| 1 | //===-- LoopPredication.cpp - Guard based loop predication pass -----------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // The LoopPredication pass tries to convert loop variant range checks to loop |
| 10 | // invariant by widening checks across loop iterations. For example, it will |
| 11 | // convert |
| 12 | // |
| 13 | // for (i = 0; i < n; i++) { |
| 14 | // guard(i < len); |
| 15 | // ... |
| 16 | // } |
| 17 | // |
| 18 | // to |
| 19 | // |
| 20 | // for (i = 0; i < n; i++) { |
| 21 | // guard(n - 1 < len); |
| 22 | // ... |
| 23 | // } |
| 24 | // |
| 25 | // After this transformation the condition of the guard is loop invariant, so |
| 26 | // loop-unswitch can later unswitch the loop by this condition which basically |
| 27 | // predicates the loop by the widened condition: |
| 28 | // |
| 29 | // if (n - 1 < len) |
| 30 | // for (i = 0; i < n; i++) { |
| 31 | // ... |
| 32 | // } |
| 33 | // else |
| 34 | // deoptimize |
| 35 | // |
| 36 | // It's tempting to rely on SCEV here, but it has proven to be problematic. |
| 37 | // Generally the facts SCEV provides about the increment step of add |
| 38 | // recurrences are true if the backedge of the loop is taken, which implicitly |
| 39 | // assumes that the guard doesn't fail. Using these facts to optimize the |
| 40 | // guard results in a circular logic where the guard is optimized under the |
| 41 | // assumption that it never fails. |
| 42 | // |
| 43 | // For example, in the loop below the induction variable will be marked as nuw |
| 44 | // basing on the guard. Basing on nuw the guard predicate will be considered |
| 45 | // monotonic. Given a monotonic condition it's tempting to replace the induction |
| 46 | // variable in the condition with its value on the last iteration. But this |
| 47 | // transformation is not correct, e.g. e = 4, b = 5 breaks the loop. |
| 48 | // |
| 49 | // for (int i = b; i != e; i++) |
| 50 | // guard(i u< len) |
| 51 | // |
| 52 | // One of the ways to reason about this problem is to use an inductive proof |
| 53 | // approach. Given the loop: |
| 54 | // |
| 55 | // if (B(0)) { |
| 56 | // do { |
| 57 | // I = PHI(0, I.INC) |
| 58 | // I.INC = I + Step |
| 59 | // guard(G(I)); |
| 60 | // } while (B(I)); |
| 61 | // } |
| 62 | // |
| 63 | // where B(x) and G(x) are predicates that map integers to booleans, we want a |
| 64 | // loop invariant expression M such the following program has the same semantics |
| 65 | // as the above: |
| 66 | // |
| 67 | // if (B(0)) { |
| 68 | // do { |
| 69 | // I = PHI(0, I.INC) |
| 70 | // I.INC = I + Step |
| 71 | // guard(G(0) && M); |
| 72 | // } while (B(I)); |
| 73 | // } |
| 74 | // |
| 75 | // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step) |
| 76 | // |
| 77 | // Informal proof that the transformation above is correct: |
| 78 | // |
| 79 | // By the definition of guards we can rewrite the guard condition to: |
| 80 | // G(I) && G(0) && M |
| 81 | // |
| 82 | // Let's prove that for each iteration of the loop: |
| 83 | // G(0) && M => G(I) |
| 84 | // And the condition above can be simplified to G(Start) && M. |
| 85 | // |
| 86 | // Induction base. |
| 87 | // G(0) && M => G(0) |
| 88 | // |
| 89 | // Induction step. Assuming G(0) && M => G(I) on the subsequent |
| 90 | // iteration: |
| 91 | // |
| 92 | // B(I) is true because it's the backedge condition. |
| 93 | // G(I) is true because the backedge is guarded by this condition. |
| 94 | // |
| 95 | // So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step). |
| 96 | // |
| 97 | // Note that we can use anything stronger than M, i.e. any condition which |
| 98 | // implies M. |
| 99 | // |
| 100 | // When S = 1 (i.e. forward iterating loop), the transformation is supported |
| 101 | // when: |
| 102 | // * The loop has a single latch with the condition of the form: |
| 103 | // B(X) = latchStart + X <pred> latchLimit, |
| 104 | // where <pred> is u<, u<=, s<, or s<=. |
| 105 | // * The guard condition is of the form |
| 106 | // G(X) = guardStart + X u< guardLimit |
| 107 | // |
| 108 | // For the ult latch comparison case M is: |
| 109 | // forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit => |
| 110 | // guardStart + X + 1 u< guardLimit |
| 111 | // |
| 112 | // The only way the antecedent can be true and the consequent can be false is |
| 113 | // if |
| 114 | // X == guardLimit - 1 - guardStart |
| 115 | // (and guardLimit is non-zero, but we won't use this latter fact). |
| 116 | // If X == guardLimit - 1 - guardStart then the second half of the antecedent is |
| 117 | // latchStart + guardLimit - 1 - guardStart u< latchLimit |
| 118 | // and its negation is |
| 119 | // latchStart + guardLimit - 1 - guardStart u>= latchLimit |
| 120 | // |
| 121 | // In other words, if |
| 122 | // latchLimit u<= latchStart + guardLimit - 1 - guardStart |
| 123 | // then: |
| 124 | // (the ranges below are written in ConstantRange notation, where [A, B) is the |
| 125 | // set for (I = A; I != B; I++ /*maywrap*/) yield(I);) |
| 126 | // |
| 127 | // forall X . guardStart + X u< guardLimit && |
| 128 | // latchStart + X u< latchLimit => |
| 129 | // guardStart + X + 1 u< guardLimit |
| 130 | // == forall X . guardStart + X u< guardLimit && |
| 131 | // latchStart + X u< latchStart + guardLimit - 1 - guardStart => |
| 132 | // guardStart + X + 1 u< guardLimit |
| 133 | // == forall X . (guardStart + X) in [0, guardLimit) && |
| 134 | // (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) => |
| 135 | // (guardStart + X + 1) in [0, guardLimit) |
| 136 | // == forall X . X in [-guardStart, guardLimit - guardStart) && |
| 137 | // X in [-latchStart, guardLimit - 1 - guardStart) => |
| 138 | // X in [-guardStart - 1, guardLimit - guardStart - 1) |
| 139 | // == true |
| 140 | // |
| 141 | // So the widened condition is: |
| 142 | // guardStart u< guardLimit && |
| 143 | // latchStart + guardLimit - 1 - guardStart u>= latchLimit |
| 144 | // Similarly for ule condition the widened condition is: |
| 145 | // guardStart u< guardLimit && |
| 146 | // latchStart + guardLimit - 1 - guardStart u> latchLimit |
| 147 | // For slt condition the widened condition is: |
| 148 | // guardStart u< guardLimit && |
| 149 | // latchStart + guardLimit - 1 - guardStart s>= latchLimit |
| 150 | // For sle condition the widened condition is: |
| 151 | // guardStart u< guardLimit && |
| 152 | // latchStart + guardLimit - 1 - guardStart s> latchLimit |
| 153 | // |
| 154 | // When S = -1 (i.e. reverse iterating loop), the transformation is supported |
| 155 | // when: |
| 156 | // * The loop has a single latch with the condition of the form: |
| 157 | // B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=. |
| 158 | // * The guard condition is of the form |
| 159 | // G(X) = X - 1 u< guardLimit |
| 160 | // |
| 161 | // For the ugt latch comparison case M is: |
| 162 | // forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit |
| 163 | // |
| 164 | // The only way the antecedent can be true and the consequent can be false is if |
| 165 | // X == 1. |
| 166 | // If X == 1 then the second half of the antecedent is |
| 167 | // 1 u> latchLimit, and its negation is latchLimit u>= 1. |
| 168 | // |
| 169 | // So the widened condition is: |
| 170 | // guardStart u< guardLimit && latchLimit u>= 1. |
| 171 | // Similarly for sgt condition the widened condition is: |
| 172 | // guardStart u< guardLimit && latchLimit s>= 1. |
