| 1 | //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This transformation analyzes and transforms the induction variables (and |
| 10 | // computations derived from them) into forms suitable for efficient execution |
| 11 | // on the target. |
| 12 | // |
| 13 | // This pass performs a strength reduction on array references inside loops that |
| 14 | // have as one or more of their components the loop induction variable, it |
| 15 | // rewrites expressions to take advantage of scaled-index addressing modes |
| 16 | // available on the target, and it performs a variety of other optimizations |
| 17 | // related to loop induction variables. |
| 18 | // |
| 19 | // Terminology note: this code has a lot of handling for "post-increment" or |
| 20 | // "post-inc" users. This is not talking about post-increment addressing modes; |
| 21 | // it is instead talking about code like this: |
| 22 | // |
| 23 | // %i = phi [ 0, %entry ], [ %i.next, %latch ] |
| 24 | // ... |
| 25 | // %i.next = add %i, 1 |
| 26 | // %c = icmp eq %i.next, %n |
| 27 | // |
| 28 | // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however |
| 29 | // it's useful to think about these as the same register, with some uses using |
| 30 | // the value of the register before the add and some using it after. In this |
| 31 | // example, the icmp is a post-increment user, since it uses %i.next, which is |
| 32 | // the value of the induction variable after the increment. The other common |
| 33 | // case of post-increment users is users outside the loop. |
| 34 | // |
| 35 | // TODO: More sophistication in the way Formulae are generated and filtered. |
| 36 | // |
| 37 | // TODO: Handle multiple loops at a time. |
| 38 | // |
| 39 | // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead |
| 40 | // of a GlobalValue? |
| 41 | // |
| 42 | // TODO: When truncation is free, truncate ICmp users' operands to make it a |
| 43 | // smaller encoding (on x86 at least). |
| 44 | // |
| 45 | // TODO: When a negated register is used by an add (such as in a list of |
| 46 | // multiple base registers, or as the increment expression in an addrec), |
| 47 | // we may not actually need both reg and (-1 * reg) in registers; the |
| 48 | // negation can be implemented by using a sub instead of an add. The |
| 49 | // lack of support for taking this into consideration when making |
| 50 | // register pressure decisions is partly worked around by the "Special" |
| 51 | // use kind. |
| 52 | // |
| 53 | //===----------------------------------------------------------------------===// |
| 54 | |
| 55 | #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" |
| 56 | #include "llvm/ADT/APInt.h" |
| 57 | #include "llvm/ADT/DenseMap.h" |
| 58 | #include "llvm/ADT/DenseSet.h" |
| 59 | #include "llvm/ADT/PointerIntPair.h" |
| 60 | #include "llvm/ADT/STLExtras.h" |
| 61 | #include "llvm/ADT/SetVector.h" |
| 62 | #include "llvm/ADT/SmallBitVector.h" |
| 63 | #include "llvm/ADT/SmallPtrSet.h" |
| 64 | #include "llvm/ADT/SmallSet.h" |
| 65 | #include "llvm/ADT/SmallVector.h" |
| 66 | #include "llvm/ADT/Statistic.h" |
| 67 | #include "llvm/ADT/iterator_range.h" |
| 68 | #include "llvm/Analysis/AssumptionCache.h" |
| 69 | #include "llvm/Analysis/DomTreeUpdater.h" |
| 70 | #include "llvm/Analysis/IVUsers.h" |
| 71 | #include "llvm/Analysis/LoopAnalysisManager.h" |
| 72 | #include "llvm/Analysis/LoopInfo.h" |
| 73 | #include "llvm/Analysis/LoopPass.h" |
| 74 | #include "llvm/Analysis/MemorySSA.h" |
| 75 | #include "llvm/Analysis/MemorySSAUpdater.h" |
| 76 | #include "llvm/Analysis/ScalarEvolution.h" |
| 77 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| 78 | #include "llvm/Analysis/ScalarEvolutionNormalization.h" |
| 79 | #include "llvm/Analysis/ScalarEvolutionPatternMatch.h" |
| 80 | #include "llvm/Analysis/TargetLibraryInfo.h" |
| 81 | #include "llvm/Analysis/TargetTransformInfo.h" |
| 82 | #include "llvm/Analysis/ValueTracking.h" |
| 83 | #include "llvm/BinaryFormat/Dwarf.h" |
| 84 | #include "llvm/IR/BasicBlock.h" |
| 85 | #include "llvm/IR/Constant.h" |
| 86 | #include "llvm/IR/Constants.h" |
| 87 | #include "llvm/IR/DebugInfoMetadata.h" |
| 88 | #include "llvm/IR/DerivedTypes.h" |
| 89 | #include "llvm/IR/Dominators.h" |
| 90 | #include "llvm/IR/GlobalValue.h" |
| 91 | #include "llvm/IR/IRBuilder.h" |
| 92 | #include "llvm/IR/InstrTypes.h" |
| 93 | #include "llvm/IR/Instruction.h" |
| 94 | #include "llvm/IR/Instructions.h" |
| 95 | #include "llvm/IR/IntrinsicInst.h" |
| 96 | #include "llvm/IR/Module.h" |
| 97 | #include "llvm/IR/Operator.h" |
| 98 | #include "llvm/IR/Type.h" |
| 99 | #include "llvm/IR/Use.h" |
| 100 | #include "llvm/IR/User.h" |
| 101 | #include "llvm/IR/Value.h" |
| 102 | #include "llvm/IR/ValueHandle.h" |
| 103 | #include "llvm/InitializePasses.h" |
| 104 | #include "llvm/Pass.h" |
| 105 | #include "llvm/Support/Casting.h" |
| 106 | #include "llvm/Support/CommandLine.h" |
| 107 | #include "llvm/Support/Compiler.h" |
| 108 | #include "llvm/Support/Debug.h" |
| 109 | #include "llvm/Support/ErrorHandling.h" |
| 110 | #include "llvm/Support/MathExtras.h" |
| 111 | #include "llvm/Support/raw_ostream.h" |
| 112 | #include "llvm/Transforms/Scalar.h" |
| 113 | #include "llvm/Transforms/Utils.h" |
| 114 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 115 | #include "llvm/Transforms/Utils/Local.h" |
| 116 | #include "llvm/Transforms/Utils/LoopUtils.h" |
| 117 | #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" |
| 118 | #include <algorithm> |
| 119 | #include <cassert> |
| 120 | #include <cstddef> |
| 121 | #include <cstdint> |
| 122 | #include <iterator> |
| 123 | #include <limits> |
| 124 | #include <map> |
| 125 | #include <numeric> |
| 126 | #include <optional> |
| 127 | #include <utility> |
| 128 | |
| 129 | using namespace llvm; |
| 130 | using namespace SCEVPatternMatch; |
| 131 | |
| 132 | #define DEBUG_TYPE "loop-reduce" |
| 133 | |
| 134 | /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for |
| 135 | /// bail out. This threshold is far beyond the number of users that LSR can |
| 136 | /// conceivably solve, so it should not affect generated code, but catches the |
| 137 | /// worst cases before LSR burns too much compile time and stack space. |
| 138 | static const unsigned MaxIVUsers = 200; |
| 139 | |
| 140 | /// Limit the size of expression that SCEV-based salvaging will attempt to |
| 141 | /// translate into a DIExpression. |
| 142 | /// Choose a maximum size such that debuginfo is not excessively increased and |
| 143 | /// the salvaging is not too expensive for the compiler. |
| 144 | static const unsigned MaxSCEVSalvageExpressionSize = 64; |
| 145 | |
| 146 | // Cleanup congruent phis after LSR phi expansion. |
| 147 | static cl::opt<bool> EnablePhiElim( |
| 148 | "enable-lsr-phielim" , cl::Hidden, cl::init(Val: true), |
| 149 | cl::desc("Enable LSR phi elimination" )); |
| 150 | |
| 151 | // The flag adds instruction count to solutions cost comparison. |
| 152 | static cl::opt<bool> InsnsCost( |
| 153 | "lsr-insns-cost" , cl::Hidden, cl::init(Val: true), |
| 154 | cl::desc("Add instruction count to a LSR cost model" )); |
| 155 | |
| 156 | // Flag to choose how to narrow complex lsr solution |
| 157 | static cl::opt<bool> LSRExpNarrow( |
| 158 | "lsr-exp-narrow" , cl::Hidden, cl::init(Val: false), |
| 159 | cl::desc("Narrow LSR complex solution using" |
| 160 | " expectation of registers number" )); |
| 161 | |
| 162 | // Flag to narrow search space by filtering non-optimal formulae with |
| 163 | // the same ScaledReg and Scale. |
| 164 | static cl::opt<bool> FilterSameScaledReg( |
| 165 | "lsr-filter-same-scaled-reg" , cl::Hidden, cl::init(Val: true), |
| 166 | cl::desc("Narrow LSR search space by filtering non-optimal formulae" |
| 167 | " with the same ScaledReg and Scale" )); |
| 168 | |
| 169 | static cl::opt<TTI::AddressingModeKind> PreferredAddresingMode( |
| 170 | "lsr-preferred-addressing-mode" , cl::Hidden, cl::init(Val: TTI::AMK_None), |
| 171 | cl::desc("A flag that overrides the target's preferred addressing mode." ), |
| 172 | cl::values(clEnumValN(TTI::AMK_None, |
| 173 | "none" , |
| 174 | "Don't prefer any addressing mode" ), |
| 175 | clEnumValN(TTI::AMK_PreIndexed, |
| 176 | "preindexed" , |
| 177 | "Prefer pre-indexed addressing mode" ), |
| 178 | clEnumValN(TTI::AMK_PostIndexed, |
| 179 | "postindexed" , |
| 180 | "Prefer post-indexed addressing mode" ))); |
| 181 | |
| 182 | static cl::opt<unsigned> ComplexityLimit( |
| 183 | "lsr-complexity-limit" , cl::Hidden, |
| 184 | cl::init(Val: std::numeric_limits<uint16_t>::max()), |
| 185 | cl::desc("LSR search space complexity limit" )); |
| 186 | |
| 187 | static cl::opt<unsigned> SetupCostDepthLimit( |
| 188 | "lsr-setupcost-depth-limit" , cl::Hidden, cl::init(Val: 7), |
| 189 | cl::desc("The limit on recursion depth for LSRs setup cost" )); |
| 190 | |
| 191 | static cl::opt<cl::boolOrDefault> AllowDropSolutionIfLessProfitable( |
| 192 | "lsr-drop-solution" , cl::Hidden, |
| 193 | cl::desc("Attempt to drop solution if it is less profitable" )); |
| 194 | |
| 195 | static cl::opt<bool> EnableVScaleImmediates( |
| 196 | "lsr-enable-vscale-immediates" , cl::Hidden, cl::init(Val: true), |
| 197 | cl::desc("Enable analysis of vscale-relative immediates in LSR" )); |
| 198 | |
| 199 | static cl::opt<bool> DropScaledForVScale( |
| 200 | "lsr-drop-scaled-reg-for-vscale" , cl::Hidden, cl::init(Val: true), |
| 201 | cl::desc("Avoid using scaled registers with vscale-relative addressing" )); |
| 202 | |
| 203 | #ifndef NDEBUG |
| 204 | // Stress test IV chain generation. |
| 205 | static cl::opt<bool> StressIVChain( |
| 206 | "stress-ivchain" , cl::Hidden, cl::init(false), |
| 207 | cl::desc("Stress test LSR IV chains" )); |
| 208 | #else |
| 209 | static bool StressIVChain = false; |
| 210 | #endif |
| 211 | |
| 212 | namespace { |
| 213 | |
| 214 | struct MemAccessTy { |
| 215 | /// Used in situations where the accessed memory type is unknown. |
| 216 | static const unsigned UnknownAddressSpace = |
| 217 | std::numeric_limits<unsigned>::max(); |
| 218 | |
| 219 | Type *MemTy = nullptr; |
| 220 | unsigned AddrSpace = UnknownAddressSpace; |
| 221 | |
| 222 | MemAccessTy() = default; |
| 223 | MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {} |
| 224 | |
| 225 | bool operator==(MemAccessTy Other) const { |
| 226 | return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; |
| 227 | } |
| 228 | |
| 229 | bool operator!=(MemAccessTy Other) const { return !(*this == Other); } |
| 230 | |
| 231 | static MemAccessTy getUnknown(LLVMContext &Ctx, |
| 232 | unsigned AS = UnknownAddressSpace) { |
| 233 | return MemAccessTy(Type::getVoidTy(C&: Ctx), AS); |
| 234 | } |
| 235 | |
| 236 | Type *getType() { return MemTy; } |
| 237 | }; |
| 238 | |
| 239 | /// This class holds data which is used to order reuse candidates. |
| 240 | class RegSortData { |
| 241 | public: |
| 242 | /// This represents the set of LSRUse indices which reference |
| 243 | /// a particular register. |
| 244 | SmallBitVector UsedByIndices; |
| 245 | |
| 246 | void print(raw_ostream &OS) const; |
| 247 | void dump() const; |
| 248 | }; |
| 249 | |
| 250 | // An offset from an address that is either scalable or fixed. Used for |
| 251 | // per-target optimizations of addressing modes. |
| 252 | class Immediate : public details::FixedOrScalableQuantity<Immediate, int64_t> { |
| 253 | constexpr Immediate(ScalarTy MinVal, bool Scalable) |
| 254 | : FixedOrScalableQuantity(MinVal, Scalable) {} |
| 255 | |
| 256 | constexpr Immediate(const FixedOrScalableQuantity<Immediate, int64_t> &V) |
| 257 | : FixedOrScalableQuantity(V) {} |
| 258 | |
| 259 | public: |
| 260 | constexpr Immediate() = delete; |
| 261 | |
| 262 | static constexpr Immediate getFixed(ScalarTy MinVal) { |
| 263 | return {MinVal, false}; |
| 264 | } |
| 265 | static constexpr Immediate getScalable(ScalarTy MinVal) { |
| 266 | return {MinVal, true}; |
| 267 | } |
| 268 | static constexpr Immediate get(ScalarTy MinVal, bool Scalable) { |
| 269 | return {MinVal, Scalable}; |
| 270 | } |
| 271 | static constexpr Immediate getZero() { return {0, false}; } |
| 272 | static constexpr Immediate getFixedMin() { |
| 273 | return {std::numeric_limits<int64_t>::min(), false}; |
| 274 | } |
| 275 | static constexpr Immediate getFixedMax() { |
| 276 | return {std::numeric_limits<int64_t>::max(), false}; |
| 277 | } |
| 278 | static constexpr Immediate getScalableMin() { |
| 279 | return {std::numeric_limits<int64_t>::min(), true}; |
| 280 | } |
| 281 | static constexpr Immediate getScalableMax() { |
| 282 | return {std::numeric_limits<int64_t>::max(), true}; |
| 283 | } |
| 284 | |
| 285 | constexpr bool isLessThanZero() const { return Quantity < 0; } |
| 286 | |
| 287 | constexpr bool isGreaterThanZero() const { return Quantity > 0; } |
| 288 | |
| 289 | constexpr bool isCompatibleImmediate(const Immediate &Imm) const { |
| 290 | return isZero() || Imm.isZero() || Imm.Scalable == Scalable; |
| 291 | } |
| 292 | |
| 293 | constexpr bool isMin() const { |
| 294 | return Quantity == std::numeric_limits<ScalarTy>::min(); |
| 295 | } |
| 296 | |
| 297 | constexpr bool isMax() const { |
| 298 | return Quantity == std::numeric_limits<ScalarTy>::max(); |
| 299 | } |
| 300 | |
| 301 | // Arithmetic 'operators' that cast to unsigned types first. |
| 302 | constexpr Immediate addUnsigned(const Immediate &RHS) const { |
| 303 | assert(isCompatibleImmediate(RHS) && "Incompatible Immediates" ); |
| 304 | ScalarTy Value = (uint64_t)Quantity + RHS.getKnownMinValue(); |
| 305 | return {Value, Scalable || RHS.isScalable()}; |
| 306 | } |
| 307 | |
| 308 | constexpr Immediate subUnsigned(const Immediate &RHS) const { |
| 309 | assert(isCompatibleImmediate(RHS) && "Incompatible Immediates" ); |
| 310 | ScalarTy Value = (uint64_t)Quantity - RHS.getKnownMinValue(); |
| 311 | return {Value, Scalable || RHS.isScalable()}; |
| 312 | } |
| 313 | |
| 314 | // Scale the quantity by a constant without caring about runtime scalability. |
| 315 | constexpr Immediate mulUnsigned(const ScalarTy RHS) const { |
| 316 | ScalarTy Value = (uint64_t)Quantity * RHS; |
| 317 | return {Value, Scalable}; |
| 318 | } |
| 319 | |
| 320 | // Helpers for generating SCEVs with vscale terms where needed. |
| 321 | const SCEV *getSCEV(ScalarEvolution &SE, Type *Ty) const { |
| 322 | const SCEV *S = SE.getConstant(Ty, V: Quantity); |
| 323 | if (Scalable) |
| 324 | S = SE.getMulExpr(LHS: S, RHS: SE.getVScale(Ty: S->getType())); |
| 325 | return S; |
| 326 | } |
| 327 | |
| 328 | const SCEV *getNegativeSCEV(ScalarEvolution &SE, Type *Ty) const { |
| 329 | const SCEV *NegS = SE.getConstant(Ty, V: -(uint64_t)Quantity); |
| 330 | if (Scalable) |
| 331 | NegS = SE.getMulExpr(LHS: NegS, RHS: SE.getVScale(Ty: NegS->getType())); |
| 332 | return NegS; |
| 333 | } |
| 334 | |
| 335 | const SCEV *getUnknownSCEV(ScalarEvolution &SE, Type *Ty) const { |
| 336 | const SCEV *SU = SE.getUnknown(V: ConstantInt::getSigned(Ty, V: Quantity)); |
| 337 | if (Scalable) |
| 338 | SU = SE.getMulExpr(LHS: SU, RHS: SE.getVScale(Ty: SU->getType())); |
| 339 | return SU; |
| 340 | } |
| 341 | }; |
| 342 | |
| 343 | // This is needed for the Compare type of std::map when Immediate is used |
| 344 | // as a key. We don't need it to be fully correct against any value of vscale, |
| 345 | // just to make sure that vscale-related terms in the map are considered against |
| 346 | // each other rather than being mixed up and potentially missing opportunities. |
| 347 | struct KeyOrderTargetImmediate { |
| 348 | bool operator()(const Immediate &LHS, const Immediate &RHS) const { |
| 349 | if (LHS.isScalable() && !RHS.isScalable()) |
| 350 | return false; |
| 351 | if (!LHS.isScalable() && RHS.isScalable()) |
| 352 | return true; |
| 353 | return LHS.getKnownMinValue() < RHS.getKnownMinValue(); |
| 354 | } |
| 355 | }; |
| 356 | |
| 357 | // This would be nicer if we could be generic instead of directly using size_t, |
| 358 | // but there doesn't seem to be a type trait for is_orderable or |
| 359 | // is_lessthan_comparable or similar. |
| 360 | struct KeyOrderSizeTAndImmediate { |
| 361 | bool operator()(const std::pair<size_t, Immediate> &LHS, |
| 362 | const std::pair<size_t, Immediate> &RHS) const { |
| 363 | size_t LSize = LHS.first; |
| 364 | size_t RSize = RHS.first; |
| 365 | if (LSize != RSize) |
| 366 | return LSize < RSize; |
| 367 | return KeyOrderTargetImmediate()(LHS.second, RHS.second); |
| 368 | } |
| 369 | }; |
| 370 | } // end anonymous namespace |
| 371 | |
| 372 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 373 | void RegSortData::print(raw_ostream &OS) const { |
| 374 | OS << "[NumUses=" << UsedByIndices.count() << ']'; |
| 375 | } |
| 376 | |
| 377 | LLVM_DUMP_METHOD void RegSortData::dump() const { |
| 378 | print(errs()); errs() << '\n'; |
| 379 | } |
| 380 | #endif |
| 381 | |
| 382 | namespace { |
| 383 | |
| 384 | /// Map register candidates to information about how they are used. |
| 385 | class RegUseTracker { |
| 386 | using RegUsesTy = DenseMap<const SCEV *, RegSortData>; |
| 387 | |
| 388 | RegUsesTy RegUsesMap; |
| 389 | SmallVector<const SCEV *, 16> RegSequence; |
| 390 | |
| 391 | public: |
| 392 | void countRegister(const SCEV *Reg, size_t LUIdx); |
| 393 | void dropRegister(const SCEV *Reg, size_t LUIdx); |
| 394 | void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); |
| 395 | |
| 396 | bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; |
| 397 | |
| 398 | const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; |
| 399 | |
| 400 | void clear(); |
| 401 | |
| 402 | using iterator = SmallVectorImpl<const SCEV *>::iterator; |
| 403 | using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator; |
| 404 | |
| 405 | iterator begin() { return RegSequence.begin(); } |
| 406 | iterator end() { return RegSequence.end(); } |
| 407 | const_iterator begin() const { return RegSequence.begin(); } |
| 408 | const_iterator end() const { return RegSequence.end(); } |
| 409 | }; |
| 410 | |
| 411 | } // end anonymous namespace |
| 412 | |
| 413 | void |
| 414 | RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { |
| 415 | std::pair<RegUsesTy::iterator, bool> Pair = RegUsesMap.try_emplace(Key: Reg); |
| 416 | RegSortData &RSD = Pair.first->second; |
| 417 | if (Pair.second) |
| 418 | RegSequence.push_back(Elt: Reg); |
| 419 | RSD.UsedByIndices.resize(N: std::max(a: RSD.UsedByIndices.size(), b: LUIdx + 1)); |
| 420 | RSD.UsedByIndices.set(LUIdx); |
| 421 | } |
| 422 | |
| 423 | void |
| 424 | RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { |
| 425 | RegUsesTy::iterator It = RegUsesMap.find(Val: Reg); |
| 426 | assert(It != RegUsesMap.end()); |
| 427 | RegSortData &RSD = It->second; |
| 428 | assert(RSD.UsedByIndices.size() > LUIdx); |
| 429 | RSD.UsedByIndices.reset(Idx: LUIdx); |
| 430 | } |
| 431 | |
| 432 | void |
| 433 | RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { |
| 434 | assert(LUIdx <= LastLUIdx); |
| 435 | |
| 436 | // Update RegUses. The data structure is not optimized for this purpose; |
| 437 | // we must iterate through it and update each of the bit vectors. |
| 438 | for (auto &Pair : RegUsesMap) { |
| 439 | SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; |
| 440 | if (LUIdx < UsedByIndices.size()) |
| 441 | UsedByIndices[LUIdx] = |
| 442 | LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; |
| 443 | UsedByIndices.resize(N: std::min(a: UsedByIndices.size(), b: LastLUIdx)); |
| 444 | } |
| 445 | } |
| 446 | |
| 447 | bool |
| 448 | RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { |
| 449 | RegUsesTy::const_iterator I = RegUsesMap.find(Val: Reg); |
| 450 | if (I == RegUsesMap.end()) |
| 451 | return false; |
| 452 | const SmallBitVector &UsedByIndices = I->second.UsedByIndices; |
| 453 | int i = UsedByIndices.find_first(); |
| 454 | if (i == -1) return false; |
| 455 | if ((size_t)i != LUIdx) return true; |
| 456 | return UsedByIndices.find_next(Prev: i) != -1; |
| 457 | } |
| 458 | |
| 459 | const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { |
| 460 | RegUsesTy::const_iterator I = RegUsesMap.find(Val: Reg); |
| 461 | assert(I != RegUsesMap.end() && "Unknown register!" ); |
| 462 | return I->second.UsedByIndices; |
| 463 | } |
| 464 | |
| 465 | void RegUseTracker::clear() { |
| 466 | RegUsesMap.clear(); |
| 467 | RegSequence.clear(); |
| 468 | } |
| 469 | |
| 470 | namespace { |
| 471 | |
| 472 | /// This class holds information that describes a formula for computing |
| 473 | /// satisfying a use. It may include broken-out immediates and scaled registers. |
| 474 | struct Formula { |
| 475 | /// Global base address used for complex addressing. |
| 476 | GlobalValue *BaseGV = nullptr; |
| 477 | |
| 478 | /// Base offset for complex addressing. |
| 479 | Immediate BaseOffset = Immediate::getZero(); |
| 480 | |
| 481 | /// Whether any complex addressing has a base register. |
| 482 | bool HasBaseReg = false; |
| 483 | |
| 484 | /// The scale of any complex addressing. |
| 485 | int64_t Scale = 0; |
| 486 | |
| 487 | /// The list of "base" registers for this use. When this is non-empty. The |
| 488 | /// canonical representation of a formula is |
| 489 | /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and |
| 490 | /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). |
| 491 | /// 3. The reg containing recurrent expr related with currect loop in the |
| 492 | /// formula should be put in the ScaledReg. |
| 493 | /// #1 enforces that the scaled register is always used when at least two |
| 494 | /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. |
| 495 | /// #2 enforces that 1 * reg is reg. |
| 496 | /// #3 ensures invariant regs with respect to current loop can be combined |
| 497 | /// together in LSR codegen. |
| 498 | /// This invariant can be temporarily broken while building a formula. |
| 499 | /// However, every formula inserted into the LSRInstance must be in canonical |
| 500 | /// form. |
| 501 | SmallVector<const SCEV *, 4> BaseRegs; |
| 502 | |
| 503 | /// The 'scaled' register for this use. This should be non-null when Scale is |
| 504 | /// not zero. |
| 505 | const SCEV *ScaledReg = nullptr; |
| 506 | |
| 507 | /// An additional constant offset which added near the use. This requires a |
| 508 | /// temporary register, but the offset itself can live in an add immediate |
| 509 | /// field rather than a register. |
| 510 | Immediate UnfoldedOffset = Immediate::getZero(); |
| 511 | |
| 512 | Formula() = default; |
| 513 | |
| 514 | void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); |
| 515 | |
| 516 | bool isCanonical(const Loop &L) const; |
| 517 | |
| 518 | void canonicalize(const Loop &L); |
| 519 | |
| 520 | bool unscale(); |
| 521 | |
| 522 | bool hasZeroEnd() const; |
| 523 | |
| 524 | size_t getNumRegs() const; |
| 525 | Type *getType() const; |
| 526 | |
| 527 | void deleteBaseReg(const SCEV *&S); |
| 528 | |
| 529 | bool referencesReg(const SCEV *S) const; |
| 530 | bool hasRegsUsedByUsesOtherThan(size_t LUIdx, |
| 531 | const RegUseTracker &RegUses) const; |
| 532 | |
| 533 | void print(raw_ostream &OS) const; |
| 534 | void dump() const; |
| 535 | }; |
| 536 | |
| 537 | } // end anonymous namespace |
| 538 | |
| 539 | /// Recursion helper for initialMatch. |
| 540 | static void DoInitialMatch(const SCEV *S, Loop *L, |
| 541 | SmallVectorImpl<const SCEV *> &Good, |
| 542 | SmallVectorImpl<const SCEV *> &Bad, |
| 543 | ScalarEvolution &SE) { |
| 544 | // Collect expressions which properly dominate the loop header. |
| 545 | if (SE.properlyDominates(S, BB: L->getHeader())) { |
| 546 | Good.push_back(Elt: S); |
| 547 | return; |
| 548 | } |
| 549 | |
| 550 | // Look at add operands. |
| 551 | if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Val: S)) { |
| 552 | for (const SCEV *S : Add->operands()) |
| 553 | DoInitialMatch(S, L, Good, Bad, SE); |
| 554 | return; |
| 555 | } |
| 556 | |
| 557 | // Look at addrec operands. |
| 558 | const SCEV *Start, *Step; |
| 559 | const Loop *ARLoop; |
| 560 | if (match(S, |
| 561 | P: m_scev_AffineAddRec(Op0: m_SCEV(V&: Start), Op1: m_SCEV(V&: Step), L: m_Loop(L&: ARLoop))) && |
| 562 | !Start->isZero()) { |
| 563 | DoInitialMatch(S: Start, L, Good, Bad, SE); |
| 564 | DoInitialMatch(S: SE.getAddRecExpr(Start: SE.getConstant(Ty: S->getType(), V: 0), Step, |
| 565 | // FIXME: AR->getNoWrapFlags() |
| 566 | L: ARLoop, Flags: SCEV::FlagAnyWrap), |
| 567 | L, Good, Bad, SE); |
| 568 | return; |
| 569 | } |
| 570 | |
| 571 | // Handle a multiplication by -1 (negation) if it didn't fold. |
| 572 | if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Val: S)) |
| 573 | if (Mul->getOperand(i: 0)->isAllOnesValue()) { |
| 574 | SmallVector<const SCEV *, 4> Ops(drop_begin(RangeOrContainer: Mul->operands())); |
| 575 | const SCEV *NewMul = SE.getMulExpr(Ops); |
| 576 | |
| 577 | SmallVector<const SCEV *, 4> MyGood; |
| 578 | SmallVector<const SCEV *, 4> MyBad; |
| 579 | DoInitialMatch(S: NewMul, L, Good&: MyGood, Bad&: MyBad, SE); |
| 580 | const SCEV *NegOne = SE.getSCEV(V: ConstantInt::getAllOnesValue( |
| 581 | Ty: SE.getEffectiveSCEVType(Ty: NewMul->getType()))); |
| 582 | for (const SCEV *S : MyGood) |
| 583 | Good.push_back(Elt: SE.getMulExpr(LHS: NegOne, RHS: S)); |
| 584 | for (const SCEV *S : MyBad) |
| 585 | Bad.push_back(Elt: SE.getMulExpr(LHS: NegOne, RHS: S)); |
| 586 | return; |
| 587 | } |
| 588 | |
| 589 | // Ok, we can't do anything interesting. Just stuff the whole thing into a |
| 590 | // register and hope for the best. |
| 591 | Bad.push_back(Elt: S); |
| 592 | } |
| 593 | |
| 594 | /// Incorporate loop-variant parts of S into this Formula, attempting to keep |
| 595 | /// all loop-invariant and loop-computable values in a single base register. |
| 596 | void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { |
| 597 | SmallVector<const SCEV *, 4> Good; |
| 598 | SmallVector<const SCEV *, 4> Bad; |
| 599 | DoInitialMatch(S, L, Good, Bad, SE); |
| 600 | if (!Good.empty()) { |
| 601 | const SCEV *Sum = SE.getAddExpr(Ops&: Good); |
| 602 | if (!Sum->isZero()) |
| 603 | BaseRegs.push_back(Elt: Sum); |
| 604 | HasBaseReg = true; |
| 605 | } |
| 606 | if (!Bad.empty()) { |
| 607 | const SCEV *Sum = SE.getAddExpr(Ops&: Bad); |
| 608 | if (!Sum->isZero()) |
| 609 | BaseRegs.push_back(Elt: Sum); |
| 610 | HasBaseReg = true; |
| 611 | } |
| 612 | canonicalize(L: *L); |
| 613 | } |
| 614 | |
| 615 | static bool containsAddRecDependentOnLoop(const SCEV *S, const Loop &L) { |
| 616 | return SCEVExprContains(Root: S, Pred: [&L](const SCEV *S) { |
| 617 | return isa<SCEVAddRecExpr>(Val: S) && (cast<SCEVAddRecExpr>(Val: S)->getLoop() == &L); |
| 618 | }); |
| 619 | } |
| 620 | |
| 621 | /// Check whether or not this formula satisfies the canonical |
| 622 | /// representation. |
| 623 | /// \see Formula::BaseRegs. |
| 624 | bool Formula::isCanonical(const Loop &L) const { |
| 625 | assert((Scale == 0 || ScaledReg) && |
| 626 | "ScaledReg must be non-null if Scale is non-zero" ); |
| 627 | |
| 628 | if (!ScaledReg) |
| 629 | return BaseRegs.size() <= 1; |
| 630 | |
| 631 | if (Scale != 1) |
| 632 | return true; |
| 633 | |
| 634 | if (Scale == 1 && BaseRegs.empty()) |
| 635 | return false; |
| 636 | |
| 637 | if (containsAddRecDependentOnLoop(S: ScaledReg, L)) |
| 638 | return true; |
| 639 | |
| 640 | // If ScaledReg is not a recurrent expr, or it is but its loop is not current |
| 641 | // loop, meanwhile BaseRegs contains a recurrent expr reg related with current |
| 642 | // loop, we want to swap the reg in BaseRegs with ScaledReg. |
| 643 | return none_of(Range: BaseRegs, P: [&L](const SCEV *S) { |
| 644 | return containsAddRecDependentOnLoop(S, L); |
| 645 | }); |
| 646 | } |
| 647 | |
| 648 | /// Helper method to morph a formula into its canonical representation. |
| 649 | /// \see Formula::BaseRegs. |
| 650 | /// Every formula having more than one base register, must use the ScaledReg |
| 651 | /// field. Otherwise, we would have to do special cases everywhere in LSR |
| 652 | /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... |
| 653 | /// On the other hand, 1*reg should be canonicalized into reg. |
| 654 | void Formula::canonicalize(const Loop &L) { |
| 655 | if (isCanonical(L)) |
| 656 | return; |
| 657 | |
| 658 | if (BaseRegs.empty()) { |
| 659 | // No base reg? Use scale reg with scale = 1 as such. |
| 660 | assert(ScaledReg && "Expected 1*reg => reg" ); |
| 661 | assert(Scale == 1 && "Expected 1*reg => reg" ); |
| 662 | BaseRegs.push_back(Elt: ScaledReg); |
| 663 | Scale = 0; |
| 664 | ScaledReg = nullptr; |
| 665 | return; |
| 666 | } |
| 667 | |
| 668 | // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. |
| 669 | if (!ScaledReg) { |
| 670 | ScaledReg = BaseRegs.pop_back_val(); |
| 671 | Scale = 1; |
| 672 | } |
| 673 | |
| 674 | // If ScaledReg is an invariant with respect to L, find the reg from |
| 675 | // BaseRegs containing the recurrent expr related with Loop L. Swap the |
| 676 | // reg with ScaledReg. |
| 677 | if (!containsAddRecDependentOnLoop(S: ScaledReg, L)) { |
| 678 | auto I = find_if(Range&: BaseRegs, P: [&L](const SCEV *S) { |
| 679 | return containsAddRecDependentOnLoop(S, L); |
| 680 | }); |
| 681 | if (I != BaseRegs.end()) |
| 682 | std::swap(a&: ScaledReg, b&: *I); |
| 683 | } |
| 684 | assert(isCanonical(L) && "Failed to canonicalize?" ); |
| 685 | } |
| 686 | |
| 687 | /// Get rid of the scale in the formula. |
| 688 | /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. |
| 689 | /// \return true if it was possible to get rid of the scale, false otherwise. |
| 690 | /// \note After this operation the formula may not be in the canonical form. |
| 691 | bool Formula::unscale() { |
| 692 | if (Scale != 1) |
| 693 | return false; |
| 694 | Scale = 0; |
| 695 | BaseRegs.push_back(Elt: ScaledReg); |
| 696 | ScaledReg = nullptr; |
| 697 | return true; |
| 698 | } |
| 699 | |
| 700 | bool Formula::hasZeroEnd() const { |
| 701 | if (UnfoldedOffset || BaseOffset) |
| 702 | return false; |
| 703 | if (BaseRegs.size() != 1 || ScaledReg) |
| 704 | return false; |
| 705 | return true; |
| 706 | } |
| 707 | |
| 708 | /// Return the total number of register operands used by this formula. This does |
| 709 | /// not include register uses implied by non-constant addrec strides. |
| 710 | size_t Formula::getNumRegs() const { |
| 711 | return !!ScaledReg + BaseRegs.size(); |
| 712 | } |
| 713 | |
| 714 | /// Return the type of this formula, if it has one, or null otherwise. This type |
| 715 | /// is meaningless except for the bit size. |
| 716 | Type *Formula::getType() const { |
| 717 | return !BaseRegs.empty() ? BaseRegs.front()->getType() : |
| 718 | ScaledReg ? ScaledReg->getType() : |
| 719 | BaseGV ? BaseGV->getType() : |
| 720 | nullptr; |
| 721 | } |
| 722 | |
| 723 | /// Delete the given base reg from the BaseRegs list. |
| 724 | void Formula::deleteBaseReg(const SCEV *&S) { |
| 725 | if (&S != &BaseRegs.back()) |
| 726 | std::swap(a&: S, b&: BaseRegs.back()); |
| 727 | BaseRegs.pop_back(); |
| 728 | } |
| 729 | |
| 730 | /// Test if this formula references the given register. |
| 731 | bool Formula::referencesReg(const SCEV *S) const { |
| 732 | return S == ScaledReg || is_contained(Range: BaseRegs, Element: S); |
| 733 | } |
| 734 | |
| 735 | /// Test whether this formula uses registers which are used by uses other than |
| 736 | /// the use with the given index. |
| 737 | bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, |
| 738 | const RegUseTracker &RegUses) const { |
| 739 | if (ScaledReg) |
| 740 | if (RegUses.isRegUsedByUsesOtherThan(Reg: ScaledReg, LUIdx)) |
| 741 | return true; |
| 742 | for (const SCEV *BaseReg : BaseRegs) |
| 743 | if (RegUses.isRegUsedByUsesOtherThan(Reg: BaseReg, LUIdx)) |
| 744 | return true; |
| 745 | return false; |
| 746 | } |
| 747 | |
| 748 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 749 | void Formula::print(raw_ostream &OS) const { |
| 750 | bool First = true; |
| 751 | if (BaseGV) { |
| 752 | if (!First) OS << " + " ; else First = false; |
| 753 | BaseGV->printAsOperand(OS, /*PrintType=*/false); |
| 754 | } |
| 755 | if (BaseOffset.isNonZero()) { |
| 756 | if (!First) OS << " + " ; else First = false; |
| 757 | OS << BaseOffset; |
| 758 | } |
| 759 | for (const SCEV *BaseReg : BaseRegs) { |
| 760 | if (!First) OS << " + " ; else First = false; |
