align(IntptrSize); |
| 6818 | VAArgOffset = alignTo(Size: VAArgOffset, A: ArgAlign); |
| 6819 | if (DL.isBigEndian()) { |
| 6820 | // Adjusting the shadow for argument with size < IntptrSize to match |
| 6821 | // the placement of bits in big endian system |
| 6822 | if (ArgSize < IntptrSize) |
| 6823 | VAArgOffset += (IntptrSize - ArgSize); |
| 6824 | } |
| 6825 | if (!IsFixed) { |
| 6826 | Base = getShadowPtrForVAArgument(IRB, ArgOffset: VAArgOffset - VAArgBase, |
| 6827 | ArgSize); |
| 6828 | if (Base) |
| 6829 | IRB.CreateAlignedStore(Val: MSV.getShadow(V: A), Ptr: Base, |
| 6830 | Align: kShadowTLSAlignment); |
| 6831 | } |
| 6832 | VAArgOffset += ArgSize; |
| 6833 | VAArgOffset = alignTo(Size: VAArgOffset, A: Align(IntptrSize)); |
| 6834 | } |
| 6835 | } |
| 6836 | } |
| 6837 | |
| 6838 | Constant *TotalVAArgSize = |
| 6839 | ConstantInt::get(Ty: MS.IntptrTy, V: VAArgOffset - VAArgBase); |
| 6840 | // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of |
| 6841 | // a new class member i.e. it is the total size of all VarArgs. |
| 6842 | IRB.CreateStore(Val: TotalVAArgSize, Ptr: MS.VAArgOverflowSizeTLS); |
| 6843 | } |
| 6844 | |
| 6845 | void finalizeInstrumentation() override { |
| 6846 | assert(!VAArgSize && !VAArgTLSCopy && |
| 6847 | "finalizeInstrumentation called twice" ); |
| 6848 | IRBuilder<> IRB(MSV.FnPrologueEnd); |
| 6849 | VAArgSize = IRB.CreateLoad(Ty: MS.IntptrTy, Ptr: MS.VAArgOverflowSizeTLS); |
| 6850 | Value *CopySize = VAArgSize; |
| 6851 | |
| 6852 | if (!VAStartInstrumentationList.empty()) { |
| 6853 | // If there is a va_start in this function, make a backup copy of |
| 6854 | // va_arg_tls somewhere in the function entry block. |
| 6855 | |
| 6856 | VAArgTLSCopy = IRB.CreateAlloca(Ty: Type::getInt8Ty(C&: *MS.C), ArraySize: CopySize); |
| 6857 | VAArgTLSCopy->setAlignment(kShadowTLSAlignment); |
| 6858 | IRB.CreateMemSet(Ptr: VAArgTLSCopy, Val: Constant::getNullValue(Ty: IRB.getInt8Ty()), |
| 6859 | Size: CopySize, Align: kShadowTLSAlignment, isVolatile: false); |
| 6860 | |
| 6861 | Value *SrcSize = IRB.CreateBinaryIntrinsic( |
| 6862 | ID: Intrinsic::umin, LHS: CopySize, |
| 6863 | RHS: ConstantInt::get(Ty: MS.IntptrTy, V: kParamTLSSize)); |
| 6864 | IRB.CreateMemCpy(Dst: VAArgTLSCopy, DstAlign: kShadowTLSAlignment, Src: MS.VAArgTLS, |
| 6865 | SrcAlign: kShadowTLSAlignment, Size: SrcSize); |
| 6866 | } |
| 6867 | |
| 6868 | // Instrument va_start. |
| 6869 | // Copy va_list shadow from the backup copy of the TLS contents. |
| 6870 | for (CallInst *OrigInst : VAStartInstrumentationList) { |
| 6871 | NextNodeIRBuilder IRB(OrigInst); |
| 6872 | Value *VAListTag = OrigInst->getArgOperand(i: 0); |
| 6873 | Value *RegSaveAreaPtrPtr = IRB.CreatePtrToInt(V: VAListTag, DestTy: MS.IntptrTy); |
| 6874 | Value *RegSaveAreaSize = CopySize; |
| 6875 | |
| 6876 | // In PPC32 va_list_tag is a struct |
| 6877 | RegSaveAreaPtrPtr = |
| 6878 | IRB.CreateAdd(LHS: RegSaveAreaPtrPtr, RHS: ConstantInt::get(Ty: MS.IntptrTy, V: 8)); |
| 6879 | |
| 6880 | // On PPC 32 reg_save_area can only hold 32 bytes of data |
| 6881 | RegSaveAreaSize = IRB.CreateBinaryIntrinsic( |
| 6882 | ID: Intrinsic::umin, LHS: CopySize, RHS: ConstantInt::get(Ty: MS.IntptrTy, V: 32)); |
| 6883 | |
| 6884 | RegSaveAreaPtrPtr = IRB.CreateIntToPtr(V: RegSaveAreaPtrPtr, DestTy: MS.PtrTy); |
| 6885 | Value *RegSaveAreaPtr = IRB.CreateLoad(Ty: MS.PtrTy, Ptr: RegSaveAreaPtrPtr); |
| 6886 | |
| 6887 | const DataLayout &DL = F.getDataLayout(); |
| 6888 | unsigned IntptrSize = DL.getTypeStoreSize(Ty: MS.IntptrTy); |
| 6889 | const Align Alignment = Align(IntptrSize); |
| 6890 | |
| 6891 | { // Copy reg save area |
| 6892 | Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; |
| 6893 | std::tie(args&: RegSaveAreaShadowPtr, args&: RegSaveAreaOriginPtr) = |
| 6894 | MSV.getShadowOriginPtr(Addr: RegSaveAreaPtr, IRB, ShadowTy: IRB.getInt8Ty(), |
| 6895 | Alignment, /*isStore*/ true); |
| 6896 | IRB.CreateMemCpy(Dst: RegSaveAreaShadowPtr, DstAlign: Alignment, Src: VAArgTLSCopy, |
| 6897 | SrcAlign: Alignment, Size: RegSaveAreaSize); |
| 6898 | |
| 6899 | RegSaveAreaShadowPtr = |
| 6900 | IRB.CreatePtrToInt(V: RegSaveAreaShadowPtr, DestTy: MS.IntptrTy); |
