1 | //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This pass performs a simple dominator tree walk that eliminates trivially |
10 | // redundant instructions. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "llvm/Transforms/Scalar/EarlyCSE.h" |
15 | #include "llvm/ADT/DenseMapInfo.h" |
16 | #include "llvm/ADT/Hashing.h" |
17 | #include "llvm/ADT/STLExtras.h" |
18 | #include "llvm/ADT/ScopedHashTable.h" |
19 | #include "llvm/ADT/SmallVector.h" |
20 | #include "llvm/ADT/Statistic.h" |
21 | #include "llvm/Analysis/AssumptionCache.h" |
22 | #include "llvm/Analysis/GlobalsModRef.h" |
23 | #include "llvm/Analysis/GuardUtils.h" |
24 | #include "llvm/Analysis/InstructionSimplify.h" |
25 | #include "llvm/Analysis/MemorySSA.h" |
26 | #include "llvm/Analysis/MemorySSAUpdater.h" |
27 | #include "llvm/Analysis/TargetLibraryInfo.h" |
28 | #include "llvm/Analysis/TargetTransformInfo.h" |
29 | #include "llvm/Analysis/ValueTracking.h" |
30 | #include "llvm/IR/BasicBlock.h" |
31 | #include "llvm/IR/Constants.h" |
32 | #include "llvm/IR/Dominators.h" |
33 | #include "llvm/IR/Function.h" |
34 | #include "llvm/IR/InstrTypes.h" |
35 | #include "llvm/IR/Instruction.h" |
36 | #include "llvm/IR/Instructions.h" |
37 | #include "llvm/IR/IntrinsicInst.h" |
38 | #include "llvm/IR/LLVMContext.h" |
39 | #include "llvm/IR/PassManager.h" |
40 | #include "llvm/IR/PatternMatch.h" |
41 | #include "llvm/IR/Type.h" |
42 | #include "llvm/IR/Value.h" |
43 | #include "llvm/InitializePasses.h" |
44 | #include "llvm/Pass.h" |
45 | #include "llvm/Support/Allocator.h" |
46 | #include "llvm/Support/AtomicOrdering.h" |
47 | #include "llvm/Support/Casting.h" |
48 | #include "llvm/Support/Debug.h" |
49 | #include "llvm/Support/DebugCounter.h" |
50 | #include "llvm/Support/RecyclingAllocator.h" |
51 | #include "llvm/Support/raw_ostream.h" |
52 | #include "llvm/Transforms/Scalar.h" |
53 | #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" |
54 | #include "llvm/Transforms/Utils/Local.h" |
55 | #include <cassert> |
56 | #include <deque> |
57 | #include <memory> |
58 | #include <utility> |
59 | |
60 | using namespace llvm; |
61 | using namespace llvm::PatternMatch; |
62 | |
63 | #define DEBUG_TYPE "early-cse" |
64 | |
65 | STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd" ); |
66 | STATISTIC(NumCSE, "Number of instructions CSE'd" ); |
67 | STATISTIC(NumCSECVP, "Number of compare instructions CVP'd" ); |
68 | STATISTIC(NumCSELoad, "Number of load instructions CSE'd" ); |
69 | STATISTIC(NumCSECall, "Number of call instructions CSE'd" ); |
70 | STATISTIC(NumCSEGEP, "Number of GEP instructions CSE'd" ); |
71 | STATISTIC(NumDSE, "Number of trivial dead stores removed" ); |
72 | |
73 | DEBUG_COUNTER(CSECounter, "early-cse" , |
74 | "Controls which instructions are removed" ); |
75 | |
76 | static cl::opt<unsigned> EarlyCSEMssaOptCap( |
77 | "earlycse-mssa-optimization-cap" , cl::init(Val: 500), cl::Hidden, |
78 | cl::desc("Enable imprecision in EarlyCSE in pathological cases, in exchange " |
79 | "for faster compile. Caps the MemorySSA clobbering calls." )); |
80 | |
81 | static cl::opt<bool> EarlyCSEDebugHash( |
82 | "earlycse-debug-hash" , cl::init(Val: false), cl::Hidden, |
83 | cl::desc("Perform extra assertion checking to verify that SimpleValue's hash " |
84 | "function is well-behaved w.r.t. its isEqual predicate" )); |
85 | |
86 | //===----------------------------------------------------------------------===// |
87 | // SimpleValue |
88 | //===----------------------------------------------------------------------===// |
89 | |
90 | namespace { |
91 | |
92 | /// Struct representing the available values in the scoped hash table. |
93 | struct SimpleValue { |
94 | Instruction *Inst; |
95 | |
96 | SimpleValue(Instruction *I) : Inst(I) { |
97 | assert((isSentinel() || canHandle(I)) && "Inst can't be handled!" ); |
98 | } |
99 | |
100 | bool isSentinel() const { |
101 | return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || |
102 | Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); |
103 | } |
104 | |
105 | static bool canHandle(Instruction *Inst) { |
106 | // This can only handle non-void readnone functions. |
107 | // Also handled are constrained intrinsic that look like the types |
108 | // of instruction handled below (UnaryOperator, etc.). |
109 | if (CallInst *CI = dyn_cast<CallInst>(Val: Inst)) { |
110 | if (Function *F = CI->getCalledFunction()) { |
111 | switch ((Intrinsic::ID)F->getIntrinsicID()) { |
112 | case Intrinsic::experimental_constrained_fadd: |
113 | case Intrinsic::experimental_constrained_fsub: |
114 | case Intrinsic::experimental_constrained_fmul: |
115 | case Intrinsic::experimental_constrained_fdiv: |
116 | case Intrinsic::experimental_constrained_frem: |
117 | case Intrinsic::experimental_constrained_fptosi: |
118 | case Intrinsic::experimental_constrained_sitofp: |
119 | case Intrinsic::experimental_constrained_fptoui: |
120 | case Intrinsic::experimental_constrained_uitofp: |
121 | case Intrinsic::experimental_constrained_fcmp: |
122 | case Intrinsic::experimental_constrained_fcmps: { |
123 | auto *CFP = cast<ConstrainedFPIntrinsic>(Val: CI); |
124 | if (CFP->getExceptionBehavior() && |
125 | CFP->getExceptionBehavior() == fp::ebStrict) |
126 | return false; |
127 | // Since we CSE across function calls we must not allow |
128 | // the rounding mode to change. |
129 | if (CFP->getRoundingMode() && |
130 | CFP->getRoundingMode() == RoundingMode::Dynamic) |
131 | return false; |
132 | return true; |
133 | } |
134 | } |
135 | } |
136 | return CI->doesNotAccessMemory() && |
137 | // FIXME: Currently the calls which may access the thread id may |
138 | // be considered as not accessing the memory. But this is |
139 | // problematic for coroutines, since coroutines may resume in a |
140 | // different thread. So we disable the optimization here for the |
141 | // correctness. However, it may block many other correct |
142 | // optimizations. Revert this one when we detect the memory |
143 | // accessing kind more precisely. |
144 | !CI->getFunction()->isPresplitCoroutine(); |
145 | } |
146 | return isa<CastInst>(Val: Inst) || isa<UnaryOperator>(Val: Inst) || |
147 | isa<BinaryOperator>(Val: Inst) || isa<CmpInst>(Val: Inst) || |
148 | isa<SelectInst>(Val: Inst) || isa<ExtractElementInst>(Val: Inst) || |
149 | isa<InsertElementInst>(Val: Inst) || isa<ShuffleVectorInst>(Val: Inst) || |
150 | isa<ExtractValueInst>(Val: Inst) || isa<InsertValueInst>(Val: Inst) || |
151 | isa<FreezeInst>(Val: Inst); |
152 | } |
153 | }; |
154 | |
155 | } // end anonymous namespace |
156 | |
157 | namespace llvm { |
158 | |
159 | template <> struct DenseMapInfo<SimpleValue> { |
160 | static inline SimpleValue getEmptyKey() { |
161 | return DenseMapInfo<Instruction *>::getEmptyKey(); |
162 | } |
163 | |
164 | static inline SimpleValue getTombstoneKey() { |
165 | return DenseMapInfo<Instruction *>::getTombstoneKey(); |
166 | } |
167 | |
168 | static unsigned getHashValue(SimpleValue Val); |
169 | static bool isEqual(SimpleValue LHS, SimpleValue RHS); |
170 | }; |
171 | |
172 | } // end namespace llvm |
173 | |
174 | /// Match a 'select' including an optional 'not's of the condition. |
175 | static bool matchSelectWithOptionalNotCond(Value *V, Value *&Cond, Value *&A, |
176 | Value *&B, |
177 | SelectPatternFlavor &Flavor) { |
178 | // Return false if V is not even a select. |
179 | if (!match(V, P: m_Select(C: m_Value(V&: Cond), L: m_Value(V&: A), R: m_Value(V&: B)))) |
180 | return false; |
181 | |
182 | // Look through a 'not' of the condition operand by swapping A/B. |
183 | Value *CondNot; |
184 | if (match(V: Cond, P: m_Not(V: m_Value(V&: CondNot)))) { |
185 | Cond = CondNot; |
186 | std::swap(a&: A, b&: B); |
187 | } |
188 | |
189 | // Match canonical forms of min/max. We are not using ValueTracking's |
190 | // more powerful matchSelectPattern() because it may rely on instruction flags |
191 | // such as "nsw". That would be incompatible with the current hashing |
192 | // mechanism that may remove flags to increase the likelihood of CSE. |
193 | |
194 | Flavor = SPF_UNKNOWN; |
195 | CmpPredicate Pred; |
196 | |
197 | if (!match(V: Cond, P: m_ICmp(Pred, L: m_Specific(V: A), R: m_Specific(V: B)))) { |
198 | // Check for commuted variants of min/max by swapping predicate. |
199 | // If we do not match the standard or commuted patterns, this is not a |
200 | // recognized form of min/max, but it is still a select, so return true. |
201 | if (!match(V: Cond, P: m_ICmp(Pred, L: m_Specific(V: B), R: m_Specific(V: A)))) |
202 | return true; |
203 | Pred = ICmpInst::getSwappedPredicate(pred: Pred); |
204 | } |
205 | |
206 | switch (Pred) { |
207 | case CmpInst::ICMP_UGT: Flavor = SPF_UMAX; break; |
208 | case CmpInst::ICMP_ULT: Flavor = SPF_UMIN; break; |
209 | case CmpInst::ICMP_SGT: Flavor = SPF_SMAX; break; |
210 | case CmpInst::ICMP_SLT: Flavor = SPF_SMIN; break; |
211 | // Non-strict inequalities. |
212 | case CmpInst::ICMP_ULE: Flavor = SPF_UMIN; break; |
213 | case CmpInst::ICMP_UGE: Flavor = SPF_UMAX; break; |
214 | case CmpInst::ICMP_SLE: Flavor = SPF_SMIN; break; |
215 | case CmpInst::ICMP_SGE: Flavor = SPF_SMAX; break; |
216 | default: break; |
217 | } |
218 | |
219 | return true; |
220 | } |
221 | |
222 | static unsigned hashCallInst(CallInst *CI) { |
223 | // Don't CSE convergent calls in different basic blocks, because they |
224 | // implicitly depend on the set of threads that is currently executing. |
225 | if (CI->isConvergent()) { |
226 | return hash_combine(args: CI->getOpcode(), args: CI->getParent(), |
227 | args: hash_combine_range(R: CI->operand_values())); |
228 | } |
229 | return hash_combine(args: CI->getOpcode(), |
230 | args: hash_combine_range(R: CI->operand_values())); |
231 | } |
232 | |
233 | static unsigned getHashValueImpl(SimpleValue Val) { |
234 | Instruction *Inst = Val.Inst; |
235 | // Hash in all of the operands as pointers. |
236 | if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val: Inst)) { |
237 | Value *LHS = BinOp->getOperand(i_nocapture: 0); |
238 | Value *RHS = BinOp->getOperand(i_nocapture: 1); |
239 | if (BinOp->isCommutative() && BinOp->getOperand(i_nocapture: 0) > BinOp->getOperand(i_nocapture: 1)) |
240 | std::swap(a&: LHS, b&: RHS); |
241 | |
242 | return hash_combine(args: BinOp->getOpcode(), args: LHS, args: RHS); |
243 | } |
244 | |
245 | if (CmpInst *CI = dyn_cast<CmpInst>(Val: Inst)) { |
246 | // Compares can be commuted by swapping the comparands and |
247 | // updating the predicate. Choose the form that has the |
248 | // comparands in sorted order, or in the case of a tie, the |
249 | // one with the lower predicate. |
250 | Value *LHS = CI->getOperand(i_nocapture: 0); |