| 761 | OS << "reg(" << *BaseReg << ')'; |
| 762 | } |
| 763 | if (HasBaseReg && BaseRegs.empty()) { |
| 764 | if (!First) OS << " + " ; else First = false; |
| 765 | OS << "**error: HasBaseReg**" ; |
| 766 | } else if (!HasBaseReg && !BaseRegs.empty()) { |
| 767 | if (!First) OS << " + " ; else First = false; |
| 768 | OS << "**error: !HasBaseReg**" ; |
| 769 | } |
| 770 | if (Scale != 0) { |
| 771 | if (!First) OS << " + " ; else First = false; |
| 772 | OS << Scale << "*reg(" ; |
| 773 | if (ScaledReg) |
| 774 | OS << *ScaledReg; |
| 775 | else |
| 776 | OS << "<unknown>" ; |
| 777 | OS << ')'; |
| 778 | } |
| 779 | if (UnfoldedOffset.isNonZero()) { |
| 780 | if (!First) OS << " + " ; |
| 781 | OS << "imm(" << UnfoldedOffset << ')'; |
| 782 | } |
| 783 | } |
| 784 | |
| 785 | LLVM_DUMP_METHOD void Formula::dump() const { |
| 786 | print(errs()); errs() << '\n'; |
| 787 | } |
| 788 | #endif |
| 789 | |
| 790 | /// Return true if the given addrec can be sign-extended without changing its |
| 791 | /// value. |
| 792 | static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { |
| 793 | Type *WideTy = |
| 794 | IntegerType::get(C&: SE.getContext(), NumBits: SE.getTypeSizeInBits(Ty: AR->getType()) + 1); |
| 795 | return isa<SCEVAddRecExpr>(Val: SE.getSignExtendExpr(Op: AR, Ty: WideTy)); |
| 796 | } |
| 797 | |
| 798 | /// Return true if the given add can be sign-extended without changing its |
| 799 | /// value. |
| 800 | static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { |
| 801 | Type *WideTy = |
| 802 | IntegerType::get(C&: SE.getContext(), NumBits: SE.getTypeSizeInBits(Ty: A->getType()) + 1); |
| 803 | return isa<SCEVAddExpr>(Val: SE.getSignExtendExpr(Op: A, Ty: WideTy)); |
| 804 | } |
| 805 | |
| 806 | /// Return true if the given mul can be sign-extended without changing its |
| 807 | /// value. |
| 808 | static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { |
| 809 | Type *WideTy = |
| 810 | IntegerType::get(C&: SE.getContext(), |
| 811 | NumBits: SE.getTypeSizeInBits(Ty: M->getType()) * M->getNumOperands()); |
| 812 | return isa<SCEVMulExpr>(Val: SE.getSignExtendExpr(Op: M, Ty: WideTy)); |
| 813 | } |
| 814 | |
| 815 | /// Return an expression for LHS /s RHS, if it can be determined and if the |
| 816 | /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits |
| 817 | /// is true, expressions like (X * Y) /s Y are simplified to X, ignoring that |
| 818 | /// the multiplication may overflow, which is useful when the result will be |
| 819 | /// used in a context where the most significant bits are ignored. |
| 820 | static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, |
| 821 | ScalarEvolution &SE, |
| 822 | bool IgnoreSignificantBits = false) { |
| 823 | // Handle the trivial case, which works for any SCEV type. |
| 824 | if (LHS == RHS) |
| 825 | return SE.getConstant(Ty: LHS->getType(), V: 1); |
| 826 | |
| 827 | // Handle a few RHS special cases. |
| 828 | const SCEVConstant *RC = dyn_cast<SCEVConstant>(Val: RHS); |
| 829 | if (RC) { |
| 830 | const APInt &RA = RC->getAPInt(); |
| 831 | // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do |
| 832 | // some folding. |
| 833 | if (RA.isAllOnes()) { |
| 834 | if (LHS->getType()->isPointerTy()) |
| 835 | return nullptr; |
| 836 | return SE.getMulExpr(LHS, RHS: RC); |
| 837 | } |
| 838 | // Handle x /s 1 as x. |
| 839 | if (RA == 1) |
| 840 | return LHS; |
| 841 | } |
| 842 | |
| 843 | // Check for a division of a constant by a constant. |
| 844 | if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Val: LHS)) { |
| 845 | if (!RC) |
| 846 | return nullptr; |
| 847 | const APInt &LA = C->getAPInt(); |
| 848 | const APInt &RA = RC->getAPInt(); |
| 849 | if (LA.srem(RHS: RA) != 0) |
| 850 | return nullptr; |
| 851 | return SE.getConstant(Val: LA.sdiv(RHS: RA)); |
| 852 | } |
| 853 | |
| 854 | // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. |
| 855 | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: LHS)) { |
| 856 | if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { |
| 857 | const SCEV *Step = getExactSDiv(LHS: AR->getStepRecurrence(SE), RHS, SE, |
| 858 | IgnoreSignificantBits); |
| 859 | if (!Step) return nullptr; |
| 860 | const SCEV *Start = getExactSDiv(LHS: AR->getStart(), RHS, SE, |
| 861 | IgnoreSignificantBits); |
| 862 | if (!Start) return nullptr; |
| 863 | // FlagNW is independent of the start value, step direction, and is |
| 864 | // preserved with smaller magnitude steps. |
| 865 | // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) |
| 866 | return SE.getAddRecExpr(Start, Step, L: AR->getLoop(), Flags: SCEV::FlagAnyWrap); |
| 867 | } |
| 868 | return nullptr; |
| 869 | } |
| 870 | |
| 871 | // Distribute the sdiv over add operands, if the add doesn't overflow. |
| 872 | if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Val: LHS)) { |
| 873 | if (IgnoreSignificantBits || isAddSExtable(A: Add, SE)) { |
| 874 | SmallVector<const SCEV *, 8> Ops; |
| 875 | for (const SCEV *S : Add->operands()) { |
| 876 | const SCEV *Op = getExactSDiv(LHS: S, RHS, SE, IgnoreSignificantBits); |
| 877 | if (!Op) return nullptr; |
| 878 | Ops.push_back(Elt: Op); |
| 879 | } |
| 880 | return SE.getAddExpr(Ops); |
| 881 | } |
| 882 | return nullptr; |
| 883 | } |
| 884 | |
| 885 | // Check for a multiply operand that we can pull RHS out of. |
| 886 | if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Val: LHS)) { |
| 887 | if (IgnoreSignificantBits || isMulSExtable(M: Mul, SE)) { |
| 888 | // Handle special case C1*X*Y /s C2*X*Y. |
| 889 | if (const SCEVMulExpr *MulRHS = dyn_cast<SCEVMulExpr>(Val: RHS)) { |
| 890 | if (IgnoreSignificantBits || isMulSExtable(M: MulRHS, SE)) { |
| 891 | const SCEVConstant *LC = dyn_cast<SCEVConstant>(Val: Mul->getOperand(i: 0)); |
| 892 | const SCEVConstant *RC = |
| 893 | dyn_cast<SCEVConstant>(Val: MulRHS->getOperand(i: 0)); |
| 894 | if (LC && RC) { |
| 895 | SmallVector<const SCEV *, 4> LOps(drop_begin(RangeOrContainer: Mul->operands())); |
| 896 | SmallVector<const SCEV *, 4> ROps(drop_begin(RangeOrContainer: MulRHS->operands())); |
| 897 | if (LOps == ROps) |
| 898 | return getExactSDiv(LHS: LC, RHS: RC, SE, IgnoreSignificantBits); |
| 899 | } |
| 900 | } |
| 901 | } |
| 902 | |
| 903 | SmallVector<const SCEV *, 4> Ops; |
| 904 | bool Found = false; |
| 905 | for (const SCEV *S : Mul->operands()) { |
| 906 | if (!Found) |
| 907 | if (const SCEV *Q = getExactSDiv(LHS: S, RHS, SE, |
| 908 | IgnoreSignificantBits)) { |
| 909 | S = Q; |
| 910 | Found = true; |
| 911 | } |
| 912 | Ops.push_back(Elt: S); |
| 913 | } |
| 914 | return Found ? SE.getMulExpr(Ops) : nullptr; |
| 915 | } |
| 916 | return nullptr; |
| 917 | } |
| 918 | |
| 919 | // Otherwise we don't know. |
| 920 | return nullptr; |
| 921 | } |
| 922 | |
| 923 | /// If S involves the addition of a constant integer value, return that integer |
| 924 | /// value, and mutate S to point to a new SCEV with that value excluded. |
| 925 | static Immediate (const SCEV *&S, ScalarEvolution &SE) { |
| 926 | const APInt *C; |
| 927 | if (match(S, P: m_scev_APInt(C))) { |
| 928 | if (C->getSignificantBits() <= 64) { |
| 929 | S = SE.getConstant(Ty: S->getType(), V: 0); |
| 930 | return Immediate::getFixed(MinVal: C->getSExtValue()); |
| 931 | } |
| 932 | } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Val: S)) { |
| 933 | SmallVector<const SCEV *, 8> NewOps(Add->operands()); |
| 934 | Immediate Result = ExtractImmediate(S&: NewOps.front(), SE); |
| 935 | if (Result.isNonZero()) |
| 936 | S = SE.getAddExpr(Ops&: NewOps); |
| 937 | return Result; |
| 938 | } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: S)) { |
| 939 | SmallVector<const SCEV *, 8> NewOps(AR->operands()); |
| 940 | Immediate Result = ExtractImmediate(S&: NewOps.front(), SE); |
| 941 | if (Result.isNonZero()) |
| 942 | S = SE.getAddRecExpr(Operands&: NewOps, L: AR->getLoop(), |
| 943 | // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) |
| 944 | Flags: SCEV::FlagAnyWrap); |
| 945 | return Result; |
| 946 | } else if (EnableVScaleImmediates && |
| 947 | match(S, P: m_scev_Mul(Op0: m_scev_APInt(C), Op1: m_SCEVVScale()))) { |
| 948 | S = SE.getConstant(Ty: S->getType(), V: 0); |
| 949 | return Immediate::getScalable(MinVal: C->getSExtValue()); |
| 950 | } |
| 951 | return Immediate::getZero(); |
| 952 | } |
| 953 | |
| 954 | /// If S involves the addition of a GlobalValue address, return that symbol, and |
| 955 | /// mutate S to point to a new SCEV with that value excluded. |
| 956 | static GlobalValue *(const SCEV *&S, ScalarEvolution &SE) { |
| 957 | if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Val: S)) { |
| 958 | if (GlobalValue *GV = dyn_cast<GlobalValue>(Val: U->getValue())) { |
| 959 | S = SE.getConstant(Ty: GV->getType(), V: 0); |
| 960 | return GV; |
| 961 | } |
| 962 | } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Val: S)) { |
| 963 | SmallVector<const SCEV *, 8> NewOps(Add->operands()); |
| 964 | GlobalValue *Result = ExtractSymbol(S&: NewOps.back(), SE); |
| 965 | if (Result) |
| 966 | S = SE.getAddExpr(Ops&: NewOps); |
| 967 | return Result; |
| 968 | } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: S)) { |
| 969 | SmallVector<const SCEV *, 8> NewOps(AR->operands()); |
| 970 | GlobalValue *Result = ExtractSymbol(S&: NewOps.front(), SE); |
| 971 | if (Result) |
| 972 | S = SE.getAddRecExpr(Operands&: NewOps, L: AR->getLoop(), |
| 973 | // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) |
| 974 | Flags: SCEV::FlagAnyWrap); |
| 975 | return Result; |
| 976 | } |
| 977 | return nullptr; |
| 978 | } |
| 979 | |
| 980 | /// Returns true if the specified instruction is using the specified value as an |
| 981 | /// address. |
| 982 | static bool isAddressUse(const TargetTransformInfo &TTI, |
| 983 | Instruction *Inst, Value *OperandVal) { |
| 984 | bool isAddress = isa<LoadInst>(Val: Inst); |
| 985 | if (StoreInst *SI = dyn_cast<StoreInst>(Val: Inst)) { |
| 986 | if (SI->getPointerOperand() == OperandVal) |
| 987 | isAddress = true; |
| 988 | } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: Inst)) { |
| 989 | // Addressing modes can also be folded into prefetches and a variety |
| 990 | // of intrinsics. |
| 991 | switch (II->getIntrinsicID()) { |
| 992 | case Intrinsic::memset: |
| 993 | case Intrinsic::prefetch: |
| 994 | case Intrinsic::masked_load: |
| 995 | if (II->getArgOperand(i: 0) == OperandVal) |
| 996 | isAddress = true; |
| 997 | break; |
| 998 | case Intrinsic::masked_store: |
| 999 | if (II->getArgOperand(i: 1) == OperandVal) |
| 1000 | isAddress = true; |
| 1001 | break; |
| 1002 | case Intrinsic::memmove: |
| 1003 | case Intrinsic::memcpy: |
| 1004 | if (II->getArgOperand(i: 0) == OperandVal || |
| 1005 | II->getArgOperand(i: 1) == OperandVal) |
| 1006 | isAddress = true; |
| 1007 | break; |
| 1008 | default: { |
| 1009 | MemIntrinsicInfo IntrInfo; |
| 1010 | if (TTI.getTgtMemIntrinsic(Inst: II, Info&: IntrInfo)) { |
| 1011 | if (IntrInfo.PtrVal == OperandVal) |
| 1012 | isAddress = true; |
| 1013 | } |
| 1014 | } |
| 1015 | } |
| 1016 | } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Val: Inst)) { |
| 1017 | if (RMW->getPointerOperand() == OperandVal) |
| 1018 | isAddress = true; |
| 1019 | } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Val: Inst)) { |
| 1020 | if (CmpX->getPointerOperand() == OperandVal) |
| 1021 | isAddress = true; |
| 1022 | } |
| 1023 | return isAddress; |
| 1024 | } |
| 1025 | |
| 1026 | /// Return the type of the memory being accessed. |
| 1027 | static MemAccessTy getAccessType(const TargetTransformInfo &TTI, |
| 1028 | Instruction *Inst, Value *OperandVal) { |
| 1029 | MemAccessTy AccessTy = MemAccessTy::getUnknown(Ctx&: Inst->getContext()); |
| 1030 | |
| 1031 | // First get the type of memory being accessed. |
| 1032 | if (Type *Ty = Inst->getAccessType()) |
| 1033 | AccessTy.MemTy = Ty; |
| 1034 | |
| 1035 | // Then get the pointer address space. |
| 1036 | if (const StoreInst *SI = dyn_cast<StoreInst>(Val: Inst)) { |
| 1037 | AccessTy.AddrSpace = SI->getPointerAddressSpace(); |
| 1038 | } else if (const LoadInst *LI = dyn_cast<LoadInst>(Val: Inst)) { |
| 1039 | AccessTy.AddrSpace = LI->getPointerAddressSpace(); |
| 1040 | } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Val: Inst)) { |
| 1041 | AccessTy.AddrSpace = RMW->getPointerAddressSpace(); |
| 1042 | } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Val: Inst)) { |
| 1043 | AccessTy.AddrSpace = CmpX->getPointerAddressSpace(); |
| 1044 | } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: Inst)) { |
| 1045 | switch (II->getIntrinsicID()) { |
| 1046 | case Intrinsic::prefetch: |
| 1047 | case Intrinsic::memset: |
| 1048 | AccessTy.AddrSpace = II->getArgOperand(i: 0)->getType()->getPointerAddressSpace(); |
| 1049 | AccessTy.MemTy = OperandVal->getType(); |
| 1050 | break; |
| 1051 | case Intrinsic::memmove: |
| 1052 | case Intrinsic::memcpy: |
| 1053 | AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace(); |
| 1054 | AccessTy.MemTy = OperandVal->getType(); |
| 1055 | break; |
| 1056 | case Intrinsic::masked_load: |
| 1057 | AccessTy.AddrSpace = |
| 1058 | II->getArgOperand(i: 0)->getType()->getPointerAddressSpace(); |
| 1059 | break; |
| 1060 | case Intrinsic::masked_store: |
| 1061 | AccessTy.AddrSpace = |
| 1062 | II->getArgOperand(i: 1)->getType()->getPointerAddressSpace(); |
| 1063 | break; |
| 1064 | default: { |
| 1065 | MemIntrinsicInfo IntrInfo; |
| 1066 | if (TTI.getTgtMemIntrinsic(Inst: II, Info&: IntrInfo) && IntrInfo.PtrVal) { |
| 1067 | AccessTy.AddrSpace |
| 1068 | = IntrInfo.PtrVal->getType()->getPointerAddressSpace(); |
| 1069 | } |
| 1070 | |
| 1071 | break; |
| 1072 | } |
| 1073 | } |
| 1074 | } |
| 1075 | |
| 1076 | return AccessTy; |
| 1077 | } |
| 1078 | |
| 1079 | /// Return true if this AddRec is already a phi in its loop. |
| 1080 | static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { |
| 1081 | for (PHINode &PN : AR->getLoop()->getHeader()->phis()) { |
| 1082 | if (SE.isSCEVable(Ty: PN.getType()) && |
| 1083 | (SE.getEffectiveSCEVType(Ty: PN.getType()) == |
| 1084 | SE.getEffectiveSCEVType(Ty: AR->getType())) && |
| 1085 | SE.getSCEV(V: &PN) == AR) |
| 1086 | return true; |
| 1087 | } |
| 1088 | return false; |
| 1089 | } |
| 1090 | |
| 1091 | /// Check if expanding this expression is likely to incur significant cost. This |
| 1092 | /// is tricky because SCEV doesn't track which expressions are actually computed |
| 1093 | /// by the current IR. |
| 1094 | /// |
| 1095 | /// We currently allow expansion of IV increments that involve adds, |
| 1096 | /// multiplication by constants, and AddRecs from existing phis. |
| 1097 | /// |
| 1098 | /// TODO: Allow UDivExpr if we can find an existing IV increment that is an |
| 1099 | /// obvious multiple of the UDivExpr. |
| 1100 | static bool isHighCostExpansion(const SCEV *S, |
| 1101 | SmallPtrSetImpl<const SCEV*> &Processed, |
| 1102 | ScalarEvolution &SE) { |
| 1103 | // Zero/One operand expressions |
| 1104 | switch (S->getSCEVType()) { |
| 1105 | case scUnknown: |
| 1106 | case scConstant: |
| 1107 | case scVScale: |
| 1108 | return false; |
| 1109 | case scTruncate: |
| 1110 | return isHighCostExpansion(S: cast<SCEVTruncateExpr>(Val: S)->getOperand(), |
| 1111 | Processed, SE); |
| 1112 | case scZeroExtend: |
| 1113 | return isHighCostExpansion(S: cast<SCEVZeroExtendExpr>(Val: S)->getOperand(), |
| 1114 | Processed, SE); |
| 1115 | case scSignExtend: |
| 1116 | return isHighCostExpansion(S: cast<SCEVSignExtendExpr>(Val: S)->getOperand(), |
| 1117 | Processed, SE); |
| 1118 | default: |
| 1119 | break; |
| 1120 | } |
| 1121 | |
| 1122 | if (!Processed.insert(Ptr: S).second) |
| 1123 | return false; |
| 1124 | |
| 1125 | if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Val: S)) { |
| 1126 | for (const SCEV *S : Add->operands()) { |
| 1127 | if (isHighCostExpansion(S, Processed, SE)) |
| 1128 | return true; |
| 1129 | } |
| 1130 | return false; |
| 1131 | } |
| 1132 | |
| 1133 | const SCEV *Op0, *Op1; |
| 1134 | if (match(S, P: m_scev_Mul(Op0: m_SCEV(V&: Op0), Op1: m_SCEV(V&: Op1)))) { |
| 1135 | // Multiplication by a constant is ok |
| 1136 | if (isa<SCEVConstant>(Val: Op0)) |
| 1137 | return isHighCostExpansion(S: Op1, Processed, SE); |
| 1138 | |
| 1139 | // If we have the value of one operand, check if an existing |
| 1140 | // multiplication already generates this expression. |
| 1141 | if (const auto *U = dyn_cast<SCEVUnknown>(Val: Op1)) { |
| 1142 | Value *UVal = U->getValue(); |
| 1143 | for (User *UR : UVal->users()) { |
| 1144 | // If U is a constant, it may be used by a ConstantExpr. |
| 1145 | Instruction *UI = dyn_cast<Instruction>(Val: UR); |
| 1146 | if (UI && UI->getOpcode() == Instruction::Mul && |
| 1147 | SE.isSCEVable(Ty: UI->getType())) { |
| 1148 | return SE.getSCEV(V: UI) == S; |
| 1149 | } |
| 1150 | } |
| 1151 | } |
| 1152 | } |
| 1153 | |
| 1154 | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: S)) { |
| 1155 | if (isExistingPhi(AR, SE)) |
| 1156 | return false; |
| 1157 | } |
| 1158 | |
| 1159 | // Fow now, consider any other type of expression (div/mul/min/max) high cost. |
| 1160 | return true; |
| 1161 | } |
| 1162 | |
| 1163 | namespace { |
| 1164 | |
| 1165 | class LSRUse; |
| 1166 | |
| 1167 | } // end anonymous namespace |
| 1168 | |
| 1169 | /// Check if the addressing mode defined by \p F is completely |
| 1170 | /// folded in \p LU at isel time. |
| 1171 | /// This includes address-mode folding and special icmp tricks. |
| 1172 | /// This function returns true if \p LU can accommodate what \p F |
| 1173 | /// defines and up to 1 base + 1 scaled + offset. |
| 1174 | /// In other words, if \p F has several base registers, this function may |
| 1175 | /// still return true. Therefore, users still need to account for |
| 1176 | /// additional base registers and/or unfolded offsets to derive an |
| 1177 | /// accurate cost model. |
| 1178 | static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, |
| 1179 | const LSRUse &LU, const Formula &F); |
| 1180 | |
| 1181 | // Get the cost of the scaling factor used in F for LU. |
| 1182 | static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI, |
| 1183 | const LSRUse &LU, const Formula &F, |
| 1184 | const Loop &L); |
| 1185 | |
| 1186 | namespace { |
| 1187 | |
| 1188 | /// This class is used to measure and compare candidate formulae. |
| 1189 | class Cost { |
| 1190 | const Loop *L = nullptr; |
| 1191 | ScalarEvolution *SE = nullptr; |
| 1192 | const TargetTransformInfo *TTI = nullptr; |
| 1193 | TargetTransformInfo::LSRCost C; |
| 1194 | TTI::AddressingModeKind AMK = TTI::AMK_None; |
| 1195 | |
| 1196 | public: |
| 1197 | Cost() = delete; |
| 1198 | Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, |
| 1199 | TTI::AddressingModeKind AMK) : |
| 1200 | L(L), SE(&SE), TTI(&TTI), AMK(AMK) { |
| 1201 | C.Insns = 0; |
| 1202 | C.NumRegs = 0; |
| 1203 | C.AddRecCost = 0; |
| 1204 | C.NumIVMuls = 0; |
| 1205 | C.NumBaseAdds = 0; |
| 1206 | C.ImmCost = 0; |
| 1207 | C.SetupCost = 0; |
| 1208 | C.ScaleCost = 0; |
| 1209 | } |
| 1210 | |
| 1211 | bool isLess(const Cost &Other) const; |
| 1212 | |
| 1213 | void Lose(); |
| 1214 | |
| 1215 | #ifndef NDEBUG |
| 1216 | // Once any of the metrics loses, they must all remain losers. |
| 1217 | bool isValid() { |
| 1218 | return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds |
| 1219 | | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u) |
| 1220 | || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds |
| 1221 | & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u); |
| 1222 | } |
| 1223 | #endif |
| 1224 | |
| 1225 | bool isLoser() { |
| 1226 | assert(isValid() && "invalid cost" ); |
| 1227 | return C.NumRegs == ~0u; |
| 1228 | } |
| 1229 | |
| 1230 | void RateFormula(const Formula &F, |
| 1231 | SmallPtrSetImpl<const SCEV *> &Regs, |
| 1232 | const DenseSet<const SCEV *> &VisitedRegs, |
| 1233 | const LSRUse &LU, |
| 1234 | SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); |
| 1235 | |
| 1236 | void print(raw_ostream &OS) const; |
| 1237 | void dump() const; |
| 1238 | |
| 1239 | private: |
| 1240 | void RateRegister(const Formula &F, const SCEV *Reg, |
| 1241 | SmallPtrSetImpl<const SCEV *> &Regs); |
| 1242 | void RatePrimaryRegister(const Formula &F, const SCEV *Reg, |
| 1243 | SmallPtrSetImpl<const SCEV *> &Regs, |
| 1244 | SmallPtrSetImpl<const SCEV *> *LoserRegs); |
| 1245 | }; |
| 1246 | |
| 1247 | /// An operand value in an instruction which is to be replaced with some |
| 1248 | /// equivalent, possibly strength-reduced, replacement. |
| 1249 | struct LSRFixup { |
| 1250 | /// The instruction which will be updated. |
| 1251 | Instruction *UserInst = nullptr; |
| 1252 | |
| 1253 | /// The operand of the instruction which will be replaced. The operand may be |
| 1254 | /// used more than once; every instance will be replaced. |
| 1255 | Value *OperandValToReplace = nullptr; |
| 1256 | |
| 1257 | /// If this user is to use the post-incremented value of an induction |
| 1258 | /// variable, this set is non-empty and holds the loops associated with the |
| 1259 | /// induction variable. |
| 1260 | PostIncLoopSet PostIncLoops; |
| 1261 | |
| 1262 | /// A constant offset to be added to the LSRUse expression. This allows |
| 1263 | /// multiple fixups to share the same LSRUse with different offsets, for |
| 1264 | /// example in an unrolled loop. |
| 1265 | Immediate Offset = Immediate::getZero(); |
| 1266 | |
| 1267 | LSRFixup() = default; |
| 1268 | |
| 1269 | bool isUseFullyOutsideLoop(const Loop *L) const; |
| 1270 | |
| 1271 | void print(raw_ostream &OS) const; |
| 1272 | void dump() const; |
| 1273 | }; |
| 1274 | |
| 1275 | /// This class holds the state that LSR keeps for each use in IVUsers, as well |
| 1276 | /// as uses invented by LSR itself. It includes information about what kinds of |
| 1277 | /// things can be folded into the user, information about the user itself, and |
| 1278 | /// information about how the use may be satisfied. TODO: Represent multiple |
| 1279 | /// users of the same expression in common? |
| 1280 | class LSRUse { |
| 1281 | DenseSet<SmallVector<const SCEV *, 4>> Uniquifier; |
| 1282 | |
| 1283 | public: |
| 1284 | /// An enum for a kind of use, indicating what types of scaled and immediate |
| 1285 | /// operands it might support. |
| 1286 | enum KindType { |
| 1287 | Basic, ///< A normal use, with no folding. |
| 1288 | Special, ///< A special case of basic, allowing -1 scales. |
| 1289 | Address, ///< An address use; folding according to TargetLowering |
| 1290 | ICmpZero ///< An equality icmp with both operands folded into one. |
| 1291 | // TODO: Add a generic icmp too? |
| 1292 | }; |
| 1293 | |
| 1294 | using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>; |
| 1295 | |
| 1296 | KindType Kind; |
| 1297 | MemAccessTy AccessTy; |
| 1298 | |
| 1299 | /// The list of operands which are to be replaced. |
| 1300 | SmallVector<LSRFixup, 8> Fixups; |
| 1301 | |
| 1302 | /// Keep track of the min and max offsets of the fixups. |
| 1303 | Immediate MinOffset = Immediate::getFixedMax(); |
| 1304 | Immediate MaxOffset = Immediate::getFixedMin(); |
| 1305 | |
| 1306 | /// This records whether all of the fixups using this LSRUse are outside of |
| 1307 | /// the loop, in which case some special-case heuristics may be used. |
| 1308 | bool AllFixupsOutsideLoop = true; |
| 1309 | |
| 1310 | /// RigidFormula is set to true to guarantee that this use will be associated |
| 1311 | /// with a single formula--the one that initially matched. Some SCEV |
| 1312 | /// expressions cannot be expanded. This allows LSR to consider the registers |
| 1313 | /// used by those expressions without the need to expand them later after |
| 1314 | /// changing the formula. |
| 1315 | bool RigidFormula = false; |
| 1316 | |
| 1317 | /// This records the widest use type for any fixup using this |
| 1318 | /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max |
| 1319 | /// fixup widths to be equivalent, because the narrower one may be relying on |
| 1320 | /// the implicit truncation to truncate away bogus bits. |
| 1321 | Type *WidestFixupType = nullptr; |
| 1322 | |
| 1323 | /// A list of ways to build a value that can satisfy this user. After the |
| 1324 | /// list is populated, one of these is selected heuristically and used to |
| 1325 | /// formulate a replacement for OperandValToReplace in UserInst. |
| 1326 | SmallVector<Formula, 12> Formulae; |
| 1327 | |
| 1328 | /// The set of register candidates used by all formulae in this LSRUse. |
| 1329 | SmallPtrSet<const SCEV *, 4> Regs; |
| 1330 | |
| 1331 | LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {} |
| 1332 | |
| 1333 | LSRFixup &getNewFixup() { |
| 1334 | Fixups.push_back(Elt: LSRFixup()); |
| 1335 | return Fixups.back(); |
| 1336 | } |
| 1337 | |
| 1338 | void pushFixup(LSRFixup &f) { |
| 1339 | Fixups.push_back(Elt: f); |
| 1340 | if (Immediate::isKnownGT(LHS: f.Offset, RHS: MaxOffset)) |
| 1341 | MaxOffset = f.Offset; |
| 1342 | if (Immediate::isKnownLT(LHS: f.Offset, RHS: MinOffset)) |
| 1343 | MinOffset = f.Offset; |
| 1344 | } |
| 1345 | |
| 1346 | bool HasFormulaWithSameRegs(const Formula &F) const; |
| 1347 | float getNotSelectedProbability(const SCEV *Reg) const; |
| 1348 | bool InsertFormula(const Formula &F, const Loop &L); |
| 1349 | void DeleteFormula(Formula &F); |
| 1350 | void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); |
| 1351 | |
| 1352 | void print(raw_ostream &OS) const; |
| 1353 | void dump() const; |
| 1354 | }; |
| 1355 | |
| 1356 | } // end anonymous namespace |
| 1357 | |
| 1358 | static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, |
| 1359 | LSRUse::KindType Kind, MemAccessTy AccessTy, |
| 1360 | GlobalValue *BaseGV, Immediate BaseOffset, |
| 1361 | bool HasBaseReg, int64_t Scale, |
| 1362 | Instruction *Fixup = nullptr); |
| 1363 | |
| 1364 | static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) { |
| 1365 | if (isa<SCEVUnknown>(Val: Reg) || isa<SCEVConstant>(Val: Reg)) |
| 1366 | return 1; |
| 1367 | if (Depth == 0) |
| 1368 | return 0; |
| 1369 | if (const auto *S = dyn_cast<SCEVAddRecExpr>(Val: Reg)) |
| 1370 | return getSetupCost(Reg: S->getStart(), Depth: Depth - 1); |
| 1371 | if (auto S = dyn_cast<SCEVIntegralCastExpr>(Val: Reg)) |
| 1372 | return getSetupCost(Reg: S->getOperand(), Depth: Depth - 1); |
| 1373 | if (auto S = dyn_cast<SCEVNAryExpr>(Val: Reg)) |
| 1374 | return std::accumulate(first: S->operands().begin(), last: S->operands().end(), init: 0, |
| 1375 | binary_op: [&](unsigned i, const SCEV *Reg) { |
| 1376 | return i + getSetupCost(Reg, Depth: Depth - 1); |
| 1377 | }); |
| 1378 | if (auto S = dyn_cast<SCEVUDivExpr>(Val: Reg)) |
| 1379 | return getSetupCost(Reg: S->getLHS(), Depth: Depth - 1) + |
| 1380 | getSetupCost(Reg: S->getRHS(), Depth: Depth - 1); |
| 1381 | return 0; |
| 1382 | } |
| 1383 | |
| 1384 | /// Tally up interesting quantities from the given register. |
| 1385 | void Cost::RateRegister(const Formula &F, const SCEV *Reg, |
| 1386 | SmallPtrSetImpl<const SCEV *> &Regs) { |
| 1387 | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: Reg)) { |
| 1388 | // If this is an addrec for another loop, it should be an invariant |
| 1389 | // with respect to L since L is the innermost loop (at least |
| 1390 | // for now LSR only handles innermost loops). |
| 1391 | if (AR->getLoop() != L) { |
| 1392 | // If the AddRec exists, consider it's register free and leave it alone. |
| 1393 | if (isExistingPhi(AR, SE&: *SE) && AMK != TTI::AMK_PostIndexed) |
| 1394 | return; |
| 1395 | |
| 1396 | // It is bad to allow LSR for current loop to add induction variables |
| 1397 | // for its sibling loops. |
| 1398 | if (!AR->getLoop()->contains(L)) { |
| 1399 | Lose(); |
| 1400 | return; |
| 1401 | } |
| 1402 | |
| 1403 | // Otherwise, it will be an invariant with respect to Loop L. |
| 1404 | ++C.NumRegs; |
| 1405 | return; |
| 1406 | } |
| 1407 | |
| 1408 | unsigned LoopCost = 1; |
| 1409 | if (TTI->isIndexedLoadLegal(Mode: TTI->MIM_PostInc, Ty: AR->getType()) || |
| 1410 | TTI->isIndexedStoreLegal(Mode: TTI->MIM_PostInc, Ty: AR->getType())) { |
| 1411 | const SCEV *Start; |
| 1412 | const SCEVConstant *Step; |
| 1413 | if (match(S: AR, P: m_scev_AffineAddRec(Op0: m_SCEV(V&: Start), Op1: m_SCEVConstant(V&: Step)))) |
| 1414 | // If the step size matches the base offset, we could use pre-indexed |
| 1415 | // addressing. |
| 1416 | if ((AMK == TTI::AMK_PreIndexed && F.BaseOffset.isFixed() && |
| 1417 | Step->getAPInt() == F.BaseOffset.getFixedValue()) || |
| 1418 | (AMK == TTI::AMK_PostIndexed && !isa<SCEVConstant>(Val: Start) && |
| 1419 | SE->isLoopInvariant(S: Start, L))) |
| 1420 | LoopCost = 0; |
| 1421 | } |
| 1422 | C.AddRecCost += LoopCost; |
| 1423 | |
| 1424 | // Add the step value register, if it needs one. |
| 1425 | // TODO: The non-affine case isn't precisely modeled here. |
| 1426 | if (!AR->isAffine() || !isa<SCEVConstant>(Val: AR->getOperand(i: 1))) { |
| 1427 | if (!Regs.count(Ptr: AR->getOperand(i: 1))) { |
| 1428 | RateRegister(F, Reg: AR->getOperand(i: 1), Regs); |
| 1429 | if (isLoser()) |
| 1430 | return; |
| 1431 | } |
| 1432 | } |
| 1433 | } |
| 1434 | ++C.NumRegs; |
| 1435 | |
| 1436 | // Rough heuristic; favor registers which don't require extra setup |
| 1437 | // instructions in the preheader. |
| 1438 | C.SetupCost += getSetupCost(Reg, Depth: SetupCostDepthLimit); |
| 1439 | // Ensure we don't, even with the recusion limit, produce invalid costs. |
| 1440 | C.SetupCost = std::min<unsigned>(a: C.SetupCost, b: 1 << 16); |
| 1441 | |
| 1442 | C.NumIVMuls += isa<SCEVMulExpr>(Val: Reg) && |
| 1443 | SE->hasComputableLoopEvolution(S: Reg, L); |
| 1444 | } |
| 1445 | |
| 1446 | /// Record this register in the set. If we haven't seen it before, rate |
| 1447 | /// it. Optional LoserRegs provides a way to declare any formula that refers to |
| 1448 | /// one of those regs an instant loser. |
| 1449 | void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg, |
| 1450 | SmallPtrSetImpl<const SCEV *> &Regs, |
| 1451 | SmallPtrSetImpl<const SCEV *> *LoserRegs) { |
| 1452 | if (LoserRegs && LoserRegs->count(Ptr: Reg)) { |
| 1453 | Lose(); |
| 1454 | return; |
| 1455 | } |
| 1456 | if (Regs.insert(Ptr: Reg).second) { |
| 1457 | RateRegister(F, Reg, Regs); |
| 1458 | if (LoserRegs && isLoser()) |
| 1459 | LoserRegs->insert(Ptr: Reg); |
| 1460 | } |
| 1461 | } |
| 1462 | |
| 1463 | void Cost::RateFormula(const Formula &F, |
| 1464 | SmallPtrSetImpl<const SCEV *> &Regs, |
| 1465 | const DenseSet<const SCEV *> &VisitedRegs, |
| 1466 | const LSRUse &LU, |
| 1467 | SmallPtrSetImpl<const SCEV *> *LoserRegs) { |
| 1468 | if (isLoser()) |
| 1469 | return; |
| 1470 | assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula" ); |
| 1471 | // Tally up the registers. |
| 1472 | unsigned PrevAddRecCost = C.AddRecCost; |
| 1473 | unsigned PrevNumRegs = C.NumRegs; |
| 1474 | unsigned PrevNumBaseAdds = C.NumBaseAdds; |
| 1475 | if (const SCEV *ScaledReg = F.ScaledReg) { |
| 1476 | if (VisitedRegs.count(V: ScaledReg)) { |
| 1477 | Lose(); |
| 1478 | return; |
| 1479 | } |
| 1480 | RatePrimaryRegister(F, Reg: ScaledReg, Regs, LoserRegs); |
| 1481 | if (isLoser()) |
| 1482 | return; |
| 1483 | } |
| 1484 | for (const SCEV *BaseReg : F.BaseRegs) { |
| 1485 | if (VisitedRegs.count(V: BaseReg)) { |
| 1486 | Lose(); |
| 1487 | return; |
| 1488 | } |
| 1489 | RatePrimaryRegister(F, Reg: BaseReg, Regs, LoserRegs); |
| 1490 | if (isLoser()) |
| 1491 | return; |
| 1492 | } |
| 1493 | |
| 1494 | // Determine how many (unfolded) adds we'll need inside the loop. |
| 1495 | size_t NumBaseParts = F.getNumRegs(); |
| 1496 | if (NumBaseParts > 1) |
| 1497 | // Do not count the base and a possible second register if the target |
| 1498 | // allows to fold 2 registers. |
| 1499 | C.NumBaseAdds += |
| 1500 | NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI: *TTI, LU, F))); |
| 1501 | C.NumBaseAdds += (F.UnfoldedOffset.isNonZero()); |
| 1502 | |
| 1503 | // Accumulate non-free scaling amounts. |
| 1504 | C.ScaleCost += getScalingFactorCost(TTI: *TTI, LU, F, L: *L).getValue(); |
| 1505 | |
| 1506 | // Tally up the non-zero immediates. |
| 1507 | for (const LSRFixup &Fixup : LU.Fixups) { |
| 1508 | if (Fixup.Offset.isCompatibleImmediate(Imm: F.BaseOffset)) { |
| 1509 | Immediate Offset = Fixup.Offset.addUnsigned(RHS: F.BaseOffset); |