| 6901 | Value *FPSaveArea = IRB.CreateAdd(LHS: RegSaveAreaShadowPtr, |
| 6902 | RHS: ConstantInt::get(Ty: MS.IntptrTy, V: 32)); |
| 6903 | FPSaveArea = IRB.CreateIntToPtr(V: FPSaveArea, DestTy: MS.PtrTy); |
| 6904 | // We fill fp shadow with zeroes as uninitialized fp args should have |
| 6905 | // been found during call base check |
| 6906 | IRB.CreateMemSet(Ptr: FPSaveArea, Val: ConstantInt::getNullValue(Ty: IRB.getInt8Ty()), |
| 6907 | Size: ConstantInt::get(Ty: MS.IntptrTy, V: 32), Align: Alignment); |
| 6908 | } |
| 6909 | |
| 6910 | { // Copy overflow area |
| 6911 | // RegSaveAreaSize is min(CopySize, 32) -> no overflow can occur |
| 6912 | Value *OverflowAreaSize = IRB.CreateSub(LHS: CopySize, RHS: RegSaveAreaSize); |
| 6913 | |
| 6914 | Value *OverflowAreaPtrPtr = IRB.CreatePtrToInt(V: VAListTag, DestTy: MS.IntptrTy); |
| 6915 | OverflowAreaPtrPtr = |
| 6916 | IRB.CreateAdd(LHS: OverflowAreaPtrPtr, RHS: ConstantInt::get(Ty: MS.IntptrTy, V: 4)); |
| 6917 | OverflowAreaPtrPtr = IRB.CreateIntToPtr(V: OverflowAreaPtrPtr, DestTy: MS.PtrTy); |
| 6918 | |
| 6919 | Value *OverflowAreaPtr = IRB.CreateLoad(Ty: MS.PtrTy, Ptr: OverflowAreaPtrPtr); |
| 6920 | |
| 6921 | Value *OverflowAreaShadowPtr, *OverflowAreaOriginPtr; |
| 6922 | std::tie(args&: OverflowAreaShadowPtr, args&: OverflowAreaOriginPtr) = |
| 6923 | MSV.getShadowOriginPtr(Addr: OverflowAreaPtr, IRB, ShadowTy: IRB.getInt8Ty(), |
| 6924 | Alignment, /*isStore*/ true); |
| 6925 | |
| 6926 | Value *OverflowVAArgTLSCopyPtr = |
| 6927 | IRB.CreatePtrToInt(V: VAArgTLSCopy, DestTy: MS.IntptrTy); |
| 6928 | OverflowVAArgTLSCopyPtr = |
| 6929 | IRB.CreateAdd(LHS: OverflowVAArgTLSCopyPtr, RHS: RegSaveAreaSize); |
| 6930 | |
| 6931 | OverflowVAArgTLSCopyPtr = |
| 6932 | IRB.CreateIntToPtr(V: OverflowVAArgTLSCopyPtr, DestTy: MS.PtrTy); |
| 6933 | IRB.CreateMemCpy(Dst: OverflowAreaShadowPtr, DstAlign: Alignment, |
| 6934 | Src: OverflowVAArgTLSCopyPtr, SrcAlign: Alignment, Size: OverflowAreaSize); |
| 6935 | } |
| 6936 | } |
| 6937 | } |
| 6938 | }; |
| 6939 | |
| 6940 | /// SystemZ-specific implementation of VarArgHelper. |
| 6941 | struct VarArgSystemZHelper : public VarArgHelperBase { |
| 6942 | static const unsigned SystemZGpOffset = 16; |
| 6943 | static const unsigned SystemZGpEndOffset = 56; |
| 6944 | static const unsigned SystemZFpOffset = 128; |
| 6945 | static const unsigned SystemZFpEndOffset = 160; |
| 6946 | static const unsigned SystemZMaxVrArgs = 8; |
| 6947 | static const unsigned SystemZRegSaveAreaSize = 160; |
| 6948 | static const unsigned SystemZOverflowOffset = 160; |
| 6949 | static const unsigned SystemZVAListTagSize = 32; |
| 6950 | static const unsigned SystemZOverflowArgAreaPtrOffset = 16; |
| 6951 | static const unsigned SystemZRegSaveAreaPtrOffset = 24; |
| 6952 | |
| 6953 | bool IsSoftFloatABI; |
| 6954 | AllocaInst *VAArgTLSCopy = nullptr; |
| 6955 | AllocaInst *VAArgTLSOriginCopy = nullptr; |
| 6956 | Value *VAArgOverflowSize = nullptr; |
| 6957 | |
| 6958 | enum class ArgKind { |
| 6959 | GeneralPurpose, |
| 6960 | FloatingPoint, |
| 6961 | Vector, |
| 6962 | Memory, |
| 6963 | Indirect, |
| 6964 | }; |
| 6965 | |
| 6966 | enum class ShadowExtension { None, Zero, Sign }; |
| 6967 | |
| 6968 | VarArgSystemZHelper(Function &F, MemorySanitizer &MS, |
| 6969 | MemorySanitizerVisitor &MSV) |
| 6970 | : VarArgHelperBase(F, MS, MSV, SystemZVAListTagSize), |
| 6971 | IsSoftFloatABI(F.getFnAttribute(Kind: "use-soft-float" ).getValueAsBool()) {} |
| 6972 | |
| 6973 | ArgKind classifyArgument(Type *T) { |
| 6974 | // T is a SystemZABIInfo::classifyArgumentType() output, and there are |
| 6975 | // only a few possibilities of what it can be. In particular, enums, single |
| 6976 | // element structs and large types have already been taken care of. |
| 6977 | |
| 6978 | // Some i128 and fp128 arguments are converted to pointers only in the |
| 6979 | // back end. |
| 6980 | if (T->isIntegerTy(Bitwidth: 128) || T->isFP128Ty()) |
| 6981 | return ArgKind::Indirect; |
| 6982 | if (T->isFloatingPointTy()) |
| 6983 | return IsSoftFloatABI ? ArgKind::GeneralPurpose : ArgKind::FloatingPoint; |
| 6984 | if (T->isIntegerTy() || T->isPointerTy()) |
| 6985 | return ArgKind::GeneralPurpose; |
| 6986 | if (T->isVectorTy()) |