251 | Value *RHS = CI->getOperand(i_nocapture: 1); |
252 | CmpInst::Predicate Pred = CI->getPredicate(); |
253 | CmpInst::Predicate SwappedPred = CI->getSwappedPredicate(); |
254 | if (std::tie(args&: LHS, args&: Pred) > std::tie(args&: RHS, args&: SwappedPred)) { |
255 | std::swap(a&: LHS, b&: RHS); |
256 | Pred = SwappedPred; |
257 | } |
258 | return hash_combine(args: Inst->getOpcode(), args: Pred, args: LHS, args: RHS); |
259 | } |
260 | |
261 | // Hash general selects to allow matching commuted true/false operands. |
262 | SelectPatternFlavor SPF; |
263 | Value *Cond, *A, *B; |
264 | if (matchSelectWithOptionalNotCond(V: Inst, Cond, A, B, Flavor&: SPF)) { |
265 | // Hash min/max (cmp + select) to allow for commuted operands. |
266 | // Min/max may also have non-canonical compare predicate (eg, the compare for |
267 | // smin may use 'sgt' rather than 'slt'), and non-canonical operands in the |
268 | // compare. |
269 | // TODO: We should also detect FP min/max. |
270 | if (SPF == SPF_SMIN || SPF == SPF_SMAX || |
271 | SPF == SPF_UMIN || SPF == SPF_UMAX) { |
272 | if (A > B) |
273 | std::swap(a&: A, b&: B); |
274 | return hash_combine(args: Inst->getOpcode(), args: SPF, args: A, args: B); |
275 | } |
276 | |
277 | // Hash general selects to allow matching commuted true/false operands. |
278 | |
279 | // If we do not have a compare as the condition, just hash in the condition. |
280 | CmpPredicate Pred; |
281 | Value *X, *Y; |
282 | if (!match(V: Cond, P: m_Cmp(Pred, L: m_Value(V&: X), R: m_Value(V&: Y)))) |
283 | return hash_combine(args: Inst->getOpcode(), args: Cond, args: A, args: B); |
284 | |
285 | // Similar to cmp normalization (above) - canonicalize the predicate value: |
286 | // select (icmp Pred, X, Y), A, B --> select (icmp InvPred, X, Y), B, A |
287 | if (CmpInst::getInversePredicate(pred: Pred) < Pred) { |
288 | Pred = CmpInst::getInversePredicate(pred: Pred); |
289 | std::swap(a&: A, b&: B); |
290 | } |
291 | return hash_combine(args: Inst->getOpcode(), |
292 | args: static_cast<CmpInst::Predicate>(Pred), args: X, args: Y, args: A, args: B); |
293 | } |
294 | |
295 | if (CastInst *CI = dyn_cast<CastInst>(Val: Inst)) |
296 | return hash_combine(args: CI->getOpcode(), args: CI->getType(), args: CI->getOperand(i_nocapture: 0)); |
297 | |
298 | if (FreezeInst *FI = dyn_cast<FreezeInst>(Val: Inst)) |
299 | return hash_combine(args: FI->getOpcode(), args: FI->getOperand(i_nocapture: 0)); |
300 | |
301 | if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Val: Inst)) |
302 | return hash_combine(args: EVI->getOpcode(), args: EVI->getOperand(i_nocapture: 0), |
303 | args: hash_combine_range(R: EVI->indices())); |
304 | |
305 | if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Val: Inst)) |
306 | return hash_combine(args: IVI->getOpcode(), args: IVI->getOperand(i_nocapture: 0), |
307 | args: IVI->getOperand(i_nocapture: 1), args: hash_combine_range(R: IVI->indices())); |
308 | |
309 | assert((isa<CallInst>(Inst) || isa<ExtractElementInst>(Inst) || |
310 | isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) || |
311 | isa<UnaryOperator>(Inst) || isa<FreezeInst>(Inst)) && |
312 | "Invalid/unknown instruction" ); |
313 | |
314 | // Handle intrinsics with commutative operands. |
315 | auto *II = dyn_cast<IntrinsicInst>(Val: Inst); |
316 | if (II && II->isCommutative() && II->arg_size() >= 2) { |
317 | Value *LHS = II->getArgOperand(i: 0), *RHS = II->getArgOperand(i: 1); |
318 | if (LHS > RHS) |
319 | std::swap(a&: LHS, b&: RHS); |
320 | return hash_combine( |
321 | args: II->getOpcode(), args: LHS, args: RHS, |
322 | args: hash_combine_range(R: drop_begin(RangeOrContainer: II->operand_values(), N: 2))); |
323 | } |
324 | |
325 | // gc.relocate is 'special' call: its second and third operands are |
326 | // not real values, but indices into statepoint's argument list. |
327 | // Get values they point to. |
328 | if (const GCRelocateInst *GCR = dyn_cast<GCRelocateInst>(Val: Inst)) |
329 | return hash_combine(args: GCR->getOpcode(), args: GCR->getOperand(i_nocapture: 0), |
330 | args: GCR->getBasePtr(), args: GCR->getDerivedPtr()); |
331 | |
332 | // Don't CSE convergent calls in different basic blocks, because they |
333 | // implicitly depend on the set of threads that is currently executing. |
334 | if (CallInst *CI = dyn_cast<CallInst>(Val: Inst)) |
335 | return hashCallInst(CI); |
336 | |
337 | // Mix in the opcode. |
338 | return hash_combine(args: Inst->getOpcode(), |
339 | args: hash_combine_range(R: Inst->operand_values())); |
340 | } |
341 | |
342 | unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) { |
343 | #ifndef NDEBUG |
344 | // If -earlycse-debug-hash was specified, return a constant -- this |
345 | // will force all hashing to collide, so we'll exhaustively search |
346 | // the table for a match, and the assertion in isEqual will fire if |
347 | // there's a bug causing equal keys to hash differently. |
348 | if (EarlyCSEDebugHash) |
349 | return 0; |
350 | #endif |
351 | return getHashValueImpl(Val); |
352 | } |
353 | |
354 | static bool isEqualImpl(SimpleValue LHS, SimpleValue RHS) { |
355 | Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; |
356 | |
357 | if (LHS.isSentinel() || RHS.isSentinel()) |
358 | return LHSI == RHSI; |
359 | |
360 | if (LHSI->getOpcode() != RHSI->getOpcode()) |
361 | return false; |
362 | if (LHSI->isIdenticalToWhenDefined(I: RHSI, /*IntersectAttrs=*/true)) { |
363 | // Convergent calls implicitly depend on the set of threads that is |
364 | // currently executing, so conservatively return false if they are in |
365 | // different basic blocks. |
366 | if (CallInst *CI = dyn_cast<CallInst>(Val: LHSI); |
367 | CI && CI->isConvergent() && LHSI->getParent() != RHSI->getParent()) |
368 | return false; |
369 | |
370 | return true; |
371 | } |
372 | |
373 | // If we're not strictly identical, we still might be a commutable instruction |
374 | if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(Val: LHSI)) { |
375 | if (!LHSBinOp->isCommutative()) |
376 | return false; |
377 | |
378 | assert(isa<BinaryOperator>(RHSI) && |
379 | "same opcode, but different instruction type?" ); |
380 | BinaryOperator *RHSBinOp = cast<BinaryOperator>(Val: RHSI); |
381 | |
382 | // Commuted equality |
383 | return LHSBinOp->getOperand(i_nocapture: 0) == RHSBinOp->getOperand(i_nocapture: 1) && |
384 | LHSBinOp->getOperand(i_nocapture: 1) == RHSBinOp->getOperand(i_nocapture: 0); |
385 | } |
386 | if (CmpInst *LHSCmp = dyn_cast<CmpInst>(Val: LHSI)) { |
387 | assert(isa<CmpInst>(RHSI) && |
388 | "same opcode, but different instruction type?" ); |
389 | CmpInst *RHSCmp = cast<CmpInst>(Val: RHSI); |
390 | // Commuted equality |
391 | return LHSCmp->getOperand(i_nocapture: 0) == RHSCmp->getOperand(i_nocapture: 1) && |
392 | LHSCmp->getOperand(i_nocapture: 1) == RHSCmp->getOperand(i_nocapture: 0) && |
393 | LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate(); |
394 | } |
395 | |
396 | auto *LII = dyn_cast<IntrinsicInst>(Val: LHSI); |
397 | auto *RII = dyn_cast<IntrinsicInst>(Val: RHSI); |
398 | if (LII && RII && LII->getIntrinsicID() == RII->getIntrinsicID() && |
399 | LII->isCommutative() && LII->arg_size() >= 2) { |
400 | return LII->getArgOperand(i: 0) == RII->getArgOperand(i: 1) && |
401 | LII->getArgOperand(i: 1) == RII->getArgOperand(i: 0) && |
402 | std::equal(first1: LII->arg_begin() + 2, last1: LII->arg_end(), |
403 | first2: RII->arg_begin() + 2, last2: RII->arg_end()) && |
404 | LII->hasSameSpecialState(I2: RII, /*IgnoreAlignment=*/false, |
405 | /*IntersectAttrs=*/true); |
406 | } |
407 | |
408 | // See comment above in `getHashValue()`. |
409 | if (const GCRelocateInst *GCR1 = dyn_cast<GCRelocateInst>(Val: LHSI)) |
410 | if (const GCRelocateInst *GCR2 = dyn_cast<GCRelocateInst>(Val: RHSI)) |
411 | return GCR1->getOperand(i_nocapture: 0) == GCR2->getOperand(i_nocapture: 0) && |
412 | GCR1->getBasePtr() == GCR2->getBasePtr() && |
413 | GCR1->getDerivedPtr() == GCR2->getDerivedPtr(); |
414 | |
415 | // Min/max can occur with commuted operands, non-canonical predicates, |
416 | // and/or non-canonical operands. |
417 | // Selects can be non-trivially equivalent via inverted conditions and swaps. |
418 | SelectPatternFlavor LSPF, RSPF; |
419 | Value *CondL, *CondR, *LHSA, *RHSA, *LHSB, *RHSB; |
420 | if (matchSelectWithOptionalNotCond(V: LHSI, Cond&: CondL, A&: LHSA, B&: LHSB, Flavor&: LSPF) && |
421 | matchSelectWithOptionalNotCond(V: RHSI, Cond&: CondR, A&: RHSA, B&: RHSB, Flavor&: RSPF)) { |
422 | if (LSPF == RSPF) { |
423 | // TODO: We should also detect FP min/max. |
424 | if (LSPF == SPF_SMIN || LSPF == SPF_SMAX || |
425 | LSPF == SPF_UMIN || LSPF == SPF_UMAX) |
426 | return ((LHSA == RHSA && LHSB == RHSB) || |
427 | (LHSA == RHSB && LHSB == RHSA)); |
428 | |
429 | // select Cond, A, B <--> select not(Cond), B, A |
430 | if (CondL == CondR && LHSA == RHSA && LHSB == RHSB) |
431 | return true; |
432 | } |
433 | |
434 | // If the true/false operands are swapped and the conditions are compares |
435 | // with inverted predicates, the selects are equal: |
436 | // select (icmp Pred, X, Y), A, B <--> select (icmp InvPred, X, Y), B, A |
437 | // |
438 | // This also handles patterns with a double-negation in the sense of not + |
439 | // inverse, because we looked through a 'not' in the matching function and |
440 | // swapped A/B: |
441 | // select (cmp Pred, X, Y), A, B <--> select (not (cmp InvPred, X, Y)), B, A |
442 | // |
443 | // This intentionally does NOT handle patterns with a double-negation in |
444 | // the sense of not + not, because doing so could result in values |
445 | // comparing |
446 | // as equal that hash differently in the min/max cases like: |
447 | // select (cmp slt, X, Y), X, Y <--> select (not (not (cmp slt, X, Y))), X, Y |
448 | // ^ hashes as min ^ would not hash as min |
449 | // In the context of the EarlyCSE pass, however, such cases never reach |
450 | // this code, as we simplify the double-negation before hashing the second |
451 | // select (and so still succeed at CSEing them). |
452 | if (LHSA == RHSB && LHSB == RHSA) { |
453 | CmpPredicate PredL, PredR; |
454 | Value *X, *Y; |
455 | if (match(V: CondL, P: m_Cmp(Pred&: PredL, L: m_Value(V&: X), R: m_Value(V&: Y))) && |
456 | match(V: CondR, P: m_Cmp(Pred&: PredR, L: m_Specific(V: X), R: m_Specific(V: Y))) && |
457 | CmpInst::getInversePredicate(pred: PredL) == PredR) |
458 | return true; |
459 | } |
460 | } |
461 | |
462 | return false; |
463 | } |
464 | |
465 | bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) { |
466 | // These comparisons are nontrivial, so assert that equality implies |
467 | // hash equality (DenseMap demands this as an invariant). |
