| 1 | //===------- LoopBoundSplit.cpp - Split Loop Bound --------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "llvm/Transforms/Scalar/LoopBoundSplit.h" |
| 10 | #include "llvm/ADT/Sequence.h" |
| 11 | #include "llvm/Analysis/LoopAnalysisManager.h" |
| 12 | #include "llvm/Analysis/LoopInfo.h" |
| 13 | #include "llvm/Analysis/ScalarEvolution.h" |
| 14 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| 15 | #include "llvm/IR/PatternMatch.h" |
| 16 | #include "llvm/Transforms/Scalar/LoopPassManager.h" |
| 17 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 18 | #include "llvm/Transforms/Utils/Cloning.h" |
| 19 | #include "llvm/Transforms/Utils/LoopSimplify.h" |
| 20 | #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" |
| 21 | |
| 22 | #define DEBUG_TYPE "loop-bound-split" |
| 23 | |
| 24 | namespace llvm { |
| 25 | |
| 26 | using namespace PatternMatch; |
| 27 | |
| 28 | namespace { |
| 29 | struct ConditionInfo { |
| 30 | /// Branch instruction with this condition |
| 31 | BranchInst *BI = nullptr; |
| 32 | /// ICmp instruction with this condition |
| 33 | ICmpInst *ICmp = nullptr; |
| 34 | /// Preciate info |
| 35 | CmpPredicate Pred = ICmpInst::BAD_ICMP_PREDICATE; |
| 36 | /// AddRec llvm value |
| 37 | Value *AddRecValue = nullptr; |
| 38 | /// Non PHI AddRec llvm value |
| 39 | Value *NonPHIAddRecValue; |
| 40 | /// Bound llvm value |
| 41 | Value *BoundValue = nullptr; |
| 42 | /// AddRec SCEV |
| 43 | const SCEVAddRecExpr *AddRecSCEV = nullptr; |
| 44 | /// Bound SCEV |
| 45 | const SCEV *BoundSCEV = nullptr; |
| 46 | |
| 47 | ConditionInfo() = default; |
| 48 | }; |
| 49 | } // namespace |
| 50 | |
| 51 | static void analyzeICmp(ScalarEvolution &SE, ICmpInst *ICmp, |
| 52 | ConditionInfo &Cond, const Loop &L) { |
| 53 | Cond.ICmp = ICmp; |
| 54 | if (match(V: ICmp, P: m_ICmp(Pred&: Cond.Pred, L: m_Value(V&: Cond.AddRecValue), |
| 55 | R: m_Value(V&: Cond.BoundValue)))) { |
| 56 | const SCEV *AddRecSCEV = SE.getSCEV(V: Cond.AddRecValue); |
| 57 | const SCEV *BoundSCEV = SE.getSCEV(V: Cond.BoundValue); |
| 58 | const SCEVAddRecExpr *LHSAddRecSCEV = dyn_cast<SCEVAddRecExpr>(Val: AddRecSCEV); |
| 59 | const SCEVAddRecExpr *RHSAddRecSCEV = dyn_cast<SCEVAddRecExpr>(Val: BoundSCEV); |
| 60 | // Locate AddRec in LHSSCEV and Bound in RHSSCEV. |
| 61 | if (!LHSAddRecSCEV && RHSAddRecSCEV) { |
| 62 | std::swap(a&: Cond.AddRecValue, b&: Cond.BoundValue); |
| 63 | std::swap(a&: AddRecSCEV, b&: BoundSCEV); |
| 64 | Cond.Pred = ICmpInst::getSwappedPredicate(pred: Cond.Pred); |
| 65 | } |
| 66 | |
| 67 | Cond.AddRecSCEV = dyn_cast<SCEVAddRecExpr>(Val: AddRecSCEV); |
| 68 | Cond.BoundSCEV = BoundSCEV; |
| 69 | Cond.NonPHIAddRecValue = Cond.AddRecValue; |
| 70 | |
| 71 | // If the Cond.AddRecValue is PHI node, update Cond.NonPHIAddRecValue with |
| 72 | // value from backedge. |
| 73 | if (Cond.AddRecSCEV && isa<PHINode>(Val: Cond.AddRecValue)) { |
