1 | //===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implement a loop-aware load elimination pass. |
10 | // |
11 | // It uses LoopAccessAnalysis to identify loop-carried dependences with a |
12 | // distance of one between stores and loads. These form the candidates for the |
13 | // transformation. The source value of each store then propagated to the user |
14 | // of the corresponding load. This makes the load dead. |
15 | // |
16 | // The pass can also version the loop and add memchecks in order to prove that |
17 | // may-aliasing stores can't change the value in memory before it's read by the |
18 | // load. |
19 | // |
20 | //===----------------------------------------------------------------------===// |
21 | |
22 | #include "llvm/Transforms/Scalar/LoopLoadElimination.h" |
23 | #include "llvm/ADT/APInt.h" |
24 | #include "llvm/ADT/DenseMap.h" |
25 | #include "llvm/ADT/DepthFirstIterator.h" |
26 | #include "llvm/ADT/STLExtras.h" |
27 | #include "llvm/ADT/SmallPtrSet.h" |
28 | #include "llvm/ADT/SmallVector.h" |
29 | #include "llvm/ADT/Statistic.h" |
30 | #include "llvm/Analysis/AssumptionCache.h" |
31 | #include "llvm/Analysis/BlockFrequencyInfo.h" |
32 | #include "llvm/Analysis/GlobalsModRef.h" |
33 | #include "llvm/Analysis/LazyBlockFrequencyInfo.h" |
34 | #include "llvm/Analysis/LoopAccessAnalysis.h" |
35 | #include "llvm/Analysis/LoopAnalysisManager.h" |
36 | #include "llvm/Analysis/LoopInfo.h" |
37 | #include "llvm/Analysis/ProfileSummaryInfo.h" |
38 | #include "llvm/Analysis/ScalarEvolution.h" |
39 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
40 | #include "llvm/Analysis/TargetLibraryInfo.h" |
41 | #include "llvm/Analysis/TargetTransformInfo.h" |
42 | #include "llvm/IR/DataLayout.h" |
43 | #include "llvm/IR/Dominators.h" |
44 | #include "llvm/IR/Instructions.h" |
45 | #include "llvm/IR/PassManager.h" |
46 | #include "llvm/IR/Type.h" |
47 | #include "llvm/IR/Value.h" |
48 | #include "llvm/Support/Casting.h" |
49 | #include "llvm/Support/CommandLine.h" |
50 | #include "llvm/Support/Debug.h" |
51 | #include "llvm/Support/raw_ostream.h" |
52 | #include "llvm/Transforms/Utils/LoopSimplify.h" |
53 | #include "llvm/Transforms/Utils/LoopVersioning.h" |
54 | #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" |
55 | #include "llvm/Transforms/Utils/SizeOpts.h" |
56 | #include <algorithm> |
57 | #include <cassert> |
58 | #include <forward_list> |
59 | #include <tuple> |
60 | #include <utility> |
61 | |
62 | using namespace llvm; |
63 | |
64 | #define LLE_OPTION "loop-load-elim" |
65 | #define DEBUG_TYPE LLE_OPTION |
66 | |
67 | static cl::opt<unsigned> CheckPerElim( |
68 | "runtime-check-per-loop-load-elim" , cl::Hidden, |
69 | cl::desc("Max number of memchecks allowed per eliminated load on average" ), |
70 | cl::init(Val: 1)); |
71 | |
72 | static cl::opt<unsigned> LoadElimSCEVCheckThreshold( |
73 | "loop-load-elimination-scev-check-threshold" , cl::init(Val: 8), cl::Hidden, |
74 | cl::desc("The maximum number of SCEV checks allowed for Loop " |
75 | "Load Elimination" )); |
76 | |
77 | STATISTIC(NumLoopLoadEliminted, "Number of loads eliminated by LLE" ); |
78 | |
79 | namespace { |
80 | |
81 | /// Represent a store-to-forwarding candidate. |
82 | struct StoreToLoadForwardingCandidate { |
83 | LoadInst *Load; |
84 | StoreInst *Store; |
85 | |
86 | StoreToLoadForwardingCandidate(LoadInst *Load, StoreInst *Store) |
87 | : Load(Load), Store(Store) {} |
88 | |
89 | /// Return true if the dependence from the store to the load has an |
90 | /// absolute distance of one. |
91 | /// E.g. A[i+1] = A[i] (or A[i-1] = A[i] for descending loop) |
92 | bool isDependenceDistanceOfOne(PredicatedScalarEvolution &PSE, |
