| 1 | //===- Float2Int.cpp - Demote floating point ops to work on integers ------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the Float2Int pass, which aims to demote floating |
| 10 | // point operations to work on integers, where that is losslessly possible. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "llvm/Transforms/Scalar/Float2Int.h" |
| 15 | #include "llvm/ADT/APInt.h" |
| 16 | #include "llvm/ADT/APSInt.h" |
| 17 | #include "llvm/ADT/SmallVector.h" |
| 18 | #include "llvm/Analysis/GlobalsModRef.h" |
| 19 | #include "llvm/IR/Constants.h" |
| 20 | #include "llvm/IR/Dominators.h" |
| 21 | #include "llvm/IR/IRBuilder.h" |
| 22 | #include "llvm/IR/Module.h" |
| 23 | #include "llvm/Support/CommandLine.h" |
| 24 | #include "llvm/Support/Debug.h" |
| 25 | #include "llvm/Support/raw_ostream.h" |
| 26 | #include <deque> |
| 27 | |
| 28 | #define DEBUG_TYPE "float2int" |
| 29 | |
| 30 | using namespace llvm; |
| 31 | |
| 32 | // The algorithm is simple. Start at instructions that convert from the |
| 33 | // float to the int domain: fptoui, fptosi and fcmp. Walk up the def-use |
| 34 | // graph, using an equivalence datastructure to unify graphs that interfere. |
| 35 | // |
| 36 | // Mappable instructions are those with an integer corrollary that, given |
| 37 | // integer domain inputs, produce an integer output; fadd, for example. |
| 38 | // |
| 39 | // If a non-mappable instruction is seen, this entire def-use graph is marked |
| 40 | // as non-transformable. If we see an instruction that converts from the |
| 41 | // integer domain to FP domain (uitofp,sitofp), we terminate our walk. |
| 42 | |
| 43 | /// The largest integer type worth dealing with. |
| 44 | static cl::opt<unsigned> |
| 45 | MaxIntegerBW("float2int-max-integer-bw" , cl::init(Val: 64), cl::Hidden, |
| 46 | cl::desc("Max integer bitwidth to consider in float2int" |
| 47 | "(default=64)" )); |
| 48 | |
| 49 | // Given a FCmp predicate, return a matching ICmp predicate if one |
| 50 | // exists, otherwise return BAD_ICMP_PREDICATE. |
| 51 | static CmpInst::Predicate mapFCmpPred(CmpInst::Predicate P) { |
| 52 | switch (P) { |
| 53 | case CmpInst::FCMP_OEQ: |
| 54 | case CmpInst::FCMP_UEQ: |
| 55 | return CmpInst::ICMP_EQ; |
| 56 | case CmpInst::FCMP_OGT: |
| 57 | case CmpInst::FCMP_UGT: |
| 58 | return CmpInst::ICMP_SGT; |
| 59 | case CmpInst::FCMP_OGE: |
| 60 | case CmpInst::FCMP_UGE: |
| 61 | return CmpInst::ICMP_SGE; |
| 62 | case CmpInst::FCMP_OLT: |
| 63 | case CmpInst::FCMP_ULT: |
| 64 | return CmpInst::ICMP_SLT; |
| 65 | case CmpInst::FCMP_OLE: |
| 66 | case CmpInst::FCMP_ULE: |
| 67 | return CmpInst::ICMP_SLE; |
| 68 | case CmpInst::FCMP_ONE: |
| 69 | case CmpInst::FCMP_UNE: |
| 70 | return CmpInst::ICMP_NE; |
| 71 | default: |
| 72 | return CmpInst::BAD_ICMP_PREDICATE; |
| 73 | } |
| 74 | } |
| 75 | |
| 76 | // Given a floating point binary operator, return the matching |
| 77 | // integer version. |
| 78 | static Instruction::BinaryOps mapBinOpcode(unsigned Opcode) { |
| 79 | switch (Opcode) { |
| 80 | default: llvm_unreachable("Unhandled opcode!" ); |
| 81 | case Instruction::FAdd: return Instruction::Add; |
| 82 | case Instruction::FSub: return Instruction::Sub; |
| 83 | case Instruction::FMul: return Instruction::Mul; |
| 84 | } |
| 85 | } |
| 86 | |
| 87 | // Find the roots - instructions that convert from the FP domain to |
| 88 | // integer domain. |
