| 1 | //===-- NumericalStabilitySanitizer.cpp -----------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file contains the instrumentation pass for the numerical sanitizer. |
| 10 | // Conceptually the pass injects shadow computations using higher precision |
| 11 | // types and inserts consistency checks. For details see the paper |
| 12 | // https://arxiv.org/abs/2102.12782. |
| 13 | // |
| 14 | //===----------------------------------------------------------------------===// |
| 15 | |
| 16 | #include "llvm/Transforms/Instrumentation/NumericalStabilitySanitizer.h" |
| 17 | |
| 18 | #include "llvm/ADT/DenseMap.h" |
| 19 | #include "llvm/ADT/SmallVector.h" |
| 20 | #include "llvm/ADT/Statistic.h" |
| 21 | #include "llvm/ADT/StringExtras.h" |
| 22 | #include "llvm/Analysis/TargetLibraryInfo.h" |
| 23 | #include "llvm/Analysis/ValueTracking.h" |
| 24 | #include "llvm/IR/DataLayout.h" |
| 25 | #include "llvm/IR/Function.h" |
| 26 | #include "llvm/IR/IRBuilder.h" |
| 27 | #include "llvm/IR/IntrinsicInst.h" |
| 28 | #include "llvm/IR/Intrinsics.h" |
| 29 | #include "llvm/IR/LLVMContext.h" |
| 30 | #include "llvm/IR/MDBuilder.h" |
| 31 | #include "llvm/IR/Metadata.h" |
| 32 | #include "llvm/IR/Module.h" |
| 33 | #include "llvm/IR/Type.h" |
| 34 | #include "llvm/Support/CommandLine.h" |
| 35 | #include "llvm/Support/Debug.h" |
| 36 | #include "llvm/Support/Regex.h" |
| 37 | #include "llvm/Support/raw_ostream.h" |
| 38 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 39 | #include "llvm/Transforms/Utils/Instrumentation.h" |
| 40 | #include "llvm/Transforms/Utils/Local.h" |
| 41 | #include "llvm/Transforms/Utils/ModuleUtils.h" |
| 42 | |
| 43 | #include <cstdint> |
| 44 | |
| 45 | using namespace llvm; |
| 46 | |
| 47 | #define DEBUG_TYPE "nsan" |
| 48 | |
| 49 | STATISTIC(NumInstrumentedFTLoads, |
| 50 | "Number of instrumented floating-point loads" ); |
| 51 | |
| 52 | STATISTIC(NumInstrumentedFTCalls, |
| 53 | "Number of instrumented floating-point calls" ); |
| 54 | STATISTIC(NumInstrumentedFTRets, |
| 55 | "Number of instrumented floating-point returns" ); |
| 56 | STATISTIC(NumInstrumentedFTStores, |
| 57 | "Number of instrumented floating-point stores" ); |
| 58 | STATISTIC(NumInstrumentedNonFTStores, |
| 59 | "Number of instrumented non floating-point stores" ); |
| 60 | STATISTIC( |
| 61 | NumInstrumentedNonFTMemcpyStores, |
| 62 | "Number of instrumented non floating-point stores with memcpy semantics" ); |
| 63 | STATISTIC(NumInstrumentedFCmp, "Number of instrumented fcmps" ); |
| 64 | |
| 65 | // Using smaller shadow types types can help improve speed. For example, `dlq` |
| 66 | // is 3x slower to 5x faster in opt mode and 2-6x faster in dbg mode compared to |
| 67 | // `dqq`. |
| 68 | static cl::opt<std::string> ClShadowMapping( |
| 69 | "nsan-shadow-type-mapping" , cl::init(Val: "dqq" ), |
| 70 | cl::desc("One shadow type id for each of `float`, `double`, `long double`. " |
| 71 | "`d`,`l`,`q`,`e` mean double, x86_fp80, fp128 (quad) and " |
| 72 | "ppc_fp128 (extended double) respectively. The default is to " |
| 73 | "shadow `float` as `double`, and `double` and `x86_fp80` as " |
| 74 | "`fp128`" ), |
| 75 | cl::Hidden); |
| 76 | |
| 77 | static cl::opt<bool> |
| 78 | ClInstrumentFCmp("nsan-instrument-fcmp" , cl::init(Val: true), |
| 79 | cl::desc("Instrument floating-point comparisons" ), |
| 80 | cl::Hidden); |
| 81 | |
| 82 | static cl::opt<std::string> ClCheckFunctionsFilter( |
| 83 | "check-functions-filter" , |
| 84 | cl::desc("Only emit checks for arguments of functions " |
| 85 | "whose names match the given regular expression" ), |
| 86 | cl::value_desc("regex" )); |
| 87 | |
| 88 | static cl::opt<bool> ClTruncateFCmpEq( |
| 89 | "nsan-truncate-fcmp-eq" , cl::init(Val: true), |
| 90 | cl::desc( |
| 91 | "This flag controls the behaviour of fcmp equality comparisons." |
| 92 | "For equality comparisons such as `x == 0.0f`, we can perform the " |
| 93 | "shadow check in the shadow (`x_shadow == 0.0) == (x == 0.0f)`) or app " |
| 94 | " domain (`(trunc(x_shadow) == 0.0f) == (x == 0.0f)`). This helps " |
| 95 | "catch the case when `x_shadow` is accurate enough (and therefore " |
| 96 | "close enough to zero) so that `trunc(x_shadow)` is zero even though " |
| 97 | "both `x` and `x_shadow` are not" ), |
| 98 | cl::Hidden); |
| 99 | |
| 100 | // When there is external, uninstrumented code writing to memory, the shadow |
| 101 | // memory can get out of sync with the application memory. Enabling this flag |
| 102 | // emits consistency checks for loads to catch this situation. |
| 103 | // When everything is instrumented, this is not strictly necessary because any |
| 104 | // load should have a corresponding store, but can help debug cases when the |
| 105 | // framework did a bad job at tracking shadow memory modifications by failing on |
| 106 | // load rather than store. |
| 107 | // TODO: provide a way to resume computations from the FT value when the load |
| 108 | // is inconsistent. This ensures that further computations are not polluted. |
| 109 | static cl::opt<bool> ClCheckLoads("nsan-check-loads" , |
| 110 | cl::desc("Check floating-point load" ), |
| 111 | cl::Hidden); |
| 112 | |
| 113 | static cl::opt<bool> ClCheckStores("nsan-check-stores" , cl::init(Val: true), |
| 114 | cl::desc("Check floating-point stores" ), |
| 115 | cl::Hidden); |
| 116 | |
| 117 | static cl::opt<bool> ClCheckRet("nsan-check-ret" , cl::init(Val: true), |
| 118 | cl::desc("Check floating-point return values" ), |
| 119 | cl::Hidden); |
| 120 | |
| 121 | // LLVM may store constant floats as bitcasted ints. |
| 122 | // It's not really necessary to shadow such stores, |
| 123 | // if the shadow value is unknown the framework will re-extend it on load |
| 124 | // anyway. Moreover, because of size collisions (e.g. bf16 vs f16) it is |
| 125 | // impossible to determine the floating-point type based on the size. |
| 126 | // However, for debugging purposes it can be useful to model such stores. |
| 127 | static cl::opt<bool> ClPropagateNonFTConstStoresAsFT( |
| 128 | "nsan-propagate-non-ft-const-stores-as-ft" , |
| 129 | cl::desc( |
| 130 | "Propagate non floating-point const stores as floating point values." |
| 131 | "For debugging purposes only" ), |
| 132 | cl::Hidden); |
| 133 | |
| 134 | constexpr StringLiteral kNsanModuleCtorName("nsan.module_ctor" ); |
| 135 | constexpr StringLiteral kNsanInitName("__nsan_init" ); |
| 136 | |
| 137 | // The following values must be kept in sync with the runtime. |
| 138 | constexpr int kShadowScale = 2; |
| 139 | constexpr int kMaxVectorWidth = 8; |
| 140 | constexpr int kMaxNumArgs = 128; |
| 141 | constexpr int kMaxShadowTypeSizeBytes = 16; // fp128 |
| 142 | |
| 143 | namespace { |
| 144 | |
| 145 | // Defines the characteristics (type id, type, and floating-point semantics) |
| 146 | // attached for all possible shadow types. |
| 147 | class ShadowTypeConfig { |
| 148 | public: |
| 149 | static std::unique_ptr<ShadowTypeConfig> fromNsanTypeId(char TypeId); |
| 150 | |
| 151 | // The LLVM Type corresponding to the shadow type. |
| 152 | virtual Type *getType(LLVMContext &Context) const = 0; |
| 153 | |
| 154 | // The nsan type id of the shadow type (`d`, `l`, `q`, ...). |
| 155 | virtual char getNsanTypeId() const = 0; |
| 156 | |
| 157 | virtual ~ShadowTypeConfig() = default; |
| 158 | }; |
| 159 | |
| 160 | template <char NsanTypeId> |
| 161 | class ShadowTypeConfigImpl : public ShadowTypeConfig { |
| 162 | public: |
| 163 | char getNsanTypeId() const override { return NsanTypeId; } |
| 164 | static constexpr const char kNsanTypeId = NsanTypeId; |
| 165 | }; |
| 166 | |
| 167 | // `double` (`d`) shadow type. |
| 168 | class F64ShadowConfig : public ShadowTypeConfigImpl<'d'> { |
| 169 | Type *getType(LLVMContext &Context) const override { |
| 170 | return Type::getDoubleTy(C&: Context); |
| 171 | } |
| 172 | }; |
| 173 | |
| 174 | // `x86_fp80` (`l`) shadow type: X86 long double. |
| 175 | class F80ShadowConfig : public ShadowTypeConfigImpl<'l'> { |
| 176 | Type *getType(LLVMContext &Context) const override { |
| 177 | return Type::getX86_FP80Ty(C&: Context); |
| 178 | } |
| 179 | }; |
| 180 | |
| 181 | // `fp128` (`q`) shadow type. |
| 182 | class F128ShadowConfig : public ShadowTypeConfigImpl<'q'> { |
| 183 | Type *getType(LLVMContext &Context) const override { |
| 184 | return Type::getFP128Ty(C&: Context); |
| 185 | } |
| 186 | }; |
| 187 | |
| 188 | // `ppc_fp128` (`e`) shadow type: IBM extended double with 106 bits of mantissa. |
| 189 | class PPC128ShadowConfig : public ShadowTypeConfigImpl<'e'> { |
| 190 | Type *getType(LLVMContext &Context) const override { |
| 191 | return Type::getPPC_FP128Ty(C&: Context); |
| 192 | } |
| 193 | }; |
| 194 | |
| 195 | // Creates a ShadowTypeConfig given its type id. |
| 196 | std::unique_ptr<ShadowTypeConfig> |
| 197 | ShadowTypeConfig::fromNsanTypeId(const char TypeId) { |
| 198 | switch (TypeId) { |
| 199 | case F64ShadowConfig::kNsanTypeId: |
| 200 | return std::make_unique<F64ShadowConfig>(); |
| 201 | case F80ShadowConfig::kNsanTypeId: |
| 202 | return std::make_unique<F80ShadowConfig>(); |
| 203 | case F128ShadowConfig::kNsanTypeId: |
| 204 | return std::make_unique<F128ShadowConfig>(); |
| 205 | case PPC128ShadowConfig::kNsanTypeId: |
| 206 | return std::make_unique<PPC128ShadowConfig>(); |
| 207 | } |
| 208 | report_fatal_error(reason: "nsan: invalid shadow type id '" + Twine(TypeId) + "'" ); |
| 209 | } |
| 210 | |
| 211 | // An enum corresponding to shadow value types. Used as indices in arrays, so |
| 212 | // not an `enum class`. |
| 213 | enum FTValueType { kFloat, kDouble, kLongDouble, kNumValueTypes }; |
| 214 | |
| 215 | // If `FT` corresponds to a primitive FTValueType, return it. |
| 216 | static std::optional<FTValueType> ftValueTypeFromType(Type *FT) { |
| 217 | if (FT->isFloatTy()) |
| 218 | return kFloat; |
| 219 | if (FT->isDoubleTy()) |
| 220 | return kDouble; |
| 221 | if (FT->isX86_FP80Ty()) |
| 222 | return kLongDouble; |
| 223 | return {}; |
| 224 | } |
| 225 | |
| 226 | // Returns the LLVM type for an FTValueType. |
| 227 | static Type *typeFromFTValueType(FTValueType VT, LLVMContext &Context) { |
| 228 | switch (VT) { |
| 229 | case kFloat: |
| 230 | return Type::getFloatTy(C&: Context); |
| 231 | case kDouble: |
| 232 | return Type::getDoubleTy(C&: Context); |
| 233 | case kLongDouble: |
| 234 | return Type::getX86_FP80Ty(C&: Context); |
| 235 | case kNumValueTypes: |
| 236 | return nullptr; |
| 237 | } |
| 238 | llvm_unreachable("Unhandled FTValueType enum" ); |
| 239 | } |
| 240 | |
| 241 | // Returns the type name for an FTValueType. |
| 242 | static const char *typeNameFromFTValueType(FTValueType VT) { |
| 243 | switch (VT) { |
| 244 | case kFloat: |
| 245 | return "float" ; |
| 246 | case kDouble: |
| 247 | return "double" ; |
| 248 | case kLongDouble: |
| 249 | return "longdouble" ; |
| 250 | case kNumValueTypes: |
| 251 | return nullptr; |
| 252 | } |
| 253 | llvm_unreachable("Unhandled FTValueType enum" ); |
| 254 | } |
| 255 | |
| 256 | // A specific mapping configuration of application type to shadow type for nsan |
| 257 | // (see -nsan-shadow-mapping flag). |
| 258 | class MappingConfig { |
| 259 | public: |
| 260 | explicit MappingConfig(LLVMContext &C) : Context(C) { |
| 261 | if (ClShadowMapping.size() != 3) |
| 262 | report_fatal_error(reason: "Invalid nsan mapping: " + Twine(ClShadowMapping)); |
| 263 | unsigned ShadowTypeSizeBits[kNumValueTypes]; |
| 264 | for (int VT = 0; VT < kNumValueTypes; ++VT) { |
| 265 | auto Config = ShadowTypeConfig::fromNsanTypeId(TypeId: ClShadowMapping[VT]); |
| 266 | if (!Config) |
| 267 | report_fatal_error(reason: "Failed to get ShadowTypeConfig for " + |
| 268 | Twine(ClShadowMapping[VT])); |
| 269 | const unsigned AppTypeSize = |
| 270 | typeFromFTValueType(VT: static_cast<FTValueType>(VT), Context) |
| 271 | ->getScalarSizeInBits(); |
| 272 | const unsigned ShadowTypeSize = |
| 273 | Config->getType(Context)->getScalarSizeInBits(); |
| 274 | // Check that the shadow type size is at most kShadowScale times the |
| 275 | // application type size, so that shadow memory compoutations are valid. |
| 276 | if (ShadowTypeSize > kShadowScale * AppTypeSize) |
| 277 | report_fatal_error(reason: "Invalid nsan mapping f" + Twine(AppTypeSize) + |
| 278 | "->f" + Twine(ShadowTypeSize) + |
| 279 | ": The shadow type size should be at most " + |
| 280 | Twine(kShadowScale) + |
| 281 | " times the application type size" ); |
| 282 | ShadowTypeSizeBits[VT] = ShadowTypeSize; |
| 283 | Configs[VT] = std::move(Config); |
| 284 | } |
| 285 | |
| 286 | // Check that the mapping is monotonous. This is required because if one |
| 287 | // does an fpextend of `float->long double` in application code, nsan is |
| 288 | // going to do an fpextend of `shadow(float) -> shadow(long double)` in |
| 289 | // shadow code. This will fail in `qql` mode, since nsan would be |
| 290 | // fpextending `f128->long`, which is invalid. |
| 291 | // TODO: Relax this. |
| 292 | if (ShadowTypeSizeBits[kFloat] > ShadowTypeSizeBits[kDouble] || |
| 293 | ShadowTypeSizeBits[kDouble] > ShadowTypeSizeBits[kLongDouble]) |
| 294 | report_fatal_error(reason: "Invalid nsan mapping: { float->f" + |
| 295 | Twine(ShadowTypeSizeBits[kFloat]) + "; double->f" + |
| 296 | Twine(ShadowTypeSizeBits[kDouble]) + |
| 297 | "; long double->f" + |
| 298 | Twine(ShadowTypeSizeBits[kLongDouble]) + " }" ); |
| 299 | } |
| 300 | |
| 301 | const ShadowTypeConfig &byValueType(FTValueType VT) const { |
| 302 | assert(VT < FTValueType::kNumValueTypes && "invalid value type" ); |
| 303 | return *Configs[VT]; |
| 304 | } |
| 305 | |
| 306 | // Returns the extended shadow type for a given application type. |
| 307 | Type *getExtendedFPType(Type *FT) const { |
| 308 | if (const auto VT = ftValueTypeFromType(FT)) |
| 309 | return Configs[*VT]->getType(Context); |
| 310 | if (FT->isVectorTy()) { |
| 311 | auto *VecTy = cast<VectorType>(Val: FT); |
| 312 | // TODO: add support for scalable vector types. |