| 173 | // For uge condition the widened condition is: |
| 174 | // guardStart u< guardLimit && latchLimit u> 1. |
| 175 | // For sge condition the widened condition is: |
| 176 | // guardStart u< guardLimit && latchLimit s> 1. |
| 177 | //===----------------------------------------------------------------------===// |
| 178 | |
| 179 | #include "llvm/Transforms/Scalar/LoopPredication.h" |
| 180 | #include "llvm/ADT/Statistic.h" |
| 181 | #include "llvm/Analysis/AliasAnalysis.h" |
| 182 | #include "llvm/Analysis/BranchProbabilityInfo.h" |
| 183 | #include "llvm/Analysis/GuardUtils.h" |
| 184 | #include "llvm/Analysis/LoopInfo.h" |
| 185 | #include "llvm/Analysis/LoopPass.h" |
| 186 | #include "llvm/Analysis/MemorySSA.h" |
| 187 | #include "llvm/Analysis/MemorySSAUpdater.h" |
| 188 | #include "llvm/Analysis/ScalarEvolution.h" |
| 189 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| 190 | #include "llvm/IR/Function.h" |
| 191 | #include "llvm/IR/IntrinsicInst.h" |
| 192 | #include "llvm/IR/Module.h" |
| 193 | #include "llvm/IR/PatternMatch.h" |
| 194 | #include "llvm/IR/ProfDataUtils.h" |
| 195 | #include "llvm/Pass.h" |
| 196 | #include "llvm/Support/CommandLine.h" |
| 197 | #include "llvm/Support/Debug.h" |
| 198 | #include "llvm/Transforms/Scalar.h" |
| 199 | #include "llvm/Transforms/Utils/GuardUtils.h" |
| 200 | #include "llvm/Transforms/Utils/Local.h" |
| 201 | #include "llvm/Transforms/Utils/LoopUtils.h" |
| 202 | #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" |
| 203 | #include <optional> |
| 204 | |
| 205 | #define DEBUG_TYPE "loop-predication" |
| 206 | |
| 207 | STATISTIC(TotalConsidered, "Number of guards considered" ); |
| 208 | STATISTIC(TotalWidened, "Number of checks widened" ); |
| 209 | |
| 210 | using namespace llvm; |
| 211 | |
| 212 | static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation" , |
| 213 | cl::Hidden, cl::init(Val: true)); |
| 214 | |
| 215 | static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop" , |
| 216 | cl::Hidden, cl::init(Val: true)); |
| 217 | |
| 218 | static cl::opt<bool> |
| 219 | SkipProfitabilityChecks("loop-predication-skip-profitability-checks" , |
| 220 | cl::Hidden, cl::init(Val: false)); |
| 221 | |
| 222 | // This is the scale factor for the latch probability. We use this during |
| 223 | // profitability analysis to find other exiting blocks that have a much higher |
| 224 | // probability of exiting the loop instead of loop exiting via latch. |
| 225 | // This value should be greater than 1 for a sane profitability check. |
| 226 | static cl::opt<float> LatchExitProbabilityScale( |
| 227 | "loop-predication-latch-probability-scale" , cl::Hidden, cl::init(Val: 2.0), |
| 228 | cl::desc("scale factor for the latch probability. Value should be greater " |
| 229 | "than 1. Lower values are ignored" )); |
| 230 | |
| 231 | static cl::opt<bool> PredicateWidenableBranchGuards( |
| 232 | "loop-predication-predicate-widenable-branches-to-deopt" , cl::Hidden, |
| 233 | cl::desc("Whether or not we should predicate guards " |
| 234 | "expressed as widenable branches to deoptimize blocks" ), |
| 235 | cl::init(Val: true)); |
| 236 | |
| 237 | static cl::opt<bool> InsertAssumesOfPredicatedGuardsConditions( |
| 238 | "loop-predication-insert-assumes-of-predicated-guards-conditions" , |
| 239 | cl::Hidden, |
| 240 | cl::desc("Whether or not we should insert assumes of conditions of " |
| 241 | "predicated guards" ), |
| 242 | cl::init(Val: true)); |
| 243 | |
| 244 | namespace { |
| 245 | /// Represents an induction variable check: |
| 246 | /// icmp Pred, <induction variable>, <loop invariant limit> |
| 247 | struct LoopICmp { |
| 248 | ICmpInst::Predicate Pred; |
| 249 | const SCEVAddRecExpr *IV; |
| 250 | const SCEV *Limit; |
| 251 | LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV, |
| 252 | const SCEV *Limit) |
| 253 | : Pred(Pred), IV(IV), Limit(Limit) {} |
| 254 | LoopICmp() = default; |
| 255 | void dump() { |
| 256 | dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV |
| 257 | << ", Limit = " << *Limit << "\n" ; |
| 258 | } |
| 259 | }; |
| 260 | |
| 261 | class LoopPredication { |
| 262 | AliasAnalysis *AA; |
| 263 | DominatorTree *DT; |
| 264 | ScalarEvolution *SE; |
| 265 | LoopInfo *LI; |
| 266 | MemorySSAUpdater *MSSAU; |
| 267 | |
| 268 | Loop *L; |
| 269 | const DataLayout *DL; |
| 270 | BasicBlock *; |
| 271 | LoopICmp LatchCheck; |
| 272 | |
| 273 | bool isSupportedStep(const SCEV* Step); |
| 274 | std::optional<LoopICmp> parseLoopICmp(ICmpInst *ICI); |
| 275 | std::optional<LoopICmp> parseLoopLatchICmp(); |
| 276 | |
| 277 | /// Return an insertion point suitable for inserting a safe to speculate |
| 278 | /// instruction whose only user will be 'User' which has operands 'Ops'. A |
| 279 | /// trivial result would be the at the User itself, but we try to return a |
| 280 | /// loop invariant location if possible. |
| 281 | Instruction *findInsertPt(Instruction *User, ArrayRef<Value*> Ops); |
| 282 | /// Same as above, *except* that this uses the SCEV definition of invariant |
| 283 | /// which is that an expression *can be made* invariant via SCEVExpander. |
| 284 | /// Thus, this version is only suitable for finding an insert point to be |
| 285 | /// passed to SCEVExpander! |
| 286 | Instruction *findInsertPt(const SCEVExpander &Expander, Instruction *User, |
| 287 | ArrayRef<const SCEV *> Ops); |
| 288 | |
| 289 | /// Return true if the value is known to produce a single fixed value across |
| 290 | /// all iterations on which it executes. Note that this does not imply |
| 291 | /// speculation safety. That must be established separately. |
| 292 | bool isLoopInvariantValue(const SCEV* S); |
| 293 | |
| 294 | Value *expandCheck(SCEVExpander &Expander, Instruction *Guard, |
| 295 | ICmpInst::Predicate Pred, const SCEV *LHS, |
| 296 | const SCEV *RHS); |
| 297 | |
| 298 | std::optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, |
| 299 | SCEVExpander &Expander, |
| 300 | Instruction *Guard); |
| 301 | std::optional<Value *> |
| 302 | widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck, LoopICmp RangeCheck, |
| 303 | SCEVExpander &Expander, |
| 304 | Instruction *Guard); |
| 305 | std::optional<Value *> |
| 306 | widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck, LoopICmp RangeCheck, |
| 307 | SCEVExpander &Expander, |
| 308 | Instruction *Guard); |
| 309 | void widenChecks(SmallVectorImpl<Value *> &Checks, |
| 310 | SmallVectorImpl<Value *> &WidenedChecks, |
| 311 | SCEVExpander &Expander, Instruction *Guard); |
| 312 | bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander); |
| 313 | bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander); |
| 314 | // If the loop always exits through another block in the loop, we should not |
| 315 | // predicate based on the latch check. For example, the latch check can be a |
| 316 | // very coarse grained check and there can be more fine grained exit checks |
| 317 | // within the loop. |
| 318 | bool isLoopProfitableToPredicate(); |
| 319 | |
| 320 | bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter); |
| 321 | |
| 322 | public: |
| 323 | LoopPredication(AliasAnalysis *AA, DominatorTree *DT, ScalarEvolution *SE, |
| 324 | LoopInfo *LI, MemorySSAUpdater *MSSAU) |
| 325 | : AA(AA), DT(DT), SE(SE), LI(LI), MSSAU(MSSAU){}; |
| 326 | bool runOnLoop(Loop *L); |
| 327 | }; |
| 328 | |
| 329 | } // end namespace |