| 89 | void Float2IntPass::findRoots(Function &F, const DominatorTree &DT) { |
| 90 | for (BasicBlock &BB : F) { |
| 91 | // Unreachable code can take on strange forms that we are not prepared to |
| 92 | // handle. For example, an instruction may have itself as an operand. |
| 93 | if (!DT.isReachableFromEntry(A: &BB)) |
| 94 | continue; |
| 95 | |
| 96 | for (Instruction &I : BB) { |
| 97 | if (isa<VectorType>(Val: I.getType())) |
| 98 | continue; |
| 99 | switch (I.getOpcode()) { |
| 100 | default: break; |
| 101 | case Instruction::FPToUI: |
| 102 | case Instruction::FPToSI: |
| 103 | Roots.insert(X: &I); |
| 104 | break; |
| 105 | case Instruction::FCmp: |
| 106 | if (mapFCmpPred(P: cast<CmpInst>(Val: &I)->getPredicate()) != |
| 107 | CmpInst::BAD_ICMP_PREDICATE) |
| 108 | Roots.insert(X: &I); |
| 109 | break; |
| 110 | } |
| 111 | } |
| 112 | } |
| 113 | } |
| 114 | |
| 115 | // Helper - mark I as having been traversed, having range R. |
| 116 | void Float2IntPass::seen(Instruction *I, ConstantRange R) { |
| 117 | LLVM_DEBUG(dbgs() << "F2I: " << *I << ":" << R << "\n" ); |
| 118 | SeenInsts.insert_or_assign(Key: I, Val: std::move(R)); |
| 119 | } |
| 120 | |
| 121 | // Helper - get a range representing a poison value. |
| 122 | ConstantRange Float2IntPass::badRange() { |
| 123 | return ConstantRange::getFull(BitWidth: MaxIntegerBW + 1); |
| 124 | } |
| 125 | ConstantRange Float2IntPass::unknownRange() { |
| 126 | return ConstantRange::getEmpty(BitWidth: MaxIntegerBW + 1); |
| 127 | } |
| 128 | ConstantRange Float2IntPass::validateRange(ConstantRange R) { |
| 129 | if (R.getBitWidth() > MaxIntegerBW + 1) |
| 130 | return badRange(); |
| 131 | return R; |
| 132 | } |
| 133 | |
| 134 | // The most obvious way to structure the search is a depth-first, eager |
| 135 | // search from each root. However, that require direct recursion and so |
| 136 | // can only handle small instruction sequences. Instead, we split the search |
| 137 | // up into two phases: |
| 138 | // - walkBackwards: A breadth-first walk of the use-def graph starting from |
| 139 | // the roots. Populate "SeenInsts" with interesting |
| 140 | // instructions and poison values if they're obvious and |
| 141 | // cheap to compute. Calculate the equivalance set structure |
| 142 | // while we're here too. |
| 143 | // - walkForwards: Iterate over SeenInsts in reverse order, so we visit |
| 144 | // defs before their uses. Calculate the real range info. |
| 145 | |
| 146 | // Breadth-first walk of the use-def graph; determine the set of nodes |
| 147 | // we care about and eagerly determine if some of them are poisonous. |
| 148 | void Float2IntPass::walkBackwards() { |
| 149 | std::deque<Instruction*> Worklist(Roots.begin(), Roots.end()); |
| 150 | while (!Worklist.empty()) { |
| 151 | Instruction *I = Worklist.back(); |
| 152 | Worklist.pop_back(); |
| 153 | |
| 154 | if (SeenInsts.contains(Key: I)) |
| 155 | // Seen already. |
| 156 | continue; |
| 157 | |
| 158 | switch (I->getOpcode()) { |
| 159 | // FIXME: Handle select and phi nodes. |
| 160 | default: |
| 161 | // Path terminated uncleanly. |
| 162 | seen(I, R: badRange()); |
| 163 | break; |
| 164 | |
| 165 | case Instruction::UIToFP: |
| 166 | case Instruction::SIToFP: { |
| 167 | // Path terminated cleanly - use the type of the integer input to seed |
| 168 | // the analysis. |
| 169 | unsigned BW = I->getOperand(i: 0)->getType()->getPrimitiveSizeInBits(); |