468 | bool Result = isEqualImpl(LHS, RHS); |
469 | assert(!Result || (LHS.isSentinel() && LHS.Inst == RHS.Inst) || |
470 | getHashValueImpl(LHS) == getHashValueImpl(RHS)); |
471 | return Result; |
472 | } |
473 | |
474 | //===----------------------------------------------------------------------===// |
475 | // CallValue |
476 | //===----------------------------------------------------------------------===// |
477 | |
478 | namespace { |
479 | |
480 | /// Struct representing the available call values in the scoped hash |
481 | /// table. |
482 | struct CallValue { |
483 | Instruction *Inst; |
484 | |
485 | CallValue(Instruction *I) : Inst(I) { |
486 | assert((isSentinel() || canHandle(I)) && "Inst can't be handled!" ); |
487 | } |
488 | |
489 | bool isSentinel() const { |
490 | return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || |
491 | Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); |
492 | } |
493 | |
494 | static bool canHandle(Instruction *Inst) { |
495 | CallInst *CI = dyn_cast<CallInst>(Val: Inst); |
496 | if (!CI || (!CI->onlyReadsMemory() && !CI->onlyWritesMemory()) || |
497 | // FIXME: Currently the calls which may access the thread id may |
498 | // be considered as not accessing the memory. But this is |
499 | // problematic for coroutines, since coroutines may resume in a |
500 | // different thread. So we disable the optimization here for the |
501 | // correctness. However, it may block many other correct |
502 | // optimizations. Revert this one when we detect the memory |
503 | // accessing kind more precisely. |
504 | CI->getFunction()->isPresplitCoroutine()) |
505 | return false; |
506 | return true; |
507 | } |
508 | }; |
509 | |
510 | } // end anonymous namespace |
511 | |
512 | namespace llvm { |
513 | |
514 | template <> struct DenseMapInfo<CallValue> { |
515 | static inline CallValue getEmptyKey() { |
516 | return DenseMapInfo<Instruction *>::getEmptyKey(); |
517 | } |
518 | |
519 | static inline CallValue getTombstoneKey() { |
520 | return DenseMapInfo<Instruction *>::getTombstoneKey(); |
521 | } |
522 | |
523 | static unsigned getHashValue(CallValue Val); |
524 | static bool isEqual(CallValue LHS, CallValue RHS); |
525 | }; |
526 | |
527 | } // end namespace llvm |
528 | |
529 | unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) { |
530 | Instruction *Inst = Val.Inst; |
531 | |
532 | // Hash all of the operands as pointers and mix in the opcode. |
533 | return hashCallInst(CI: cast<CallInst>(Val: Inst)); |
534 | } |
535 | |
536 | bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) { |
537 | if (LHS.isSentinel() || RHS.isSentinel()) |
538 | return LHS.Inst == RHS.Inst; |
539 | |
540 | CallInst *LHSI = cast<CallInst>(Val: LHS.Inst); |
541 | CallInst *RHSI = cast<CallInst>(Val: RHS.Inst); |
542 | |
543 | // Convergent calls implicitly depend on the set of threads that is |
544 | // currently executing, so conservatively return false if they are in |
545 | // different basic blocks. |
546 | if (LHSI->isConvergent() && LHSI->getParent() != RHSI->getParent()) |
547 | return false; |
548 | |
549 | return LHSI->isIdenticalToWhenDefined(I: RHSI, /*IntersectAttrs=*/true); |
550 | } |
551 | |
552 | //===----------------------------------------------------------------------===// |
553 | // GEPValue |
554 | //===----------------------------------------------------------------------===// |
555 | |
556 | namespace { |
557 | |
558 | struct GEPValue { |
559 | Instruction *Inst; |
560 | std::optional<int64_t> ConstantOffset; |
561 | |
562 | GEPValue(Instruction *I) : Inst(I) { |
563 | assert((isSentinel() || canHandle(I)) && "Inst can't be handled!" ); |
564 | } |
565 | |
566 | GEPValue(Instruction *I, std::optional<int64_t> ConstantOffset) |
567 | : Inst(I), ConstantOffset(ConstantOffset) { |
568 | assert((isSentinel() || canHandle(I)) && "Inst can't be handled!" ); |
569 | } |
570 | |
571 | bool isSentinel() const { |
572 | return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || |
573 | Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); |
574 | } |
575 | |
576 | static bool canHandle(Instruction *Inst) { |
577 | return isa<GetElementPtrInst>(Val: Inst); |
578 | } |
579 | }; |
580 | |
581 | } // namespace |
582 | |
583 | namespace llvm { |
584 | |
585 | template <> struct DenseMapInfo<GEPValue> { |
586 | static inline GEPValue getEmptyKey() { |
587 | return DenseMapInfo<Instruction *>::getEmptyKey(); |
588 | } |
589 | |
590 | static inline GEPValue getTombstoneKey() { |
591 | return DenseMapInfo<Instruction *>::getTombstoneKey(); |
592 | } |
593 | |
594 | static unsigned getHashValue(const GEPValue &Val); |
595 | static bool isEqual(const GEPValue &LHS, const GEPValue &RHS); |
596 | }; |
597 | |
598 | } // end namespace llvm |
599 | |
600 | unsigned DenseMapInfo<GEPValue>::getHashValue(const GEPValue &Val) { |
601 | auto *GEP = cast<GetElementPtrInst>(Val: Val.Inst); |
602 | if (Val.ConstantOffset.has_value()) |
603 | return hash_combine(args: GEP->getOpcode(), args: GEP->getPointerOperand(), |
604 | args: Val.ConstantOffset.value()); |
605 | return hash_combine(args: GEP->getOpcode(), |
606 | args: hash_combine_range(R: GEP->operand_values())); |
607 | } |
608 | |
609 | bool DenseMapInfo<GEPValue>::isEqual(const GEPValue &LHS, const GEPValue &RHS) { |
610 | if (LHS.isSentinel() || RHS.isSentinel()) |
611 | return LHS.Inst == RHS.Inst; |
612 | auto *LGEP = cast<GetElementPtrInst>(Val: LHS.Inst); |
613 | auto *RGEP = cast<GetElementPtrInst>(Val: RHS.Inst); |
614 | if (LGEP->getPointerOperand() != RGEP->getPointerOperand()) |
615 | return false; |
616 | if (LHS.ConstantOffset.has_value() && RHS.ConstantOffset.has_value()) |
617 | return LHS.ConstantOffset.value() == RHS.ConstantOffset.value(); |
618 | return LGEP->isIdenticalToWhenDefined(I: RGEP); |
619 | } |
620 | |
621 | //===----------------------------------------------------------------------===// |
622 | // EarlyCSE implementation |
623 | //===----------------------------------------------------------------------===// |
624 | |
625 | namespace { |
626 | |
627 | /// A simple and fast domtree-based CSE pass. |
628 | /// |
629 | /// This pass does a simple depth-first walk over the dominator tree, |
630 | /// eliminating trivially redundant instructions and using instsimplify to |
631 | /// canonicalize things as it goes. It is intended to be fast and catch obvious |
632 | /// cases so that instcombine and other passes are more effective. It is |
633 | /// expected that a later pass of GVN will catch the interesting/hard cases. |
634 | class EarlyCSE { |
635 | public: |
636 | const TargetLibraryInfo &TLI; |
637 | const TargetTransformInfo &TTI; |
638 | DominatorTree &DT; |
639 | AssumptionCache &AC; |
640 | const SimplifyQuery SQ; |
641 | MemorySSA *MSSA; |
642 | std::unique_ptr<MemorySSAUpdater> MSSAUpdater; |
643 | |
644 | using AllocatorTy = |
645 | RecyclingAllocator<BumpPtrAllocator, |
646 | ScopedHashTableVal<SimpleValue, Value *>>; |
647 | using ScopedHTType = |
648 | ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>, |
649 | AllocatorTy>; |
650 | |
651 | /// A scoped hash table of the current values of all of our simple |
652 | /// scalar expressions. |
653 | /// |
654 | /// As we walk down the domtree, we look to see if instructions are in this: |
655 | /// if so, we replace them with what we find, otherwise we insert them so |
656 | /// that dominated values can succeed in their lookup. |
657 | ScopedHTType AvailableValues; |
658 | |
659 | /// A scoped hash table of the current values of previously encountered |
660 | /// memory locations. |
661 | /// |
662 | /// This allows us to get efficient access to dominating loads or stores when |
663 | /// we have a fully redundant load. In addition to the most recent load, we |
664 | /// keep track of a generation count of the read, which is compared against |
665 | /// the current generation count. The current generation count is incremented |
666 | /// after every possibly writing memory operation, which ensures that we only |
667 | /// CSE loads with other loads that have no intervening store. Ordering |
668 | /// events (such as fences or atomic instructions) increment the generation |
669 | /// count as well; essentially, we model these as writes to all possible |
670 | /// locations. Note that atomic and/or volatile loads and stores can be |
671 | /// present the table; it is the responsibility of the consumer to inspect |
672 | /// the atomicity/volatility if needed. |
673 | struct LoadValue { |
674 | Instruction *DefInst = nullptr; |
675 | unsigned Generation = 0; |
676 | int MatchingId = -1; |
677 | bool IsAtomic = false; |
678 | bool IsLoad = false; |
679 | |
680 | LoadValue() = default; |
681 | LoadValue(Instruction *Inst, unsigned Generation, unsigned MatchingId, |
682 | bool IsAtomic, bool IsLoad) |
683 | : DefInst(Inst), Generation(Generation), MatchingId(MatchingId), |
684 | IsAtomic(IsAtomic), IsLoad(IsLoad) {} |
685 | }; |
686 | |
687 | using LoadMapAllocator = |
688 | RecyclingAllocator<BumpPtrAllocator, |
689 | ScopedHashTableVal<Value *, LoadValue>>; |
690 | using LoadHTType = |
691 | ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>, |
692 | LoadMapAllocator>; |
693 | |
694 | LoadHTType AvailableLoads; |
695 | |
696 | // A scoped hash table mapping memory locations (represented as typed |
697 | // addresses) to generation numbers at which that memory location became |
698 | // (henceforth indefinitely) invariant. |
699 | using InvariantMapAllocator = |
700 | RecyclingAllocator<BumpPtrAllocator, |
701 | ScopedHashTableVal<MemoryLocation, unsigned>>; |
702 | using InvariantHTType = |
703 | ScopedHashTable<MemoryLocation, unsigned, DenseMapInfo<MemoryLocation>, |
704 | InvariantMapAllocator>; |
705 | InvariantHTType AvailableInvariants; |
706 | |
707 | /// A scoped hash table of the current values of read-only call |
708 | /// values. |
709 | /// |
710 | /// It uses the same generation count as loads. |
711 | using CallHTType = |
712 | ScopedHashTable<CallValue, std::pair<Instruction *, unsigned>>; |
713 | CallHTType AvailableCalls; |
714 | |
715 | using GEPMapAllocatorTy = |
716 | RecyclingAllocator<BumpPtrAllocator, |
717 | ScopedHashTableVal<GEPValue, Value *>>; |
718 | using GEPHTType = ScopedHashTable<GEPValue, Value *, DenseMapInfo<GEPValue>, |
719 | GEPMapAllocatorTy>; |
720 | GEPHTType AvailableGEPs; |
721 | |
722 | /// This is the current generation of the memory value. |
723 | unsigned CurrentGeneration = 0; |
724 | |
725 | /// Set up the EarlyCSE runner for a particular function. |
726 | EarlyCSE(const DataLayout &DL, const TargetLibraryInfo &TLI, |
727 | const TargetTransformInfo &TTI, DominatorTree &DT, |