93 | Loop *L) const { |
94 | Value *LoadPtr = Load->getPointerOperand(); |
95 | Value *StorePtr = Store->getPointerOperand(); |
96 | Type *LoadType = getLoadStoreType(I: Load); |
97 | auto &DL = Load->getDataLayout(); |
98 | |
99 | assert(LoadPtr->getType()->getPointerAddressSpace() == |
100 | StorePtr->getType()->getPointerAddressSpace() && |
101 | DL.getTypeSizeInBits(LoadType) == |
102 | DL.getTypeSizeInBits(getLoadStoreType(Store)) && |
103 | "Should be a known dependence" ); |
104 | |
105 | int64_t StrideLoad = getPtrStride(PSE, AccessTy: LoadType, Ptr: LoadPtr, Lp: L).value_or(u: 0); |
106 | int64_t StrideStore = getPtrStride(PSE, AccessTy: LoadType, Ptr: StorePtr, Lp: L).value_or(u: 0); |
107 | if (!StrideLoad || !StrideStore || StrideLoad != StrideStore) |
108 | return false; |
109 | |
110 | // TODO: This check for stride values other than 1 and -1 can be eliminated. |
111 | // However, doing so may cause the LoopAccessAnalysis to overcompensate, |
112 | // generating numerous non-wrap runtime checks that may undermine the |
113 | // benefits of load elimination. To safely implement support for non-unit |
114 | // strides, we would need to ensure either that the processed case does not |
115 | // require these additional checks, or improve the LAA to handle them more |
116 | // efficiently, or potentially both. |
117 | if (std::abs(i: StrideLoad) != 1) |
118 | return false; |
119 | |
120 | unsigned TypeByteSize = DL.getTypeAllocSize(Ty: const_cast<Type *>(LoadType)); |
121 | |
122 | auto *LoadPtrSCEV = cast<SCEVAddRecExpr>(Val: PSE.getSCEV(V: LoadPtr)); |
123 | auto *StorePtrSCEV = cast<SCEVAddRecExpr>(Val: PSE.getSCEV(V: StorePtr)); |
124 | |
125 | // We don't need to check non-wrapping here because forward/backward |
126 | // dependence wouldn't be valid if these weren't monotonic accesses. |
127 | auto *Dist = dyn_cast<SCEVConstant>( |
128 | Val: PSE.getSE()->getMinusSCEV(LHS: StorePtrSCEV, RHS: LoadPtrSCEV)); |
129 | if (!Dist) |
130 | return false; |
131 | const APInt &Val = Dist->getAPInt(); |
132 | return Val == TypeByteSize * StrideLoad; |
133 | } |
134 | |
135 | Value *getLoadPtr() const { return Load->getPointerOperand(); } |
136 | |
137 | #ifndef NDEBUG |
138 | friend raw_ostream &operator<<(raw_ostream &OS, |
139 | const StoreToLoadForwardingCandidate &Cand) { |
140 | OS << *Cand.Store << " -->\n" ; |
141 | OS.indent(2) << *Cand.Load << "\n" ; |
142 | return OS; |
143 | } |
144 | #endif |
145 | }; |
146 | |
147 | } // end anonymous namespace |
148 | |
149 | /// Check if the store dominates all latches, so as long as there is no |
150 | /// intervening store this value will be loaded in the next iteration. |
151 | static bool doesStoreDominatesAllLatches(BasicBlock *StoreBlock, Loop *L, |
152 | DominatorTree *DT) { |
153 | SmallVector<BasicBlock *, 8> Latches; |
154 | L->getLoopLatches(LoopLatches&: Latches); |
155 | return llvm::all_of(Range&: Latches, P: [&](const BasicBlock *Latch) { |
156 | return DT->dominates(A: StoreBlock, B: Latch); |
157 | }); |
158 | } |
159 | |
160 | /// Return true if the load is not executed on all paths in the loop. |
161 | static bool isLoadConditional(LoadInst *Load, Loop *L) { |
162 | return Load->getParent() != L->getHeader(); |
163 | } |
164 | |
165 | namespace { |
166 | |
167 | /// The per-loop class that does most of the work. |
168 | class LoadEliminationForLoop { |
169 | public: |
170 | LoadEliminationForLoop(Loop *L, LoopInfo *LI, const LoopAccessInfo &LAI, |
171 | DominatorTree *DT, BlockFrequencyInfo *BFI, |
172 | ProfileSummaryInfo* PSI) |
173 | : L(L), LI(LI), LAI(LAI), DT(DT), BFI(BFI), PSI(PSI), PSE(LAI.getPSE()) {} |