| 313 | if (VecTy->isScalableTy()) |
| 314 | return nullptr; |
| 315 | Type *ExtendedScalar = getExtendedFPType(FT: VecTy->getElementType()); |
| 316 | return ExtendedScalar |
| 317 | ? VectorType::get(ElementType: ExtendedScalar, EC: VecTy->getElementCount()) |
| 318 | : nullptr; |
| 319 | } |
| 320 | return nullptr; |
| 321 | } |
| 322 | |
| 323 | private: |
| 324 | LLVMContext &Context; |
| 325 | std::unique_ptr<ShadowTypeConfig> Configs[FTValueType::kNumValueTypes]; |
| 326 | }; |
| 327 | |
| 328 | // The memory extents of a type specifies how many elements of a given |
| 329 | // FTValueType needs to be stored when storing this type. |
| 330 | struct MemoryExtents { |
| 331 | FTValueType ValueType; |
| 332 | uint64_t NumElts; |
| 333 | }; |
| 334 | |
| 335 | static MemoryExtents getMemoryExtentsOrDie(Type *FT) { |
| 336 | if (const auto VT = ftValueTypeFromType(FT)) |
| 337 | return {.ValueType: *VT, .NumElts: 1}; |
| 338 | if (auto *VecTy = dyn_cast<VectorType>(Val: FT)) { |
| 339 | const auto ScalarExtents = getMemoryExtentsOrDie(FT: VecTy->getElementType()); |
| 340 | return {.ValueType: ScalarExtents.ValueType, |
| 341 | .NumElts: ScalarExtents.NumElts * VecTy->getElementCount().getFixedValue()}; |
| 342 | } |
| 343 | llvm_unreachable("invalid value type" ); |
| 344 | } |
| 345 | |
| 346 | // The location of a check. Passed as parameters to runtime checking functions. |
| 347 | class CheckLoc { |
| 348 | public: |
| 349 | // Creates a location that references an application memory location. |
| 350 | static CheckLoc makeStore(Value *Address) { |
| 351 | CheckLoc Result(kStore); |
| 352 | Result.Address = Address; |
| 353 | return Result; |
| 354 | } |
| 355 | static CheckLoc makeLoad(Value *Address) { |
| 356 | CheckLoc Result(kLoad); |
| 357 | Result.Address = Address; |
| 358 | return Result; |
| 359 | } |
| 360 | |
| 361 | // Creates a location that references an argument, given by id. |
| 362 | static CheckLoc makeArg(int ArgId) { |
| 363 | CheckLoc Result(kArg); |
| 364 | Result.ArgId = ArgId; |
| 365 | return Result; |
| 366 | } |
| 367 | |
| 368 | // Creates a location that references the return value of a function. |
| 369 | static CheckLoc makeRet() { return CheckLoc(kRet); } |
| 370 | |
| 371 | // Creates a location that references a vector insert. |
| 372 | static CheckLoc makeInsert() { return CheckLoc(kInsert); } |
| 373 | |
| 374 | // Returns the CheckType of location this refers to, as an integer-typed LLVM |
| 375 | // IR value. |
| 376 | Value *getType(LLVMContext &C) const { |
| 377 | return ConstantInt::get(Ty: Type::getInt32Ty(C), V: static_cast<int>(CheckTy)); |
| 378 | } |
| 379 | |
| 380 | // Returns a CheckType-specific value representing details of the location |
| 381 | // (e.g. application address for loads or stores), as an `IntptrTy`-typed LLVM |
| 382 | // IR value. |
| 383 | Value *getValue(Type *IntptrTy, IRBuilder<> &Builder) const { |
| 384 | switch (CheckTy) { |
| 385 | case kUnknown: |
| 386 | llvm_unreachable("unknown type" ); |
| 387 | case kRet: |
| 388 | case kInsert: |
| 389 | return ConstantInt::get(Ty: IntptrTy, V: 0); |
| 390 | case kArg: |
| 391 | return ConstantInt::get(Ty: IntptrTy, V: ArgId); |
| 392 | case kLoad: |
| 393 | case kStore: |
| 394 | return Builder.CreatePtrToInt(V: Address, DestTy: IntptrTy); |
| 395 | } |
| 396 | llvm_unreachable("Unhandled CheckType enum" ); |
| 397 | } |
| 398 | |
| 399 | private: |
| 400 | // Must be kept in sync with the runtime, |
| 401 | // see compiler-rt/lib/nsan/nsan_stats.h |
| 402 | enum CheckType { |
| 403 | kUnknown = 0, |
| 404 | kRet, |
| 405 | kArg, |
| 406 | kLoad, |
| 407 | kStore, |
| 408 | kInsert, |
| 409 | }; |
| 410 | explicit CheckLoc(CheckType CheckTy) : CheckTy(CheckTy) {} |
| 411 | |
| 412 | Value *Address = nullptr; |
| 413 | const CheckType CheckTy; |
| 414 | int ArgId = -1; |
| 415 | }; |
| 416 | |
| 417 | // A map of LLVM IR values to shadow LLVM IR values. |
| 418 | class ValueToShadowMap { |
| 419 | public: |
| 420 | explicit ValueToShadowMap(const MappingConfig &Config) : Config(Config) {} |
| 421 | |
| 422 | ValueToShadowMap(const ValueToShadowMap &) = delete; |
| 423 | ValueToShadowMap &operator=(const ValueToShadowMap &) = delete; |
| 424 | |
| 425 | // Sets the shadow value for a value. Asserts that the value does not already |
| 426 | // have a value. |
| 427 | void setShadow(Value &V, Value &Shadow) { |
| 428 | [[maybe_unused]] const bool Inserted = Map.try_emplace(Key: &V, Args: &Shadow).second; |
| 429 | LLVM_DEBUG({ |
| 430 | if (!Inserted) { |
| 431 | if (auto *I = dyn_cast<Instruction>(&V)) |
| 432 | errs() << I->getFunction()->getName() << ": " ; |
| 433 | errs() << "duplicate shadow (" << &V << "): " ; |
| 434 | V.dump(); |
| 435 | } |
| 436 | }); |
| 437 | assert(Inserted && "duplicate shadow" ); |
| 438 | } |
| 439 | |
| 440 | // Returns true if the value already has a shadow (including if the value is a |
| 441 | // constant). If true, calling getShadow() is valid. |
| 442 | bool hasShadow(Value *V) const { return isa<Constant>(Val: V) || Map.contains(Val: V); } |
| 443 | |
| 444 | // Returns the shadow value for a given value. Asserts that the value has |
| 445 | // a shadow value. Lazily creates shadows for constant values. |
| 446 | Value *getShadow(Value *V) const { |
| 447 | if (Constant *C = dyn_cast<Constant>(Val: V)) |
| 448 | return getShadowConstant(C); |
| 449 | return Map.find(Val: V)->second; |
| 450 | } |
| 451 | |
| 452 | bool empty() const { return Map.empty(); } |
| 453 | |
| 454 | private: |
| 455 | // Extends a constant application value to its shadow counterpart. |
| 456 | APFloat extendConstantFP(APFloat CV, const fltSemantics &To) const { |
| 457 | bool LosesInfo = false; |
| 458 | CV.convert(ToSemantics: To, RM: APFloatBase::rmTowardZero, losesInfo: &LosesInfo); |
| 459 | return CV; |
| 460 | } |
| 461 | |
| 462 | // Returns the shadow constant for the given application constant. |
| 463 | Constant *getShadowConstant(Constant *C) const { |
| 464 | if (UndefValue *U = dyn_cast<UndefValue>(Val: C)) { |
| 465 | return UndefValue::get(T: Config.getExtendedFPType(FT: U->getType())); |
| 466 | } |
| 467 | if (ConstantFP *CFP = dyn_cast<ConstantFP>(Val: C)) { |
| 468 | // Floating-point constants. |
| 469 | Type *Ty = Config.getExtendedFPType(FT: CFP->getType()); |
| 470 | return ConstantFP::get( |
| 471 | Ty, V: extendConstantFP(CV: CFP->getValueAPF(), To: Ty->getFltSemantics())); |
| 472 | } |
| 473 | // Vector, array, or aggregate constants. |
| 474 | if (C->getType()->isVectorTy()) { |
| 475 | SmallVector<Constant *, 8> Elements; |
| 476 | for (int I = 0, E = cast<VectorType>(Val: C->getType()) |
| 477 | ->getElementCount() |
| 478 | .getFixedValue(); |
| 479 | I < E; ++I) |
| 480 | Elements.push_back(Elt: getShadowConstant(C: C->getAggregateElement(Elt: I))); |
| 481 | return ConstantVector::get(V: Elements); |
| 482 | } |
| 483 | llvm_unreachable("unimplemented" ); |
| 484 | } |
| 485 | |
| 486 | const MappingConfig &Config; |
| 487 | DenseMap<Value *, Value *> Map; |
| 488 | }; |
| 489 | |
| 490 | class NsanMemOpFn { |
| 491 | public: |
| 492 | NsanMemOpFn(Module &M, ArrayRef<StringRef> Sized, StringRef Fallback, |
| 493 | size_t NumArgs); |
| 494 | FunctionCallee getFunctionFor(uint64_t MemOpSize) const; |
| 495 | FunctionCallee getFallback() const; |
| 496 | |
| 497 | private: |
| 498 | SmallVector<FunctionCallee> Funcs; |
| 499 | size_t NumSizedFuncs; |
| 500 | }; |
| 501 | |
| 502 | NsanMemOpFn::NsanMemOpFn(Module &M, ArrayRef<StringRef> Sized, |
| 503 | StringRef Fallback, size_t NumArgs) { |
| 504 | LLVMContext &Ctx = M.getContext(); |
| 505 | AttributeList Attr; |
| 506 | Attr = Attr.addFnAttribute(C&: Ctx, Kind: Attribute::NoUnwind); |
| 507 | Type *PtrTy = PointerType::getUnqual(C&: Ctx); |
| 508 | Type *VoidTy = Type::getVoidTy(C&: Ctx); |
| 509 | IntegerType *IntptrTy = M.getDataLayout().getIntPtrType(C&: Ctx); |
| 510 | FunctionType *SizedFnTy = nullptr; |
| 511 | |
| 512 | NumSizedFuncs = Sized.size(); |
| 513 | |
| 514 | // First entry is fallback function |
| 515 | if (NumArgs == 3) { |
| 516 | Funcs.push_back( |
| 517 | Elt: M.getOrInsertFunction(Name: Fallback, AttributeList: Attr, RetTy: VoidTy, Args: PtrTy, Args: PtrTy, Args: IntptrTy)); |
| 518 | SizedFnTy = FunctionType::get(Result: VoidTy, Params: {PtrTy, PtrTy}, isVarArg: false); |
| 519 | } else if (NumArgs == 2) { |
| 520 | Funcs.push_back( |
| 521 | Elt: M.getOrInsertFunction(Name: Fallback, AttributeList: Attr, RetTy: VoidTy, Args: PtrTy, Args: IntptrTy)); |
| 522 | SizedFnTy = FunctionType::get(Result: VoidTy, Params: {PtrTy}, isVarArg: false); |
| 523 | } else { |
| 524 | llvm_unreachable("Unexpected value of sized functions arguments" ); |
| 525 | } |
| 526 | |
| 527 | for (size_t i = 0; i < NumSizedFuncs; ++i) |
| 528 | Funcs.push_back(Elt: M.getOrInsertFunction(Name: Sized[i], T: SizedFnTy, AttributeList: Attr)); |
| 529 | } |
| 530 | |
| 531 | FunctionCallee NsanMemOpFn::getFunctionFor(uint64_t MemOpSize) const { |
| 532 | // Now `getFunctionFor` operates on `Funcs` of size 4 (at least) and the |
| 533 | // following code assumes that the number of functions in `Func` is sufficient |
| 534 | assert(NumSizedFuncs >= 3 && "Unexpected number of sized functions" ); |
| 535 | |
| 536 | size_t Idx = |
| 537 | MemOpSize == 4 ? 1 : (MemOpSize == 8 ? 2 : (MemOpSize == 16 ? 3 : 0)); |
| 538 | |
| 539 | return Funcs[Idx]; |
| 540 | } |
| 541 | |
| 542 | FunctionCallee NsanMemOpFn::getFallback() const { return Funcs[0]; } |
| 543 | |
| 544 | /// Instantiating NumericalStabilitySanitizer inserts the nsan runtime library |
| 545 | /// API function declarations into the module if they don't exist already. |
| 546 | /// Instantiating ensures the __nsan_init function is in the list of global |
| 547 | /// constructors for the module. |
| 548 | class NumericalStabilitySanitizer { |
| 549 | public: |
| 550 | NumericalStabilitySanitizer(Module &M); |
| 551 | bool sanitizeFunction(Function &F, const TargetLibraryInfo &TLI); |
| 552 | |
| 553 | private: |
| 554 | bool instrumentMemIntrinsic(MemIntrinsic *MI); |
| 555 | void maybeAddSuffixForNsanInterface(CallBase *CI); |
| 556 | bool addrPointsToConstantData(Value *Addr); |
| 557 | void maybeCreateShadowValue(Instruction &Root, const TargetLibraryInfo &TLI, |
| 558 | ValueToShadowMap &Map); |
| 559 | Value *createShadowValueWithOperandsAvailable(Instruction &Inst, |
| 560 | const TargetLibraryInfo &TLI, |
| 561 | const ValueToShadowMap &Map); |
| 562 | PHINode *maybeCreateShadowPhi(PHINode &Phi, const TargetLibraryInfo &TLI); |
| 563 | void createShadowArguments(Function &F, const TargetLibraryInfo &TLI, |
| 564 | ValueToShadowMap &Map); |
| 565 | |
| 566 | void populateShadowStack(CallBase &CI, const TargetLibraryInfo &TLI, |
| 567 | const ValueToShadowMap &Map); |
| 568 | |
| 569 | void propagateShadowValues(Instruction &Inst, const TargetLibraryInfo &TLI, |
| 570 | const ValueToShadowMap &Map); |
| 571 | Value *emitCheck(Value *V, Value *ShadowV, IRBuilder<> &Builder, |
| 572 | CheckLoc Loc); |
| 573 | Value *emitCheckInternal(Value *V, Value *ShadowV, IRBuilder<> &Builder, |
| 574 | CheckLoc Loc); |
| 575 | void emitFCmpCheck(FCmpInst &FCmp, const ValueToShadowMap &Map); |
| 576 | |
| 577 | // Value creation handlers. |
| 578 | Value *handleLoad(LoadInst &Load, Type *VT, Type *ExtendedVT); |
| 579 | Value *handleCallBase(CallBase &Call, Type *VT, Type *ExtendedVT, |
| 580 | const TargetLibraryInfo &TLI, |
| 581 | const ValueToShadowMap &Map, IRBuilder<> &Builder); |
| 582 | Value *maybeHandleKnownCallBase(CallBase &Call, Type *VT, Type *ExtendedVT, |
| 583 | const TargetLibraryInfo &TLI, |
| 584 | const ValueToShadowMap &Map, |
| 585 | IRBuilder<> &Builder); |
| 586 | Value *handleTrunc(const FPTruncInst &Trunc, Type *VT, Type *ExtendedVT, |
| 587 | const ValueToShadowMap &Map, IRBuilder<> &Builder); |
| 588 | Value *handleExt(const FPExtInst &Ext, Type *VT, Type *ExtendedVT, |
| 589 | const ValueToShadowMap &Map, IRBuilder<> &Builder); |
| 590 | |
| 591 | // Value propagation handlers. |
| 592 | void propagateFTStore(StoreInst &Store, Type *VT, Type *ExtendedVT, |
| 593 | const ValueToShadowMap &Map); |
| 594 | void propagateNonFTStore(StoreInst &Store, Type *VT, |
| 595 | const ValueToShadowMap &Map); |
| 596 | |
| 597 | const DataLayout &DL; |
| 598 | LLVMContext &Context; |
| 599 | MappingConfig Config; |
| 600 | IntegerType *IntptrTy = nullptr; |
| 601 | |
| 602 | // TODO: Use std::array instead? |
| 603 | FunctionCallee NsanGetShadowPtrForStore[FTValueType::kNumValueTypes] = {}; |
| 604 | FunctionCallee NsanGetShadowPtrForLoad[FTValueType::kNumValueTypes] = {}; |
| 605 | FunctionCallee NsanCheckValue[FTValueType::kNumValueTypes] = {}; |
| 606 | FunctionCallee NsanFCmpFail[FTValueType::kNumValueTypes] = {}; |
| 607 | |
| 608 | NsanMemOpFn NsanCopyFns; |
| 609 | NsanMemOpFn NsanSetUnknownFns; |
| 610 | |
| 611 | FunctionCallee NsanGetRawShadowTypePtr; |
| 612 | FunctionCallee NsanGetRawShadowPtr; |
| 613 | GlobalValue *NsanShadowRetTag = nullptr; |
| 614 | |
| 615 | Type *NsanShadowRetType = nullptr; |
| 616 | GlobalValue *NsanShadowRetPtr = nullptr; |
| 617 | |
| 618 | GlobalValue *NsanShadowArgsTag = nullptr; |
| 619 | |
| 620 | Type *NsanShadowArgsType = nullptr; |
| 621 | GlobalValue *NsanShadowArgsPtr = nullptr; |
| 622 | |
| 623 | std::optional<Regex> CheckFunctionsFilter; |
| 624 | }; |
| 625 | } // end anonymous namespace |
| 626 | |
| 627 | PreservedAnalyses |
| 628 | NumericalStabilitySanitizerPass::run(Module &M, ModuleAnalysisManager &MAM) { |
| 629 | getOrCreateSanitizerCtorAndInitFunctions( |
| 630 | M, CtorName: kNsanModuleCtorName, InitName: kNsanInitName, /*InitArgTypes=*/{}, |
| 631 | /*InitArgs=*/{}, |
| 632 | // This callback is invoked when the functions are created the first |
| 633 | // time. Hook them into the global ctors list in that case: |
| 634 | FunctionsCreatedCallback: [&](Function *Ctor, FunctionCallee) { appendToGlobalCtors(M, F: Ctor, Priority: 0); }); |
| 635 | |