| 1510 | if (F.BaseGV) |
| 1511 | C.ImmCost += 64; // Handle symbolic values conservatively. |
| 1512 | // TODO: This should probably be the pointer size. |
| 1513 | else if (Offset.isNonZero()) |
| 1514 | C.ImmCost += |
| 1515 | APInt(64, Offset.getKnownMinValue(), true).getSignificantBits(); |
| 1516 | |
| 1517 | // Check with target if this offset with this instruction is |
| 1518 | // specifically not supported. |
| 1519 | if (LU.Kind == LSRUse::Address && Offset.isNonZero() && |
| 1520 | !isAMCompletelyFolded(TTI: *TTI, Kind: LSRUse::Address, AccessTy: LU.AccessTy, BaseGV: F.BaseGV, |
| 1521 | BaseOffset: Offset, HasBaseReg: F.HasBaseReg, Scale: F.Scale, Fixup: Fixup.UserInst)) |
| 1522 | C.NumBaseAdds++; |
| 1523 | } else { |
| 1524 | // Incompatible immediate type, increase cost to avoid using |
| 1525 | C.ImmCost += 2048; |
| 1526 | } |
| 1527 | } |
| 1528 | |
| 1529 | // If we don't count instruction cost exit here. |
| 1530 | if (!InsnsCost) { |
| 1531 | assert(isValid() && "invalid cost" ); |
| 1532 | return; |
| 1533 | } |
| 1534 | |
| 1535 | // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as |
| 1536 | // additional instruction (at least fill). |
| 1537 | // TODO: Need distinguish register class? |
| 1538 | unsigned TTIRegNum = TTI->getNumberOfRegisters( |
| 1539 | ClassID: TTI->getRegisterClassForType(Vector: false, Ty: F.getType())) - 1; |
| 1540 | if (C.NumRegs > TTIRegNum) { |
| 1541 | // Cost already exceeded TTIRegNum, then only newly added register can add |
| 1542 | // new instructions. |
| 1543 | if (PrevNumRegs > TTIRegNum) |
| 1544 | C.Insns += (C.NumRegs - PrevNumRegs); |
| 1545 | else |
| 1546 | C.Insns += (C.NumRegs - TTIRegNum); |
| 1547 | } |
| 1548 | |
| 1549 | // If ICmpZero formula ends with not 0, it could not be replaced by |
| 1550 | // just add or sub. We'll need to compare final result of AddRec. |
| 1551 | // That means we'll need an additional instruction. But if the target can |
| 1552 | // macro-fuse a compare with a branch, don't count this extra instruction. |
| 1553 | // For -10 + {0, +, 1}: |
| 1554 | // i = i + 1; |
| 1555 | // cmp i, 10 |
| 1556 | // |
| 1557 | // For {-10, +, 1}: |
| 1558 | // i = i + 1; |
| 1559 | if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() && |
| 1560 | !TTI->canMacroFuseCmp()) |
| 1561 | C.Insns++; |
| 1562 | // Each new AddRec adds 1 instruction to calculation. |
| 1563 | C.Insns += (C.AddRecCost - PrevAddRecCost); |
| 1564 | |
| 1565 | // BaseAdds adds instructions for unfolded registers. |
| 1566 | if (LU.Kind != LSRUse::ICmpZero) |
| 1567 | C.Insns += C.NumBaseAdds - PrevNumBaseAdds; |
| 1568 | assert(isValid() && "invalid cost" ); |
| 1569 | } |
| 1570 | |
| 1571 | /// Set this cost to a losing value. |
| 1572 | void Cost::Lose() { |
| 1573 | C.Insns = std::numeric_limits<unsigned>::max(); |
| 1574 | C.NumRegs = std::numeric_limits<unsigned>::max(); |
| 1575 | C.AddRecCost = std::numeric_limits<unsigned>::max(); |
| 1576 | C.NumIVMuls = std::numeric_limits<unsigned>::max(); |
| 1577 | C.NumBaseAdds = std::numeric_limits<unsigned>::max(); |
| 1578 | C.ImmCost = std::numeric_limits<unsigned>::max(); |
| 1579 | C.SetupCost = std::numeric_limits<unsigned>::max(); |
| 1580 | C.ScaleCost = std::numeric_limits<unsigned>::max(); |
| 1581 | } |
| 1582 | |
| 1583 | /// Choose the lower cost. |
| 1584 | bool Cost::isLess(const Cost &Other) const { |
| 1585 | if (InsnsCost.getNumOccurrences() > 0 && InsnsCost && |
| 1586 | C.Insns != Other.C.Insns) |
| 1587 | return C.Insns < Other.C.Insns; |
| 1588 | return TTI->isLSRCostLess(C1: C, C2: Other.C); |
| 1589 | } |
| 1590 | |
| 1591 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1592 | void Cost::print(raw_ostream &OS) const { |
| 1593 | if (InsnsCost) |
| 1594 | OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s " ); |
| 1595 | OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s" ); |
| 1596 | if (C.AddRecCost != 0) |
| 1597 | OS << ", with addrec cost " << C.AddRecCost; |
| 1598 | if (C.NumIVMuls != 0) |
| 1599 | OS << ", plus " << C.NumIVMuls << " IV mul" |
| 1600 | << (C.NumIVMuls == 1 ? "" : "s" ); |
| 1601 | if (C.NumBaseAdds != 0) |
| 1602 | OS << ", plus " << C.NumBaseAdds << " base add" |
| 1603 | << (C.NumBaseAdds == 1 ? "" : "s" ); |
| 1604 | if (C.ScaleCost != 0) |
| 1605 | OS << ", plus " << C.ScaleCost << " scale cost" ; |
| 1606 | if (C.ImmCost != 0) |
| 1607 | OS << ", plus " << C.ImmCost << " imm cost" ; |
| 1608 | if (C.SetupCost != 0) |
| 1609 | OS << ", plus " << C.SetupCost << " setup cost" ; |
| 1610 | } |
| 1611 | |
| 1612 | LLVM_DUMP_METHOD void Cost::dump() const { |
| 1613 | print(errs()); errs() << '\n'; |
| 1614 | } |
| 1615 | #endif |
| 1616 | |
| 1617 | /// Test whether this fixup always uses its value outside of the given loop. |
| 1618 | bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { |
| 1619 | // PHI nodes use their value in their incoming blocks. |
| 1620 | if (const PHINode *PN = dyn_cast<PHINode>(Val: UserInst)) { |
| 1621 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) |
| 1622 | if (PN->getIncomingValue(i) == OperandValToReplace && |
| 1623 | L->contains(BB: PN->getIncomingBlock(i))) |
| 1624 | return false; |
| 1625 | return true; |
| 1626 | } |
| 1627 | |
| 1628 | return !L->contains(Inst: UserInst); |
| 1629 | } |
| 1630 | |
| 1631 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1632 | void LSRFixup::print(raw_ostream &OS) const { |
| 1633 | OS << "UserInst=" ; |
| 1634 | // Store is common and interesting enough to be worth special-casing. |
| 1635 | if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { |
| 1636 | OS << "store " ; |
| 1637 | Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); |
| 1638 | } else if (UserInst->getType()->isVoidTy()) |
| 1639 | OS << UserInst->getOpcodeName(); |
| 1640 | else |
| 1641 | UserInst->printAsOperand(OS, /*PrintType=*/false); |
| 1642 | |
| 1643 | OS << ", OperandValToReplace=" ; |
| 1644 | OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); |
| 1645 | |
| 1646 | for (const Loop *PIL : PostIncLoops) { |
| 1647 | OS << ", PostIncLoop=" ; |
| 1648 | PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); |
| 1649 | } |
| 1650 | |
| 1651 | if (Offset.isNonZero()) |
| 1652 | OS << ", Offset=" << Offset; |
| 1653 | } |
| 1654 | |
| 1655 | LLVM_DUMP_METHOD void LSRFixup::dump() const { |
| 1656 | print(errs()); errs() << '\n'; |
| 1657 | } |
| 1658 | #endif |
| 1659 | |
| 1660 | /// Test whether this use as a formula which has the same registers as the given |
| 1661 | /// formula. |
| 1662 | bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { |
| 1663 | SmallVector<const SCEV *, 4> Key = F.BaseRegs; |
| 1664 | if (F.ScaledReg) Key.push_back(Elt: F.ScaledReg); |
| 1665 | // Unstable sort by host order ok, because this is only used for uniquifying. |
| 1666 | llvm::sort(C&: Key); |
| 1667 | return Uniquifier.count(V: Key); |
| 1668 | } |
| 1669 | |
| 1670 | /// The function returns a probability of selecting formula without Reg. |
| 1671 | float LSRUse::getNotSelectedProbability(const SCEV *Reg) const { |
| 1672 | unsigned FNum = 0; |
| 1673 | for (const Formula &F : Formulae) |
| 1674 | if (F.referencesReg(S: Reg)) |
| 1675 | FNum++; |
| 1676 | return ((float)(Formulae.size() - FNum)) / Formulae.size(); |
| 1677 | } |
| 1678 | |
| 1679 | /// If the given formula has not yet been inserted, add it to the list, and |
| 1680 | /// return true. Return false otherwise. The formula must be in canonical form. |
| 1681 | bool LSRUse::InsertFormula(const Formula &F, const Loop &L) { |
| 1682 | assert(F.isCanonical(L) && "Invalid canonical representation" ); |
| 1683 | |
| 1684 | if (!Formulae.empty() && RigidFormula) |
| 1685 | return false; |
| 1686 | |
| 1687 | SmallVector<const SCEV *, 4> Key = F.BaseRegs; |
| 1688 | if (F.ScaledReg) Key.push_back(Elt: F.ScaledReg); |
| 1689 | // Unstable sort by host order ok, because this is only used for uniquifying. |
| 1690 | llvm::sort(C&: Key); |
| 1691 | |
| 1692 | if (!Uniquifier.insert(V: Key).second) |
| 1693 | return false; |
| 1694 | |
| 1695 | // Using a register to hold the value of 0 is not profitable. |
| 1696 | assert((!F.ScaledReg || !F.ScaledReg->isZero()) && |
| 1697 | "Zero allocated in a scaled register!" ); |
| 1698 | #ifndef NDEBUG |
| 1699 | for (const SCEV *BaseReg : F.BaseRegs) |
| 1700 | assert(!BaseReg->isZero() && "Zero allocated in a base register!" ); |
| 1701 | #endif |
| 1702 | |
| 1703 | // Add the formula to the list. |
| 1704 | Formulae.push_back(Elt: F); |
| 1705 | |
| 1706 | // Record registers now being used by this use. |
| 1707 | Regs.insert_range(R: F.BaseRegs); |
| 1708 | if (F.ScaledReg) |
| 1709 | Regs.insert(Ptr: F.ScaledReg); |
| 1710 | |
| 1711 | return true; |
| 1712 | } |
| 1713 | |
| 1714 | /// Remove the given formula from this use's list. |
| 1715 | void LSRUse::DeleteFormula(Formula &F) { |
| 1716 | if (&F != &Formulae.back()) |
| 1717 | std::swap(a&: F, b&: Formulae.back()); |
| 1718 | Formulae.pop_back(); |
| 1719 | } |
| 1720 | |
| 1721 | /// Recompute the Regs field, and update RegUses. |
| 1722 | void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { |
| 1723 | // Now that we've filtered out some formulae, recompute the Regs set. |
| 1724 | SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); |
| 1725 | Regs.clear(); |
| 1726 | for (const Formula &F : Formulae) { |
| 1727 | if (F.ScaledReg) Regs.insert(Ptr: F.ScaledReg); |
| 1728 | Regs.insert_range(R: F.BaseRegs); |
| 1729 | } |
| 1730 | |
| 1731 | // Update the RegTracker. |
| 1732 | for (const SCEV *S : OldRegs) |
| 1733 | if (!Regs.count(Ptr: S)) |
| 1734 | RegUses.dropRegister(Reg: S, LUIdx); |
| 1735 | } |
| 1736 | |
| 1737 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1738 | void LSRUse::print(raw_ostream &OS) const { |
| 1739 | OS << "LSR Use: Kind=" ; |
| 1740 | switch (Kind) { |
| 1741 | case Basic: OS << "Basic" ; break; |
| 1742 | case Special: OS << "Special" ; break; |
| 1743 | case ICmpZero: OS << "ICmpZero" ; break; |
| 1744 | case Address: |
| 1745 | OS << "Address of " ; |
| 1746 | if (AccessTy.MemTy->isPointerTy()) |
| 1747 | OS << "pointer" ; // the full pointer type could be really verbose |
| 1748 | else { |
| 1749 | OS << *AccessTy.MemTy; |
| 1750 | } |
| 1751 | |
| 1752 | OS << " in addrspace(" << AccessTy.AddrSpace << ')'; |
| 1753 | } |
| 1754 | |
| 1755 | OS << ", Offsets={" ; |
| 1756 | bool NeedComma = false; |
| 1757 | for (const LSRFixup &Fixup : Fixups) { |
| 1758 | if (NeedComma) OS << ','; |
| 1759 | OS << Fixup.Offset; |
| 1760 | NeedComma = true; |
| 1761 | } |
| 1762 | OS << '}'; |
| 1763 | |
| 1764 | if (AllFixupsOutsideLoop) |
| 1765 | OS << ", all-fixups-outside-loop" ; |
| 1766 | |
| 1767 | if (WidestFixupType) |
| 1768 | OS << ", widest fixup type: " << *WidestFixupType; |
| 1769 | } |
| 1770 | |
| 1771 | LLVM_DUMP_METHOD void LSRUse::dump() const { |
| 1772 | print(errs()); errs() << '\n'; |
| 1773 | } |
| 1774 | #endif |
| 1775 | |
| 1776 | static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, |
| 1777 | LSRUse::KindType Kind, MemAccessTy AccessTy, |
| 1778 | GlobalValue *BaseGV, Immediate BaseOffset, |
| 1779 | bool HasBaseReg, int64_t Scale, |
| 1780 | Instruction *Fixup /* = nullptr */) { |
| 1781 | switch (Kind) { |
| 1782 | case LSRUse::Address: { |
| 1783 | int64_t FixedOffset = |
| 1784 | BaseOffset.isScalable() ? 0 : BaseOffset.getFixedValue(); |
| 1785 | int64_t ScalableOffset = |
| 1786 | BaseOffset.isScalable() ? BaseOffset.getKnownMinValue() : 0; |
| 1787 | return TTI.isLegalAddressingMode(Ty: AccessTy.MemTy, BaseGV, BaseOffset: FixedOffset, |
| 1788 | HasBaseReg, Scale, AddrSpace: AccessTy.AddrSpace, |
| 1789 | I: Fixup, ScalableOffset); |
| 1790 | } |
| 1791 | case LSRUse::ICmpZero: |
| 1792 | // There's not even a target hook for querying whether it would be legal to |
| 1793 | // fold a GV into an ICmp. |
| 1794 | if (BaseGV) |
| 1795 | return false; |
| 1796 | |
| 1797 | // ICmp only has two operands; don't allow more than two non-trivial parts. |
| 1798 | if (Scale != 0 && HasBaseReg && BaseOffset.isNonZero()) |
| 1799 | return false; |
| 1800 | |
| 1801 | // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by |
| 1802 | // putting the scaled register in the other operand of the icmp. |
| 1803 | if (Scale != 0 && Scale != -1) |
| 1804 | return false; |
| 1805 | |
| 1806 | // If we have low-level target information, ask the target if it can fold an |
| 1807 | // integer immediate on an icmp. |
| 1808 | if (BaseOffset.isNonZero()) { |
| 1809 | // We don't have an interface to query whether the target supports |
| 1810 | // icmpzero against scalable quantities yet. |
| 1811 | if (BaseOffset.isScalable()) |
| 1812 | return false; |
| 1813 | |
| 1814 | // We have one of: |
| 1815 | // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset |
| 1816 | // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset |
| 1817 | // Offs is the ICmp immediate. |
| 1818 | if (Scale == 0) |
| 1819 | // The cast does the right thing with |
| 1820 | // std::numeric_limits<int64_t>::min(). |
| 1821 | BaseOffset = BaseOffset.getFixed(MinVal: -(uint64_t)BaseOffset.getFixedValue()); |
| 1822 | return TTI.isLegalICmpImmediate(Imm: BaseOffset.getFixedValue()); |
| 1823 | } |
| 1824 | |
| 1825 | // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg |
| 1826 | return true; |
| 1827 | |
| 1828 | case LSRUse::Basic: |
| 1829 | // Only handle single-register values. |
| 1830 | return !BaseGV && Scale == 0 && BaseOffset.isZero(); |
| 1831 | |
| 1832 | case LSRUse::Special: |
| 1833 | // Special case Basic to handle -1 scales. |
| 1834 | return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset.isZero(); |
| 1835 | } |
| 1836 | |
| 1837 | llvm_unreachable("Invalid LSRUse Kind!" ); |
| 1838 | } |
| 1839 | |
| 1840 | static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, |
| 1841 | Immediate MinOffset, Immediate MaxOffset, |
| 1842 | LSRUse::KindType Kind, MemAccessTy AccessTy, |
| 1843 | GlobalValue *BaseGV, Immediate BaseOffset, |
| 1844 | bool HasBaseReg, int64_t Scale) { |
| 1845 | if (BaseOffset.isNonZero() && |
| 1846 | (BaseOffset.isScalable() != MinOffset.isScalable() || |
| 1847 | BaseOffset.isScalable() != MaxOffset.isScalable())) |
| 1848 | return false; |
| 1849 | // Check for overflow. |
| 1850 | int64_t Base = BaseOffset.getKnownMinValue(); |
| 1851 | int64_t Min = MinOffset.getKnownMinValue(); |
| 1852 | int64_t Max = MaxOffset.getKnownMinValue(); |
| 1853 | if (((int64_t)((uint64_t)Base + Min) > Base) != (Min > 0)) |
| 1854 | return false; |
| 1855 | MinOffset = Immediate::get(MinVal: (uint64_t)Base + Min, Scalable: MinOffset.isScalable()); |
| 1856 | if (((int64_t)((uint64_t)Base + Max) > Base) != (Max > 0)) |
| 1857 | return false; |
| 1858 | MaxOffset = Immediate::get(MinVal: (uint64_t)Base + Max, Scalable: MaxOffset.isScalable()); |
| 1859 | |
| 1860 | return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset: MinOffset, |
| 1861 | HasBaseReg, Scale) && |
| 1862 | isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset: MaxOffset, |
| 1863 | HasBaseReg, Scale); |
| 1864 | } |
| 1865 | |
| 1866 | static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, |
| 1867 | Immediate MinOffset, Immediate MaxOffset, |
| 1868 | LSRUse::KindType Kind, MemAccessTy AccessTy, |
| 1869 | const Formula &F, const Loop &L) { |
| 1870 | // For the purpose of isAMCompletelyFolded either having a canonical formula |
| 1871 | // or a scale not equal to zero is correct. |
| 1872 | // Problems may arise from non canonical formulae having a scale == 0. |
| 1873 | // Strictly speaking it would best to just rely on canonical formulae. |
| 1874 | // However, when we generate the scaled formulae, we first check that the |
| 1875 | // scaling factor is profitable before computing the actual ScaledReg for |
| 1876 | // compile time sake. |
| 1877 | assert((F.isCanonical(L) || F.Scale != 0)); |
| 1878 | return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, |
| 1879 | BaseGV: F.BaseGV, BaseOffset: F.BaseOffset, HasBaseReg: F.HasBaseReg, Scale: F.Scale); |
| 1880 | } |
| 1881 | |
| 1882 | /// Test whether we know how to expand the current formula. |
| 1883 | static bool isLegalUse(const TargetTransformInfo &TTI, Immediate MinOffset, |
| 1884 | Immediate MaxOffset, LSRUse::KindType Kind, |
| 1885 | MemAccessTy AccessTy, GlobalValue *BaseGV, |
| 1886 | Immediate BaseOffset, bool HasBaseReg, int64_t Scale) { |
| 1887 | // We know how to expand completely foldable formulae. |
| 1888 | return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, |
| 1889 | BaseOffset, HasBaseReg, Scale) || |
| 1890 | // Or formulae that use a base register produced by a sum of base |
| 1891 | // registers. |
| 1892 | (Scale == 1 && |
| 1893 | isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, |
| 1894 | BaseGV, BaseOffset, HasBaseReg: true, Scale: 0)); |
| 1895 | } |
| 1896 | |
| 1897 | static bool isLegalUse(const TargetTransformInfo &TTI, Immediate MinOffset, |
| 1898 | Immediate MaxOffset, LSRUse::KindType Kind, |
| 1899 | MemAccessTy AccessTy, const Formula &F) { |
| 1900 | return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV: F.BaseGV, |
| 1901 | BaseOffset: F.BaseOffset, HasBaseReg: F.HasBaseReg, Scale: F.Scale); |
| 1902 | } |
| 1903 | |
| 1904 | static bool isLegalAddImmediate(const TargetTransformInfo &TTI, |
| 1905 | Immediate Offset) { |
| 1906 | if (Offset.isScalable()) |
| 1907 | return TTI.isLegalAddScalableImmediate(Imm: Offset.getKnownMinValue()); |
| 1908 | |
| 1909 | return TTI.isLegalAddImmediate(Imm: Offset.getFixedValue()); |
| 1910 | } |
| 1911 | |
| 1912 | static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, |
| 1913 | const LSRUse &LU, const Formula &F) { |
| 1914 | // Target may want to look at the user instructions. |
| 1915 | if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) { |
| 1916 | for (const LSRFixup &Fixup : LU.Fixups) |
| 1917 | if (!isAMCompletelyFolded(TTI, Kind: LSRUse::Address, AccessTy: LU.AccessTy, BaseGV: F.BaseGV, |
| 1918 | BaseOffset: (F.BaseOffset + Fixup.Offset), HasBaseReg: F.HasBaseReg, |
| 1919 | Scale: F.Scale, Fixup: Fixup.UserInst)) |
| 1920 | return false; |
| 1921 | return true; |
| 1922 | } |
| 1923 | |
| 1924 | return isAMCompletelyFolded(TTI, MinOffset: LU.MinOffset, MaxOffset: LU.MaxOffset, Kind: LU.Kind, |
| 1925 | AccessTy: LU.AccessTy, BaseGV: F.BaseGV, BaseOffset: F.BaseOffset, HasBaseReg: F.HasBaseReg, |
| 1926 | Scale: F.Scale); |
| 1927 | } |
| 1928 | |
| 1929 | static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI, |
| 1930 | const LSRUse &LU, const Formula &F, |
| 1931 | const Loop &L) { |
| 1932 | if (!F.Scale) |
| 1933 | return 0; |
| 1934 | |
| 1935 | // If the use is not completely folded in that instruction, we will have to |
| 1936 | // pay an extra cost only for scale != 1. |
| 1937 | if (!isAMCompletelyFolded(TTI, MinOffset: LU.MinOffset, MaxOffset: LU.MaxOffset, Kind: LU.Kind, |
| 1938 | AccessTy: LU.AccessTy, F, L)) |
| 1939 | return F.Scale != 1; |
| 1940 | |
| 1941 | switch (LU.Kind) { |
| 1942 | case LSRUse::Address: { |
| 1943 | // Check the scaling factor cost with both the min and max offsets. |
| 1944 | int64_t ScalableMin = 0, ScalableMax = 0, FixedMin = 0, FixedMax = 0; |
| 1945 | if (F.BaseOffset.isScalable()) { |
| 1946 | ScalableMin = (F.BaseOffset + LU.MinOffset).getKnownMinValue(); |
| 1947 | ScalableMax = (F.BaseOffset + LU.MaxOffset).getKnownMinValue(); |
| 1948 | } else { |
| 1949 | FixedMin = (F.BaseOffset + LU.MinOffset).getFixedValue(); |
| 1950 | FixedMax = (F.BaseOffset + LU.MaxOffset).getFixedValue(); |
| 1951 | } |
| 1952 | InstructionCost ScaleCostMinOffset = TTI.getScalingFactorCost( |
| 1953 | Ty: LU.AccessTy.MemTy, BaseGV: F.BaseGV, BaseOffset: StackOffset::get(Fixed: FixedMin, Scalable: ScalableMin), |
| 1954 | HasBaseReg: F.HasBaseReg, Scale: F.Scale, AddrSpace: LU.AccessTy.AddrSpace); |
| 1955 | InstructionCost ScaleCostMaxOffset = TTI.getScalingFactorCost( |
| 1956 | Ty: LU.AccessTy.MemTy, BaseGV: F.BaseGV, BaseOffset: StackOffset::get(Fixed: FixedMax, Scalable: ScalableMax), |
| 1957 | HasBaseReg: F.HasBaseReg, Scale: F.Scale, AddrSpace: LU.AccessTy.AddrSpace); |
| 1958 | |
| 1959 | assert(ScaleCostMinOffset.isValid() && ScaleCostMaxOffset.isValid() && |
| 1960 | "Legal addressing mode has an illegal cost!" ); |
| 1961 | return std::max(a: ScaleCostMinOffset, b: ScaleCostMaxOffset); |
| 1962 | } |
| 1963 | case LSRUse::ICmpZero: |
| 1964 | case LSRUse::Basic: |
| 1965 | case LSRUse::Special: |
| 1966 | // The use is completely folded, i.e., everything is folded into the |
| 1967 | // instruction. |
| 1968 | return 0; |
| 1969 | } |
| 1970 | |
| 1971 | llvm_unreachable("Invalid LSRUse Kind!" ); |
| 1972 | } |
| 1973 | |
| 1974 | static bool isAlwaysFoldable(const TargetTransformInfo &TTI, |
| 1975 | LSRUse::KindType Kind, MemAccessTy AccessTy, |
| 1976 | GlobalValue *BaseGV, Immediate BaseOffset, |
| 1977 | bool HasBaseReg) { |
| 1978 | // Fast-path: zero is always foldable. |
| 1979 | if (BaseOffset.isZero() && !BaseGV) |
| 1980 | return true; |
| 1981 | |
| 1982 | // Conservatively, create an address with an immediate and a |
| 1983 | // base and a scale. |
| 1984 | int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; |
| 1985 | |
| 1986 | // Canonicalize a scale of 1 to a base register if the formula doesn't |
| 1987 | // already have a base register. |
| 1988 | if (!HasBaseReg && Scale == 1) { |
| 1989 | Scale = 0; |
| 1990 | HasBaseReg = true; |
| 1991 | } |
| 1992 | |
| 1993 | // FIXME: Try with + without a scale? Maybe based on TTI? |
| 1994 | // I think basereg + scaledreg + immediateoffset isn't a good 'conservative' |
| 1995 | // default for many architectures, not just AArch64 SVE. More investigation |
| 1996 | // needed later to determine if this should be used more widely than just |
| 1997 | // on scalable types. |
| 1998 | if (HasBaseReg && BaseOffset.isNonZero() && Kind != LSRUse::ICmpZero && |
| 1999 | AccessTy.MemTy && AccessTy.MemTy->isScalableTy() && DropScaledForVScale) |
| 2000 | Scale = 0; |
| 2001 | |
| 2002 | return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, |
| 2003 | HasBaseReg, Scale); |
| 2004 | } |
| 2005 | |
| 2006 | static bool isAlwaysFoldable(const TargetTransformInfo &TTI, |
| 2007 | ScalarEvolution &SE, Immediate MinOffset, |
| 2008 | Immediate MaxOffset, LSRUse::KindType Kind, |
| 2009 | MemAccessTy AccessTy, const SCEV *S, |
| 2010 | bool HasBaseReg) { |
| 2011 | // Fast-path: zero is always foldable. |
| 2012 | if (S->isZero()) return true; |
| 2013 | |
| 2014 | // Conservatively, create an address with an immediate and a |
| 2015 | // base and a scale. |
| 2016 | Immediate BaseOffset = ExtractImmediate(S, SE); |
| 2017 | GlobalValue *BaseGV = ExtractSymbol(S, SE); |
| 2018 | |
| 2019 | // If there's anything else involved, it's not foldable. |
| 2020 | if (!S->isZero()) return false; |
| 2021 | |
| 2022 | // Fast-path: zero is always foldable. |
| 2023 | if (BaseOffset.isZero() && !BaseGV) |
| 2024 | return true; |
| 2025 | |
| 2026 | if (BaseOffset.isScalable()) |
| 2027 | return false; |
| 2028 | |
| 2029 | // Conservatively, create an address with an immediate and a |
| 2030 | // base and a scale. |
| 2031 | int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; |
| 2032 | |
| 2033 | return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, |
| 2034 | BaseOffset, HasBaseReg, Scale); |
| 2035 | } |
| 2036 | |
| 2037 | namespace { |
| 2038 | |
| 2039 | /// An individual increment in a Chain of IV increments. Relate an IV user to |
| 2040 | /// an expression that computes the IV it uses from the IV used by the previous |
| 2041 | /// link in the Chain. |
| 2042 | /// |
| 2043 | /// For the head of a chain, IncExpr holds the absolute SCEV expression for the |
| 2044 | /// original IVOperand. The head of the chain's IVOperand is only valid during |
| 2045 | /// chain collection, before LSR replaces IV users. During chain generation, |
| 2046 | /// IncExpr can be used to find the new IVOperand that computes the same |
| 2047 | /// expression. |
| 2048 | struct IVInc { |
| 2049 | Instruction *UserInst; |
| 2050 | Value* IVOperand; |
| 2051 | const SCEV *IncExpr; |
| 2052 | |
| 2053 | IVInc(Instruction *U, Value *O, const SCEV *E) |
| 2054 | : UserInst(U), IVOperand(O), IncExpr(E) {} |
| 2055 | }; |
| 2056 | |
| 2057 | // The list of IV increments in program order. We typically add the head of a |
| 2058 | // chain without finding subsequent links. |
| 2059 | struct IVChain { |
| 2060 | SmallVector<IVInc, 1> Incs; |
| 2061 | const SCEV *ExprBase = nullptr; |
| 2062 | |
| 2063 | IVChain() = default; |
| 2064 | IVChain(const IVInc &Head, const SCEV *Base) |
| 2065 | : Incs(1, Head), ExprBase(Base) {} |
| 2066 | |
| 2067 | using const_iterator = SmallVectorImpl<IVInc>::const_iterator; |
| 2068 | |
| 2069 | // Return the first increment in the chain. |
| 2070 | const_iterator begin() const { |
| 2071 | assert(!Incs.empty()); |
| 2072 | return std::next(x: Incs.begin()); |
| 2073 | } |
| 2074 | const_iterator end() const { |
| 2075 | return Incs.end(); |
| 2076 | } |
| 2077 | |
| 2078 | // Returns true if this chain contains any increments. |
| 2079 | bool hasIncs() const { return Incs.size() >= 2; } |
| 2080 | |
| 2081 | // Add an IVInc to the end of this chain. |
| 2082 | void add(const IVInc &X) { Incs.push_back(Elt: X); } |
| 2083 | |
| 2084 | // Returns the last UserInst in the chain. |
| 2085 | Instruction *tailUserInst() const { return Incs.back().UserInst; } |
| 2086 | |
| 2087 | // Returns true if IncExpr can be profitably added to this chain. |
| 2088 | bool isProfitableIncrement(const SCEV *OperExpr, |
| 2089 | const SCEV *IncExpr, |
| 2090 | ScalarEvolution&); |
| 2091 | }; |
| 2092 | |
| 2093 | /// Helper for CollectChains to track multiple IV increment uses. Distinguish |
| 2094 | /// between FarUsers that definitely cross IV increments and NearUsers that may |
| 2095 | /// be used between IV increments. |
| 2096 | struct ChainUsers { |
| 2097 | SmallPtrSet<Instruction*, 4> FarUsers; |
| 2098 | SmallPtrSet<Instruction*, 4> NearUsers; |
| 2099 | }; |
| 2100 | |
| 2101 | /// This class holds state for the main loop strength reduction logic. |
| 2102 | class LSRInstance { |
| 2103 | IVUsers &IU; |
| 2104 | ScalarEvolution &SE; |
| 2105 | DominatorTree &DT; |
| 2106 | LoopInfo &LI; |
| 2107 | AssumptionCache &AC; |
| 2108 | TargetLibraryInfo &TLI; |
| 2109 | const TargetTransformInfo &TTI; |
| 2110 | Loop *const L; |
| 2111 | MemorySSAUpdater *MSSAU; |
| 2112 | TTI::AddressingModeKind AMK; |
| 2113 | mutable SCEVExpander Rewriter; |
| 2114 | bool Changed = false; |
| 2115 | |
| 2116 | /// This is the insert position that the current loop's induction variable |
| 2117 | /// increment should be placed. In simple loops, this is the latch block's |
| 2118 | /// terminator. But in more complicated cases, this is a position which will |
| 2119 | /// dominate all the in-loop post-increment users. |
| 2120 | Instruction *IVIncInsertPos = nullptr; |
| 2121 | |
| 2122 | /// Interesting factors between use strides. |
| 2123 | /// |
| 2124 | /// We explicitly use a SetVector which contains a SmallSet, instead of the |
| 2125 | /// default, a SmallDenseSet, because we need to use the full range of |
| 2126 | /// int64_ts, and there's currently no good way of doing that with |
| 2127 | /// SmallDenseSet. |
| 2128 | SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; |
| 2129 | |
| 2130 | /// The cost of the current SCEV, the best solution by LSR will be dropped if |
| 2131 | /// the solution is not profitable. |
| 2132 | Cost BaselineCost; |
| 2133 | |
| 2134 | /// Interesting use types, to facilitate truncation reuse. |
| 2135 | SmallSetVector<Type *, 4> Types; |
| 2136 | |
| 2137 | /// The list of interesting uses. |
| 2138 | mutable SmallVector<LSRUse, 16> Uses; |
| 2139 | |
| 2140 | /// Track which uses use which register candidates. |
| 2141 | RegUseTracker RegUses; |
| 2142 | |
| 2143 | // Limit the number of chains to avoid quadratic behavior. We don't expect to |
| 2144 | // have more than a few IV increment chains in a loop. Missing a Chain falls |
| 2145 | // back to normal LSR behavior for those uses. |
| 2146 | static const unsigned MaxChains = 8; |
| 2147 | |
| 2148 | /// IV users can form a chain of IV increments. |
| 2149 | SmallVector<IVChain, MaxChains> IVChainVec; |
| 2150 | |
| 2151 | /// IV users that belong to profitable IVChains. |
| 2152 | SmallPtrSet<Use*, MaxChains> IVIncSet; |
| 2153 | |
| 2154 | /// Induction variables that were generated and inserted by the SCEV Expander. |
| 2155 | SmallVector<llvm::WeakVH, 2> ScalarEvolutionIVs; |
| 2156 | |
| 2157 | // Inserting instructions in the loop and using them as PHI's input could |
| 2158 | // break LCSSA in case if PHI's parent block is not a loop exit (i.e. the |
| 2159 | // corresponding incoming block is not loop exiting). So collect all such |
| 2160 | // instructions to form LCSSA for them later. |
| 2161 | SmallSetVector<Instruction *, 4> InsertedNonLCSSAInsts; |
| 2162 | |
| 2163 | void OptimizeShadowIV(); |
| 2164 | bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); |
| 2165 | ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); |
| 2166 | void OptimizeLoopTermCond(); |
| 2167 | |
| 2168 | void ChainInstruction(Instruction *UserInst, Instruction *IVOper, |
| 2169 | SmallVectorImpl<ChainUsers> &ChainUsersVec); |
| 2170 | void FinalizeChain(IVChain &Chain); |
| 2171 | void CollectChains(); |
| 2172 | void GenerateIVChain(const IVChain &Chain, |
| 2173 | SmallVectorImpl<WeakTrackingVH> &DeadInsts); |
| 2174 | |
| 2175 | void CollectInterestingTypesAndFactors(); |
| 2176 | void CollectFixupsAndInitialFormulae(); |
| 2177 | |
| 2178 | // Support for sharing of LSRUses between LSRFixups. |
| 2179 | using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>; |
| 2180 | UseMapTy UseMap; |
| 2181 | |
| 2182 | bool reconcileNewOffset(LSRUse &LU, Immediate NewOffset, bool HasBaseReg, |
| 2183 | LSRUse::KindType Kind, MemAccessTy AccessTy); |
| 2184 | |
| 2185 | std::pair<size_t, Immediate> getUse(const SCEV *&Expr, LSRUse::KindType Kind, |
| 2186 | MemAccessTy AccessTy); |
| 2187 | |
| 2188 | void DeleteUse(LSRUse &LU, size_t LUIdx); |
| 2189 | |
| 2190 | LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); |
| 2191 | |
| 2192 | void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); |
| 2193 | void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); |
| 2194 | void CountRegisters(const Formula &F, size_t LUIdx); |
| 2195 | bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); |
| 2196 | |
| 2197 | void CollectLoopInvariantFixupsAndFormulae(); |
| 2198 | |
| 2199 | void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, |
| 2200 | unsigned Depth = 0); |
| 2201 | |
| 2202 | void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, |
| 2203 | const Formula &Base, unsigned Depth, |
| 2204 | size_t Idx, bool IsScaledReg = false); |
| 2205 | void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); |
| 2206 | void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, |
| 2207 | const Formula &Base, size_t Idx, |
| 2208 | bool IsScaledReg = false); |
| 2209 | void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); |
| 2210 | void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, |
| 2211 | const Formula &Base, |
| 2212 | const SmallVectorImpl<Immediate> &Worklist, |
| 2213 | size_t Idx, bool IsScaledReg = false); |
| 2214 | void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); |
| 2215 | void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); |
| 2216 | void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); |
| 2217 | void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); |
| 2218 | void GenerateCrossUseConstantOffsets(); |
| 2219 | void GenerateAllReuseFormulae(); |
| 2220 | |
| 2221 | void FilterOutUndesirableDedicatedRegisters(); |
| 2222 | |
| 2223 | size_t EstimateSearchSpaceComplexity() const; |
| 2224 | void NarrowSearchSpaceByDetectingSupersets(); |
| 2225 | void NarrowSearchSpaceByCollapsingUnrolledCode(); |
| 2226 | void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); |
| 2227 | void NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); |
| 2228 | void NarrowSearchSpaceByFilterPostInc(); |
| 2229 | void NarrowSearchSpaceByDeletingCostlyFormulas(); |