728 | AssumptionCache &AC, MemorySSA *MSSA) |
729 | : TLI(TLI), TTI(TTI), DT(DT), AC(AC), SQ(DL, &TLI, &DT, &AC), MSSA(MSSA), |
730 | MSSAUpdater(std::make_unique<MemorySSAUpdater>(args&: MSSA)) {} |
731 | |
732 | bool run(); |
733 | |
734 | private: |
735 | unsigned ClobberCounter = 0; |
736 | // Almost a POD, but needs to call the constructors for the scoped hash |
737 | // tables so that a new scope gets pushed on. These are RAII so that the |
738 | // scope gets popped when the NodeScope is destroyed. |
739 | class NodeScope { |
740 | public: |
741 | NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, |
742 | InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls, |
743 | GEPHTType &AvailableGEPs) |
744 | : Scope(AvailableValues), LoadScope(AvailableLoads), |
745 | InvariantScope(AvailableInvariants), CallScope(AvailableCalls), |
746 | GEPScope(AvailableGEPs) {} |
747 | NodeScope(const NodeScope &) = delete; |
748 | NodeScope &operator=(const NodeScope &) = delete; |
749 | |
750 | private: |
751 | ScopedHTType::ScopeTy Scope; |
752 | LoadHTType::ScopeTy LoadScope; |
753 | InvariantHTType::ScopeTy InvariantScope; |
754 | CallHTType::ScopeTy CallScope; |
755 | GEPHTType::ScopeTy GEPScope; |
756 | }; |
757 | |
758 | // Contains all the needed information to create a stack for doing a depth |
759 | // first traversal of the tree. This includes scopes for values, loads, and |
760 | // calls as well as the generation. There is a child iterator so that the |
761 | // children do not need to be store separately. |
762 | class StackNode { |
763 | public: |
764 | StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, |
765 | InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls, |
766 | GEPHTType &AvailableGEPs, unsigned cg, DomTreeNode *n, |
767 | DomTreeNode::const_iterator child, |
768 | DomTreeNode::const_iterator end) |
769 | : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child), |
770 | EndIter(end), |
771 | Scopes(AvailableValues, AvailableLoads, AvailableInvariants, |
772 | AvailableCalls, AvailableGEPs) {} |
773 | StackNode(const StackNode &) = delete; |
774 | StackNode &operator=(const StackNode &) = delete; |
775 | |
776 | // Accessors. |
777 | unsigned currentGeneration() const { return CurrentGeneration; } |
778 | unsigned childGeneration() const { return ChildGeneration; } |
779 | void childGeneration(unsigned generation) { ChildGeneration = generation; } |
780 | DomTreeNode *node() { return Node; } |
781 | DomTreeNode::const_iterator childIter() const { return ChildIter; } |
782 | |
783 | DomTreeNode *nextChild() { |
784 | DomTreeNode *child = *ChildIter; |
785 | ++ChildIter; |
786 | return child; |
787 | } |
788 | |
789 | DomTreeNode::const_iterator end() const { return EndIter; } |
790 | bool isProcessed() const { return Processed; } |
791 | void process() { Processed = true; } |
792 | |
793 | private: |
794 | unsigned CurrentGeneration; |
795 | unsigned ChildGeneration; |
796 | DomTreeNode *Node; |
797 | DomTreeNode::const_iterator ChildIter; |
798 | DomTreeNode::const_iterator EndIter; |
799 | NodeScope Scopes; |
800 | bool Processed = false; |
801 | }; |
802 | |
803 | /// Wrapper class to handle memory instructions, including loads, |
804 | /// stores and intrinsic loads and stores defined by the target. |
805 | class ParseMemoryInst { |
806 | public: |
807 | ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI) |
808 | : Inst(Inst) { |
809 | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: Inst)) { |
810 | IntrID = II->getIntrinsicID(); |
811 | if (TTI.getTgtMemIntrinsic(Inst: II, Info)) |
812 | return; |
813 | if (isHandledNonTargetIntrinsic(ID: IntrID)) { |
814 | switch (IntrID) { |
815 | case Intrinsic::masked_load: |
816 | Info.PtrVal = Inst->getOperand(i: 0); |
817 | Info.MatchingId = Intrinsic::masked_load; |
818 | Info.ReadMem = true; |
819 | Info.WriteMem = false; |
820 | Info.IsVolatile = false; |
821 | break; |
822 | case Intrinsic::masked_store: |
823 | Info.PtrVal = Inst->getOperand(i: 1); |
824 | // Use the ID of masked load as the "matching id". This will |
825 | // prevent matching non-masked loads/stores with masked ones |
826 | // (which could be done), but at the moment, the code here |
827 | // does not support matching intrinsics with non-intrinsics, |
828 | // so keep the MatchingIds specific to masked instructions |
829 | // for now (TODO). |
830 | Info.MatchingId = Intrinsic::masked_load; |
831 | Info.ReadMem = false; |
832 | Info.WriteMem = true; |
833 | Info.IsVolatile = false; |
834 | break; |
835 | } |
836 | } |
837 | } |
838 | } |
839 | |
840 | Instruction *get() { return Inst; } |
841 | const Instruction *get() const { return Inst; } |
842 | |
843 | bool isLoad() const { |
844 | if (IntrID != 0) |
845 | return Info.ReadMem; |
846 | return isa<LoadInst>(Val: Inst); |
847 | } |
848 | |
849 | bool isStore() const { |
850 | if (IntrID != 0) |
851 | return Info.WriteMem; |
852 | return isa<StoreInst>(Val: Inst); |
853 | } |
854 | |
855 | bool isAtomic() const { |
856 | if (IntrID != 0) |
857 | return Info.Ordering != AtomicOrdering::NotAtomic; |
858 | return Inst->isAtomic(); |
859 | } |
860 | |
861 | bool isUnordered() const { |
862 | if (IntrID != 0) |
863 | return Info.isUnordered(); |
864 | |
865 | if (LoadInst *LI = dyn_cast<LoadInst>(Val: Inst)) { |
866 | return LI->isUnordered(); |
867 | } else if (StoreInst *SI = dyn_cast<StoreInst>(Val: Inst)) { |
868 | return SI->isUnordered(); |
869 | } |
870 | // Conservative answer |
871 | return !Inst->isAtomic(); |
872 | } |
873 | |
874 | bool isVolatile() const { |
875 | if (IntrID != 0) |
876 | return Info.IsVolatile; |
877 | |
878 | if (LoadInst *LI = dyn_cast<LoadInst>(Val: Inst)) { |
879 | return LI->isVolatile(); |
880 | } else if (StoreInst *SI = dyn_cast<StoreInst>(Val: Inst)) { |
881 | return SI->isVolatile(); |
882 | } |
883 | // Conservative answer |
884 | return true; |
885 | } |
886 | |
887 | bool isInvariantLoad() const { |
888 | if (auto *LI = dyn_cast<LoadInst>(Val: Inst)) |
889 | return LI->hasMetadata(KindID: LLVMContext::MD_invariant_load); |
890 | return false; |
891 | } |
892 | |
893 | bool isValid() const { return getPointerOperand() != nullptr; } |
894 | |
895 | // For regular (non-intrinsic) loads/stores, this is set to -1. For |
896 | // intrinsic loads/stores, the id is retrieved from the corresponding |
897 | // field in the MemIntrinsicInfo structure. That field contains |
898 | // non-negative values only. |
899 | int getMatchingId() const { |
900 | if (IntrID != 0) |
901 | return Info.MatchingId; |
902 | return -1; |
903 | } |
904 | |
905 | Value *getPointerOperand() const { |
906 | if (IntrID != 0) |
907 | return Info.PtrVal; |
908 | return getLoadStorePointerOperand(V: Inst); |
909 | } |
910 | |
911 | Type *getValueType() const { |
912 | // TODO: handle target-specific intrinsics. |
913 | return Inst->getAccessType(); |
914 | } |
915 | |
916 | bool mayReadFromMemory() const { |
917 | if (IntrID != 0) |
918 | return Info.ReadMem; |
919 | return Inst->mayReadFromMemory(); |
920 | } |
921 | |
922 | bool mayWriteToMemory() const { |
923 | if (IntrID != 0) |
924 | return Info.WriteMem; |
925 | return Inst->mayWriteToMemory(); |
926 | } |
927 | |
928 | private: |
929 | Intrinsic::ID IntrID = 0; |
930 | MemIntrinsicInfo Info; |
931 | Instruction *Inst; |
932 | }; |
933 | |
934 | // This function is to prevent accidentally passing a non-target |
935 | // intrinsic ID to TargetTransformInfo. |
936 | static bool isHandledNonTargetIntrinsic(Intrinsic::ID ID) { |
937 | switch (ID) { |
938 | case Intrinsic::masked_load: |
939 | case Intrinsic::masked_store: |
940 | return true; |
941 | } |
942 | return false; |
943 | } |
944 | static bool isHandledNonTargetIntrinsic(const Value *V) { |
945 | if (auto *II = dyn_cast<IntrinsicInst>(Val: V)) |
946 | return isHandledNonTargetIntrinsic(ID: II->getIntrinsicID()); |
947 | return false; |
948 | } |
949 | |
950 | bool processNode(DomTreeNode *Node); |
951 | |
952 | bool handleBranchCondition(Instruction *CondInst, const BranchInst *BI, |
953 | const BasicBlock *BB, const BasicBlock *Pred); |
954 | |
955 | Value *getMatchingValue(LoadValue &InVal, ParseMemoryInst &MemInst, |
956 | unsigned CurrentGeneration); |
957 | |
958 | bool overridingStores(const ParseMemoryInst &Earlier, |
959 | const ParseMemoryInst &Later); |
960 | |
961 | Value *getOrCreateResult(Instruction *Inst, Type *ExpectedType) const { |
962 | // TODO: We could insert relevant casts on type mismatch. |
963 | // The load or the store's first operand. |
964 | Value *V; |
965 | if (auto *II = dyn_cast<IntrinsicInst>(Val: Inst)) { |
966 | switch (II->getIntrinsicID()) { |
967 | case Intrinsic::masked_load: |
968 | V = II; |
969 | break; |
970 | case Intrinsic::masked_store: |
971 | V = II->getOperand(i_nocapture: 0); |
972 | break; |
973 | default: |
974 | return TTI.getOrCreateResultFromMemIntrinsic(Inst: II, ExpectedType); |
975 | } |
976 | } else { |
977 | V = isa<LoadInst>(Val: Inst) ? Inst : cast<StoreInst>(Val: Inst)->getValueOperand(); |
978 | } |
979 | |
980 | return V->getType() == ExpectedType ? V : nullptr; |
981 | } |
982 | |
983 | /// Return true if the instruction is known to only operate on memory |
984 | /// provably invariant in the given "generation". |
985 | bool isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt); |
986 | |
987 | bool isSameMemGeneration(unsigned EarlierGeneration, unsigned LaterGeneration, |
988 | Instruction *EarlierInst, Instruction *LaterInst); |
989 | |
990 | bool isNonTargetIntrinsicMatch(const IntrinsicInst *Earlier, |
991 | const IntrinsicInst *Later) { |
992 | auto IsSubmask = [](const Value *Mask0, const Value *Mask1) { |
993 | // Is Mask0 a submask of Mask1? |
994 | if (Mask0 == Mask1) |
995 | return true; |
996 | if (isa<UndefValue>(Val: Mask0) || isa<UndefValue>(Val: Mask1)) |
997 | return false; |
998 | auto *Vec0 = dyn_cast<ConstantVector>(Val: Mask0); |
999 | auto *Vec1 = dyn_cast<ConstantVector>(Val: Mask1); |
1000 | if (!Vec0 || !Vec1) |
1001 | return false; |
1002 | if (Vec0->getType() != Vec1->getType()) |
1003 | return false; |
1004 | for (int i = 0, e = Vec0->getNumOperands(); i != e; ++i) { |
1005 | Constant *Elem0 = Vec0->getOperand(i_nocapture: i); |
1006 | Constant *Elem1 = Vec1->getOperand(i_nocapture: i); |
1007 | auto *Int0 = dyn_cast<ConstantInt>(Val: Elem0); |
1008 | if (Int0 && Int0->isZero()) |
1009 | continue; |
1010 | auto *Int1 = dyn_cast<ConstantInt>(Val: Elem1); |
1011 | if (Int1 && !Int1->isZero()) |
1012 | continue; |
1013 | if (isa<UndefValue>(Val: Elem0) || isa<UndefValue>(Val: Elem1)) |
1014 | return false; |
1015 | if (Elem0 == Elem1) |
1016 | continue; |
1017 | return false; |
1018 | } |