| 6987 | return ArgKind::Vector; |
| 6988 | return ArgKind::Memory; |
| 6989 | } |
| 6990 | |
| 6991 | ShadowExtension getShadowExtension(const CallBase &CB, unsigned ArgNo) { |
| 6992 | // ABI says: "One of the simple integer types no more than 64 bits wide. |
| 6993 | // ... If such an argument is shorter than 64 bits, replace it by a full |
| 6994 | // 64-bit integer representing the same number, using sign or zero |
| 6995 | // extension". Shadow for an integer argument has the same type as the |
| 6996 | // argument itself, so it can be sign or zero extended as well. |
| 6997 | bool ZExt = CB.paramHasAttr(ArgNo, Kind: Attribute::ZExt); |
| 6998 | bool SExt = CB.paramHasAttr(ArgNo, Kind: Attribute::SExt); |
| 6999 | if (ZExt) { |
| 7000 | assert(!SExt); |
| 7001 | return ShadowExtension::Zero; |
| 7002 | } |
| 7003 | if (SExt) { |
| 7004 | assert(!ZExt); |
| 7005 | return ShadowExtension::Sign; |
| 7006 | } |
| 7007 | return ShadowExtension::None; |
| 7008 | } |
| 7009 | |
| 7010 | void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { |
| 7011 | unsigned GpOffset = SystemZGpOffset; |
| 7012 | unsigned FpOffset = SystemZFpOffset; |
| 7013 | unsigned VrIndex = 0; |
| 7014 | unsigned OverflowOffset = SystemZOverflowOffset; |
| 7015 | const DataLayout &DL = F.getDataLayout(); |
| 7016 | for (const auto &[ArgNo, A] : llvm::enumerate(First: CB.args())) { |
| 7017 | bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); |
| 7018 | // SystemZABIInfo does not produce ByVal parameters. |
| 7019 | assert(!CB.paramHasAttr(ArgNo, Attribute::ByVal)); |
| 7020 | Type *T = A->getType(); |
| 7021 | ArgKind AK = classifyArgument(T); |
| 7022 | if (AK == ArgKind::Indirect) { |
| 7023 | T = MS.PtrTy; |
| 7024 | AK = ArgKind::GeneralPurpose; |
| 7025 | } |
| 7026 | if (AK == ArgKind::GeneralPurpose && GpOffset >= SystemZGpEndOffset) |
| 7027 | AK = ArgKind::Memory; |
| 7028 | if (AK == ArgKind::FloatingPoint && FpOffset >= SystemZFpEndOffset) |
| 7029 | AK = ArgKind::Memory; |
| 7030 | if (AK == ArgKind::Vector && (VrIndex >= SystemZMaxVrArgs || !IsFixed)) |
| 7031 | AK = ArgKind::Memory; |
| 7032 | Value *ShadowBase = nullptr; |
| 7033 | Value *OriginBase = nullptr; |
| 7034 | ShadowExtension SE = ShadowExtension::None; |
| 7035 | switch (AK) { |
| 7036 | case ArgKind::GeneralPurpose: { |
| 7037 | // Always keep track of GpOffset, but store shadow only for varargs. |
| 7038 | uint64_t ArgSize = 8; |
| 7039 | if (GpOffset + ArgSize <= kParamTLSSize) { |
| 7040 | if (!IsFixed) { |
| 7041 | SE = getShadowExtension(CB, ArgNo); |
| 7042 | uint64_t GapSize = 0; |
| 7043 | if (SE == ShadowExtension::None) { |
| 7044 | uint64_t ArgAllocSize = DL.getTypeAllocSize(Ty: T); |
| 7045 | assert(ArgAllocSize <= ArgSize); |
| 7046 | GapSize = ArgSize - ArgAllocSize; |
| 7047 | } |
| 7048 | ShadowBase = getShadowAddrForVAArgument(IRB, ArgOffset: GpOffset + GapSize); |
| 7049 | if (MS.TrackOrigins) |
| 7050 | OriginBase = getOriginPtrForVAArgument(IRB, ArgOffset: GpOffset + GapSize); |
| 7051 | } |
| 7052 | GpOffset += ArgSize; |
| 7053 | } else { |
| 7054 | GpOffset = kParamTLSSize; |
| 7055 | } |
| 7056 | break; |
| 7057 | } |
| 7058 | case ArgKind::FloatingPoint: { |
| 7059 | // Always keep track of FpOffset, but store shadow only for varargs. |
| 7060 | uint64_t ArgSize = 8; |
| 7061 | if (FpOffset + ArgSize <= kParamTLSSize) { |
| 7062 | if (!IsFixed) { |
| 7063 | // PoP says: "A short floating-point datum requires only the |
| 7064 | // left-most 32 bit positions of a floating-point register". |
| 7065 | // Therefore, in contrast to AK_GeneralPurpose and AK_Memory, |
| 7066 | // don't extend shadow and don't mind the gap. |
| 7067 | ShadowBase = getShadowAddrForVAArgument(IRB, ArgOffset: FpOffset); |
| 7068 | if (MS.TrackOrigins) |
| 7069 | OriginBase = getOriginPtrForVAArgument(IRB, ArgOffset: FpOffset); |
| 7070 | } |
| 7071 | FpOffset += ArgSize; |
| 7072 | } else { |
| 7073 | FpOffset = kParamTLSSize; |
| 7074 | } |
| 7075 | break; |
| 7076 | } |
| 7077 | case ArgKind::Vector: { |
| 7078 | // Keep track of VrIndex. No need to store shadow, since vector varargs |
| 7079 | // go through AK_Memory. |
| 7080 | assert(IsFixed); |
| 7081 | VrIndex++; |