| 2230 | void NarrowSearchSpaceByPickingWinnerRegs(); |
| 2231 | void NarrowSearchSpaceUsingHeuristics(); |
| 2232 | |
| 2233 | void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, |
| 2234 | Cost &SolutionCost, |
| 2235 | SmallVectorImpl<const Formula *> &Workspace, |
| 2236 | const Cost &CurCost, |
| 2237 | const SmallPtrSet<const SCEV *, 16> &CurRegs, |
| 2238 | DenseSet<const SCEV *> &VisitedRegs) const; |
| 2239 | void Solve(SmallVectorImpl<const Formula *> &Solution) const; |
| 2240 | |
| 2241 | BasicBlock::iterator |
| 2242 | HoistInsertPosition(BasicBlock::iterator IP, |
| 2243 | const SmallVectorImpl<Instruction *> &Inputs) const; |
| 2244 | BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP, |
| 2245 | const LSRFixup &LF, |
| 2246 | const LSRUse &LU) const; |
| 2247 | |
| 2248 | Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F, |
| 2249 | BasicBlock::iterator IP, |
| 2250 | SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; |
| 2251 | void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, |
| 2252 | const Formula &F, |
| 2253 | SmallVectorImpl<WeakTrackingVH> &DeadInsts); |
| 2254 | void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F, |
| 2255 | SmallVectorImpl<WeakTrackingVH> &DeadInsts); |
| 2256 | void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); |
| 2257 | |
| 2258 | public: |
| 2259 | LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, |
| 2260 | LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC, |
| 2261 | TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU); |
| 2262 | |
| 2263 | bool getChanged() const { return Changed; } |
| 2264 | const SmallVectorImpl<WeakVH> &getScalarEvolutionIVs() const { |
| 2265 | return ScalarEvolutionIVs; |
| 2266 | } |
| 2267 | |
| 2268 | void print_factors_and_types(raw_ostream &OS) const; |
| 2269 | void print_fixups(raw_ostream &OS) const; |
| 2270 | void print_uses(raw_ostream &OS) const; |
| 2271 | void print(raw_ostream &OS) const; |
| 2272 | void dump() const; |
| 2273 | }; |
| 2274 | |
| 2275 | } // end anonymous namespace |
| 2276 | |
| 2277 | /// If IV is used in a int-to-float cast inside the loop then try to eliminate |
| 2278 | /// the cast operation. |
| 2279 | void LSRInstance::OptimizeShadowIV() { |
| 2280 | const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); |
| 2281 | if (isa<SCEVCouldNotCompute>(Val: BackedgeTakenCount)) |
| 2282 | return; |
| 2283 | |
| 2284 | for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); |
| 2285 | UI != E; /* empty */) { |
| 2286 | IVUsers::const_iterator CandidateUI = UI; |
| 2287 | ++UI; |
| 2288 | Instruction *ShadowUse = CandidateUI->getUser(); |
| 2289 | Type *DestTy = nullptr; |
| 2290 | bool IsSigned = false; |
| 2291 | |
| 2292 | /* If shadow use is a int->float cast then insert a second IV |
| 2293 | to eliminate this cast. |
| 2294 | |
| 2295 | for (unsigned i = 0; i < n; ++i) |
| 2296 | foo((double)i); |
| 2297 | |
| 2298 | is transformed into |
| 2299 | |
| 2300 | double d = 0.0; |
| 2301 | for (unsigned i = 0; i < n; ++i, ++d) |
| 2302 | foo(d); |
| 2303 | */ |
| 2304 | if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(Val: CandidateUI->getUser())) { |
| 2305 | IsSigned = false; |
| 2306 | DestTy = UCast->getDestTy(); |
| 2307 | } |
| 2308 | else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(Val: CandidateUI->getUser())) { |
| 2309 | IsSigned = true; |
| 2310 | DestTy = SCast->getDestTy(); |
| 2311 | } |
| 2312 | if (!DestTy) continue; |
| 2313 | |
| 2314 | // If target does not support DestTy natively then do not apply |
| 2315 | // this transformation. |
| 2316 | if (!TTI.isTypeLegal(Ty: DestTy)) continue; |
| 2317 | |
| 2318 | PHINode *PH = dyn_cast<PHINode>(Val: ShadowUse->getOperand(i: 0)); |
| 2319 | if (!PH) continue; |
| 2320 | if (PH->getNumIncomingValues() != 2) continue; |
| 2321 | |
| 2322 | // If the calculation in integers overflows, the result in FP type will |
| 2323 | // differ. So we only can do this transformation if we are guaranteed to not |
| 2324 | // deal with overflowing values |
| 2325 | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: SE.getSCEV(V: PH)); |
| 2326 | if (!AR) continue; |
| 2327 | if (IsSigned && !AR->hasNoSignedWrap()) continue; |
| 2328 | if (!IsSigned && !AR->hasNoUnsignedWrap()) continue; |
| 2329 | |
| 2330 | Type *SrcTy = PH->getType(); |
| 2331 | int Mantissa = DestTy->getFPMantissaWidth(); |
| 2332 | if (Mantissa == -1) continue; |
| 2333 | if ((int)SE.getTypeSizeInBits(Ty: SrcTy) > Mantissa) |
| 2334 | continue; |
| 2335 | |
| 2336 | unsigned Entry, Latch; |
| 2337 | if (PH->getIncomingBlock(i: 0) == L->getLoopPreheader()) { |
| 2338 | Entry = 0; |
| 2339 | Latch = 1; |
| 2340 | } else { |
| 2341 | Entry = 1; |
| 2342 | Latch = 0; |
| 2343 | } |
| 2344 | |
| 2345 | ConstantInt *Init = dyn_cast<ConstantInt>(Val: PH->getIncomingValue(i: Entry)); |
| 2346 | if (!Init) continue; |
| 2347 | Constant *NewInit = ConstantFP::get(Ty: DestTy, V: IsSigned ? |
| 2348 | (double)Init->getSExtValue() : |
| 2349 | (double)Init->getZExtValue()); |
| 2350 | |
| 2351 | BinaryOperator *Incr = |
| 2352 | dyn_cast<BinaryOperator>(Val: PH->getIncomingValue(i: Latch)); |
| 2353 | if (!Incr) continue; |
| 2354 | if (Incr->getOpcode() != Instruction::Add |
| 2355 | && Incr->getOpcode() != Instruction::Sub) |
| 2356 | continue; |
| 2357 | |
| 2358 | /* Initialize new IV, double d = 0.0 in above example. */ |
| 2359 | ConstantInt *C = nullptr; |
| 2360 | if (Incr->getOperand(i_nocapture: 0) == PH) |
| 2361 | C = dyn_cast<ConstantInt>(Val: Incr->getOperand(i_nocapture: 1)); |
| 2362 | else if (Incr->getOperand(i_nocapture: 1) == PH) |
| 2363 | C = dyn_cast<ConstantInt>(Val: Incr->getOperand(i_nocapture: 0)); |
| 2364 | else |
| 2365 | continue; |
| 2366 | |
| 2367 | if (!C) continue; |
| 2368 | |
| 2369 | // Ignore negative constants, as the code below doesn't handle them |
| 2370 | // correctly. TODO: Remove this restriction. |
| 2371 | if (!C->getValue().isStrictlyPositive()) |
| 2372 | continue; |
| 2373 | |
| 2374 | /* Add new PHINode. */ |
| 2375 | PHINode *NewPH = PHINode::Create(Ty: DestTy, NumReservedValues: 2, NameStr: "IV.S." , InsertBefore: PH->getIterator()); |
| 2376 | NewPH->setDebugLoc(PH->getDebugLoc()); |
| 2377 | |
| 2378 | /* create new increment. '++d' in above example. */ |
| 2379 | Constant *CFP = ConstantFP::get(Ty: DestTy, V: C->getZExtValue()); |
| 2380 | BinaryOperator *NewIncr = BinaryOperator::Create( |
| 2381 | Op: Incr->getOpcode() == Instruction::Add ? Instruction::FAdd |
| 2382 | : Instruction::FSub, |
| 2383 | S1: NewPH, S2: CFP, Name: "IV.S.next." , InsertBefore: Incr->getIterator()); |
| 2384 | NewIncr->setDebugLoc(Incr->getDebugLoc()); |
| 2385 | |
| 2386 | NewPH->addIncoming(V: NewInit, BB: PH->getIncomingBlock(i: Entry)); |
| 2387 | NewPH->addIncoming(V: NewIncr, BB: PH->getIncomingBlock(i: Latch)); |
| 2388 | |
| 2389 | /* Remove cast operation */ |
| 2390 | ShadowUse->replaceAllUsesWith(V: NewPH); |
| 2391 | ShadowUse->eraseFromParent(); |
| 2392 | Changed = true; |
| 2393 | break; |
| 2394 | } |
| 2395 | } |
| 2396 | |
| 2397 | /// If Cond has an operand that is an expression of an IV, set the IV user and |
| 2398 | /// stride information and return true, otherwise return false. |
| 2399 | bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { |
| 2400 | for (IVStrideUse &U : IU) |
| 2401 | if (U.getUser() == Cond) { |
| 2402 | // NOTE: we could handle setcc instructions with multiple uses here, but |
| 2403 | // InstCombine does it as well for simple uses, it's not clear that it |
| 2404 | // occurs enough in real life to handle. |
| 2405 | CondUse = &U; |
| 2406 | return true; |
| 2407 | } |
| 2408 | return false; |
| 2409 | } |
| 2410 | |
| 2411 | /// Rewrite the loop's terminating condition if it uses a max computation. |
| 2412 | /// |
| 2413 | /// This is a narrow solution to a specific, but acute, problem. For loops |
| 2414 | /// like this: |
| 2415 | /// |
| 2416 | /// i = 0; |
| 2417 | /// do { |
| 2418 | /// p[i] = 0.0; |
| 2419 | /// } while (++i < n); |
| 2420 | /// |
| 2421 | /// the trip count isn't just 'n', because 'n' might not be positive. And |
| 2422 | /// unfortunately this can come up even for loops where the user didn't use |
| 2423 | /// a C do-while loop. For example, seemingly well-behaved top-test loops |
| 2424 | /// will commonly be lowered like this: |
| 2425 | /// |
| 2426 | /// if (n > 0) { |
| 2427 | /// i = 0; |
| 2428 | /// do { |
| 2429 | /// p[i] = 0.0; |
| 2430 | /// } while (++i < n); |
| 2431 | /// } |
| 2432 | /// |
| 2433 | /// and then it's possible for subsequent optimization to obscure the if |
| 2434 | /// test in such a way that indvars can't find it. |
| 2435 | /// |
| 2436 | /// When indvars can't find the if test in loops like this, it creates a |
| 2437 | /// max expression, which allows it to give the loop a canonical |
| 2438 | /// induction variable: |
| 2439 | /// |
| 2440 | /// i = 0; |
| 2441 | /// max = n < 1 ? 1 : n; |
| 2442 | /// do { |
| 2443 | /// p[i] = 0.0; |
| 2444 | /// } while (++i != max); |
| 2445 | /// |
| 2446 | /// Canonical induction variables are necessary because the loop passes |
| 2447 | /// are designed around them. The most obvious example of this is the |
| 2448 | /// LoopInfo analysis, which doesn't remember trip count values. It |
| 2449 | /// expects to be able to rediscover the trip count each time it is |
| 2450 | /// needed, and it does this using a simple analysis that only succeeds if |
| 2451 | /// the loop has a canonical induction variable. |
| 2452 | /// |
| 2453 | /// However, when it comes time to generate code, the maximum operation |
| 2454 | /// can be quite costly, especially if it's inside of an outer loop. |
| 2455 | /// |
| 2456 | /// This function solves this problem by detecting this type of loop and |
| 2457 | /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting |
| 2458 | /// the instructions for the maximum computation. |
| 2459 | ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { |
| 2460 | // Check that the loop matches the pattern we're looking for. |
| 2461 | if (Cond->getPredicate() != CmpInst::ICMP_EQ && |
| 2462 | Cond->getPredicate() != CmpInst::ICMP_NE) |
| 2463 | return Cond; |
| 2464 | |
| 2465 | SelectInst *Sel = dyn_cast<SelectInst>(Val: Cond->getOperand(i_nocapture: 1)); |
| 2466 | if (!Sel || !Sel->hasOneUse()) return Cond; |
| 2467 | |
| 2468 | const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); |
| 2469 | if (isa<SCEVCouldNotCompute>(Val: BackedgeTakenCount)) |
| 2470 | return Cond; |
| 2471 | const SCEV *One = SE.getConstant(Ty: BackedgeTakenCount->getType(), V: 1); |
| 2472 | |
| 2473 | // Add one to the backedge-taken count to get the trip count. |
| 2474 | const SCEV *IterationCount = SE.getAddExpr(LHS: One, RHS: BackedgeTakenCount); |
| 2475 | if (IterationCount != SE.getSCEV(V: Sel)) return Cond; |
| 2476 | |
| 2477 | // Check for a max calculation that matches the pattern. There's no check |
| 2478 | // for ICMP_ULE here because the comparison would be with zero, which |
| 2479 | // isn't interesting. |
| 2480 | CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; |
| 2481 | const SCEVNAryExpr *Max = nullptr; |
| 2482 | if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(Val: BackedgeTakenCount)) { |
| 2483 | Pred = ICmpInst::ICMP_SLE; |
| 2484 | Max = S; |
| 2485 | } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(Val: IterationCount)) { |
| 2486 | Pred = ICmpInst::ICMP_SLT; |
| 2487 | Max = S; |
| 2488 | } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(Val: IterationCount)) { |
| 2489 | Pred = ICmpInst::ICMP_ULT; |
| 2490 | Max = U; |
| 2491 | } else { |
| 2492 | // No match; bail. |
| 2493 | return Cond; |
| 2494 | } |
| 2495 | |
| 2496 | // To handle a max with more than two operands, this optimization would |
| 2497 | // require additional checking and setup. |
| 2498 | if (Max->getNumOperands() != 2) |
| 2499 | return Cond; |
| 2500 | |
| 2501 | const SCEV *MaxLHS = Max->getOperand(i: 0); |
| 2502 | const SCEV *MaxRHS = Max->getOperand(i: 1); |
| 2503 | |
| 2504 | // ScalarEvolution canonicalizes constants to the left. For < and >, look |
| 2505 | // for a comparison with 1. For <= and >=, a comparison with zero. |
| 2506 | if (!MaxLHS || |
| 2507 | (ICmpInst::isTrueWhenEqual(predicate: Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) |
| 2508 | return Cond; |
| 2509 | |
| 2510 | // Check the relevant induction variable for conformance to |
| 2511 | // the pattern. |
| 2512 | const SCEV *IV = SE.getSCEV(V: Cond->getOperand(i_nocapture: 0)); |
| 2513 | if (!match(S: IV, |
| 2514 | P: m_scev_AffineAddRec(Op0: m_scev_SpecificInt(V: 1), Op1: m_scev_SpecificInt(V: 1)))) |
| 2515 | return Cond; |
| 2516 | |
| 2517 | assert(cast<SCEVAddRecExpr>(IV)->getLoop() == L && |
| 2518 | "Loop condition operand is an addrec in a different loop!" ); |
| 2519 | |
| 2520 | // Check the right operand of the select, and remember it, as it will |
| 2521 | // be used in the new comparison instruction. |
| 2522 | Value *NewRHS = nullptr; |
| 2523 | if (ICmpInst::isTrueWhenEqual(predicate: Pred)) { |
| 2524 | // Look for n+1, and grab n. |
| 2525 | if (AddOperator *BO = dyn_cast<AddOperator>(Val: Sel->getOperand(i_nocapture: 1))) |
| 2526 | if (ConstantInt *BO1 = dyn_cast<ConstantInt>(Val: BO->getOperand(i_nocapture: 1))) |
| 2527 | if (BO1->isOne() && SE.getSCEV(V: BO->getOperand(i_nocapture: 0)) == MaxRHS) |
| 2528 | NewRHS = BO->getOperand(i_nocapture: 0); |
| 2529 | if (AddOperator *BO = dyn_cast<AddOperator>(Val: Sel->getOperand(i_nocapture: 2))) |
| 2530 | if (ConstantInt *BO1 = dyn_cast<ConstantInt>(Val: BO->getOperand(i_nocapture: 1))) |
| 2531 | if (BO1->isOne() && SE.getSCEV(V: BO->getOperand(i_nocapture: 0)) == MaxRHS) |
| 2532 | NewRHS = BO->getOperand(i_nocapture: 0); |
| 2533 | if (!NewRHS) |
| 2534 | return Cond; |
| 2535 | } else if (SE.getSCEV(V: Sel->getOperand(i_nocapture: 1)) == MaxRHS) |
| 2536 | NewRHS = Sel->getOperand(i_nocapture: 1); |
| 2537 | else if (SE.getSCEV(V: Sel->getOperand(i_nocapture: 2)) == MaxRHS) |
| 2538 | NewRHS = Sel->getOperand(i_nocapture: 2); |
| 2539 | else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(Val: MaxRHS)) |
| 2540 | NewRHS = SU->getValue(); |
| 2541 | else |
| 2542 | // Max doesn't match expected pattern. |
| 2543 | return Cond; |
| 2544 | |
| 2545 | // Determine the new comparison opcode. It may be signed or unsigned, |
| 2546 | // and the original comparison may be either equality or inequality. |
| 2547 | if (Cond->getPredicate() == CmpInst::ICMP_EQ) |
| 2548 | Pred = CmpInst::getInversePredicate(pred: Pred); |
| 2549 | |
| 2550 | // Ok, everything looks ok to change the condition into an SLT or SGE and |
| 2551 | // delete the max calculation. |
| 2552 | ICmpInst *NewCond = new ICmpInst(Cond->getIterator(), Pred, |
| 2553 | Cond->getOperand(i_nocapture: 0), NewRHS, "scmp" ); |
| 2554 | |
| 2555 | // Delete the max calculation instructions. |
| 2556 | NewCond->setDebugLoc(Cond->getDebugLoc()); |
| 2557 | Cond->replaceAllUsesWith(V: NewCond); |
| 2558 | CondUse->setUser(NewCond); |
| 2559 | Instruction *Cmp = cast<Instruction>(Val: Sel->getOperand(i_nocapture: 0)); |
| 2560 | Cond->eraseFromParent(); |
| 2561 | Sel->eraseFromParent(); |
| 2562 | if (Cmp->use_empty()) |
| 2563 | Cmp->eraseFromParent(); |
| 2564 | return NewCond; |
| 2565 | } |
| 2566 | |
| 2567 | /// Change loop terminating condition to use the postinc iv when possible. |
| 2568 | void |
| 2569 | LSRInstance::OptimizeLoopTermCond() { |
| 2570 | SmallPtrSet<Instruction *, 4> PostIncs; |
| 2571 | |
| 2572 | // We need a different set of heuristics for rotated and non-rotated loops. |
| 2573 | // If a loop is rotated then the latch is also the backedge, so inserting |
| 2574 | // post-inc expressions just before the latch is ideal. To reduce live ranges |
| 2575 | // it also makes sense to rewrite terminating conditions to use post-inc |
| 2576 | // expressions. |
| 2577 | // |
| 2578 | // If the loop is not rotated then the latch is not a backedge; the latch |
| 2579 | // check is done in the loop head. Adding post-inc expressions before the |
| 2580 | // latch will cause overlapping live-ranges of pre-inc and post-inc expressions |
| 2581 | // in the loop body. In this case we do *not* want to use post-inc expressions |
| 2582 | // in the latch check, and we want to insert post-inc expressions before |
| 2583 | // the backedge. |
| 2584 | BasicBlock *LatchBlock = L->getLoopLatch(); |
| 2585 | SmallVector<BasicBlock*, 8> ExitingBlocks; |
| 2586 | L->getExitingBlocks(ExitingBlocks); |
| 2587 | if (!llvm::is_contained(Range&: ExitingBlocks, Element: LatchBlock)) { |
| 2588 | // The backedge doesn't exit the loop; treat this as a head-tested loop. |
| 2589 | IVIncInsertPos = LatchBlock->getTerminator(); |
| 2590 | return; |
| 2591 | } |
| 2592 | |
| 2593 | // Otherwise treat this as a rotated loop. |
| 2594 | for (BasicBlock *ExitingBlock : ExitingBlocks) { |
| 2595 | // Get the terminating condition for the loop if possible. If we |
| 2596 | // can, we want to change it to use a post-incremented version of its |
| 2597 | // induction variable, to allow coalescing the live ranges for the IV into |
| 2598 | // one register value. |
| 2599 | |
| 2600 | BranchInst *TermBr = dyn_cast<BranchInst>(Val: ExitingBlock->getTerminator()); |
| 2601 | if (!TermBr) |
| 2602 | continue; |
| 2603 | // FIXME: Overly conservative, termination condition could be an 'or' etc.. |
| 2604 | if (TermBr->isUnconditional() || !isa<ICmpInst>(Val: TermBr->getCondition())) |
| 2605 | continue; |
| 2606 | |
| 2607 | // Search IVUsesByStride to find Cond's IVUse if there is one. |
| 2608 | IVStrideUse *CondUse = nullptr; |
| 2609 | ICmpInst *Cond = cast<ICmpInst>(Val: TermBr->getCondition()); |
| 2610 | if (!FindIVUserForCond(Cond, CondUse)) |
| 2611 | continue; |
| 2612 | |
| 2613 | // If the trip count is computed in terms of a max (due to ScalarEvolution |
| 2614 | // being unable to find a sufficient guard, for example), change the loop |
| 2615 | // comparison to use SLT or ULT instead of NE. |
| 2616 | // One consequence of doing this now is that it disrupts the count-down |
| 2617 | // optimization. That's not always a bad thing though, because in such |
| 2618 | // cases it may still be worthwhile to avoid a max. |
| 2619 | Cond = OptimizeMax(Cond, CondUse); |
| 2620 | |
| 2621 | // If this exiting block dominates the latch block, it may also use |
| 2622 | // the post-inc value if it won't be shared with other uses. |
| 2623 | // Check for dominance. |
| 2624 | if (!DT.dominates(A: ExitingBlock, B: LatchBlock)) |
| 2625 | continue; |
| 2626 | |
| 2627 | // Conservatively avoid trying to use the post-inc value in non-latch |
| 2628 | // exits if there may be pre-inc users in intervening blocks. |
| 2629 | if (LatchBlock != ExitingBlock) |
| 2630 | for (const IVStrideUse &UI : IU) |
| 2631 | // Test if the use is reachable from the exiting block. This dominator |
| 2632 | // query is a conservative approximation of reachability. |
| 2633 | if (&UI != CondUse && |
| 2634 | !DT.properlyDominates(A: UI.getUser()->getParent(), B: ExitingBlock)) { |
| 2635 | // Conservatively assume there may be reuse if the quotient of their |
| 2636 | // strides could be a legal scale. |
| 2637 | const SCEV *A = IU.getStride(IU: *CondUse, L); |
| 2638 | const SCEV *B = IU.getStride(IU: UI, L); |
| 2639 | if (!A || !B) continue; |
| 2640 | if (SE.getTypeSizeInBits(Ty: A->getType()) != |
| 2641 | SE.getTypeSizeInBits(Ty: B->getType())) { |
| 2642 | if (SE.getTypeSizeInBits(Ty: A->getType()) > |
| 2643 | SE.getTypeSizeInBits(Ty: B->getType())) |
| 2644 | B = SE.getSignExtendExpr(Op: B, Ty: A->getType()); |
| 2645 | else |
| 2646 | A = SE.getSignExtendExpr(Op: A, Ty: B->getType()); |
| 2647 | } |
| 2648 | if (const SCEVConstant *D = |
| 2649 | dyn_cast_or_null<SCEVConstant>(Val: getExactSDiv(LHS: B, RHS: A, SE))) { |
| 2650 | const ConstantInt *C = D->getValue(); |
| 2651 | // Stride of one or negative one can have reuse with non-addresses. |
| 2652 | if (C->isOne() || C->isMinusOne()) |
| 2653 | goto decline_post_inc; |
| 2654 | // Avoid weird situations. |
| 2655 | if (C->getValue().getSignificantBits() >= 64 || |
| 2656 | C->getValue().isMinSignedValue()) |
| 2657 | goto decline_post_inc; |
| 2658 | // Check for possible scaled-address reuse. |
| 2659 | if (isAddressUse(TTI, Inst: UI.getUser(), OperandVal: UI.getOperandValToReplace())) { |
| 2660 | MemAccessTy AccessTy = |
| 2661 | getAccessType(TTI, Inst: UI.getUser(), OperandVal: UI.getOperandValToReplace()); |
| 2662 | int64_t Scale = C->getSExtValue(); |
| 2663 | if (TTI.isLegalAddressingMode(Ty: AccessTy.MemTy, /*BaseGV=*/nullptr, |
| 2664 | /*BaseOffset=*/0, |
| 2665 | /*HasBaseReg=*/true, Scale, |
| 2666 | AddrSpace: AccessTy.AddrSpace)) |
| 2667 | goto decline_post_inc; |
| 2668 | Scale = -Scale; |
| 2669 | if (TTI.isLegalAddressingMode(Ty: AccessTy.MemTy, /*BaseGV=*/nullptr, |
| 2670 | /*BaseOffset=*/0, |
| 2671 | /*HasBaseReg=*/true, Scale, |
| 2672 | AddrSpace: AccessTy.AddrSpace)) |
| 2673 | goto decline_post_inc; |
| 2674 | } |
| 2675 | } |
| 2676 | } |
| 2677 | |
| 2678 | LLVM_DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " |
| 2679 | << *Cond << '\n'); |
| 2680 | |
| 2681 | // It's possible for the setcc instruction to be anywhere in the loop, and |
| 2682 | // possible for it to have multiple users. If it is not immediately before |
| 2683 | // the exiting block branch, move it. |
| 2684 | if (Cond->getNextNonDebugInstruction() != TermBr) { |
| 2685 | if (Cond->hasOneUse()) { |
| 2686 | Cond->moveBefore(InsertPos: TermBr->getIterator()); |
| 2687 | } else { |
| 2688 | // Clone the terminating condition and insert into the loopend. |
| 2689 | ICmpInst *OldCond = Cond; |
| 2690 | Cond = cast<ICmpInst>(Val: Cond->clone()); |
| 2691 | Cond->setName(L->getHeader()->getName() + ".termcond" ); |
| 2692 | Cond->insertInto(ParentBB: ExitingBlock, It: TermBr->getIterator()); |
| 2693 | |
| 2694 | // Clone the IVUse, as the old use still exists! |
| 2695 | CondUse = &IU.AddUser(User: Cond, Operand: CondUse->getOperandValToReplace()); |
| 2696 | TermBr->replaceUsesOfWith(From: OldCond, To: Cond); |
| 2697 | } |
| 2698 | } |
| 2699 | |
| 2700 | // If we get to here, we know that we can transform the setcc instruction to |
| 2701 | // use the post-incremented version of the IV, allowing us to coalesce the |
| 2702 | // live ranges for the IV correctly. |
| 2703 | CondUse->transformToPostInc(L); |
| 2704 | Changed = true; |
| 2705 | |
| 2706 | PostIncs.insert(Ptr: Cond); |
| 2707 | decline_post_inc:; |
| 2708 | } |
| 2709 | |
| 2710 | // Determine an insertion point for the loop induction variable increment. It |
| 2711 | // must dominate all the post-inc comparisons we just set up, and it must |
| 2712 | // dominate the loop latch edge. |
| 2713 | IVIncInsertPos = L->getLoopLatch()->getTerminator(); |
| 2714 | for (Instruction *Inst : PostIncs) |
| 2715 | IVIncInsertPos = DT.findNearestCommonDominator(I1: IVIncInsertPos, I2: Inst); |
| 2716 | } |
| 2717 | |
| 2718 | /// Determine if the given use can accommodate a fixup at the given offset and |
| 2719 | /// other details. If so, update the use and return true. |
| 2720 | bool LSRInstance::reconcileNewOffset(LSRUse &LU, Immediate NewOffset, |
| 2721 | bool HasBaseReg, LSRUse::KindType Kind, |
| 2722 | MemAccessTy AccessTy) { |
| 2723 | Immediate NewMinOffset = LU.MinOffset; |
| 2724 | Immediate NewMaxOffset = LU.MaxOffset; |
| 2725 | MemAccessTy NewAccessTy = AccessTy; |
| 2726 | |
| 2727 | // Check for a mismatched kind. It's tempting to collapse mismatched kinds to |
| 2728 | // something conservative, however this can pessimize in the case that one of |
| 2729 | // the uses will have all its uses outside the loop, for example. |
| 2730 | if (LU.Kind != Kind) |
| 2731 | return false; |
| 2732 | |
| 2733 | // Check for a mismatched access type, and fall back conservatively as needed. |
| 2734 | // TODO: Be less conservative when the type is similar and can use the same |
| 2735 | // addressing modes. |
| 2736 | if (Kind == LSRUse::Address) { |
| 2737 | if (AccessTy.MemTy != LU.AccessTy.MemTy) { |
| 2738 | NewAccessTy = MemAccessTy::getUnknown(Ctx&: AccessTy.MemTy->getContext(), |
| 2739 | AS: AccessTy.AddrSpace); |
| 2740 | } |
| 2741 | } |
| 2742 | |
| 2743 | // Conservatively assume HasBaseReg is true for now. |
| 2744 | if (Immediate::isKnownLT(LHS: NewOffset, RHS: LU.MinOffset)) { |
| 2745 | if (!isAlwaysFoldable(TTI, Kind, AccessTy: NewAccessTy, /*BaseGV=*/nullptr, |
| 2746 | BaseOffset: LU.MaxOffset - NewOffset, HasBaseReg)) |
| 2747 | return false; |
| 2748 | NewMinOffset = NewOffset; |
| 2749 | } else if (Immediate::isKnownGT(LHS: NewOffset, RHS: LU.MaxOffset)) { |
| 2750 | if (!isAlwaysFoldable(TTI, Kind, AccessTy: NewAccessTy, /*BaseGV=*/nullptr, |
| 2751 | BaseOffset: NewOffset - LU.MinOffset, HasBaseReg)) |
| 2752 | return false; |
| 2753 | NewMaxOffset = NewOffset; |
| 2754 | } |
| 2755 | |
| 2756 | // FIXME: We should be able to handle some level of scalable offset support |
| 2757 | // for 'void', but in order to get basic support up and running this is |
| 2758 | // being left out. |
| 2759 | if (NewAccessTy.MemTy && NewAccessTy.MemTy->isVoidTy() && |
| 2760 | (NewMinOffset.isScalable() || NewMaxOffset.isScalable())) |
| 2761 | return false; |
| 2762 | |
| 2763 | // Update the use. |
| 2764 | LU.MinOffset = NewMinOffset; |
| 2765 | LU.MaxOffset = NewMaxOffset; |
| 2766 | LU.AccessTy = NewAccessTy; |
| 2767 | return true; |
| 2768 | } |
| 2769 | |
| 2770 | /// Return an LSRUse index and an offset value for a fixup which needs the given |
| 2771 | /// expression, with the given kind and optional access type. Either reuse an |
| 2772 | /// existing use or create a new one, as needed. |
| 2773 | std::pair<size_t, Immediate> LSRInstance::getUse(const SCEV *&Expr, |
| 2774 | LSRUse::KindType Kind, |
| 2775 | MemAccessTy AccessTy) { |
| 2776 | const SCEV *Copy = Expr; |
| 2777 | Immediate Offset = ExtractImmediate(S&: Expr, SE); |
| 2778 | |
| 2779 | // Basic uses can't accept any offset, for example. |
| 2780 | if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, |
| 2781 | BaseOffset: Offset, /*HasBaseReg=*/ true)) { |
| 2782 | Expr = Copy; |
| 2783 | Offset = Immediate::getFixed(MinVal: 0); |
| 2784 | } |
| 2785 | |
| 2786 | std::pair<UseMapTy::iterator, bool> P = |
| 2787 | UseMap.try_emplace(Key: LSRUse::SCEVUseKindPair(Expr, Kind)); |
| 2788 | if (!P.second) { |
| 2789 | // A use already existed with this base. |
| 2790 | size_t LUIdx = P.first->second; |
| 2791 | LSRUse &LU = Uses[LUIdx]; |
| 2792 | if (reconcileNewOffset(LU, NewOffset: Offset, /*HasBaseReg=*/true, Kind, AccessTy)) |
| 2793 | // Reuse this use. |
| 2794 | return std::make_pair(x&: LUIdx, y&: Offset); |
| 2795 | } |
| 2796 | |
| 2797 | // Create a new use. |
| 2798 | size_t LUIdx = Uses.size(); |
| 2799 | P.first->second = LUIdx; |
| 2800 | Uses.push_back(Elt: LSRUse(Kind, AccessTy)); |
| 2801 | LSRUse &LU = Uses[LUIdx]; |
| 2802 | |
| 2803 | LU.MinOffset = Offset; |
| 2804 | LU.MaxOffset = Offset; |
| 2805 | return std::make_pair(x&: LUIdx, y&: Offset); |
| 2806 | } |
| 2807 | |
| 2808 | /// Delete the given use from the Uses list. |
| 2809 | void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { |
| 2810 | if (&LU != &Uses.back()) |
| 2811 | std::swap(a&: LU, b&: Uses.back()); |
| 2812 | Uses.pop_back(); |
| 2813 | |
| 2814 | // Update RegUses. |
| 2815 | RegUses.swapAndDropUse(LUIdx, LastLUIdx: Uses.size()); |
| 2816 | } |
| 2817 | |
| 2818 | /// Look for a use distinct from OrigLU which is has a formula that has the same |
| 2819 | /// registers as the given formula. |
| 2820 | LSRUse * |
| 2821 | LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, |
| 2822 | const LSRUse &OrigLU) { |
| 2823 | // Search all uses for the formula. This could be more clever. |
| 2824 | for (LSRUse &LU : Uses) { |
| 2825 | // Check whether this use is close enough to OrigLU, to see whether it's |
| 2826 | // worthwhile looking through its formulae. |
| 2827 | // Ignore ICmpZero uses because they may contain formulae generated by |
| 2828 | // GenerateICmpZeroScales, in which case adding fixup offsets may |
| 2829 | // be invalid. |
| 2830 | if (&LU != &OrigLU && |
| 2831 | LU.Kind != LSRUse::ICmpZero && |
| 2832 | LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && |
| 2833 | LU.WidestFixupType == OrigLU.WidestFixupType && |
| 2834 | LU.HasFormulaWithSameRegs(F: OrigF)) { |
| 2835 | // Scan through this use's formulae. |
| 2836 | for (const Formula &F : LU.Formulae) { |
| 2837 | // Check to see if this formula has the same registers and symbols |
| 2838 | // as OrigF. |
| 2839 | if (F.BaseRegs == OrigF.BaseRegs && |
| 2840 | F.ScaledReg == OrigF.ScaledReg && |
| 2841 | F.BaseGV == OrigF.BaseGV && |
| 2842 | F.Scale == OrigF.Scale && |
| 2843 | F.UnfoldedOffset == OrigF.UnfoldedOffset) { |
| 2844 | if (F.BaseOffset.isZero()) |
| 2845 | return &LU; |
| 2846 | // This is the formula where all the registers and symbols matched; |
| 2847 | // there aren't going to be any others. Since we declined it, we |
| 2848 | // can skip the rest of the formulae and proceed to the next LSRUse. |
| 2849 | break; |
| 2850 | } |
| 2851 | } |
| 2852 | } |
| 2853 | } |
| 2854 | |
| 2855 | // Nothing looked good. |
| 2856 | return nullptr; |
| 2857 | } |
| 2858 | |
| 2859 | void LSRInstance::CollectInterestingTypesAndFactors() { |
| 2860 | SmallSetVector<const SCEV *, 4> Strides; |
| 2861 | |
| 2862 | // Collect interesting types and strides. |
| 2863 | SmallVector<const SCEV *, 4> Worklist; |
| 2864 | for (const IVStrideUse &U : IU) { |
| 2865 | const SCEV *Expr = IU.getExpr(IU: U); |
| 2866 | if (!Expr) |
| 2867 | continue; |
| 2868 | |
| 2869 | // Collect interesting types. |
| 2870 | Types.insert(X: SE.getEffectiveSCEVType(Ty: Expr->getType())); |
| 2871 | |
| 2872 | // Add strides for mentioned loops. |
| 2873 | Worklist.push_back(Elt: Expr); |
| 2874 | do { |
| 2875 | const SCEV *S = Worklist.pop_back_val(); |
| 2876 | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: S)) { |
| 2877 | if (AR->getLoop() == L) |
| 2878 | Strides.insert(X: AR->getStepRecurrence(SE)); |
| 2879 | Worklist.push_back(Elt: AR->getStart()); |
| 2880 | } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Val: S)) { |
| 2881 | append_range(C&: Worklist, R: Add->operands()); |
| 2882 | } |
| 2883 | } while (!Worklist.empty()); |
| 2884 | } |
| 2885 | |
| 2886 | // Compute interesting factors from the set of interesting strides. |
| 2887 | for (SmallSetVector<const SCEV *, 4>::const_iterator |
| 2888 | I = Strides.begin(), E = Strides.end(); I != E; ++I) |
| 2889 | for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = |
| 2890 | std::next(x: I); NewStrideIter != E; ++NewStrideIter) { |
| 2891 | const SCEV *OldStride = *I; |
| 2892 | const SCEV *NewStride = *NewStrideIter; |
| 2893 | |
| 2894 | if (SE.getTypeSizeInBits(Ty: OldStride->getType()) != |
| 2895 | SE.getTypeSizeInBits(Ty: NewStride->getType())) { |
| 2896 | if (SE.getTypeSizeInBits(Ty: OldStride->getType()) > |
| 2897 | SE.getTypeSizeInBits(Ty: NewStride->getType())) |
| 2898 | NewStride = SE.getSignExtendExpr(Op: NewStride, Ty: OldStride->getType()); |
| 2899 | else |
| 2900 | OldStride = SE.getSignExtendExpr(Op: OldStride, Ty: NewStride->getType()); |
| 2901 | } |
| 2902 | if (const SCEVConstant *Factor = |
| 2903 | dyn_cast_or_null<SCEVConstant>(Val: getExactSDiv(LHS: NewStride, RHS: OldStride, |
| 2904 | SE, IgnoreSignificantBits: true))) { |
| 2905 | if (Factor->getAPInt().getSignificantBits() <= 64 && !Factor->isZero()) |
| 2906 | Factors.insert(X: Factor->getAPInt().getSExtValue()); |
| 2907 | } else if (const SCEVConstant *Factor = |
| 2908 | dyn_cast_or_null<SCEVConstant>(Val: getExactSDiv(LHS: OldStride, |
| 2909 | RHS: NewStride, |
| 2910 | SE, IgnoreSignificantBits: true))) { |
| 2911 | if (Factor->getAPInt().getSignificantBits() <= 64 && !Factor->isZero()) |
| 2912 | Factors.insert(X: Factor->getAPInt().getSExtValue()); |
| 2913 | } |
| 2914 | } |
| 2915 | |
| 2916 | // If all uses use the same type, don't bother looking for truncation-based |
| 2917 | // reuse. |
| 2918 | if (Types.size() == 1) |
| 2919 | Types.clear(); |
| 2920 | |
| 2921 | LLVM_DEBUG(print_factors_and_types(dbgs())); |