| 170 | auto Input = ConstantRange::getFull(BitWidth: BW); |
| 171 | auto CastOp = (Instruction::CastOps)I->getOpcode(); |
| 172 | seen(I, R: validateRange(R: Input.castOp(CastOp, BitWidth: MaxIntegerBW+1))); |
| 173 | continue; |
| 174 | } |
| 175 | |
| 176 | case Instruction::FNeg: |
| 177 | case Instruction::FAdd: |
| 178 | case Instruction::FSub: |
| 179 | case Instruction::FMul: |
| 180 | case Instruction::FPToUI: |
| 181 | case Instruction::FPToSI: |
| 182 | case Instruction::FCmp: |
| 183 | seen(I, R: unknownRange()); |
| 184 | break; |
| 185 | } |
| 186 | |
| 187 | for (Value *O : I->operands()) { |
| 188 | if (Instruction *OI = dyn_cast<Instruction>(Val: O)) { |
| 189 | // Unify def-use chains if they interfere. |
| 190 | ECs.unionSets(V1: I, V2: OI); |
| 191 | if (SeenInsts.find(Key: I)->second != badRange()) |
| 192 | Worklist.push_back(x: OI); |
| 193 | } else if (!isa<ConstantFP>(Val: O)) { |
| 194 | // Not an instruction or ConstantFP? we can't do anything. |
| 195 | seen(I, R: badRange()); |
| 196 | } |
| 197 | } |
| 198 | } |
| 199 | } |
| 200 | |
| 201 | // Calculate result range from operand ranges. |
| 202 | // Return std::nullopt if the range cannot be calculated yet. |
| 203 | std::optional<ConstantRange> Float2IntPass::calcRange(Instruction *I) { |
| 204 | SmallVector<ConstantRange, 4> OpRanges; |
| 205 | for (Value *O : I->operands()) { |
| 206 | if (Instruction *OI = dyn_cast<Instruction>(Val: O)) { |
| 207 | auto OpIt = SeenInsts.find(Key: OI); |
| 208 | assert(OpIt != SeenInsts.end() && "def not seen before use!" ); |
| 209 | if (OpIt->second == unknownRange()) |
| 210 | return std::nullopt; // Wait until operand range has been calculated. |
| 211 | OpRanges.push_back(Elt: OpIt->second); |
| 212 | } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Val: O)) { |
| 213 | // Work out if the floating point number can be losslessly represented |
| 214 | // as an integer. |
| 215 | // APFloat::convertToInteger(&Exact) purports to do what we want, but |
| 216 | // the exactness can be too precise. For example, negative zero can |
| 217 | // never be exactly converted to an integer. |
| 218 | // |
| 219 | // Instead, we ask APFloat to round itself to an integral value - this |
| 220 | // preserves sign-of-zero - then compare the result with the original. |
| 221 | // |
| 222 | const APFloat &F = CF->getValueAPF(); |
| 223 | |
| 224 | // First, weed out obviously incorrect values. Non-finite numbers |
| 225 | // can't be represented and neither can negative zero, unless |
| 226 | // we're in fast math mode. |
| 227 | if (!F.isFinite() || |
| 228 | (F.isZero() && F.isNegative() && isa<FPMathOperator>(Val: I) && |
| 229 | !I->hasNoSignedZeros())) |
| 230 | return badRange(); |
| 231 | |
| 232 | APFloat NewF = F; |
| 233 | auto Res = NewF.roundToIntegral(RM: APFloat::rmNearestTiesToEven); |
| 234 | if (Res != APFloat::opOK || NewF != F) |
| 235 | return badRange(); |
| 236 | |
| 237 | // OK, it's representable. Now get it. |
| 238 | APSInt Int(MaxIntegerBW+1, false); |
| 239 | bool Exact; |
| 240 | CF->getValueAPF().convertToInteger(Result&: Int, |
| 241 | RM: APFloat::rmNearestTiesToEven, |
| 242 | IsExact: &Exact); |
| 243 | OpRanges.push_back(Elt: ConstantRange(Int)); |
| 244 | } else { |
| 245 | llvm_unreachable("Should have already marked this as badRange!" ); |
| 246 | } |
| 247 | } |