| 636 | NumericalStabilitySanitizer Nsan(M); |
| 637 | auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(IR&: M).getManager(); |
| 638 | for (Function &F : M) |
| 639 | Nsan.sanitizeFunction(F, TLI: FAM.getResult<TargetLibraryAnalysis>(IR&: F)); |
| 640 | |
| 641 | return PreservedAnalyses::none(); |
| 642 | } |
| 643 | |
| 644 | static GlobalValue *createThreadLocalGV(const char *Name, Module &M, Type *Ty) { |
| 645 | return M.getOrInsertGlobal(Name, Ty, CreateGlobalCallback: [&M, Ty, Name] { |
| 646 | return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage, |
| 647 | nullptr, Name, nullptr, |
| 648 | GlobalVariable::InitialExecTLSModel); |
| 649 | }); |
| 650 | } |
| 651 | |
| 652 | NumericalStabilitySanitizer::NumericalStabilitySanitizer(Module &M) |
| 653 | : DL(M.getDataLayout()), Context(M.getContext()), Config(Context), |
| 654 | NsanCopyFns(M, {"__nsan_copy_4" , "__nsan_copy_8" , "__nsan_copy_16" }, |
| 655 | "__nsan_copy_values" , /*NumArgs=*/3), |
| 656 | NsanSetUnknownFns(M, |
| 657 | {"__nsan_set_value_unknown_4" , |
| 658 | "__nsan_set_value_unknown_8" , |
| 659 | "__nsan_set_value_unknown_16" }, |
| 660 | "__nsan_set_value_unknown" , /*NumArgs=*/2) { |
| 661 | IntptrTy = DL.getIntPtrType(C&: Context); |
| 662 | Type *PtrTy = PointerType::getUnqual(C&: Context); |
| 663 | Type *Int32Ty = Type::getInt32Ty(C&: Context); |
| 664 | Type *Int1Ty = Type::getInt1Ty(C&: Context); |
| 665 | Type *VoidTy = Type::getVoidTy(C&: Context); |
| 666 | |
| 667 | AttributeList Attr; |
| 668 | Attr = Attr.addFnAttribute(C&: Context, Kind: Attribute::NoUnwind); |
| 669 | // Initialize the runtime values (functions and global variables). |
| 670 | for (int I = 0; I < kNumValueTypes; ++I) { |
| 671 | const FTValueType VT = static_cast<FTValueType>(I); |
| 672 | const char *VTName = typeNameFromFTValueType(VT); |
| 673 | Type *VTTy = typeFromFTValueType(VT, Context); |
| 674 | |
| 675 | // Load/store. |
| 676 | const std::string GetterPrefix = |
| 677 | std::string("__nsan_get_shadow_ptr_for_" ) + VTName; |
| 678 | NsanGetShadowPtrForStore[VT] = M.getOrInsertFunction( |
| 679 | Name: GetterPrefix + "_store" , AttributeList: Attr, RetTy: PtrTy, Args: PtrTy, Args: IntptrTy); |
| 680 | NsanGetShadowPtrForLoad[VT] = M.getOrInsertFunction( |
| 681 | Name: GetterPrefix + "_load" , AttributeList: Attr, RetTy: PtrTy, Args: PtrTy, Args: IntptrTy); |
| 682 | |
| 683 | // Check. |
| 684 | const auto &ShadowConfig = Config.byValueType(VT); |
| 685 | Type *ShadowTy = ShadowConfig.getType(Context); |
| 686 | NsanCheckValue[VT] = |
| 687 | M.getOrInsertFunction(Name: std::string("__nsan_internal_check_" ) + VTName + |
| 688 | "_" + ShadowConfig.getNsanTypeId(), |
| 689 | AttributeList: Attr, RetTy: Int32Ty, Args: VTTy, Args: ShadowTy, Args: Int32Ty, Args: IntptrTy); |
| 690 | NsanFCmpFail[VT] = M.getOrInsertFunction( |
| 691 | Name: std::string("__nsan_fcmp_fail_" ) + VTName + "_" + |
| 692 | ShadowConfig.getNsanTypeId(), |
| 693 | AttributeList: Attr, RetTy: VoidTy, Args: VTTy, Args: VTTy, Args: ShadowTy, Args: ShadowTy, Args: Int32Ty, Args: Int1Ty, Args: Int1Ty); |
| 694 | } |
| 695 | |
| 696 | // TODO: Add attributes nofree, nosync, readnone, readonly, |
| 697 | NsanGetRawShadowTypePtr = M.getOrInsertFunction( |
| 698 | Name: "__nsan_internal_get_raw_shadow_type_ptr" , AttributeList: Attr, RetTy: PtrTy, Args: PtrTy); |
| 699 | NsanGetRawShadowPtr = M.getOrInsertFunction( |
| 700 | Name: "__nsan_internal_get_raw_shadow_ptr" , AttributeList: Attr, RetTy: PtrTy, Args: PtrTy); |
| 701 | |
| 702 | NsanShadowRetTag = createThreadLocalGV(Name: "__nsan_shadow_ret_tag" , M, Ty: IntptrTy); |
| 703 | |
| 704 | NsanShadowRetType = ArrayType::get(ElementType: Type::getInt8Ty(C&: Context), |
| 705 | NumElements: kMaxVectorWidth * kMaxShadowTypeSizeBytes); |
| 706 | NsanShadowRetPtr = |
| 707 | createThreadLocalGV(Name: "__nsan_shadow_ret_ptr" , M, Ty: NsanShadowRetType); |
| 708 | |
| 709 | NsanShadowArgsTag = |
| 710 | createThreadLocalGV(Name: "__nsan_shadow_args_tag" , M, Ty: IntptrTy); |
| 711 | |
| 712 | NsanShadowArgsType = |
| 713 | ArrayType::get(ElementType: Type::getInt8Ty(C&: Context), |
| 714 | NumElements: kMaxVectorWidth * kMaxNumArgs * kMaxShadowTypeSizeBytes); |
| 715 | |
| 716 | NsanShadowArgsPtr = |
| 717 | createThreadLocalGV(Name: "__nsan_shadow_args_ptr" , M, Ty: NsanShadowArgsType); |
| 718 | |
| 719 | if (!ClCheckFunctionsFilter.empty()) { |
| 720 | Regex R = Regex(ClCheckFunctionsFilter); |
| 721 | std::string RegexError; |
| 722 | assert(R.isValid(RegexError)); |
| 723 | CheckFunctionsFilter = std::move(R); |
| 724 | } |
| 725 | } |
| 726 | |
| 727 | // Returns true if the given LLVM Value points to constant data (typically, a |
| 728 | // global variable reference). |
| 729 | bool NumericalStabilitySanitizer::addrPointsToConstantData(Value *Addr) { |
| 730 | // If this is a GEP, just analyze its pointer operand. |
| 731 | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Val: Addr)) |
| 732 | Addr = GEP->getPointerOperand(); |
| 733 | |
| 734 | if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Val: Addr)) |
| 735 | return GV->isConstant(); |
| 736 | return false; |
| 737 | } |
| 738 | |
| 739 | // This instruments the function entry to create shadow arguments. |
| 740 | // Pseudocode: |
| 741 | // if (this_fn_ptr == __nsan_shadow_args_tag) { |
| 742 | // s(arg0) = LOAD<sizeof(arg0)>(__nsan_shadow_args); |
| 743 | // s(arg1) = LOAD<sizeof(arg1)>(__nsan_shadow_args + sizeof(arg0)); |
| 744 | // ... |
| 745 | // __nsan_shadow_args_tag = 0; |
| 746 | // } else { |
| 747 | // s(arg0) = fext(arg0); |
| 748 | // s(arg1) = fext(arg1); |
| 749 | // ... |
| 750 | // } |
| 751 | void NumericalStabilitySanitizer::createShadowArguments( |
| 752 | Function &F, const TargetLibraryInfo &TLI, ValueToShadowMap &Map) { |
| 753 | assert(!F.getIntrinsicID() && "found a definition of an intrinsic" ); |
| 754 | |
| 755 | // Do not bother if there are no FP args. |
| 756 | if (all_of(Range: F.args(), P: [this](const Argument &Arg) { |
| 757 | return Config.getExtendedFPType(FT: Arg.getType()) == nullptr; |
| 758 | })) |
| 759 | return; |
| 760 | |
| 761 | IRBuilder<> Builder(&F.getEntryBlock(), F.getEntryBlock().getFirstNonPHIIt()); |
| 762 | // The function has shadow args if the shadow args tag matches the function |
| 763 | // address. |
| 764 | Value *HasShadowArgs = Builder.CreateICmpEQ( |
| 765 | LHS: Builder.CreateLoad(Ty: IntptrTy, Ptr: NsanShadowArgsTag, /*isVolatile=*/false), |
| 766 | RHS: Builder.CreatePtrToInt(V: &F, DestTy: IntptrTy)); |
| 767 | |
| 768 | unsigned ShadowArgsOffsetBytes = 0; |
| 769 | for (Argument &Arg : F.args()) { |
| 770 | Type *VT = Arg.getType(); |
| 771 | Type *ExtendedVT = Config.getExtendedFPType(FT: VT); |
| 772 | if (ExtendedVT == nullptr) |
| 773 | continue; // Not an FT value. |
| 774 | Value *L = Builder.CreateAlignedLoad( |
| 775 | Ty: ExtendedVT, |
| 776 | Ptr: Builder.CreateConstGEP2_64(Ty: NsanShadowArgsType, Ptr: NsanShadowArgsPtr, Idx0: 0, |
| 777 | Idx1: ShadowArgsOffsetBytes), |
| 778 | Align: Align(1), /*isVolatile=*/false); |
| 779 | Value *Shadow = Builder.CreateSelect(C: HasShadowArgs, True: L, |
| 780 | False: Builder.CreateFPExt(V: &Arg, DestTy: ExtendedVT)); |
| 781 | Map.setShadow(V&: Arg, Shadow&: *Shadow); |
| 782 | TypeSize SlotSize = DL.getTypeStoreSize(Ty: ExtendedVT); |
| 783 | assert(!SlotSize.isScalable() && "unsupported" ); |
| 784 | ShadowArgsOffsetBytes += SlotSize; |
| 785 | } |
| 786 | Builder.CreateStore(Val: ConstantInt::get(Ty: IntptrTy, V: 0), Ptr: NsanShadowArgsTag); |
| 787 | } |
| 788 | |
| 789 | // Returns true if the instrumentation should emit code to check arguments |
| 790 | // before a function call. |
| 791 | static bool shouldCheckArgs(CallBase &CI, const TargetLibraryInfo &TLI, |
| 792 | const std::optional<Regex> &CheckFunctionsFilter) { |
| 793 | |
| 794 | Function *Fn = CI.getCalledFunction(); |
| 795 | |
| 796 | if (CheckFunctionsFilter) { |
| 797 | // Skip checking args of indirect calls. |
| 798 | if (Fn == nullptr) |
| 799 | return false; |
| 800 | if (CheckFunctionsFilter->match(String: Fn->getName())) |
| 801 | return true; |
| 802 | return false; |
| 803 | } |
| 804 | |
| 805 | if (Fn == nullptr) |
| 806 | return true; // Always check args of indirect calls. |
| 807 | |
| 808 | // Never check nsan functions, the user called them for a reason. |
| 809 | if (Fn->getName().starts_with(Prefix: "__nsan_" )) |
| 810 | return false; |
| 811 | |
| 812 | const auto ID = Fn->getIntrinsicID(); |
| 813 | LibFunc LFunc = LibFunc::NumLibFuncs; |
| 814 | // Always check args of unknown functions. |
| 815 | if (ID == Intrinsic::ID() && !TLI.getLibFunc(FDecl: *Fn, F&: LFunc)) |
| 816 | return true; |
| 817 | |
| 818 | // Do not check args of an `fabs` call that is used for a comparison. |
| 819 | // This is typically used for `fabs(a-b) < tolerance`, where what matters is |
| 820 | // the result of the comparison, which is already caught be the fcmp checks. |
| 821 | if (ID == Intrinsic::fabs || LFunc == LibFunc_fabsf || |
| 822 | LFunc == LibFunc_fabs || LFunc == LibFunc_fabsl) |
| 823 | for (const auto &U : CI.users()) |
| 824 | if (isa<CmpInst>(Val: U)) |
| 825 | return false; |
| 826 | |
| 827 | return true; // Default is check. |
| 828 | } |
| 829 | |
| 830 | // Populates the shadow call stack (which contains shadow values for every |
| 831 | // floating-point parameter to the function). |
| 832 | void NumericalStabilitySanitizer::populateShadowStack( |
| 833 | CallBase &CI, const TargetLibraryInfo &TLI, const ValueToShadowMap &Map) { |
| 834 | // Do not create a shadow stack for inline asm. |
| 835 | if (CI.isInlineAsm()) |
| 836 | return; |
| 837 | |
| 838 | // Do not bother if there are no FP args. |
| 839 | if (all_of(Range: CI.operands(), P: [this](const Value *Arg) { |
| 840 | return Config.getExtendedFPType(FT: Arg->getType()) == nullptr; |
| 841 | })) |
| 842 | return; |
| 843 | |
| 844 | IRBuilder<> Builder(&CI); |
| 845 | SmallVector<Value *, 8> ArgShadows; |
| 846 | const bool ShouldCheckArgs = shouldCheckArgs(CI, TLI, CheckFunctionsFilter); |
| 847 | for (auto [ArgIdx, Arg] : enumerate(First: CI.operands())) { |
| 848 | if (Config.getExtendedFPType(FT: Arg->getType()) == nullptr) |
| 849 | continue; // Not an FT value. |
| 850 | Value *ArgShadow = Map.getShadow(V: Arg); |
| 851 | ArgShadows.push_back(Elt: ShouldCheckArgs ? emitCheck(V: Arg, ShadowV: ArgShadow, Builder, |
| 852 | Loc: CheckLoc::makeArg(ArgId: ArgIdx)) |
| 853 | : ArgShadow); |
| 854 | } |
| 855 | |
| 856 | // Do not create shadow stacks for intrinsics/known lib funcs. |
| 857 | if (Function *Fn = CI.getCalledFunction()) { |
| 858 | LibFunc LFunc; |
| 859 | if (Fn->isIntrinsic() || TLI.getLibFunc(FDecl: *Fn, F&: LFunc)) |
| 860 | return; |
| 861 | } |
| 862 | |
| 863 | // Set the shadow stack tag. |
| 864 | Builder.CreateStore(Val: CI.getCalledOperand(), Ptr: NsanShadowArgsTag); |
| 865 | TypeSize ShadowArgsOffsetBytes = TypeSize::getFixed(ExactSize: 0); |
| 866 | |
| 867 | unsigned ShadowArgId = 0; |
| 868 | for (const Value *Arg : CI.operands()) { |
| 869 | Type *VT = Arg->getType(); |
| 870 | Type *ExtendedVT = Config.getExtendedFPType(FT: VT); |
| 871 | if (ExtendedVT == nullptr) |
| 872 | continue; // Not an FT value. |
| 873 | Builder.CreateAlignedStore( |
| 874 | Val: ArgShadows[ShadowArgId++], |
| 875 | Ptr: Builder.CreateConstGEP2_64(Ty: NsanShadowArgsType, Ptr: NsanShadowArgsPtr, Idx0: 0, |
| 876 | Idx1: ShadowArgsOffsetBytes), |
| 877 | Align: Align(1), /*isVolatile=*/false); |
| 878 | TypeSize SlotSize = DL.getTypeStoreSize(Ty: ExtendedVT); |
| 879 | assert(!SlotSize.isScalable() && "unsupported" ); |
| 880 | ShadowArgsOffsetBytes += SlotSize; |
| 881 | } |
| 882 | } |
| 883 | |
| 884 | // Internal part of emitCheck(). Returns a value that indicates whether |
| 885 | // computation should continue with the shadow or resume by re-fextending the |
| 886 | // value. |
| 887 | enum class ContinuationType { // Keep in sync with runtime. |
| 888 | ContinueWithShadow = 0, |
| 889 | ResumeFromValue = 1, |
| 890 | }; |
| 891 | |
| 892 | Value *NumericalStabilitySanitizer::emitCheckInternal(Value *V, Value *ShadowV, |
| 893 | IRBuilder<> &Builder, |
| 894 | CheckLoc Loc) { |
| 895 | // Do not emit checks for constant values, this is redundant. |
| 896 | if (isa<Constant>(Val: V)) |
| 897 | return ConstantInt::get( |
| 898 | Ty: Builder.getInt32Ty(), |
| 899 | V: static_cast<int>(ContinuationType::ContinueWithShadow)); |
| 900 | |
| 901 | Type *Ty = V->getType(); |
| 902 | if (const auto VT = ftValueTypeFromType(FT: Ty)) |
| 903 | return Builder.CreateCall( |
| 904 | Callee: NsanCheckValue[*VT], |
| 905 | Args: {V, ShadowV, Loc.getType(C&: Context), Loc.getValue(IntptrTy, Builder)}); |
| 906 | |
| 907 | if (Ty->isVectorTy()) { |
| 908 | auto *VecTy = cast<VectorType>(Val: Ty); |
| 909 | // We currently skip scalable vector types in MappingConfig, |
| 910 | // thus we should not encounter any such types here. |
| 911 | assert(!VecTy->isScalableTy() && |
| 912 | "Scalable vector types are not supported yet" ); |
| 913 | Value *CheckResult = nullptr; |
| 914 | for (int I = 0, E = VecTy->getElementCount().getFixedValue(); I < E; ++I) { |
| 915 | // We resume if any element resumes. Another option would be to create a |
| 916 | // vector shuffle with the array of ContinueWithShadow, but that is too |
| 917 | // complex. |
| 918 | Value * = Builder.CreateExtractElement(Vec: V, Idx: I); |
| 919 | Value *ExtractShadowV = Builder.CreateExtractElement(Vec: ShadowV, Idx: I); |
| 920 | Value *ComponentCheckResult = |
| 921 | emitCheckInternal(V: ExtractV, ShadowV: ExtractShadowV, Builder, Loc); |
| 922 | CheckResult = CheckResult |
| 923 | ? Builder.CreateOr(LHS: CheckResult, RHS: ComponentCheckResult) |
| 924 | : ComponentCheckResult; |
| 925 | } |
| 926 | return CheckResult; |
| 927 | } |
| 928 | if (Ty->isArrayTy()) { |
| 929 | Value *CheckResult = nullptr; |
| 930 | for (auto I : seq(Size: Ty->getArrayNumElements())) { |
| 931 | Value * = Builder.CreateExtractElement(Vec: V, Idx: I); |