1019 | return true; |
1020 | }; |
1021 | auto PtrOp = [](const IntrinsicInst *II) { |
1022 | if (II->getIntrinsicID() == Intrinsic::masked_load) |
1023 | return II->getOperand(i_nocapture: 0); |
1024 | if (II->getIntrinsicID() == Intrinsic::masked_store) |
1025 | return II->getOperand(i_nocapture: 1); |
1026 | llvm_unreachable("Unexpected IntrinsicInst" ); |
1027 | }; |
1028 | auto MaskOp = [](const IntrinsicInst *II) { |
1029 | if (II->getIntrinsicID() == Intrinsic::masked_load) |
1030 | return II->getOperand(i_nocapture: 2); |
1031 | if (II->getIntrinsicID() == Intrinsic::masked_store) |
1032 | return II->getOperand(i_nocapture: 3); |
1033 | llvm_unreachable("Unexpected IntrinsicInst" ); |
1034 | }; |
1035 | auto ThruOp = [](const IntrinsicInst *II) { |
1036 | if (II->getIntrinsicID() == Intrinsic::masked_load) |
1037 | return II->getOperand(i_nocapture: 3); |
1038 | llvm_unreachable("Unexpected IntrinsicInst" ); |
1039 | }; |
1040 | |
1041 | if (PtrOp(Earlier) != PtrOp(Later)) |
1042 | return false; |
1043 | |
1044 | Intrinsic::ID IDE = Earlier->getIntrinsicID(); |
1045 | Intrinsic::ID IDL = Later->getIntrinsicID(); |
1046 | // We could really use specific intrinsic classes for masked loads |
1047 | // and stores in IntrinsicInst.h. |
1048 | if (IDE == Intrinsic::masked_load && IDL == Intrinsic::masked_load) { |
1049 | // Trying to replace later masked load with the earlier one. |
1050 | // Check that the pointers are the same, and |
1051 | // - masks and pass-throughs are the same, or |
1052 | // - replacee's pass-through is "undef" and replacer's mask is a |
1053 | // super-set of the replacee's mask. |
1054 | if (MaskOp(Earlier) == MaskOp(Later) && ThruOp(Earlier) == ThruOp(Later)) |
1055 | return true; |
1056 | if (!isa<UndefValue>(Val: ThruOp(Later))) |
1057 | return false; |
1058 | return IsSubmask(MaskOp(Later), MaskOp(Earlier)); |
1059 | } |
1060 | if (IDE == Intrinsic::masked_store && IDL == Intrinsic::masked_load) { |
1061 | // Trying to replace a load of a stored value with the store's value. |
1062 | // Check that the pointers are the same, and |
1063 | // - load's mask is a subset of store's mask, and |
1064 | // - load's pass-through is "undef". |
1065 | if (!IsSubmask(MaskOp(Later), MaskOp(Earlier))) |
1066 | return false; |
1067 | return isa<UndefValue>(Val: ThruOp(Later)); |
1068 | } |
1069 | if (IDE == Intrinsic::masked_load && IDL == Intrinsic::masked_store) { |
1070 | // Trying to remove a store of the loaded value. |
1071 | // Check that the pointers are the same, and |
1072 | // - store's mask is a subset of the load's mask. |
1073 | return IsSubmask(MaskOp(Later), MaskOp(Earlier)); |
1074 | } |
1075 | if (IDE == Intrinsic::masked_store && IDL == Intrinsic::masked_store) { |
1076 | // Trying to remove a dead store (earlier). |
1077 | // Check that the pointers are the same, |
1078 | // - the to-be-removed store's mask is a subset of the other store's |
1079 | // mask. |
1080 | return IsSubmask(MaskOp(Earlier), MaskOp(Later)); |
1081 | } |
1082 | return false; |
1083 | } |
1084 | |
1085 | void removeMSSA(Instruction &Inst) { |
1086 | if (!MSSA) |
1087 | return; |
1088 | if (VerifyMemorySSA) |
1089 | MSSA->verifyMemorySSA(); |
1090 | // Removing a store here can leave MemorySSA in an unoptimized state by |
1091 | // creating MemoryPhis that have identical arguments and by creating |
1092 | // MemoryUses whose defining access is not an actual clobber. The phi case |
1093 | // is handled by MemorySSA when passing OptimizePhis = true to |
1094 | // removeMemoryAccess. The non-optimized MemoryUse case is lazily updated |
1095 | // by MemorySSA's getClobberingMemoryAccess. |
1096 | MSSAUpdater->removeMemoryAccess(I: &Inst, OptimizePhis: true); |
1097 | } |
1098 | }; |
1099 | |
1100 | } // end anonymous namespace |
1101 | |
1102 | /// Determine if the memory referenced by LaterInst is from the same heap |
1103 | /// version as EarlierInst. |
1104 | /// This is currently called in two scenarios: |
1105 | /// |
1106 | /// load p |
1107 | /// ... |
1108 | /// load p |
1109 | /// |
1110 | /// and |
1111 | /// |
1112 | /// x = load p |
1113 | /// ... |
1114 | /// store x, p |
1115 | /// |
1116 | /// in both cases we want to verify that there are no possible writes to the |
1117 | /// memory referenced by p between the earlier and later instruction. |
1118 | bool EarlyCSE::isSameMemGeneration(unsigned EarlierGeneration, |
1119 | unsigned LaterGeneration, |
1120 | Instruction *EarlierInst, |
1121 | Instruction *LaterInst) { |
1122 | // Check the simple memory generation tracking first. |
1123 | if (EarlierGeneration == LaterGeneration) |
1124 | return true; |
1125 | |
1126 | if (!MSSA) |
1127 | return false; |
1128 | |
1129 | // If MemorySSA has determined that one of EarlierInst or LaterInst does not |
1130 | // read/write memory, then we can safely return true here. |
1131 | // FIXME: We could be more aggressive when checking doesNotAccessMemory(), |
1132 | // onlyReadsMemory(), mayReadFromMemory(), and mayWriteToMemory() in this pass |
1133 | // by also checking the MemorySSA MemoryAccess on the instruction. Initial |
1134 | // experiments suggest this isn't worthwhile, at least for C/C++ code compiled |
1135 | // with the default optimization pipeline. |
1136 | auto *EarlierMA = MSSA->getMemoryAccess(I: EarlierInst); |
1137 | if (!EarlierMA) |
1138 | return true; |
1139 | auto *LaterMA = MSSA->getMemoryAccess(I: LaterInst); |
1140 | if (!LaterMA) |
1141 | return true; |
1142 | |
1143 | // Since we know LaterDef dominates LaterInst and EarlierInst dominates |
1144 | // LaterInst, if LaterDef dominates EarlierInst then it can't occur between |
1145 | // EarlierInst and LaterInst and neither can any other write that potentially |
1146 | // clobbers LaterInst. |
1147 | MemoryAccess *LaterDef; |
1148 | if (ClobberCounter < EarlyCSEMssaOptCap) { |
1149 | LaterDef = MSSA->getWalker()->getClobberingMemoryAccess(I: LaterInst); |
1150 | ClobberCounter++; |
1151 | } else |
1152 | LaterDef = LaterMA->getDefiningAccess(); |
1153 | |
1154 | return MSSA->dominates(A: LaterDef, B: EarlierMA); |
1155 | } |
1156 | |
1157 | bool EarlyCSE::isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt) { |
1158 | // A location loaded from with an invariant_load is assumed to *never* change |
1159 | // within the visible scope of the compilation. |
1160 | if (auto *LI = dyn_cast<LoadInst>(Val: I)) |
1161 | if (LI->hasMetadata(KindID: LLVMContext::MD_invariant_load)) |
1162 | return true; |
1163 | |
1164 | auto MemLocOpt = MemoryLocation::getOrNone(Inst: I); |
1165 | if (!MemLocOpt) |
1166 | // "target" intrinsic forms of loads aren't currently known to |
1167 | // MemoryLocation::get. TODO |
1168 | return false; |
1169 | MemoryLocation MemLoc = *MemLocOpt; |
1170 | if (!AvailableInvariants.count(Key: MemLoc)) |
1171 | return false; |
1172 | |
1173 | // Is the generation at which this became invariant older than the |
1174 | // current one? |
1175 | return AvailableInvariants.lookup(Key: MemLoc) <= GenAt; |
1176 | } |
1177 | |
1178 | bool EarlyCSE::handleBranchCondition(Instruction *CondInst, |
1179 | const BranchInst *BI, const BasicBlock *BB, |
1180 | const BasicBlock *Pred) { |
1181 | assert(BI->isConditional() && "Should be a conditional branch!" ); |
1182 | assert(BI->getCondition() == CondInst && "Wrong condition?" ); |
1183 | assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB); |
1184 | auto *TorF = (BI->getSuccessor(i: 0) == BB) |
1185 | ? ConstantInt::getTrue(Context&: BB->getContext()) |
1186 | : ConstantInt::getFalse(Context&: BB->getContext()); |
1187 | auto MatchBinOp = [](Instruction *I, unsigned Opcode, Value *&LHS, |
1188 | Value *&RHS) { |
1189 | if (Opcode == Instruction::And && |
1190 | match(V: I, P: m_LogicalAnd(L: m_Value(V&: LHS), R: m_Value(V&: RHS)))) |
1191 | return true; |
1192 | else if (Opcode == Instruction::Or && |
1193 | match(V: I, P: m_LogicalOr(L: m_Value(V&: LHS), R: m_Value(V&: RHS)))) |
1194 | return true; |
1195 | return false; |
1196 | }; |
1197 | // If the condition is AND operation, we can propagate its operands into the |
1198 | // true branch. If it is OR operation, we can propagate them into the false |
1199 | // branch. |
1200 | unsigned PropagateOpcode = |
1201 | (BI->getSuccessor(i: 0) == BB) ? Instruction::And : Instruction::Or; |
1202 | |
1203 | bool MadeChanges = false; |
1204 | SmallVector<Instruction *, 4> WorkList; |
1205 | SmallPtrSet<Instruction *, 4> Visited; |
1206 | WorkList.push_back(Elt: CondInst); |
1207 | while (!WorkList.empty()) { |
1208 | Instruction *Curr = WorkList.pop_back_val(); |
1209 | |
1210 | AvailableValues.insert(Key: Curr, Val: TorF); |
1211 | LLVM_DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '" |
1212 | << Curr->getName() << "' as " << *TorF << " in " |
1213 | << BB->getName() << "\n" ); |
1214 | if (!DebugCounter::shouldExecute(CounterName: CSECounter)) { |
1215 | LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n" ); |
1216 | } else { |
1217 | // Replace all dominated uses with the known value. |
1218 | if (unsigned Count = replaceDominatedUsesWith(From: Curr, To: TorF, DT, |
1219 | Edge: BasicBlockEdge(Pred, BB))) { |
1220 | NumCSECVP += Count; |
1221 | MadeChanges = true; |
1222 | } |
1223 | } |
1224 | |
1225 | Value *LHS, *RHS; |
1226 | if (MatchBinOp(Curr, PropagateOpcode, LHS, RHS)) |
1227 | for (auto *Op : { LHS, RHS }) |
1228 | if (Instruction *OPI = dyn_cast<Instruction>(Val: Op)) |
1229 | if (SimpleValue::canHandle(Inst: OPI) && Visited.insert(Ptr: OPI).second) |
1230 | WorkList.push_back(Elt: OPI); |
1231 | } |
1232 | |
1233 | return MadeChanges; |
1234 | } |
1235 | |
1236 | Value *EarlyCSE::getMatchingValue(LoadValue &InVal, ParseMemoryInst &MemInst, |
1237 | unsigned CurrentGeneration) { |
1238 | if (InVal.DefInst == nullptr) |
1239 | return nullptr; |
1240 | if (InVal.MatchingId != MemInst.getMatchingId()) |
1241 | return nullptr; |
1242 | // We don't yet handle removing loads with ordering of any kind. |
1243 | if (MemInst.isVolatile() || !MemInst.isUnordered()) |
1244 | return nullptr; |
1245 | // We can't replace an atomic load with one which isn't also atomic. |
1246 | if (MemInst.isLoad() && !InVal.IsAtomic && MemInst.isAtomic()) |
1247 | return nullptr; |
1248 | // The value V returned from this function is used differently depending |
1249 | // on whether MemInst is a load or a store. If it's a load, we will replace |
1250 | // MemInst with V, if it's a store, we will check if V is the same as the |
1251 | // available value. |
1252 | bool MemInstMatching = !MemInst.isLoad(); |
1253 | Instruction *Matching = MemInstMatching ? MemInst.get() : InVal.DefInst; |
1254 | Instruction *Other = MemInstMatching ? InVal.DefInst : MemInst.get(); |