| 248 | |
| 249 | switch (I->getOpcode()) { |
| 250 | // FIXME: Handle select and phi nodes. |
| 251 | default: |
| 252 | case Instruction::UIToFP: |
| 253 | case Instruction::SIToFP: |
| 254 | llvm_unreachable("Should have been handled in walkForwards!" ); |
| 255 | |
| 256 | case Instruction::FNeg: { |
| 257 | assert(OpRanges.size() == 1 && "FNeg is a unary operator!" ); |
| 258 | unsigned Size = OpRanges[0].getBitWidth(); |
| 259 | auto Zero = ConstantRange(APInt::getZero(numBits: Size)); |
| 260 | return Zero.sub(Other: OpRanges[0]); |
| 261 | } |
| 262 | |
| 263 | case Instruction::FAdd: |
| 264 | case Instruction::FSub: |
| 265 | case Instruction::FMul: { |
| 266 | assert(OpRanges.size() == 2 && "its a binary operator!" ); |
| 267 | auto BinOp = (Instruction::BinaryOps) I->getOpcode(); |
| 268 | return OpRanges[0].binaryOp(BinOp, Other: OpRanges[1]); |
| 269 | } |
| 270 | |
| 271 | // |
| 272 | // Root-only instructions - we'll only see these if they're the |
| 273 | // first node in a walk. |
| 274 | // |
| 275 | case Instruction::FPToUI: |
| 276 | case Instruction::FPToSI: { |
| 277 | assert(OpRanges.size() == 1 && "FPTo[US]I is a unary operator!" ); |
| 278 | // Note: We're ignoring the casts output size here as that's what the |
| 279 | // caller expects. |
| 280 | auto CastOp = (Instruction::CastOps)I->getOpcode(); |
| 281 | return OpRanges[0].castOp(CastOp, BitWidth: MaxIntegerBW+1); |
| 282 | } |
| 283 | |
| 284 | case Instruction::FCmp: |
| 285 | assert(OpRanges.size() == 2 && "FCmp is a binary operator!" ); |
| 286 | return OpRanges[0].unionWith(CR: OpRanges[1]); |
| 287 | } |
| 288 | } |
| 289 | |
| 290 | // Walk forwards down the list of seen instructions, so we visit defs before |
| 291 | // uses. |
| 292 | void Float2IntPass::walkForwards() { |
| 293 | std::deque<Instruction *> Worklist; |
| 294 | for (const auto &Pair : SeenInsts) |
| 295 | if (Pair.second == unknownRange()) |
| 296 | Worklist.push_back(x: Pair.first); |
| 297 | |
| 298 | while (!Worklist.empty()) { |
| 299 | Instruction *I = Worklist.back(); |
| 300 | Worklist.pop_back(); |
| 301 | |
| 302 | if (std::optional<ConstantRange> Range = calcRange(I)) |
| 303 | seen(I, R: *Range); |
| 304 | else |
| 305 | Worklist.push_front(x: I); // Reprocess later. |
| 306 | } |
| 307 | } |
| 308 | |
| 309 | // If there is a valid transform to be done, do it. |
| 310 | bool Float2IntPass::validateAndTransform(const DataLayout &DL) { |
| 311 | bool MadeChange = false; |
| 312 | |
| 313 | // Iterate over every disjoint partition of the def-use graph. |
| 314 | for (const auto &E : ECs) { |
| 315 | if (!E->isLeader()) |
| 316 | continue; |
| 317 | |
| 318 | ConstantRange R(MaxIntegerBW + 1, false); |
| 319 | bool Fail = false; |
| 320 | Type *ConvertedToTy = nullptr; |
| 321 | |
| 322 | // For every member of the partition, union all the ranges together. |
| 323 | for (Instruction *I : ECs.members(ECV: *E)) { |
| 324 | auto *SeenI = SeenInsts.find(Key: I); |
| 325 | if (SeenI == SeenInsts.end()) |
| 326 | continue; |
| 327 | |
| 328 | R = R.unionWith(CR: SeenI->second); |
| 329 | // We need to ensure I has no users that have not been seen. |
| 330 | // If it does, transformation would be illegal. |
| 331 | // |
| 332 | // Don't count the roots, as they terminate the graphs. |
| 333 | if (!Roots.contains(key: I)) { |
| 334 | // Set the type of the conversion while we're here. |