| 330 | |
| 331 | PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM, |
| 332 | LoopStandardAnalysisResults &AR, |
| 333 | LPMUpdater &U) { |
| 334 | std::unique_ptr<MemorySSAUpdater> MSSAU; |
| 335 | if (AR.MSSA) |
| 336 | MSSAU = std::make_unique<MemorySSAUpdater>(args&: AR.MSSA); |
| 337 | LoopPredication LP(&AR.AA, &AR.DT, &AR.SE, &AR.LI, |
| 338 | MSSAU ? MSSAU.get() : nullptr); |
| 339 | if (!LP.runOnLoop(L: &L)) |
| 340 | return PreservedAnalyses::all(); |
| 341 | |
| 342 | auto PA = getLoopPassPreservedAnalyses(); |
| 343 | if (AR.MSSA) |
| 344 | PA.preserve<MemorySSAAnalysis>(); |
| 345 | return PA; |
| 346 | } |
| 347 | |
| 348 | std::optional<LoopICmp> LoopPredication::parseLoopICmp(ICmpInst *ICI) { |
| 349 | auto Pred = ICI->getPredicate(); |
| 350 | auto *LHS = ICI->getOperand(i_nocapture: 0); |
| 351 | auto *RHS = ICI->getOperand(i_nocapture: 1); |
| 352 | |
| 353 | const SCEV *LHSS = SE->getSCEV(V: LHS); |
| 354 | if (isa<SCEVCouldNotCompute>(Val: LHSS)) |
| 355 | return std::nullopt; |
| 356 | const SCEV *RHSS = SE->getSCEV(V: RHS); |
| 357 | if (isa<SCEVCouldNotCompute>(Val: RHSS)) |
| 358 | return std::nullopt; |
| 359 | |
| 360 | // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV |
| 361 | if (SE->isLoopInvariant(S: LHSS, L)) { |
| 362 | std::swap(a&: LHS, b&: RHS); |
| 363 | std::swap(a&: LHSS, b&: RHSS); |
| 364 | Pred = ICmpInst::getSwappedPredicate(pred: Pred); |
| 365 | } |
| 366 | |
| 367 | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: LHSS); |
| 368 | if (!AR || AR->getLoop() != L) |
| 369 | return std::nullopt; |
| 370 | |
| 371 | return LoopICmp(Pred, AR, RHSS); |
| 372 | } |
| 373 | |
| 374 | Value *LoopPredication::expandCheck(SCEVExpander &Expander, |
| 375 | Instruction *Guard, |
| 376 | ICmpInst::Predicate Pred, const SCEV *LHS, |
| 377 | const SCEV *RHS) { |
| 378 | Type *Ty = LHS->getType(); |
| 379 | assert(Ty == RHS->getType() && "expandCheck operands have different types?" ); |
| 380 | |
| 381 | if (SE->isLoopInvariant(S: LHS, L) && SE->isLoopInvariant(S: RHS, L)) { |
| 382 | IRBuilder<> Builder(Guard); |
| 383 | if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS)) |
| 384 | return Builder.getTrue(); |
| 385 | if (SE->isLoopEntryGuardedByCond(L, Pred: ICmpInst::getInversePredicate(pred: Pred), |
| 386 | LHS, RHS)) |
| 387 | return Builder.getFalse(); |
| 388 | } |
| 389 | |
| 390 | Value *LHSV = |
| 391 | Expander.expandCodeFor(SH: LHS, Ty, I: findInsertPt(Expander, User: Guard, Ops: {LHS})); |
| 392 | Value *RHSV = |
| 393 | Expander.expandCodeFor(SH: RHS, Ty, I: findInsertPt(Expander, User: Guard, Ops: {RHS})); |
| 394 | IRBuilder<> Builder(findInsertPt(User: Guard, Ops: {LHSV, RHSV})); |
| 395 | return Builder.CreateICmp(P: Pred, LHS: LHSV, RHS: RHSV); |
| 396 | } |
| 397 | |
| 398 | // Returns true if its safe to truncate the IV to RangeCheckType. |
| 399 | // When the IV type is wider than the range operand type, we can still do loop |
| 400 | // predication, by generating SCEVs for the range and latch that are of the |
| 401 | // same type. We achieve this by generating a SCEV truncate expression for the |
| 402 | // latch IV. This is done iff truncation of the IV is a safe operation, |
| 403 | // without loss of information. |
| 404 | // Another way to achieve this is by generating a wider type SCEV for the |
| 405 | // range check operand, however, this needs a more involved check that |
| 406 | // operands do not overflow. This can lead to loss of information when the |
| 407 | // range operand is of the form: add i32 %offset, %iv. We need to prove that |
| 408 | // sext(x + y) is same as sext(x) + sext(y). |
| 409 | // This function returns true if we can safely represent the IV type in |
| 410 | // the RangeCheckType without loss of information. |
| 411 | static bool isSafeToTruncateWideIVType(const DataLayout &DL, |
| 412 | ScalarEvolution &SE, |
| 413 | const LoopICmp LatchCheck, |
| 414 | Type *RangeCheckType) { |
| 415 | if (!EnableIVTruncation) |
| 416 | return false; |
| 417 | assert(DL.getTypeSizeInBits(LatchCheck.IV->getType()).getFixedValue() > |
| 418 | DL.getTypeSizeInBits(RangeCheckType).getFixedValue() && |
| 419 | "Expected latch check IV type to be larger than range check operand " |
| 420 | "type!" ); |
| 421 | // The start and end values of the IV should be known. This is to guarantee |
| 422 | // that truncating the wide type will not lose information. |
| 423 | auto *Limit = dyn_cast<SCEVConstant>(Val: LatchCheck.Limit); |
| 424 | auto *Start = dyn_cast<SCEVConstant>(Val: LatchCheck.IV->getStart()); |
| 425 | if (!Limit || !Start) |
| 426 | return false; |
| 427 | // This check makes sure that the IV does not change sign during loop |
| 428 | // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE, |
| 429 | // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the |
| 430 | // IV wraps around, and the truncation of the IV would lose the range of |
| 431 | // iterations between 2^32 and 2^64. |
| 432 | if (!SE.getMonotonicPredicateType(LHS: LatchCheck.IV, Pred: LatchCheck.Pred)) |
| 433 | return false; |
| 434 | // The active bits should be less than the bits in the RangeCheckType. This |
| 435 | // guarantees that truncating the latch check to RangeCheckType is a safe |
| 436 | // operation. |
| 437 | auto RangeCheckTypeBitSize = |
| 438 | DL.getTypeSizeInBits(Ty: RangeCheckType).getFixedValue(); |
| 439 | return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize && |
| 440 | Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize; |
| 441 | } |
| 442 | |
| 443 | |
| 444 | // Return an LoopICmp describing a latch check equivlent to LatchCheck but with |
| 445 | // the requested type if safe to do so. May involve the use of a new IV. |
| 446 | static std::optional<LoopICmp> generateLoopLatchCheck(const DataLayout &DL, |
| 447 | ScalarEvolution &SE, |
| 448 | const LoopICmp LatchCheck, |
| 449 | Type *RangeCheckType) { |
| 450 | |
| 451 | auto *LatchType = LatchCheck.IV->getType(); |
| 452 | if (RangeCheckType == LatchType) |
| 453 | return LatchCheck; |
| 454 | // For now, bail out if latch type is narrower than range type. |
| 455 | if (DL.getTypeSizeInBits(Ty: LatchType).getFixedValue() < |
| 456 | DL.getTypeSizeInBits(Ty: RangeCheckType).getFixedValue()) |
| 457 | return std::nullopt; |
| 458 | if (!isSafeToTruncateWideIVType(DL, SE, LatchCheck, RangeCheckType)) |
| 459 | return std::nullopt; |
| 460 | // We can now safely identify the truncated version of the IV and limit for |
| 461 | // RangeCheckType. |
| 462 | LoopICmp NewLatchCheck; |
| 463 | NewLatchCheck.Pred = LatchCheck.Pred; |
| 464 | NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>( |
| 465 | Val: SE.getTruncateExpr(Op: LatchCheck.IV, Ty: RangeCheckType)); |
| 466 | if (!NewLatchCheck.IV) |
| 467 | return std::nullopt; |
| 468 | NewLatchCheck.Limit = SE.getTruncateExpr(Op: LatchCheck.Limit, Ty: RangeCheckType); |
| 469 | LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType |
| 470 | << "can be represented as range check type:" |
| 471 | << *RangeCheckType << "\n" ); |
| 472 | LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n" ); |
| 473 | LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n" ); |
| 474 | return NewLatchCheck; |
| 475 | } |
| 476 | |
| 477 | bool LoopPredication::isSupportedStep(const SCEV* Step) { |
| 478 | return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop); |
| 479 | } |
| 480 | |