| 74 | PHINode *PN = cast<PHINode>(Val: Cond.AddRecValue); |
| 75 | Cond.NonPHIAddRecValue = PN->getIncomingValueForBlock(BB: L.getLoopLatch()); |
| 76 | } |
| 77 | } |
| 78 | } |
| 79 | |
| 80 | static bool calculateUpperBound(const Loop &L, ScalarEvolution &SE, |
| 81 | ConditionInfo &Cond, bool IsExitCond) { |
| 82 | if (IsExitCond) { |
| 83 | const SCEV *ExitCount = SE.getExitCount(L: &L, ExitingBlock: Cond.ICmp->getParent()); |
| 84 | if (isa<SCEVCouldNotCompute>(Val: ExitCount)) |
| 85 | return false; |
| 86 | |
| 87 | Cond.BoundSCEV = ExitCount; |
| 88 | return true; |
| 89 | } |
| 90 | |
| 91 | // For non-exit condtion, if pred is LT, keep existing bound. |
| 92 | if (Cond.Pred == ICmpInst::ICMP_SLT || Cond.Pred == ICmpInst::ICMP_ULT) |
| 93 | return true; |
| 94 | |
| 95 | // For non-exit condition, if pre is LE, try to convert it to LT. |
| 96 | // Range Range |
| 97 | // AddRec <= Bound --> AddRec < Bound + 1 |
| 98 | if (Cond.Pred != ICmpInst::ICMP_ULE && Cond.Pred != ICmpInst::ICMP_SLE) |
| 99 | return false; |
| 100 | |
| 101 | if (IntegerType *BoundSCEVIntType = |
| 102 | dyn_cast<IntegerType>(Val: Cond.BoundSCEV->getType())) { |
| 103 | unsigned BitWidth = BoundSCEVIntType->getBitWidth(); |
| 104 | APInt Max = ICmpInst::isSigned(predicate: Cond.Pred) |
| 105 | ? APInt::getSignedMaxValue(numBits: BitWidth) |
| 106 | : APInt::getMaxValue(numBits: BitWidth); |
| 107 | const SCEV *MaxSCEV = SE.getConstant(Val: Max); |
| 108 | // Check Bound < INT_MAX |
| 109 | ICmpInst::Predicate Pred = |
| 110 | ICmpInst::isSigned(predicate: Cond.Pred) ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; |
| 111 | if (SE.isKnownPredicate(Pred, LHS: Cond.BoundSCEV, RHS: MaxSCEV)) { |
| 112 | const SCEV *BoundPlusOneSCEV = |
| 113 | SE.getAddExpr(LHS: Cond.BoundSCEV, RHS: SE.getOne(Ty: BoundSCEVIntType)); |
| 114 | Cond.BoundSCEV = BoundPlusOneSCEV; |
| 115 | Cond.Pred = Pred; |
| 116 | return true; |
| 117 | } |
| 118 | } |
| 119 | |
| 120 | // ToDo: Support ICMP_NE/EQ. |
| 121 | |
| 122 | return false; |
| 123 | } |
| 124 | |
| 125 | static bool hasProcessableCondition(const Loop &L, ScalarEvolution &SE, |
| 126 | ICmpInst *ICmp, ConditionInfo &Cond, |
| 127 | bool IsExitCond) { |
| 128 | analyzeICmp(SE, ICmp, Cond, L); |
| 129 | |
| 130 | // The BoundSCEV should be evaluated at loop entry. |
| 131 | if (!SE.isAvailableAtLoopEntry(S: Cond.BoundSCEV, L: &L)) |
| 132 | return false; |
| 133 | |
| 134 | // Allowed AddRec as induction variable. |
| 135 | if (!Cond.AddRecSCEV) |
| 136 | return false; |
| 137 | |
| 138 | if (!Cond.AddRecSCEV->isAffine()) |
| 139 | return false; |
| 140 | |
| 141 | const SCEV *StepRecSCEV = Cond.AddRecSCEV->getStepRecurrence(SE); |
| 142 | // Allowed constant step. |
| 143 | if (!isa<SCEVConstant>(Val: StepRecSCEV)) |
| 144 | return false; |
| 145 | |