| 932 | Value *ExtractShadowV = Builder.CreateExtractElement(Vec: ShadowV, Idx: I); |
| 933 | Value *ComponentCheckResult = |
| 934 | emitCheckInternal(V: ExtractV, ShadowV: ExtractShadowV, Builder, Loc); |
| 935 | CheckResult = CheckResult |
| 936 | ? Builder.CreateOr(LHS: CheckResult, RHS: ComponentCheckResult) |
| 937 | : ComponentCheckResult; |
| 938 | } |
| 939 | return CheckResult; |
| 940 | } |
| 941 | if (Ty->isStructTy()) { |
| 942 | Value *CheckResult = nullptr; |
| 943 | for (auto I : seq(Size: Ty->getStructNumElements())) { |
| 944 | if (Config.getExtendedFPType(FT: Ty->getStructElementType(N: I)) == nullptr) |
| 945 | continue; // Only check FT values. |
| 946 | Value * = Builder.CreateExtractValue(Agg: V, Idxs: I); |
| 947 | Value *ExtractShadowV = Builder.CreateExtractElement(Vec: ShadowV, Idx: I); |
| 948 | Value *ComponentCheckResult = |
| 949 | emitCheckInternal(V: ExtractV, ShadowV: ExtractShadowV, Builder, Loc); |
| 950 | CheckResult = CheckResult |
| 951 | ? Builder.CreateOr(LHS: CheckResult, RHS: ComponentCheckResult) |
| 952 | : ComponentCheckResult; |
| 953 | } |
| 954 | if (!CheckResult) |
| 955 | return ConstantInt::get( |
| 956 | Ty: Builder.getInt32Ty(), |
| 957 | V: static_cast<int>(ContinuationType::ContinueWithShadow)); |
| 958 | return CheckResult; |
| 959 | } |
| 960 | |
| 961 | llvm_unreachable("not implemented" ); |
| 962 | } |
| 963 | |
| 964 | // Inserts a runtime check of V against its shadow value ShadowV. |
| 965 | // We check values whenever they escape: on return, call, stores, and |
| 966 | // insertvalue. |
| 967 | // Returns the shadow value that should be used to continue the computations, |
| 968 | // depending on the answer from the runtime. |
| 969 | // TODO: Should we check on select ? phi ? |
| 970 | Value *NumericalStabilitySanitizer::emitCheck(Value *V, Value *ShadowV, |
| 971 | IRBuilder<> &Builder, |
| 972 | CheckLoc Loc) { |
| 973 | // Do not emit checks for constant values, this is redundant. |
| 974 | if (isa<Constant>(Val: V)) |
| 975 | return ShadowV; |
| 976 | |
| 977 | if (Instruction *Inst = dyn_cast<Instruction>(Val: V)) { |
| 978 | Function *F = Inst->getFunction(); |
| 979 | if (CheckFunctionsFilter && !CheckFunctionsFilter->match(String: F->getName())) { |
| 980 | return ShadowV; |
| 981 | } |
| 982 | } |
| 983 | |
| 984 | Value *CheckResult = emitCheckInternal(V, ShadowV, Builder, Loc); |
| 985 | Value *ICmpEQ = Builder.CreateICmpEQ( |
| 986 | LHS: CheckResult, |
| 987 | RHS: ConstantInt::get(Ty: Builder.getInt32Ty(), |
| 988 | V: static_cast<int>(ContinuationType::ResumeFromValue))); |
| 989 | return Builder.CreateSelect( |
| 990 | C: ICmpEQ, True: Builder.CreateFPExt(V, DestTy: Config.getExtendedFPType(FT: V->getType())), |
| 991 | False: ShadowV); |
| 992 | } |
| 993 | |
| 994 | // Inserts a check that fcmp on shadow values are consistent with that on base |
| 995 | // values. |
| 996 | void NumericalStabilitySanitizer::emitFCmpCheck(FCmpInst &FCmp, |
| 997 | const ValueToShadowMap &Map) { |
| 998 | if (!ClInstrumentFCmp) |
| 999 | return; |
| 1000 | |
| 1001 | Function *F = FCmp.getFunction(); |
| 1002 | if (CheckFunctionsFilter && !CheckFunctionsFilter->match(String: F->getName())) |
| 1003 | return; |
| 1004 | |
| 1005 | Value *LHS = FCmp.getOperand(i_nocapture: 0); |
| 1006 | if (Config.getExtendedFPType(FT: LHS->getType()) == nullptr) |
| 1007 | return; |
| 1008 | Value *RHS = FCmp.getOperand(i_nocapture: 1); |
| 1009 | |
| 1010 | // Split the basic block. On mismatch, we'll jump to the new basic block with |
| 1011 | // a call to the runtime for error reporting. |
| 1012 | BasicBlock *FCmpBB = FCmp.getParent(); |
| 1013 | BasicBlock *NextBB = FCmpBB->splitBasicBlock(I: FCmp.getNextNode()); |
| 1014 | // Remove the newly created terminator unconditional branch. |
| 1015 | FCmpBB->back().eraseFromParent(); |
| 1016 | BasicBlock *FailBB = |
| 1017 | BasicBlock::Create(Context, Name: "" , Parent: FCmpBB->getParent(), InsertBefore: NextBB); |
| 1018 | |
| 1019 | // Create the shadow fcmp and comparison between the fcmps. |
| 1020 | IRBuilder<> FCmpBuilder(FCmpBB); |
| 1021 | FCmpBuilder.SetCurrentDebugLocation(FCmp.getDebugLoc()); |
| 1022 | Value *ShadowLHS = Map.getShadow(V: LHS); |
| 1023 | Value *ShadowRHS = Map.getShadow(V: RHS); |
| 1024 | // See comment on ClTruncateFCmpEq. |
| 1025 | if (FCmp.isEquality() && ClTruncateFCmpEq) { |
| 1026 | Type *Ty = ShadowLHS->getType(); |
| 1027 | ShadowLHS = FCmpBuilder.CreateFPExt( |
| 1028 | V: FCmpBuilder.CreateFPTrunc(V: ShadowLHS, DestTy: LHS->getType()), DestTy: Ty); |
| 1029 | ShadowRHS = FCmpBuilder.CreateFPExt( |
| 1030 | V: FCmpBuilder.CreateFPTrunc(V: ShadowRHS, DestTy: RHS->getType()), DestTy: Ty); |
| 1031 | } |
| 1032 | Value *ShadowFCmp = |
| 1033 | FCmpBuilder.CreateFCmp(P: FCmp.getPredicate(), LHS: ShadowLHS, RHS: ShadowRHS); |
| 1034 | Value *OriginalAndShadowFcmpMatch = |
| 1035 | FCmpBuilder.CreateICmpEQ(LHS: &FCmp, RHS: ShadowFCmp); |
| 1036 | |
| 1037 | if (OriginalAndShadowFcmpMatch->getType()->isVectorTy()) { |
| 1038 | // If we have a vector type, `OriginalAndShadowFcmpMatch` is a vector of i1, |
| 1039 | // where an element is true if the corresponding elements in original and |
| 1040 | // shadow are the same. We want all elements to be 1. |
| 1041 | OriginalAndShadowFcmpMatch = |
| 1042 | FCmpBuilder.CreateAndReduce(Src: OriginalAndShadowFcmpMatch); |
| 1043 | } |
| 1044 | |
| 1045 | // Use MDBuilder(*C).createLikelyBranchWeights() because "match" is the common |
| 1046 | // case. |
| 1047 | FCmpBuilder.CreateCondBr(Cond: OriginalAndShadowFcmpMatch, True: NextBB, False: FailBB, |
| 1048 | BranchWeights: MDBuilder(Context).createLikelyBranchWeights()); |
| 1049 | |
| 1050 | // Fill in FailBB. |
| 1051 | IRBuilder<> FailBuilder(FailBB); |
| 1052 | FailBuilder.SetCurrentDebugLocation(FCmp.getDebugLoc()); |
| 1053 | |
| 1054 | const auto EmitFailCall = [this, &FCmp, &FCmpBuilder, |
| 1055 | &FailBuilder](Value *L, Value *R, Value *ShadowL, |
| 1056 | Value *ShadowR, Value *Result, |
| 1057 | Value *ShadowResult) { |
| 1058 | Type *FT = L->getType(); |
| 1059 | FunctionCallee *Callee = nullptr; |
| 1060 | if (FT->isFloatTy()) { |
| 1061 | Callee = &(NsanFCmpFail[kFloat]); |
| 1062 | } else if (FT->isDoubleTy()) { |
| 1063 | Callee = &(NsanFCmpFail[kDouble]); |
| 1064 | } else if (FT->isX86_FP80Ty()) { |
| 1065 | // TODO: make NsanFCmpFailLongDouble work. |
| 1066 | Callee = &(NsanFCmpFail[kDouble]); |
| 1067 | L = FailBuilder.CreateFPTrunc(V: L, DestTy: Type::getDoubleTy(C&: Context)); |
| 1068 | R = FailBuilder.CreateFPTrunc(V: L, DestTy: Type::getDoubleTy(C&: Context)); |
| 1069 | } else { |
| 1070 | llvm_unreachable("not implemented" ); |
| 1071 | } |
| 1072 | FailBuilder.CreateCall(Callee: *Callee, Args: {L, R, ShadowL, ShadowR, |
| 1073 | ConstantInt::get(Ty: FCmpBuilder.getInt32Ty(), |
| 1074 | V: FCmp.getPredicate()), |
| 1075 | Result, ShadowResult}); |
| 1076 | }; |
| 1077 | if (LHS->getType()->isVectorTy()) { |
| 1078 | for (int I = 0, E = cast<VectorType>(Val: LHS->getType()) |
| 1079 | ->getElementCount() |
| 1080 | .getFixedValue(); |
| 1081 | I < E; ++I) { |
| 1082 | Value * = FailBuilder.CreateExtractElement(Vec: LHS, Idx: I); |
| 1083 | Value * = FailBuilder.CreateExtractElement(Vec: RHS, Idx: I); |
| 1084 | Value * = FailBuilder.CreateExtractElement(Vec: ShadowLHS, Idx: I); |
| 1085 | Value * = FailBuilder.CreateExtractElement(Vec: ShadowRHS, Idx: I); |
| 1086 | Value * = FailBuilder.CreateExtractElement(Vec: &FCmp, Idx: I); |
| 1087 | Value *ExtractShadowFCmp = |
| 1088 | FailBuilder.CreateExtractElement(Vec: ShadowFCmp, Idx: I); |
| 1089 | EmitFailCall(ExtractLHS, ExtractRHS, ExtractShaodwLHS, ExtractShaodwRHS, |
| 1090 | ExtractFCmp, ExtractShadowFCmp); |
| 1091 | } |
| 1092 | } else { |
| 1093 | EmitFailCall(LHS, RHS, ShadowLHS, ShadowRHS, &FCmp, ShadowFCmp); |
| 1094 | } |
| 1095 | FailBuilder.CreateBr(Dest: NextBB); |
| 1096 | |
| 1097 | ++NumInstrumentedFCmp; |
| 1098 | } |
| 1099 | |
| 1100 | // Creates a shadow phi value for any phi that defines a value of FT type. |
| 1101 | PHINode *NumericalStabilitySanitizer::maybeCreateShadowPhi( |
| 1102 | PHINode &Phi, const TargetLibraryInfo &TLI) { |
| 1103 | Type *VT = Phi.getType(); |
| 1104 | Type *ExtendedVT = Config.getExtendedFPType(FT: VT); |
| 1105 | if (ExtendedVT == nullptr) |
| 1106 | return nullptr; // Not an FT value. |
| 1107 | // The phi operands are shadow values and are not available when the phi is |
| 1108 | // created. They will be populated in a final phase, once all shadow values |
| 1109 | // have been created. |
| 1110 | PHINode *Shadow = PHINode::Create(Ty: ExtendedVT, NumReservedValues: Phi.getNumIncomingValues()); |
| 1111 | Shadow->insertAfter(InsertPos: Phi.getIterator()); |
| 1112 | return Shadow; |
| 1113 | } |
| 1114 | |
| 1115 | Value *NumericalStabilitySanitizer::handleLoad(LoadInst &Load, Type *VT, |
| 1116 | Type *ExtendedVT) { |
| 1117 | IRBuilder<> Builder(Load.getNextNode()); |
| 1118 | Builder.SetCurrentDebugLocation(Load.getDebugLoc()); |
| 1119 | if (addrPointsToConstantData(Addr: Load.getPointerOperand())) { |
| 1120 | // No need to look into the shadow memory, the value is a constant. Just |
| 1121 | // convert from FT to 2FT. |
| 1122 | return Builder.CreateFPExt(V: &Load, DestTy: ExtendedVT); |
| 1123 | } |
| 1124 | |
| 1125 | // if (%shadowptr == &) |
| 1126 | // %shadow = fpext %v |
| 1127 | // else |
| 1128 | // %shadow = load (ptrcast %shadow_ptr)) |
| 1129 | // Considered options here: |
| 1130 | // - Have `NsanGetShadowPtrForLoad` return a fixed address |
| 1131 | // &__nsan_unknown_value_shadow_address that is valid to load from, and |
| 1132 | // use a select. This has the advantage that the generated IR is simpler. |
| 1133 | // - Have `NsanGetShadowPtrForLoad` return nullptr. Because `select` does |
| 1134 | // not short-circuit, dereferencing the returned pointer is no longer an |
| 1135 | // option, have to split and create a separate basic block. This has the |
| 1136 | // advantage of being easier to debug because it crashes if we ever mess |
| 1137 | // up. |
| 1138 | |
| 1139 | const auto Extents = getMemoryExtentsOrDie(FT: VT); |
| 1140 | Value *ShadowPtr = Builder.CreateCall( |
| 1141 | Callee: NsanGetShadowPtrForLoad[Extents.ValueType], |
| 1142 | Args: {Load.getPointerOperand(), ConstantInt::get(Ty: IntptrTy, V: Extents.NumElts)}); |
| 1143 | ++NumInstrumentedFTLoads; |
| 1144 | |
| 1145 | // Split the basic block. |
| 1146 | BasicBlock *LoadBB = Load.getParent(); |
| 1147 | BasicBlock *NextBB = LoadBB->splitBasicBlock(I: Builder.GetInsertPoint()); |
| 1148 | // Create the two options for creating the shadow value. |
| 1149 | BasicBlock *ShadowLoadBB = |
| 1150 | BasicBlock::Create(Context, Name: "" , Parent: LoadBB->getParent(), InsertBefore: NextBB); |
| 1151 | BasicBlock *FExtBB = |
| 1152 | BasicBlock::Create(Context, Name: "" , Parent: LoadBB->getParent(), InsertBefore: NextBB); |
| 1153 | |
| 1154 | // Replace the newly created terminator unconditional branch by a conditional |
| 1155 | // branch to one of the options. |
| 1156 | { |
| 1157 | LoadBB->back().eraseFromParent(); |
| 1158 | IRBuilder<> LoadBBBuilder(LoadBB); // The old builder has been invalidated. |
| 1159 | LoadBBBuilder.SetCurrentDebugLocation(Load.getDebugLoc()); |
| 1160 | LoadBBBuilder.CreateCondBr(Cond: LoadBBBuilder.CreateIsNull(Arg: ShadowPtr), True: FExtBB, |
| 1161 | False: ShadowLoadBB); |
| 1162 | } |
| 1163 | |
| 1164 | // Fill in ShadowLoadBB. |
| 1165 | IRBuilder<> ShadowLoadBBBuilder(ShadowLoadBB); |
| 1166 | ShadowLoadBBBuilder.SetCurrentDebugLocation(Load.getDebugLoc()); |
| 1167 | Value *ShadowLoad = ShadowLoadBBBuilder.CreateAlignedLoad( |
| 1168 | Ty: ExtendedVT, Ptr: ShadowPtr, Align: Align(1), isVolatile: Load.isVolatile()); |
| 1169 | if (ClCheckLoads) { |
| 1170 | ShadowLoad = emitCheck(V: &Load, ShadowV: ShadowLoad, Builder&: ShadowLoadBBBuilder, |
| 1171 | Loc: CheckLoc::makeLoad(Address: Load.getPointerOperand())); |
| 1172 | } |
| 1173 | ShadowLoadBBBuilder.CreateBr(Dest: NextBB); |
| 1174 | |
| 1175 | // Fill in FExtBB. |
| 1176 | IRBuilder<> FExtBBBuilder(FExtBB); |
| 1177 | FExtBBBuilder.SetCurrentDebugLocation(Load.getDebugLoc()); |
| 1178 | Value *FExt = FExtBBBuilder.CreateFPExt(V: &Load, DestTy: ExtendedVT); |
| 1179 | FExtBBBuilder.CreateBr(Dest: NextBB); |
| 1180 | |
| 1181 | // The shadow value come from any of the options. |
| 1182 | IRBuilder<> NextBBBuilder(&*NextBB->begin()); |
| 1183 | NextBBBuilder.SetCurrentDebugLocation(Load.getDebugLoc()); |
| 1184 | PHINode *ShadowPhi = NextBBBuilder.CreatePHI(Ty: ExtendedVT, NumReservedValues: 2); |
| 1185 | ShadowPhi->addIncoming(V: ShadowLoad, BB: ShadowLoadBB); |
| 1186 | ShadowPhi->addIncoming(V: FExt, BB: FExtBB); |
| 1187 | return ShadowPhi; |
| 1188 | } |
| 1189 | |
| 1190 | Value *NumericalStabilitySanitizer::handleTrunc(const FPTruncInst &Trunc, |
| 1191 | Type *VT, Type *ExtendedVT, |
| 1192 | const ValueToShadowMap &Map, |
| 1193 | IRBuilder<> &Builder) { |
| 1194 | Value *OrigSource = Trunc.getOperand(i_nocapture: 0); |
| 1195 | Type *OrigSourceTy = OrigSource->getType(); |
| 1196 | Type *ExtendedSourceTy = Config.getExtendedFPType(FT: OrigSourceTy); |
| 1197 | |
| 1198 | // When truncating: |
| 1199 | // - (A) If the source has a shadow, we truncate from the shadow, else we |
| 1200 | // truncate from the original source. |
| 1201 | // - (B) If the shadow of the source is larger than the shadow of the dest, |
| 1202 | // we still need a truncate. Else, the shadow of the source is the same |
| 1203 | // type as the shadow of the dest (because mappings are non-decreasing), so |
| 1204 | // we don't need to emit a truncate. |
| 1205 | // Examples, |
| 1206 | // with a mapping of {f32->f64;f64->f80;f80->f128} |
| 1207 | // fptrunc double %1 to float -> fptrunc x86_fp80 s(%1) to double |
| 1208 | // fptrunc x86_fp80 %1 to float -> fptrunc fp128 s(%1) to double |
| 1209 | // fptrunc fp128 %1 to float -> fptrunc fp128 %1 to double |