| 2922 | } |
| 2923 | |
| 2924 | /// Helper for CollectChains that finds an IV operand (computed by an AddRec in |
| 2925 | /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to |
| 2926 | /// IVStrideUses, we could partially skip this. |
| 2927 | static User::op_iterator |
| 2928 | findIVOperand(User::op_iterator OI, User::op_iterator OE, |
| 2929 | Loop *L, ScalarEvolution &SE) { |
| 2930 | for(; OI != OE; ++OI) { |
| 2931 | if (Instruction *Oper = dyn_cast<Instruction>(Val&: *OI)) { |
| 2932 | if (!SE.isSCEVable(Ty: Oper->getType())) |
| 2933 | continue; |
| 2934 | |
| 2935 | if (const SCEVAddRecExpr *AR = |
| 2936 | dyn_cast<SCEVAddRecExpr>(Val: SE.getSCEV(V: Oper))) { |
| 2937 | if (AR->getLoop() == L) |
| 2938 | break; |
| 2939 | } |
| 2940 | } |
| 2941 | } |
| 2942 | return OI; |
| 2943 | } |
| 2944 | |
| 2945 | /// IVChain logic must consistently peek base TruncInst operands, so wrap it in |
| 2946 | /// a convenient helper. |
| 2947 | static Value *getWideOperand(Value *Oper) { |
| 2948 | if (TruncInst *Trunc = dyn_cast<TruncInst>(Val: Oper)) |
| 2949 | return Trunc->getOperand(i_nocapture: 0); |
| 2950 | return Oper; |
| 2951 | } |
| 2952 | |
| 2953 | /// Return an approximation of this SCEV expression's "base", or NULL for any |
| 2954 | /// constant. Returning the expression itself is conservative. Returning a |
| 2955 | /// deeper subexpression is more precise and valid as long as it isn't less |
| 2956 | /// complex than another subexpression. For expressions involving multiple |
| 2957 | /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids |
| 2958 | /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], |
| 2959 | /// IVInc==b-a. |
| 2960 | /// |
| 2961 | /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost |
| 2962 | /// SCEVUnknown, we simply return the rightmost SCEV operand. |
| 2963 | static const SCEV *getExprBase(const SCEV *S) { |
| 2964 | switch (S->getSCEVType()) { |
| 2965 | default: // including scUnknown. |
| 2966 | return S; |
| 2967 | case scConstant: |
| 2968 | case scVScale: |
| 2969 | return nullptr; |
| 2970 | case scTruncate: |
| 2971 | return getExprBase(S: cast<SCEVTruncateExpr>(Val: S)->getOperand()); |
| 2972 | case scZeroExtend: |
| 2973 | return getExprBase(S: cast<SCEVZeroExtendExpr>(Val: S)->getOperand()); |
| 2974 | case scSignExtend: |
| 2975 | return getExprBase(S: cast<SCEVSignExtendExpr>(Val: S)->getOperand()); |
| 2976 | case scAddExpr: { |
| 2977 | // Skip over scaled operands (scMulExpr) to follow add operands as long as |
| 2978 | // there's nothing more complex. |
| 2979 | // FIXME: not sure if we want to recognize negation. |
| 2980 | const SCEVAddExpr *Add = cast<SCEVAddExpr>(Val: S); |
| 2981 | for (const SCEV *SubExpr : reverse(C: Add->operands())) { |
| 2982 | if (SubExpr->getSCEVType() == scAddExpr) |
| 2983 | return getExprBase(S: SubExpr); |
| 2984 | |
| 2985 | if (SubExpr->getSCEVType() != scMulExpr) |
| 2986 | return SubExpr; |
| 2987 | } |
| 2988 | return S; // all operands are scaled, be conservative. |
| 2989 | } |
| 2990 | case scAddRecExpr: |
| 2991 | return getExprBase(S: cast<SCEVAddRecExpr>(Val: S)->getStart()); |
| 2992 | } |
| 2993 | llvm_unreachable("Unknown SCEV kind!" ); |
| 2994 | } |
| 2995 | |
| 2996 | /// Return true if the chain increment is profitable to expand into a loop |
| 2997 | /// invariant value, which may require its own register. A profitable chain |
| 2998 | /// increment will be an offset relative to the same base. We allow such offsets |
| 2999 | /// to potentially be used as chain increment as long as it's not obviously |
| 3000 | /// expensive to expand using real instructions. |
| 3001 | bool IVChain::isProfitableIncrement(const SCEV *OperExpr, |
| 3002 | const SCEV *IncExpr, |
| 3003 | ScalarEvolution &SE) { |
| 3004 | // Aggressively form chains when -stress-ivchain. |
| 3005 | if (StressIVChain) |
| 3006 | return true; |
| 3007 | |
| 3008 | // Do not replace a constant offset from IV head with a nonconstant IV |
| 3009 | // increment. |
| 3010 | if (!isa<SCEVConstant>(Val: IncExpr)) { |
| 3011 | const SCEV *HeadExpr = SE.getSCEV(V: getWideOperand(Oper: Incs[0].IVOperand)); |
| 3012 | if (isa<SCEVConstant>(Val: SE.getMinusSCEV(LHS: OperExpr, RHS: HeadExpr))) |
| 3013 | return false; |
| 3014 | } |
| 3015 | |
| 3016 | SmallPtrSet<const SCEV*, 8> Processed; |
| 3017 | return !isHighCostExpansion(S: IncExpr, Processed, SE); |
| 3018 | } |
| 3019 | |
| 3020 | /// Return true if the number of registers needed for the chain is estimated to |
| 3021 | /// be less than the number required for the individual IV users. First prohibit |
| 3022 | /// any IV users that keep the IV live across increments (the Users set should |
| 3023 | /// be empty). Next count the number and type of increments in the chain. |
| 3024 | /// |
| 3025 | /// Chaining IVs can lead to considerable code bloat if ISEL doesn't |
| 3026 | /// effectively use postinc addressing modes. Only consider it profitable it the |
| 3027 | /// increments can be computed in fewer registers when chained. |
| 3028 | /// |
| 3029 | /// TODO: Consider IVInc free if it's already used in another chains. |
| 3030 | static bool isProfitableChain(IVChain &Chain, |
| 3031 | SmallPtrSetImpl<Instruction *> &Users, |
| 3032 | ScalarEvolution &SE, |
| 3033 | const TargetTransformInfo &TTI) { |
| 3034 | if (StressIVChain) |
| 3035 | return true; |
| 3036 | |
| 3037 | if (!Chain.hasIncs()) |
| 3038 | return false; |
| 3039 | |
| 3040 | if (!Users.empty()) { |
| 3041 | LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n" ; |
| 3042 | for (Instruction *Inst |
| 3043 | : Users) { dbgs() << " " << *Inst << "\n" ; }); |
| 3044 | return false; |
| 3045 | } |
| 3046 | assert(!Chain.Incs.empty() && "empty IV chains are not allowed" ); |
| 3047 | |
| 3048 | // The chain itself may require a register, so intialize cost to 1. |
| 3049 | int cost = 1; |
| 3050 | |
| 3051 | // A complete chain likely eliminates the need for keeping the original IV in |
| 3052 | // a register. LSR does not currently know how to form a complete chain unless |
| 3053 | // the header phi already exists. |
| 3054 | if (isa<PHINode>(Val: Chain.tailUserInst()) |
| 3055 | && SE.getSCEV(V: Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { |
| 3056 | --cost; |
| 3057 | } |
| 3058 | const SCEV *LastIncExpr = nullptr; |
| 3059 | unsigned NumConstIncrements = 0; |
| 3060 | unsigned NumVarIncrements = 0; |
| 3061 | unsigned NumReusedIncrements = 0; |
| 3062 | |
| 3063 | if (TTI.isProfitableLSRChainElement(I: Chain.Incs[0].UserInst)) |
| 3064 | return true; |
| 3065 | |
| 3066 | for (const IVInc &Inc : Chain) { |
| 3067 | if (TTI.isProfitableLSRChainElement(I: Inc.UserInst)) |
| 3068 | return true; |
| 3069 | if (Inc.IncExpr->isZero()) |
| 3070 | continue; |
| 3071 | |
| 3072 | // Incrementing by zero or some constant is neutral. We assume constants can |
| 3073 | // be folded into an addressing mode or an add's immediate operand. |
| 3074 | if (isa<SCEVConstant>(Val: Inc.IncExpr)) { |
| 3075 | ++NumConstIncrements; |
| 3076 | continue; |
| 3077 | } |
| 3078 | |
| 3079 | if (Inc.IncExpr == LastIncExpr) |
| 3080 | ++NumReusedIncrements; |
| 3081 | else |
| 3082 | ++NumVarIncrements; |
| 3083 | |
| 3084 | LastIncExpr = Inc.IncExpr; |
| 3085 | } |
| 3086 | // An IV chain with a single increment is handled by LSR's postinc |
| 3087 | // uses. However, a chain with multiple increments requires keeping the IV's |
| 3088 | // value live longer than it needs to be if chained. |
| 3089 | if (NumConstIncrements > 1) |
| 3090 | --cost; |
| 3091 | |
| 3092 | // Materializing increment expressions in the preheader that didn't exist in |
| 3093 | // the original code may cost a register. For example, sign-extended array |
| 3094 | // indices can produce ridiculous increments like this: |
| 3095 | // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) |
| 3096 | cost += NumVarIncrements; |
| 3097 | |
| 3098 | // Reusing variable increments likely saves a register to hold the multiple of |
| 3099 | // the stride. |
| 3100 | cost -= NumReusedIncrements; |
| 3101 | |
| 3102 | LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost |
| 3103 | << "\n" ); |
| 3104 | |
| 3105 | return cost < 0; |
| 3106 | } |
| 3107 | |
| 3108 | /// Add this IV user to an existing chain or make it the head of a new chain. |
| 3109 | void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, |
| 3110 | SmallVectorImpl<ChainUsers> &ChainUsersVec) { |
| 3111 | // When IVs are used as types of varying widths, they are generally converted |
| 3112 | // to a wider type with some uses remaining narrow under a (free) trunc. |
| 3113 | Value *const NextIV = getWideOperand(Oper: IVOper); |
| 3114 | const SCEV *const OperExpr = SE.getSCEV(V: NextIV); |
| 3115 | const SCEV *const OperExprBase = getExprBase(S: OperExpr); |
| 3116 | |
| 3117 | // Visit all existing chains. Check if its IVOper can be computed as a |
| 3118 | // profitable loop invariant increment from the last link in the Chain. |
| 3119 | unsigned ChainIdx = 0, NChains = IVChainVec.size(); |
| 3120 | const SCEV *LastIncExpr = nullptr; |
| 3121 | for (; ChainIdx < NChains; ++ChainIdx) { |
| 3122 | IVChain &Chain = IVChainVec[ChainIdx]; |
| 3123 | |
| 3124 | // Prune the solution space aggressively by checking that both IV operands |
| 3125 | // are expressions that operate on the same unscaled SCEVUnknown. This |
| 3126 | // "base" will be canceled by the subsequent getMinusSCEV call. Checking |
| 3127 | // first avoids creating extra SCEV expressions. |
| 3128 | if (!StressIVChain && Chain.ExprBase != OperExprBase) |
| 3129 | continue; |
| 3130 | |
| 3131 | Value *PrevIV = getWideOperand(Oper: Chain.Incs.back().IVOperand); |
| 3132 | if (PrevIV->getType() != NextIV->getType()) |
| 3133 | continue; |
| 3134 | |
| 3135 | // A phi node terminates a chain. |
| 3136 | if (isa<PHINode>(Val: UserInst) && isa<PHINode>(Val: Chain.tailUserInst())) |
| 3137 | continue; |
| 3138 | |
| 3139 | // The increment must be loop-invariant so it can be kept in a register. |
| 3140 | const SCEV *PrevExpr = SE.getSCEV(V: PrevIV); |
| 3141 | const SCEV *IncExpr = SE.getMinusSCEV(LHS: OperExpr, RHS: PrevExpr); |
| 3142 | if (isa<SCEVCouldNotCompute>(Val: IncExpr) || !SE.isLoopInvariant(S: IncExpr, L)) |
| 3143 | continue; |
| 3144 | |
| 3145 | if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { |
| 3146 | LastIncExpr = IncExpr; |
| 3147 | break; |
| 3148 | } |
| 3149 | } |
| 3150 | // If we haven't found a chain, create a new one, unless we hit the max. Don't |
| 3151 | // bother for phi nodes, because they must be last in the chain. |
| 3152 | if (ChainIdx == NChains) { |
| 3153 | if (isa<PHINode>(Val: UserInst)) |
| 3154 | return; |
| 3155 | if (NChains >= MaxChains && !StressIVChain) { |
| 3156 | LLVM_DEBUG(dbgs() << "IV Chain Limit\n" ); |
| 3157 | return; |
| 3158 | } |
| 3159 | LastIncExpr = OperExpr; |
| 3160 | // IVUsers may have skipped over sign/zero extensions. We don't currently |
| 3161 | // attempt to form chains involving extensions unless they can be hoisted |
| 3162 | // into this loop's AddRec. |
| 3163 | if (!isa<SCEVAddRecExpr>(Val: LastIncExpr)) |
| 3164 | return; |
| 3165 | ++NChains; |
| 3166 | IVChainVec.push_back(Elt: IVChain(IVInc(UserInst, IVOper, LastIncExpr), |
| 3167 | OperExprBase)); |
| 3168 | ChainUsersVec.resize(N: NChains); |
| 3169 | LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst |
| 3170 | << ") IV=" << *LastIncExpr << "\n" ); |
| 3171 | } else { |
| 3172 | LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst |
| 3173 | << ") IV+" << *LastIncExpr << "\n" ); |
| 3174 | // Add this IV user to the end of the chain. |
| 3175 | IVChainVec[ChainIdx].add(X: IVInc(UserInst, IVOper, LastIncExpr)); |
| 3176 | } |
| 3177 | IVChain &Chain = IVChainVec[ChainIdx]; |
| 3178 | |
| 3179 | SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; |
| 3180 | // This chain's NearUsers become FarUsers. |
| 3181 | if (!LastIncExpr->isZero()) { |
| 3182 | ChainUsersVec[ChainIdx].FarUsers.insert_range(R&: NearUsers); |
| 3183 | NearUsers.clear(); |
| 3184 | } |
| 3185 | |
| 3186 | // All other uses of IVOperand become near uses of the chain. |
| 3187 | // We currently ignore intermediate values within SCEV expressions, assuming |
| 3188 | // they will eventually be used be the current chain, or can be computed |
| 3189 | // from one of the chain increments. To be more precise we could |
| 3190 | // transitively follow its user and only add leaf IV users to the set. |
| 3191 | for (User *U : IVOper->users()) { |
| 3192 | Instruction *OtherUse = dyn_cast<Instruction>(Val: U); |
| 3193 | if (!OtherUse) |
| 3194 | continue; |
| 3195 | // Uses in the chain will no longer be uses if the chain is formed. |
| 3196 | // Include the head of the chain in this iteration (not Chain.begin()). |
| 3197 | IVChain::const_iterator IncIter = Chain.Incs.begin(); |
| 3198 | IVChain::const_iterator IncEnd = Chain.Incs.end(); |
| 3199 | for( ; IncIter != IncEnd; ++IncIter) { |
| 3200 | if (IncIter->UserInst == OtherUse) |
| 3201 | break; |
| 3202 | } |
| 3203 | if (IncIter != IncEnd) |
| 3204 | continue; |
| 3205 | |
| 3206 | if (SE.isSCEVable(Ty: OtherUse->getType()) |
| 3207 | && !isa<SCEVUnknown>(Val: SE.getSCEV(V: OtherUse)) |
| 3208 | && IU.isIVUserOrOperand(Inst: OtherUse)) { |
| 3209 | continue; |
| 3210 | } |
| 3211 | NearUsers.insert(Ptr: OtherUse); |
| 3212 | } |
| 3213 | |
| 3214 | // Since this user is part of the chain, it's no longer considered a use |
| 3215 | // of the chain. |
| 3216 | ChainUsersVec[ChainIdx].FarUsers.erase(Ptr: UserInst); |
| 3217 | } |
| 3218 | |
| 3219 | /// Populate the vector of Chains. |
| 3220 | /// |
| 3221 | /// This decreases ILP at the architecture level. Targets with ample registers, |
| 3222 | /// multiple memory ports, and no register renaming probably don't want |
| 3223 | /// this. However, such targets should probably disable LSR altogether. |
| 3224 | /// |
| 3225 | /// The job of LSR is to make a reasonable choice of induction variables across |
| 3226 | /// the loop. Subsequent passes can easily "unchain" computation exposing more |
| 3227 | /// ILP *within the loop* if the target wants it. |
| 3228 | /// |
| 3229 | /// Finding the best IV chain is potentially a scheduling problem. Since LSR |
| 3230 | /// will not reorder memory operations, it will recognize this as a chain, but |
| 3231 | /// will generate redundant IV increments. Ideally this would be corrected later |
| 3232 | /// by a smart scheduler: |
| 3233 | /// = A[i] |
| 3234 | /// = A[i+x] |
| 3235 | /// A[i] = |
| 3236 | /// A[i+x] = |
| 3237 | /// |
| 3238 | /// TODO: Walk the entire domtree within this loop, not just the path to the |
| 3239 | /// loop latch. This will discover chains on side paths, but requires |
| 3240 | /// maintaining multiple copies of the Chains state. |
| 3241 | void LSRInstance::CollectChains() { |
| 3242 | LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n" ); |
| 3243 | SmallVector<ChainUsers, 8> ChainUsersVec; |
| 3244 | |
| 3245 | SmallVector<BasicBlock *,8> LatchPath; |
| 3246 | BasicBlock * = L->getHeader(); |
| 3247 | for (DomTreeNode *Rung = DT.getNode(BB: L->getLoopLatch()); |
| 3248 | Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { |
| 3249 | LatchPath.push_back(Elt: Rung->getBlock()); |
| 3250 | } |
| 3251 | LatchPath.push_back(Elt: LoopHeader); |
| 3252 | |
| 3253 | // Walk the instruction stream from the loop header to the loop latch. |
| 3254 | for (BasicBlock *BB : reverse(C&: LatchPath)) { |
| 3255 | for (Instruction &I : *BB) { |
| 3256 | // Skip instructions that weren't seen by IVUsers analysis. |
| 3257 | if (isa<PHINode>(Val: I) || !IU.isIVUserOrOperand(Inst: &I)) |
| 3258 | continue; |
| 3259 | |
| 3260 | // Ignore users that are part of a SCEV expression. This way we only |
| 3261 | // consider leaf IV Users. This effectively rediscovers a portion of |
| 3262 | // IVUsers analysis but in program order this time. |
| 3263 | if (SE.isSCEVable(Ty: I.getType()) && !isa<SCEVUnknown>(Val: SE.getSCEV(V: &I))) |
| 3264 | continue; |
| 3265 | |
| 3266 | // Remove this instruction from any NearUsers set it may be in. |
| 3267 | for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); |
| 3268 | ChainIdx < NChains; ++ChainIdx) { |
| 3269 | ChainUsersVec[ChainIdx].NearUsers.erase(Ptr: &I); |
| 3270 | } |
| 3271 | // Search for operands that can be chained. |
| 3272 | SmallPtrSet<Instruction*, 4> UniqueOperands; |
| 3273 | User::op_iterator IVOpEnd = I.op_end(); |
| 3274 | User::op_iterator IVOpIter = findIVOperand(OI: I.op_begin(), OE: IVOpEnd, L, SE); |
| 3275 | while (IVOpIter != IVOpEnd) { |
| 3276 | Instruction *IVOpInst = cast<Instruction>(Val&: *IVOpIter); |
| 3277 | if (UniqueOperands.insert(Ptr: IVOpInst).second) |
| 3278 | ChainInstruction(UserInst: &I, IVOper: IVOpInst, ChainUsersVec); |
| 3279 | IVOpIter = findIVOperand(OI: std::next(x: IVOpIter), OE: IVOpEnd, L, SE); |
| 3280 | } |
| 3281 | } // Continue walking down the instructions. |
| 3282 | } // Continue walking down the domtree. |
| 3283 | // Visit phi backedges to determine if the chain can generate the IV postinc. |
| 3284 | for (PHINode &PN : L->getHeader()->phis()) { |
| 3285 | if (!SE.isSCEVable(Ty: PN.getType())) |
| 3286 | continue; |
| 3287 | |
| 3288 | Instruction *IncV = |
| 3289 | dyn_cast<Instruction>(Val: PN.getIncomingValueForBlock(BB: L->getLoopLatch())); |
| 3290 | if (IncV) |
| 3291 | ChainInstruction(UserInst: &PN, IVOper: IncV, ChainUsersVec); |
| 3292 | } |
| 3293 | // Remove any unprofitable chains. |
| 3294 | unsigned ChainIdx = 0; |
| 3295 | for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); |
| 3296 | UsersIdx < NChains; ++UsersIdx) { |
| 3297 | if (!isProfitableChain(Chain&: IVChainVec[UsersIdx], |
| 3298 | Users&: ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) |
| 3299 | continue; |
| 3300 | // Preserve the chain at UsesIdx. |
| 3301 | if (ChainIdx != UsersIdx) |
| 3302 | IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; |
| 3303 | FinalizeChain(Chain&: IVChainVec[ChainIdx]); |
| 3304 | ++ChainIdx; |
| 3305 | } |
| 3306 | IVChainVec.resize(N: ChainIdx); |
| 3307 | } |
| 3308 | |
| 3309 | void LSRInstance::FinalizeChain(IVChain &Chain) { |
| 3310 | assert(!Chain.Incs.empty() && "empty IV chains are not allowed" ); |
| 3311 | LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n" ); |
| 3312 | |
| 3313 | for (const IVInc &Inc : Chain) { |
| 3314 | LLVM_DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n" ); |
| 3315 | auto UseI = find(Range: Inc.UserInst->operands(), Val: Inc.IVOperand); |
| 3316 | assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand" ); |
| 3317 | IVIncSet.insert(Ptr: UseI); |
| 3318 | } |
| 3319 | } |
| 3320 | |
| 3321 | /// Return true if the IVInc can be folded into an addressing mode. |
| 3322 | static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, |
| 3323 | Value *Operand, const TargetTransformInfo &TTI) { |
| 3324 | const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(Val: IncExpr); |
| 3325 | Immediate IncOffset = Immediate::getZero(); |
| 3326 | if (IncConst) { |
| 3327 | if (IncConst && IncConst->getAPInt().getSignificantBits() > 64) |
| 3328 | return false; |
| 3329 | IncOffset = Immediate::getFixed(MinVal: IncConst->getValue()->getSExtValue()); |
| 3330 | } else { |
| 3331 | // Look for mul(vscale, constant), to detect a scalable offset. |
| 3332 | const APInt *C; |
| 3333 | if (!match(S: IncExpr, P: m_scev_Mul(Op0: m_scev_APInt(C), Op1: m_SCEVVScale())) || |
| 3334 | C->getSignificantBits() > 64) |
| 3335 | return false; |
| 3336 | IncOffset = Immediate::getScalable(MinVal: C->getSExtValue()); |
| 3337 | } |
| 3338 | |
| 3339 | if (!isAddressUse(TTI, Inst: UserInst, OperandVal: Operand)) |
| 3340 | return false; |
| 3341 | |
| 3342 | MemAccessTy AccessTy = getAccessType(TTI, Inst: UserInst, OperandVal: Operand); |
| 3343 | if (!isAlwaysFoldable(TTI, Kind: LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, |
| 3344 | BaseOffset: IncOffset, /*HasBaseReg=*/false)) |
| 3345 | return false; |
| 3346 | |
| 3347 | return true; |
| 3348 | } |
| 3349 | |
| 3350 | /// Generate an add or subtract for each IVInc in a chain to materialize the IV |
| 3351 | /// user's operand from the previous IV user's operand. |
| 3352 | void LSRInstance::GenerateIVChain(const IVChain &Chain, |
| 3353 | SmallVectorImpl<WeakTrackingVH> &DeadInsts) { |
| 3354 | // Find the new IVOperand for the head of the chain. It may have been replaced |
| 3355 | // by LSR. |
| 3356 | const IVInc &Head = Chain.Incs[0]; |
| 3357 | User::op_iterator IVOpEnd = Head.UserInst->op_end(); |
| 3358 | // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. |
| 3359 | User::op_iterator IVOpIter = findIVOperand(OI: Head.UserInst->op_begin(), |
| 3360 | OE: IVOpEnd, L, SE); |
| 3361 | Value *IVSrc = nullptr; |
| 3362 | while (IVOpIter != IVOpEnd) { |
| 3363 | IVSrc = getWideOperand(Oper: *IVOpIter); |
| 3364 | |
| 3365 | // If this operand computes the expression that the chain needs, we may use |
| 3366 | // it. (Check this after setting IVSrc which is used below.) |
| 3367 | // |
| 3368 | // Note that if Head.IncExpr is wider than IVSrc, then this phi is too |
| 3369 | // narrow for the chain, so we can no longer use it. We do allow using a |
| 3370 | // wider phi, assuming the LSR checked for free truncation. In that case we |
| 3371 | // should already have a truncate on this operand such that |
| 3372 | // getSCEV(IVSrc) == IncExpr. |
| 3373 | if (SE.getSCEV(V: *IVOpIter) == Head.IncExpr |
| 3374 | || SE.getSCEV(V: IVSrc) == Head.IncExpr) { |
| 3375 | break; |
| 3376 | } |
| 3377 | IVOpIter = findIVOperand(OI: std::next(x: IVOpIter), OE: IVOpEnd, L, SE); |
| 3378 | } |
| 3379 | if (IVOpIter == IVOpEnd) { |
| 3380 | // Gracefully give up on this chain. |
| 3381 | LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n" ); |
| 3382 | return; |
| 3383 | } |
| 3384 | assert(IVSrc && "Failed to find IV chain source" ); |
| 3385 | |
| 3386 | LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n" ); |
| 3387 | Type *IVTy = IVSrc->getType(); |
| 3388 | Type *IntTy = SE.getEffectiveSCEVType(Ty: IVTy); |
| 3389 | const SCEV *LeftOverExpr = nullptr; |
| 3390 | const SCEV *Accum = SE.getZero(Ty: IntTy); |
| 3391 | SmallVector<std::pair<const SCEV *, Value *>> Bases; |
| 3392 | Bases.emplace_back(Args&: Accum, Args&: IVSrc); |
| 3393 | |
| 3394 | for (const IVInc &Inc : Chain) { |
| 3395 | Instruction *InsertPt = Inc.UserInst; |
| 3396 | if (isa<PHINode>(Val: InsertPt)) |
| 3397 | InsertPt = L->getLoopLatch()->getTerminator(); |
| 3398 | |
| 3399 | // IVOper will replace the current IV User's operand. IVSrc is the IV |
| 3400 | // value currently held in a register. |
| 3401 | Value *IVOper = IVSrc; |
| 3402 | if (!Inc.IncExpr->isZero()) { |
| 3403 | // IncExpr was the result of subtraction of two narrow values, so must |
| 3404 | // be signed. |
| 3405 | const SCEV *IncExpr = SE.getNoopOrSignExtend(V: Inc.IncExpr, Ty: IntTy); |
| 3406 | Accum = SE.getAddExpr(LHS: Accum, RHS: IncExpr); |
| 3407 | LeftOverExpr = LeftOverExpr ? |
| 3408 | SE.getAddExpr(LHS: LeftOverExpr, RHS: IncExpr) : IncExpr; |
| 3409 | } |
| 3410 | |
| 3411 | // Look through each base to see if any can produce a nice addressing mode. |
| 3412 | bool FoundBase = false; |
| 3413 | for (auto [MapScev, MapIVOper] : reverse(C&: Bases)) { |
| 3414 | const SCEV *Remainder = SE.getMinusSCEV(LHS: Accum, RHS: MapScev); |
| 3415 | if (canFoldIVIncExpr(IncExpr: Remainder, UserInst: Inc.UserInst, Operand: Inc.IVOperand, TTI)) { |
| 3416 | if (!Remainder->isZero()) { |
| 3417 | Rewriter.clearPostInc(); |
| 3418 | Value *IncV = Rewriter.expandCodeFor(SH: Remainder, Ty: IntTy, I: InsertPt); |
| 3419 | const SCEV *IVOperExpr = |
| 3420 | SE.getAddExpr(LHS: SE.getUnknown(V: MapIVOper), RHS: SE.getUnknown(V: IncV)); |
| 3421 | IVOper = Rewriter.expandCodeFor(SH: IVOperExpr, Ty: IVTy, I: InsertPt); |
| 3422 | } else { |
| 3423 | IVOper = MapIVOper; |
| 3424 | } |
| 3425 | |
| 3426 | FoundBase = true; |
| 3427 | break; |
| 3428 | } |
| 3429 | } |
| 3430 | if (!FoundBase && LeftOverExpr && !LeftOverExpr->isZero()) { |
| 3431 | // Expand the IV increment. |
| 3432 | Rewriter.clearPostInc(); |
| 3433 | Value *IncV = Rewriter.expandCodeFor(SH: LeftOverExpr, Ty: IntTy, I: InsertPt); |
| 3434 | const SCEV *IVOperExpr = SE.getAddExpr(LHS: SE.getUnknown(V: IVSrc), |
| 3435 | RHS: SE.getUnknown(V: IncV)); |
| 3436 | IVOper = Rewriter.expandCodeFor(SH: IVOperExpr, Ty: IVTy, I: InsertPt); |
| 3437 | |
| 3438 | // If an IV increment can't be folded, use it as the next IV value. |
| 3439 | if (!canFoldIVIncExpr(IncExpr: LeftOverExpr, UserInst: Inc.UserInst, Operand: Inc.IVOperand, TTI)) { |
| 3440 | assert(IVTy == IVOper->getType() && "inconsistent IV increment type" ); |
| 3441 | Bases.emplace_back(Args&: Accum, Args&: IVOper); |
| 3442 | IVSrc = IVOper; |
| 3443 | LeftOverExpr = nullptr; |
| 3444 | } |
| 3445 | } |
| 3446 | Type *OperTy = Inc.IVOperand->getType(); |
| 3447 | if (IVTy != OperTy) { |
| 3448 | assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && |
| 3449 | "cannot extend a chained IV" ); |
| 3450 | IRBuilder<> Builder(InsertPt); |
| 3451 | IVOper = Builder.CreateTruncOrBitCast(V: IVOper, DestTy: OperTy, Name: "lsr.chain" ); |
| 3452 | } |
| 3453 | Inc.UserInst->replaceUsesOfWith(From: Inc.IVOperand, To: IVOper); |
| 3454 | if (auto *OperandIsInstr = dyn_cast<Instruction>(Val: Inc.IVOperand)) |
| 3455 | DeadInsts.emplace_back(Args&: OperandIsInstr); |
| 3456 | } |
| 3457 | // If LSR created a new, wider phi, we may also replace its postinc. We only |
| 3458 | // do this if we also found a wide value for the head of the chain. |
| 3459 | if (isa<PHINode>(Val: Chain.tailUserInst())) { |
| 3460 | for (PHINode &Phi : L->getHeader()->phis()) { |
| 3461 | if (Phi.getType() != IVSrc->getType()) |
| 3462 | continue; |
| 3463 | Instruction *PostIncV = dyn_cast<Instruction>( |
| 3464 | Val: Phi.getIncomingValueForBlock(BB: L->getLoopLatch())); |
| 3465 | if (!PostIncV || (SE.getSCEV(V: PostIncV) != SE.getSCEV(V: IVSrc))) |
| 3466 | continue; |
| 3467 | Value *IVOper = IVSrc; |
| 3468 | Type *PostIncTy = PostIncV->getType(); |
| 3469 | if (IVTy != PostIncTy) { |
| 3470 | assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types" ); |
| 3471 | IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); |
| 3472 | Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); |
| 3473 | IVOper = Builder.CreatePointerCast(V: IVSrc, DestTy: PostIncTy, Name: "lsr.chain" ); |
| 3474 | } |
| 3475 | Phi.replaceUsesOfWith(From: PostIncV, To: IVOper); |
| 3476 | DeadInsts.emplace_back(Args&: PostIncV); |
| 3477 | } |
| 3478 | } |
| 3479 | } |
| 3480 | |
| 3481 | void LSRInstance::CollectFixupsAndInitialFormulae() { |
| 3482 | BranchInst *ExitBranch = nullptr; |
| 3483 | bool SaveCmp = TTI.canSaveCmp(L, BI: &ExitBranch, SE: &SE, LI: &LI, DT: &DT, AC: &AC, LibInfo: &TLI); |
| 3484 | |
| 3485 | // For calculating baseline cost |
| 3486 | SmallPtrSet<const SCEV *, 16> Regs; |
| 3487 | DenseSet<const SCEV *> VisitedRegs; |
| 3488 | DenseSet<size_t> VisitedLSRUse; |
| 3489 | |
| 3490 | for (const IVStrideUse &U : IU) { |
| 3491 | Instruction *UserInst = U.getUser(); |
| 3492 | // Skip IV users that are part of profitable IV Chains. |
| 3493 | User::op_iterator UseI = |
| 3494 | find(Range: UserInst->operands(), Val: U.getOperandValToReplace()); |
| 3495 | assert(UseI != UserInst->op_end() && "cannot find IV operand" ); |
| 3496 | if (IVIncSet.count(Ptr: UseI)) { |
| 3497 | LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n'); |
| 3498 | continue; |
| 3499 | } |
| 3500 | |
| 3501 | LSRUse::KindType Kind = LSRUse::Basic; |
| 3502 | MemAccessTy AccessTy; |
| 3503 | if (isAddressUse(TTI, Inst: UserInst, OperandVal: U.getOperandValToReplace())) { |
| 3504 | Kind = LSRUse::Address; |
| 3505 | AccessTy = getAccessType(TTI, Inst: UserInst, OperandVal: U.getOperandValToReplace()); |
| 3506 | } |
| 3507 | |
| 3508 | const SCEV *S = IU.getExpr(IU: U); |
| 3509 | if (!S) |
| 3510 | continue; |
| 3511 | PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); |
| 3512 | |
| 3513 | // Equality (== and !=) ICmps are special. We can rewrite (i == N) as |
| 3514 | // (N - i == 0), and this allows (N - i) to be the expression that we work |
| 3515 | // with rather than just N or i, so we can consider the register |
| 3516 | // requirements for both N and i at the same time. Limiting this code to |
| 3517 | // equality icmps is not a problem because all interesting loops use |
| 3518 | // equality icmps, thanks to IndVarSimplify. |
| 3519 | if (ICmpInst *CI = dyn_cast<ICmpInst>(Val: UserInst)) { |
| 3520 | // If CI can be saved in some target, like replaced inside hardware loop |
| 3521 | // in PowerPC, no need to generate initial formulae for it. |
| 3522 | if (SaveCmp && CI == dyn_cast<ICmpInst>(Val: ExitBranch->getCondition())) |
| 3523 | continue; |
| 3524 | if (CI->isEquality()) { |
| 3525 | // Swap the operands if needed to put the OperandValToReplace on the |
| 3526 | // left, for consistency. |
| 3527 | Value *NV = CI->getOperand(i_nocapture: 1); |
| 3528 | if (NV == U.getOperandValToReplace()) { |
| 3529 | CI->setOperand(i_nocapture: 1, Val_nocapture: CI->getOperand(i_nocapture: 0)); |
| 3530 | CI->setOperand(i_nocapture: 0, Val_nocapture: NV); |
| 3531 | NV = CI->getOperand(i_nocapture: 1); |
| 3532 | Changed = true; |
| 3533 | } |
| 3534 | |
| 3535 | // x == y --> x - y == 0 |
| 3536 | const SCEV *N = SE.getSCEV(V: NV); |
| 3537 | if (SE.isLoopInvariant(S: N, L) && Rewriter.isSafeToExpand(S: N) && |
| 3538 | (!NV->getType()->isPointerTy() || |
| 3539 | SE.getPointerBase(V: N) == SE.getPointerBase(V: S))) { |
| 3540 | // S is normalized, so normalize N before folding it into S |
| 3541 | // to keep the result normalized. |
| 3542 | N = normalizeForPostIncUse(S: N, Loops: TmpPostIncLoops, SE); |
| 3543 | if (!N) |
| 3544 | continue; |
| 3545 | Kind = LSRUse::ICmpZero; |
| 3546 | S = SE.getMinusSCEV(LHS: N, RHS: S); |
| 3547 | } else if (L->isLoopInvariant(V: NV) && |
| 3548 | (!isa<Instruction>(Val: NV) || |
| 3549 | DT.dominates(Def: cast<Instruction>(Val: NV), BB: L->getHeader())) && |
| 3550 | !NV->getType()->isPointerTy()) { |
| 3551 | // If we can't generally expand the expression (e.g. it contains |
| 3552 | // a divide), but it is already at a loop invariant point before the |
| 3553 | // loop, wrap it in an unknown (to prevent the expander from trying |
| 3554 | // to re-expand in a potentially unsafe way.) The restriction to |
| 3555 | // integer types is required because the unknown hides the base, and |
| 3556 | // SCEV can't compute the difference of two unknown pointers. |
| 3557 | N = SE.getUnknown(V: NV); |
| 3558 | N = normalizeForPostIncUse(S: N, Loops: TmpPostIncLoops, SE); |
| 3559 | if (!N) |
| 3560 | continue; |
| 3561 | Kind = LSRUse::ICmpZero; |
| 3562 | S = SE.getMinusSCEV(LHS: N, RHS: S); |
| 3563 | assert(!isa<SCEVCouldNotCompute>(S)); |
| 3564 | } |
| 3565 | |
| 3566 | // -1 and the negations of all interesting strides (except the negation |
| 3567 | // of -1) are now also interesting. |
| 3568 | for (size_t i = 0, e = Factors.size(); i != e; ++i) |
| 3569 | if (Factors[i] != -1) |
| 3570 | Factors.insert(X: -(uint64_t)Factors[i]); |
| 3571 | Factors.insert(X: -1); |
| 3572 | } |
| 3573 | } |
| 3574 | |
| 3575 | // Get or create an LSRUse. |
| 3576 | std::pair<size_t, Immediate> P = getUse(Expr&: S, Kind, AccessTy); |
| 3577 | size_t LUIdx = P.first; |
| 3578 | Immediate Offset = P.second; |
| 3579 | LSRUse &LU = Uses[LUIdx]; |
| 3580 | |
| 3581 | // Record the fixup. |
| 3582 | LSRFixup &LF = LU.getNewFixup(); |
| 3583 | LF.UserInst = UserInst; |
| 3584 | LF.OperandValToReplace = U.getOperandValToReplace(); |
| 3585 | LF.PostIncLoops = TmpPostIncLoops; |
| 3586 | LF.Offset = Offset; |
| 3587 | LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); |
| 3588 | |
| 3589 | // Create SCEV as Formula for calculating baseline cost |
| 3590 | if (!VisitedLSRUse.count(V: LUIdx) && !LF.isUseFullyOutsideLoop(L)) { |
| 3591 | Formula F; |
| 3592 | F.initialMatch(S, L, SE); |
| 3593 | BaselineCost.RateFormula(F, Regs, VisitedRegs, LU); |
| 3594 | VisitedLSRUse.insert(V: LUIdx); |
| 3595 | } |
| 3596 | |
| 3597 | if (!LU.WidestFixupType || |
| 3598 | SE.getTypeSizeInBits(Ty: LU.WidestFixupType) < |