| 7082 | break; |
| 7083 | } |
| 7084 | case ArgKind::Memory: { |
| 7085 | // Keep track of OverflowOffset and store shadow only for varargs. |
| 7086 | // Ignore fixed args, since we need to copy only the vararg portion of |
| 7087 | // the overflow area shadow. |
| 7088 | if (!IsFixed) { |
| 7089 | uint64_t ArgAllocSize = DL.getTypeAllocSize(Ty: T); |
| 7090 | uint64_t ArgSize = alignTo(Value: ArgAllocSize, Align: 8); |
| 7091 | if (OverflowOffset + ArgSize <= kParamTLSSize) { |
| 7092 | SE = getShadowExtension(CB, ArgNo); |
| 7093 | uint64_t GapSize = |
| 7094 | SE == ShadowExtension::None ? ArgSize - ArgAllocSize : 0; |
| 7095 | ShadowBase = |
| 7096 | getShadowAddrForVAArgument(IRB, ArgOffset: OverflowOffset + GapSize); |
| 7097 | if (MS.TrackOrigins) |
| 7098 | OriginBase = |
| 7099 | getOriginPtrForVAArgument(IRB, ArgOffset: OverflowOffset + GapSize); |
| 7100 | OverflowOffset += ArgSize; |
| 7101 | } else { |
| 7102 | OverflowOffset = kParamTLSSize; |
| 7103 | } |
| 7104 | } |
| 7105 | break; |
| 7106 | } |
| 7107 | case ArgKind::Indirect: |
| 7108 | llvm_unreachable("Indirect must be converted to GeneralPurpose" ); |
| 7109 | } |
| 7110 | if (ShadowBase == nullptr) |
| 7111 | continue; |
| 7112 | Value *Shadow = MSV.getShadow(V: A); |
| 7113 | if (SE != ShadowExtension::None) |
| 7114 | Shadow = MSV.CreateShadowCast(IRB, V: Shadow, dstTy: IRB.getInt64Ty(), |
| 7115 | /*Signed*/ SE == ShadowExtension::Sign); |
| 7116 | ShadowBase = IRB.CreateIntToPtr(V: ShadowBase, DestTy: MS.PtrTy, Name: "_msarg_va_s" ); |
| 7117 | IRB.CreateStore(Val: Shadow, Ptr: ShadowBase); |
| 7118 | if (MS.TrackOrigins) { |
| 7119 | Value *Origin = MSV.getOrigin(V: A); |
| 7120 | TypeSize StoreSize = DL.getTypeStoreSize(Ty: Shadow->getType()); |
| 7121 | MSV.paintOrigin(IRB, Origin, OriginPtr: OriginBase, TS: StoreSize, |
| 7122 | Alignment: kMinOriginAlignment); |
| 7123 | } |
| 7124 | } |
| 7125 | Constant *OverflowSize = ConstantInt::get( |
| 7126 | Ty: IRB.getInt64Ty(), V: OverflowOffset - SystemZOverflowOffset); |
| 7127 | IRB.CreateStore(Val: OverflowSize, Ptr: MS.VAArgOverflowSizeTLS); |
| 7128 | } |
| 7129 | |
| 7130 | void copyRegSaveArea(IRBuilder<> &IRB, Value *VAListTag) { |
| 7131 | Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( |
| 7132 | V: IRB.CreateAdd( |
| 7133 | LHS: IRB.CreatePtrToInt(V: VAListTag, DestTy: MS.IntptrTy), |
| 7134 | RHS: ConstantInt::get(Ty: MS.IntptrTy, V: SystemZRegSaveAreaPtrOffset)), |
| 7135 | DestTy: MS.PtrTy); |
| 7136 | Value *RegSaveAreaPtr = IRB.CreateLoad(Ty: MS.PtrTy, Ptr: RegSaveAreaPtrPtr); |
| 7137 | Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; |
| 7138 | const Align Alignment = Align(8); |
| 7139 | std::tie(args&: RegSaveAreaShadowPtr, args&: RegSaveAreaOriginPtr) = |
| 7140 | MSV.getShadowOriginPtr(Addr: RegSaveAreaPtr, IRB, ShadowTy: IRB.getInt8Ty(), Alignment, |
| 7141 | /*isStore*/ true); |
| 7142 | // TODO(iii): copy only fragments filled by visitCallBase() |
| 7143 | // TODO(iii): support packed-stack && !use-soft-float |
| 7144 | // For use-soft-float functions, it is enough to copy just the GPRs. |
| 7145 | unsigned RegSaveAreaSize = |
| 7146 | IsSoftFloatABI ? SystemZGpEndOffset : SystemZRegSaveAreaSize; |
| 7147 | IRB.CreateMemCpy(Dst: RegSaveAreaShadowPtr, DstAlign: Alignment, Src: VAArgTLSCopy, SrcAlign: Alignment, |
| 7148 | Size: RegSaveAreaSize); |
| 7149 | if (MS.TrackOrigins) |
| 7150 | IRB.CreateMemCpy(Dst: RegSaveAreaOriginPtr, DstAlign: Alignment, Src: VAArgTLSOriginCopy, |
| 7151 | SrcAlign: Alignment, Size: RegSaveAreaSize); |
| 7152 | } |
| 7153 | |
| 7154 | // FIXME: This implementation limits OverflowOffset to kParamTLSSize, so we |
| 7155 | // don't know real overflow size and can't clear shadow beyond kParamTLSSize. |
| 7156 | void copyOverflowArea(IRBuilder<> &IRB, Value *VAListTag) { |
| 7157 | Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( |
| 7158 | V: IRB.CreateAdd( |
| 7159 | LHS: IRB.CreatePtrToInt(V: VAListTag, DestTy: MS.IntptrTy), |
| 7160 | RHS: ConstantInt::get(Ty: MS.IntptrTy, V: SystemZOverflowArgAreaPtrOffset)), |
| 7161 | DestTy: MS.PtrTy); |
| 7162 | Value *OverflowArgAreaPtr = IRB.CreateLoad(Ty: MS.PtrTy, Ptr: OverflowArgAreaPtrPtr); |