174 | |
175 | /// Look through the loop-carried and loop-independent dependences in |
176 | /// this loop and find store->load dependences. |
177 | /// |
178 | /// Note that no candidate is returned if LAA has failed to analyze the loop |
179 | /// (e.g. if it's not bottom-tested, contains volatile memops, etc.) |
180 | std::forward_list<StoreToLoadForwardingCandidate> |
181 | findStoreToLoadDependences(const LoopAccessInfo &LAI) { |
182 | std::forward_list<StoreToLoadForwardingCandidate> Candidates; |
183 | |
184 | const auto &DepChecker = LAI.getDepChecker(); |
185 | const auto *Deps = DepChecker.getDependences(); |
186 | if (!Deps) |
187 | return Candidates; |
188 | |
189 | // Find store->load dependences (consequently true dep). Both lexically |
190 | // forward and backward dependences qualify. Disqualify loads that have |
191 | // other unknown dependences. |
192 | |
193 | SmallPtrSet<Instruction *, 4> LoadsWithUnknownDependence; |
194 | |
195 | for (const auto &Dep : *Deps) { |
196 | Instruction *Source = Dep.getSource(DepChecker); |
197 | Instruction *Destination = Dep.getDestination(DepChecker); |
198 | |
199 | if (Dep.Type == MemoryDepChecker::Dependence::Unknown || |
200 | Dep.Type == MemoryDepChecker::Dependence::IndirectUnsafe) { |
201 | if (isa<LoadInst>(Val: Source)) |
202 | LoadsWithUnknownDependence.insert(Ptr: Source); |
203 | if (isa<LoadInst>(Val: Destination)) |
204 | LoadsWithUnknownDependence.insert(Ptr: Destination); |
205 | continue; |
206 | } |
207 | |
208 | if (Dep.isBackward()) |
209 | // Note that the designations source and destination follow the program |
210 | // order, i.e. source is always first. (The direction is given by the |
211 | // DepType.) |
212 | std::swap(a&: Source, b&: Destination); |
213 | else |
214 | assert(Dep.isForward() && "Needs to be a forward dependence" ); |
215 | |
216 | auto *Store = dyn_cast<StoreInst>(Val: Source); |
217 | if (!Store) |
218 | continue; |
219 | auto *Load = dyn_cast<LoadInst>(Val: Destination); |
220 | if (!Load) |
221 | continue; |
222 | |
223 | // Only propagate if the stored values are bit/pointer castable. |
224 | if (!CastInst::isBitOrNoopPointerCastable( |
225 | SrcTy: getLoadStoreType(I: Store), DestTy: getLoadStoreType(I: Load), |
226 | DL: Store->getDataLayout())) |
227 | continue; |
228 | |
229 | Candidates.emplace_front(args&: Load, args&: Store); |
230 | } |
231 | |
232 | if (!LoadsWithUnknownDependence.empty()) |
233 | Candidates.remove_if(pred: [&](const StoreToLoadForwardingCandidate &C) { |
234 | return LoadsWithUnknownDependence.count(Ptr: C.Load); |
235 | }); |
236 | |
237 | return Candidates; |
238 | } |
239 | |
240 | /// Return the index of the instruction according to program order. |
241 | unsigned getInstrIndex(Instruction *Inst) { |
242 | auto I = InstOrder.find(Val: Inst); |
243 | assert(I != InstOrder.end() && "No index for instruction" ); |
244 | return I->second; |
245 | } |
246 | |
247 | /// If a load has multiple candidates associated (i.e. different |
248 | /// stores), it means that it could be forwarding from multiple stores |
249 | /// depending on control flow. Remove these candidates. |
250 | /// |
251 | /// Here, we rely on LAA to include the relevant loop-independent dependences. |
252 | /// LAA is known to omit these in the very simple case when the read and the |
253 | /// write within an alias set always takes place using the *same* pointer. |
254 | /// |
255 | /// However, we know that this is not the case here, i.e. we can rely on LAA |
256 | /// to provide us with loop-independent dependences for the cases we're |
257 | /// interested. Consider the case for example where a loop-independent |