| 3599 | SE.getTypeSizeInBits(Ty: LF.OperandValToReplace->getType())) |
| 3600 | LU.WidestFixupType = LF.OperandValToReplace->getType(); |
| 3601 | |
| 3602 | // If this is the first use of this LSRUse, give it a formula. |
| 3603 | if (LU.Formulae.empty()) { |
| 3604 | InsertInitialFormula(S, LU, LUIdx); |
| 3605 | CountRegisters(F: LU.Formulae.back(), LUIdx); |
| 3606 | } |
| 3607 | } |
| 3608 | |
| 3609 | LLVM_DEBUG(print_fixups(dbgs())); |
| 3610 | } |
| 3611 | |
| 3612 | /// Insert a formula for the given expression into the given use, separating out |
| 3613 | /// loop-variant portions from loop-invariant and loop-computable portions. |
| 3614 | void LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, |
| 3615 | size_t LUIdx) { |
| 3616 | // Mark uses whose expressions cannot be expanded. |
| 3617 | if (!Rewriter.isSafeToExpand(S)) |
| 3618 | LU.RigidFormula = true; |
| 3619 | |
| 3620 | Formula F; |
| 3621 | F.initialMatch(S, L, SE); |
| 3622 | bool Inserted = InsertFormula(LU, LUIdx, F); |
| 3623 | assert(Inserted && "Initial formula already exists!" ); (void)Inserted; |
| 3624 | } |
| 3625 | |
| 3626 | /// Insert a simple single-register formula for the given expression into the |
| 3627 | /// given use. |
| 3628 | void |
| 3629 | LSRInstance::InsertSupplementalFormula(const SCEV *S, |
| 3630 | LSRUse &LU, size_t LUIdx) { |
| 3631 | Formula F; |
| 3632 | F.BaseRegs.push_back(Elt: S); |
| 3633 | F.HasBaseReg = true; |
| 3634 | bool Inserted = InsertFormula(LU, LUIdx, F); |
| 3635 | assert(Inserted && "Supplemental formula already exists!" ); (void)Inserted; |
| 3636 | } |
| 3637 | |
| 3638 | /// Note which registers are used by the given formula, updating RegUses. |
| 3639 | void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { |
| 3640 | if (F.ScaledReg) |
| 3641 | RegUses.countRegister(Reg: F.ScaledReg, LUIdx); |
| 3642 | for (const SCEV *BaseReg : F.BaseRegs) |
| 3643 | RegUses.countRegister(Reg: BaseReg, LUIdx); |
| 3644 | } |
| 3645 | |
| 3646 | /// If the given formula has not yet been inserted, add it to the list, and |
| 3647 | /// return true. Return false otherwise. |
| 3648 | bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { |
| 3649 | // Do not insert formula that we will not be able to expand. |
| 3650 | assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && |
| 3651 | "Formula is illegal" ); |
| 3652 | |
| 3653 | if (!LU.InsertFormula(F, L: *L)) |
| 3654 | return false; |
| 3655 | |
| 3656 | CountRegisters(F, LUIdx); |
| 3657 | return true; |
| 3658 | } |
| 3659 | |
| 3660 | /// Check for other uses of loop-invariant values which we're tracking. These |
| 3661 | /// other uses will pin these values in registers, making them less profitable |
| 3662 | /// for elimination. |
| 3663 | /// TODO: This currently misses non-constant addrec step registers. |
| 3664 | /// TODO: Should this give more weight to users inside the loop? |
| 3665 | void |
| 3666 | LSRInstance::CollectLoopInvariantFixupsAndFormulae() { |
| 3667 | SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); |
| 3668 | SmallPtrSet<const SCEV *, 32> Visited; |
| 3669 | |
| 3670 | // Don't collect outside uses if we are favoring postinc - the instructions in |
| 3671 | // the loop are more important than the ones outside of it. |
| 3672 | if (AMK == TTI::AMK_PostIndexed) |
| 3673 | return; |
| 3674 | |
| 3675 | while (!Worklist.empty()) { |
| 3676 | const SCEV *S = Worklist.pop_back_val(); |
| 3677 | |
| 3678 | // Don't process the same SCEV twice |
| 3679 | if (!Visited.insert(Ptr: S).second) |
| 3680 | continue; |
| 3681 | |
| 3682 | if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(Val: S)) |
| 3683 | append_range(C&: Worklist, R: N->operands()); |
| 3684 | else if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(Val: S)) |
| 3685 | Worklist.push_back(Elt: C->getOperand()); |
| 3686 | else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(Val: S)) { |
| 3687 | Worklist.push_back(Elt: D->getLHS()); |
| 3688 | Worklist.push_back(Elt: D->getRHS()); |
| 3689 | } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(Val: S)) { |
| 3690 | const Value *V = US->getValue(); |
| 3691 | if (const Instruction *Inst = dyn_cast<Instruction>(Val: V)) { |
| 3692 | // Look for instructions defined outside the loop. |
| 3693 | if (L->contains(Inst)) continue; |
| 3694 | } else if (isa<Constant>(Val: V)) |
| 3695 | // Constants can be re-materialized. |
| 3696 | continue; |
| 3697 | for (const Use &U : V->uses()) { |
| 3698 | const Instruction *UserInst = dyn_cast<Instruction>(Val: U.getUser()); |
| 3699 | // Ignore non-instructions. |
| 3700 | if (!UserInst) |
| 3701 | continue; |
| 3702 | // Don't bother if the instruction is an EHPad. |
| 3703 | if (UserInst->isEHPad()) |
| 3704 | continue; |
| 3705 | // Ignore instructions in other functions (as can happen with |
| 3706 | // Constants). |
| 3707 | if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) |
| 3708 | continue; |
| 3709 | // Ignore instructions not dominated by the loop. |
| 3710 | const BasicBlock *UseBB = !isa<PHINode>(Val: UserInst) ? |
| 3711 | UserInst->getParent() : |
| 3712 | cast<PHINode>(Val: UserInst)->getIncomingBlock( |
| 3713 | i: PHINode::getIncomingValueNumForOperand(i: U.getOperandNo())); |
| 3714 | if (!DT.dominates(A: L->getHeader(), B: UseBB)) |
| 3715 | continue; |
| 3716 | // Don't bother if the instruction is in a BB which ends in an EHPad. |
| 3717 | if (UseBB->getTerminator()->isEHPad()) |
| 3718 | continue; |
| 3719 | |
| 3720 | // Ignore cases in which the currently-examined value could come from |
| 3721 | // a basic block terminated with an EHPad. This checks all incoming |
| 3722 | // blocks of the phi node since it is possible that the same incoming |
| 3723 | // value comes from multiple basic blocks, only some of which may end |
| 3724 | // in an EHPad. If any of them do, a subsequent rewrite attempt by this |
| 3725 | // pass would try to insert instructions into an EHPad, hitting an |
| 3726 | // assertion. |
| 3727 | if (isa<PHINode>(Val: UserInst)) { |
| 3728 | const auto *PhiNode = cast<PHINode>(Val: UserInst); |
| 3729 | bool HasIncompatibleEHPTerminatedBlock = false; |
| 3730 | llvm::Value *ExpectedValue = U; |
| 3731 | for (unsigned int I = 0; I < PhiNode->getNumIncomingValues(); I++) { |
| 3732 | if (PhiNode->getIncomingValue(i: I) == ExpectedValue) { |
| 3733 | if (PhiNode->getIncomingBlock(i: I)->getTerminator()->isEHPad()) { |
| 3734 | HasIncompatibleEHPTerminatedBlock = true; |
| 3735 | break; |
| 3736 | } |
| 3737 | } |
| 3738 | } |
| 3739 | if (HasIncompatibleEHPTerminatedBlock) { |
| 3740 | continue; |
| 3741 | } |
| 3742 | } |
| 3743 | |
| 3744 | // Don't bother rewriting PHIs in catchswitch blocks. |
| 3745 | if (isa<CatchSwitchInst>(Val: UserInst->getParent()->getTerminator())) |
| 3746 | continue; |
| 3747 | // Ignore uses which are part of other SCEV expressions, to avoid |
| 3748 | // analyzing them multiple times. |
| 3749 | if (SE.isSCEVable(Ty: UserInst->getType())) { |
| 3750 | const SCEV *UserS = SE.getSCEV(V: const_cast<Instruction *>(UserInst)); |
| 3751 | // If the user is a no-op, look through to its uses. |
| 3752 | if (!isa<SCEVUnknown>(Val: UserS)) |
| 3753 | continue; |
| 3754 | if (UserS == US) { |
| 3755 | Worklist.push_back( |
| 3756 | Elt: SE.getUnknown(V: const_cast<Instruction *>(UserInst))); |
| 3757 | continue; |
| 3758 | } |
| 3759 | } |
| 3760 | // Ignore icmp instructions which are already being analyzed. |
| 3761 | if (const ICmpInst *ICI = dyn_cast<ICmpInst>(Val: UserInst)) { |
| 3762 | unsigned OtherIdx = !U.getOperandNo(); |
| 3763 | Value *OtherOp = const_cast<Value *>(ICI->getOperand(i_nocapture: OtherIdx)); |
| 3764 | if (SE.hasComputableLoopEvolution(S: SE.getSCEV(V: OtherOp), L)) |
| 3765 | continue; |
| 3766 | } |
| 3767 | |
| 3768 | std::pair<size_t, Immediate> P = |
| 3769 | getUse(Expr&: S, Kind: LSRUse::Basic, AccessTy: MemAccessTy()); |
| 3770 | size_t LUIdx = P.first; |
| 3771 | Immediate Offset = P.second; |
| 3772 | LSRUse &LU = Uses[LUIdx]; |
| 3773 | LSRFixup &LF = LU.getNewFixup(); |
| 3774 | LF.UserInst = const_cast<Instruction *>(UserInst); |
| 3775 | LF.OperandValToReplace = U; |
| 3776 | LF.Offset = Offset; |
| 3777 | LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); |
| 3778 | if (!LU.WidestFixupType || |
| 3779 | SE.getTypeSizeInBits(Ty: LU.WidestFixupType) < |
| 3780 | SE.getTypeSizeInBits(Ty: LF.OperandValToReplace->getType())) |
| 3781 | LU.WidestFixupType = LF.OperandValToReplace->getType(); |
| 3782 | InsertSupplementalFormula(S: US, LU, LUIdx); |
| 3783 | CountRegisters(F: LU.Formulae.back(), LUIdx: Uses.size() - 1); |
| 3784 | break; |
| 3785 | } |
| 3786 | } |
| 3787 | } |
| 3788 | } |
| 3789 | |
| 3790 | /// Split S into subexpressions which can be pulled out into separate |
| 3791 | /// registers. If C is non-null, multiply each subexpression by C. |
| 3792 | /// |
| 3793 | /// Return remainder expression after factoring the subexpressions captured by |
| 3794 | /// Ops. If Ops is complete, return NULL. |
| 3795 | static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, |
| 3796 | SmallVectorImpl<const SCEV *> &Ops, |
| 3797 | const Loop *L, |
| 3798 | ScalarEvolution &SE, |
| 3799 | unsigned Depth = 0) { |
| 3800 | // Arbitrarily cap recursion to protect compile time. |
| 3801 | if (Depth >= 3) |
| 3802 | return S; |
| 3803 | |
| 3804 | if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Val: S)) { |
| 3805 | // Break out add operands. |
| 3806 | for (const SCEV *S : Add->operands()) { |
| 3807 | const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth: Depth+1); |
| 3808 | if (Remainder) |
| 3809 | Ops.push_back(Elt: C ? SE.getMulExpr(LHS: C, RHS: Remainder) : Remainder); |
| 3810 | } |
| 3811 | return nullptr; |
| 3812 | } |
| 3813 | const SCEV *Start, *Step; |
| 3814 | const SCEVConstant *Op0; |
| 3815 | const SCEV *Op1; |
| 3816 | if (match(S, P: m_scev_AffineAddRec(Op0: m_SCEV(V&: Start), Op1: m_SCEV(V&: Step)))) { |
| 3817 | // Split a non-zero base out of an addrec. |
| 3818 | if (Start->isZero()) |
| 3819 | return S; |
| 3820 | |
| 3821 | const SCEV *Remainder = CollectSubexprs(S: Start, C, Ops, L, SE, Depth: Depth + 1); |
| 3822 | // Split the non-zero AddRec unless it is part of a nested recurrence that |
| 3823 | // does not pertain to this loop. |
| 3824 | if (Remainder && (cast<SCEVAddRecExpr>(Val: S)->getLoop() == L || |
| 3825 | !isa<SCEVAddRecExpr>(Val: Remainder))) { |
| 3826 | Ops.push_back(Elt: C ? SE.getMulExpr(LHS: C, RHS: Remainder) : Remainder); |
| 3827 | Remainder = nullptr; |
| 3828 | } |
| 3829 | if (Remainder != Start) { |
| 3830 | if (!Remainder) |
| 3831 | Remainder = SE.getConstant(Ty: S->getType(), V: 0); |
| 3832 | return SE.getAddRecExpr(Start: Remainder, Step, |
| 3833 | L: cast<SCEVAddRecExpr>(Val: S)->getLoop(), |
| 3834 | // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) |
| 3835 | Flags: SCEV::FlagAnyWrap); |
| 3836 | } |
| 3837 | } else if (match(S, P: m_scev_Mul(Op0: m_SCEVConstant(V&: Op0), Op1: m_SCEV(V&: Op1)))) { |
| 3838 | // Break (C * (a + b + c)) into C*a + C*b + C*c. |
| 3839 | C = C ? cast<SCEVConstant>(Val: SE.getMulExpr(LHS: C, RHS: Op0)) : Op0; |
| 3840 | const SCEV *Remainder = CollectSubexprs(S: Op1, C, Ops, L, SE, Depth: Depth + 1); |
| 3841 | if (Remainder) |
| 3842 | Ops.push_back(Elt: SE.getMulExpr(LHS: C, RHS: Remainder)); |
| 3843 | return nullptr; |
| 3844 | } |
| 3845 | return S; |
| 3846 | } |
| 3847 | |
| 3848 | /// Return true if the SCEV represents a value that may end up as a |
| 3849 | /// post-increment operation. |
| 3850 | static bool mayUsePostIncMode(const TargetTransformInfo &TTI, |
| 3851 | LSRUse &LU, const SCEV *S, const Loop *L, |
| 3852 | ScalarEvolution &SE) { |
| 3853 | if (LU.Kind != LSRUse::Address || |
| 3854 | !LU.AccessTy.getType()->isIntOrIntVectorTy()) |
| 3855 | return false; |
| 3856 | const SCEV *Start; |
| 3857 | if (!match(S, P: m_scev_AffineAddRec(Op0: m_SCEV(V&: Start), Op1: m_SCEVConstant()))) |
| 3858 | return false; |
| 3859 | // Check if a post-indexed load/store can be used. |
| 3860 | if (TTI.isIndexedLoadLegal(Mode: TTI.MIM_PostInc, Ty: S->getType()) || |
| 3861 | TTI.isIndexedStoreLegal(Mode: TTI.MIM_PostInc, Ty: S->getType())) { |
| 3862 | if (!isa<SCEVConstant>(Val: Start) && SE.isLoopInvariant(S: Start, L)) |
| 3863 | return true; |
| 3864 | } |
| 3865 | return false; |
| 3866 | } |
| 3867 | |
| 3868 | /// Helper function for LSRInstance::GenerateReassociations. |
| 3869 | void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, |
| 3870 | const Formula &Base, |
| 3871 | unsigned Depth, size_t Idx, |
| 3872 | bool IsScaledReg) { |
| 3873 | const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; |
| 3874 | // Don't generate reassociations for the base register of a value that |
| 3875 | // may generate a post-increment operator. The reason is that the |
| 3876 | // reassociations cause extra base+register formula to be created, |
| 3877 | // and possibly chosen, but the post-increment is more efficient. |
| 3878 | if (AMK == TTI::AMK_PostIndexed && mayUsePostIncMode(TTI, LU, S: BaseReg, L, SE)) |
| 3879 | return; |
| 3880 | SmallVector<const SCEV *, 8> AddOps; |
| 3881 | const SCEV *Remainder = CollectSubexprs(S: BaseReg, C: nullptr, Ops&: AddOps, L, SE); |
| 3882 | if (Remainder) |
| 3883 | AddOps.push_back(Elt: Remainder); |
| 3884 | |
| 3885 | if (AddOps.size() == 1) |
| 3886 | return; |
| 3887 | |
| 3888 | for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), |
| 3889 | JE = AddOps.end(); |
| 3890 | J != JE; ++J) { |
| 3891 | // Loop-variant "unknown" values are uninteresting; we won't be able to |
| 3892 | // do anything meaningful with them. |
| 3893 | if (isa<SCEVUnknown>(Val: *J) && !SE.isLoopInvariant(S: *J, L)) |
| 3894 | continue; |
| 3895 | |
| 3896 | // Don't pull a constant into a register if the constant could be folded |
| 3897 | // into an immediate field. |
| 3898 | if (isAlwaysFoldable(TTI, SE, MinOffset: LU.MinOffset, MaxOffset: LU.MaxOffset, Kind: LU.Kind, |
| 3899 | AccessTy: LU.AccessTy, S: *J, HasBaseReg: Base.getNumRegs() > 1)) |
| 3900 | continue; |
| 3901 | |
| 3902 | // Collect all operands except *J. |
| 3903 | SmallVector<const SCEV *, 8> InnerAddOps(std::as_const(t&: AddOps).begin(), J); |
| 3904 | InnerAddOps.append(in_start: std::next(x: J), in_end: std::as_const(t&: AddOps).end()); |
| 3905 | |
| 3906 | // Don't leave just a constant behind in a register if the constant could |
| 3907 | // be folded into an immediate field. |
| 3908 | if (InnerAddOps.size() == 1 && |
| 3909 | isAlwaysFoldable(TTI, SE, MinOffset: LU.MinOffset, MaxOffset: LU.MaxOffset, Kind: LU.Kind, |
| 3910 | AccessTy: LU.AccessTy, S: InnerAddOps[0], HasBaseReg: Base.getNumRegs() > 1)) |
| 3911 | continue; |
| 3912 | |
| 3913 | const SCEV *InnerSum = SE.getAddExpr(Ops&: InnerAddOps); |
| 3914 | if (InnerSum->isZero()) |
| 3915 | continue; |
| 3916 | Formula F = Base; |
| 3917 | |
| 3918 | if (F.UnfoldedOffset.isNonZero() && F.UnfoldedOffset.isScalable()) |
| 3919 | continue; |
| 3920 | |
| 3921 | // Add the remaining pieces of the add back into the new formula. |
| 3922 | const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(Val: InnerSum); |
| 3923 | if (InnerSumSC && SE.getTypeSizeInBits(Ty: InnerSumSC->getType()) <= 64 && |
| 3924 | TTI.isLegalAddImmediate(Imm: (uint64_t)F.UnfoldedOffset.getFixedValue() + |
| 3925 | InnerSumSC->getValue()->getZExtValue())) { |
| 3926 | F.UnfoldedOffset = |
| 3927 | Immediate::getFixed(MinVal: (uint64_t)F.UnfoldedOffset.getFixedValue() + |
| 3928 | InnerSumSC->getValue()->getZExtValue()); |
| 3929 | if (IsScaledReg) { |
| 3930 | F.ScaledReg = nullptr; |
| 3931 | F.Scale = 0; |
| 3932 | } else |
| 3933 | F.BaseRegs.erase(CI: F.BaseRegs.begin() + Idx); |
| 3934 | } else if (IsScaledReg) |
| 3935 | F.ScaledReg = InnerSum; |
| 3936 | else |
| 3937 | F.BaseRegs[Idx] = InnerSum; |
| 3938 | |
| 3939 | // Add J as its own register, or an unfolded immediate. |
| 3940 | const SCEVConstant *SC = dyn_cast<SCEVConstant>(Val: *J); |
| 3941 | if (SC && SE.getTypeSizeInBits(Ty: SC->getType()) <= 64 && |
| 3942 | TTI.isLegalAddImmediate(Imm: (uint64_t)F.UnfoldedOffset.getFixedValue() + |
| 3943 | SC->getValue()->getZExtValue())) |
| 3944 | F.UnfoldedOffset = |
| 3945 | Immediate::getFixed(MinVal: (uint64_t)F.UnfoldedOffset.getFixedValue() + |
| 3946 | SC->getValue()->getZExtValue()); |
| 3947 | else |
| 3948 | F.BaseRegs.push_back(Elt: *J); |
| 3949 | // We may have changed the number of register in base regs, adjust the |
| 3950 | // formula accordingly. |
| 3951 | F.canonicalize(L: *L); |
| 3952 | |
| 3953 | if (InsertFormula(LU, LUIdx, F)) |
| 3954 | // If that formula hadn't been seen before, recurse to find more like |
| 3955 | // it. |
| 3956 | // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2) |
| 3957 | // Because just Depth is not enough to bound compile time. |
| 3958 | // This means that every time AddOps.size() is greater 16^x we will add |
| 3959 | // x to Depth. |
| 3960 | GenerateReassociations(LU, LUIdx, Base: LU.Formulae.back(), |
| 3961 | Depth: Depth + 1 + (Log2_32(Value: AddOps.size()) >> 2)); |
| 3962 | } |
| 3963 | } |
| 3964 | |
| 3965 | /// Split out subexpressions from adds and the bases of addrecs. |
| 3966 | void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, |
| 3967 | Formula Base, unsigned Depth) { |
| 3968 | assert(Base.isCanonical(*L) && "Input must be in the canonical form" ); |
| 3969 | // Arbitrarily cap recursion to protect compile time. |
| 3970 | if (Depth >= 3) |
| 3971 | return; |
| 3972 | |
| 3973 | for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) |
| 3974 | GenerateReassociationsImpl(LU, LUIdx, Base, Depth, Idx: i); |
| 3975 | |
| 3976 | if (Base.Scale == 1) |
| 3977 | GenerateReassociationsImpl(LU, LUIdx, Base, Depth, |
| 3978 | /* Idx */ -1, /* IsScaledReg */ true); |
| 3979 | } |
| 3980 | |
| 3981 | /// Generate a formula consisting of all of the loop-dominating registers added |
| 3982 | /// into a single register. |
| 3983 | void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, |
| 3984 | Formula Base) { |
| 3985 | // This method is only interesting on a plurality of registers. |
| 3986 | if (Base.BaseRegs.size() + (Base.Scale == 1) + |
| 3987 | (Base.UnfoldedOffset.isNonZero()) <= |
| 3988 | 1) |
| 3989 | return; |
| 3990 | |
| 3991 | // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before |
| 3992 | // processing the formula. |
| 3993 | Base.unscale(); |
| 3994 | SmallVector<const SCEV *, 4> Ops; |
| 3995 | Formula NewBase = Base; |
| 3996 | NewBase.BaseRegs.clear(); |
| 3997 | Type *CombinedIntegerType = nullptr; |
| 3998 | for (const SCEV *BaseReg : Base.BaseRegs) { |
| 3999 | if (SE.properlyDominates(S: BaseReg, BB: L->getHeader()) && |
| 4000 | !SE.hasComputableLoopEvolution(S: BaseReg, L)) { |
| 4001 | if (!CombinedIntegerType) |
| 4002 | CombinedIntegerType = SE.getEffectiveSCEVType(Ty: BaseReg->getType()); |
| 4003 | Ops.push_back(Elt: BaseReg); |
| 4004 | } |
| 4005 | else |
| 4006 | NewBase.BaseRegs.push_back(Elt: BaseReg); |
| 4007 | } |
| 4008 | |
| 4009 | // If no register is relevant, we're done. |
| 4010 | if (Ops.size() == 0) |
| 4011 | return; |
| 4012 | |
| 4013 | // Utility function for generating the required variants of the combined |
| 4014 | // registers. |
| 4015 | auto GenerateFormula = [&](const SCEV *Sum) { |
| 4016 | Formula F = NewBase; |
| 4017 | |
| 4018 | // TODO: If Sum is zero, it probably means ScalarEvolution missed an |
| 4019 | // opportunity to fold something. For now, just ignore such cases |
| 4020 | // rather than proceed with zero in a register. |
| 4021 | if (Sum->isZero()) |
| 4022 | return; |
| 4023 | |
| 4024 | F.BaseRegs.push_back(Elt: Sum); |
| 4025 | F.canonicalize(L: *L); |
| 4026 | (void)InsertFormula(LU, LUIdx, F); |
| 4027 | }; |
| 4028 | |
| 4029 | // If we collected at least two registers, generate a formula combining them. |
| 4030 | if (Ops.size() > 1) { |
| 4031 | SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops. |
| 4032 | GenerateFormula(SE.getAddExpr(Ops&: OpsCopy)); |
| 4033 | } |
| 4034 | |
| 4035 | // If we have an unfolded offset, generate a formula combining it with the |
| 4036 | // registers collected. |
| 4037 | if (NewBase.UnfoldedOffset.isNonZero() && NewBase.UnfoldedOffset.isFixed()) { |
| 4038 | assert(CombinedIntegerType && "Missing a type for the unfolded offset" ); |
| 4039 | Ops.push_back(Elt: SE.getConstant(Ty: CombinedIntegerType, |
| 4040 | V: NewBase.UnfoldedOffset.getFixedValue(), isSigned: true)); |
| 4041 | NewBase.UnfoldedOffset = Immediate::getFixed(MinVal: 0); |
| 4042 | GenerateFormula(SE.getAddExpr(Ops)); |
| 4043 | } |
| 4044 | } |
| 4045 | |
| 4046 | /// Helper function for LSRInstance::GenerateSymbolicOffsets. |
| 4047 | void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, |
| 4048 | const Formula &Base, size_t Idx, |
| 4049 | bool IsScaledReg) { |
| 4050 | const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; |
| 4051 | GlobalValue *GV = ExtractSymbol(S&: G, SE); |
| 4052 | if (G->isZero() || !GV) |
| 4053 | return; |
| 4054 | Formula F = Base; |
| 4055 | F.BaseGV = GV; |
| 4056 | if (!isLegalUse(TTI, MinOffset: LU.MinOffset, MaxOffset: LU.MaxOffset, Kind: LU.Kind, AccessTy: LU.AccessTy, F)) |
| 4057 | return; |
| 4058 | if (IsScaledReg) |
| 4059 | F.ScaledReg = G; |
| 4060 | else |
| 4061 | F.BaseRegs[Idx] = G; |
| 4062 | (void)InsertFormula(LU, LUIdx, F); |
| 4063 | } |
| 4064 | |
| 4065 | /// Generate reuse formulae using symbolic offsets. |
| 4066 | void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, |
| 4067 | Formula Base) { |
| 4068 | // We can't add a symbolic offset if the address already contains one. |
| 4069 | if (Base.BaseGV) return; |
| 4070 | |
| 4071 | for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) |
| 4072 | GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, Idx: i); |
| 4073 | if (Base.Scale == 1) |
| 4074 | GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, |
| 4075 | /* IsScaledReg */ true); |
| 4076 | } |
| 4077 | |
| 4078 | /// Helper function for LSRInstance::GenerateConstantOffsets. |
| 4079 | void LSRInstance::GenerateConstantOffsetsImpl( |
| 4080 | LSRUse &LU, unsigned LUIdx, const Formula &Base, |
| 4081 | const SmallVectorImpl<Immediate> &Worklist, size_t Idx, bool IsScaledReg) { |
| 4082 | |
| 4083 | auto GenerateOffset = [&](const SCEV *G, Immediate Offset) { |
| 4084 | Formula F = Base; |
| 4085 | if (!Base.BaseOffset.isCompatibleImmediate(Imm: Offset)) |
| 4086 | return; |
| 4087 | F.BaseOffset = Base.BaseOffset.subUnsigned(RHS: Offset); |
| 4088 | |
| 4089 | if (isLegalUse(TTI, MinOffset: LU.MinOffset, MaxOffset: LU.MaxOffset, Kind: LU.Kind, AccessTy: LU.AccessTy, F)) { |
| 4090 | // Add the offset to the base register. |
| 4091 | const SCEV *NewOffset = Offset.getSCEV(SE, Ty: G->getType()); |
| 4092 | const SCEV *NewG = SE.getAddExpr(LHS: NewOffset, RHS: G); |
| 4093 | // If it cancelled out, drop the base register, otherwise update it. |
| 4094 | if (NewG->isZero()) { |
| 4095 | if (IsScaledReg) { |
| 4096 | F.Scale = 0; |
| 4097 | F.ScaledReg = nullptr; |
| 4098 | } else |
| 4099 | F.deleteBaseReg(S&: F.BaseRegs[Idx]); |
| 4100 | F.canonicalize(L: *L); |
| 4101 | } else if (IsScaledReg) |
| 4102 | F.ScaledReg = NewG; |
| 4103 | else |
| 4104 | F.BaseRegs[Idx] = NewG; |
| 4105 | |
| 4106 | (void)InsertFormula(LU, LUIdx, F); |
| 4107 | } |
| 4108 | }; |
| 4109 | |
| 4110 | const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; |
| 4111 | |
| 4112 | // With constant offsets and constant steps, we can generate pre-inc |
| 4113 | // accesses by having the offset equal the step. So, for access #0 with a |
| 4114 | // step of 8, we generate a G - 8 base which would require the first access |
| 4115 | // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer |
| 4116 | // for itself and hopefully becomes the base for other accesses. This means |
| 4117 | // means that a single pre-indexed access can be generated to become the new |
| 4118 | // base pointer for each iteration of the loop, resulting in no extra add/sub |
| 4119 | // instructions for pointer updating. |
| 4120 | if (AMK == TTI::AMK_PreIndexed && LU.Kind == LSRUse::Address) { |
| 4121 | const APInt *StepInt; |
| 4122 | if (match(S: G, P: m_scev_AffineAddRec(Op0: m_SCEV(), Op1: m_scev_APInt(C&: StepInt)))) { |
| 4123 | int64_t Step = StepInt->isNegative() ? StepInt->getSExtValue() |
| 4124 | : StepInt->getZExtValue(); |
| 4125 | |
| 4126 | for (Immediate Offset : Worklist) { |
| 4127 | if (Offset.isFixed()) { |
| 4128 | Offset = Immediate::getFixed(MinVal: Offset.getFixedValue() - Step); |
| 4129 | GenerateOffset(G, Offset); |
| 4130 | } |
| 4131 | } |
| 4132 | } |
| 4133 | } |
| 4134 | for (Immediate Offset : Worklist) |
| 4135 | GenerateOffset(G, Offset); |
| 4136 | |
| 4137 | Immediate Imm = ExtractImmediate(S&: G, SE); |
| 4138 | if (G->isZero() || Imm.isZero() || |
| 4139 | !Base.BaseOffset.isCompatibleImmediate(Imm)) |
| 4140 | return; |
| 4141 | Formula F = Base; |
| 4142 | F.BaseOffset = F.BaseOffset.addUnsigned(RHS: Imm); |
| 4143 | if (!isLegalUse(TTI, MinOffset: LU.MinOffset, MaxOffset: LU.MaxOffset, Kind: LU.Kind, AccessTy: LU.AccessTy, F)) |
| 4144 | return; |
| 4145 | if (IsScaledReg) { |
| 4146 | F.ScaledReg = G; |
| 4147 | } else { |
| 4148 | F.BaseRegs[Idx] = G; |
| 4149 | // We may generate non canonical Formula if G is a recurrent expr reg |
| 4150 | // related with current loop while F.ScaledReg is not. |
| 4151 | F.canonicalize(L: *L); |
| 4152 | } |
| 4153 | (void)InsertFormula(LU, LUIdx, F); |
| 4154 | } |
| 4155 | |
| 4156 | /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. |
| 4157 | void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, |
| 4158 | Formula Base) { |
| 4159 | // TODO: For now, just add the min and max offset, because it usually isn't |
| 4160 | // worthwhile looking at everything inbetween. |
| 4161 | SmallVector<Immediate, 2> Worklist; |
| 4162 | Worklist.push_back(Elt: LU.MinOffset); |
| 4163 | if (LU.MaxOffset != LU.MinOffset) |
| 4164 | Worklist.push_back(Elt: LU.MaxOffset); |
| 4165 | |
| 4166 | for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) |
| 4167 | GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, Idx: i); |
| 4168 | if (Base.Scale == 1) |
| 4169 | GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, |
| 4170 | /* IsScaledReg */ true); |
| 4171 | } |
| 4172 | |
| 4173 | /// For ICmpZero, check to see if we can scale up the comparison. For example, x |
| 4174 | /// == y -> x*c == y*c. |
| 4175 | void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, |
| 4176 | Formula Base) { |
| 4177 | if (LU.Kind != LSRUse::ICmpZero) return; |
| 4178 | |
| 4179 | // Determine the integer type for the base formula. |
| 4180 | Type *IntTy = Base.getType(); |
| 4181 | if (!IntTy) return; |
| 4182 | if (SE.getTypeSizeInBits(Ty: IntTy) > 64) return; |
| 4183 | |
| 4184 | // Don't do this if there is more than one offset. |
| 4185 | if (LU.MinOffset != LU.MaxOffset) return; |
| 4186 | |
| 4187 | // Check if transformation is valid. It is illegal to multiply pointer. |
| 4188 | if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) |
| 4189 | return; |
| 4190 | for (const SCEV *BaseReg : Base.BaseRegs) |
| 4191 | if (BaseReg->getType()->isPointerTy()) |
| 4192 | return; |
| 4193 | assert(!Base.BaseGV && "ICmpZero use is not legal!" ); |
| 4194 | |
| 4195 | // Check each interesting stride. |
| 4196 | for (int64_t Factor : Factors) { |
| 4197 | // Check that Factor can be represented by IntTy |
| 4198 | if (!ConstantInt::isValueValidForType(Ty: IntTy, V: Factor)) |
| 4199 | continue; |
| 4200 | // Check that the multiplication doesn't overflow. |
| 4201 | if (Base.BaseOffset.isMin() && Factor == -1) |
| 4202 | continue; |
| 4203 | // Not supporting scalable immediates. |
| 4204 | if (Base.BaseOffset.isNonZero() && Base.BaseOffset.isScalable()) |
| 4205 | continue; |
| 4206 | Immediate NewBaseOffset = Base.BaseOffset.mulUnsigned(RHS: Factor); |
| 4207 | assert(Factor != 0 && "Zero factor not expected!" ); |
| 4208 | if (NewBaseOffset.getFixedValue() / Factor != |
| 4209 | Base.BaseOffset.getFixedValue()) |
| 4210 | continue; |
| 4211 | // If the offset will be truncated at this use, check that it is in bounds. |
| 4212 | if (!IntTy->isPointerTy() && |
| 4213 | !ConstantInt::isValueValidForType(Ty: IntTy, V: NewBaseOffset.getFixedValue())) |
| 4214 | continue; |
| 4215 | |
| 4216 | // Check that multiplying with the use offset doesn't overflow. |
| 4217 | Immediate Offset = LU.MinOffset; |
| 4218 | if (Offset.isMin() && Factor == -1) |
| 4219 | continue; |
| 4220 | Offset = Offset.mulUnsigned(RHS: Factor); |
| 4221 | if (Offset.getFixedValue() / Factor != LU.MinOffset.getFixedValue()) |
| 4222 | continue; |
| 4223 | // If the offset will be truncated at this use, check that it is in bounds. |
| 4224 | if (!IntTy->isPointerTy() && |
| 4225 | !ConstantInt::isValueValidForType(Ty: IntTy, V: Offset.getFixedValue())) |
| 4226 | continue; |
| 4227 | |
| 4228 | Formula F = Base; |
| 4229 | F.BaseOffset = NewBaseOffset; |
| 4230 | |
| 4231 | // Check that this scale is legal. |
| 4232 | if (!isLegalUse(TTI, MinOffset: Offset, MaxOffset: Offset, Kind: LU.Kind, AccessTy: LU.AccessTy, F)) |
| 4233 | continue; |
| 4234 | |
| 4235 | // Compensate for the use having MinOffset built into it. |
| 4236 | F.BaseOffset = F.BaseOffset.addUnsigned(RHS: Offset).subUnsigned(RHS: LU.MinOffset); |
| 4237 | |
| 4238 | const SCEV *FactorS = SE.getConstant(Ty: IntTy, V: Factor); |
| 4239 | |
| 4240 | // Check that multiplying with each base register doesn't overflow. |
| 4241 | for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { |
| 4242 | F.BaseRegs[i] = SE.getMulExpr(LHS: F.BaseRegs[i], RHS: FactorS); |
| 4243 | if (getExactSDiv(LHS: F.BaseRegs[i], RHS: FactorS, SE) != Base.BaseRegs[i]) |
| 4244 | goto next; |
| 4245 | } |
| 4246 | |
| 4247 | // Check that multiplying with the scaled register doesn't overflow. |
| 4248 | if (F.ScaledReg) { |
| 4249 | F.ScaledReg = SE.getMulExpr(LHS: F.ScaledReg, RHS: FactorS); |
| 4250 | if (getExactSDiv(LHS: F.ScaledReg, RHS: FactorS, SE) != Base.ScaledReg) |
| 4251 | continue; |
| 4252 | } |
| 4253 | |
| 4254 | // Check that multiplying with the unfolded offset doesn't overflow. |
| 4255 | if (F.UnfoldedOffset.isNonZero()) { |
| 4256 | if (F.UnfoldedOffset.isMin() && Factor == -1) |
| 4257 | continue; |
| 4258 | F.UnfoldedOffset = F.UnfoldedOffset.mulUnsigned(RHS: Factor); |
| 4259 | if (F.UnfoldedOffset.getFixedValue() / Factor != |
| 4260 | Base.UnfoldedOffset.getFixedValue()) |
| 4261 | continue; |
| 4262 | // If the offset will be truncated, check that it is in bounds. |
| 4263 | if (!IntTy->isPointerTy() && !ConstantInt::isValueValidForType( |
| 4264 | Ty: IntTy, V: F.UnfoldedOffset.getFixedValue())) |
| 4265 | continue; |
| 4266 | } |
| 4267 | |
| 4268 | // If we make it here and it's legal, add it. |
| 4269 | (void)InsertFormula(LU, LUIdx, F); |
| 4270 | next:; |
| 4271 | } |
| 4272 | } |
| 4273 | |
| 4274 | /// Generate stride factor reuse formulae by making use of scaled-offset address |
| 4275 | /// modes, for example. |
| 4276 | void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { |
| 4277 | // Determine the integer type for the base formula. |
| 4278 | Type *IntTy = Base.getType(); |
| 4279 | if (!IntTy) return; |
| 4280 | |
| 4281 | // If this Formula already has a scaled register, we can't add another one. |
| 4282 | // Try to unscale the formula to generate a better scale. |
| 4283 | if (Base.Scale != 0 && !Base.unscale()) |
| 4284 | return; |
| 4285 | |
| 4286 | assert(Base.Scale == 0 && "unscale did not did its job!" ); |
| 4287 | |
| 4288 | // Check each interesting stride. |
| 4289 | for (int64_t Factor : Factors) { |
| 4290 | Base.Scale = Factor; |
| 4291 | Base.HasBaseReg = Base.BaseRegs.size() > 1; |
| 4292 | // Check whether this scale is going to be legal. |
| 4293 | if (!isLegalUse(TTI, MinOffset: LU.MinOffset, MaxOffset: LU.MaxOffset, Kind: LU.Kind, AccessTy: LU.AccessTy, |
| 4294 | F: Base)) { |
| 4295 | // As a special-case, handle special out-of-loop Basic users specially. |
| 4296 | // TODO: Reconsider this special case. |
| 4297 | if (LU.Kind == LSRUse::Basic && |
| 4298 | isLegalUse(TTI, MinOffset: LU.MinOffset, MaxOffset: LU.MaxOffset, Kind: LSRUse::Special, |