| 7163 | Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; |
| 7164 | const Align Alignment = Align(8); |
| 7165 | std::tie(args&: OverflowArgAreaShadowPtr, args&: OverflowArgAreaOriginPtr) = |
| 7166 | MSV.getShadowOriginPtr(Addr: OverflowArgAreaPtr, IRB, ShadowTy: IRB.getInt8Ty(), |
| 7167 | Alignment, /*isStore*/ true); |
| 7168 | Value *SrcPtr = IRB.CreateConstGEP1_32(Ty: IRB.getInt8Ty(), Ptr: VAArgTLSCopy, |
| 7169 | Idx0: SystemZOverflowOffset); |
| 7170 | IRB.CreateMemCpy(Dst: OverflowArgAreaShadowPtr, DstAlign: Alignment, Src: SrcPtr, SrcAlign: Alignment, |
| 7171 | Size: VAArgOverflowSize); |
| 7172 | if (MS.TrackOrigins) { |
| 7173 | SrcPtr = IRB.CreateConstGEP1_32(Ty: IRB.getInt8Ty(), Ptr: VAArgTLSOriginCopy, |
| 7174 | Idx0: SystemZOverflowOffset); |
| 7175 | IRB.CreateMemCpy(Dst: OverflowArgAreaOriginPtr, DstAlign: Alignment, Src: SrcPtr, SrcAlign: Alignment, |
| 7176 | Size: VAArgOverflowSize); |
| 7177 | } |
| 7178 | } |
| 7179 | |
| 7180 | void finalizeInstrumentation() override { |
| 7181 | assert(!VAArgOverflowSize && !VAArgTLSCopy && |
| 7182 | "finalizeInstrumentation called twice" ); |
| 7183 | if (!VAStartInstrumentationList.empty()) { |
| 7184 | // If there is a va_start in this function, make a backup copy of |
| 7185 | // va_arg_tls somewhere in the function entry block. |
| 7186 | IRBuilder<> IRB(MSV.FnPrologueEnd); |
| 7187 | VAArgOverflowSize = |
| 7188 | IRB.CreateLoad(Ty: IRB.getInt64Ty(), Ptr: MS.VAArgOverflowSizeTLS); |
| 7189 | Value *CopySize = |
| 7190 | IRB.CreateAdd(LHS: ConstantInt::get(Ty: MS.IntptrTy, V: SystemZOverflowOffset), |
| 7191 | RHS: VAArgOverflowSize); |
| 7192 | VAArgTLSCopy = IRB.CreateAlloca(Ty: Type::getInt8Ty(C&: *MS.C), ArraySize: CopySize); |
| 7193 | VAArgTLSCopy->setAlignment(kShadowTLSAlignment); |
| 7194 | IRB.CreateMemSet(Ptr: VAArgTLSCopy, Val: Constant::getNullValue(Ty: IRB.getInt8Ty()), |
| 7195 | Size: CopySize, Align: kShadowTLSAlignment, isVolatile: false); |
| 7196 | |
| 7197 | Value *SrcSize = IRB.CreateBinaryIntrinsic( |
| 7198 | ID: Intrinsic::umin, LHS: CopySize, |
| 7199 | RHS: ConstantInt::get(Ty: MS.IntptrTy, V: kParamTLSSize)); |
| 7200 | IRB.CreateMemCpy(Dst: VAArgTLSCopy, DstAlign: kShadowTLSAlignment, Src: MS.VAArgTLS, |
| 7201 | SrcAlign: kShadowTLSAlignment, Size: SrcSize); |
| 7202 | if (MS.TrackOrigins) { |
| 7203 | VAArgTLSOriginCopy = IRB.CreateAlloca(Ty: Type::getInt8Ty(C&: *MS.C), ArraySize: CopySize); |
| 7204 | VAArgTLSOriginCopy->setAlignment(kShadowTLSAlignment); |
| 7205 | IRB.CreateMemCpy(Dst: VAArgTLSOriginCopy, DstAlign: kShadowTLSAlignment, |
| 7206 | Src: MS.VAArgOriginTLS, SrcAlign: kShadowTLSAlignment, Size: SrcSize); |
| 7207 | } |
| 7208 | } |
| 7209 | |
| 7210 | // Instrument va_start. |
| 7211 | // Copy va_list shadow from the backup copy of the TLS contents. |
| 7212 | for (CallInst *OrigInst : VAStartInstrumentationList) { |
| 7213 | NextNodeIRBuilder IRB(OrigInst); |
| 7214 | Value *VAListTag = OrigInst->getArgOperand(i: 0); |
| 7215 | copyRegSaveArea(IRB, VAListTag); |
| 7216 | copyOverflowArea(IRB, VAListTag); |
| 7217 | } |
| 7218 | } |
| 7219 | }; |
| 7220 | |
| 7221 | /// i386-specific implementation of VarArgHelper. |
| 7222 | struct VarArgI386Helper : public VarArgHelperBase { |
| 7223 | AllocaInst *VAArgTLSCopy = nullptr; |
| 7224 | Value *VAArgSize = nullptr; |
| 7225 | |
| 7226 | VarArgI386Helper(Function &F, MemorySanitizer &MS, |
| 7227 | MemorySanitizerVisitor &MSV) |
| 7228 | : VarArgHelperBase(F, MS, MSV, /*VAListTagSize=*/4) {} |
| 7229 | |
| 7230 | void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { |
| 7231 | const DataLayout &DL = F.getDataLayout(); |
| 7232 | unsigned IntptrSize = DL.getTypeStoreSize(Ty: MS.IntptrTy); |
| 7233 | unsigned VAArgOffset = 0; |
| 7234 | for (const auto &[ArgNo, A] : llvm::enumerate(First: CB.args())) { |
| 7235 | bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); |
| 7236 | bool IsByVal = CB.paramHasAttr(ArgNo, Kind: Attribute::ByVal); |
| 7237 | if (IsByVal) { |
| 7238 | assert(A->getType()->isPointerTy()); |
| 7239 | Type *RealTy = CB.getParamByValType(ArgNo); |
| 7240 | uint64_t ArgSize = DL.getTypeAllocSize(Ty: RealTy); |
| 7241 | Align ArgAlign = CB.getParamAlign(ArgNo).value_or(u: Align(IntptrSize)); |