| 146 | ConstantInt *StepCI = cast<SCEVConstant>(Val: StepRecSCEV)->getValue(); |
| 147 | // Allowed positive step for now. |
| 148 | // TODO: Support negative step. |
| 149 | if (StepCI->isNegative() || StepCI->isZero()) |
| 150 | return false; |
| 151 | |
| 152 | // Calculate upper bound. |
| 153 | if (!calculateUpperBound(L, SE, Cond, IsExitCond)) |
| 154 | return false; |
| 155 | |
| 156 | return true; |
| 157 | } |
| 158 | |
| 159 | static bool isProcessableCondBI(const ScalarEvolution &SE, |
| 160 | const BranchInst *BI) { |
| 161 | BasicBlock *TrueSucc = nullptr; |
| 162 | BasicBlock *FalseSucc = nullptr; |
| 163 | Value *LHS, *RHS; |
| 164 | if (!match(V: BI, P: m_Br(C: m_ICmp(L: m_Value(V&: LHS), R: m_Value(V&: RHS)), |
| 165 | T: m_BasicBlock(V&: TrueSucc), F: m_BasicBlock(V&: FalseSucc)))) |
| 166 | return false; |
| 167 | |
| 168 | if (!SE.isSCEVable(Ty: LHS->getType())) |
| 169 | return false; |
| 170 | assert(SE.isSCEVable(RHS->getType()) && "Expected RHS's type is SCEVable" ); |
| 171 | |
| 172 | if (TrueSucc == FalseSucc) |
| 173 | return false; |
| 174 | |
| 175 | return true; |
| 176 | } |
| 177 | |
| 178 | static bool canSplitLoopBound(const Loop &L, const DominatorTree &DT, |
| 179 | ScalarEvolution &SE, ConditionInfo &Cond) { |
| 180 | // Skip function with optsize. |
| 181 | if (L.getHeader()->getParent()->hasOptSize()) |
| 182 | return false; |
| 183 | |
| 184 | // Split only innermost loop. |
| 185 | if (!L.isInnermost()) |
| 186 | return false; |
| 187 | |
| 188 | // Check loop is in simplified form. |
| 189 | if (!L.isLoopSimplifyForm()) |
| 190 | return false; |
| 191 | |
| 192 | // Check loop is in LCSSA form. |
| 193 | if (!L.isLCSSAForm(DT)) |
| 194 | return false; |
| 195 | |
| 196 | // Skip loop that cannot be cloned. |
| 197 | if (!L.isSafeToClone()) |
| 198 | return false; |
| 199 | |
| 200 | BasicBlock *ExitingBB = L.getExitingBlock(); |
| 201 | // Assumed only one exiting block. |
| 202 | if (!ExitingBB) |
| 203 | return false; |
| 204 | |
| 205 | BranchInst *ExitingBI = dyn_cast<BranchInst>(Val: ExitingBB->getTerminator()); |
| 206 | if (!ExitingBI) |
| 207 | return false; |
| 208 | |
| 209 | // Allowed only conditional branch with ICmp. |
| 210 | if (!isProcessableCondBI(SE, BI: ExitingBI)) |
| 211 | return false; |
| 212 | |
| 213 | // Check the condition is processable. |
| 214 | ICmpInst *ICmp = cast<ICmpInst>(Val: ExitingBI->getCondition()); |
| 215 | if (!hasProcessableCondition(L, SE, ICmp, Cond, /*IsExitCond*/ true)) |
| 216 | return false; |
| 217 | |
| 218 | Cond.BI = ExitingBI; |
| 219 | return true; |
| 220 | } |
| 221 | |
| 222 | static bool isProfitableToTransform(const Loop &L, const BranchInst *BI) { |
| 223 | // If the conditional branch splits a loop into two halves, we could |
| 224 | // generally say it is profitable. |
| 225 | // |
| 226 | // ToDo: Add more profitable cases here. |
| 227 | |