1255 | |
1256 | // For stores check the result values before checking memory generation |
1257 | // (otherwise isSameMemGeneration may crash). |
1258 | Value *Result = MemInst.isStore() |
1259 | ? getOrCreateResult(Inst: Matching, ExpectedType: Other->getType()) |
1260 | : nullptr; |
1261 | if (MemInst.isStore() && InVal.DefInst != Result) |
1262 | return nullptr; |
1263 | |
1264 | // Deal with non-target memory intrinsics. |
1265 | bool MatchingNTI = isHandledNonTargetIntrinsic(V: Matching); |
1266 | bool OtherNTI = isHandledNonTargetIntrinsic(V: Other); |
1267 | if (OtherNTI != MatchingNTI) |
1268 | return nullptr; |
1269 | if (OtherNTI && MatchingNTI) { |
1270 | if (!isNonTargetIntrinsicMatch(Earlier: cast<IntrinsicInst>(Val: InVal.DefInst), |
1271 | Later: cast<IntrinsicInst>(Val: MemInst.get()))) |
1272 | return nullptr; |
1273 | } |
1274 | |
1275 | if (!isOperatingOnInvariantMemAt(I: MemInst.get(), GenAt: InVal.Generation) && |
1276 | !isSameMemGeneration(EarlierGeneration: InVal.Generation, LaterGeneration: CurrentGeneration, EarlierInst: InVal.DefInst, |
1277 | LaterInst: MemInst.get())) |
1278 | return nullptr; |
1279 | |
1280 | if (!Result) |
1281 | Result = getOrCreateResult(Inst: Matching, ExpectedType: Other->getType()); |
1282 | return Result; |
1283 | } |
1284 | |
1285 | static void combineIRFlags(Instruction &From, Value *To) { |
1286 | if (auto *I = dyn_cast<Instruction>(Val: To)) { |
1287 | // If I being poison triggers UB, there is no need to drop those |
1288 | // flags. Otherwise, only retain flags present on both I and Inst. |
1289 | // TODO: Currently some fast-math flags are not treated as |
1290 | // poison-generating even though they should. Until this is fixed, |
1291 | // always retain flags present on both I and Inst for floating point |
1292 | // instructions. |
1293 | if (isa<FPMathOperator>(Val: I) || |
1294 | (I->hasPoisonGeneratingFlags() && !programUndefinedIfPoison(Inst: I))) |
1295 | I->andIRFlags(V: &From); |
1296 | } |
1297 | if (isa<CallBase>(Val: &From) && isa<CallBase>(Val: To)) { |
1298 | // NB: Intersection of attrs between InVal.first and Inst is overly |
1299 | // conservative. Since we only CSE readonly functions that have the same |
1300 | // memory state, we can preserve (or possibly in some cases combine) |
1301 | // more attributes. Likewise this implies when checking equality of |
1302 | // callsite for CSEing, we can probably ignore more attributes. |
1303 | // Generally poison generating attributes need to be handled with more |
1304 | // care as they can create *new* UB if preserved/combined and violated. |
1305 | // Attributes that imply immediate UB on the other hand would have been |
1306 | // violated either way. |
1307 | bool Success = |
1308 | cast<CallBase>(Val: To)->tryIntersectAttributes(Other: cast<CallBase>(Val: &From)); |
1309 | assert(Success && "Failed to intersect attributes in callsites that " |
1310 | "passed identical check" ); |
1311 | // For NDEBUG Compile. |
1312 | (void)Success; |
1313 | } |
1314 | } |
1315 | |
1316 | bool EarlyCSE::overridingStores(const ParseMemoryInst &Earlier, |
1317 | const ParseMemoryInst &Later) { |
1318 | // Can we remove Earlier store because of Later store? |
1319 | |
1320 | assert(Earlier.isUnordered() && !Earlier.isVolatile() && |
1321 | "Violated invariant" ); |
1322 | if (Earlier.getPointerOperand() != Later.getPointerOperand()) |
1323 | return false; |
1324 | if (!Earlier.getValueType() || !Later.getValueType() || |
1325 | Earlier.getValueType() != Later.getValueType()) |
1326 | return false; |
1327 | if (Earlier.getMatchingId() != Later.getMatchingId()) |
1328 | return false; |
1329 | // At the moment, we don't remove ordered stores, but do remove |
1330 | // unordered atomic stores. There's no special requirement (for |
1331 | // unordered atomics) about removing atomic stores only in favor of |
1332 | // other atomic stores since we were going to execute the non-atomic |
1333 | // one anyway and the atomic one might never have become visible. |
1334 | if (!Earlier.isUnordered() || !Later.isUnordered()) |
1335 | return false; |
1336 | |
1337 | // Deal with non-target memory intrinsics. |
1338 | bool ENTI = isHandledNonTargetIntrinsic(V: Earlier.get()); |
1339 | bool LNTI = isHandledNonTargetIntrinsic(V: Later.get()); |
1340 | if (ENTI && LNTI) |
1341 | return isNonTargetIntrinsicMatch(Earlier: cast<IntrinsicInst>(Val: Earlier.get()), |
1342 | Later: cast<IntrinsicInst>(Val: Later.get())); |
1343 | |
1344 | // Because of the check above, at least one of them is false. |
1345 | // For now disallow matching intrinsics with non-intrinsics, |
1346 | // so assume that the stores match if neither is an intrinsic. |
1347 | return ENTI == LNTI; |
1348 | } |
1349 | |
1350 | bool EarlyCSE::processNode(DomTreeNode *Node) { |
1351 | bool Changed = false; |
1352 | BasicBlock *BB = Node->getBlock(); |
1353 | |
1354 | // If this block has a single predecessor, then the predecessor is the parent |
1355 | // of the domtree node and all of the live out memory values are still current |
1356 | // in this block. If this block has multiple predecessors, then they could |
1357 | // have invalidated the live-out memory values of our parent value. For now, |
1358 | // just be conservative and invalidate memory if this block has multiple |
1359 | // predecessors. |
1360 | if (!BB->getSinglePredecessor()) |
1361 | ++CurrentGeneration; |
1362 | |
1363 | // If this node has a single predecessor which ends in a conditional branch, |
1364 | // we can infer the value of the branch condition given that we took this |
1365 | // path. We need the single predecessor to ensure there's not another path |
1366 | // which reaches this block where the condition might hold a different |
1367 | // value. Since we're adding this to the scoped hash table (like any other |
1368 | // def), it will have been popped if we encounter a future merge block. |
1369 | if (BasicBlock *Pred = BB->getSinglePredecessor()) { |
1370 | auto *BI = dyn_cast<BranchInst>(Val: Pred->getTerminator()); |
1371 | if (BI && BI->isConditional()) { |
1372 | auto *CondInst = dyn_cast<Instruction>(Val: BI->getCondition()); |
1373 | if (CondInst && SimpleValue::canHandle(Inst: CondInst)) |
1374 | Changed |= handleBranchCondition(CondInst, BI, BB, Pred); |
1375 | } |
1376 | } |
1377 | |
1378 | /// LastStore - Keep track of the last non-volatile store that we saw... for |
1379 | /// as long as there in no instruction that reads memory. If we see a store |
1380 | /// to the same location, we delete the dead store. This zaps trivial dead |
1381 | /// stores which can occur in bitfield code among other things. |
1382 | Instruction *LastStore = nullptr; |
1383 | |
1384 | // See if any instructions in the block can be eliminated. If so, do it. If |
1385 | // not, add them to AvailableValues. |
1386 | for (Instruction &Inst : make_early_inc_range(Range&: *BB)) { |
1387 | // Dead instructions should just be removed. |
1388 | if (isInstructionTriviallyDead(I: &Inst, TLI: &TLI)) { |
1389 | LLVM_DEBUG(dbgs() << "EarlyCSE DCE: " << Inst << '\n'); |
1390 | if (!DebugCounter::shouldExecute(CounterName: CSECounter)) { |
1391 | LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n" ); |
1392 | continue; |
1393 | } |
1394 | |
1395 | salvageKnowledge(I: &Inst, AC: &AC); |
1396 | salvageDebugInfo(I&: Inst); |
1397 | removeMSSA(Inst); |
1398 | Inst.eraseFromParent(); |
1399 | Changed = true; |
1400 | ++NumSimplify; |
1401 | continue; |
1402 | } |
1403 | |
1404 | // Skip assume intrinsics, they don't really have side effects (although |
1405 | // they're marked as such to ensure preservation of control dependencies), |
1406 | // and this pass will not bother with its removal. However, we should mark |
1407 | // its condition as true for all dominated blocks. |
1408 | if (auto *Assume = dyn_cast<AssumeInst>(Val: &Inst)) { |
1409 | auto *CondI = dyn_cast<Instruction>(Val: Assume->getArgOperand(i: 0)); |
1410 | if (CondI && SimpleValue::canHandle(Inst: CondI)) { |
1411 | LLVM_DEBUG(dbgs() << "EarlyCSE considering assumption: " << Inst |
1412 | << '\n'); |
1413 | AvailableValues.insert(Key: CondI, Val: ConstantInt::getTrue(Context&: BB->getContext())); |
1414 | } else |
1415 | LLVM_DEBUG(dbgs() << "EarlyCSE skipping assumption: " << Inst << '\n'); |
1416 | continue; |
1417 | } |
1418 | |
1419 | // Likewise, noalias intrinsics don't actually write. |
1420 | if (match(V: &Inst, |
1421 | P: m_Intrinsic<Intrinsic::experimental_noalias_scope_decl>())) { |
1422 | LLVM_DEBUG(dbgs() << "EarlyCSE skipping noalias intrinsic: " << Inst |
1423 | << '\n'); |
1424 | continue; |
1425 | } |
1426 | |
1427 | // Skip sideeffect intrinsics, for the same reason as assume intrinsics. |
1428 | if (match(V: &Inst, P: m_Intrinsic<Intrinsic::sideeffect>())) { |
1429 | LLVM_DEBUG(dbgs() << "EarlyCSE skipping sideeffect: " << Inst << '\n'); |
1430 | continue; |
1431 | } |
1432 | |
1433 | // Skip pseudoprobe intrinsics, for the same reason as assume intrinsics. |
1434 | if (match(V: &Inst, P: m_Intrinsic<Intrinsic::pseudoprobe>())) { |
1435 | LLVM_DEBUG(dbgs() << "EarlyCSE skipping pseudoprobe: " << Inst << '\n'); |
1436 | continue; |
1437 | } |
1438 | |
1439 | // We can skip all invariant.start intrinsics since they only read memory, |
1440 | // and we can forward values across it. For invariant starts without |
1441 | // invariant ends, we can use the fact that the invariantness never ends to |
1442 | // start a scope in the current generaton which is true for all future |
1443 | // generations. Also, we dont need to consume the last store since the |
1444 | // semantics of invariant.start allow us to perform DSE of the last |
1445 | // store, if there was a store following invariant.start. Consider: |
1446 | // |
1447 | // store 30, i8* p |
1448 | // invariant.start(p) |
1449 | // store 40, i8* p |
1450 | // We can DSE the store to 30, since the store 40 to invariant location p |
1451 | // causes undefined behaviour. |
1452 | if (match(V: &Inst, P: m_Intrinsic<Intrinsic::invariant_start>())) { |
1453 | // If there are any uses, the scope might end. |
1454 | if (!Inst.use_empty()) |
1455 | continue; |
1456 | MemoryLocation MemLoc = |
1457 | MemoryLocation::getForArgument(Call: &cast<CallInst>(Val&: Inst), ArgIdx: 1, TLI); |
1458 | // Don't start a scope if we already have a better one pushed |
1459 | if (!AvailableInvariants.count(Key: MemLoc)) |
1460 | AvailableInvariants.insert(Key: MemLoc, Val: CurrentGeneration); |
1461 | continue; |
1462 | } |
1463 | |
1464 | if (isGuard(U: &Inst)) { |
1465 | if (auto *CondI = |
1466 | dyn_cast<Instruction>(Val: cast<CallInst>(Val&: Inst).getArgOperand(i: 0))) { |