| 481 | Instruction *LoopPredication::findInsertPt(Instruction *Use, |
| 482 | ArrayRef<Value*> Ops) { |
| 483 | for (Value *Op : Ops) |
| 484 | if (!L->isLoopInvariant(V: Op)) |
| 485 | return Use; |
| 486 | return Preheader->getTerminator(); |
| 487 | } |
| 488 | |
| 489 | Instruction *LoopPredication::findInsertPt(const SCEVExpander &Expander, |
| 490 | Instruction *Use, |
| 491 | ArrayRef<const SCEV *> Ops) { |
| 492 | // Subtlety: SCEV considers things to be invariant if the value produced is |
| 493 | // the same across iterations. This is not the same as being able to |
| 494 | // evaluate outside the loop, which is what we actually need here. |
| 495 | for (const SCEV *Op : Ops) |
| 496 | if (!SE->isLoopInvariant(S: Op, L) || |
| 497 | !Expander.isSafeToExpandAt(S: Op, InsertionPoint: Preheader->getTerminator())) |
| 498 | return Use; |
| 499 | return Preheader->getTerminator(); |
| 500 | } |
| 501 | |
| 502 | bool LoopPredication::isLoopInvariantValue(const SCEV* S) { |
| 503 | // Handling expressions which produce invariant results, but *haven't* yet |
| 504 | // been removed from the loop serves two important purposes. |
| 505 | // 1) Most importantly, it resolves a pass ordering cycle which would |
| 506 | // otherwise need us to iteration licm, loop-predication, and either |
| 507 | // loop-unswitch or loop-peeling to make progress on examples with lots of |
| 508 | // predicable range checks in a row. (Since, in the general case, we can't |
| 509 | // hoist the length checks until the dominating checks have been discharged |
| 510 | // as we can't prove doing so is safe.) |
| 511 | // 2) As a nice side effect, this exposes the value of peeling or unswitching |
| 512 | // much more obviously in the IR. Otherwise, the cost modeling for other |
| 513 | // transforms would end up needing to duplicate all of this logic to model a |
| 514 | // check which becomes predictable based on a modeled peel or unswitch. |
| 515 | // |
| 516 | // The cost of doing so in the worst case is an extra fill from the stack in |
| 517 | // the loop to materialize the loop invariant test value instead of checking |
| 518 | // against the original IV which is presumable in a register inside the loop. |
| 519 | // Such cases are presumably rare, and hint at missing oppurtunities for |
| 520 | // other passes. |
| 521 | |
| 522 | if (SE->isLoopInvariant(S, L)) |
| 523 | // Note: This the SCEV variant, so the original Value* may be within the |
| 524 | // loop even though SCEV has proven it is loop invariant. |
| 525 | return true; |
| 526 | |
| 527 | // Handle a particular important case which SCEV doesn't yet know about which |
| 528 | // shows up in range checks on arrays with immutable lengths. |
| 529 | // TODO: This should be sunk inside SCEV. |
| 530 | if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Val: S)) |
| 531 | if (const auto *LI = dyn_cast<LoadInst>(Val: U->getValue())) |
| 532 | if (LI->isUnordered() && L->hasLoopInvariantOperands(I: LI)) |
| 533 | if (!isModSet(MRI: AA->getModRefInfoMask(P: LI->getOperand(i_nocapture: 0))) || |
| 534 | LI->hasMetadata(KindID: LLVMContext::MD_invariant_load)) |
| 535 | return true; |
| 536 | return false; |
| 537 | } |
| 538 | |
| 539 | std::optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop( |
| 540 | LoopICmp LatchCheck, LoopICmp RangeCheck, SCEVExpander &Expander, |
| 541 | Instruction *Guard) { |
| 542 | auto *Ty = RangeCheck.IV->getType(); |
| 543 | // Generate the widened condition for the forward loop: |
| 544 | // guardStart u< guardLimit && |
| 545 | // latchLimit <pred> guardLimit - 1 - guardStart + latchStart |
| 546 | // where <pred> depends on the latch condition predicate. See the file |
| 547 | // header comment for the reasoning. |
| 548 | // guardLimit - guardStart + latchStart - 1 |
| 549 | const SCEV *GuardStart = RangeCheck.IV->getStart(); |
| 550 | const SCEV *GuardLimit = RangeCheck.Limit; |
| 551 | const SCEV *LatchStart = LatchCheck.IV->getStart(); |
| 552 | const SCEV *LatchLimit = LatchCheck.Limit; |
| 553 | // Subtlety: We need all the values to be *invariant* across all iterations, |
| 554 | // but we only need to check expansion safety for those which *aren't* |
| 555 | // already guaranteed to dominate the guard. |
| 556 | if (!isLoopInvariantValue(S: GuardStart) || |
| 557 | !isLoopInvariantValue(S: GuardLimit) || |
| 558 | !isLoopInvariantValue(S: LatchStart) || |
| 559 | !isLoopInvariantValue(S: LatchLimit)) { |
| 560 | LLVM_DEBUG(dbgs() << "Can't expand limit check!\n" ); |
| 561 | return std::nullopt; |
| 562 | } |
| 563 | if (!Expander.isSafeToExpandAt(S: LatchStart, InsertionPoint: Guard) || |
| 564 | !Expander.isSafeToExpandAt(S: LatchLimit, InsertionPoint: Guard)) { |
| 565 | LLVM_DEBUG(dbgs() << "Can't expand limit check!\n" ); |
| 566 | return std::nullopt; |
| 567 | } |
| 568 | |
| 569 | // guardLimit - guardStart + latchStart - 1 |
| 570 | const SCEV *RHS = |
| 571 | SE->getAddExpr(LHS: SE->getMinusSCEV(LHS: GuardLimit, RHS: GuardStart), |
| 572 | RHS: SE->getMinusSCEV(LHS: LatchStart, RHS: SE->getOne(Ty))); |
| 573 | auto LimitCheckPred = |
| 574 | ICmpInst::getFlippedStrictnessPredicate(pred: LatchCheck.Pred); |
| 575 | |
| 576 | LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n" ); |
| 577 | LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n" ); |
| 578 | LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n" ); |
| 579 | |
| 580 | auto *LimitCheck = |
| 581 | expandCheck(Expander, Guard, Pred: LimitCheckPred, LHS: LatchLimit, RHS); |
| 582 | auto *FirstIterationCheck = expandCheck(Expander, Guard, Pred: RangeCheck.Pred, |
| 583 | LHS: GuardStart, RHS: GuardLimit); |
| 584 | IRBuilder<> Builder(findInsertPt(Use: Guard, Ops: {FirstIterationCheck, LimitCheck})); |
| 585 | return Builder.CreateFreeze( |
| 586 | V: Builder.CreateAnd(LHS: FirstIterationCheck, RHS: LimitCheck)); |
| 587 | } |
| 588 | |
| 589 | std::optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop( |
| 590 | LoopICmp LatchCheck, LoopICmp RangeCheck, SCEVExpander &Expander, |
| 591 | Instruction *Guard) { |
| 592 | auto *Ty = RangeCheck.IV->getType(); |
| 593 | const SCEV *GuardStart = RangeCheck.IV->getStart(); |
| 594 | const SCEV *GuardLimit = RangeCheck.Limit; |
| 595 | const SCEV *LatchStart = LatchCheck.IV->getStart(); |
| 596 | const SCEV *LatchLimit = LatchCheck.Limit; |
| 597 | // Subtlety: We need all the values to be *invariant* across all iterations, |
| 598 | // but we only need to check expansion safety for those which *aren't* |
| 599 | // already guaranteed to dominate the guard. |
| 600 | if (!isLoopInvariantValue(S: GuardStart) || |
| 601 | !isLoopInvariantValue(S: GuardLimit) || |
| 602 | !isLoopInvariantValue(S: LatchStart) || |
| 603 | !isLoopInvariantValue(S: LatchLimit)) { |
| 604 | LLVM_DEBUG(dbgs() << "Can't expand limit check!\n" ); |
| 605 | return std::nullopt; |
| 606 | } |
| 607 | if (!Expander.isSafeToExpandAt(S: LatchStart, InsertionPoint: Guard) || |
| 608 | !Expander.isSafeToExpandAt(S: LatchLimit, InsertionPoint: Guard)) { |
| 609 | LLVM_DEBUG(dbgs() << "Can't expand limit check!\n" ); |
| 610 | return std::nullopt; |
| 611 | } |
| 612 | // The decrement of the latch check IV should be the same as the |
| 613 | // rangeCheckIV. |
| 614 | auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(SE&: *SE); |
| 615 | if (RangeCheck.IV != PostDecLatchCheckIV) { |
| 616 | LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: " |