| 4299 | AccessTy: LU.AccessTy, F: Base) && |
| 4300 | LU.AllFixupsOutsideLoop) |
| 4301 | LU.Kind = LSRUse::Special; |
| 4302 | else |
| 4303 | continue; |
| 4304 | } |
| 4305 | // For an ICmpZero, negating a solitary base register won't lead to |
| 4306 | // new solutions. |
| 4307 | if (LU.Kind == LSRUse::ICmpZero && !Base.HasBaseReg && |
| 4308 | Base.BaseOffset.isZero() && !Base.BaseGV) |
| 4309 | continue; |
| 4310 | // For each addrec base reg, if its loop is current loop, apply the scale. |
| 4311 | for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { |
| 4312 | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: Base.BaseRegs[i]); |
| 4313 | if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) { |
| 4314 | const SCEV *FactorS = SE.getConstant(Ty: IntTy, V: Factor); |
| 4315 | if (FactorS->isZero()) |
| 4316 | continue; |
| 4317 | // Divide out the factor, ignoring high bits, since we'll be |
| 4318 | // scaling the value back up in the end. |
| 4319 | if (const SCEV *Quotient = getExactSDiv(LHS: AR, RHS: FactorS, SE, IgnoreSignificantBits: true)) |
| 4320 | if (!Quotient->isZero()) { |
| 4321 | // TODO: This could be optimized to avoid all the copying. |
| 4322 | Formula F = Base; |
| 4323 | F.ScaledReg = Quotient; |
| 4324 | F.deleteBaseReg(S&: F.BaseRegs[i]); |
| 4325 | // The canonical representation of 1*reg is reg, which is already in |
| 4326 | // Base. In that case, do not try to insert the formula, it will be |
| 4327 | // rejected anyway. |
| 4328 | if (F.Scale == 1 && (F.BaseRegs.empty() || |
| 4329 | (AR->getLoop() != L && LU.AllFixupsOutsideLoop))) |
| 4330 | continue; |
| 4331 | // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate |
| 4332 | // non canonical Formula with ScaledReg's loop not being L. |
| 4333 | if (F.Scale == 1 && LU.AllFixupsOutsideLoop) |
| 4334 | F.canonicalize(L: *L); |
| 4335 | (void)InsertFormula(LU, LUIdx, F); |
| 4336 | } |
| 4337 | } |
| 4338 | } |
| 4339 | } |
| 4340 | } |
| 4341 | |
| 4342 | /// Extend/Truncate \p Expr to \p ToTy considering post-inc uses in \p Loops. |
| 4343 | /// For all PostIncLoopSets in \p Loops, first de-normalize \p Expr, then |
| 4344 | /// perform the extension/truncate and normalize again, as the normalized form |
| 4345 | /// can result in folds that are not valid in the post-inc use contexts. The |
| 4346 | /// expressions for all PostIncLoopSets must match, otherwise return nullptr. |
| 4347 | static const SCEV * |
| 4348 | getAnyExtendConsideringPostIncUses(ArrayRef<PostIncLoopSet> Loops, |
| 4349 | const SCEV *Expr, Type *ToTy, |
| 4350 | ScalarEvolution &SE) { |
| 4351 | const SCEV *Result = nullptr; |
| 4352 | for (auto &L : Loops) { |
| 4353 | auto *DenormExpr = denormalizeForPostIncUse(S: Expr, Loops: L, SE); |
| 4354 | const SCEV *NewDenormExpr = SE.getAnyExtendExpr(Op: DenormExpr, Ty: ToTy); |
| 4355 | const SCEV *New = normalizeForPostIncUse(S: NewDenormExpr, Loops: L, SE); |
| 4356 | if (!New || (Result && New != Result)) |
| 4357 | return nullptr; |
| 4358 | Result = New; |
| 4359 | } |
| 4360 | |
| 4361 | assert(Result && "failed to create expression" ); |
| 4362 | return Result; |
| 4363 | } |
| 4364 | |
| 4365 | /// Generate reuse formulae from different IV types. |
| 4366 | void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { |
| 4367 | // Don't bother truncating symbolic values. |
| 4368 | if (Base.BaseGV) return; |
| 4369 | |
| 4370 | // Determine the integer type for the base formula. |
| 4371 | Type *DstTy = Base.getType(); |
| 4372 | if (!DstTy) return; |
| 4373 | if (DstTy->isPointerTy()) |
| 4374 | return; |
| 4375 | |
| 4376 | // It is invalid to extend a pointer type so exit early if ScaledReg or |
| 4377 | // any of the BaseRegs are pointers. |
| 4378 | if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) |
| 4379 | return; |
| 4380 | if (any_of(Range&: Base.BaseRegs, |
| 4381 | P: [](const SCEV *S) { return S->getType()->isPointerTy(); })) |
| 4382 | return; |
| 4383 | |
| 4384 | SmallVector<PostIncLoopSet> Loops; |
| 4385 | for (auto &LF : LU.Fixups) |
| 4386 | Loops.push_back(Elt: LF.PostIncLoops); |
| 4387 | |
| 4388 | for (Type *SrcTy : Types) { |
| 4389 | if (SrcTy != DstTy && TTI.isTruncateFree(Ty1: SrcTy, Ty2: DstTy)) { |
| 4390 | Formula F = Base; |
| 4391 | |
| 4392 | // Sometimes SCEV is able to prove zero during ext transform. It may |
| 4393 | // happen if SCEV did not do all possible transforms while creating the |
| 4394 | // initial node (maybe due to depth limitations), but it can do them while |
| 4395 | // taking ext. |
| 4396 | if (F.ScaledReg) { |
| 4397 | const SCEV *NewScaledReg = |
| 4398 | getAnyExtendConsideringPostIncUses(Loops, Expr: F.ScaledReg, ToTy: SrcTy, SE); |
| 4399 | if (!NewScaledReg || NewScaledReg->isZero()) |
| 4400 | continue; |
| 4401 | F.ScaledReg = NewScaledReg; |
| 4402 | } |
| 4403 | bool HasZeroBaseReg = false; |
| 4404 | for (const SCEV *&BaseReg : F.BaseRegs) { |
| 4405 | const SCEV *NewBaseReg = |
| 4406 | getAnyExtendConsideringPostIncUses(Loops, Expr: BaseReg, ToTy: SrcTy, SE); |
| 4407 | if (!NewBaseReg || NewBaseReg->isZero()) { |
| 4408 | HasZeroBaseReg = true; |
| 4409 | break; |
| 4410 | } |
| 4411 | BaseReg = NewBaseReg; |
| 4412 | } |
| 4413 | if (HasZeroBaseReg) |
| 4414 | continue; |
| 4415 | |
| 4416 | // TODO: This assumes we've done basic processing on all uses and |
| 4417 | // have an idea what the register usage is. |
| 4418 | if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) |
| 4419 | continue; |
| 4420 | |
| 4421 | F.canonicalize(L: *L); |
| 4422 | (void)InsertFormula(LU, LUIdx, F); |
| 4423 | } |
| 4424 | } |
| 4425 | } |
| 4426 | |
| 4427 | namespace { |
| 4428 | |
| 4429 | /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer |
| 4430 | /// modifications so that the search phase doesn't have to worry about the data |
| 4431 | /// structures moving underneath it. |
| 4432 | struct WorkItem { |
| 4433 | size_t LUIdx; |
| 4434 | Immediate Imm; |
| 4435 | const SCEV *OrigReg; |
| 4436 | |
| 4437 | WorkItem(size_t LI, Immediate I, const SCEV *R) |
| 4438 | : LUIdx(LI), Imm(I), OrigReg(R) {} |
| 4439 | |
| 4440 | void print(raw_ostream &OS) const; |
| 4441 | void dump() const; |
| 4442 | }; |
| 4443 | |
| 4444 | } // end anonymous namespace |
| 4445 | |
| 4446 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 4447 | void WorkItem::print(raw_ostream &OS) const { |
| 4448 | OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx |
| 4449 | << " , add offset " << Imm; |
| 4450 | } |
| 4451 | |
| 4452 | LLVM_DUMP_METHOD void WorkItem::dump() const { |
| 4453 | print(errs()); errs() << '\n'; |
| 4454 | } |
| 4455 | #endif |
| 4456 | |
| 4457 | /// Look for registers which are a constant distance apart and try to form reuse |
| 4458 | /// opportunities between them. |
| 4459 | void LSRInstance::GenerateCrossUseConstantOffsets() { |
| 4460 | // Group the registers by their value without any added constant offset. |
| 4461 | using ImmMapTy = std::map<Immediate, const SCEV *, KeyOrderTargetImmediate>; |
| 4462 | |
| 4463 | DenseMap<const SCEV *, ImmMapTy> Map; |
| 4464 | DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; |
| 4465 | SmallVector<const SCEV *, 8> Sequence; |
| 4466 | for (const SCEV *Use : RegUses) { |
| 4467 | const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. |
| 4468 | Immediate Imm = ExtractImmediate(S&: Reg, SE); |
| 4469 | auto Pair = Map.try_emplace(Key: Reg); |
| 4470 | if (Pair.second) |
| 4471 | Sequence.push_back(Elt: Reg); |
| 4472 | Pair.first->second.insert(x: std::make_pair(x&: Imm, y&: Use)); |
| 4473 | UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Reg: Use); |
| 4474 | } |
| 4475 | |
| 4476 | // Now examine each set of registers with the same base value. Build up |
| 4477 | // a list of work to do and do the work in a separate step so that we're |
| 4478 | // not adding formulae and register counts while we're searching. |
| 4479 | SmallVector<WorkItem, 32> WorkItems; |
| 4480 | SmallSet<std::pair<size_t, Immediate>, 32, KeyOrderSizeTAndImmediate> |
| 4481 | UniqueItems; |
| 4482 | for (const SCEV *Reg : Sequence) { |
| 4483 | const ImmMapTy &Imms = Map.find(Val: Reg)->second; |
| 4484 | |
| 4485 | // It's not worthwhile looking for reuse if there's only one offset. |
| 4486 | if (Imms.size() == 1) |
| 4487 | continue; |
| 4488 | |
| 4489 | LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; |
| 4490 | for (const auto &Entry |
| 4491 | : Imms) dbgs() |
| 4492 | << ' ' << Entry.first; |
| 4493 | dbgs() << '\n'); |
| 4494 | |
| 4495 | // Examine each offset. |
| 4496 | for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); |
| 4497 | J != JE; ++J) { |
| 4498 | const SCEV *OrigReg = J->second; |
| 4499 | |
| 4500 | Immediate JImm = J->first; |
| 4501 | const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg: OrigReg); |
| 4502 | |
| 4503 | if (!isa<SCEVConstant>(Val: OrigReg) && |
| 4504 | UsedByIndicesMap[Reg].count() == 1) { |
| 4505 | LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg |
| 4506 | << '\n'); |
| 4507 | continue; |
| 4508 | } |
| 4509 | |
| 4510 | // Conservatively examine offsets between this orig reg a few selected |
| 4511 | // other orig regs. |
| 4512 | Immediate First = Imms.begin()->first; |
| 4513 | Immediate Last = std::prev(x: Imms.end())->first; |
| 4514 | if (!First.isCompatibleImmediate(Imm: Last)) { |
| 4515 | LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg |
| 4516 | << "\n" ); |
| 4517 | continue; |
| 4518 | } |
| 4519 | // Only scalable if both terms are scalable, or if one is scalable and |
| 4520 | // the other is 0. |
| 4521 | bool Scalable = First.isScalable() || Last.isScalable(); |
| 4522 | int64_t FI = First.getKnownMinValue(); |
| 4523 | int64_t LI = Last.getKnownMinValue(); |
| 4524 | // Compute (First + Last) / 2 without overflow using the fact that |
| 4525 | // First + Last = 2 * (First + Last) + (First ^ Last). |
| 4526 | int64_t Avg = (FI & LI) + ((FI ^ LI) >> 1); |
| 4527 | // If the result is negative and FI is odd and LI even (or vice versa), |
| 4528 | // we rounded towards -inf. Add 1 in that case, to round towards 0. |
| 4529 | Avg = Avg + ((FI ^ LI) & ((uint64_t)Avg >> 63)); |
| 4530 | ImmMapTy::const_iterator OtherImms[] = { |
| 4531 | Imms.begin(), std::prev(x: Imms.end()), |
| 4532 | Imms.lower_bound(x: Immediate::get(MinVal: Avg, Scalable))}; |
| 4533 | for (const auto &M : OtherImms) { |
| 4534 | if (M == J || M == JE) continue; |
| 4535 | if (!JImm.isCompatibleImmediate(Imm: M->first)) |
| 4536 | continue; |
| 4537 | |
| 4538 | // Compute the difference between the two. |
| 4539 | Immediate Imm = JImm.subUnsigned(RHS: M->first); |
| 4540 | for (unsigned LUIdx : UsedByIndices.set_bits()) |
| 4541 | // Make a memo of this use, offset, and register tuple. |
| 4542 | if (UniqueItems.insert(V: std::make_pair(x&: LUIdx, y&: Imm)).second) |
| 4543 | WorkItems.push_back(Elt: WorkItem(LUIdx, Imm, OrigReg)); |
| 4544 | } |
| 4545 | } |
| 4546 | } |
| 4547 | |
| 4548 | Map.clear(); |
| 4549 | Sequence.clear(); |
| 4550 | UsedByIndicesMap.clear(); |
| 4551 | UniqueItems.clear(); |
| 4552 | |
| 4553 | // Now iterate through the worklist and add new formulae. |
| 4554 | for (const WorkItem &WI : WorkItems) { |
| 4555 | size_t LUIdx = WI.LUIdx; |
| 4556 | LSRUse &LU = Uses[LUIdx]; |
| 4557 | Immediate Imm = WI.Imm; |
| 4558 | const SCEV *OrigReg = WI.OrigReg; |
| 4559 | |
| 4560 | Type *IntTy = SE.getEffectiveSCEVType(Ty: OrigReg->getType()); |
| 4561 | const SCEV *NegImmS = Imm.getNegativeSCEV(SE, Ty: IntTy); |
| 4562 | unsigned BitWidth = SE.getTypeSizeInBits(Ty: IntTy); |
| 4563 | |
| 4564 | // TODO: Use a more targeted data structure. |
| 4565 | for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { |
| 4566 | Formula F = LU.Formulae[L]; |
| 4567 | // FIXME: The code for the scaled and unscaled registers looks |
| 4568 | // very similar but slightly different. Investigate if they |
| 4569 | // could be merged. That way, we would not have to unscale the |
| 4570 | // Formula. |
| 4571 | F.unscale(); |
| 4572 | // Use the immediate in the scaled register. |
| 4573 | if (F.ScaledReg == OrigReg) { |
| 4574 | if (!F.BaseOffset.isCompatibleImmediate(Imm)) |
| 4575 | continue; |
| 4576 | Immediate Offset = F.BaseOffset.addUnsigned(RHS: Imm.mulUnsigned(RHS: F.Scale)); |
| 4577 | // Don't create 50 + reg(-50). |
| 4578 | const SCEV *S = Offset.getNegativeSCEV(SE, Ty: IntTy); |
| 4579 | if (F.referencesReg(S)) |
| 4580 | continue; |
| 4581 | Formula NewF = F; |
| 4582 | NewF.BaseOffset = Offset; |
| 4583 | if (!isLegalUse(TTI, MinOffset: LU.MinOffset, MaxOffset: LU.MaxOffset, Kind: LU.Kind, AccessTy: LU.AccessTy, |
| 4584 | F: NewF)) |
| 4585 | continue; |
| 4586 | NewF.ScaledReg = SE.getAddExpr(LHS: NegImmS, RHS: NewF.ScaledReg); |
| 4587 | |
| 4588 | // If the new scale is a constant in a register, and adding the constant |
| 4589 | // value to the immediate would produce a value closer to zero than the |
| 4590 | // immediate itself, then the formula isn't worthwhile. |
| 4591 | if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Val: NewF.ScaledReg)) { |
| 4592 | // FIXME: Do we need to do something for scalable immediates here? |
| 4593 | // A scalable SCEV won't be constant, but we might still have |
| 4594 | // something in the offset? Bail out for now to be safe. |
| 4595 | if (NewF.BaseOffset.isNonZero() && NewF.BaseOffset.isScalable()) |
| 4596 | continue; |
| 4597 | if (C->getValue()->isNegative() != |
| 4598 | (NewF.BaseOffset.isLessThanZero()) && |
| 4599 | (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) |
| 4600 | .ule(RHS: std::abs(i: NewF.BaseOffset.getFixedValue()))) |
| 4601 | continue; |
| 4602 | } |
| 4603 | |
| 4604 | // OK, looks good. |
| 4605 | NewF.canonicalize(L: *this->L); |
| 4606 | (void)InsertFormula(LU, LUIdx, F: NewF); |
| 4607 | } else { |
| 4608 | // Use the immediate in a base register. |
| 4609 | for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { |
| 4610 | const SCEV *BaseReg = F.BaseRegs[N]; |
| 4611 | if (BaseReg != OrigReg) |
| 4612 | continue; |
| 4613 | Formula NewF = F; |
| 4614 | if (!NewF.BaseOffset.isCompatibleImmediate(Imm) || |
| 4615 | !NewF.UnfoldedOffset.isCompatibleImmediate(Imm) || |
| 4616 | !NewF.BaseOffset.isCompatibleImmediate(Imm: NewF.UnfoldedOffset)) |
| 4617 | continue; |
| 4618 | NewF.BaseOffset = NewF.BaseOffset.addUnsigned(RHS: Imm); |
| 4619 | if (!isLegalUse(TTI, MinOffset: LU.MinOffset, MaxOffset: LU.MaxOffset, |
| 4620 | Kind: LU.Kind, AccessTy: LU.AccessTy, F: NewF)) { |
| 4621 | if (AMK == TTI::AMK_PostIndexed && |
| 4622 | mayUsePostIncMode(TTI, LU, S: OrigReg, L: this->L, SE)) |
| 4623 | continue; |
| 4624 | Immediate NewUnfoldedOffset = NewF.UnfoldedOffset.addUnsigned(RHS: Imm); |
| 4625 | if (!isLegalAddImmediate(TTI, Offset: NewUnfoldedOffset)) |
| 4626 | continue; |
| 4627 | NewF = F; |
| 4628 | NewF.UnfoldedOffset = NewUnfoldedOffset; |
| 4629 | } |
| 4630 | NewF.BaseRegs[N] = SE.getAddExpr(LHS: NegImmS, RHS: BaseReg); |
| 4631 | |
| 4632 | // If the new formula has a constant in a register, and adding the |
| 4633 | // constant value to the immediate would produce a value closer to |
| 4634 | // zero than the immediate itself, then the formula isn't worthwhile. |
| 4635 | for (const SCEV *NewReg : NewF.BaseRegs) |
| 4636 | if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Val: NewReg)) { |
| 4637 | if (NewF.BaseOffset.isNonZero() && NewF.BaseOffset.isScalable()) |
| 4638 | goto skip_formula; |
| 4639 | if ((C->getAPInt() + NewF.BaseOffset.getFixedValue()) |
| 4640 | .abs() |
| 4641 | .slt(RHS: std::abs(i: NewF.BaseOffset.getFixedValue())) && |
| 4642 | (C->getAPInt() + NewF.BaseOffset.getFixedValue()) |
| 4643 | .countr_zero() >= |
| 4644 | (unsigned)llvm::countr_zero<uint64_t>( |
| 4645 | Val: NewF.BaseOffset.getFixedValue())) |
| 4646 | goto skip_formula; |
| 4647 | } |
| 4648 | |
| 4649 | // Ok, looks good. |
| 4650 | NewF.canonicalize(L: *this->L); |
| 4651 | (void)InsertFormula(LU, LUIdx, F: NewF); |
| 4652 | break; |
| 4653 | skip_formula:; |
| 4654 | } |
| 4655 | } |
| 4656 | } |
| 4657 | } |
| 4658 | } |
| 4659 | |
| 4660 | /// Generate formulae for each use. |
| 4661 | void |
| 4662 | LSRInstance::GenerateAllReuseFormulae() { |
| 4663 | // This is split into multiple loops so that hasRegsUsedByUsesOtherThan |
| 4664 | // queries are more precise. |
| 4665 | for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { |
| 4666 | LSRUse &LU = Uses[LUIdx]; |
| 4667 | for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) |
| 4668 | GenerateReassociations(LU, LUIdx, Base: LU.Formulae[i]); |
| 4669 | for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) |
| 4670 | GenerateCombinations(LU, LUIdx, Base: LU.Formulae[i]); |
| 4671 | } |
| 4672 | for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { |
| 4673 | LSRUse &LU = Uses[LUIdx]; |
| 4674 | for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) |
| 4675 | GenerateSymbolicOffsets(LU, LUIdx, Base: LU.Formulae[i]); |
| 4676 | for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) |
| 4677 | GenerateConstantOffsets(LU, LUIdx, Base: LU.Formulae[i]); |
| 4678 | for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) |
| 4679 | GenerateICmpZeroScales(LU, LUIdx, Base: LU.Formulae[i]); |
| 4680 | for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) |
| 4681 | GenerateScales(LU, LUIdx, Base: LU.Formulae[i]); |
| 4682 | } |
| 4683 | for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { |
| 4684 | LSRUse &LU = Uses[LUIdx]; |
| 4685 | for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) |
| 4686 | GenerateTruncates(LU, LUIdx, Base: LU.Formulae[i]); |
| 4687 | } |
| 4688 | |
| 4689 | GenerateCrossUseConstantOffsets(); |
| 4690 | |
| 4691 | LLVM_DEBUG(dbgs() << "\n" |
| 4692 | "After generating reuse formulae:\n" ; |
| 4693 | print_uses(dbgs())); |
| 4694 | } |
| 4695 | |
| 4696 | /// If there are multiple formulae with the same set of registers used |
| 4697 | /// by other uses, pick the best one and delete the others. |
| 4698 | void LSRInstance::FilterOutUndesirableDedicatedRegisters() { |
| 4699 | DenseSet<const SCEV *> VisitedRegs; |
| 4700 | SmallPtrSet<const SCEV *, 16> Regs; |
| 4701 | SmallPtrSet<const SCEV *, 16> LoserRegs; |
| 4702 | #ifndef NDEBUG |
| 4703 | bool ChangedFormulae = false; |
| 4704 | #endif |
| 4705 | |
| 4706 | // Collect the best formula for each unique set of shared registers. This |
| 4707 | // is reset for each use. |
| 4708 | using BestFormulaeTy = DenseMap<SmallVector<const SCEV *, 4>, size_t>; |
| 4709 | |
| 4710 | BestFormulaeTy BestFormulae; |
| 4711 | |
| 4712 | for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { |
| 4713 | LSRUse &LU = Uses[LUIdx]; |
| 4714 | LLVM_DEBUG(dbgs() << "Filtering for use " ; LU.print(dbgs()); |
| 4715 | dbgs() << '\n'); |
| 4716 | |
| 4717 | bool Any = false; |
| 4718 | for (size_t FIdx = 0, NumForms = LU.Formulae.size(); |
| 4719 | FIdx != NumForms; ++FIdx) { |
| 4720 | Formula &F = LU.Formulae[FIdx]; |
| 4721 | |
| 4722 | // Some formulas are instant losers. For example, they may depend on |
| 4723 | // nonexistent AddRecs from other loops. These need to be filtered |
| 4724 | // immediately, otherwise heuristics could choose them over others leading |
| 4725 | // to an unsatisfactory solution. Passing LoserRegs into RateFormula here |
| 4726 | // avoids the need to recompute this information across formulae using the |
| 4727 | // same bad AddRec. Passing LoserRegs is also essential unless we remove |
| 4728 | // the corresponding bad register from the Regs set. |
| 4729 | Cost CostF(L, SE, TTI, AMK); |
| 4730 | Regs.clear(); |
| 4731 | CostF.RateFormula(F, Regs, VisitedRegs, LU, LoserRegs: &LoserRegs); |
| 4732 | if (CostF.isLoser()) { |
| 4733 | // During initial formula generation, undesirable formulae are generated |
| 4734 | // by uses within other loops that have some non-trivial address mode or |
| 4735 | // use the postinc form of the IV. LSR needs to provide these formulae |
| 4736 | // as the basis of rediscovering the desired formula that uses an AddRec |
| 4737 | // corresponding to the existing phi. Once all formulae have been |
| 4738 | // generated, these initial losers may be pruned. |
| 4739 | LLVM_DEBUG(dbgs() << " Filtering loser " ; F.print(dbgs()); |
| 4740 | dbgs() << "\n" ); |
| 4741 | } |
| 4742 | else { |
| 4743 | SmallVector<const SCEV *, 4> Key; |
| 4744 | for (const SCEV *Reg : F.BaseRegs) { |
| 4745 | if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) |
| 4746 | Key.push_back(Elt: Reg); |
| 4747 | } |
| 4748 | if (F.ScaledReg && |
| 4749 | RegUses.isRegUsedByUsesOtherThan(Reg: F.ScaledReg, LUIdx)) |
| 4750 | Key.push_back(Elt: F.ScaledReg); |
| 4751 | // Unstable sort by host order ok, because this is only used for |
| 4752 | // uniquifying. |
| 4753 | llvm::sort(C&: Key); |
| 4754 | |
| 4755 | std::pair<BestFormulaeTy::const_iterator, bool> P = |
| 4756 | BestFormulae.insert(KV: std::make_pair(x&: Key, y&: FIdx)); |
| 4757 | if (P.second) |
| 4758 | continue; |
| 4759 | |
| 4760 | Formula &Best = LU.Formulae[P.first->second]; |
| 4761 | |
| 4762 | Cost CostBest(L, SE, TTI, AMK); |
| 4763 | Regs.clear(); |
| 4764 | CostBest.RateFormula(F: Best, Regs, VisitedRegs, LU); |
| 4765 | if (CostF.isLess(Other: CostBest)) |
| 4766 | std::swap(a&: F, b&: Best); |
| 4767 | LLVM_DEBUG(dbgs() << " Filtering out formula " ; F.print(dbgs()); |
| 4768 | dbgs() << "\n" |
| 4769 | " in favor of formula " ; |
| 4770 | Best.print(dbgs()); dbgs() << '\n'); |
| 4771 | } |
| 4772 | #ifndef NDEBUG |
| 4773 | ChangedFormulae = true; |
| 4774 | #endif |
| 4775 | LU.DeleteFormula(F); |
| 4776 | --FIdx; |
| 4777 | --NumForms; |
| 4778 | Any = true; |
| 4779 | } |
| 4780 | |
| 4781 | // Now that we've filtered out some formulae, recompute the Regs set. |
| 4782 | if (Any) |
| 4783 | LU.RecomputeRegs(LUIdx, RegUses); |
| 4784 | |
| 4785 | // Reset this to prepare for the next use. |
| 4786 | BestFormulae.clear(); |
| 4787 | } |
| 4788 | |
| 4789 | LLVM_DEBUG(if (ChangedFormulae) { |
| 4790 | dbgs() << "\n" |
| 4791 | "After filtering out undesirable candidates:\n" ; |
| 4792 | print_uses(dbgs()); |
| 4793 | }); |
| 4794 | } |
| 4795 | |
| 4796 | /// Estimate the worst-case number of solutions the solver might have to |
| 4797 | /// consider. It almost never considers this many solutions because it prune the |
| 4798 | /// search space, but the pruning isn't always sufficient. |
| 4799 | size_t LSRInstance::EstimateSearchSpaceComplexity() const { |
| 4800 | size_t Power = 1; |
| 4801 | for (const LSRUse &LU : Uses) { |
| 4802 | size_t FSize = LU.Formulae.size(); |
| 4803 | if (FSize >= ComplexityLimit) { |
| 4804 | Power = ComplexityLimit; |
| 4805 | break; |
| 4806 | } |
| 4807 | Power *= FSize; |
| 4808 | if (Power >= ComplexityLimit) |
| 4809 | break; |
| 4810 | } |
| 4811 | return Power; |
| 4812 | } |
| 4813 | |
| 4814 | /// When one formula uses a superset of the registers of another formula, it |
| 4815 | /// won't help reduce register pressure (though it may not necessarily hurt |
| 4816 | /// register pressure); remove it to simplify the system. |
| 4817 | void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { |
| 4818 | if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { |
| 4819 | LLVM_DEBUG(dbgs() << "The search space is too complex.\n" ); |
| 4820 | |
| 4821 | LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " |
| 4822 | "which use a superset of registers used by other " |
| 4823 | "formulae.\n" ); |
| 4824 | |
| 4825 | for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { |
| 4826 | LSRUse &LU = Uses[LUIdx]; |
| 4827 | bool Any = false; |
| 4828 | for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { |
| 4829 | Formula &F = LU.Formulae[i]; |
| 4830 | if (F.BaseOffset.isNonZero() && F.BaseOffset.isScalable()) |
| 4831 | continue; |
| 4832 | // Look for a formula with a constant or GV in a register. If the use |
| 4833 | // also has a formula with that same value in an immediate field, |
| 4834 | // delete the one that uses a register. |
| 4835 | for (SmallVectorImpl<const SCEV *>::const_iterator |
| 4836 | I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { |
| 4837 | if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Val: *I)) { |
| 4838 | Formula NewF = F; |
| 4839 | //FIXME: Formulas should store bitwidth to do wrapping properly. |
| 4840 | // See PR41034. |
| 4841 | NewF.BaseOffset = |
| 4842 | Immediate::getFixed(MinVal: NewF.BaseOffset.getFixedValue() + |
| 4843 | (uint64_t)C->getValue()->getSExtValue()); |
| 4844 | NewF.BaseRegs.erase(CI: NewF.BaseRegs.begin() + |
| 4845 | (I - F.BaseRegs.begin())); |
| 4846 | if (LU.HasFormulaWithSameRegs(F: NewF)) { |
| 4847 | LLVM_DEBUG(dbgs() << " Deleting " ; F.print(dbgs()); |
| 4848 | dbgs() << '\n'); |
| 4849 | LU.DeleteFormula(F); |
| 4850 | --i; |
| 4851 | --e; |
| 4852 | Any = true; |
| 4853 | break; |
| 4854 | } |
| 4855 | } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Val: *I)) { |
| 4856 | if (GlobalValue *GV = dyn_cast<GlobalValue>(Val: U->getValue())) |
| 4857 | if (!F.BaseGV) { |
| 4858 | Formula NewF = F; |
| 4859 | NewF.BaseGV = GV; |
| 4860 | NewF.BaseRegs.erase(CI: NewF.BaseRegs.begin() + |
| 4861 | (I - F.BaseRegs.begin())); |
| 4862 | if (LU.HasFormulaWithSameRegs(F: NewF)) { |
| 4863 | LLVM_DEBUG(dbgs() << " Deleting " ; F.print(dbgs()); |
| 4864 | dbgs() << '\n'); |
| 4865 | LU.DeleteFormula(F); |
| 4866 | --i; |
| 4867 | --e; |
| 4868 | Any = true; |
| 4869 | break; |
| 4870 | } |
| 4871 | } |
| 4872 | } |
| 4873 | } |
| 4874 | } |
| 4875 | if (Any) |
| 4876 | LU.RecomputeRegs(LUIdx, RegUses); |
| 4877 | } |
| 4878 | |
| 4879 | LLVM_DEBUG(dbgs() << "After pre-selection:\n" ; print_uses(dbgs())); |
| 4880 | } |
| 4881 | } |
| 4882 | |
| 4883 | /// When there are many registers for expressions like A, A+1, A+2, etc., |
| 4884 | /// allocate a single register for them. |
| 4885 | void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { |
| 4886 | if (EstimateSearchSpaceComplexity() < ComplexityLimit) |
| 4887 | return; |
| 4888 | |
| 4889 | LLVM_DEBUG( |
| 4890 | dbgs() << "The search space is too complex.\n" |
| 4891 | "Narrowing the search space by assuming that uses separated " |
| 4892 | "by a constant offset will use the same registers.\n" ); |
| 4893 | |
| 4894 | // This is especially useful for unrolled loops. |
| 4895 | |
| 4896 | for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { |
| 4897 | LSRUse &LU = Uses[LUIdx]; |
| 4898 | for (const Formula &F : LU.Formulae) { |
| 4899 | if (F.BaseOffset.isZero() || (F.Scale != 0 && F.Scale != 1)) |
| 4900 | continue; |
| 4901 | |
| 4902 | LSRUse *LUThatHas = FindUseWithSimilarFormula(OrigF: F, OrigLU: LU); |
| 4903 | if (!LUThatHas) |
| 4904 | continue; |
| 4905 | |
| 4906 | if (!reconcileNewOffset(LU&: *LUThatHas, NewOffset: F.BaseOffset, /*HasBaseReg=*/ false, |
| 4907 | Kind: LU.Kind, AccessTy: LU.AccessTy)) |
| 4908 | continue; |
| 4909 | |
| 4910 | LLVM_DEBUG(dbgs() << " Deleting use " ; LU.print(dbgs()); dbgs() << '\n'); |
| 4911 | |
| 4912 | LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; |
| 4913 | |
| 4914 | // Transfer the fixups of LU to LUThatHas. |
| 4915 | for (LSRFixup &Fixup : LU.Fixups) { |
| 4916 | Fixup.Offset += F.BaseOffset; |
| 4917 | LUThatHas->pushFixup(f&: Fixup); |
| 4918 | LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); |
| 4919 | } |
| 4920 | |
| 4921 | // Delete formulae from the new use which are no longer legal. |
| 4922 | bool Any = false; |
| 4923 | for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { |
| 4924 | Formula &F = LUThatHas->Formulae[i]; |
| 4925 | if (!isLegalUse(TTI, MinOffset: LUThatHas->MinOffset, MaxOffset: LUThatHas->MaxOffset, |
| 4926 | Kind: LUThatHas->Kind, AccessTy: LUThatHas->AccessTy, F)) { |
| 4927 | LLVM_DEBUG(dbgs() << " Deleting " ; F.print(dbgs()); dbgs() << '\n'); |
| 4928 | LUThatHas->DeleteFormula(F); |
| 4929 | --i; |
| 4930 | --e; |
| 4931 | Any = true; |
| 4932 | } |
| 4933 | } |
| 4934 | |
| 4935 | if (Any) |
| 4936 | LUThatHas->RecomputeRegs(LUIdx: LUThatHas - &Uses.front(), RegUses); |
| 4937 | |
| 4938 | // Delete the old use. |
| 4939 | DeleteUse(LU, LUIdx); |
| 4940 | --LUIdx; |
| 4941 | --NumUses; |
| 4942 | break; |
| 4943 | } |
| 4944 | } |
| 4945 | |
| 4946 | LLVM_DEBUG(dbgs() << "After pre-selection:\n" ; print_uses(dbgs())); |
| 4947 | } |
| 4948 | |
| 4949 | /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that |
| 4950 | /// we've done more filtering, as it may be able to find more formulae to |
| 4951 | /// eliminate. |
| 4952 | void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ |
| 4953 | if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { |
| 4954 | LLVM_DEBUG(dbgs() << "The search space is too complex.\n" ); |
| 4955 | |
| 4956 | LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out " |
| 4957 | "undesirable dedicated registers.\n" ); |
| 4958 | |
| 4959 | FilterOutUndesirableDedicatedRegisters(); |
| 4960 | |
| 4961 | LLVM_DEBUG(dbgs() << "After pre-selection:\n" ; print_uses(dbgs())); |
| 4962 | } |
| 4963 | } |
| 4964 | |
| 4965 | /// If a LSRUse has multiple formulae with the same ScaledReg and Scale. |
| 4966 | /// Pick the best one and delete the others. |
| 4967 | /// This narrowing heuristic is to keep as many formulae with different |
| 4968 | /// Scale and ScaledReg pair as possible while narrowing the search space. |
| 4969 | /// The benefit is that it is more likely to find out a better solution |
| 4970 | /// from a formulae set with more Scale and ScaledReg variations than |
| 4971 | /// a formulae set with the same Scale and ScaledReg. The picking winner |
| 4972 | /// reg heuristic will often keep the formulae with the same Scale and |
| 4973 | /// ScaledReg and filter others, and we want to avoid that if possible. |
| 4974 | void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() { |
| 4975 | if (EstimateSearchSpaceComplexity() < ComplexityLimit) |
| 4976 | return; |
| 4977 | |
| 4978 | LLVM_DEBUG( |
| 4979 | dbgs() << "The search space is too complex.\n" |
| 4980 | "Narrowing the search space by choosing the best Formula " |
| 4981 | "from the Formulae with the same Scale and ScaledReg.\n" ); |
| 4982 | |
| 4983 | // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse. |
| 4984 | using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>; |
| 4985 | |
| 4986 | BestFormulaeTy BestFormulae; |
| 4987 | #ifndef NDEBUG |
| 4988 | bool ChangedFormulae = false; |
| 4989 | #endif |
| 4990 | DenseSet<const SCEV *> VisitedRegs; |
| 4991 | SmallPtrSet<const SCEV *, 16> Regs; |
| 4992 | |
| 4993 | for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { |
| 4994 | LSRUse &LU = Uses[LUIdx]; |
| 4995 | LLVM_DEBUG(dbgs() << "Filtering for use " ; LU.print(dbgs()); |
| 4996 | dbgs() << '\n'); |
| 4997 | |
| 4998 | // Return true if Formula FA is better than Formula FB. |
| 4999 | auto IsBetterThan = [&](Formula &FA, Formula &FB) { |
| 5000 | // First we will try to choose the Formula with fewer new registers. |
| 5001 | // For a register used by current Formula, the more the register is |
| 5002 | // shared among LSRUses, the less we increase the register number |
| 5003 | // counter of the formula. |
| 5004 | size_t FARegNum = 0; |
| 5005 | for (const SCEV *Reg : FA.BaseRegs) { |
| 5006 | const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); |
| 5007 | FARegNum += (NumUses - UsedByIndices.count() + 1); |
| 5008 | } |
| 5009 | size_t FBRegNum = 0; |
| 5010 | for (const SCEV *Reg : FB.BaseRegs) { |
| 5011 | const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); |
| 5012 | FBRegNum += (NumUses - UsedByIndices.count() + 1); |
| 5013 | } |
| 5014 | if (FARegNum != FBRegNum) |
| 5015 | return FARegNum < FBRegNum; |
| 5016 | |
| 5017 | // If the new register numbers are the same, choose the Formula with |
| 5018 | // less Cost. |
| 5019 | Cost CostFA(L, SE, TTI, AMK); |
| 5020 | Cost CostFB(L, SE, TTI, AMK); |
| 5021 | Regs.clear(); |
| 5022 | CostFA.RateFormula(F: FA, Regs, VisitedRegs, LU); |
| 5023 | Regs.clear(); |
| 5024 | CostFB.RateFormula(F: FB, Regs, VisitedRegs, LU); |
| 5025 | return CostFA.isLess(Other: CostFB); |
| 5026 | }; |
| 5027 | |
| 5028 | bool Any = false; |
| 5029 | for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; |
| 5030 | ++FIdx) { |
| 5031 | Formula &F = LU.Formulae[FIdx]; |
| 5032 | if (!F.ScaledReg) |
| 5033 | continue; |