1467 | if (SimpleValue::canHandle(Inst: CondI)) { |
1468 | // Do we already know the actual value of this condition? |
1469 | if (auto *KnownCond = AvailableValues.lookup(Key: CondI)) { |
1470 | // Is the condition known to be true? |
1471 | if (isa<ConstantInt>(Val: KnownCond) && |
1472 | cast<ConstantInt>(Val: KnownCond)->isOne()) { |
1473 | LLVM_DEBUG(dbgs() |
1474 | << "EarlyCSE removing guard: " << Inst << '\n'); |
1475 | salvageKnowledge(I: &Inst, AC: &AC); |
1476 | removeMSSA(Inst); |
1477 | Inst.eraseFromParent(); |
1478 | Changed = true; |
1479 | continue; |
1480 | } else |
1481 | // Use the known value if it wasn't true. |
1482 | cast<CallInst>(Val&: Inst).setArgOperand(i: 0, v: KnownCond); |
1483 | } |
1484 | // The condition we're on guarding here is true for all dominated |
1485 | // locations. |
1486 | AvailableValues.insert(Key: CondI, Val: ConstantInt::getTrue(Context&: BB->getContext())); |
1487 | } |
1488 | } |
1489 | |
1490 | // Guard intrinsics read all memory, but don't write any memory. |
1491 | // Accordingly, don't update the generation but consume the last store (to |
1492 | // avoid an incorrect DSE). |
1493 | LastStore = nullptr; |
1494 | continue; |
1495 | } |
1496 | |
1497 | // If the instruction can be simplified (e.g. X+0 = X) then replace it with |
1498 | // its simpler value. |
1499 | if (Value *V = simplifyInstruction(I: &Inst, Q: SQ)) { |
1500 | LLVM_DEBUG(dbgs() << "EarlyCSE Simplify: " << Inst << " to: " << *V |
1501 | << '\n'); |
1502 | if (!DebugCounter::shouldExecute(CounterName: CSECounter)) { |
1503 | LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n" ); |
1504 | } else { |
1505 | bool Killed = false; |
1506 | if (!Inst.use_empty()) { |
1507 | Inst.replaceAllUsesWith(V); |
1508 | Changed = true; |
1509 | } |
1510 | if (isInstructionTriviallyDead(I: &Inst, TLI: &TLI)) { |
1511 | salvageKnowledge(I: &Inst, AC: &AC); |
1512 | removeMSSA(Inst); |
1513 | Inst.eraseFromParent(); |
1514 | Changed = true; |
1515 | Killed = true; |
1516 | } |
1517 | if (Changed) |
1518 | ++NumSimplify; |
1519 | if (Killed) |
1520 | continue; |
1521 | } |
1522 | } |
1523 | |
1524 | // Make sure stores prior to a potential unwind are not removed, as the |
1525 | // caller may read the memory. |
1526 | if (Inst.mayThrow()) |
1527 | LastStore = nullptr; |
1528 | |
1529 | // If this is a simple instruction that we can value number, process it. |
1530 | if (SimpleValue::canHandle(Inst: &Inst)) { |
1531 | if ([[maybe_unused]] auto *CI = dyn_cast<ConstrainedFPIntrinsic>(Val: &Inst)) { |
1532 | assert(CI->getExceptionBehavior() != fp::ebStrict && |
1533 | "Unexpected ebStrict from SimpleValue::canHandle()" ); |
1534 | assert((!CI->getRoundingMode() || |
1535 | CI->getRoundingMode() != RoundingMode::Dynamic) && |
1536 | "Unexpected dynamic rounding from SimpleValue::canHandle()" ); |
1537 | } |
1538 | // See if the instruction has an available value. If so, use it. |
1539 | if (Value *V = AvailableValues.lookup(Key: &Inst)) { |
1540 | LLVM_DEBUG(dbgs() << "EarlyCSE CSE: " << Inst << " to: " << *V |
1541 | << '\n'); |
1542 | if (!DebugCounter::shouldExecute(CounterName: CSECounter)) { |
1543 | LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n" ); |
1544 | continue; |
1545 | } |
1546 | combineIRFlags(From&: Inst, To: V); |
1547 | Inst.replaceAllUsesWith(V); |
1548 | salvageKnowledge(I: &Inst, AC: &AC); |
1549 | removeMSSA(Inst); |
1550 | Inst.eraseFromParent(); |
1551 | Changed = true; |
1552 | ++NumCSE; |
1553 | continue; |
1554 | } |
1555 | |
1556 | // Otherwise, just remember that this value is available. |
1557 | AvailableValues.insert(Key: &Inst, Val: &Inst); |
1558 | continue; |
1559 | } |
1560 | |
1561 | ParseMemoryInst MemInst(&Inst, TTI); |
1562 | // If this is a non-volatile load, process it. |
1563 | if (MemInst.isValid() && MemInst.isLoad()) { |
1564 | // (conservatively) we can't peak past the ordering implied by this |
1565 | // operation, but we can add this load to our set of available values |
1566 | if (MemInst.isVolatile() || !MemInst.isUnordered()) { |
1567 | LastStore = nullptr; |
1568 | ++CurrentGeneration; |
1569 | } |
1570 | |
1571 | if (MemInst.isInvariantLoad()) { |
1572 | // If we pass an invariant load, we know that memory location is |
1573 | // indefinitely constant from the moment of first dereferenceability. |
1574 | // We conservatively treat the invariant_load as that moment. If we |
1575 | // pass a invariant load after already establishing a scope, don't |
1576 | // restart it since we want to preserve the earliest point seen. |
1577 | auto MemLoc = MemoryLocation::get(Inst: &Inst); |
1578 | if (!AvailableInvariants.count(Key: MemLoc)) |
1579 | AvailableInvariants.insert(Key: MemLoc, Val: CurrentGeneration); |
1580 | } |
1581 | |
1582 | // If we have an available version of this load, and if it is the right |
1583 | // generation or the load is known to be from an invariant location, |
1584 | // replace this instruction. |
1585 | // |
1586 | // If either the dominating load or the current load are invariant, then |
1587 | // we can assume the current load loads the same value as the dominating |
1588 | // load. |
1589 | LoadValue InVal = AvailableLoads.lookup(Key: MemInst.getPointerOperand()); |
1590 | if (Value *Op = getMatchingValue(InVal, MemInst, CurrentGeneration)) { |
1591 | LLVM_DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << Inst |
1592 | << " to: " << *InVal.DefInst << '\n'); |
1593 | if (!DebugCounter::shouldExecute(CounterName: CSECounter)) { |
1594 | LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n" ); |
1595 | continue; |
1596 | } |
1597 | if (InVal.IsLoad) |
1598 | if (auto *I = dyn_cast<Instruction>(Val: Op)) |
1599 | combineMetadataForCSE(K: I, J: &Inst, DoesKMove: false); |
1600 | if (!Inst.use_empty()) |
1601 | Inst.replaceAllUsesWith(V: Op); |
1602 | salvageKnowledge(I: &Inst, AC: &AC); |
1603 | removeMSSA(Inst); |
1604 | Inst.eraseFromParent(); |
1605 | Changed = true; |
1606 | ++NumCSELoad; |
1607 | continue; |
1608 | } |
1609 | |
1610 | // Otherwise, remember that we have this instruction. |
1611 | AvailableLoads.insert(Key: MemInst.getPointerOperand(), |
1612 | Val: LoadValue(&Inst, CurrentGeneration, |
1613 | MemInst.getMatchingId(), |
1614 | MemInst.isAtomic(), |
1615 | MemInst.isLoad())); |
1616 | LastStore = nullptr; |
1617 | continue; |
1618 | } |
1619 | |
1620 | // If this instruction may read from memory, forget LastStore. Load/store |
1621 | // intrinsics will indicate both a read and a write to memory. The target |
1622 | // may override this (e.g. so that a store intrinsic does not read from |
1623 | // memory, and thus will be treated the same as a regular store for |
1624 | // commoning purposes). |
1625 | if (Inst.mayReadFromMemory() && |
1626 | !(MemInst.isValid() && !MemInst.mayReadFromMemory())) |
1627 | LastStore = nullptr; |
1628 | |
1629 | // If this is a read-only or write-only call, process it. Skip store |
1630 | // MemInsts, as they will be more precisely handled later on. Also skip |
1631 | // memsets, as DSE may be able to optimize them better by removing the |
1632 | // earlier rather than later store. |
1633 | if (CallValue::canHandle(Inst: &Inst) && |
1634 | (!MemInst.isValid() || !MemInst.isStore()) && !isa<MemSetInst>(Val: &Inst)) { |
1635 | // If we have an available version of this call, and if it is the right |
1636 | // generation, replace this instruction. |
1637 | std::pair<Instruction *, unsigned> InVal = AvailableCalls.lookup(Key: &Inst); |
1638 | if (InVal.first != nullptr && |
1639 | isSameMemGeneration(EarlierGeneration: InVal.second, LaterGeneration: CurrentGeneration, EarlierInst: InVal.first, |
1640 | LaterInst: &Inst) && |
1641 | InVal.first->mayReadFromMemory() == Inst.mayReadFromMemory()) { |
1642 | LLVM_DEBUG(dbgs() << "EarlyCSE CSE CALL: " << Inst |
1643 | << " to: " << *InVal.first << '\n'); |
1644 | if (!DebugCounter::shouldExecute(CounterName: CSECounter)) { |
1645 | LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n" ); |
1646 | continue; |
1647 | } |
1648 | combineIRFlags(From&: Inst, To: InVal.first); |
1649 | if (!Inst.use_empty()) |
1650 | Inst.replaceAllUsesWith(V: InVal.first); |
1651 | salvageKnowledge(I: &Inst, AC: &AC); |
1652 | removeMSSA(Inst); |
1653 | Inst.eraseFromParent(); |
1654 | Changed = true; |
1655 | ++NumCSECall; |
1656 | continue; |
1657 | } |
1658 | |
1659 | // Increase memory generation for writes. Do this before inserting |
1660 | // the call, so it has the generation after the write occurred. |
1661 | if (Inst.mayWriteToMemory()) |
1662 | ++CurrentGeneration; |
1663 | |
1664 | // Otherwise, remember that we have this instruction. |
1665 | AvailableCalls.insert(Key: &Inst, Val: std::make_pair(x: &Inst, y&: CurrentGeneration)); |
1666 | continue; |
1667 | } |
1668 | |
1669 | // Compare GEP instructions based on offset. |
1670 | if (GEPValue::canHandle(Inst: &Inst)) { |
1671 | auto *GEP = cast<GetElementPtrInst>(Val: &Inst); |
1672 | APInt Offset = APInt(SQ.DL.getIndexTypeSizeInBits(Ty: GEP->getType()), 0); |
1673 | GEPValue GEPVal(GEP, GEP->accumulateConstantOffset(DL: SQ.DL, Offset) |
1674 | ? Offset.trySExtValue() |
1675 | : std::nullopt); |
1676 | if (Value *V = AvailableGEPs.lookup(Key: GEPVal)) { |
1677 | LLVM_DEBUG(dbgs() << "EarlyCSE CSE GEP: " << Inst << " to: " << *V |
1678 | << '\n'); |
1679 | combineIRFlags(From&: Inst, To: V); |
1680 | Inst.replaceAllUsesWith(V); |
1681 | salvageKnowledge(I: &Inst, AC: &AC); |
1682 | removeMSSA(Inst); |
1683 | Inst.eraseFromParent(); |
1684 | Changed = true; |
1685 | ++NumCSEGEP; |
1686 | continue; |
1687 | } |
1688 | |
1689 | // Otherwise, just remember that we have this GEP. |
1690 | AvailableGEPs.insert(Key: GEPVal, Val: &Inst); |
1691 | continue; |
1692 | } |
1693 | |
1694 | // A release fence requires that all stores complete before it, but does |
1695 | // not prevent the reordering of following loads 'before' the fence. As a |
1696 | // result, we don't need to consider it as writing to memory and don't need |
1697 | // to advance the generation. We do need to prevent DSE across the fence, |
1698 | // but that's handled above. |
1699 | if (auto *FI = dyn_cast<FenceInst>(Val: &Inst)) |
1700 | if (FI->getOrdering() == AtomicOrdering::Release) { |
1701 | assert(Inst.mayReadFromMemory() && "relied on to prevent DSE above" ); |
1702 | continue; |
1703 | } |
1704 | |
1705 | // write back DSE - If we write back the same value we just loaded from |
1706 | // the same location and haven't passed any intervening writes or ordering |
1707 | // operations, we can remove the write. The primary benefit is in allowing |
1708 | // the available load table to remain valid and value forward past where |