| 617 | << *PostDecLatchCheckIV |
| 618 | << " and RangeCheckIV: " << *RangeCheck.IV << "\n" ); |
| 619 | return std::nullopt; |
| 620 | } |
| 621 | |
| 622 | // Generate the widened condition for CountDownLoop: |
| 623 | // guardStart u< guardLimit && |
| 624 | // latchLimit <pred> 1. |
| 625 | // See the header comment for reasoning of the checks. |
| 626 | auto LimitCheckPred = |
| 627 | ICmpInst::getFlippedStrictnessPredicate(pred: LatchCheck.Pred); |
| 628 | auto *FirstIterationCheck = expandCheck(Expander, Guard, |
| 629 | Pred: ICmpInst::ICMP_ULT, |
| 630 | LHS: GuardStart, RHS: GuardLimit); |
| 631 | auto *LimitCheck = expandCheck(Expander, Guard, Pred: LimitCheckPred, LHS: LatchLimit, |
| 632 | RHS: SE->getOne(Ty)); |
| 633 | IRBuilder<> Builder(findInsertPt(Use: Guard, Ops: {FirstIterationCheck, LimitCheck})); |
| 634 | return Builder.CreateFreeze( |
| 635 | V: Builder.CreateAnd(LHS: FirstIterationCheck, RHS: LimitCheck)); |
| 636 | } |
| 637 | |
| 638 | static void normalizePredicate(ScalarEvolution *SE, Loop *L, |
| 639 | LoopICmp& RC) { |
| 640 | // LFTR canonicalizes checks to the ICMP_NE/EQ form; normalize back to the |
| 641 | // ULT/UGE form for ease of handling by our caller. |
| 642 | if (ICmpInst::isEquality(P: RC.Pred) && |
| 643 | RC.IV->getStepRecurrence(SE&: *SE)->isOne() && |
| 644 | SE->isKnownPredicate(Pred: ICmpInst::ICMP_ULE, LHS: RC.IV->getStart(), RHS: RC.Limit)) |
| 645 | RC.Pred = RC.Pred == ICmpInst::ICMP_NE ? |
| 646 | ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE; |
| 647 | } |
| 648 | |
| 649 | /// If ICI can be widened to a loop invariant condition emits the loop |
| 650 | /// invariant condition in the loop preheader and return it, otherwise |
| 651 | /// returns std::nullopt. |
| 652 | std::optional<Value *> |
| 653 | LoopPredication::widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander, |
| 654 | Instruction *Guard) { |
| 655 | LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n" ); |
| 656 | LLVM_DEBUG(ICI->dump()); |
| 657 | |
| 658 | // parseLoopStructure guarantees that the latch condition is: |
| 659 | // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=. |
| 660 | // We are looking for the range checks of the form: |
| 661 | // i u< guardLimit |
| 662 | auto RangeCheck = parseLoopICmp(ICI); |
| 663 | if (!RangeCheck) { |
| 664 | LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n" ); |
| 665 | return std::nullopt; |
| 666 | } |
| 667 | LLVM_DEBUG(dbgs() << "Guard check:\n" ); |
| 668 | LLVM_DEBUG(RangeCheck->dump()); |
| 669 | if (RangeCheck->Pred != ICmpInst::ICMP_ULT) { |
| 670 | LLVM_DEBUG(dbgs() << "Unsupported range check predicate(" |
| 671 | << RangeCheck->Pred << ")!\n" ); |
| 672 | return std::nullopt; |
| 673 | } |
| 674 | auto *RangeCheckIV = RangeCheck->IV; |
| 675 | if (!RangeCheckIV->isAffine()) { |
| 676 | LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n" ); |
| 677 | return std::nullopt; |
| 678 | } |
| 679 | const SCEV *Step = RangeCheckIV->getStepRecurrence(SE&: *SE); |
| 680 | // We cannot just compare with latch IV step because the latch and range IVs |
| 681 | // may have different types. |
| 682 | if (!isSupportedStep(Step)) { |
| 683 | LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n" ); |
| 684 | return std::nullopt; |
| 685 | } |
| 686 | auto *Ty = RangeCheckIV->getType(); |
| 687 | auto CurrLatchCheckOpt = generateLoopLatchCheck(DL: *DL, SE&: *SE, LatchCheck, RangeCheckType: Ty); |
| 688 | if (!CurrLatchCheckOpt) { |
| 689 | LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check " |
| 690 | "corresponding to range type: " |
| 691 | << *Ty << "\n" ); |
| 692 | return std::nullopt; |
| 693 | } |
| 694 | |
| 695 | LoopICmp CurrLatchCheck = *CurrLatchCheckOpt; |
| 696 | // At this point, the range and latch step should have the same type, but need |
| 697 | // not have the same value (we support both 1 and -1 steps). |
| 698 | assert(Step->getType() == |
| 699 | CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() && |
| 700 | "Range and latch steps should be of same type!" ); |
| 701 | if (Step != CurrLatchCheck.IV->getStepRecurrence(SE&: *SE)) { |
| 702 | LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n" ); |
| 703 | return std::nullopt; |
| 704 | } |
| 705 | |
| 706 | if (Step->isOne()) |
| 707 | return widenICmpRangeCheckIncrementingLoop(LatchCheck: CurrLatchCheck, RangeCheck: *RangeCheck, |
| 708 | Expander, Guard); |
| 709 | else { |
| 710 | assert(Step->isAllOnesValue() && "Step should be -1!" ); |
| 711 | return widenICmpRangeCheckDecrementingLoop(LatchCheck: CurrLatchCheck, RangeCheck: *RangeCheck, |
| 712 | Expander, Guard); |
| 713 | } |
| 714 | } |
| 715 | |
| 716 | void LoopPredication::widenChecks(SmallVectorImpl<Value *> &Checks, |
| 717 | SmallVectorImpl<Value *> &WidenedChecks, |
| 718 | SCEVExpander &Expander, Instruction *Guard) { |
| 719 | for (auto &Check : Checks) |
| 720 | if (ICmpInst *ICI = dyn_cast<ICmpInst>(Val: Check)) |
| 721 | if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, Guard)) { |
| 722 | WidenedChecks.push_back(Elt: Check); |
| 723 | Check = *NewRangeCheck; |
| 724 | } |
| 725 | } |
| 726 | |
| 727 | bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard, |
| 728 | SCEVExpander &Expander) { |
| 729 | LLVM_DEBUG(dbgs() << "Processing guard:\n" ); |
| 730 | LLVM_DEBUG(Guard->dump()); |
| 731 | |
| 732 | TotalConsidered++; |
| 733 | SmallVector<Value *, 4> Checks; |
| 734 | SmallVector<Value *> WidenedChecks; |
| 735 | parseWidenableGuard(U: Guard, Checks); |
| 736 | widenChecks(Checks, WidenedChecks, Expander, Guard); |
| 737 | if (WidenedChecks.empty()) |
| 738 | return false; |
| 739 | |
| 740 | TotalWidened += WidenedChecks.size(); |
| 741 | |
| 742 | // Emit the new guard condition |
| 743 | IRBuilder<> Builder(findInsertPt(Use: Guard, Ops: Checks)); |
| 744 | Value *AllChecks = Builder.CreateAnd(Ops: Checks); |
| 745 | auto *OldCond = Guard->getOperand(i_nocapture: 0); |
| 746 | Guard->setOperand(i_nocapture: 0, Val_nocapture: AllChecks); |
| 747 | if (InsertAssumesOfPredicatedGuardsConditions) { |
| 748 | Builder.SetInsertPoint(&*++BasicBlock::iterator(Guard)); |
| 749 | Builder.CreateAssumption(Cond: OldCond); |
| 750 | } |
| 751 | RecursivelyDeleteTriviallyDeadInstructions(V: OldCond, TLI: nullptr /* TLI */, MSSAU); |
| 752 | |
| 753 | LLVM_DEBUG(dbgs() << "Widened checks = " << WidenedChecks.size() << "\n" ); |
| 754 | return true; |
| 755 | } |
| 756 | |
| 757 | bool LoopPredication::widenWidenableBranchGuardConditions( |
| 758 | BranchInst *BI, SCEVExpander &Expander) { |
| 759 | assert(isGuardAsWidenableBranch(BI) && "Must be!" ); |
| 760 | LLVM_DEBUG(dbgs() << "Processing guard:\n" ); |
| 761 | LLVM_DEBUG(BI->dump()); |
| 762 | |
| 763 | TotalConsidered++; |
| 764 | SmallVector<Value *, 4> Checks; |
| 765 | SmallVector<Value *> WidenedChecks; |
| 766 | parseWidenableGuard(U: BI, Checks); |
| 767 | // At the moment, our matching logic for wideable conditions implicitly |
| 768 | // assumes we preserve the form: (br (and Cond, WC())). FIXME |
| 769 | auto WC = extractWidenableCondition(U: BI); |
| 770 | Checks.push_back(Elt: WC); |
| 771 | widenChecks(Checks, WidenedChecks, Expander, Guard: BI); |
| 772 | if (WidenedChecks.empty()) |
| 773 | return false; |
| 774 | |
| 775 | TotalWidened += WidenedChecks.size(); |
| 776 | |
| 777 | // Emit the new guard condition |