| 7242 | if (ArgAlign < IntptrSize) |
| 7243 | ArgAlign = Align(IntptrSize); |
| 7244 | VAArgOffset = alignTo(Size: VAArgOffset, A: ArgAlign); |
| 7245 | if (!IsFixed) { |
| 7246 | Value *Base = getShadowPtrForVAArgument(IRB, ArgOffset: VAArgOffset, ArgSize); |
| 7247 | if (Base) { |
| 7248 | Value *AShadowPtr, *AOriginPtr; |
| 7249 | std::tie(args&: AShadowPtr, args&: AOriginPtr) = |
| 7250 | MSV.getShadowOriginPtr(Addr: A, IRB, ShadowTy: IRB.getInt8Ty(), |
| 7251 | Alignment: kShadowTLSAlignment, /*isStore*/ false); |
| 7252 | |
| 7253 | IRB.CreateMemCpy(Dst: Base, DstAlign: kShadowTLSAlignment, Src: AShadowPtr, |
| 7254 | SrcAlign: kShadowTLSAlignment, Size: ArgSize); |
| 7255 | } |
| 7256 | VAArgOffset += alignTo(Size: ArgSize, A: Align(IntptrSize)); |
| 7257 | } |
| 7258 | } else { |
| 7259 | Value *Base; |
| 7260 | uint64_t ArgSize = DL.getTypeAllocSize(Ty: A->getType()); |
| 7261 | Align ArgAlign = Align(IntptrSize); |
| 7262 | VAArgOffset = alignTo(Size: VAArgOffset, A: ArgAlign); |
| 7263 | if (DL.isBigEndian()) { |
| 7264 | // Adjusting the shadow for argument with size < IntptrSize to match |
| 7265 | // the placement of bits in big endian system |
| 7266 | if (ArgSize < IntptrSize) |
| 7267 | VAArgOffset += (IntptrSize - ArgSize); |
| 7268 | } |
| 7269 | if (!IsFixed) { |
| 7270 | Base = getShadowPtrForVAArgument(IRB, ArgOffset: VAArgOffset, ArgSize); |
| 7271 | if (Base) |
| 7272 | IRB.CreateAlignedStore(Val: MSV.getShadow(V: A), Ptr: Base, Align: kShadowTLSAlignment); |
| 7273 | VAArgOffset += ArgSize; |
| 7274 | VAArgOffset = alignTo(Size: VAArgOffset, A: Align(IntptrSize)); |
| 7275 | } |
| 7276 | } |
| 7277 | } |
| 7278 | |
| 7279 | Constant *TotalVAArgSize = ConstantInt::get(Ty: MS.IntptrTy, V: VAArgOffset); |
| 7280 | // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of |
| 7281 | // a new class member i.e. it is the total size of all VarArgs. |
| 7282 | IRB.CreateStore(Val: TotalVAArgSize, Ptr: MS.VAArgOverflowSizeTLS); |
| 7283 | } |
| 7284 | |
| 7285 | void finalizeInstrumentation() override { |
| 7286 | assert(!VAArgSize && !VAArgTLSCopy && |
| 7287 | "finalizeInstrumentation called twice" ); |
| 7288 | IRBuilder<> IRB(MSV.FnPrologueEnd); |
| 7289 | VAArgSize = IRB.CreateLoad(Ty: MS.IntptrTy, Ptr: MS.VAArgOverflowSizeTLS); |
| 7290 | Value *CopySize = VAArgSize; |
| 7291 | |
| 7292 | if (!VAStartInstrumentationList.empty()) { |
| 7293 | // If there is a va_start in this function, make a backup copy of |
| 7294 | // va_arg_tls somewhere in the function entry block. |
| 7295 | VAArgTLSCopy = IRB.CreateAlloca(Ty: Type::getInt8Ty(C&: *MS.C), ArraySize: CopySize); |
| 7296 | VAArgTLSCopy->setAlignment(kShadowTLSAlignment); |
| 7297 | IRB.CreateMemSet(Ptr: VAArgTLSCopy, Val: Constant::getNullValue(Ty: IRB.getInt8Ty()), |
| 7298 | Size: CopySize, Align: kShadowTLSAlignment, isVolatile: false); |
| 7299 | |
| 7300 | Value *SrcSize = IRB.CreateBinaryIntrinsic( |
| 7301 | ID: Intrinsic::umin, LHS: CopySize, |
| 7302 | RHS: ConstantInt::get(Ty: MS.IntptrTy, V: kParamTLSSize)); |
| 7303 | IRB.CreateMemCpy(Dst: VAArgTLSCopy, DstAlign: kShadowTLSAlignment, Src: MS.VAArgTLS, |
| 7304 | SrcAlign: kShadowTLSAlignment, Size: SrcSize); |
| 7305 | } |
| 7306 | |
| 7307 | // Instrument va_start. |
| 7308 | // Copy va_list shadow from the backup copy of the TLS contents. |
| 7309 | for (CallInst *OrigInst : VAStartInstrumentationList) { |
| 7310 | NextNodeIRBuilder IRB(OrigInst); |
| 7311 | Value *VAListTag = OrigInst->getArgOperand(i: 0); |
| 7312 | Type *RegSaveAreaPtrTy = PointerType::getUnqual(C&: *MS.C); |
| 7313 | Value *RegSaveAreaPtrPtr = |
| 7314 | IRB.CreateIntToPtr(V: IRB.CreatePtrToInt(V: VAListTag, DestTy: MS.IntptrTy), |
| 7315 | DestTy: PointerType::get(C&: *MS.C, AddressSpace: 0)); |
| 7316 | Value *RegSaveAreaPtr = |
| 7317 | IRB.CreateLoad(Ty: RegSaveAreaPtrTy, Ptr: RegSaveAreaPtrPtr); |
| 7318 | Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; |
| 7319 | const DataLayout &DL = F.getDataLayout(); |
| 7320 | unsigned IntptrSize = DL.getTypeStoreSize(Ty: MS.IntptrTy); |
| 7321 | const Align Alignment = Align(IntptrSize); |
| 7322 | std::tie(args&: RegSaveAreaShadowPtr, args&: RegSaveAreaOriginPtr) = |