| 228 | // Check this branch causes diamond CFG. |
| 229 | BasicBlock *Succ0 = BI->getSuccessor(i: 0); |
| 230 | BasicBlock *Succ1 = BI->getSuccessor(i: 1); |
| 231 | |
| 232 | BasicBlock *Succ0Succ = Succ0->getSingleSuccessor(); |
| 233 | BasicBlock *Succ1Succ = Succ1->getSingleSuccessor(); |
| 234 | if (!Succ0Succ || !Succ1Succ || Succ0Succ != Succ1Succ) |
| 235 | return false; |
| 236 | |
| 237 | // ToDo: Calculate each successor's instruction cost. |
| 238 | |
| 239 | return true; |
| 240 | } |
| 241 | |
| 242 | static BranchInst *findSplitCandidate(const Loop &L, ScalarEvolution &SE, |
| 243 | ConditionInfo &ExitingCond, |
| 244 | ConditionInfo &SplitCandidateCond) { |
| 245 | for (auto *BB : L.blocks()) { |
| 246 | // Skip condition of backedge. |
| 247 | if (L.getLoopLatch() == BB) |
| 248 | continue; |
| 249 | |
| 250 | auto *BI = dyn_cast<BranchInst>(Val: BB->getTerminator()); |
| 251 | if (!BI) |
| 252 | continue; |
| 253 | |
| 254 | // Check conditional branch with ICmp. |
| 255 | if (!isProcessableCondBI(SE, BI)) |
| 256 | continue; |
| 257 | |
| 258 | // Skip loop invariant condition. |
| 259 | if (L.isLoopInvariant(V: BI->getCondition())) |
| 260 | continue; |
| 261 | |
| 262 | // Check the condition is processable. |
| 263 | ICmpInst *ICmp = cast<ICmpInst>(Val: BI->getCondition()); |
| 264 | if (!hasProcessableCondition(L, SE, ICmp, Cond&: SplitCandidateCond, |
| 265 | /*IsExitCond*/ false)) |
| 266 | continue; |
| 267 | |
| 268 | if (ExitingCond.BoundSCEV->getType() != |
| 269 | SplitCandidateCond.BoundSCEV->getType()) |
| 270 | continue; |
| 271 | |
| 272 | // After transformation, we assume the split condition of the pre-loop is |
| 273 | // always true. In order to guarantee it, we need to check the start value |
| 274 | // of the split cond AddRec satisfies the split condition. |
| 275 | if (!SE.isLoopEntryGuardedByCond(L: &L, Pred: SplitCandidateCond.Pred, |
| 276 | LHS: SplitCandidateCond.AddRecSCEV->getStart(), |
| 277 | RHS: SplitCandidateCond.BoundSCEV)) |
| 278 | continue; |
| 279 | |
| 280 | SplitCandidateCond.BI = BI; |
| 281 | return BI; |
| 282 | } |
| 283 | |
| 284 | return nullptr; |
| 285 | } |
| 286 | |
| 287 | static bool splitLoopBound(Loop &L, DominatorTree &DT, LoopInfo &LI, |
| 288 | ScalarEvolution &SE, LPMUpdater &U) { |
| 289 | ConditionInfo SplitCandidateCond; |
| 290 | ConditionInfo ExitingCond; |
| 291 | |
| 292 | // Check we can split this loop's bound. |
| 293 | if (!canSplitLoopBound(L, DT, SE, Cond&: ExitingCond)) |
| 294 | return false; |
| 295 | |
| 296 | if (!findSplitCandidate(L, SE, ExitingCond, SplitCandidateCond)) |
| 297 | return false; |
| 298 | |
| 299 | if (!isProfitableToTransform(L, BI: SplitCandidateCond.BI)) |
| 300 | return false; |
| 301 | |
| 302 | // Now, we have a split candidate. Let's build a form as below. |
| 303 | // +--------------------+ |
| 304 | // | preheader | |