| 1210 | // fptrunc x86_fp80 %1 to double -> x86_fp80 s(%1) |
| 1211 | // fptrunc fp128 %1 to double -> fptrunc fp128 %1 to x86_fp80 |
| 1212 | // fptrunc fp128 %1 to x86_fp80 -> fp128 %1 |
| 1213 | // with a mapping of {f32->f64;f64->f128;f80->f128} |
| 1214 | // fptrunc double %1 to float -> fptrunc fp128 s(%1) to double |
| 1215 | // fptrunc x86_fp80 %1 to float -> fptrunc fp128 s(%1) to double |
| 1216 | // fptrunc fp128 %1 to float -> fptrunc fp128 %1 to double |
| 1217 | // fptrunc x86_fp80 %1 to double -> fp128 %1 |
| 1218 | // fptrunc fp128 %1 to double -> fp128 %1 |
| 1219 | // fptrunc fp128 %1 to x86_fp80 -> fp128 %1 |
| 1220 | // with a mapping of {f32->f32;f64->f32;f80->f64} |
| 1221 | // fptrunc double %1 to float -> float s(%1) |
| 1222 | // fptrunc x86_fp80 %1 to float -> fptrunc double s(%1) to float |
| 1223 | // fptrunc fp128 %1 to float -> fptrunc fp128 %1 to float |
| 1224 | // fptrunc x86_fp80 %1 to double -> fptrunc double s(%1) to float |
| 1225 | // fptrunc fp128 %1 to double -> fptrunc fp128 %1 to float |
| 1226 | // fptrunc fp128 %1 to x86_fp80 -> fptrunc fp128 %1 to double |
| 1227 | |
| 1228 | // See (A) above. |
| 1229 | Value *Source = ExtendedSourceTy ? Map.getShadow(V: OrigSource) : OrigSource; |
| 1230 | Type *SourceTy = ExtendedSourceTy ? ExtendedSourceTy : OrigSourceTy; |
| 1231 | // See (B) above. |
| 1232 | if (SourceTy == ExtendedVT) |
| 1233 | return Source; |
| 1234 | |
| 1235 | return Builder.CreateFPTrunc(V: Source, DestTy: ExtendedVT); |
| 1236 | } |
| 1237 | |
| 1238 | Value *NumericalStabilitySanitizer::handleExt(const FPExtInst &Ext, Type *VT, |
| 1239 | Type *ExtendedVT, |
| 1240 | const ValueToShadowMap &Map, |
| 1241 | IRBuilder<> &Builder) { |
| 1242 | Value *OrigSource = Ext.getOperand(i_nocapture: 0); |
| 1243 | Type *OrigSourceTy = OrigSource->getType(); |
| 1244 | Type *ExtendedSourceTy = Config.getExtendedFPType(FT: OrigSourceTy); |
| 1245 | // When extending: |
| 1246 | // - (A) If the source has a shadow, we extend from the shadow, else we |
| 1247 | // extend from the original source. |
| 1248 | // - (B) If the shadow of the dest is larger than the shadow of the source, |
| 1249 | // we still need an extend. Else, the shadow of the source is the same |
| 1250 | // type as the shadow of the dest (because mappings are non-decreasing), so |
| 1251 | // we don't need to emit an extend. |
| 1252 | // Examples, |
| 1253 | // with a mapping of {f32->f64;f64->f80;f80->f128} |
| 1254 | // fpext half %1 to float -> fpext half %1 to double |
| 1255 | // fpext half %1 to double -> fpext half %1 to x86_fp80 |
| 1256 | // fpext half %1 to x86_fp80 -> fpext half %1 to fp128 |
| 1257 | // fpext float %1 to double -> double s(%1) |
| 1258 | // fpext float %1 to x86_fp80 -> fpext double s(%1) to fp128 |
| 1259 | // fpext double %1 to x86_fp80 -> fpext x86_fp80 s(%1) to fp128 |
| 1260 | // with a mapping of {f32->f64;f64->f128;f80->f128} |
| 1261 | // fpext half %1 to float -> fpext half %1 to double |
| 1262 | // fpext half %1 to double -> fpext half %1 to fp128 |
| 1263 | // fpext half %1 to x86_fp80 -> fpext half %1 to fp128 |
| 1264 | // fpext float %1 to double -> fpext double s(%1) to fp128 |
| 1265 | // fpext float %1 to x86_fp80 -> fpext double s(%1) to fp128 |
| 1266 | // fpext double %1 to x86_fp80 -> fp128 s(%1) |
| 1267 | // with a mapping of {f32->f32;f64->f32;f80->f64} |
| 1268 | // fpext half %1 to float -> fpext half %1 to float |
| 1269 | // fpext half %1 to double -> fpext half %1 to float |
| 1270 | // fpext half %1 to x86_fp80 -> fpext half %1 to double |
| 1271 | // fpext float %1 to double -> s(%1) |
| 1272 | // fpext float %1 to x86_fp80 -> fpext float s(%1) to double |
| 1273 | // fpext double %1 to x86_fp80 -> fpext float s(%1) to double |
| 1274 | |
| 1275 | // See (A) above. |
| 1276 | Value *Source = ExtendedSourceTy ? Map.getShadow(V: OrigSource) : OrigSource; |
| 1277 | Type *SourceTy = ExtendedSourceTy ? ExtendedSourceTy : OrigSourceTy; |
| 1278 | // See (B) above. |
| 1279 | if (SourceTy == ExtendedVT) |
| 1280 | return Source; |
| 1281 | |
| 1282 | return Builder.CreateFPExt(V: Source, DestTy: ExtendedVT); |
| 1283 | } |
| 1284 | |
| 1285 | namespace { |
| 1286 | // TODO: This should be tablegen-ed. |
| 1287 | struct KnownIntrinsic { |
| 1288 | struct WidenedIntrinsic { |
| 1289 | const char *NarrowName; |
| 1290 | Intrinsic::ID ID; // wide id. |
| 1291 | using FnTypeFactory = FunctionType *(*)(LLVMContext &); |
| 1292 | FnTypeFactory MakeFnTy; |
| 1293 | }; |
| 1294 | |
| 1295 | static const char *get(LibFunc LFunc); |
| 1296 | |
| 1297 | // Given an intrinsic with an `FT` argument, try to find a wider intrinsic |
| 1298 | // that applies the same operation on the shadow argument. |
| 1299 | // Options are: |
| 1300 | // - pass in the ID and full function type, |
| 1301 | // - pass in the name, which includes the function type through mangling. |
| 1302 | static const WidenedIntrinsic *widen(StringRef Name); |
| 1303 | |
| 1304 | private: |
| 1305 | struct LFEntry { |
| 1306 | LibFunc LFunc; |
| 1307 | const char *IntrinsicName; |
| 1308 | }; |
| 1309 | static const LFEntry kLibfuncIntrinsics[]; |
| 1310 | |
| 1311 | static const WidenedIntrinsic kWidenedIntrinsics[]; |
| 1312 | }; |
| 1313 | } // namespace |
| 1314 | |
| 1315 | static FunctionType *makeDoubleDouble(LLVMContext &C) { |
| 1316 | return FunctionType::get(Result: Type::getDoubleTy(C), Params: {Type::getDoubleTy(C)}, isVarArg: false); |
| 1317 | } |
| 1318 | |
| 1319 | static FunctionType *makeX86FP80X86FP80(LLVMContext &C) { |
| 1320 | return FunctionType::get(Result: Type::getX86_FP80Ty(C), Params: {Type::getX86_FP80Ty(C)}, |
| 1321 | isVarArg: false); |
| 1322 | } |
| 1323 | |
| 1324 | static FunctionType *makeDoubleDoubleI32(LLVMContext &C) { |
| 1325 | return FunctionType::get(Result: Type::getDoubleTy(C), |
| 1326 | Params: {Type::getDoubleTy(C), Type::getInt32Ty(C)}, isVarArg: false); |
| 1327 | } |
| 1328 | |
| 1329 | static FunctionType *makeX86FP80X86FP80I32(LLVMContext &C) { |
| 1330 | return FunctionType::get(Result: Type::getX86_FP80Ty(C), |
| 1331 | Params: {Type::getX86_FP80Ty(C), Type::getInt32Ty(C)}, |
| 1332 | isVarArg: false); |
| 1333 | } |
| 1334 | |
| 1335 | static FunctionType *makeDoubleDoubleDouble(LLVMContext &C) { |
| 1336 | return FunctionType::get(Result: Type::getDoubleTy(C), |
| 1337 | Params: {Type::getDoubleTy(C), Type::getDoubleTy(C)}, isVarArg: false); |
| 1338 | } |
| 1339 | |
| 1340 | static FunctionType *makeX86FP80X86FP80X86FP80(LLVMContext &C) { |
| 1341 | return FunctionType::get(Result: Type::getX86_FP80Ty(C), |
| 1342 | Params: {Type::getX86_FP80Ty(C), Type::getX86_FP80Ty(C)}, |
| 1343 | isVarArg: false); |
| 1344 | } |
| 1345 | |
| 1346 | static FunctionType *makeDoubleDoubleDoubleDouble(LLVMContext &C) { |
| 1347 | return FunctionType::get( |
| 1348 | Result: Type::getDoubleTy(C), |
| 1349 | Params: {Type::getDoubleTy(C), Type::getDoubleTy(C), Type::getDoubleTy(C)}, |
| 1350 | isVarArg: false); |
| 1351 | } |
| 1352 | |
| 1353 | static FunctionType *makeX86FP80X86FP80X86FP80X86FP80(LLVMContext &C) { |
| 1354 | return FunctionType::get( |
| 1355 | Result: Type::getX86_FP80Ty(C), |
| 1356 | Params: {Type::getX86_FP80Ty(C), Type::getX86_FP80Ty(C), Type::getX86_FP80Ty(C)}, |
| 1357 | isVarArg: false); |
| 1358 | } |
| 1359 | |
| 1360 | const KnownIntrinsic::WidenedIntrinsic KnownIntrinsic::kWidenedIntrinsics[] = { |
| 1361 | // TODO: Right now we ignore vector intrinsics. |
| 1362 | // This is hard because we have to model the semantics of the intrinsics, |
| 1363 | // e.g. llvm.x86.sse2.min.sd means extract first element, min, insert back. |
| 1364 | // Intrinsics that take any non-vector FT types: |
| 1365 | // NOTE: Right now because of |
| 1366 | // https://github.com/llvm/llvm-project/issues/44744 |
| 1367 | // for f128 we need to use makeX86FP80X86FP80 (go to a lower precision and |
| 1368 | // come back). |
| 1369 | {.NarrowName: "llvm.sqrt.f32" , .ID: Intrinsic::sqrt, .MakeFnTy: makeDoubleDouble}, |
| 1370 | {.NarrowName: "llvm.sqrt.f64" , .ID: Intrinsic::sqrt, .MakeFnTy: makeX86FP80X86FP80}, |
| 1371 | {.NarrowName: "llvm.sqrt.f80" , .ID: Intrinsic::sqrt, .MakeFnTy: makeX86FP80X86FP80}, |
| 1372 | {.NarrowName: "llvm.powi.f32" , .ID: Intrinsic::powi, .MakeFnTy: makeDoubleDoubleI32}, |
| 1373 | {.NarrowName: "llvm.powi.f64" , .ID: Intrinsic::powi, .MakeFnTy: makeX86FP80X86FP80I32}, |
| 1374 | {.NarrowName: "llvm.powi.f80" , .ID: Intrinsic::powi, .MakeFnTy: makeX86FP80X86FP80I32}, |
| 1375 | {.NarrowName: "llvm.sin.f32" , .ID: Intrinsic::sin, .MakeFnTy: makeDoubleDouble}, |
| 1376 | {.NarrowName: "llvm.sin.f64" , .ID: Intrinsic::sin, .MakeFnTy: makeX86FP80X86FP80}, |
| 1377 | {.NarrowName: "llvm.sin.f80" , .ID: Intrinsic::sin, .MakeFnTy: makeX86FP80X86FP80}, |
| 1378 | {.NarrowName: "llvm.cos.f32" , .ID: Intrinsic::cos, .MakeFnTy: makeDoubleDouble}, |
| 1379 | {.NarrowName: "llvm.cos.f64" , .ID: Intrinsic::cos, .MakeFnTy: makeX86FP80X86FP80}, |
| 1380 | {.NarrowName: "llvm.cos.f80" , .ID: Intrinsic::cos, .MakeFnTy: makeX86FP80X86FP80}, |
| 1381 | {.NarrowName: "llvm.pow.f32" , .ID: Intrinsic::pow, .MakeFnTy: makeDoubleDoubleDouble}, |
| 1382 | {.NarrowName: "llvm.pow.f64" , .ID: Intrinsic::pow, .MakeFnTy: makeX86FP80X86FP80X86FP80}, |
| 1383 | {.NarrowName: "llvm.pow.f80" , .ID: Intrinsic::pow, .MakeFnTy: makeX86FP80X86FP80X86FP80}, |
| 1384 | {.NarrowName: "llvm.exp.f32" , .ID: Intrinsic::exp, .MakeFnTy: makeDoubleDouble}, |
| 1385 | {.NarrowName: "llvm.exp.f64" , .ID: Intrinsic::exp, .MakeFnTy: makeX86FP80X86FP80}, |
| 1386 | {.NarrowName: "llvm.exp.f80" , .ID: Intrinsic::exp, .MakeFnTy: makeX86FP80X86FP80}, |
| 1387 | {.NarrowName: "llvm.exp2.f32" , .ID: Intrinsic::exp2, .MakeFnTy: makeDoubleDouble}, |
| 1388 | {.NarrowName: "llvm.exp2.f64" , .ID: Intrinsic::exp2, .MakeFnTy: makeX86FP80X86FP80}, |
| 1389 | {.NarrowName: "llvm.exp2.f80" , .ID: Intrinsic::exp2, .MakeFnTy: makeX86FP80X86FP80}, |
| 1390 | {.NarrowName: "llvm.log.f32" , .ID: Intrinsic::log, .MakeFnTy: makeDoubleDouble}, |
| 1391 | {.NarrowName: "llvm.log.f64" , .ID: Intrinsic::log, .MakeFnTy: makeX86FP80X86FP80}, |
| 1392 | {.NarrowName: "llvm.log.f80" , .ID: Intrinsic::log, .MakeFnTy: makeX86FP80X86FP80}, |
| 1393 | {.NarrowName: "llvm.log10.f32" , .ID: Intrinsic::log10, .MakeFnTy: makeDoubleDouble}, |
| 1394 | {.NarrowName: "llvm.log10.f64" , .ID: Intrinsic::log10, .MakeFnTy: makeX86FP80X86FP80}, |
| 1395 | {.NarrowName: "llvm.log10.f80" , .ID: Intrinsic::log10, .MakeFnTy: makeX86FP80X86FP80}, |
| 1396 | {.NarrowName: "llvm.log2.f32" , .ID: Intrinsic::log2, .MakeFnTy: makeDoubleDouble}, |
| 1397 | {.NarrowName: "llvm.log2.f64" , .ID: Intrinsic::log2, .MakeFnTy: makeX86FP80X86FP80}, |
| 1398 | {.NarrowName: "llvm.log2.f80" , .ID: Intrinsic::log2, .MakeFnTy: makeX86FP80X86FP80}, |
| 1399 | {.NarrowName: "llvm.fma.f32" , .ID: Intrinsic::fma, .MakeFnTy: makeDoubleDoubleDoubleDouble}, |
| 1400 | |
| 1401 | {.NarrowName: "llvm.fmuladd.f32" , .ID: Intrinsic::fmuladd, .MakeFnTy: makeDoubleDoubleDoubleDouble}, |
| 1402 | |
| 1403 | {.NarrowName: "llvm.fma.f64" , .ID: Intrinsic::fma, .MakeFnTy: makeX86FP80X86FP80X86FP80X86FP80}, |
| 1404 | |
| 1405 | {.NarrowName: "llvm.fmuladd.f64" , .ID: Intrinsic::fma, .MakeFnTy: makeX86FP80X86FP80X86FP80X86FP80}, |
| 1406 | |
| 1407 | {.NarrowName: "llvm.fma.f80" , .ID: Intrinsic::fma, .MakeFnTy: makeX86FP80X86FP80X86FP80X86FP80}, |
| 1408 | {.NarrowName: "llvm.fabs.f32" , .ID: Intrinsic::fabs, .MakeFnTy: makeDoubleDouble}, |
| 1409 | {.NarrowName: "llvm.fabs.f64" , .ID: Intrinsic::fabs, .MakeFnTy: makeX86FP80X86FP80}, |
| 1410 | {.NarrowName: "llvm.fabs.f80" , .ID: Intrinsic::fabs, .MakeFnTy: makeX86FP80X86FP80}, |
| 1411 | {.NarrowName: "llvm.minnum.f32" , .ID: Intrinsic::minnum, .MakeFnTy: makeDoubleDoubleDouble}, |
| 1412 | {.NarrowName: "llvm.minnum.f64" , .ID: Intrinsic::minnum, .MakeFnTy: makeX86FP80X86FP80X86FP80}, |
| 1413 | {.NarrowName: "llvm.minnum.f80" , .ID: Intrinsic::minnum, .MakeFnTy: makeX86FP80X86FP80X86FP80}, |
| 1414 | {.NarrowName: "llvm.maxnum.f32" , .ID: Intrinsic::maxnum, .MakeFnTy: makeDoubleDoubleDouble}, |
| 1415 | {.NarrowName: "llvm.maxnum.f64" , .ID: Intrinsic::maxnum, .MakeFnTy: makeX86FP80X86FP80X86FP80}, |
| 1416 | {.NarrowName: "llvm.maxnum.f80" , .ID: Intrinsic::maxnum, .MakeFnTy: makeX86FP80X86FP80X86FP80}, |
| 1417 | {.NarrowName: "llvm.minimum.f32" , .ID: Intrinsic::minimum, .MakeFnTy: makeDoubleDoubleDouble}, |
| 1418 | {.NarrowName: "llvm.minimum.f64" , .ID: Intrinsic::minimum, .MakeFnTy: makeX86FP80X86FP80X86FP80}, |
| 1419 | {.NarrowName: "llvm.minimum.f80" , .ID: Intrinsic::minimum, .MakeFnTy: makeX86FP80X86FP80X86FP80}, |
| 1420 | {.NarrowName: "llvm.maximum.f32" , .ID: Intrinsic::maximum, .MakeFnTy: makeDoubleDoubleDouble}, |
| 1421 | {.NarrowName: "llvm.maximum.f64" , .ID: Intrinsic::maximum, .MakeFnTy: makeX86FP80X86FP80X86FP80}, |
| 1422 | {.NarrowName: "llvm.maximum.f80" , .ID: Intrinsic::maximum, .MakeFnTy: makeX86FP80X86FP80X86FP80}, |
| 1423 | {.NarrowName: "llvm.copysign.f32" , .ID: Intrinsic::copysign, .MakeFnTy: makeDoubleDoubleDouble}, |
| 1424 | {.NarrowName: "llvm.copysign.f64" , .ID: Intrinsic::copysign, .MakeFnTy: makeX86FP80X86FP80X86FP80}, |
| 1425 | {.NarrowName: "llvm.copysign.f80" , .ID: Intrinsic::copysign, .MakeFnTy: makeX86FP80X86FP80X86FP80}, |
| 1426 | {.NarrowName: "llvm.floor.f32" , .ID: Intrinsic::floor, .MakeFnTy: makeDoubleDouble}, |
| 1427 | {.NarrowName: "llvm.floor.f64" , .ID: Intrinsic::floor, .MakeFnTy: makeX86FP80X86FP80}, |
| 1428 | {.NarrowName: "llvm.floor.f80" , .ID: Intrinsic::floor, .MakeFnTy: makeX86FP80X86FP80}, |
| 1429 | {.NarrowName: "llvm.ceil.f32" , .ID: Intrinsic::ceil, .MakeFnTy: makeDoubleDouble}, |
| 1430 | {.NarrowName: "llvm.ceil.f64" , .ID: Intrinsic::ceil, .MakeFnTy: makeX86FP80X86FP80}, |
| 1431 | {.NarrowName: "llvm.ceil.f80" , .ID: Intrinsic::ceil, .MakeFnTy: makeX86FP80X86FP80}, |
| 1432 | {.NarrowName: "llvm.trunc.f32" , .ID: Intrinsic::trunc, .MakeFnTy: makeDoubleDouble}, |
| 1433 | {.NarrowName: "llvm.trunc.f64" , .ID: Intrinsic::trunc, .MakeFnTy: makeX86FP80X86FP80}, |