| 7323 | MSV.getShadowOriginPtr(Addr: RegSaveAreaPtr, IRB, ShadowTy: IRB.getInt8Ty(), |
| 7324 | Alignment, /*isStore*/ true); |
| 7325 | IRB.CreateMemCpy(Dst: RegSaveAreaShadowPtr, DstAlign: Alignment, Src: VAArgTLSCopy, SrcAlign: Alignment, |
| 7326 | Size: CopySize); |
| 7327 | } |
| 7328 | } |
| 7329 | }; |
| 7330 | |
| 7331 | /// Implementation of VarArgHelper that is used for ARM32, MIPS, RISCV, |
| 7332 | /// LoongArch64. |
| 7333 | struct VarArgGenericHelper : public VarArgHelperBase { |
| 7334 | AllocaInst *VAArgTLSCopy = nullptr; |
| 7335 | Value *VAArgSize = nullptr; |
| 7336 | |
| 7337 | VarArgGenericHelper(Function &F, MemorySanitizer &MS, |
| 7338 | MemorySanitizerVisitor &MSV, const unsigned VAListTagSize) |
| 7339 | : VarArgHelperBase(F, MS, MSV, VAListTagSize) {} |
| 7340 | |
| 7341 | void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { |
| 7342 | unsigned VAArgOffset = 0; |
| 7343 | const DataLayout &DL = F.getDataLayout(); |
| 7344 | unsigned IntptrSize = DL.getTypeStoreSize(Ty: MS.IntptrTy); |
| 7345 | for (const auto &[ArgNo, A] : llvm::enumerate(First: CB.args())) { |
| 7346 | bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); |
| 7347 | if (IsFixed) |
| 7348 | continue; |
| 7349 | uint64_t ArgSize = DL.getTypeAllocSize(Ty: A->getType()); |
| 7350 | if (DL.isBigEndian()) { |
| 7351 | // Adjusting the shadow for argument with size < IntptrSize to match the |
| 7352 | // placement of bits in big endian system |
| 7353 | if (ArgSize < IntptrSize) |
| 7354 | VAArgOffset += (IntptrSize - ArgSize); |
| 7355 | } |
| 7356 | Value *Base = getShadowPtrForVAArgument(IRB, ArgOffset: VAArgOffset, ArgSize); |
| 7357 | VAArgOffset += ArgSize; |
| 7358 | VAArgOffset = alignTo(Value: VAArgOffset, Align: IntptrSize); |
| 7359 | if (!Base) |
| 7360 | continue; |
| 7361 | IRB.CreateAlignedStore(Val: MSV.getShadow(V: A), Ptr: Base, Align: kShadowTLSAlignment); |
| 7362 | } |
| 7363 | |
| 7364 | Constant *TotalVAArgSize = ConstantInt::get(Ty: MS.IntptrTy, V: VAArgOffset); |
| 7365 | // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of |
| 7366 | // a new class member i.e. it is the total size of all VarArgs. |
| 7367 | IRB.CreateStore(Val: TotalVAArgSize, Ptr: MS.VAArgOverflowSizeTLS); |
| 7368 | } |
| 7369 | |
| 7370 | void finalizeInstrumentation() override { |
| 7371 | assert(!VAArgSize && !VAArgTLSCopy && |
| 7372 | "finalizeInstrumentation called twice" ); |
| 7373 | IRBuilder<> IRB(MSV.FnPrologueEnd); |
| 7374 | VAArgSize = IRB.CreateLoad(Ty: MS.IntptrTy, Ptr: MS.VAArgOverflowSizeTLS); |
| 7375 | Value *CopySize = VAArgSize; |
| 7376 | |
| 7377 | if (!VAStartInstrumentationList.empty()) { |
| 7378 | // If there is a va_start in this function, make a backup copy of |
| 7379 | // va_arg_tls somewhere in the function entry block. |
| 7380 | VAArgTLSCopy = IRB.CreateAlloca(Ty: Type::getInt8Ty(C&: *MS.C), ArraySize: CopySize); |
| 7381 | VAArgTLSCopy->setAlignment(kShadowTLSAlignment); |
| 7382 | IRB.CreateMemSet(Ptr: VAArgTLSCopy, Val: Constant::getNullValue(Ty: IRB.getInt8Ty()), |
| 7383 | Size: CopySize, Align: kShadowTLSAlignment, isVolatile: false); |
| 7384 | |
| 7385 | Value *SrcSize = IRB.CreateBinaryIntrinsic( |
| 7386 | ID: Intrinsic::umin, LHS: CopySize, |
| 7387 | RHS: ConstantInt::get(Ty: MS.IntptrTy, V: kParamTLSSize)); |
| 7388 | IRB.CreateMemCpy(Dst: VAArgTLSCopy, DstAlign: kShadowTLSAlignment, Src: MS.VAArgTLS, |
| 7389 | SrcAlign: kShadowTLSAlignment, Size: SrcSize); |
| 7390 | } |
| 7391 | |
| 7392 | // Instrument va_start. |
| 7393 | // Copy va_list shadow from the backup copy of the TLS contents. |
| 7394 | for (CallInst *OrigInst : VAStartInstrumentationList) { |
| 7395 | NextNodeIRBuilder IRB(OrigInst); |
| 7396 | Value *VAListTag = OrigInst->getArgOperand(i: 0); |
| 7397 | Type *RegSaveAreaPtrTy = PointerType::getUnqual(C&: *MS.C); |
| 7398 | Value *RegSaveAreaPtrPtr = |
| 7399 | IRB.CreateIntToPtr(V: IRB.CreatePtrToInt(V: VAListTag, DestTy: MS.IntptrTy), |
| 7400 | DestTy: PointerType::get(C&: *MS.C, AddressSpace: 0)); |
| 7401 | Value *RegSaveAreaPtr = |
| 7402 | IRB.CreateLoad(Ty: RegSaveAreaPtrTy, Ptr: RegSaveAreaPtrPtr); |
| 7403 | Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; |