| 778 | IRBuilder<> Builder(findInsertPt(Use: BI, Ops: Checks)); |
| 779 | Value *AllChecks = Builder.CreateAnd(Ops: Checks); |
| 780 | auto *OldCond = BI->getCondition(); |
| 781 | BI->setCondition(AllChecks); |
| 782 | if (InsertAssumesOfPredicatedGuardsConditions) { |
| 783 | BasicBlock *IfTrueBB = BI->getSuccessor(i: 0); |
| 784 | Builder.SetInsertPoint(TheBB: IfTrueBB, IP: IfTrueBB->getFirstInsertionPt()); |
| 785 | // If this block has other predecessors, we might not be able to use Cond. |
| 786 | // In this case, create a Phi where every other input is `true` and input |
| 787 | // from guard block is Cond. |
| 788 | Value *AssumeCond = Builder.CreateAnd(Ops: WidenedChecks); |
| 789 | if (!IfTrueBB->getUniquePredecessor()) { |
| 790 | auto *GuardBB = BI->getParent(); |
| 791 | auto *PN = Builder.CreatePHI(Ty: AssumeCond->getType(), NumReservedValues: pred_size(BB: IfTrueBB), |
| 792 | Name: "assume.cond" ); |
| 793 | for (auto *Pred : predecessors(BB: IfTrueBB)) |
| 794 | PN->addIncoming(V: Pred == GuardBB ? AssumeCond : Builder.getTrue(), BB: Pred); |
| 795 | AssumeCond = PN; |
| 796 | } |
| 797 | Builder.CreateAssumption(Cond: AssumeCond); |
| 798 | } |
| 799 | RecursivelyDeleteTriviallyDeadInstructions(V: OldCond, TLI: nullptr /* TLI */, MSSAU); |
| 800 | assert(isGuardAsWidenableBranch(BI) && |
| 801 | "Stopped being a guard after transform?" ); |
| 802 | |
| 803 | LLVM_DEBUG(dbgs() << "Widened checks = " << WidenedChecks.size() << "\n" ); |
| 804 | return true; |
| 805 | } |
| 806 | |
| 807 | std::optional<LoopICmp> LoopPredication::parseLoopLatchICmp() { |
| 808 | using namespace PatternMatch; |
| 809 | |
| 810 | BasicBlock *LoopLatch = L->getLoopLatch(); |
| 811 | if (!LoopLatch) { |
| 812 | LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n" ); |
| 813 | return std::nullopt; |
| 814 | } |
| 815 | |
| 816 | auto *BI = dyn_cast<BranchInst>(Val: LoopLatch->getTerminator()); |
| 817 | if (!BI || !BI->isConditional()) { |
| 818 | LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n" ); |
| 819 | return std::nullopt; |
| 820 | } |
| 821 | BasicBlock *TrueDest = BI->getSuccessor(i: 0); |
| 822 | assert( |
| 823 | (TrueDest == L->getHeader() || BI->getSuccessor(1) == L->getHeader()) && |
| 824 | "One of the latch's destinations must be the header" ); |
| 825 | |
| 826 | auto *ICI = dyn_cast<ICmpInst>(Val: BI->getCondition()); |
| 827 | if (!ICI) { |
| 828 | LLVM_DEBUG(dbgs() << "Failed to match the latch condition!\n" ); |
| 829 | return std::nullopt; |
| 830 | } |
| 831 | auto Result = parseLoopICmp(ICI); |
| 832 | if (!Result) { |
| 833 | LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n" ); |
| 834 | return std::nullopt; |
| 835 | } |
| 836 | |
| 837 | if (TrueDest != L->getHeader()) |
| 838 | Result->Pred = ICmpInst::getInversePredicate(pred: Result->Pred); |
| 839 | |
| 840 | // Check affine first, so if it's not we don't try to compute the step |
| 841 | // recurrence. |
| 842 | if (!Result->IV->isAffine()) { |
| 843 | LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n" ); |
| 844 | return std::nullopt; |
| 845 | } |
| 846 | |
| 847 | const SCEV *Step = Result->IV->getStepRecurrence(SE&: *SE); |
| 848 | if (!isSupportedStep(Step)) { |
| 849 | LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n" ); |
| 850 | return std::nullopt; |
| 851 | } |
| 852 | |
| 853 | auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) { |
| 854 | if (Step->isOne()) { |
| 855 | return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT && |
| 856 | Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE; |
| 857 | } else { |
| 858 | assert(Step->isAllOnesValue() && "Step should be -1!" ); |
| 859 | return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT && |
| 860 | Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE; |
| 861 | } |
| 862 | }; |
| 863 | |
| 864 | normalizePredicate(SE, L, RC&: *Result); |
| 865 | if (IsUnsupportedPredicate(Step, Result->Pred)) { |
| 866 | LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred |
| 867 | << ")!\n" ); |
| 868 | return std::nullopt; |
| 869 | } |
| 870 | |
| 871 | return Result; |
| 872 | } |
| 873 | |
| 874 | bool LoopPredication::isLoopProfitableToPredicate() { |
| 875 | if (SkipProfitabilityChecks) |
| 876 | return true; |
| 877 | |
| 878 | SmallVector<std::pair<BasicBlock *, BasicBlock *>, 8> ExitEdges; |
| 879 | L->getExitEdges(ExitEdges); |
| 880 | // If there is only one exiting edge in the loop, it is always profitable to |
| 881 | // predicate the loop. |
| 882 | if (ExitEdges.size() == 1) |
| 883 | return true; |
| 884 | |
| 885 | // Calculate the exiting probabilities of all exiting edges from the loop, |
| 886 | // starting with the LatchExitProbability. |
| 887 | // Heuristic for profitability: If any of the exiting blocks' probability of |
| 888 | // exiting the loop is larger than exiting through the latch block, it's not |
| 889 | // profitable to predicate the loop. |
| 890 | auto *LatchBlock = L->getLoopLatch(); |
| 891 | assert(LatchBlock && "Should have a single latch at this point!" ); |
| 892 | auto *LatchTerm = LatchBlock->getTerminator(); |
| 893 | assert(LatchTerm->getNumSuccessors() == 2 && |
| 894 | "expected to be an exiting block with 2 succs!" ); |
| 895 | unsigned LatchBrExitIdx = |
| 896 | LatchTerm->getSuccessor(Idx: 0) == L->getHeader() ? 1 : 0; |
| 897 | // We compute branch probabilities without BPI. We do not rely on BPI since |
| 898 | // Loop predication is usually run in an LPM and BPI is only preserved |
| 899 | // lossily within loop pass managers, while BPI has an inherent notion of |
| 900 | // being complete for an entire function. |
| 901 | |
| 902 | // If the latch exits into a deoptimize or an unreachable block, do not |
| 903 | // predicate on that latch check. |
| 904 | auto *LatchExitBlock = LatchTerm->getSuccessor(Idx: LatchBrExitIdx); |
| 905 | if (isa<UnreachableInst>(Val: LatchTerm) || |
| 906 | LatchExitBlock->getTerminatingDeoptimizeCall()) |
| 907 | return false; |
| 908 | |
| 909 | // Latch terminator has no valid profile data, so nothing to check |
| 910 | // profitability on. |
| 911 | if (!hasValidBranchWeightMD(I: *LatchTerm)) |
| 912 | return true; |
| 913 | |
| 914 | auto ComputeBranchProbability = |
| 915 | [&](const BasicBlock *ExitingBlock, |
| 916 | const BasicBlock *ExitBlock) -> BranchProbability { |
| 917 | auto *Term = ExitingBlock->getTerminator(); |
| 918 | unsigned NumSucc = Term->getNumSuccessors(); |
| 919 | if (MDNode *ProfileData = getValidBranchWeightMDNode(I: *Term)) { |
| 920 | SmallVector<uint32_t> Weights; |
| 921 | extractBranchWeights(ProfileData, Weights); |
| 922 | uint64_t Numerator = 0, Denominator = 0; |
| 923 | for (auto [i, Weight] : llvm::enumerate(First&: Weights)) { |
| 924 | if (Term->getSuccessor(Idx: i) == ExitBlock) |
| 925 | Numerator += Weight; |
| 926 | Denominator += Weight; |
| 927 | } |
| 928 | // If all weights are zero act as if there was no profile data |
| 929 | if (Denominator == 0) |
| 930 | return BranchProbability::getBranchProbability(Numerator: 1, Denominator: NumSucc); |
| 931 | return BranchProbability::getBranchProbability(Numerator, Denominator); |
| 932 | } else { |
| 933 | assert(LatchBlock != ExitingBlock && |
| 934 | "Latch term should always have profile data!" ); |
| 935 | // No profile data, so we choose the weight as 1/num_of_succ(Src) |
| 936 | return BranchProbability::getBranchProbability(Numerator: 1, Denominator: NumSucc); |