| 335 | if (!ConvertedToTy) |
| 336 | ConvertedToTy = I->getType(); |
| 337 | for (User *U : I->users()) { |
| 338 | Instruction *UI = dyn_cast<Instruction>(Val: U); |
| 339 | if (!UI || !SeenInsts.contains(Key: UI)) { |
| 340 | LLVM_DEBUG(dbgs() << "F2I: Failing because of " << *U << "\n" ); |
| 341 | Fail = true; |
| 342 | break; |
| 343 | } |
| 344 | } |
| 345 | } |
| 346 | if (Fail) |
| 347 | break; |
| 348 | } |
| 349 | |
| 350 | // If the set was empty, or we failed, or the range is poisonous, |
| 351 | // bail out. |
| 352 | if (ECs.member_begin(ECV: *E) == ECs.member_end() || Fail || R.isFullSet() || |
| 353 | R.isSignWrappedSet()) |
| 354 | continue; |
| 355 | assert(ConvertedToTy && "Must have set the convertedtoty by this point!" ); |
| 356 | |
| 357 | // The number of bits required is the maximum of the upper and |
| 358 | // lower limits, plus one so it can be signed. |
| 359 | unsigned MinBW = R.getMinSignedBits() + 1; |
| 360 | LLVM_DEBUG(dbgs() << "F2I: MinBitwidth=" << MinBW << ", R: " << R << "\n" ); |
| 361 | |
| 362 | // If we've run off the realms of the exactly representable integers, |
| 363 | // the floating point result will differ from an integer approximation. |
| 364 | |
| 365 | // Do we need more bits than are in the mantissa of the type we converted |
| 366 | // to? semanticsPrecision returns the number of mantissa bits plus one |
| 367 | // for the sign bit. |
| 368 | unsigned MaxRepresentableBits |
| 369 | = APFloat::semanticsPrecision(ConvertedToTy->getFltSemantics()) - 1; |
| 370 | if (MinBW > MaxRepresentableBits) { |
| 371 | LLVM_DEBUG(dbgs() << "F2I: Value not guaranteed to be representable!\n" ); |
| 372 | continue; |
| 373 | } |
| 374 | |
| 375 | // OK, R is known to be representable. |
| 376 | // Pick the smallest legal type that will fit. |
| 377 | Type *Ty = DL.getSmallestLegalIntType(C&: *Ctx, Width: MinBW); |
| 378 | if (!Ty) { |
| 379 | // Every supported target supports 64-bit and 32-bit integers, |
| 380 | // so fallback to a 32 or 64-bit integer if the value fits. |
| 381 | if (MinBW <= 32) { |
| 382 | Ty = Type::getInt32Ty(C&: *Ctx); |
| 383 | } else if (MinBW <= 64) { |
| 384 | Ty = Type::getInt64Ty(C&: *Ctx); |
| 385 | } else { |
| 386 | LLVM_DEBUG(dbgs() << "F2I: Value requires more bits to represent than " |
| 387 | "the target supports!\n" ); |
| 388 | continue; |
| 389 | } |
| 390 | } |
| 391 | |
| 392 | for (Instruction *I : ECs.members(ECV: *E)) |
| 393 | convert(I, ToTy: Ty); |
| 394 | MadeChange = true; |
| 395 | } |
| 396 | |
| 397 | return MadeChange; |
| 398 | } |
| 399 | |
| 400 | Value *Float2IntPass::convert(Instruction *I, Type *ToTy) { |
| 401 | if (auto It = ConvertedInsts.find(Key: I); It != ConvertedInsts.end()) |
| 402 | // Already converted this instruction. |
| 403 | return It->second; |
| 404 | |
| 405 | SmallVector<Value*,4> NewOperands; |
| 406 | for (Value *V : I->operands()) { |
| 407 | // Don't recurse if we're an instruction that terminates the path. |
| 408 | if (I->getOpcode() == Instruction::UIToFP || |
| 409 | I->getOpcode() == Instruction::SIToFP) { |
| 410 | NewOperands.push_back(Elt: V); |
| 411 | } else if (Instruction *VI = dyn_cast<Instruction>(Val: V)) { |
| 412 | NewOperands.push_back(Elt: convert(I: VI, ToTy)); |
| 413 | } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Val: V)) { |
| 414 | APSInt Val(ToTy->getPrimitiveSizeInBits(), /*isUnsigned=*/false); |