258 | /// dependece S1->S2 invalidates the forwarding S3->S2. |
259 | /// |
260 | /// A[i] = ... (S1) |
261 | /// ... = A[i] (S2) |
262 | /// A[i+1] = ... (S3) |
263 | /// |
264 | /// LAA will perform dependence analysis here because there are two |
265 | /// *different* pointers involved in the same alias set (&A[i] and &A[i+1]). |
266 | void removeDependencesFromMultipleStores( |
267 | std::forward_list<StoreToLoadForwardingCandidate> &Candidates) { |
268 | // If Store is nullptr it means that we have multiple stores forwarding to |
269 | // this store. |
270 | using LoadToSingleCandT = |
271 | DenseMap<LoadInst *, const StoreToLoadForwardingCandidate *>; |
272 | LoadToSingleCandT LoadToSingleCand; |
273 | |
274 | for (const auto &Cand : Candidates) { |
275 | bool NewElt; |
276 | LoadToSingleCandT::iterator Iter; |
277 | |
278 | std::tie(args&: Iter, args&: NewElt) = |
279 | LoadToSingleCand.insert(KV: std::make_pair(x: Cand.Load, y: &Cand)); |
280 | if (!NewElt) { |
281 | const StoreToLoadForwardingCandidate *&OtherCand = Iter->second; |
282 | // Already multiple stores forward to this load. |
283 | if (OtherCand == nullptr) |
284 | continue; |
285 | |
286 | // Handle the very basic case when the two stores are in the same block |
287 | // so deciding which one forwards is easy. The later one forwards as |
288 | // long as they both have a dependence distance of one to the load. |
289 | if (Cand.Store->getParent() == OtherCand->Store->getParent() && |
290 | Cand.isDependenceDistanceOfOne(PSE, L) && |
291 | OtherCand->isDependenceDistanceOfOne(PSE, L)) { |
292 | // They are in the same block, the later one will forward to the load. |
293 | if (getInstrIndex(Inst: OtherCand->Store) < getInstrIndex(Inst: Cand.Store)) |
294 | OtherCand = &Cand; |
295 | } else |
296 | OtherCand = nullptr; |
297 | } |
298 | } |
299 | |
300 | Candidates.remove_if(pred: [&](const StoreToLoadForwardingCandidate &Cand) { |
301 | if (LoadToSingleCand[Cand.Load] != &Cand) { |
302 | LLVM_DEBUG( |
303 | dbgs() << "Removing from candidates: \n" |
304 | << Cand |
305 | << " The load may have multiple stores forwarding to " |
306 | << "it\n" ); |
307 | return true; |
308 | } |
309 | return false; |
310 | }); |
311 | } |
312 | |
313 | /// Given two pointers operations by their RuntimePointerChecking |
314 | /// indices, return true if they require an alias check. |
315 | /// |
316 | /// We need a check if one is a pointer for a candidate load and the other is |
317 | /// a pointer for a possibly intervening store. |
318 | bool needsChecking(unsigned PtrIdx1, unsigned PtrIdx2, |
319 | const SmallPtrSetImpl<Value *> &PtrsWrittenOnFwdingPath, |
320 | const SmallPtrSetImpl<Value *> &CandLoadPtrs) { |
321 | Value *Ptr1 = |
322 | LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx: PtrIdx1).PointerValue; |
323 | Value *Ptr2 = |
324 | LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx: PtrIdx2).PointerValue; |
325 | return ((PtrsWrittenOnFwdingPath.count(Ptr: Ptr1) && CandLoadPtrs.count(Ptr: Ptr2)) || |
326 | (PtrsWrittenOnFwdingPath.count(Ptr: Ptr2) && CandLoadPtrs.count(Ptr: Ptr1))); |
327 | } |
328 | |
329 | /// Return pointers that are possibly written to on the path from a |
330 | /// forwarding store to a load. |
331 | /// |
332 | /// These pointers need to be alias-checked against the forwarding candidates. |
333 | SmallPtrSet<Value *, 4> findPointersWrittenOnForwardingPath( |
334 | const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) { |
335 | // From FirstStore to LastLoad neither of the elimination candidate loads |
336 | // should overlap with any of the stores. |
337 | // |