| 937 | } |
| 938 | }; |
| 939 | |
| 940 | BranchProbability LatchExitProbability = |
| 941 | ComputeBranchProbability(LatchBlock, LatchExitBlock); |
| 942 | |
| 943 | // Protect against degenerate inputs provided by the user. Providing a value |
| 944 | // less than one, can invert the definition of profitable loop predication. |
| 945 | float ScaleFactor = LatchExitProbabilityScale; |
| 946 | if (ScaleFactor < 1) { |
| 947 | LLVM_DEBUG( |
| 948 | dbgs() |
| 949 | << "Ignored user setting for loop-predication-latch-probability-scale: " |
| 950 | << LatchExitProbabilityScale << "\n" ); |
| 951 | LLVM_DEBUG(dbgs() << "The value is set to 1.0\n" ); |
| 952 | ScaleFactor = 1.0; |
| 953 | } |
| 954 | const auto LatchProbabilityThreshold = LatchExitProbability * ScaleFactor; |
| 955 | |
| 956 | for (const auto &ExitEdge : ExitEdges) { |
| 957 | BranchProbability ExitingBlockProbability = |
| 958 | ComputeBranchProbability(ExitEdge.first, ExitEdge.second); |
| 959 | // Some exiting edge has higher probability than the latch exiting edge. |
| 960 | // No longer profitable to predicate. |
| 961 | if (ExitingBlockProbability > LatchProbabilityThreshold) |
| 962 | return false; |
| 963 | } |
| 964 | |
| 965 | // We have concluded that the most probable way to exit from the |
| 966 | // loop is through the latch (or there's no profile information and all |
| 967 | // exits are equally likely). |
| 968 | return true; |
| 969 | } |
| 970 | |
| 971 | /// If we can (cheaply) find a widenable branch which controls entry into the |
| 972 | /// loop, return it. |
| 973 | static BranchInst *FindWidenableTerminatorAboveLoop(Loop *L, LoopInfo &LI) { |
| 974 | // Walk back through any unconditional executed blocks and see if we can find |
| 975 | // a widenable condition which seems to control execution of this loop. Note |
| 976 | // that we predict that maythrow calls are likely untaken and thus that it's |
| 977 | // profitable to widen a branch before a maythrow call with a condition |
| 978 | // afterwards even though that may cause the slow path to run in a case where |
| 979 | // it wouldn't have otherwise. |
| 980 | BasicBlock *BB = L->getLoopPreheader(); |
| 981 | if (!BB) |
| 982 | return nullptr; |
| 983 | do { |
| 984 | if (BasicBlock *Pred = BB->getSinglePredecessor()) |
| 985 | if (BB == Pred->getSingleSuccessor()) { |
| 986 | BB = Pred; |
| 987 | continue; |
| 988 | } |
| 989 | break; |
| 990 | } while (true); |
| 991 | |
| 992 | if (BasicBlock *Pred = BB->getSinglePredecessor()) { |
| 993 | if (auto *BI = dyn_cast<BranchInst>(Val: Pred->getTerminator())) |
| 994 | if (BI->getSuccessor(i: 0) == BB && isWidenableBranch(U: BI)) |
| 995 | return BI; |
| 996 | } |
| 997 | return nullptr; |
| 998 | } |
| 999 | |
| 1000 | /// Return the minimum of all analyzeable exit counts. This is an upper bound |
| 1001 | /// on the actual exit count. If there are not at least two analyzeable exits, |
| 1002 | /// returns SCEVCouldNotCompute. |
| 1003 | static const SCEV *getMinAnalyzeableBackedgeTakenCount(ScalarEvolution &SE, |
| 1004 | DominatorTree &DT, |
| 1005 | Loop *L) { |
| 1006 | SmallVector<BasicBlock *, 16> ExitingBlocks; |
| 1007 | L->getExitingBlocks(ExitingBlocks); |
| 1008 | |
| 1009 | SmallVector<const SCEV *, 4> ExitCounts; |
| 1010 | for (BasicBlock *ExitingBB : ExitingBlocks) { |
| 1011 | const SCEV *ExitCount = SE.getExitCount(L, ExitingBlock: ExitingBB); |
| 1012 | if (isa<SCEVCouldNotCompute>(Val: ExitCount)) |
| 1013 | continue; |
| 1014 | assert(DT.dominates(ExitingBB, L->getLoopLatch()) && |
| 1015 | "We should only have known counts for exiting blocks that " |
| 1016 | "dominate latch!" ); |
| 1017 | ExitCounts.push_back(Elt: ExitCount); |
| 1018 | } |
| 1019 | if (ExitCounts.size() < 2) |
| 1020 | return SE.getCouldNotCompute(); |
| 1021 | return SE.getUMinFromMismatchedTypes(Ops&: ExitCounts); |
| 1022 | } |
| 1023 | |
| 1024 | /// This implements an analogous, but entirely distinct transform from the main |
| 1025 | /// loop predication transform. This one is phrased in terms of using a |
| 1026 | /// widenable branch *outside* the loop to allow us to simplify loop exits in a |
| 1027 | /// following loop. This is close in spirit to the IndVarSimplify transform |
| 1028 | /// of the same name, but is materially different widening loosens legality |
| 1029 | /// sharply. |
| 1030 | bool LoopPredication::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) { |
| 1031 | // The transformation performed here aims to widen a widenable condition |
| 1032 | // above the loop such that all analyzeable exit leading to deopt are dead. |
| 1033 | // It assumes that the latch is the dominant exit for profitability and that |
| 1034 | // exits branching to deoptimizing blocks are rarely taken. It relies on the |
| 1035 | // semantics of widenable expressions for legality. (i.e. being able to fall |
| 1036 | // down the widenable path spuriously allows us to ignore exit order, |
| 1037 | // unanalyzeable exits, side effects, exceptional exits, and other challenges |
| 1038 | // which restrict the applicability of the non-WC based version of this |
| 1039 | // transform in IndVarSimplify.) |
| 1040 | // |
| 1041 | // NOTE ON POISON/UNDEF - We're hoisting an expression above guards which may |
| 1042 | // imply flags on the expression being hoisted and inserting new uses (flags |
| 1043 | // are only correct for current uses). The result is that we may be |
| 1044 | // inserting a branch on the value which can be either poison or undef. In |
| 1045 | // this case, the branch can legally go either way; we just need to avoid |
| 1046 | // introducing UB. This is achieved through the use of the freeze |
| 1047 | // instruction. |
| 1048 | |
| 1049 | SmallVector<BasicBlock *, 16> ExitingBlocks; |
| 1050 | L->getExitingBlocks(ExitingBlocks); |
| 1051 | |
| 1052 | if (ExitingBlocks.empty()) |
| 1053 | return false; // Nothing to do. |
| 1054 | |
| 1055 | auto *Latch = L->getLoopLatch(); |
| 1056 | if (!Latch) |
| 1057 | return false; |
| 1058 | |
| 1059 | auto *WidenableBR = FindWidenableTerminatorAboveLoop(L, LI&: *LI); |
| 1060 | if (!WidenableBR) |
| 1061 | return false; |
| 1062 | |
| 1063 | const SCEV *LatchEC = SE->getExitCount(L, ExitingBlock: Latch); |
| 1064 | if (isa<SCEVCouldNotCompute>(Val: LatchEC)) |
| 1065 | return false; // profitability - want hot exit in analyzeable set |
| 1066 | |
| 1067 | // At this point, we have found an analyzeable latch, and a widenable |
| 1068 | // condition above the loop. If we have a widenable exit within the loop |
| 1069 | // (for which we can't compute exit counts), drop the ability to further |
| 1070 | // widen so that we gain ability to analyze it's exit count and perform this |
| 1071 | // transform. TODO: It'd be nice to know for sure the exit became |
| 1072 | // analyzeable after dropping widenability. |
| 1073 | bool ChangedLoop = false; |
| 1074 | |
| 1075 | for (auto *ExitingBB : ExitingBlocks) { |
| 1076 | if (LI->getLoopFor(BB: ExitingBB) != L) |
| 1077 | continue; |
| 1078 | |
| 1079 | auto *BI = dyn_cast<BranchInst>(Val: ExitingBB->getTerminator()); |
| 1080 | if (!BI) |
| 1081 | continue; |
| 1082 | |
| 1083 | if (auto WC = extractWidenableCondition(U: BI)) |
| 1084 | if (L->contains(BB: BI->getSuccessor(i: 0))) { |
| 1085 | assert(WC->hasOneUse() && "Not appropriate widenable branch!" ); |
| 1086 | WC->user_back()->replaceUsesOfWith( |