| 415 | bool Exact; |
| 416 | CF->getValueAPF().convertToInteger(Result&: Val, |
| 417 | RM: APFloat::rmNearestTiesToEven, |
| 418 | IsExact: &Exact); |
| 419 | NewOperands.push_back(Elt: ConstantInt::get(Ty: ToTy, V: Val)); |
| 420 | } else { |
| 421 | llvm_unreachable("Unhandled operand type?" ); |
| 422 | } |
| 423 | } |
| 424 | |
| 425 | // Now create a new instruction. |
| 426 | IRBuilder<> IRB(I); |
| 427 | Value *NewV = nullptr; |
| 428 | switch (I->getOpcode()) { |
| 429 | default: llvm_unreachable("Unhandled instruction!" ); |
| 430 | |
| 431 | case Instruction::FPToUI: |
| 432 | NewV = IRB.CreateZExtOrTrunc(V: NewOperands[0], DestTy: I->getType()); |
| 433 | break; |
| 434 | |
| 435 | case Instruction::FPToSI: |
| 436 | NewV = IRB.CreateSExtOrTrunc(V: NewOperands[0], DestTy: I->getType()); |
| 437 | break; |
| 438 | |
| 439 | case Instruction::FCmp: { |
| 440 | CmpInst::Predicate P = mapFCmpPred(P: cast<CmpInst>(Val: I)->getPredicate()); |
| 441 | assert(P != CmpInst::BAD_ICMP_PREDICATE && "Unhandled predicate!" ); |
| 442 | NewV = IRB.CreateICmp(P, LHS: NewOperands[0], RHS: NewOperands[1], Name: I->getName()); |
| 443 | break; |
| 444 | } |
| 445 | |
| 446 | case Instruction::UIToFP: |
| 447 | NewV = IRB.CreateZExtOrTrunc(V: NewOperands[0], DestTy: ToTy); |
| 448 | break; |
| 449 | |
| 450 | case Instruction::SIToFP: |
| 451 | NewV = IRB.CreateSExtOrTrunc(V: NewOperands[0], DestTy: ToTy); |
| 452 | break; |
| 453 | |
| 454 | case Instruction::FNeg: |
| 455 | NewV = IRB.CreateNeg(V: NewOperands[0], Name: I->getName()); |
| 456 | break; |
| 457 | |
| 458 | case Instruction::FAdd: |
| 459 | case Instruction::FSub: |
| 460 | case Instruction::FMul: |
| 461 | NewV = IRB.CreateBinOp(Opc: mapBinOpcode(Opcode: I->getOpcode()), |
| 462 | LHS: NewOperands[0], RHS: NewOperands[1], |
| 463 | Name: I->getName()); |
| 464 | break; |
| 465 | } |
| 466 | |
| 467 | // If we're a root instruction, RAUW. |
| 468 | if (Roots.count(key: I)) |
| 469 | I->replaceAllUsesWith(V: NewV); |
| 470 | |
| 471 | ConvertedInsts[I] = NewV; |
| 472 | return NewV; |
| 473 | } |
| 474 | |
| 475 | // Perform dead code elimination on the instructions we just modified. |
| 476 | void Float2IntPass::cleanup() { |
| 477 | for (auto &I : reverse(C&: ConvertedInsts)) |
| 478 | I.first->eraseFromParent(); |
| 479 | } |
| 480 | |
| 481 | bool Float2IntPass::runImpl(Function &F, const DominatorTree &DT) { |
| 482 | LLVM_DEBUG(dbgs() << "F2I: Looking at function " << F.getName() << "\n" ); |
| 483 | // Clear out all state. |
| 484 | ECs = EquivalenceClasses<Instruction*>(); |
| 485 | SeenInsts.clear(); |
| 486 | ConvertedInsts.clear(); |
| 487 | Roots.clear(); |
| 488 | |
| 489 | Ctx = &F.getParent()->getContext(); |
| 490 | |
| 491 | findRoots(F, DT); |
| 492 | |
| 493 | walkBackwards(); |
| 494 | walkForwards(); |
| 495 | |
| 496 | const DataLayout &DL = F.getDataLayout(); |
| 497 | bool Modified = validateAndTransform(DL); |
| 498 | if (Modified) |
| 499 | cleanup(); |
| 500 | return Modified; |
| 501 | } |
| 502 | |
| 503 | PreservedAnalyses Float2IntPass::run(Function &F, FunctionAnalysisManager &AM) { |
| 504 | const DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(IR&: F); |
| 505 | if (!runImpl(F, DT)) |
| 506 | return PreservedAnalyses::all(); |
| 507 | |
| 508 | PreservedAnalyses PA; |
| 509 | PA.preserveSet<CFGAnalyses>(); |
| 510 | return PA; |
| 511 | } |
| 512 | |