| 7404 | const DataLayout &DL = F.getDataLayout(); |
| 7405 | unsigned IntptrSize = DL.getTypeStoreSize(Ty: MS.IntptrTy); |
| 7406 | const Align Alignment = Align(IntptrSize); |
| 7407 | std::tie(args&: RegSaveAreaShadowPtr, args&: RegSaveAreaOriginPtr) = |
| 7408 | MSV.getShadowOriginPtr(Addr: RegSaveAreaPtr, IRB, ShadowTy: IRB.getInt8Ty(), |
| 7409 | Alignment, /*isStore*/ true); |
| 7410 | IRB.CreateMemCpy(Dst: RegSaveAreaShadowPtr, DstAlign: Alignment, Src: VAArgTLSCopy, SrcAlign: Alignment, |
| 7411 | Size: CopySize); |
| 7412 | } |
| 7413 | } |
| 7414 | }; |
| 7415 | |
| 7416 | // ARM32, Loongarch64, MIPS and RISCV share the same calling conventions |
| 7417 | // regarding VAArgs. |
| 7418 | using VarArgARM32Helper = VarArgGenericHelper; |
| 7419 | using VarArgRISCVHelper = VarArgGenericHelper; |
| 7420 | using VarArgMIPSHelper = VarArgGenericHelper; |
| 7421 | using VarArgLoongArch64Helper = VarArgGenericHelper; |
| 7422 | |
| 7423 | /// A no-op implementation of VarArgHelper. |
| 7424 | struct VarArgNoOpHelper : public VarArgHelper { |
| 7425 | VarArgNoOpHelper(Function &F, MemorySanitizer &MS, |
| 7426 | MemorySanitizerVisitor &MSV) {} |
| 7427 | |
| 7428 | void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {} |
| 7429 | |
| 7430 | void visitVAStartInst(VAStartInst &I) override {} |
| 7431 | |
| 7432 | void visitVACopyInst(VACopyInst &I) override {} |
| 7433 | |
| 7434 | void finalizeInstrumentation() override {} |
| 7435 | }; |
| 7436 | |
| 7437 | } // end anonymous namespace |
| 7438 | |
| 7439 | static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, |
| 7440 | MemorySanitizerVisitor &Visitor) { |
| 7441 | // VarArg handling is only implemented on AMD64. False positives are possible |
| 7442 | // on other platforms. |
| 7443 | Triple TargetTriple(Func.getParent()->getTargetTriple()); |
| 7444 | |
| 7445 | if (TargetTriple.getArch() == Triple::x86) |
| 7446 | return new VarArgI386Helper(Func, Msan, Visitor); |
| 7447 | |
| 7448 | if (TargetTriple.getArch() == Triple::x86_64) |
| 7449 | return new VarArgAMD64Helper(Func, Msan, Visitor); |
| 7450 | |
| 7451 | if (TargetTriple.isARM()) |
| 7452 | return new VarArgARM32Helper(Func, Msan, Visitor, /*VAListTagSize=*/4); |
| 7453 | |
| 7454 | if (TargetTriple.isAArch64()) |
| 7455 | return new VarArgAArch64Helper(Func, Msan, Visitor); |
| 7456 | |
| 7457 | if (TargetTriple.isSystemZ()) |
| 7458 | return new VarArgSystemZHelper(Func, Msan, Visitor); |
| 7459 | |
| 7460 | // On PowerPC32 VAListTag is a struct |
| 7461 | // {char, char, i16 padding, char *, char *} |
| 7462 | if (TargetTriple.isPPC32()) |
| 7463 | return new VarArgPowerPC32Helper(Func, Msan, Visitor); |
| 7464 | |
| 7465 | if (TargetTriple.isPPC64()) |
| 7466 | return new VarArgPowerPC64Helper(Func, Msan, Visitor); |
| 7467 | |
| 7468 | if (TargetTriple.isRISCV32()) |
| 7469 | return new VarArgRISCVHelper(Func, Msan, Visitor, /*VAListTagSize=*/4); |
| 7470 | |
| 7471 | if (TargetTriple.isRISCV64()) |
| 7472 | return new VarArgRISCVHelper(Func, Msan, Visitor, /*VAListTagSize=*/8); |
| 7473 | |
| 7474 | if (TargetTriple.isMIPS32()) |
| 7475 | return new VarArgMIPSHelper(Func, Msan, Visitor, /*VAListTagSize=*/4); |
| 7476 | |
| 7477 | if (TargetTriple.isMIPS64()) |
| 7478 | return new VarArgMIPSHelper(Func, Msan, Visitor, /*VAListTagSize=*/8); |
| 7479 | |
| 7480 | if (TargetTriple.isLoongArch64()) |
| 7481 | return new VarArgLoongArch64Helper(Func, Msan, Visitor, |
| 7482 | /*VAListTagSize=*/8); |
| 7483 | |
| 7484 | return new VarArgNoOpHelper(Func, Msan, Visitor); |
| 7485 | } |
| 7486 | |
| 7487 | bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) { |
| 7488 | if (!CompileKernel && F.getName() == kMsanModuleCtorName) |
| 7489 | return false; |
| 7490 | |
| 7491 | if (F.hasFnAttribute(Kind: Attribute::DisableSanitizerInstrumentation)) |
| 7492 | return false; |
| 7493 | |
| 7494 | MemorySanitizerVisitor Visitor(F, *this, TLI); |
| 7495 | |
| 7496 | // Clear out memory attributes. |
| 7497 | AttributeMask B; |
| 7498 | B.addAttribute(Val: Attribute::Memory).addAttribute(Val: Attribute::Speculatable); |
| 7499 | F.removeFnAttrs(Attrs: B); |
| 7500 | |
| 7501 | return Visitor.runOnFunction(); |
| 7502 | } |
| 7503 | |