| 1087 | From: WC, To: ConstantInt::getTrue(Context&: BI->getContext())); |
| 1088 | ChangedLoop = true; |
| 1089 | } |
| 1090 | } |
| 1091 | if (ChangedLoop) |
| 1092 | SE->forgetLoop(L); |
| 1093 | |
| 1094 | // The insertion point for the widening should be at the widenably call, not |
| 1095 | // at the WidenableBR. If we do this at the widenableBR, we can incorrectly |
| 1096 | // change a loop-invariant condition to a loop-varying one. |
| 1097 | auto *IP = cast<Instruction>(Val: WidenableBR->getCondition()); |
| 1098 | |
| 1099 | // The use of umin(all analyzeable exits) instead of latch is subtle, but |
| 1100 | // important for profitability. We may have a loop which hasn't been fully |
| 1101 | // canonicalized just yet. If the exit we chose to widen is provably never |
| 1102 | // taken, we want the widened form to *also* be provably never taken. We |
| 1103 | // can't guarantee this as a current unanalyzeable exit may later become |
| 1104 | // analyzeable, but we can at least avoid the obvious cases. |
| 1105 | const SCEV *MinEC = getMinAnalyzeableBackedgeTakenCount(SE&: *SE, DT&: *DT, L); |
| 1106 | if (isa<SCEVCouldNotCompute>(Val: MinEC) || MinEC->getType()->isPointerTy() || |
| 1107 | !SE->isLoopInvariant(S: MinEC, L) || |
| 1108 | !Rewriter.isSafeToExpandAt(S: MinEC, InsertionPoint: IP)) |
| 1109 | return ChangedLoop; |
| 1110 | |
| 1111 | Rewriter.setInsertPoint(IP); |
| 1112 | IRBuilder<> B(IP); |
| 1113 | |
| 1114 | bool InvalidateLoop = false; |
| 1115 | Value *MinECV = nullptr; // lazily generated if needed |
| 1116 | for (BasicBlock *ExitingBB : ExitingBlocks) { |
| 1117 | // If our exiting block exits multiple loops, we can only rewrite the |
| 1118 | // innermost one. Otherwise, we're changing how many times the innermost |
| 1119 | // loop runs before it exits. |
| 1120 | if (LI->getLoopFor(BB: ExitingBB) != L) |
| 1121 | continue; |
| 1122 | |
| 1123 | // Can't rewrite non-branch yet. |
| 1124 | auto *BI = dyn_cast<BranchInst>(Val: ExitingBB->getTerminator()); |
| 1125 | if (!BI) |
| 1126 | continue; |
| 1127 | |
| 1128 | // If already constant, nothing to do. |
| 1129 | if (isa<Constant>(Val: BI->getCondition())) |
| 1130 | continue; |
| 1131 | |
| 1132 | const SCEV *ExitCount = SE->getExitCount(L, ExitingBlock: ExitingBB); |
| 1133 | if (isa<SCEVCouldNotCompute>(Val: ExitCount) || |
| 1134 | ExitCount->getType()->isPointerTy() || |
| 1135 | !Rewriter.isSafeToExpandAt(S: ExitCount, InsertionPoint: WidenableBR)) |
| 1136 | continue; |
| 1137 | |
| 1138 | const bool ExitIfTrue = !L->contains(BB: *succ_begin(BB: ExitingBB)); |
| 1139 | BasicBlock *ExitBB = BI->getSuccessor(i: ExitIfTrue ? 0 : 1); |
| 1140 | if (!ExitBB->getPostdominatingDeoptimizeCall()) |
| 1141 | continue; |
| 1142 | |
| 1143 | /// Here we can be fairly sure that executing this exit will most likely |
| 1144 | /// lead to executing llvm.experimental.deoptimize. |
| 1145 | /// This is a profitability heuristic, not a legality constraint. |
| 1146 | |
| 1147 | // If we found a widenable exit condition, do two things: |
| 1148 | // 1) fold the widened exit test into the widenable condition |
| 1149 | // 2) fold the branch to untaken - avoids infinite looping |
| 1150 | |
| 1151 | Value *ECV = Rewriter.expandCodeFor(SH: ExitCount); |
| 1152 | if (!MinECV) |
| 1153 | MinECV = Rewriter.expandCodeFor(SH: MinEC); |
| 1154 | Value *RHS = MinECV; |
| 1155 | if (ECV->getType() != RHS->getType()) { |
| 1156 | Type *WiderTy = SE->getWiderType(Ty1: ECV->getType(), Ty2: RHS->getType()); |
| 1157 | ECV = B.CreateZExt(V: ECV, DestTy: WiderTy); |
| 1158 | RHS = B.CreateZExt(V: RHS, DestTy: WiderTy); |
| 1159 | } |
| 1160 | assert(!Latch || DT->dominates(ExitingBB, Latch)); |
| 1161 | Value *NewCond = B.CreateICmp(P: ICmpInst::ICMP_UGT, LHS: ECV, RHS); |
| 1162 | // Freeze poison or undef to an arbitrary bit pattern to ensure we can |
| 1163 | // branch without introducing UB. See NOTE ON POISON/UNDEF above for |
| 1164 | // context. |
| 1165 | NewCond = B.CreateFreeze(V: NewCond); |
| 1166 | |
| 1167 | widenWidenableBranch(WidenableBR, NewCond); |
| 1168 | |
| 1169 | Value *OldCond = BI->getCondition(); |
| 1170 | BI->setCondition(ConstantInt::get(Ty: OldCond->getType(), V: !ExitIfTrue)); |
| 1171 | InvalidateLoop = true; |
| 1172 | } |
| 1173 | |
| 1174 | if (InvalidateLoop) |
| 1175 | // We just mutated a bunch of loop exits changing there exit counts |
| 1176 | // widely. We need to force recomputation of the exit counts given these |
| 1177 | // changes. Note that all of the inserted exits are never taken, and |
| 1178 | // should be removed next time the CFG is modified. |
| 1179 | SE->forgetLoop(L); |
| 1180 | |
| 1181 | // Always return `true` since we have moved the WidenableBR's condition. |
| 1182 | return true; |
| 1183 | } |
| 1184 | |
| 1185 | bool LoopPredication::runOnLoop(Loop *Loop) { |
| 1186 | L = Loop; |
| 1187 | |
| 1188 | LLVM_DEBUG(dbgs() << "Analyzing " ); |
| 1189 | LLVM_DEBUG(L->dump()); |
| 1190 | |
| 1191 | Module *M = L->getHeader()->getModule(); |
| 1192 | |
| 1193 | // There is nothing to do if the module doesn't use guards |
| 1194 | auto *GuardDecl = |
| 1195 | Intrinsic::getDeclarationIfExists(M, id: Intrinsic::experimental_guard); |
| 1196 | bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty(); |
| 1197 | auto *WCDecl = Intrinsic::getDeclarationIfExists( |
| 1198 | M, id: Intrinsic::experimental_widenable_condition); |
| 1199 | bool HasWidenableConditions = |
| 1200 | PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty(); |
| 1201 | if (!HasIntrinsicGuards && !HasWidenableConditions) |
| 1202 | return false; |
| 1203 | |
| 1204 | DL = &M->getDataLayout(); |
| 1205 | |
| 1206 | Preheader = L->getLoopPreheader(); |
| 1207 | if (!Preheader) |
| 1208 | return false; |
| 1209 | |
| 1210 | auto LatchCheckOpt = parseLoopLatchICmp(); |
| 1211 | if (!LatchCheckOpt) |
| 1212 | return false; |
| 1213 | LatchCheck = *LatchCheckOpt; |
| 1214 | |
| 1215 | LLVM_DEBUG(dbgs() << "Latch check:\n" ); |
| 1216 | LLVM_DEBUG(LatchCheck.dump()); |
| 1217 | |
| 1218 | if (!isLoopProfitableToPredicate()) { |
| 1219 | LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n" ); |
| 1220 | return false; |
| 1221 | } |
| 1222 | // Collect all the guards into a vector and process later, so as not |
| 1223 | // to invalidate the instruction iterator. |
| 1224 | SmallVector<IntrinsicInst *, 4> Guards; |
| 1225 | SmallVector<BranchInst *, 4> GuardsAsWidenableBranches; |
| 1226 | for (const auto BB : L->blocks()) { |
| 1227 | for (auto &I : *BB) |
| 1228 | if (isGuard(U: &I)) |
| 1229 | Guards.push_back(Elt: cast<IntrinsicInst>(Val: &I)); |
| 1230 | if (PredicateWidenableBranchGuards && |
| 1231 | isGuardAsWidenableBranch(U: BB->getTerminator())) |
| 1232 | GuardsAsWidenableBranches.push_back( |
| 1233 | Elt: cast<BranchInst>(Val: BB->getTerminator())); |
| 1234 | } |
| 1235 | |
| 1236 | SCEVExpander Expander(*SE, *DL, "loop-predication" ); |
| 1237 | bool Changed = false; |
| 1238 | for (auto *Guard : Guards) |
| 1239 | Changed |= widenGuardConditions(Guard, Expander); |
| 1240 | for (auto *Guard : GuardsAsWidenableBranches) |
| 1241 | Changed |= widenWidenableBranchGuardConditions(BI: Guard, Expander); |
| 1242 | Changed |= predicateLoopExits(L, Rewriter&: Expander); |
| 1243 | |
| 1244 | if (MSSAU && VerifyMemorySSA) |
| 1245 | MSSAU->getMemorySSA()->verifyMemorySSA(); |
| 1246 | return Changed; |
| 1247 | } |
| 1248 | |