| 1434 | {.NarrowName: "llvm.trunc.f80" , .ID: Intrinsic::trunc, .MakeFnTy: makeX86FP80X86FP80}, |
| 1435 | {.NarrowName: "llvm.rint.f32" , .ID: Intrinsic::rint, .MakeFnTy: makeDoubleDouble}, |
| 1436 | {.NarrowName: "llvm.rint.f64" , .ID: Intrinsic::rint, .MakeFnTy: makeX86FP80X86FP80}, |
| 1437 | {.NarrowName: "llvm.rint.f80" , .ID: Intrinsic::rint, .MakeFnTy: makeX86FP80X86FP80}, |
| 1438 | {.NarrowName: "llvm.nearbyint.f32" , .ID: Intrinsic::nearbyint, .MakeFnTy: makeDoubleDouble}, |
| 1439 | {.NarrowName: "llvm.nearbyint.f64" , .ID: Intrinsic::nearbyint, .MakeFnTy: makeX86FP80X86FP80}, |
| 1440 | {.NarrowName: "llvm.nearbyin80f64" , .ID: Intrinsic::nearbyint, .MakeFnTy: makeX86FP80X86FP80}, |
| 1441 | {.NarrowName: "llvm.round.f32" , .ID: Intrinsic::round, .MakeFnTy: makeDoubleDouble}, |
| 1442 | {.NarrowName: "llvm.round.f64" , .ID: Intrinsic::round, .MakeFnTy: makeX86FP80X86FP80}, |
| 1443 | {.NarrowName: "llvm.round.f80" , .ID: Intrinsic::round, .MakeFnTy: makeX86FP80X86FP80}, |
| 1444 | {.NarrowName: "llvm.lround.f32" , .ID: Intrinsic::lround, .MakeFnTy: makeDoubleDouble}, |
| 1445 | {.NarrowName: "llvm.lround.f64" , .ID: Intrinsic::lround, .MakeFnTy: makeX86FP80X86FP80}, |
| 1446 | {.NarrowName: "llvm.lround.f80" , .ID: Intrinsic::lround, .MakeFnTy: makeX86FP80X86FP80}, |
| 1447 | {.NarrowName: "llvm.llround.f32" , .ID: Intrinsic::llround, .MakeFnTy: makeDoubleDouble}, |
| 1448 | {.NarrowName: "llvm.llround.f64" , .ID: Intrinsic::llround, .MakeFnTy: makeX86FP80X86FP80}, |
| 1449 | {.NarrowName: "llvm.llround.f80" , .ID: Intrinsic::llround, .MakeFnTy: makeX86FP80X86FP80}, |
| 1450 | {.NarrowName: "llvm.lrint.f32" , .ID: Intrinsic::lrint, .MakeFnTy: makeDoubleDouble}, |
| 1451 | {.NarrowName: "llvm.lrint.f64" , .ID: Intrinsic::lrint, .MakeFnTy: makeX86FP80X86FP80}, |
| 1452 | {.NarrowName: "llvm.lrint.f80" , .ID: Intrinsic::lrint, .MakeFnTy: makeX86FP80X86FP80}, |
| 1453 | {.NarrowName: "llvm.llrint.f32" , .ID: Intrinsic::llrint, .MakeFnTy: makeDoubleDouble}, |
| 1454 | {.NarrowName: "llvm.llrint.f64" , .ID: Intrinsic::llrint, .MakeFnTy: makeX86FP80X86FP80}, |
| 1455 | {.NarrowName: "llvm.llrint.f80" , .ID: Intrinsic::llrint, .MakeFnTy: makeX86FP80X86FP80}, |
| 1456 | }; |
| 1457 | |
| 1458 | const KnownIntrinsic::LFEntry KnownIntrinsic::kLibfuncIntrinsics[] = { |
| 1459 | {.LFunc: LibFunc_sqrtf, .IntrinsicName: "llvm.sqrt.f32" }, |
| 1460 | {.LFunc: LibFunc_sqrt, .IntrinsicName: "llvm.sqrt.f64" }, |
| 1461 | {.LFunc: LibFunc_sqrtl, .IntrinsicName: "llvm.sqrt.f80" }, |
| 1462 | {.LFunc: LibFunc_sinf, .IntrinsicName: "llvm.sin.f32" }, |
| 1463 | {.LFunc: LibFunc_sin, .IntrinsicName: "llvm.sin.f64" }, |
| 1464 | {.LFunc: LibFunc_sinl, .IntrinsicName: "llvm.sin.f80" }, |
| 1465 | {.LFunc: LibFunc_cosf, .IntrinsicName: "llvm.cos.f32" }, |
| 1466 | {.LFunc: LibFunc_cos, .IntrinsicName: "llvm.cos.f64" }, |
| 1467 | {.LFunc: LibFunc_cosl, .IntrinsicName: "llvm.cos.f80" }, |
| 1468 | {.LFunc: LibFunc_powf, .IntrinsicName: "llvm.pow.f32" }, |
| 1469 | {.LFunc: LibFunc_pow, .IntrinsicName: "llvm.pow.f64" }, |
| 1470 | {.LFunc: LibFunc_powl, .IntrinsicName: "llvm.pow.f80" }, |
| 1471 | {.LFunc: LibFunc_expf, .IntrinsicName: "llvm.exp.f32" }, |
| 1472 | {.LFunc: LibFunc_exp, .IntrinsicName: "llvm.exp.f64" }, |
| 1473 | {.LFunc: LibFunc_expl, .IntrinsicName: "llvm.exp.f80" }, |
| 1474 | {.LFunc: LibFunc_exp2f, .IntrinsicName: "llvm.exp2.f32" }, |
| 1475 | {.LFunc: LibFunc_exp2, .IntrinsicName: "llvm.exp2.f64" }, |
| 1476 | {.LFunc: LibFunc_exp2l, .IntrinsicName: "llvm.exp2.f80" }, |
| 1477 | {.LFunc: LibFunc_logf, .IntrinsicName: "llvm.log.f32" }, |
| 1478 | {.LFunc: LibFunc_log, .IntrinsicName: "llvm.log.f64" }, |
| 1479 | {.LFunc: LibFunc_logl, .IntrinsicName: "llvm.log.f80" }, |
| 1480 | {.LFunc: LibFunc_log10f, .IntrinsicName: "llvm.log10.f32" }, |
| 1481 | {.LFunc: LibFunc_log10, .IntrinsicName: "llvm.log10.f64" }, |
| 1482 | {.LFunc: LibFunc_log10l, .IntrinsicName: "llvm.log10.f80" }, |
| 1483 | {.LFunc: LibFunc_log2f, .IntrinsicName: "llvm.log2.f32" }, |
| 1484 | {.LFunc: LibFunc_log2, .IntrinsicName: "llvm.log2.f64" }, |
| 1485 | {.LFunc: LibFunc_log2l, .IntrinsicName: "llvm.log2.f80" }, |
| 1486 | {.LFunc: LibFunc_fabsf, .IntrinsicName: "llvm.fabs.f32" }, |
| 1487 | {.LFunc: LibFunc_fabs, .IntrinsicName: "llvm.fabs.f64" }, |
| 1488 | {.LFunc: LibFunc_fabsl, .IntrinsicName: "llvm.fabs.f80" }, |
| 1489 | {.LFunc: LibFunc_copysignf, .IntrinsicName: "llvm.copysign.f32" }, |
| 1490 | {.LFunc: LibFunc_copysign, .IntrinsicName: "llvm.copysign.f64" }, |
| 1491 | {.LFunc: LibFunc_copysignl, .IntrinsicName: "llvm.copysign.f80" }, |
| 1492 | {.LFunc: LibFunc_floorf, .IntrinsicName: "llvm.floor.f32" }, |
| 1493 | {.LFunc: LibFunc_floor, .IntrinsicName: "llvm.floor.f64" }, |
| 1494 | {.LFunc: LibFunc_floorl, .IntrinsicName: "llvm.floor.f80" }, |
| 1495 | {.LFunc: LibFunc_fmaxf, .IntrinsicName: "llvm.maxnum.f32" }, |
| 1496 | {.LFunc: LibFunc_fmax, .IntrinsicName: "llvm.maxnum.f64" }, |
| 1497 | {.LFunc: LibFunc_fmaxl, .IntrinsicName: "llvm.maxnum.f80" }, |
| 1498 | {.LFunc: LibFunc_fminf, .IntrinsicName: "llvm.minnum.f32" }, |
| 1499 | {.LFunc: LibFunc_fmin, .IntrinsicName: "llvm.minnum.f64" }, |
| 1500 | {.LFunc: LibFunc_fminl, .IntrinsicName: "llvm.minnum.f80" }, |
| 1501 | {.LFunc: LibFunc_ceilf, .IntrinsicName: "llvm.ceil.f32" }, |
| 1502 | {.LFunc: LibFunc_ceil, .IntrinsicName: "llvm.ceil.f64" }, |
| 1503 | {.LFunc: LibFunc_ceill, .IntrinsicName: "llvm.ceil.f80" }, |
| 1504 | {.LFunc: LibFunc_truncf, .IntrinsicName: "llvm.trunc.f32" }, |
| 1505 | {.LFunc: LibFunc_trunc, .IntrinsicName: "llvm.trunc.f64" }, |
| 1506 | {.LFunc: LibFunc_truncl, .IntrinsicName: "llvm.trunc.f80" }, |
| 1507 | {.LFunc: LibFunc_rintf, .IntrinsicName: "llvm.rint.f32" }, |
| 1508 | {.LFunc: LibFunc_rint, .IntrinsicName: "llvm.rint.f64" }, |
| 1509 | {.LFunc: LibFunc_rintl, .IntrinsicName: "llvm.rint.f80" }, |
| 1510 | {.LFunc: LibFunc_nearbyintf, .IntrinsicName: "llvm.nearbyint.f32" }, |
| 1511 | {.LFunc: LibFunc_nearbyint, .IntrinsicName: "llvm.nearbyint.f64" }, |
| 1512 | {.LFunc: LibFunc_nearbyintl, .IntrinsicName: "llvm.nearbyint.f80" }, |
| 1513 | {.LFunc: LibFunc_roundf, .IntrinsicName: "llvm.round.f32" }, |
| 1514 | {.LFunc: LibFunc_round, .IntrinsicName: "llvm.round.f64" }, |
| 1515 | {.LFunc: LibFunc_roundl, .IntrinsicName: "llvm.round.f80" }, |
| 1516 | }; |
| 1517 | |
| 1518 | const char *KnownIntrinsic::get(LibFunc LFunc) { |
| 1519 | for (const auto &E : kLibfuncIntrinsics) { |
| 1520 | if (E.LFunc == LFunc) |
| 1521 | return E.IntrinsicName; |
| 1522 | } |
| 1523 | return nullptr; |
| 1524 | } |
| 1525 | |
| 1526 | const KnownIntrinsic::WidenedIntrinsic *KnownIntrinsic::widen(StringRef Name) { |
| 1527 | for (const auto &E : kWidenedIntrinsics) { |
| 1528 | if (E.NarrowName == Name) |
| 1529 | return &E; |
| 1530 | } |
| 1531 | return nullptr; |
| 1532 | } |
| 1533 | |
| 1534 | // Returns the name of the LLVM intrinsic corresponding to the given function. |
| 1535 | static const char *getIntrinsicFromLibfunc(Function &Fn, Type *VT, |
| 1536 | const TargetLibraryInfo &TLI) { |
| 1537 | LibFunc LFunc; |
| 1538 | if (!TLI.getLibFunc(FDecl: Fn, F&: LFunc)) |
| 1539 | return nullptr; |
| 1540 | |
| 1541 | if (const char *Name = KnownIntrinsic::get(LFunc)) |
| 1542 | return Name; |
| 1543 | |
| 1544 | LLVM_DEBUG(errs() << "TODO: LibFunc: " << TLI.getName(LFunc) << "\n" ); |
| 1545 | return nullptr; |
| 1546 | } |
| 1547 | |
| 1548 | // Try to handle a known function call. |
| 1549 | Value *NumericalStabilitySanitizer::maybeHandleKnownCallBase( |
| 1550 | CallBase &Call, Type *VT, Type *ExtendedVT, const TargetLibraryInfo &TLI, |
| 1551 | const ValueToShadowMap &Map, IRBuilder<> &Builder) { |
| 1552 | Function *Fn = Call.getCalledFunction(); |
| 1553 | if (Fn == nullptr) |
| 1554 | return nullptr; |
| 1555 | |
| 1556 | Intrinsic::ID WidenedId = Intrinsic::ID(); |
| 1557 | FunctionType *WidenedFnTy = nullptr; |
| 1558 | if (const auto ID = Fn->getIntrinsicID()) { |
| 1559 | const auto *Widened = KnownIntrinsic::widen(Name: Fn->getName()); |
| 1560 | if (Widened) { |
| 1561 | WidenedId = Widened->ID; |
| 1562 | WidenedFnTy = Widened->MakeFnTy(Context); |
| 1563 | } else { |
| 1564 | // If we don't know how to widen the intrinsic, we have no choice but to |
| 1565 | // call the non-wide version on a truncated shadow and extend again |
| 1566 | // afterwards. |
| 1567 | WidenedId = ID; |
| 1568 | WidenedFnTy = Fn->getFunctionType(); |
| 1569 | } |
| 1570 | } else if (const char *Name = getIntrinsicFromLibfunc(Fn&: *Fn, VT, TLI)) { |
| 1571 | // We might have a call to a library function that we can replace with a |
| 1572 | // wider Intrinsic. |
| 1573 | const auto *Widened = KnownIntrinsic::widen(Name); |
| 1574 | assert(Widened && "make sure KnownIntrinsic entries are consistent" ); |
| 1575 | WidenedId = Widened->ID; |
| 1576 | WidenedFnTy = Widened->MakeFnTy(Context); |
| 1577 | } else { |
| 1578 | // This is not a known library function or intrinsic. |
| 1579 | return nullptr; |
| 1580 | } |
| 1581 | |
| 1582 | // Check that the widened intrinsic is valid. |
| 1583 | SmallVector<Intrinsic::IITDescriptor, 8> Table; |
| 1584 | getIntrinsicInfoTableEntries(id: WidenedId, T&: Table); |
| 1585 | SmallVector<Type *, 4> ArgTys; |
| 1586 | ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; |
| 1587 | [[maybe_unused]] Intrinsic::MatchIntrinsicTypesResult MatchResult = |
| 1588 | Intrinsic::matchIntrinsicSignature(FTy: WidenedFnTy, Infos&: TableRef, ArgTys); |
| 1589 | assert(MatchResult == Intrinsic::MatchIntrinsicTypes_Match && |
| 1590 | "invalid widened intrinsic" ); |
| 1591 | // For known intrinsic functions, we create a second call to the same |
| 1592 | // intrinsic with a different type. |
| 1593 | SmallVector<Value *, 4> Args; |
| 1594 | // The last operand is the intrinsic itself, skip it. |
| 1595 | for (unsigned I = 0, E = Call.getNumOperands() - 1; I < E; ++I) { |
| 1596 | Value *Arg = Call.getOperand(i_nocapture: I); |
| 1597 | Type *OrigArgTy = Arg->getType(); |
| 1598 | Type *IntrinsicArgTy = WidenedFnTy->getParamType(i: I); |
| 1599 | if (OrigArgTy == IntrinsicArgTy) { |
| 1600 | Args.push_back(Elt: Arg); // The arg is passed as is. |
| 1601 | continue; |
| 1602 | } |
| 1603 | Type *ShadowArgTy = Config.getExtendedFPType(FT: Arg->getType()); |
| 1604 | assert(ShadowArgTy && |
| 1605 | "don't know how to get the shadow value for a non-FT" ); |
| 1606 | Value *Shadow = Map.getShadow(V: Arg); |
| 1607 | if (ShadowArgTy == IntrinsicArgTy) { |
| 1608 | // The shadow is the right type for the intrinsic. |
| 1609 | assert(Shadow->getType() == ShadowArgTy); |
| 1610 | Args.push_back(Elt: Shadow); |
| 1611 | continue; |
| 1612 | } |
| 1613 | // There is no intrinsic with his level of precision, truncate the shadow. |
| 1614 | Args.push_back(Elt: Builder.CreateFPTrunc(V: Shadow, DestTy: IntrinsicArgTy)); |
| 1615 | } |
| 1616 | Value *IntrinsicCall = Builder.CreateIntrinsic(ID: WidenedId, Types: ArgTys, Args); |
| 1617 | return WidenedFnTy->getReturnType() == ExtendedVT |
| 1618 | ? IntrinsicCall |
| 1619 | : Builder.CreateFPExt(V: IntrinsicCall, DestTy: ExtendedVT); |
| 1620 | } |
| 1621 | |
| 1622 | // Handle a CallBase, i.e. a function call, an inline asm sequence, or an |
| 1623 | // invoke. |
| 1624 | Value *NumericalStabilitySanitizer::handleCallBase(CallBase &Call, Type *VT, |
| 1625 | Type *ExtendedVT, |
| 1626 | const TargetLibraryInfo &TLI, |
| 1627 | const ValueToShadowMap &Map, |
| 1628 | IRBuilder<> &Builder) { |
| 1629 | // We cannot look inside inline asm, just expand the result again. |
| 1630 | if (Call.isInlineAsm()) |
| 1631 | return Builder.CreateFPExt(V: &Call, DestTy: ExtendedVT); |
| 1632 | |
| 1633 | // Intrinsics and library functions (e.g. sin, exp) are handled |
| 1634 | // specifically, because we know their semantics and can do better than |
| 1635 | // blindly calling them (e.g. compute the sinus in the actual shadow domain). |
| 1636 | if (Value *V = |
| 1637 | maybeHandleKnownCallBase(Call, VT, ExtendedVT, TLI, Map, Builder)) |
| 1638 | return V; |
| 1639 | |
| 1640 | // If the return tag matches that of the called function, read the extended |
| 1641 | // return value from the shadow ret ptr. Else, just extend the return value. |
| 1642 | Value *L = |
| 1643 | Builder.CreateLoad(Ty: IntptrTy, Ptr: NsanShadowRetTag, /*isVolatile=*/false); |
| 1644 | Value *HasShadowRet = Builder.CreateICmpEQ( |
| 1645 | LHS: L, RHS: Builder.CreatePtrToInt(V: Call.getCalledOperand(), DestTy: IntptrTy)); |
| 1646 | |
| 1647 | Value *ShadowRetVal = Builder.CreateLoad( |
| 1648 | Ty: ExtendedVT, |
| 1649 | Ptr: Builder.CreateConstGEP2_64(Ty: NsanShadowRetType, Ptr: NsanShadowRetPtr, Idx0: 0, Idx1: 0), |
| 1650 | /*isVolatile=*/false); |
| 1651 | Value *Shadow = Builder.CreateSelect(C: HasShadowRet, True: ShadowRetVal, |
| 1652 | False: Builder.CreateFPExt(V: &Call, DestTy: ExtendedVT)); |
| 1653 | ++NumInstrumentedFTCalls; |
| 1654 | return Shadow; |
| 1655 | } |
| 1656 | |
| 1657 | // Creates a shadow value for the given FT value. At that point all operands are |
| 1658 | // guaranteed to be available. |
| 1659 | Value *NumericalStabilitySanitizer::createShadowValueWithOperandsAvailable( |
| 1660 | Instruction &Inst, const TargetLibraryInfo &TLI, |
| 1661 | const ValueToShadowMap &Map) { |
| 1662 | Type *VT = Inst.getType(); |
| 1663 | Type *ExtendedVT = Config.getExtendedFPType(FT: VT); |
| 1664 | assert(ExtendedVT != nullptr && "trying to create a shadow for a non-FT" ); |
| 1665 | |
| 1666 | if (auto *Load = dyn_cast<LoadInst>(Val: &Inst)) |
| 1667 | return handleLoad(Load&: *Load, VT, ExtendedVT); |
| 1668 | |
| 1669 | if (auto *Call = dyn_cast<CallInst>(Val: &Inst)) { |
| 1670 | // Insert after the call. |
| 1671 | BasicBlock::iterator It(Inst); |
| 1672 | IRBuilder<> Builder(Call->getParent(), ++It); |
| 1673 | Builder.SetCurrentDebugLocation(Call->getDebugLoc()); |
| 1674 | return handleCallBase(Call&: *Call, VT, ExtendedVT, TLI, Map, Builder); |