| 305 | // | set up newbound | |
| 306 | // +--------------------+ |
| 307 | // | /----------------\ |
| 308 | // +--------v----v------+ | |
| 309 | // | header |---\ | |
| 310 | // | with true condition| | | |
| 311 | // +--------------------+ | | |
| 312 | // | | | |
| 313 | // +--------v-----------+ | | |
| 314 | // | if.then.BB | | | |
| 315 | // +--------------------+ | | |
| 316 | // | | | |
| 317 | // +--------v-----------<---/ | |
| 318 | // | latch >----------/ |
| 319 | // | with newbound | |
| 320 | // +--------------------+ |
| 321 | // | |
| 322 | // +--------v-----------+ |
| 323 | // | preheader2 |--------------\ |
| 324 | // | if (AddRec i != | | |
| 325 | // | org bound) | | |
| 326 | // +--------------------+ | |
| 327 | // | /----------------\ | |
| 328 | // +--------v----v------+ | | |
| 329 | // | header2 |---\ | | |
| 330 | // | conditional branch | | | | |
| 331 | // |with false condition| | | | |
| 332 | // +--------------------+ | | | |
| 333 | // | | | | |
| 334 | // +--------v-----------+ | | | |
| 335 | // | if.then.BB2 | | | | |
| 336 | // +--------------------+ | | | |
| 337 | // | | | | |
| 338 | // +--------v-----------<---/ | | |
| 339 | // | latch2 >----------/ | |
| 340 | // | with org bound | | |
| 341 | // +--------v-----------+ | |
| 342 | // | | |
| 343 | // | +---------------+ | |
| 344 | // +--> exit <-------/ |
| 345 | // +---------------+ |
| 346 | |
| 347 | // Let's create post loop. |
| 348 | SmallVector<BasicBlock *, 8> PostLoopBlocks; |
| 349 | Loop *PostLoop; |
| 350 | ValueToValueMapTy VMap; |
| 351 | BasicBlock * = L.getLoopPreheader(); |
| 352 | BasicBlock *SplitLoopPH = SplitEdge(From: PreHeader, To: L.getHeader(), DT: &DT, LI: &LI); |
| 353 | PostLoop = cloneLoopWithPreheader(Before: L.getExitBlock(), LoopDomBB: SplitLoopPH, OrigLoop: &L, VMap, |
| 354 | NameSuffix: ".split" , LI: &LI, DT: &DT, Blocks&: PostLoopBlocks); |
| 355 | remapInstructionsInBlocks(Blocks: PostLoopBlocks, VMap); |
| 356 | |
| 357 | BasicBlock * = PostLoop->getLoopPreheader(); |
| 358 | IRBuilder<> Builder(&PostLoopPreHeader->front()); |
| 359 | |
| 360 | // Update phi nodes in header of post-loop. |
| 361 | bool isExitingLatch = |
| 362 | (L.getExitingBlock() == L.getLoopLatch()) ? true : false; |
| 363 | Value *ExitingCondLCSSAPhi = nullptr; |
| 364 | for (PHINode &PN : L.getHeader()->phis()) { |
| 365 | // Create LCSSA phi node in preheader of post-loop. |
| 366 | PHINode *LCSSAPhi = |
| 367 | Builder.CreatePHI(Ty: PN.getType(), NumReservedValues: 1, Name: PN.getName() + ".lcssa" ); |
| 368 | LCSSAPhi->setDebugLoc(PN.getDebugLoc()); |
| 369 | // If the exiting block is loop latch, the phi does not have the update at |
| 370 | // last iteration. In this case, update lcssa phi with value from backedge. |
| 371 | LCSSAPhi->addIncoming( |
| 372 | V: isExitingLatch ? PN.getIncomingValueForBlock(BB: L.getLoopLatch()) : &PN, |