1709 | // the store originally was. |
1710 | if (MemInst.isValid() && MemInst.isStore()) { |
1711 | LoadValue InVal = AvailableLoads.lookup(Key: MemInst.getPointerOperand()); |
1712 | if (InVal.DefInst && |
1713 | InVal.DefInst == |
1714 | getMatchingValue(InVal, MemInst, CurrentGeneration)) { |
1715 | LLVM_DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << Inst << '\n'); |
1716 | if (!DebugCounter::shouldExecute(CounterName: CSECounter)) { |
1717 | LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n" ); |
1718 | continue; |
1719 | } |
1720 | salvageKnowledge(I: &Inst, AC: &AC); |
1721 | removeMSSA(Inst); |
1722 | Inst.eraseFromParent(); |
1723 | Changed = true; |
1724 | ++NumDSE; |
1725 | // We can avoid incrementing the generation count since we were able |
1726 | // to eliminate this store. |
1727 | continue; |
1728 | } |
1729 | } |
1730 | |
1731 | // Okay, this isn't something we can CSE at all. Check to see if it is |
1732 | // something that could modify memory. If so, our available memory values |
1733 | // cannot be used so bump the generation count. |
1734 | if (Inst.mayWriteToMemory()) { |
1735 | ++CurrentGeneration; |
1736 | |
1737 | if (MemInst.isValid() && MemInst.isStore()) { |
1738 | // We do a trivial form of DSE if there are two stores to the same |
1739 | // location with no intervening loads. Delete the earlier store. |
1740 | if (LastStore) { |
1741 | if (overridingStores(Earlier: ParseMemoryInst(LastStore, TTI), Later: MemInst)) { |
1742 | LLVM_DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore |
1743 | << " due to: " << Inst << '\n'); |
1744 | if (!DebugCounter::shouldExecute(CounterName: CSECounter)) { |
1745 | LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n" ); |
1746 | } else { |
1747 | salvageKnowledge(I: &Inst, AC: &AC); |
1748 | removeMSSA(Inst&: *LastStore); |
1749 | LastStore->eraseFromParent(); |
1750 | Changed = true; |
1751 | ++NumDSE; |
1752 | LastStore = nullptr; |
1753 | } |
1754 | } |
1755 | // fallthrough - we can exploit information about this store |
1756 | } |
1757 | |
1758 | // Okay, we just invalidated anything we knew about loaded values. Try |
1759 | // to salvage *something* by remembering that the stored value is a live |
1760 | // version of the pointer. It is safe to forward from volatile stores |
1761 | // to non-volatile loads, so we don't have to check for volatility of |
1762 | // the store. |
1763 | AvailableLoads.insert(Key: MemInst.getPointerOperand(), |
1764 | Val: LoadValue(&Inst, CurrentGeneration, |
1765 | MemInst.getMatchingId(), |
1766 | MemInst.isAtomic(), |
1767 | MemInst.isLoad())); |
1768 | |
1769 | // Remember that this was the last unordered store we saw for DSE. We |
1770 | // don't yet handle DSE on ordered or volatile stores since we don't |
1771 | // have a good way to model the ordering requirement for following |
1772 | // passes once the store is removed. We could insert a fence, but |
1773 | // since fences are slightly stronger than stores in their ordering, |
1774 | // it's not clear this is a profitable transform. Another option would |
1775 | // be to merge the ordering with that of the post dominating store. |
1776 | if (MemInst.isUnordered() && !MemInst.isVolatile()) |
1777 | LastStore = &Inst; |
1778 | else |
1779 | LastStore = nullptr; |
1780 | } |
1781 | } |
1782 | } |
1783 | |
1784 | return Changed; |
1785 | } |
1786 | |
1787 | bool EarlyCSE::run() { |
1788 | // Note, deque is being used here because there is significant performance |
1789 | // gains over vector when the container becomes very large due to the |
1790 | // specific access patterns. For more information see the mailing list |
1791 | // discussion on this: |
1792 | // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html |
1793 | std::deque<StackNode *> nodesToProcess; |
1794 | |
1795 | bool Changed = false; |
1796 | |
1797 | // Process the root node. |
1798 | nodesToProcess.push_back(x: new StackNode( |
1799 | AvailableValues, AvailableLoads, AvailableInvariants, AvailableCalls, |
1800 | AvailableGEPs, CurrentGeneration, DT.getRootNode(), |
1801 | DT.getRootNode()->begin(), DT.getRootNode()->end())); |
1802 | |
1803 | assert(!CurrentGeneration && "Create a new EarlyCSE instance to rerun it." ); |
1804 | |
1805 | // Process the stack. |
1806 | while (!nodesToProcess.empty()) { |
1807 | // Grab the first item off the stack. Set the current generation, remove |
1808 | // the node from the stack, and process it. |
1809 | StackNode *NodeToProcess = nodesToProcess.back(); |
1810 | |
1811 | // Initialize class members. |
1812 | CurrentGeneration = NodeToProcess->currentGeneration(); |
1813 | |
1814 | // Check if the node needs to be processed. |
1815 | if (!NodeToProcess->isProcessed()) { |
1816 | // Process the node. |
1817 | Changed |= processNode(Node: NodeToProcess->node()); |
1818 | NodeToProcess->childGeneration(generation: CurrentGeneration); |
1819 | NodeToProcess->process(); |
1820 | } else if (NodeToProcess->childIter() != NodeToProcess->end()) { |
1821 | // Push the next child onto the stack. |
1822 | DomTreeNode *child = NodeToProcess->nextChild(); |
1823 | nodesToProcess.push_back(x: new StackNode( |
1824 | AvailableValues, AvailableLoads, AvailableInvariants, AvailableCalls, |
1825 | AvailableGEPs, NodeToProcess->childGeneration(), child, |
1826 | child->begin(), child->end())); |
1827 | } else { |
1828 | // It has been processed, and there are no more children to process, |
1829 | // so delete it and pop it off the stack. |
1830 | delete NodeToProcess; |
1831 | nodesToProcess.pop_back(); |
1832 | } |
1833 | } // while (!nodes...) |
1834 | |
1835 | return Changed; |
1836 | } |
1837 | |
1838 | PreservedAnalyses EarlyCSEPass::run(Function &F, |
1839 | FunctionAnalysisManager &AM) { |
1840 | auto &TLI = AM.getResult<TargetLibraryAnalysis>(IR&: F); |
1841 | auto &TTI = AM.getResult<TargetIRAnalysis>(IR&: F); |
1842 | auto &DT = AM.getResult<DominatorTreeAnalysis>(IR&: F); |
1843 | auto &AC = AM.getResult<AssumptionAnalysis>(IR&: F); |
1844 | auto *MSSA = |
1845 | UseMemorySSA ? &AM.getResult<MemorySSAAnalysis>(IR&: F).getMSSA() : nullptr; |
1846 | |
1847 | EarlyCSE CSE(F.getDataLayout(), TLI, TTI, DT, AC, MSSA); |
1848 | |
1849 | if (!CSE.run()) |
1850 | return PreservedAnalyses::all(); |
1851 | |
1852 | PreservedAnalyses PA; |
1853 | PA.preserveSet<CFGAnalyses>(); |
1854 | if (UseMemorySSA) |
1855 | PA.preserve<MemorySSAAnalysis>(); |
1856 | return PA; |
1857 | } |
1858 | |
1859 | void EarlyCSEPass::printPipeline( |
1860 | raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { |
1861 | static_cast<PassInfoMixin<EarlyCSEPass> *>(this)->printPipeline( |
1862 | OS, MapClassName2PassName); |
1863 | OS << '<'; |
1864 | if (UseMemorySSA) |
1865 | OS << "memssa" ; |
1866 | OS << '>'; |
1867 | } |
1868 | |
1869 | namespace { |
1870 | |
1871 | /// A simple and fast domtree-based CSE pass. |
1872 | /// |
1873 | /// This pass does a simple depth-first walk over the dominator tree, |
1874 | /// eliminating trivially redundant instructions and using instsimplify to |
1875 | /// canonicalize things as it goes. It is intended to be fast and catch obvious |
1876 | /// cases so that instcombine and other passes are more effective. It is |
1877 | /// expected that a later pass of GVN will catch the interesting/hard cases. |
1878 | template<bool UseMemorySSA> |
1879 | class EarlyCSELegacyCommonPass : public FunctionPass { |
1880 | public: |
1881 | static char ID; |
1882 | |
1883 | EarlyCSELegacyCommonPass() : FunctionPass(ID) { |
1884 | if (UseMemorySSA) |
1885 | initializeEarlyCSEMemSSALegacyPassPass(*PassRegistry::getPassRegistry()); |
1886 | else |
1887 | initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry()); |
1888 | } |
1889 | |
1890 | bool runOnFunction(Function &F) override { |
1891 | if (skipFunction(F)) |
1892 | return false; |
1893 | |
1894 | auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); |
1895 | auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); |
1896 | auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
1897 | auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); |
1898 | auto *MSSA = |
1899 | UseMemorySSA ? &getAnalysis<MemorySSAWrapperPass>().getMSSA() : nullptr; |
1900 | |
1901 | EarlyCSE CSE(F.getDataLayout(), TLI, TTI, DT, AC, MSSA); |
1902 | |
1903 | return CSE.run(); |
1904 | } |
1905 | |
1906 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
1907 | AU.addRequired<AssumptionCacheTracker>(); |
1908 | AU.addRequired<DominatorTreeWrapperPass>(); |
1909 | AU.addRequired<TargetLibraryInfoWrapperPass>(); |
1910 | AU.addRequired<TargetTransformInfoWrapperPass>(); |
1911 | if (UseMemorySSA) { |
1912 | AU.addRequired<AAResultsWrapperPass>(); |
1913 | AU.addRequired<MemorySSAWrapperPass>(); |
1914 | AU.addPreserved<MemorySSAWrapperPass>(); |
1915 | } |
1916 | AU.addPreserved<GlobalsAAWrapperPass>(); |
1917 | AU.addPreserved<AAResultsWrapperPass>(); |
1918 | AU.setPreservesCFG(); |
1919 | } |
1920 | }; |
1921 | |
1922 | } // end anonymous namespace |
1923 | |
1924 | using EarlyCSELegacyPass = EarlyCSELegacyCommonPass</*UseMemorySSA=*/false>; |
1925 | |
1926 | template<> |
1927 | char EarlyCSELegacyPass::ID = 0; |
1928 | |
1929 | INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse" , "Early CSE" , false, |
1930 | false) |
1931 | INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) |
1932 | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
1933 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
1934 | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
1935 | INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse" , "Early CSE" , false, false) |
1936 | |
1937 | using EarlyCSEMemSSALegacyPass = |
1938 | EarlyCSELegacyCommonPass</*UseMemorySSA=*/true>; |
1939 | |
1940 | template<> |
1941 | char EarlyCSEMemSSALegacyPass::ID = 0; |
1942 | |
1943 | FunctionPass *llvm::createEarlyCSEPass(bool UseMemorySSA) { |
1944 | if (UseMemorySSA) |
1945 | return new EarlyCSEMemSSALegacyPass(); |
1946 | else |
1947 | return new EarlyCSELegacyPass(); |
1948 | } |
1949 | |
1950 | INITIALIZE_PASS_BEGIN(EarlyCSEMemSSALegacyPass, "early-cse-memssa" , |
1951 | "Early CSE w/ MemorySSA" , false, false) |
1952 | INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) |
1953 | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
1954 | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) |
1955 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
1956 | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
1957 | INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) |
1958 | INITIALIZE_PASS_END(EarlyCSEMemSSALegacyPass, "early-cse-memssa" , |
1959 | "Early CSE w/ MemorySSA" , false, false) |
1960 | |