| 1675 | } |
| 1676 | |
| 1677 | if (auto *Invoke = dyn_cast<InvokeInst>(Val: &Inst)) { |
| 1678 | // The Invoke terminates the basic block, create a new basic block in |
| 1679 | // between the successful invoke and the next block. |
| 1680 | BasicBlock *InvokeBB = Invoke->getParent(); |
| 1681 | BasicBlock *NextBB = Invoke->getNormalDest(); |
| 1682 | BasicBlock *NewBB = |
| 1683 | BasicBlock::Create(Context, Name: "" , Parent: NextBB->getParent(), InsertBefore: NextBB); |
| 1684 | Inst.replaceSuccessorWith(OldBB: NextBB, NewBB); |
| 1685 | |
| 1686 | IRBuilder<> Builder(NewBB); |
| 1687 | Builder.SetCurrentDebugLocation(Invoke->getDebugLoc()); |
| 1688 | Value *Shadow = handleCallBase(Call&: *Invoke, VT, ExtendedVT, TLI, Map, Builder); |
| 1689 | Builder.CreateBr(Dest: NextBB); |
| 1690 | NewBB->replaceSuccessorsPhiUsesWith(Old: InvokeBB, New: NewBB); |
| 1691 | return Shadow; |
| 1692 | } |
| 1693 | |
| 1694 | IRBuilder<> Builder(Inst.getNextNode()); |
| 1695 | Builder.SetCurrentDebugLocation(Inst.getDebugLoc()); |
| 1696 | |
| 1697 | if (auto *Trunc = dyn_cast<FPTruncInst>(Val: &Inst)) |
| 1698 | return handleTrunc(Trunc: *Trunc, VT, ExtendedVT, Map, Builder); |
| 1699 | if (auto *Ext = dyn_cast<FPExtInst>(Val: &Inst)) |
| 1700 | return handleExt(Ext: *Ext, VT, ExtendedVT, Map, Builder); |
| 1701 | |
| 1702 | if (auto *UnaryOp = dyn_cast<UnaryOperator>(Val: &Inst)) |
| 1703 | return Builder.CreateUnOp(Opc: UnaryOp->getOpcode(), |
| 1704 | V: Map.getShadow(V: UnaryOp->getOperand(i_nocapture: 0))); |
| 1705 | |
| 1706 | if (auto *BinOp = dyn_cast<BinaryOperator>(Val: &Inst)) |
| 1707 | return Builder.CreateBinOp(Opc: BinOp->getOpcode(), |
| 1708 | LHS: Map.getShadow(V: BinOp->getOperand(i_nocapture: 0)), |
| 1709 | RHS: Map.getShadow(V: BinOp->getOperand(i_nocapture: 1))); |
| 1710 | |
| 1711 | if (isa<UIToFPInst>(Val: &Inst) || isa<SIToFPInst>(Val: &Inst)) { |
| 1712 | auto *Cast = cast<CastInst>(Val: &Inst); |
| 1713 | return Builder.CreateCast(Op: Cast->getOpcode(), V: Cast->getOperand(i_nocapture: 0), |
| 1714 | DestTy: ExtendedVT); |
| 1715 | } |
| 1716 | |
| 1717 | if (auto *S = dyn_cast<SelectInst>(Val: &Inst)) |
| 1718 | return Builder.CreateSelect(C: S->getCondition(), |
| 1719 | True: Map.getShadow(V: S->getTrueValue()), |
| 1720 | False: Map.getShadow(V: S->getFalseValue())); |
| 1721 | |
| 1722 | if (auto *Freeze = dyn_cast<FreezeInst>(Val: &Inst)) |
| 1723 | return Builder.CreateFreeze(V: Map.getShadow(V: Freeze->getOperand(i_nocapture: 0))); |
| 1724 | |
| 1725 | if (auto * = dyn_cast<ExtractElementInst>(Val: &Inst)) |
| 1726 | return Builder.CreateExtractElement( |
| 1727 | Vec: Map.getShadow(V: Extract->getVectorOperand()), Idx: Extract->getIndexOperand()); |
| 1728 | |
| 1729 | if (auto *Insert = dyn_cast<InsertElementInst>(Val: &Inst)) |
| 1730 | return Builder.CreateInsertElement(Vec: Map.getShadow(V: Insert->getOperand(i_nocapture: 0)), |
| 1731 | NewElt: Map.getShadow(V: Insert->getOperand(i_nocapture: 1)), |
| 1732 | Idx: Insert->getOperand(i_nocapture: 2)); |
| 1733 | |
| 1734 | if (auto *Shuffle = dyn_cast<ShuffleVectorInst>(Val: &Inst)) |
| 1735 | return Builder.CreateShuffleVector(V1: Map.getShadow(V: Shuffle->getOperand(i_nocapture: 0)), |
| 1736 | V2: Map.getShadow(V: Shuffle->getOperand(i_nocapture: 1)), |
| 1737 | Mask: Shuffle->getShuffleMask()); |
| 1738 | // TODO: We could make aggregate object first class citizens. For now we |
| 1739 | // just extend the extracted value. |
| 1740 | if (auto * = dyn_cast<ExtractValueInst>(Val: &Inst)) |
| 1741 | return Builder.CreateFPExt(V: Extract, DestTy: ExtendedVT); |
| 1742 | |
| 1743 | if (auto *BC = dyn_cast<BitCastInst>(Val: &Inst)) |
| 1744 | return Builder.CreateFPExt(V: BC, DestTy: ExtendedVT); |
| 1745 | |
| 1746 | report_fatal_error(reason: "Unimplemented support for " + |
| 1747 | Twine(Inst.getOpcodeName())); |
| 1748 | } |
| 1749 | |
| 1750 | // Creates a shadow value for an instruction that defines a value of FT type. |
| 1751 | // FT operands that do not already have shadow values are created recursively. |
| 1752 | // The DFS is guaranteed to not loop as phis and arguments already have |
| 1753 | // shadows. |
| 1754 | void NumericalStabilitySanitizer::maybeCreateShadowValue( |
| 1755 | Instruction &Root, const TargetLibraryInfo &TLI, ValueToShadowMap &Map) { |
| 1756 | Type *VT = Root.getType(); |
| 1757 | Type *ExtendedVT = Config.getExtendedFPType(FT: VT); |
| 1758 | if (ExtendedVT == nullptr) |
| 1759 | return; // Not an FT value. |
| 1760 | |
| 1761 | if (Map.hasShadow(V: &Root)) |
| 1762 | return; // Shadow already exists. |
| 1763 | |
| 1764 | assert(!isa<PHINode>(Root) && "phi nodes should already have shadows" ); |
| 1765 | |
| 1766 | std::vector<Instruction *> DfsStack(1, &Root); |
| 1767 | while (!DfsStack.empty()) { |
| 1768 | // Ensure that all operands to the instruction have shadows before |
| 1769 | // proceeding. |
| 1770 | Instruction *I = DfsStack.back(); |
| 1771 | // The shadow for the instruction might have been created deeper in the DFS, |
| 1772 | // see `forward_use_with_two_uses` test. |
| 1773 | if (Map.hasShadow(V: I)) { |
| 1774 | DfsStack.pop_back(); |
| 1775 | continue; |
| 1776 | } |
| 1777 | |
| 1778 | bool MissingShadow = false; |
| 1779 | for (Value *Op : I->operands()) { |
| 1780 | Type *VT = Op->getType(); |
| 1781 | if (!Config.getExtendedFPType(FT: VT)) |
| 1782 | continue; // Not an FT value. |
| 1783 | if (Map.hasShadow(V: Op)) |
| 1784 | continue; // Shadow is already available. |
| 1785 | MissingShadow = true; |
| 1786 | DfsStack.push_back(x: cast<Instruction>(Val: Op)); |
| 1787 | } |
| 1788 | if (MissingShadow) |
| 1789 | continue; // Process operands and come back to this instruction later. |
| 1790 | |
| 1791 | // All operands have shadows. Create a shadow for the current value. |
| 1792 | Value *Shadow = createShadowValueWithOperandsAvailable(Inst&: *I, TLI, Map); |
| 1793 | Map.setShadow(V&: *I, Shadow&: *Shadow); |
| 1794 | DfsStack.pop_back(); |
| 1795 | } |
| 1796 | } |
| 1797 | |
| 1798 | // A floating-point store needs its value and type written to shadow memory. |
| 1799 | void NumericalStabilitySanitizer::propagateFTStore( |
| 1800 | StoreInst &Store, Type *VT, Type *ExtendedVT, const ValueToShadowMap &Map) { |
| 1801 | Value *StoredValue = Store.getValueOperand(); |
| 1802 | IRBuilder<> Builder(&Store); |
| 1803 | Builder.SetCurrentDebugLocation(Store.getDebugLoc()); |
| 1804 | const auto Extents = getMemoryExtentsOrDie(FT: VT); |
| 1805 | Value *ShadowPtr = Builder.CreateCall( |
| 1806 | Callee: NsanGetShadowPtrForStore[Extents.ValueType], |
| 1807 | Args: {Store.getPointerOperand(), ConstantInt::get(Ty: IntptrTy, V: Extents.NumElts)}); |
| 1808 | |
| 1809 | Value *StoredShadow = Map.getShadow(V: StoredValue); |
| 1810 | if (!Store.getParent()->getParent()->hasOptNone()) { |
| 1811 | // Only check stores when optimizing, because non-optimized code generates |
| 1812 | // too many stores to the stack, creating false positives. |
| 1813 | if (ClCheckStores) { |
| 1814 | StoredShadow = emitCheck(V: StoredValue, ShadowV: StoredShadow, Builder, |
| 1815 | Loc: CheckLoc::makeStore(Address: Store.getPointerOperand())); |
| 1816 | ++NumInstrumentedFTStores; |
| 1817 | } |
| 1818 | } |
| 1819 | |
| 1820 | Builder.CreateAlignedStore(Val: StoredShadow, Ptr: ShadowPtr, Align: Align(1), |
| 1821 | isVolatile: Store.isVolatile()); |
| 1822 | } |
| 1823 | |
| 1824 | // A non-ft store needs to invalidate shadow memory. Exceptions are: |
| 1825 | // - memory transfers of floating-point data through other pointer types (llvm |
| 1826 | // optimization passes transform `*(float*)a = *(float*)b` into |
| 1827 | // `*(i32*)a = *(i32*)b` ). These have the same semantics as memcpy. |
| 1828 | // - Writes of FT-sized constants. LLVM likes to do float stores as bitcasted |
| 1829 | // ints. Note that this is not really necessary because if the value is |
| 1830 | // unknown the framework will re-extend it on load anyway. It just felt |
| 1831 | // easier to debug tests with vectors of FTs. |
| 1832 | void NumericalStabilitySanitizer::propagateNonFTStore( |
| 1833 | StoreInst &Store, Type *VT, const ValueToShadowMap &Map) { |
| 1834 | Value *PtrOp = Store.getPointerOperand(); |
| 1835 | IRBuilder<> Builder(Store.getNextNode()); |
| 1836 | Builder.SetCurrentDebugLocation(Store.getDebugLoc()); |
| 1837 | Value *Dst = PtrOp; |
| 1838 | TypeSize SlotSize = DL.getTypeStoreSize(Ty: VT); |
| 1839 | assert(!SlotSize.isScalable() && "unsupported" ); |
| 1840 | const auto LoadSizeBytes = SlotSize.getFixedValue(); |
| 1841 | Value *ValueSize = Constant::getIntegerValue( |
| 1842 | Ty: IntptrTy, V: APInt(IntptrTy->getPrimitiveSizeInBits(), LoadSizeBytes)); |
| 1843 | |
| 1844 | ++NumInstrumentedNonFTStores; |
| 1845 | Value *StoredValue = Store.getValueOperand(); |
| 1846 | if (LoadInst *Load = dyn_cast<LoadInst>(Val: StoredValue)) { |
| 1847 | // TODO: Handle the case when the value is from a phi. |
| 1848 | // This is a memory transfer with memcpy semantics. Copy the type and |
| 1849 | // value from the source. Note that we cannot use __nsan_copy_values() |
| 1850 | // here, because that will not work when there is a write to memory in |
| 1851 | // between the load and the store, e.g. in the case of a swap. |
| 1852 | Type *ShadowTypeIntTy = Type::getIntNTy(C&: Context, N: 8 * LoadSizeBytes); |
| 1853 | Type *ShadowValueIntTy = |
| 1854 | Type::getIntNTy(C&: Context, N: 8 * kShadowScale * LoadSizeBytes); |
| 1855 | IRBuilder<> LoadBuilder(Load->getNextNode()); |
| 1856 | Builder.SetCurrentDebugLocation(Store.getDebugLoc()); |
| 1857 | Value *LoadSrc = Load->getPointerOperand(); |
| 1858 | // Read the shadow type and value at load time. The type has the same size |
| 1859 | // as the FT value, the value has twice its size. |
| 1860 | // TODO: cache them to avoid re-creating them when a load is used by |
| 1861 | // several stores. Maybe create them like the FT shadows when a load is |
| 1862 | // encountered. |
| 1863 | Value *RawShadowType = LoadBuilder.CreateAlignedLoad( |
| 1864 | Ty: ShadowTypeIntTy, |
| 1865 | Ptr: LoadBuilder.CreateCall(Callee: NsanGetRawShadowTypePtr, Args: {LoadSrc}), Align: Align(1), |
| 1866 | /*isVolatile=*/false); |
| 1867 | Value *RawShadowValue = LoadBuilder.CreateAlignedLoad( |
| 1868 | Ty: ShadowValueIntTy, |
| 1869 | Ptr: LoadBuilder.CreateCall(Callee: NsanGetRawShadowPtr, Args: {LoadSrc}), Align: Align(1), |
| 1870 | /*isVolatile=*/false); |
| 1871 | |
| 1872 | // Write back the shadow type and value at store time. |
| 1873 | Builder.CreateAlignedStore( |
| 1874 | Val: RawShadowType, Ptr: Builder.CreateCall(Callee: NsanGetRawShadowTypePtr, Args: {Dst}), |
| 1875 | Align: Align(1), |
| 1876 | /*isVolatile=*/false); |
| 1877 | Builder.CreateAlignedStore(Val: RawShadowValue, |
| 1878 | Ptr: Builder.CreateCall(Callee: NsanGetRawShadowPtr, Args: {Dst}), |
| 1879 | Align: Align(1), |
| 1880 | /*isVolatile=*/false); |
| 1881 | |
| 1882 | ++NumInstrumentedNonFTMemcpyStores; |
| 1883 | return; |
| 1884 | } |
| 1885 | // ClPropagateNonFTConstStoresAsFT is by default false. |
| 1886 | if (Constant *C; ClPropagateNonFTConstStoresAsFT && |
| 1887 | (C = dyn_cast<Constant>(Val: StoredValue))) { |
| 1888 | // This might be a fp constant stored as an int. Bitcast and store if it has |
| 1889 | // appropriate size. |
| 1890 | Type *BitcastTy = nullptr; // The FT type to bitcast to. |
| 1891 | if (auto *CInt = dyn_cast<ConstantInt>(Val: C)) { |
| 1892 | switch (CInt->getType()->getScalarSizeInBits()) { |
| 1893 | case 32: |
| 1894 | BitcastTy = Type::getFloatTy(C&: Context); |
| 1895 | break; |
| 1896 | case 64: |
| 1897 | BitcastTy = Type::getDoubleTy(C&: Context); |
| 1898 | break; |
| 1899 | case 80: |
| 1900 | BitcastTy = Type::getX86_FP80Ty(C&: Context); |
| 1901 | break; |
| 1902 | default: |
| 1903 | break; |
| 1904 | } |
| 1905 | } else if (auto *CDV = dyn_cast<ConstantDataVector>(Val: C)) { |
| 1906 | const int NumElements = |
| 1907 | cast<VectorType>(Val: CDV->getType())->getElementCount().getFixedValue(); |
| 1908 | switch (CDV->getType()->getScalarSizeInBits()) { |
| 1909 | case 32: |
| 1910 | BitcastTy = |
| 1911 | VectorType::get(ElementType: Type::getFloatTy(C&: Context), NumElements, Scalable: false); |
| 1912 | break; |
| 1913 | case 64: |
| 1914 | BitcastTy = |
| 1915 | VectorType::get(ElementType: Type::getDoubleTy(C&: Context), NumElements, Scalable: false); |
| 1916 | break; |
| 1917 | case 80: |
| 1918 | BitcastTy = |
| 1919 | VectorType::get(ElementType: Type::getX86_FP80Ty(C&: Context), NumElements, Scalable: false); |
| 1920 | break; |
| 1921 | default: |
| 1922 | break; |
| 1923 | } |
| 1924 | } |
| 1925 | if (BitcastTy) { |
| 1926 | const MemoryExtents Extents = getMemoryExtentsOrDie(FT: BitcastTy); |
| 1927 | Value *ShadowPtr = Builder.CreateCall( |
| 1928 | Callee: NsanGetShadowPtrForStore[Extents.ValueType], |
| 1929 | Args: {PtrOp, ConstantInt::get(Ty: IntptrTy, V: Extents.NumElts)}); |
| 1930 | // Bitcast the integer value to the appropriate FT type and extend to 2FT. |
| 1931 | Type *ExtVT = Config.getExtendedFPType(FT: BitcastTy); |
| 1932 | Value *Shadow = |
| 1933 | Builder.CreateFPExt(V: Builder.CreateBitCast(V: C, DestTy: BitcastTy), DestTy: ExtVT); |
| 1934 | Builder.CreateAlignedStore(Val: Shadow, Ptr: ShadowPtr, Align: Align(1), |
| 1935 | isVolatile: Store.isVolatile()); |
| 1936 | return; |
| 1937 | } |
| 1938 | } |
| 1939 | // All other stores just reset the shadow value to unknown. |
| 1940 | Builder.CreateCall(Callee: NsanSetUnknownFns.getFallback(), Args: {Dst, ValueSize}); |
| 1941 | } |
| 1942 | |
| 1943 | void NumericalStabilitySanitizer::propagateShadowValues( |
| 1944 | Instruction &Inst, const TargetLibraryInfo &TLI, |
| 1945 | const ValueToShadowMap &Map) { |
| 1946 | if (auto *Store = dyn_cast<StoreInst>(Val: &Inst)) { |
| 1947 | Value *StoredValue = Store->getValueOperand(); |
| 1948 | Type *VT = StoredValue->getType(); |
| 1949 | Type *ExtendedVT = Config.getExtendedFPType(FT: VT); |
| 1950 | if (ExtendedVT == nullptr) |