338 | // E.g.: |
339 | // |
340 | // st1 C[i] |
341 | // ld1 B[i] <-------, |
342 | // ld0 A[i] <----, | * LastLoad |
343 | // ... | | |
344 | // st2 E[i] | | |
345 | // st3 B[i+1] -- | -' * FirstStore |
346 | // st0 A[i+1] ---' |
347 | // st4 D[i] |
348 | // |
349 | // st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with |
350 | // ld0. |
351 | |
352 | LoadInst *LastLoad = |
353 | llvm::max_element(Range: Candidates, |
354 | C: [&](const StoreToLoadForwardingCandidate &A, |
355 | const StoreToLoadForwardingCandidate &B) { |
356 | return getInstrIndex(Inst: A.Load) < |
357 | getInstrIndex(Inst: B.Load); |
358 | }) |
359 | ->Load; |
360 | StoreInst *FirstStore = |
361 | llvm::min_element(Range: Candidates, |
362 | C: [&](const StoreToLoadForwardingCandidate &A, |
363 | const StoreToLoadForwardingCandidate &B) { |
364 | return getInstrIndex(Inst: A.Store) < |
365 | getInstrIndex(Inst: B.Store); |
366 | }) |
367 | ->Store; |
368 | |
369 | // We're looking for stores after the first forwarding store until the end |
370 | // of the loop, then from the beginning of the loop until the last |
371 | // forwarded-to load. Collect the pointer for the stores. |
372 | SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath; |
373 | |
374 | auto InsertStorePtr = [&](Instruction *I) { |
375 | if (auto *S = dyn_cast<StoreInst>(Val: I)) |
376 | PtrsWrittenOnFwdingPath.insert(Ptr: S->getPointerOperand()); |
377 | }; |
378 | const auto &MemInstrs = LAI.getDepChecker().getMemoryInstructions(); |
379 | std::for_each(first: MemInstrs.begin() + getInstrIndex(Inst: FirstStore) + 1, |
380 | last: MemInstrs.end(), f: InsertStorePtr); |
381 | std::for_each(first: MemInstrs.begin(), last: &MemInstrs[getInstrIndex(Inst: LastLoad)], |
382 | f: InsertStorePtr); |
383 | |
384 | return PtrsWrittenOnFwdingPath; |
385 | } |
386 | |
387 | /// Determine the pointer alias checks to prove that there are no |
388 | /// intervening stores. |
389 | SmallVector<RuntimePointerCheck, 4> collectMemchecks( |
390 | const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) { |
391 | |
392 | SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath = |
393 | findPointersWrittenOnForwardingPath(Candidates); |
394 | |
395 | // Collect the pointers of the candidate loads. |
396 | SmallPtrSet<Value *, 4> CandLoadPtrs; |
397 | for (const auto &Candidate : Candidates) |
398 | CandLoadPtrs.insert(Ptr: Candidate.getLoadPtr()); |
399 | |
400 | const auto &AllChecks = LAI.getRuntimePointerChecking()->getChecks(); |
401 | SmallVector<RuntimePointerCheck, 4> Checks; |
402 | |
403 | copy_if(Range: AllChecks, Out: std::back_inserter(x&: Checks), |
404 | P: [&](const RuntimePointerCheck &Check) { |
405 | for (auto PtrIdx1 : Check.first->Members) |
406 | for (auto PtrIdx2 : Check.second->Members) |
407 | if (needsChecking(PtrIdx1, PtrIdx2, PtrsWrittenOnFwdingPath, |
408 | CandLoadPtrs)) |
409 | return true; |
410 | return false; |
411 | }); |
412 | |
413 | LLVM_DEBUG(dbgs() << "\nPointer Checks (count: " << Checks.size() |
414 | << "):\n" ); |
415 | LLVM_DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks)); |
416 | |
417 | return Checks; |
418 | } |
419 | |
420 | /// Perform the transformation for a candidate. |
421 | void |
422 | propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate &Cand, |
423 | SCEVExpander &SEE) { |
424 | // loop: |
425 | // %x = load %gep_i |
426 | // = ... %x |
427 | // store %y, %gep_i_plus_1 |
428 | // |
429 | // => |
430 | // |
431 | // ph: |
432 | // %x.initial = load %gep_0 |
433 | // loop: |
434 | // %x.storeforward = phi [%x.initial, %ph] [%y, %loop] |
435 | // %x = load %gep_i <---- now dead |