| 373 | BB: L.getExitingBlock()); |
| 374 | |
| 375 | // Update the start value of phi node in post-loop with the LCSSA phi node. |
| 376 | PHINode *PostLoopPN = cast<PHINode>(Val&: VMap[&PN]); |
| 377 | PostLoopPN->setIncomingValueForBlock(BB: PostLoopPreHeader, V: LCSSAPhi); |
| 378 | |
| 379 | // Find PHI with exiting condition from pre-loop. The PHI should be |
| 380 | // SCEVAddRecExpr and have same incoming value from backedge with |
| 381 | // ExitingCond. |
| 382 | if (!SE.isSCEVable(Ty: PN.getType())) |
| 383 | continue; |
| 384 | |
| 385 | const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(Val: SE.getSCEV(V: &PN)); |
| 386 | if (PhiSCEV && ExitingCond.NonPHIAddRecValue == |
| 387 | PN.getIncomingValueForBlock(BB: L.getLoopLatch())) |
| 388 | ExitingCondLCSSAPhi = LCSSAPhi; |
| 389 | } |
| 390 | |
| 391 | // Add conditional branch to check we can skip post-loop in its preheader. |
| 392 | Instruction *OrigBI = PostLoopPreHeader->getTerminator(); |
| 393 | ICmpInst::Predicate Pred = ICmpInst::ICMP_NE; |
| 394 | Value *Cond = |
| 395 | Builder.CreateICmp(P: Pred, LHS: ExitingCondLCSSAPhi, RHS: ExitingCond.BoundValue); |
| 396 | Builder.CreateCondBr(Cond, True: PostLoop->getHeader(), False: PostLoop->getExitBlock()); |
| 397 | OrigBI->eraseFromParent(); |
| 398 | |
| 399 | // Create new loop bound and add it into preheader of pre-loop. |
| 400 | const SCEV *NewBoundSCEV = ExitingCond.BoundSCEV; |
| 401 | const SCEV *SplitBoundSCEV = SplitCandidateCond.BoundSCEV; |
| 402 | NewBoundSCEV = ICmpInst::isSigned(predicate: ExitingCond.Pred) |
| 403 | ? SE.getSMinExpr(LHS: NewBoundSCEV, RHS: SplitBoundSCEV) |
| 404 | : SE.getUMinExpr(LHS: NewBoundSCEV, RHS: SplitBoundSCEV); |
| 405 | |
| 406 | SCEVExpander Expander( |
| 407 | SE, L.getHeader()->getDataLayout(), "split" ); |
| 408 | Instruction *InsertPt = SplitLoopPH->getTerminator(); |
| 409 | Value *NewBoundValue = |
| 410 | Expander.expandCodeFor(SH: NewBoundSCEV, Ty: NewBoundSCEV->getType(), I: InsertPt); |
| 411 | NewBoundValue->setName("new.bound" ); |
| 412 | |
| 413 | // Replace exiting bound value of pre-loop NewBound. |
| 414 | ExitingCond.ICmp->setOperand(i_nocapture: 1, Val_nocapture: NewBoundValue); |
| 415 | |
| 416 | // Replace SplitCandidateCond.BI's condition of pre-loop by True. |
| 417 | LLVMContext &Context = PreHeader->getContext(); |
| 418 | SplitCandidateCond.BI->setCondition(ConstantInt::getTrue(Context)); |
| 419 | |
| 420 | // Replace cloned SplitCandidateCond.BI's condition in post-loop by False. |
| 421 | BranchInst *ClonedSplitCandidateBI = |
| 422 | cast<BranchInst>(Val&: VMap[SplitCandidateCond.BI]); |
| 423 | ClonedSplitCandidateBI->setCondition(ConstantInt::getFalse(Context)); |
| 424 | |
| 425 | // Replace exit branch target of pre-loop by post-loop's preheader. |
| 426 | if (L.getExitBlock() == ExitingCond.BI->getSuccessor(i: 0)) |