| 1951 | return propagateNonFTStore(Store&: *Store, VT, Map); |
| 1952 | return propagateFTStore(Store&: *Store, VT, ExtendedVT, Map); |
| 1953 | } |
| 1954 | |
| 1955 | if (auto *FCmp = dyn_cast<FCmpInst>(Val: &Inst)) { |
| 1956 | emitFCmpCheck(FCmp&: *FCmp, Map); |
| 1957 | return; |
| 1958 | } |
| 1959 | |
| 1960 | if (auto *CB = dyn_cast<CallBase>(Val: &Inst)) { |
| 1961 | maybeAddSuffixForNsanInterface(CI: CB); |
| 1962 | if (CallInst *CI = dyn_cast<CallInst>(Val: &Inst)) |
| 1963 | maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI: &TLI); |
| 1964 | if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(Val: &Inst)) { |
| 1965 | instrumentMemIntrinsic(MI); |
| 1966 | return; |
| 1967 | } |
| 1968 | populateShadowStack(CI&: *CB, TLI, Map); |
| 1969 | return; |
| 1970 | } |
| 1971 | |
| 1972 | if (auto *RetInst = dyn_cast<ReturnInst>(Val: &Inst)) { |
| 1973 | if (!ClCheckRet) |
| 1974 | return; |
| 1975 | |
| 1976 | Value *RV = RetInst->getReturnValue(); |
| 1977 | if (RV == nullptr) |
| 1978 | return; // This is a `ret void`. |
| 1979 | Type *VT = RV->getType(); |
| 1980 | Type *ExtendedVT = Config.getExtendedFPType(FT: VT); |
| 1981 | if (ExtendedVT == nullptr) |
| 1982 | return; // Not an FT ret. |
| 1983 | Value *RVShadow = Map.getShadow(V: RV); |
| 1984 | IRBuilder<> Builder(RetInst); |
| 1985 | |
| 1986 | RVShadow = emitCheck(V: RV, ShadowV: RVShadow, Builder, Loc: CheckLoc::makeRet()); |
| 1987 | ++NumInstrumentedFTRets; |
| 1988 | // Store tag. |
| 1989 | Value *FnAddr = |
| 1990 | Builder.CreatePtrToInt(V: Inst.getParent()->getParent(), DestTy: IntptrTy); |
| 1991 | Builder.CreateStore(Val: FnAddr, Ptr: NsanShadowRetTag); |
| 1992 | // Store value. |
| 1993 | Value *ShadowRetValPtr = |
| 1994 | Builder.CreateConstGEP2_64(Ty: NsanShadowRetType, Ptr: NsanShadowRetPtr, Idx0: 0, Idx1: 0); |
| 1995 | Builder.CreateStore(Val: RVShadow, Ptr: ShadowRetValPtr); |
| 1996 | return; |
| 1997 | } |
| 1998 | |
| 1999 | if (InsertValueInst *Insert = dyn_cast<InsertValueInst>(Val: &Inst)) { |
| 2000 | Value *V = Insert->getOperand(i_nocapture: 1); |
| 2001 | Type *VT = V->getType(); |
| 2002 | Type *ExtendedVT = Config.getExtendedFPType(FT: VT); |
| 2003 | if (ExtendedVT == nullptr) |
| 2004 | return; |
| 2005 | IRBuilder<> Builder(Insert); |
| 2006 | emitCheck(V, ShadowV: Map.getShadow(V), Builder, Loc: CheckLoc::makeInsert()); |
| 2007 | return; |
| 2008 | } |
| 2009 | } |
| 2010 | |
| 2011 | // Moves fast math flags from the function to individual instructions, and |
| 2012 | // removes the attribute from the function. |
| 2013 | // TODO: Make this controllable with a flag. |
| 2014 | static void moveFastMathFlags(Function &F, |
| 2015 | std::vector<Instruction *> &Instructions) { |
| 2016 | FastMathFlags FMF; |
| 2017 | #define MOVE_FLAG(attr, setter) \ |
| 2018 | if (F.getFnAttribute(attr).getValueAsString() == "true") { \ |
| 2019 | F.removeFnAttr(attr); \ |
| 2020 | FMF.set##setter(); \ |
| 2021 | } |
| 2022 | MOVE_FLAG("unsafe-fp-math" , Fast) |
| 2023 | MOVE_FLAG("no-infs-fp-math" , NoInfs) |
| 2024 | MOVE_FLAG("no-nans-fp-math" , NoNaNs) |
| 2025 | MOVE_FLAG("no-signed-zeros-fp-math" , NoSignedZeros) |
| 2026 | #undef MOVE_FLAG |
| 2027 | |
| 2028 | for (Instruction *I : Instructions) |
| 2029 | if (isa<FPMathOperator>(Val: I)) |
| 2030 | I->setFastMathFlags(FMF); |
| 2031 | } |
| 2032 | |
| 2033 | bool NumericalStabilitySanitizer::sanitizeFunction( |
| 2034 | Function &F, const TargetLibraryInfo &TLI) { |
| 2035 | if (!F.hasFnAttribute(Kind: Attribute::SanitizeNumericalStability) || |
| 2036 | F.isDeclaration()) |
| 2037 | return false; |
| 2038 | |
| 2039 | // This is required to prevent instrumenting call to __nsan_init from within |
| 2040 | // the module constructor. |
| 2041 | if (F.getName() == kNsanModuleCtorName) |
| 2042 | return false; |
| 2043 | |
| 2044 | // The instrumentation maintains: |
| 2045 | // - for each IR value `v` of floating-point (or vector floating-point) type |
| 2046 | // FT, a shadow IR value `s(v)` with twice the precision 2FT (e.g. |
| 2047 | // double for float and f128 for double). |
| 2048 | // - A shadow memory, which stores `s(v)` for any `v` that has been stored, |
| 2049 | // along with a shadow memory tag, which stores whether the value in the |
| 2050 | // corresponding shadow memory is valid. Note that this might be |
| 2051 | // incorrect if a non-instrumented function stores to memory, or if |
| 2052 | // memory is stored to through a char pointer. |
| 2053 | // - A shadow stack, which holds `s(v)` for any floating-point argument `v` |
| 2054 | // of a call to an instrumented function. This allows |
| 2055 | // instrumented functions to retrieve the shadow values for their |
| 2056 | // arguments. |
| 2057 | // Because instrumented functions can be called from non-instrumented |
| 2058 | // functions, the stack needs to include a tag so that the instrumented |
| 2059 | // function knows whether shadow values are available for their |
| 2060 | // parameters (i.e. whether is was called by an instrumented function). |
| 2061 | // When shadow arguments are not available, they have to be recreated by |
| 2062 | // extending the precision of the non-shadow arguments to the non-shadow |
| 2063 | // value. Non-instrumented functions do not modify (or even know about) the |
| 2064 | // shadow stack. The shadow stack pointer is __nsan_shadow_args. The shadow |
| 2065 | // stack tag is __nsan_shadow_args_tag. The tag is any unique identifier |
| 2066 | // for the function (we use the address of the function). Both variables |
| 2067 | // are thread local. |
| 2068 | // Example: |
| 2069 | // calls shadow stack tag shadow stack |
| 2070 | // ======================================================================= |
| 2071 | // non_instrumented_1() 0 0 |
| 2072 | // | |
| 2073 | // v |
| 2074 | // instrumented_2(float a) 0 0 |
| 2075 | // | |
| 2076 | // v |
| 2077 | // instrumented_3(float b, double c) &instrumented_3 s(b),s(c) |
| 2078 | // | |
| 2079 | // v |
| 2080 | // instrumented_4(float d) &instrumented_4 s(d) |
| 2081 | // | |
| 2082 | // v |
| 2083 | // non_instrumented_5(float e) &non_instrumented_5 s(e) |
| 2084 | // | |
| 2085 | // v |
| 2086 | // instrumented_6(float f) &non_instrumented_5 s(e) |
| 2087 | // |
| 2088 | // On entry, instrumented_2 checks whether the tag corresponds to its |
| 2089 | // function ptr. |
| 2090 | // Note that functions reset the tag to 0 after reading shadow parameters. |
| 2091 | // This ensures that the function does not erroneously read invalid data if |
| 2092 | // called twice in the same stack, once from an instrumented function and |
| 2093 | // once from an uninstrumented one. For example, in the following example, |
| 2094 | // resetting the tag in (A) ensures that (B) does not reuse the same the |
| 2095 | // shadow arguments (which would be incorrect). |
| 2096 | // instrumented_1(float a) |
| 2097 | // | |
| 2098 | // v |
| 2099 | // instrumented_2(float b) (A) |
| 2100 | // | |
| 2101 | // v |
| 2102 | // non_instrumented_3() |
| 2103 | // | |
| 2104 | // v |
| 2105 | // instrumented_2(float b) (B) |
| 2106 | // |
| 2107 | // - A shadow return slot. Any function that returns a floating-point value |
| 2108 | // places a shadow return value in __nsan_shadow_ret_val. Again, because |
| 2109 | // we might be calling non-instrumented functions, this value is guarded |
| 2110 | // by __nsan_shadow_ret_tag marker indicating which instrumented function |
| 2111 | // placed the value in __nsan_shadow_ret_val, so that the caller can check |
| 2112 | // that this corresponds to the callee. Both variables are thread local. |
| 2113 | // |
| 2114 | // For example, in the following example, the instrumentation in |
| 2115 | // `instrumented_1` rejects the shadow return value from `instrumented_3` |
| 2116 | // because is is not tagged as expected (`&instrumented_3` instead of |
| 2117 | // `non_instrumented_2`): |
| 2118 | // |
| 2119 | // instrumented_1() |
| 2120 | // | |
| 2121 | // v |
| 2122 | // float non_instrumented_2() |
| 2123 | // | |
| 2124 | // v |
| 2125 | // float instrumented_3() |
| 2126 | // |
| 2127 | // Calls of known math functions (sin, cos, exp, ...) are duplicated to call |
| 2128 | // their overload on the shadow type. |
| 2129 | |
| 2130 | // Collect all instructions before processing, as creating shadow values |
| 2131 | // creates new instructions inside the function. |
| 2132 | std::vector<Instruction *> OriginalInstructions; |
| 2133 | for (BasicBlock &BB : F) |
| 2134 | for (Instruction &Inst : BB) |
| 2135 | OriginalInstructions.emplace_back(args: &Inst); |
| 2136 | |
| 2137 | moveFastMathFlags(F, Instructions&: OriginalInstructions); |
| 2138 | ValueToShadowMap ValueToShadow(Config); |
| 2139 | |
| 2140 | // In the first pass, we create shadow values for all FT function arguments |
| 2141 | // and all phis. This ensures that the DFS of the next pass does not have |
| 2142 | // any loops. |
| 2143 | std::vector<PHINode *> OriginalPhis; |
| 2144 | createShadowArguments(F, TLI, Map&: ValueToShadow); |
| 2145 | for (Instruction *I : OriginalInstructions) { |
| 2146 | if (PHINode *Phi = dyn_cast<PHINode>(Val: I)) { |
| 2147 | if (PHINode *Shadow = maybeCreateShadowPhi(Phi&: *Phi, TLI)) { |
| 2148 | OriginalPhis.push_back(x: Phi); |
| 2149 | ValueToShadow.setShadow(V&: *Phi, Shadow&: *Shadow); |
| 2150 | } |
| 2151 | } |
| 2152 | } |
| 2153 | |
| 2154 | // Create shadow values for all instructions creating FT values. |
| 2155 | for (Instruction *I : OriginalInstructions) |
| 2156 | maybeCreateShadowValue(Root&: *I, TLI, Map&: ValueToShadow); |
| 2157 | |
| 2158 | // Propagate shadow values across stores, calls and rets. |
| 2159 | for (Instruction *I : OriginalInstructions) |
| 2160 | propagateShadowValues(Inst&: *I, TLI, Map: ValueToShadow); |
| 2161 | |
| 2162 | // The last pass populates shadow phis with shadow values. |
| 2163 | for (PHINode *Phi : OriginalPhis) { |
| 2164 | PHINode *ShadowPhi = cast<PHINode>(Val: ValueToShadow.getShadow(V: Phi)); |
| 2165 | for (unsigned I : seq(Size: Phi->getNumOperands())) { |
| 2166 | Value *V = Phi->getOperand(i_nocapture: I); |
| 2167 | Value *Shadow = ValueToShadow.getShadow(V); |
| 2168 | BasicBlock *IncomingBB = Phi->getIncomingBlock(i: I); |
| 2169 | // For some instructions (e.g. invoke), we create the shadow in a separate |
| 2170 | // block, different from the block where the original value is created. |
| 2171 | // In that case, the shadow phi might need to refer to this block instead |
| 2172 | // of the original block. |
| 2173 | // Note that this can only happen for instructions as constant shadows are |
| 2174 | // always created in the same block. |
| 2175 | ShadowPhi->addIncoming(V: Shadow, BB: IncomingBB); |
| 2176 | } |
| 2177 | } |
| 2178 | |
| 2179 | return !ValueToShadow.empty(); |
| 2180 | } |
| 2181 | |
| 2182 | static uint64_t GetMemOpSize(Value *V) { |
| 2183 | uint64_t OpSize = 0; |
| 2184 | if (Constant *C = dyn_cast<Constant>(Val: V)) { |
| 2185 | auto *CInt = dyn_cast<ConstantInt>(Val: C); |
| 2186 | if (CInt && CInt->getValue().getBitWidth() <= 64) |
| 2187 | OpSize = CInt->getValue().getZExtValue(); |
| 2188 | } |
| 2189 | |
| 2190 | return OpSize; |
| 2191 | } |
| 2192 | |
| 2193 | // Instrument the memory intrinsics so that they properly modify the shadow |
| 2194 | // memory. |
| 2195 | bool NumericalStabilitySanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { |
| 2196 | IRBuilder<> Builder(MI); |
| 2197 | if (auto *M = dyn_cast<MemSetInst>(Val: MI)) { |
| 2198 | FunctionCallee SetUnknownFn = |
| 2199 | NsanSetUnknownFns.getFunctionFor(MemOpSize: GetMemOpSize(V: M->getArgOperand(i: 2))); |
| 2200 | if (SetUnknownFn.getFunctionType()->getNumParams() == 1) |
| 2201 | Builder.CreateCall(Callee: SetUnknownFn, Args: {/*Address=*/M->getArgOperand(i: 0)}); |
| 2202 | else |
| 2203 | Builder.CreateCall(Callee: SetUnknownFn, |
| 2204 | Args: {/*Address=*/M->getArgOperand(i: 0), |
| 2205 | /*Size=*/Builder.CreateIntCast(V: M->getArgOperand(i: 2), |
| 2206 | DestTy: IntptrTy, isSigned: false)}); |
| 2207 | |
| 2208 | } else if (auto *M = dyn_cast<MemTransferInst>(Val: MI)) { |
| 2209 | FunctionCallee CopyFn = |
| 2210 | NsanCopyFns.getFunctionFor(MemOpSize: GetMemOpSize(V: M->getArgOperand(i: 2))); |
| 2211 | |
| 2212 | if (CopyFn.getFunctionType()->getNumParams() == 2) |
| 2213 | Builder.CreateCall(Callee: CopyFn, Args: {/*Destination=*/M->getArgOperand(i: 0), |
| 2214 | /*Source=*/M->getArgOperand(i: 1)}); |
| 2215 | else |
| 2216 | Builder.CreateCall(Callee: CopyFn, Args: {/*Destination=*/M->getArgOperand(i: 0), |
| 2217 | /*Source=*/M->getArgOperand(i: 1), |
| 2218 | /*Size=*/ |
| 2219 | Builder.CreateIntCast(V: M->getArgOperand(i: 2), |
| 2220 | DestTy: IntptrTy, isSigned: false)}); |
| 2221 | } |
| 2222 | return false; |
| 2223 | } |
| 2224 | |
| 2225 | void NumericalStabilitySanitizer::maybeAddSuffixForNsanInterface(CallBase *CI) { |
| 2226 | Function *Fn = CI->getCalledFunction(); |
| 2227 | if (Fn == nullptr) |
| 2228 | return; |
| 2229 | |
| 2230 | if (!Fn->getName().starts_with(Prefix: "__nsan_" )) |
| 2231 | return; |
| 2232 | |
| 2233 | if (Fn->getName() == "__nsan_dump_shadow_mem" ) { |
| 2234 | assert(CI->arg_size() == 4 && |
| 2235 | "invalid prototype for __nsan_dump_shadow_mem" ); |
| 2236 | // __nsan_dump_shadow_mem requires an extra parameter with the dynamic |
| 2237 | // configuration: |
| 2238 | // (shadow_type_id_for_long_double << 16) | (shadow_type_id_for_double << 8) |
| 2239 | // | shadow_type_id_for_double |
| 2240 | const uint64_t shadow_value_type_ids = |
| 2241 | (static_cast<size_t>(Config.byValueType(VT: kLongDouble).getNsanTypeId()) |
| 2242 | << 16) | |
| 2243 | (static_cast<size_t>(Config.byValueType(VT: kDouble).getNsanTypeId()) |
| 2244 | << 8) | |
| 2245 | static_cast<size_t>(Config.byValueType(VT: kFloat).getNsanTypeId()); |
| 2246 | CI->setArgOperand(i: 3, v: ConstantInt::get(Ty: IntptrTy, V: shadow_value_type_ids)); |
| 2247 | } |
| 2248 | } |
| 2249 | |