436 | // = ... %x.storeforward |
437 | // store %y, %gep_i_plus_1 |
438 | |
439 | Value *Ptr = Cand.Load->getPointerOperand(); |
440 | auto *PtrSCEV = cast<SCEVAddRecExpr>(Val: PSE.getSCEV(V: Ptr)); |
441 | auto *PH = L->getLoopPreheader(); |
442 | assert(PH && "Preheader should exist!" ); |
443 | Value *InitialPtr = SEE.expandCodeFor(SH: PtrSCEV->getStart(), Ty: Ptr->getType(), |
444 | I: PH->getTerminator()); |
445 | Instruction *Initial = |
446 | new LoadInst(Cand.Load->getType(), InitialPtr, "load_initial" , |
447 | /* isVolatile */ false, Cand.Load->getAlign(), |
448 | PH->getTerminator()->getIterator()); |
449 | // We don't give any debug location to Initial, because it is inserted |
450 | // into the loop's preheader. A debug location inside the loop will cause |
451 | // a misleading stepping when debugging. The test update-debugloc-store |
452 | // -forwarded.ll checks this. |
453 | Initial->setDebugLoc(DebugLoc::getDropped()); |
454 | |
455 | PHINode *PHI = PHINode::Create(Ty: Initial->getType(), NumReservedValues: 2, NameStr: "store_forwarded" ); |
456 | PHI->insertBefore(InsertPos: L->getHeader()->begin()); |
457 | PHI->addIncoming(V: Initial, BB: PH); |
458 | |
459 | Type *LoadType = Initial->getType(); |
460 | Type *StoreType = Cand.Store->getValueOperand()->getType(); |
461 | auto &DL = Cand.Load->getDataLayout(); |
462 | (void)DL; |
463 | |
464 | assert(DL.getTypeSizeInBits(LoadType) == DL.getTypeSizeInBits(StoreType) && |
465 | "The type sizes should match!" ); |
466 | |
467 | Value *StoreValue = Cand.Store->getValueOperand(); |
468 | if (LoadType != StoreType) { |
469 | StoreValue = CastInst::CreateBitOrPointerCast(S: StoreValue, Ty: LoadType, |
470 | Name: "store_forward_cast" , |
471 | InsertBefore: Cand.Store->getIterator()); |
472 | // Because it casts the old `load` value and is used by the new `phi` |
473 | // which replaces the old `load`, we give the `load`'s debug location |
474 | // to it. |
475 | cast<Instruction>(Val: StoreValue)->setDebugLoc(Cand.Load->getDebugLoc()); |
476 | } |
477 | |
478 | PHI->addIncoming(V: StoreValue, BB: L->getLoopLatch()); |
479 | |
480 | Cand.Load->replaceAllUsesWith(V: PHI); |
481 | PHI->setDebugLoc(Cand.Load->getDebugLoc()); |
482 | } |
483 | |
484 | /// Top-level driver for each loop: find store->load forwarding |
485 | /// candidates, add run-time checks and perform transformation. |
486 | bool processLoop() { |
487 | LLVM_DEBUG(dbgs() << "\nIn \"" << L->getHeader()->getParent()->getName() |
488 | << "\" checking " << *L << "\n" ); |
489 | |
490 | // Look for store-to-load forwarding cases across the |
491 | // backedge. E.g.: |
492 | // |
493 | // loop: |
494 | // %x = load %gep_i |
495 | // = ... %x |
496 | // store %y, %gep_i_plus_1 |
497 | // |
498 | // => |
499 | // |
500 | // ph: |
501 | // %x.initial = load %gep_0 |
502 | // loop: |
503 | // %x.storeforward = phi [%x.initial, %ph] [%y, %loop] |
504 | // %x = load %gep_i <---- now dead |
505 | // = ... %x.storeforward |
506 | // store %y, %gep_i_plus_1 |
507 | |
508 | // First start with store->load dependences. |
509 | auto StoreToLoadDependences = findStoreToLoadDependences(LAI); |
510 | if (StoreToLoadDependences.empty()) |
511 | return false; |
512 | |
513 | // Generate an index for each load and store according to the original |
514 | // program order. This will be used later. |
515 | InstOrder = LAI.getDepChecker().generateInstructionOrderMap(); |
516 | |
517 | // To keep things simple for now, remove those where the load is potentially |
518 | // fed by multiple stores. |
519 | removeDependencesFromMultipleStores(Candidates&: StoreToLoadDependences); |
520 | if (StoreToLoadDependences.empty()) |