| 427 | ExitingCond.BI->setSuccessor(idx: 0, NewSucc: PostLoopPreHeader); |
| 428 | else |
| 429 | ExitingCond.BI->setSuccessor(idx: 1, NewSucc: PostLoopPreHeader); |
| 430 | |
| 431 | // Update phi node in exit block of post-loop. |
| 432 | Builder.SetInsertPoint(TheBB: PostLoopPreHeader, IP: PostLoopPreHeader->begin()); |
| 433 | for (PHINode &PN : PostLoop->getExitBlock()->phis()) { |
| 434 | for (auto i : seq<int>(Begin: 0, End: PN.getNumOperands())) { |
| 435 | // Check incoming block is pre-loop's exiting block. |
| 436 | if (PN.getIncomingBlock(i) == L.getExitingBlock()) { |
| 437 | Value *IncomingValue = PN.getIncomingValue(i); |
| 438 | |
| 439 | // Create LCSSA phi node for incoming value. |
| 440 | PHINode *LCSSAPhi = |
| 441 | Builder.CreatePHI(Ty: PN.getType(), NumReservedValues: 1, Name: PN.getName() + ".lcssa" ); |
| 442 | LCSSAPhi->setDebugLoc(PN.getDebugLoc()); |
| 443 | LCSSAPhi->addIncoming(V: IncomingValue, BB: PN.getIncomingBlock(i)); |
| 444 | |
| 445 | // Replace pre-loop's exiting block by post-loop's preheader. |
| 446 | PN.setIncomingBlock(i, BB: PostLoopPreHeader); |
| 447 | // Replace incoming value by LCSSAPhi. |
| 448 | PN.setIncomingValue(i, V: LCSSAPhi); |
| 449 | // Add a new incoming value with post-loop's exiting block. |
| 450 | PN.addIncoming(V: VMap[IncomingValue], BB: PostLoop->getExitingBlock()); |
| 451 | } |
| 452 | } |
| 453 | } |
| 454 | |
| 455 | // Update dominator tree. |
| 456 | DT.changeImmediateDominator(BB: PostLoopPreHeader, NewBB: L.getExitingBlock()); |
| 457 | DT.changeImmediateDominator(BB: PostLoop->getExitBlock(), NewBB: PostLoopPreHeader); |
| 458 | |
| 459 | // Invalidate cached SE information. |
| 460 | SE.forgetLoop(L: &L); |
| 461 | |
| 462 | // Canonicalize loops. |
| 463 | simplifyLoop(L: &L, DT: &DT, LI: &LI, SE: &SE, AC: nullptr, MSSAU: nullptr, PreserveLCSSA: true); |
| 464 | simplifyLoop(L: PostLoop, DT: &DT, LI: &LI, SE: &SE, AC: nullptr, MSSAU: nullptr, PreserveLCSSA: true); |
| 465 | |
| 466 | // Add new post-loop to loop pass manager. |
| 467 | U.addSiblingLoops(NewSibLoops: PostLoop); |
| 468 | |
| 469 | return true; |
| 470 | } |
| 471 | |
| 472 | PreservedAnalyses LoopBoundSplitPass::run(Loop &L, LoopAnalysisManager &AM, |
| 473 | LoopStandardAnalysisResults &AR, |
| 474 | LPMUpdater &U) { |
| 475 | Function &F = *L.getHeader()->getParent(); |
| 476 | (void)F; |
| 477 | |
| 478 | LLVM_DEBUG(dbgs() << "Spliting bound of loop in " << F.getName() << ": " << L |
| 479 | << "\n" ); |
| 480 | |
| 481 | if (!splitLoopBound(L, DT&: AR.DT, LI&: AR.LI, SE&: AR.SE, U)) |
| 482 | return PreservedAnalyses::all(); |
| 483 | |
| 484 | assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast)); |
| 485 | AR.LI.verify(DomTree: AR.DT); |
| 486 | |
| 487 | return getLoopPassPreservedAnalyses(); |
| 488 | } |
| 489 | |
| 490 | } // end namespace llvm |
| 491 | |