521 | return false; |
522 | |
523 | // Filter the candidates further. |
524 | SmallVector<StoreToLoadForwardingCandidate, 4> Candidates; |
525 | for (const StoreToLoadForwardingCandidate &Cand : StoreToLoadDependences) { |
526 | LLVM_DEBUG(dbgs() << "Candidate " << Cand); |
527 | |
528 | // Make sure that the stored values is available everywhere in the loop in |
529 | // the next iteration. |
530 | if (!doesStoreDominatesAllLatches(StoreBlock: Cand.Store->getParent(), L, DT)) |
531 | continue; |
532 | |
533 | // If the load is conditional we can't hoist its 0-iteration instance to |
534 | // the preheader because that would make it unconditional. Thus we would |
535 | // access a memory location that the original loop did not access. |
536 | if (isLoadConditional(Load: Cand.Load, L)) |
537 | continue; |
538 | |
539 | // Check whether the SCEV difference is the same as the induction step, |
540 | // thus we load the value in the next iteration. |
541 | if (!Cand.isDependenceDistanceOfOne(PSE, L)) |
542 | continue; |
543 | |
544 | assert(isa<SCEVAddRecExpr>(PSE.getSCEV(Cand.Load->getPointerOperand())) && |
545 | "Loading from something other than indvar?" ); |
546 | assert( |
547 | isa<SCEVAddRecExpr>(PSE.getSCEV(Cand.Store->getPointerOperand())) && |
548 | "Storing to something other than indvar?" ); |
549 | |
550 | Candidates.push_back(Elt: Cand); |
551 | LLVM_DEBUG( |
552 | dbgs() |
553 | << Candidates.size() |
554 | << ". Valid store-to-load forwarding across the loop backedge\n" ); |
555 | } |
556 | if (Candidates.empty()) |
557 | return false; |
558 | |
559 | // Check intervening may-alias stores. These need runtime checks for alias |
560 | // disambiguation. |
561 | SmallVector<RuntimePointerCheck, 4> Checks = collectMemchecks(Candidates); |
562 | |
563 | // Too many checks are likely to outweigh the benefits of forwarding. |
564 | if (Checks.size() > Candidates.size() * CheckPerElim) { |
565 | LLVM_DEBUG(dbgs() << "Too many run-time checks needed.\n" ); |
566 | return false; |
567 | } |
568 | |
569 | if (LAI.getPSE().getPredicate().getComplexity() > |
570 | LoadElimSCEVCheckThreshold) { |
571 | LLVM_DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n" ); |
572 | return false; |
573 | } |
574 | |
575 | if (!L->isLoopSimplifyForm()) { |
576 | LLVM_DEBUG(dbgs() << "Loop is not is loop-simplify form" ); |
577 | return false; |
578 | } |
579 | |
580 | if (!Checks.empty() || !LAI.getPSE().getPredicate().isAlwaysTrue()) { |
581 | if (LAI.hasConvergentOp()) { |
582 | LLVM_DEBUG(dbgs() << "Versioning is needed but not allowed with " |
583 | "convergent calls\n" ); |
584 | return false; |
585 | } |
586 | |
587 | auto * = L->getHeader(); |
588 | if (llvm::shouldOptimizeForSize(BB: HeaderBB, PSI, BFI, |
589 | QueryType: PGSOQueryType::IRPass)) { |
590 | LLVM_DEBUG( |
591 | dbgs() << "Versioning is needed but not allowed when optimizing " |
592 | "for size.\n" ); |
593 | return false; |
594 | } |
595 | |
596 | // Point of no-return, start the transformation. First, version the loop |
597 | // if necessary. |
598 | |
599 | LoopVersioning LV(LAI, Checks, L, LI, DT, PSE.getSE()); |
600 | LV.versionLoop(); |
601 | |
602 | // After versioning, some of the candidates' pointers could stop being |
603 | // SCEVAddRecs. We need to filter them out. |
604 | auto NoLongerGoodCandidate = [this]( |
605 | const StoreToLoadForwardingCandidate &Cand) { |
606 | return !isa<SCEVAddRecExpr>( |
607 | Val: PSE.getSCEV(V: Cand.Load->getPointerOperand())) || |
608 | !isa<SCEVAddRecExpr>( |
609 | Val: PSE.getSCEV(V: Cand.Store->getPointerOperand())); |
610 | }; |
611 | llvm::erase_if(C&: Candidates, P: NoLongerGoodCandidate); |
612 | } |
613 | |
614 | // Next, propagate the value stored by the store to the users of the load. |
615 | // Also for the first iteration, generate the initial value of the load. |
616 | SCEVExpander SEE(*PSE.getSE(), L->getHeader()->getDataLayout(), |
617 | "storeforward" ); |
618 | for (const auto &Cand : Candidates) |
619 | propagateStoredValueToLoadUsers(Cand, SEE); |
620 | NumLoopLoadEliminted += Candidates.size(); |
621 | |
622 | return true; |
623 | } |
624 | |
625 | private: |
626 | Loop *L; |
627 | |
628 | /// Maps the load/store instructions to their index according to |
629 | /// program order. |
630 | DenseMap<Instruction *, unsigned> InstOrder; |
631 | |
632 | // Analyses used. |
633 | LoopInfo *LI; |
634 | const LoopAccessInfo &LAI; |
635 | DominatorTree *DT; |
636 | BlockFrequencyInfo *BFI; |
637 | ProfileSummaryInfo *PSI; |
638 | PredicatedScalarEvolution PSE; |
639 | }; |
640 | |
641 | } // end anonymous namespace |
642 | |
643 | static bool eliminateLoadsAcrossLoops(Function &F, LoopInfo &LI, |
644 | DominatorTree &DT, |
645 | BlockFrequencyInfo *BFI, |
646 | ProfileSummaryInfo *PSI, |
647 | ScalarEvolution *SE, AssumptionCache *AC, |
648 | LoopAccessInfoManager &LAIs) { |
649 | // Build up a worklist of inner-loops to transform to avoid iterator |
650 | // invalidation. |
651 | // FIXME: This logic comes from other passes that actually change the loop |
652 | // nest structure. It isn't clear this is necessary (or useful) for a pass |
653 | // which merely optimizes the use of loads in a loop. |
654 | SmallVector<Loop *, 8> Worklist; |
655 | |
656 | bool Changed = false; |
657 | |
658 | for (Loop *TopLevelLoop : LI) |
659 | for (Loop *L : depth_first(G: TopLevelLoop)) { |
660 | Changed |= simplifyLoop(L, DT: &DT, LI: &LI, SE, AC, /*MSSAU*/ nullptr, PreserveLCSSA: false); |
661 | // We only handle inner-most loops. |
662 | if (L->isInnermost()) |
663 | Worklist.push_back(Elt: L); |
664 | } |
665 | |
666 | // Now walk the identified inner loops. |
667 | for (Loop *L : Worklist) { |
668 | // Match historical behavior |
669 | if (!L->isRotatedForm() || !L->getExitingBlock()) |
670 | continue; |
671 | // The actual work is performed by LoadEliminationForLoop. |
672 | LoadEliminationForLoop LEL(L, &LI, LAIs.getInfo(L&: *L), &DT, BFI, PSI); |
673 | Changed |= LEL.processLoop(); |
674 | if (Changed) |
675 | LAIs.clear(); |
676 | } |
677 | return Changed; |
678 | } |
679 | |
680 | PreservedAnalyses LoopLoadEliminationPass::run(Function &F, |
681 | FunctionAnalysisManager &AM) { |
682 | auto &LI = AM.getResult<LoopAnalysis>(IR&: F); |
683 | // There are no loops in the function. Return before computing other expensive |
684 | // analyses. |
685 | if (LI.empty()) |
686 | return PreservedAnalyses::all(); |
687 | auto &SE = AM.getResult<ScalarEvolutionAnalysis>(IR&: F); |
688 | auto &DT = AM.getResult<DominatorTreeAnalysis>(IR&: F); |
689 | auto &AC = AM.getResult<AssumptionAnalysis>(IR&: F); |
690 | auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(IR&: F); |
691 | auto *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(IR&: *F.getParent()); |
692 | auto *BFI = (PSI && PSI->hasProfileSummary()) ? |
693 | &AM.getResult<BlockFrequencyAnalysis>(IR&: F) : nullptr; |
694 | LoopAccessInfoManager &LAIs = AM.getResult<LoopAccessAnalysis>(IR&: F); |
695 | |
696 | bool Changed = eliminateLoadsAcrossLoops(F, LI, DT, BFI, PSI, SE: &SE, AC: &AC, LAIs); |
697 | |
698 | if (!Changed) |
699 | return PreservedAnalyses::all(); |
700 | |
701 | PreservedAnalyses PA; |
702 | PA.preserve<DominatorTreeAnalysis>(); |
703 | PA.preserve<LoopAnalysis>(); |
704 | return PA; |
705 | } |
706 | |