| 5034 | auto P = BestFormulae.insert(KV: {{F.ScaledReg, F.Scale}, FIdx}); |
| 5035 | if (P.second) |
| 5036 | continue; |
| 5037 | |
| 5038 | Formula &Best = LU.Formulae[P.first->second]; |
| 5039 | if (IsBetterThan(F, Best)) |
| 5040 | std::swap(a&: F, b&: Best); |
| 5041 | LLVM_DEBUG(dbgs() << " Filtering out formula " ; F.print(dbgs()); |
| 5042 | dbgs() << "\n" |
| 5043 | " in favor of formula " ; |
| 5044 | Best.print(dbgs()); dbgs() << '\n'); |
| 5045 | #ifndef NDEBUG |
| 5046 | ChangedFormulae = true; |
| 5047 | #endif |
| 5048 | LU.DeleteFormula(F); |
| 5049 | --FIdx; |
| 5050 | --NumForms; |
| 5051 | Any = true; |
| 5052 | } |
| 5053 | if (Any) |
| 5054 | LU.RecomputeRegs(LUIdx, RegUses); |
| 5055 | |
| 5056 | // Reset this to prepare for the next use. |
| 5057 | BestFormulae.clear(); |
| 5058 | } |
| 5059 | |
| 5060 | LLVM_DEBUG(if (ChangedFormulae) { |
| 5061 | dbgs() << "\n" |
| 5062 | "After filtering out undesirable candidates:\n" ; |
| 5063 | print_uses(dbgs()); |
| 5064 | }); |
| 5065 | } |
| 5066 | |
| 5067 | /// If we are over the complexity limit, filter out any post-inc prefering |
| 5068 | /// variables to only post-inc values. |
| 5069 | void LSRInstance::NarrowSearchSpaceByFilterPostInc() { |
| 5070 | if (AMK != TTI::AMK_PostIndexed) |
| 5071 | return; |
| 5072 | if (EstimateSearchSpaceComplexity() < ComplexityLimit) |
| 5073 | return; |
| 5074 | |
| 5075 | LLVM_DEBUG(dbgs() << "The search space is too complex.\n" |
| 5076 | "Narrowing the search space by choosing the lowest " |
| 5077 | "register Formula for PostInc Uses.\n" ); |
| 5078 | |
| 5079 | for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { |
| 5080 | LSRUse &LU = Uses[LUIdx]; |
| 5081 | |
| 5082 | if (LU.Kind != LSRUse::Address) |
| 5083 | continue; |
| 5084 | if (!TTI.isIndexedLoadLegal(Mode: TTI.MIM_PostInc, Ty: LU.AccessTy.getType()) && |
| 5085 | !TTI.isIndexedStoreLegal(Mode: TTI.MIM_PostInc, Ty: LU.AccessTy.getType())) |
| 5086 | continue; |
| 5087 | |
| 5088 | size_t MinRegs = std::numeric_limits<size_t>::max(); |
| 5089 | for (const Formula &F : LU.Formulae) |
| 5090 | MinRegs = std::min(a: F.getNumRegs(), b: MinRegs); |
| 5091 | |
| 5092 | bool Any = false; |
| 5093 | for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; |
| 5094 | ++FIdx) { |
| 5095 | Formula &F = LU.Formulae[FIdx]; |
| 5096 | if (F.getNumRegs() > MinRegs) { |
| 5097 | LLVM_DEBUG(dbgs() << " Filtering out formula " ; F.print(dbgs()); |
| 5098 | dbgs() << "\n" ); |
| 5099 | LU.DeleteFormula(F); |
| 5100 | --FIdx; |
| 5101 | --NumForms; |
| 5102 | Any = true; |
| 5103 | } |
| 5104 | } |
| 5105 | if (Any) |
| 5106 | LU.RecomputeRegs(LUIdx, RegUses); |
| 5107 | |
| 5108 | if (EstimateSearchSpaceComplexity() < ComplexityLimit) |
| 5109 | break; |
| 5110 | } |
| 5111 | |
| 5112 | LLVM_DEBUG(dbgs() << "After pre-selection:\n" ; print_uses(dbgs())); |
| 5113 | } |
| 5114 | |
| 5115 | /// The function delete formulas with high registers number expectation. |
| 5116 | /// Assuming we don't know the value of each formula (already delete |
| 5117 | /// all inefficient), generate probability of not selecting for each |
| 5118 | /// register. |
| 5119 | /// For example, |
| 5120 | /// Use1: |
| 5121 | /// reg(a) + reg({0,+,1}) |
| 5122 | /// reg(a) + reg({-1,+,1}) + 1 |
| 5123 | /// reg({a,+,1}) |
| 5124 | /// Use2: |
| 5125 | /// reg(b) + reg({0,+,1}) |
| 5126 | /// reg(b) + reg({-1,+,1}) + 1 |
| 5127 | /// reg({b,+,1}) |
| 5128 | /// Use3: |
| 5129 | /// reg(c) + reg(b) + reg({0,+,1}) |
| 5130 | /// reg(c) + reg({b,+,1}) |
| 5131 | /// |
| 5132 | /// Probability of not selecting |
| 5133 | /// Use1 Use2 Use3 |
| 5134 | /// reg(a) (1/3) * 1 * 1 |
| 5135 | /// reg(b) 1 * (1/3) * (1/2) |
| 5136 | /// reg({0,+,1}) (2/3) * (2/3) * (1/2) |
| 5137 | /// reg({-1,+,1}) (2/3) * (2/3) * 1 |
| 5138 | /// reg({a,+,1}) (2/3) * 1 * 1 |
| 5139 | /// reg({b,+,1}) 1 * (2/3) * (2/3) |
| 5140 | /// reg(c) 1 * 1 * 0 |
| 5141 | /// |
| 5142 | /// Now count registers number mathematical expectation for each formula: |
| 5143 | /// Note that for each use we exclude probability if not selecting for the use. |
| 5144 | /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding |
| 5145 | /// probabilty 1/3 of not selecting for Use1). |
| 5146 | /// Use1: |
| 5147 | /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted |
| 5148 | /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted |
| 5149 | /// reg({a,+,1}) 1 |
| 5150 | /// Use2: |
| 5151 | /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted |
| 5152 | /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted |
| 5153 | /// reg({b,+,1}) 2/3 |
| 5154 | /// Use3: |
| 5155 | /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted |
| 5156 | /// reg(c) + reg({b,+,1}) 1 + 2/3 |
| 5157 | void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() { |
| 5158 | if (EstimateSearchSpaceComplexity() < ComplexityLimit) |
| 5159 | return; |
| 5160 | // Ok, we have too many of formulae on our hands to conveniently handle. |
| 5161 | // Use a rough heuristic to thin out the list. |
| 5162 | |
| 5163 | // Set of Regs wich will be 100% used in final solution. |
| 5164 | // Used in each formula of a solution (in example above this is reg(c)). |
| 5165 | // We can skip them in calculations. |
| 5166 | SmallPtrSet<const SCEV *, 4> UniqRegs; |
| 5167 | LLVM_DEBUG(dbgs() << "The search space is too complex.\n" ); |
| 5168 | |
| 5169 | // Map each register to probability of not selecting |
| 5170 | DenseMap <const SCEV *, float> RegNumMap; |
| 5171 | for (const SCEV *Reg : RegUses) { |
| 5172 | if (UniqRegs.count(Ptr: Reg)) |
| 5173 | continue; |
| 5174 | float PNotSel = 1; |
| 5175 | for (const LSRUse &LU : Uses) { |
| 5176 | if (!LU.Regs.count(Ptr: Reg)) |
| 5177 | continue; |
| 5178 | float P = LU.getNotSelectedProbability(Reg); |
| 5179 | if (P != 0.0) |
| 5180 | PNotSel *= P; |
| 5181 | else |
| 5182 | UniqRegs.insert(Ptr: Reg); |
| 5183 | } |
| 5184 | RegNumMap.insert(KV: std::make_pair(x&: Reg, y&: PNotSel)); |
| 5185 | } |
| 5186 | |
| 5187 | LLVM_DEBUG( |
| 5188 | dbgs() << "Narrowing the search space by deleting costly formulas\n" ); |
| 5189 | |
| 5190 | // Delete formulas where registers number expectation is high. |
| 5191 | for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { |
| 5192 | LSRUse &LU = Uses[LUIdx]; |
| 5193 | // If nothing to delete - continue. |
| 5194 | if (LU.Formulae.size() < 2) |
| 5195 | continue; |
| 5196 | // This is temporary solution to test performance. Float should be |
| 5197 | // replaced with round independent type (based on integers) to avoid |
| 5198 | // different results for different target builds. |
| 5199 | float FMinRegNum = LU.Formulae[0].getNumRegs(); |
| 5200 | float FMinARegNum = LU.Formulae[0].getNumRegs(); |
| 5201 | size_t MinIdx = 0; |
| 5202 | for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { |
| 5203 | Formula &F = LU.Formulae[i]; |
| 5204 | float FRegNum = 0; |
| 5205 | float FARegNum = 0; |
| 5206 | for (const SCEV *BaseReg : F.BaseRegs) { |
| 5207 | if (UniqRegs.count(Ptr: BaseReg)) |
| 5208 | continue; |
| 5209 | FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(Reg: BaseReg); |
| 5210 | if (isa<SCEVAddRecExpr>(Val: BaseReg)) |
| 5211 | FARegNum += |
| 5212 | RegNumMap[BaseReg] / LU.getNotSelectedProbability(Reg: BaseReg); |
| 5213 | } |
| 5214 | if (const SCEV *ScaledReg = F.ScaledReg) { |
| 5215 | if (!UniqRegs.count(Ptr: ScaledReg)) { |
| 5216 | FRegNum += |
| 5217 | RegNumMap[ScaledReg] / LU.getNotSelectedProbability(Reg: ScaledReg); |
| 5218 | if (isa<SCEVAddRecExpr>(Val: ScaledReg)) |
| 5219 | FARegNum += |
| 5220 | RegNumMap[ScaledReg] / LU.getNotSelectedProbability(Reg: ScaledReg); |
| 5221 | } |
| 5222 | } |
| 5223 | if (FMinRegNum > FRegNum || |
| 5224 | (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) { |
| 5225 | FMinRegNum = FRegNum; |
| 5226 | FMinARegNum = FARegNum; |
| 5227 | MinIdx = i; |
| 5228 | } |
| 5229 | } |
| 5230 | LLVM_DEBUG(dbgs() << " The formula " ; LU.Formulae[MinIdx].print(dbgs()); |
| 5231 | dbgs() << " with min reg num " << FMinRegNum << '\n'); |
| 5232 | if (MinIdx != 0) |
| 5233 | std::swap(a&: LU.Formulae[MinIdx], b&: LU.Formulae[0]); |
| 5234 | while (LU.Formulae.size() != 1) { |
| 5235 | LLVM_DEBUG(dbgs() << " Deleting " ; LU.Formulae.back().print(dbgs()); |
| 5236 | dbgs() << '\n'); |
| 5237 | LU.Formulae.pop_back(); |
| 5238 | } |
| 5239 | LU.RecomputeRegs(LUIdx, RegUses); |
| 5240 | assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula" ); |
| 5241 | Formula &F = LU.Formulae[0]; |
| 5242 | LLVM_DEBUG(dbgs() << " Leaving only " ; F.print(dbgs()); dbgs() << '\n'); |
| 5243 | // When we choose the formula, the regs become unique. |
| 5244 | UniqRegs.insert_range(R&: F.BaseRegs); |
| 5245 | if (F.ScaledReg) |
| 5246 | UniqRegs.insert(Ptr: F.ScaledReg); |
| 5247 | } |
| 5248 | LLVM_DEBUG(dbgs() << "After pre-selection:\n" ; print_uses(dbgs())); |
| 5249 | } |
| 5250 | |
| 5251 | // Check if Best and Reg are SCEVs separated by a constant amount C, and if so |
| 5252 | // would the addressing offset +C would be legal where the negative offset -C is |
| 5253 | // not. |
| 5254 | static bool IsSimplerBaseSCEVForTarget(const TargetTransformInfo &TTI, |
| 5255 | ScalarEvolution &SE, const SCEV *Best, |
| 5256 | const SCEV *Reg, |
| 5257 | MemAccessTy AccessType) { |
| 5258 | if (Best->getType() != Reg->getType() || |
| 5259 | (isa<SCEVAddRecExpr>(Val: Best) && isa<SCEVAddRecExpr>(Val: Reg) && |
| 5260 | cast<SCEVAddRecExpr>(Val: Best)->getLoop() != |
| 5261 | cast<SCEVAddRecExpr>(Val: Reg)->getLoop())) |
| 5262 | return false; |
| 5263 | std::optional<APInt> Diff = SE.computeConstantDifference(LHS: Best, RHS: Reg); |
| 5264 | if (!Diff) |
| 5265 | return false; |
| 5266 | |
| 5267 | return TTI.isLegalAddressingMode( |
| 5268 | Ty: AccessType.MemTy, /*BaseGV=*/nullptr, |
| 5269 | /*BaseOffset=*/Diff->getSExtValue(), |
| 5270 | /*HasBaseReg=*/true, /*Scale=*/0, AddrSpace: AccessType.AddrSpace) && |
| 5271 | !TTI.isLegalAddressingMode( |
| 5272 | Ty: AccessType.MemTy, /*BaseGV=*/nullptr, |
| 5273 | /*BaseOffset=*/-Diff->getSExtValue(), |
| 5274 | /*HasBaseReg=*/true, /*Scale=*/0, AddrSpace: AccessType.AddrSpace); |
| 5275 | } |
| 5276 | |
| 5277 | /// Pick a register which seems likely to be profitable, and then in any use |
| 5278 | /// which has any reference to that register, delete all formulae which do not |
| 5279 | /// reference that register. |
| 5280 | void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { |
| 5281 | // With all other options exhausted, loop until the system is simple |
| 5282 | // enough to handle. |
| 5283 | SmallPtrSet<const SCEV *, 4> Taken; |
| 5284 | while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { |
| 5285 | // Ok, we have too many of formulae on our hands to conveniently handle. |
| 5286 | // Use a rough heuristic to thin out the list. |
| 5287 | LLVM_DEBUG(dbgs() << "The search space is too complex.\n" ); |
| 5288 | |
| 5289 | // Pick the register which is used by the most LSRUses, which is likely |
| 5290 | // to be a good reuse register candidate. |
| 5291 | const SCEV *Best = nullptr; |
| 5292 | unsigned BestNum = 0; |
| 5293 | for (const SCEV *Reg : RegUses) { |
| 5294 | if (Taken.count(Ptr: Reg)) |
| 5295 | continue; |
| 5296 | if (!Best) { |
| 5297 | Best = Reg; |
| 5298 | BestNum = RegUses.getUsedByIndices(Reg).count(); |
| 5299 | } else { |
| 5300 | unsigned Count = RegUses.getUsedByIndices(Reg).count(); |
| 5301 | if (Count > BestNum) { |
| 5302 | Best = Reg; |
| 5303 | BestNum = Count; |
| 5304 | } |
| 5305 | |
| 5306 | // If the scores are the same, but the Reg is simpler for the target |
| 5307 | // (for example {x,+,1} as opposed to {x+C,+,1}, where the target can |
| 5308 | // handle +C but not -C), opt for the simpler formula. |
| 5309 | if (Count == BestNum) { |
| 5310 | int LUIdx = RegUses.getUsedByIndices(Reg).find_first(); |
| 5311 | if (LUIdx >= 0 && Uses[LUIdx].Kind == LSRUse::Address && |
| 5312 | IsSimplerBaseSCEVForTarget(TTI, SE, Best, Reg, |
| 5313 | AccessType: Uses[LUIdx].AccessTy)) { |
| 5314 | Best = Reg; |
| 5315 | BestNum = Count; |
| 5316 | } |
| 5317 | } |
| 5318 | } |
| 5319 | } |
| 5320 | assert(Best && "Failed to find best LSRUse candidate" ); |
| 5321 | |
| 5322 | LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best |
| 5323 | << " will yield profitable reuse.\n" ); |
| 5324 | Taken.insert(Ptr: Best); |
| 5325 | |
| 5326 | // In any use with formulae which references this register, delete formulae |
| 5327 | // which don't reference it. |
| 5328 | for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { |
| 5329 | LSRUse &LU = Uses[LUIdx]; |
| 5330 | if (!LU.Regs.count(Ptr: Best)) continue; |
| 5331 | |
| 5332 | bool Any = false; |
| 5333 | for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { |
| 5334 | Formula &F = LU.Formulae[i]; |
| 5335 | if (!F.referencesReg(S: Best)) { |
| 5336 | LLVM_DEBUG(dbgs() << " Deleting " ; F.print(dbgs()); dbgs() << '\n'); |
| 5337 | LU.DeleteFormula(F); |
| 5338 | --e; |
| 5339 | --i; |
| 5340 | Any = true; |
| 5341 | assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?" ); |
| 5342 | continue; |
| 5343 | } |
| 5344 | } |
| 5345 | |
| 5346 | if (Any) |
| 5347 | LU.RecomputeRegs(LUIdx, RegUses); |
| 5348 | } |
| 5349 | |
| 5350 | LLVM_DEBUG(dbgs() << "After pre-selection:\n" ; print_uses(dbgs())); |
| 5351 | } |
| 5352 | } |
| 5353 | |
| 5354 | /// If there are an extraordinary number of formulae to choose from, use some |
| 5355 | /// rough heuristics to prune down the number of formulae. This keeps the main |
| 5356 | /// solver from taking an extraordinary amount of time in some worst-case |
| 5357 | /// scenarios. |
| 5358 | void LSRInstance::NarrowSearchSpaceUsingHeuristics() { |
| 5359 | NarrowSearchSpaceByDetectingSupersets(); |
| 5360 | NarrowSearchSpaceByCollapsingUnrolledCode(); |
| 5361 | NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); |
| 5362 | if (FilterSameScaledReg) |
| 5363 | NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); |
| 5364 | NarrowSearchSpaceByFilterPostInc(); |
| 5365 | if (LSRExpNarrow) |
| 5366 | NarrowSearchSpaceByDeletingCostlyFormulas(); |
| 5367 | else |
| 5368 | NarrowSearchSpaceByPickingWinnerRegs(); |
| 5369 | } |
| 5370 | |
| 5371 | /// This is the recursive solver. |
| 5372 | void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, |
| 5373 | Cost &SolutionCost, |
| 5374 | SmallVectorImpl<const Formula *> &Workspace, |
| 5375 | const Cost &CurCost, |
| 5376 | const SmallPtrSet<const SCEV *, 16> &CurRegs, |
| 5377 | DenseSet<const SCEV *> &VisitedRegs) const { |
| 5378 | // Some ideas: |
| 5379 | // - prune more: |
| 5380 | // - use more aggressive filtering |
| 5381 | // - sort the formula so that the most profitable solutions are found first |
| 5382 | // - sort the uses too |
| 5383 | // - search faster: |
| 5384 | // - don't compute a cost, and then compare. compare while computing a cost |
| 5385 | // and bail early. |
| 5386 | // - track register sets with SmallBitVector |
| 5387 | |
| 5388 | const LSRUse &LU = Uses[Workspace.size()]; |
| 5389 | |
| 5390 | // If this use references any register that's already a part of the |
| 5391 | // in-progress solution, consider it a requirement that a formula must |
| 5392 | // reference that register in order to be considered. This prunes out |
| 5393 | // unprofitable searching. |
| 5394 | SmallSetVector<const SCEV *, 4> ReqRegs; |
| 5395 | for (const SCEV *S : CurRegs) |
| 5396 | if (LU.Regs.count(Ptr: S)) |
| 5397 | ReqRegs.insert(X: S); |
| 5398 | |
| 5399 | SmallPtrSet<const SCEV *, 16> NewRegs; |
| 5400 | Cost NewCost(L, SE, TTI, AMK); |
| 5401 | for (const Formula &F : LU.Formulae) { |
| 5402 | // Ignore formulae which may not be ideal in terms of register reuse of |
| 5403 | // ReqRegs. The formula should use all required registers before |
| 5404 | // introducing new ones. |
| 5405 | // This can sometimes (notably when trying to favour postinc) lead to |
| 5406 | // sub-optimial decisions. There it is best left to the cost modelling to |
| 5407 | // get correct. |
| 5408 | if (AMK != TTI::AMK_PostIndexed || LU.Kind != LSRUse::Address) { |
| 5409 | int NumReqRegsToFind = std::min(a: F.getNumRegs(), b: ReqRegs.size()); |
| 5410 | for (const SCEV *Reg : ReqRegs) { |
| 5411 | if ((F.ScaledReg && F.ScaledReg == Reg) || |
| 5412 | is_contained(Range: F.BaseRegs, Element: Reg)) { |
| 5413 | --NumReqRegsToFind; |
| 5414 | if (NumReqRegsToFind == 0) |
| 5415 | break; |
| 5416 | } |
| 5417 | } |
| 5418 | if (NumReqRegsToFind != 0) { |
| 5419 | // If none of the formulae satisfied the required registers, then we could |
| 5420 | // clear ReqRegs and try again. Currently, we simply give up in this case. |
| 5421 | continue; |
| 5422 | } |
| 5423 | } |
| 5424 | |
| 5425 | // Evaluate the cost of the current formula. If it's already worse than |
| 5426 | // the current best, prune the search at that point. |
| 5427 | NewCost = CurCost; |
| 5428 | NewRegs = CurRegs; |
| 5429 | NewCost.RateFormula(F, Regs&: NewRegs, VisitedRegs, LU); |
| 5430 | if (NewCost.isLess(Other: SolutionCost)) { |
| 5431 | Workspace.push_back(Elt: &F); |
| 5432 | if (Workspace.size() != Uses.size()) { |
| 5433 | SolveRecurse(Solution, SolutionCost, Workspace, CurCost: NewCost, |
| 5434 | CurRegs: NewRegs, VisitedRegs); |
| 5435 | if (F.getNumRegs() == 1 && Workspace.size() == 1) |
| 5436 | VisitedRegs.insert(V: F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); |
| 5437 | } else { |
| 5438 | LLVM_DEBUG(dbgs() << "New best at " ; NewCost.print(dbgs()); |
| 5439 | dbgs() << ".\nRegs:\n" ; |
| 5440 | for (const SCEV *S : NewRegs) dbgs() |
| 5441 | << "- " << *S << "\n" ; |
| 5442 | dbgs() << '\n'); |
| 5443 | |
| 5444 | SolutionCost = NewCost; |
| 5445 | Solution = Workspace; |
| 5446 | } |
| 5447 | Workspace.pop_back(); |
| 5448 | } |
| 5449 | } |
| 5450 | } |
| 5451 | |
| 5452 | /// Choose one formula from each use. Return the results in the given Solution |
| 5453 | /// vector. |
| 5454 | void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { |
| 5455 | SmallVector<const Formula *, 8> Workspace; |
| 5456 | Cost SolutionCost(L, SE, TTI, AMK); |
| 5457 | SolutionCost.Lose(); |
| 5458 | Cost CurCost(L, SE, TTI, AMK); |
| 5459 | SmallPtrSet<const SCEV *, 16> CurRegs; |
| 5460 | DenseSet<const SCEV *> VisitedRegs; |
| 5461 | Workspace.reserve(N: Uses.size()); |
| 5462 | |
| 5463 | // SolveRecurse does all the work. |
| 5464 | SolveRecurse(Solution, SolutionCost, Workspace, CurCost, |
| 5465 | CurRegs, VisitedRegs); |
| 5466 | if (Solution.empty()) { |
| 5467 | LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n" ); |
| 5468 | return; |
| 5469 | } |
| 5470 | |
| 5471 | // Ok, we've now made all our decisions. |
| 5472 | LLVM_DEBUG(dbgs() << "\n" |
| 5473 | "The chosen solution requires " ; |
| 5474 | SolutionCost.print(dbgs()); dbgs() << ":\n" ; |
| 5475 | for (size_t i = 0, e = Uses.size(); i != e; ++i) { |
| 5476 | dbgs() << " " ; |
| 5477 | Uses[i].print(dbgs()); |
| 5478 | dbgs() << "\n" |
| 5479 | " " ; |
| 5480 | Solution[i]->print(dbgs()); |
| 5481 | dbgs() << '\n'; |
| 5482 | }); |
| 5483 | |
| 5484 | assert(Solution.size() == Uses.size() && "Malformed solution!" ); |
| 5485 | |
| 5486 | const bool EnableDropUnprofitableSolution = [&] { |
| 5487 | switch (AllowDropSolutionIfLessProfitable) { |
| 5488 | case cl::BOU_TRUE: |
| 5489 | return true; |
| 5490 | case cl::BOU_FALSE: |
| 5491 | return false; |
| 5492 | case cl::BOU_UNSET: |
| 5493 | return TTI.shouldDropLSRSolutionIfLessProfitable(); |
| 5494 | } |
| 5495 | llvm_unreachable("Unhandled cl::boolOrDefault enum" ); |
| 5496 | }(); |
| 5497 | |
| 5498 | if (BaselineCost.isLess(Other: SolutionCost)) { |
| 5499 | if (!EnableDropUnprofitableSolution) |
| 5500 | LLVM_DEBUG( |
| 5501 | dbgs() << "Baseline is more profitable than chosen solution, " |
| 5502 | "add option 'lsr-drop-solution' to drop LSR solution.\n" ); |
| 5503 | else { |
| 5504 | LLVM_DEBUG(dbgs() << "Baseline is more profitable than chosen " |
| 5505 | "solution, dropping LSR solution.\n" ;); |
| 5506 | Solution.clear(); |
| 5507 | } |
| 5508 | } |
| 5509 | } |
| 5510 | |
| 5511 | /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as |
| 5512 | /// we can go while still being dominated by the input positions. This helps |
| 5513 | /// canonicalize the insert position, which encourages sharing. |
| 5514 | BasicBlock::iterator |
| 5515 | LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, |
| 5516 | const SmallVectorImpl<Instruction *> &Inputs) |
| 5517 | const { |
| 5518 | Instruction *Tentative = &*IP; |
| 5519 | while (true) { |
| 5520 | bool AllDominate = true; |
| 5521 | Instruction *BetterPos = nullptr; |
| 5522 | // Don't bother attempting to insert before a catchswitch, their basic block |
| 5523 | // cannot have other non-PHI instructions. |
| 5524 | if (isa<CatchSwitchInst>(Val: Tentative)) |
| 5525 | return IP; |
| 5526 | |
| 5527 | for (Instruction *Inst : Inputs) { |
| 5528 | if (Inst == Tentative || !DT.dominates(Def: Inst, User: Tentative)) { |
| 5529 | AllDominate = false; |
| 5530 | break; |
| 5531 | } |
| 5532 | // Attempt to find an insert position in the middle of the block, |
| 5533 | // instead of at the end, so that it can be used for other expansions. |
| 5534 | if (Tentative->getParent() == Inst->getParent() && |
| 5535 | (!BetterPos || !DT.dominates(Def: Inst, User: BetterPos))) |
| 5536 | BetterPos = &*std::next(x: BasicBlock::iterator(Inst)); |
| 5537 | } |
| 5538 | if (!AllDominate) |
| 5539 | break; |
| 5540 | if (BetterPos) |
| 5541 | IP = BetterPos->getIterator(); |
| 5542 | else |
| 5543 | IP = Tentative->getIterator(); |
| 5544 | |
| 5545 | const Loop *IPLoop = LI.getLoopFor(BB: IP->getParent()); |
| 5546 | unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; |
| 5547 | |
| 5548 | BasicBlock *IDom; |
| 5549 | for (DomTreeNode *Rung = DT.getNode(BB: IP->getParent()); ; ) { |
| 5550 | if (!Rung) return IP; |
| 5551 | Rung = Rung->getIDom(); |
| 5552 | if (!Rung) return IP; |
| 5553 | IDom = Rung->getBlock(); |
| 5554 | |
| 5555 | // Don't climb into a loop though. |
| 5556 | const Loop *IDomLoop = LI.getLoopFor(BB: IDom); |
| 5557 | unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; |
| 5558 | if (IDomDepth <= IPLoopDepth && |
| 5559 | (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) |
| 5560 | break; |
| 5561 | } |
| 5562 | |
| 5563 | Tentative = IDom->getTerminator(); |
| 5564 | } |
| 5565 | |
| 5566 | return IP; |
| 5567 | } |
| 5568 | |
| 5569 | /// Determine an input position which will be dominated by the operands and |
| 5570 | /// which will dominate the result. |
| 5571 | BasicBlock::iterator LSRInstance::AdjustInsertPositionForExpand( |
| 5572 | BasicBlock::iterator LowestIP, const LSRFixup &LF, const LSRUse &LU) const { |
| 5573 | // Collect some instructions which must be dominated by the |
| 5574 | // expanding replacement. These must be dominated by any operands that |
| 5575 | // will be required in the expansion. |
| 5576 | SmallVector<Instruction *, 4> Inputs; |
| 5577 | if (Instruction *I = dyn_cast<Instruction>(Val: LF.OperandValToReplace)) |
| 5578 | Inputs.push_back(Elt: I); |
| 5579 | if (LU.Kind == LSRUse::ICmpZero) |
| 5580 | if (Instruction *I = |
| 5581 | dyn_cast<Instruction>(Val: cast<ICmpInst>(Val: LF.UserInst)->getOperand(i_nocapture: 1))) |
| 5582 | Inputs.push_back(Elt: I); |
| 5583 | if (LF.PostIncLoops.count(Ptr: L)) { |
| 5584 | if (LF.isUseFullyOutsideLoop(L)) |
| 5585 | Inputs.push_back(Elt: L->getLoopLatch()->getTerminator()); |
| 5586 | else |
| 5587 | Inputs.push_back(Elt: IVIncInsertPos); |
| 5588 | } |
| 5589 | // The expansion must also be dominated by the increment positions of any |
| 5590 | // loops it for which it is using post-inc mode. |
| 5591 | for (const Loop *PIL : LF.PostIncLoops) { |
| 5592 | if (PIL == L) continue; |
| 5593 | |
| 5594 | // Be dominated by the loop exit. |
| 5595 | SmallVector<BasicBlock *, 4> ExitingBlocks; |
| 5596 | PIL->getExitingBlocks(ExitingBlocks); |
| 5597 | if (!ExitingBlocks.empty()) { |
| 5598 | BasicBlock *BB = ExitingBlocks[0]; |
| 5599 | for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) |
| 5600 | BB = DT.findNearestCommonDominator(A: BB, B: ExitingBlocks[i]); |
| 5601 | Inputs.push_back(Elt: BB->getTerminator()); |
| 5602 | } |
| 5603 | } |
| 5604 | |
| 5605 | assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() && |
| 5606 | "Insertion point must be a normal instruction" ); |
| 5607 | |
| 5608 | // Then, climb up the immediate dominator tree as far as we can go while |
| 5609 | // still being dominated by the input positions. |
| 5610 | BasicBlock::iterator IP = HoistInsertPosition(IP: LowestIP, Inputs); |
| 5611 | |
| 5612 | // Don't insert instructions before PHI nodes. |
| 5613 | while (isa<PHINode>(Val: IP)) ++IP; |
| 5614 | |
| 5615 | // Ignore landingpad instructions. |
| 5616 | while (IP->isEHPad()) ++IP; |
| 5617 | |
| 5618 | // Set IP below instructions recently inserted by SCEVExpander. This keeps the |
| 5619 | // IP consistent across expansions and allows the previously inserted |
| 5620 | // instructions to be reused by subsequent expansion. |
| 5621 | while (Rewriter.isInsertedInstruction(I: &*IP) && IP != LowestIP) |
| 5622 | ++IP; |
| 5623 | |
| 5624 | return IP; |
| 5625 | } |
| 5626 | |
| 5627 | /// Emit instructions for the leading candidate expression for this LSRUse (this |
| 5628 | /// is called "expanding"). |
| 5629 | Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF, |
| 5630 | const Formula &F, BasicBlock::iterator IP, |
| 5631 | SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { |
| 5632 | if (LU.RigidFormula) |
| 5633 | return LF.OperandValToReplace; |
| 5634 | |
| 5635 | // Determine an input position which will be dominated by the operands and |
| 5636 | // which will dominate the result. |
| 5637 | IP = AdjustInsertPositionForExpand(LowestIP: IP, LF, LU); |
| 5638 | Rewriter.setInsertPoint(&*IP); |
| 5639 | |
| 5640 | // Inform the Rewriter if we have a post-increment use, so that it can |
| 5641 | // perform an advantageous expansion. |
| 5642 | Rewriter.setPostInc(LF.PostIncLoops); |
| 5643 | |
| 5644 | // This is the type that the user actually needs. |
| 5645 | Type *OpTy = LF.OperandValToReplace->getType(); |
| 5646 | // This will be the type that we'll initially expand to. |
| 5647 | Type *Ty = F.getType(); |
| 5648 | if (!Ty) |
| 5649 | // No type known; just expand directly to the ultimate type. |
| 5650 | Ty = OpTy; |
| 5651 | else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(Ty: OpTy)) |
| 5652 | // Expand directly to the ultimate type if it's the right size. |
| 5653 | Ty = OpTy; |
| 5654 | // This is the type to do integer arithmetic in. |
| 5655 | Type *IntTy = SE.getEffectiveSCEVType(Ty); |
| 5656 | |
| 5657 | // Build up a list of operands to add together to form the full base. |
| 5658 | SmallVector<const SCEV *, 8> Ops; |
| 5659 | |
| 5660 | // Expand the BaseRegs portion. |
| 5661 | for (const SCEV *Reg : F.BaseRegs) { |
| 5662 | assert(!Reg->isZero() && "Zero allocated in a base register!" ); |
| 5663 | |
| 5664 | // If we're expanding for a post-inc user, make the post-inc adjustment. |
| 5665 | Reg = denormalizeForPostIncUse(S: Reg, Loops: LF.PostIncLoops, SE); |
| 5666 | Ops.push_back(Elt: SE.getUnknown(V: Rewriter.expandCodeFor(SH: Reg, Ty: nullptr))); |
| 5667 | } |
| 5668 | |
| 5669 | // Expand the ScaledReg portion. |
| 5670 | Value *ICmpScaledV = nullptr; |
| 5671 | if (F.Scale != 0) { |
| 5672 | const SCEV *ScaledS = F.ScaledReg; |
| 5673 | |
| 5674 | // If we're expanding for a post-inc user, make the post-inc adjustment. |
| 5675 | PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); |
| 5676 | ScaledS = denormalizeForPostIncUse(S: ScaledS, Loops, SE); |
| 5677 | |
| 5678 | if (LU.Kind == LSRUse::ICmpZero) { |
| 5679 | // Expand ScaleReg as if it was part of the base regs. |
| 5680 | if (F.Scale == 1) |
| 5681 | Ops.push_back( |
| 5682 | Elt: SE.getUnknown(V: Rewriter.expandCodeFor(SH: ScaledS, Ty: nullptr))); |
| 5683 | else { |
| 5684 | // An interesting way of "folding" with an icmp is to use a negated |
| 5685 | // scale, which we'll implement by inserting it into the other operand |
| 5686 | // of the icmp. |
| 5687 | assert(F.Scale == -1 && |
| 5688 | "The only scale supported by ICmpZero uses is -1!" ); |
| 5689 | ICmpScaledV = Rewriter.expandCodeFor(SH: ScaledS, Ty: nullptr); |
| 5690 | } |
| 5691 | } else { |
| 5692 | // Otherwise just expand the scaled register and an explicit scale, |
| 5693 | // which is expected to be matched as part of the address. |
| 5694 | |
| 5695 | // Flush the operand list to suppress SCEVExpander hoisting address modes. |
| 5696 | // Unless the addressing mode will not be folded. |
| 5697 | if (!Ops.empty() && LU.Kind == LSRUse::Address && |
| 5698 | isAMCompletelyFolded(TTI, LU, F)) { |
| 5699 | Value *FullV = Rewriter.expandCodeFor(SH: SE.getAddExpr(Ops), Ty: nullptr); |
| 5700 | Ops.clear(); |
| 5701 | Ops.push_back(Elt: SE.getUnknown(V: FullV)); |
| 5702 | } |
| 5703 | ScaledS = SE.getUnknown(V: Rewriter.expandCodeFor(SH: ScaledS, Ty: nullptr)); |
| 5704 | if (F.Scale != 1) |
| 5705 | ScaledS = |
| 5706 | SE.getMulExpr(LHS: ScaledS, RHS: SE.getConstant(Ty: ScaledS->getType(), V: F.Scale)); |
| 5707 | Ops.push_back(Elt: ScaledS); |
| 5708 | } |
| 5709 | } |
| 5710 | |
| 5711 | // Expand the GV portion. |
| 5712 | if (F.BaseGV) { |
| 5713 | // Flush the operand list to suppress SCEVExpander hoisting. |
| 5714 | if (!Ops.empty()) { |
| 5715 | Value *FullV = Rewriter.expandCodeFor(SH: SE.getAddExpr(Ops), Ty: IntTy); |
| 5716 | Ops.clear(); |
| 5717 | Ops.push_back(Elt: SE.getUnknown(V: FullV)); |
| 5718 | } |
| 5719 | Ops.push_back(Elt: SE.getUnknown(V: F.BaseGV)); |
| 5720 | } |
| 5721 | |
| 5722 | // Flush the operand list to suppress SCEVExpander hoisting of both folded and |
| 5723 | // unfolded offsets. LSR assumes they both live next to their uses. |
| 5724 | if (!Ops.empty()) { |
| 5725 | Value *FullV = Rewriter.expandCodeFor(SH: SE.getAddExpr(Ops), Ty); |
| 5726 | Ops.clear(); |
| 5727 | Ops.push_back(Elt: SE.getUnknown(V: FullV)); |
| 5728 | } |
| 5729 | |
| 5730 | // FIXME: Are we sure we won't get a mismatch here? Is there a way to bail |
| 5731 | // out at this point, or should we generate a SCEV adding together mixed |
| 5732 | // offsets? |
| 5733 | assert(F.BaseOffset.isCompatibleImmediate(LF.Offset) && |
| 5734 | "Expanding mismatched offsets\n" ); |
| 5735 | // Expand the immediate portion. |
| 5736 | Immediate Offset = F.BaseOffset.addUnsigned(RHS: LF.Offset); |
| 5737 | if (Offset.isNonZero()) { |
| 5738 | if (LU.Kind == LSRUse::ICmpZero) { |
| 5739 | // The other interesting way of "folding" with an ICmpZero is to use a |
| 5740 | // negated immediate. |
| 5741 | if (!ICmpScaledV) |
| 5742 | ICmpScaledV = |
| 5743 | ConstantInt::get(Ty: IntTy, V: -(uint64_t)Offset.getFixedValue()); |
| 5744 | else { |
| 5745 | Ops.push_back(Elt: SE.getUnknown(V: ICmpScaledV)); |
| 5746 | ICmpScaledV = ConstantInt::get(Ty: IntTy, V: Offset.getFixedValue()); |
| 5747 | } |
| 5748 | } else { |
| 5749 | // Just add the immediate values. These again are expected to be matched |
| 5750 | // as part of the address. |
| 5751 | Ops.push_back(Elt: Offset.getUnknownSCEV(SE, Ty: IntTy)); |
| 5752 | } |
| 5753 | } |
| 5754 | |
| 5755 | // Expand the unfolded offset portion. |
| 5756 | Immediate UnfoldedOffset = F.UnfoldedOffset; |
| 5757 | if (UnfoldedOffset.isNonZero()) { |
| 5758 | // Just add the immediate values. |
| 5759 | Ops.push_back(Elt: UnfoldedOffset.getUnknownSCEV(SE, Ty: IntTy)); |
| 5760 | } |
| 5761 | |
| 5762 | // Emit instructions summing all the operands. |
| 5763 | const SCEV *FullS = Ops.empty() ? |
| 5764 | SE.getConstant(Ty: IntTy, V: 0) : |
| 5765 | SE.getAddExpr(Ops); |
| 5766 | Value *FullV = Rewriter.expandCodeFor(SH: FullS, Ty); |
| 5767 | |
| 5768 | // We're done expanding now, so reset the rewriter. |
| 5769 | Rewriter.clearPostInc(); |
| 5770 | |
| 5771 | // An ICmpZero Formula represents an ICmp which we're handling as a |
| 5772 | // comparison against zero. Now that we've expanded an expression for that |
| 5773 | // form, update the ICmp's other operand. |
| 5774 | if (LU.Kind == LSRUse::ICmpZero) { |
| 5775 | ICmpInst *CI = cast<ICmpInst>(Val: LF.UserInst); |
| 5776 | if (auto *OperandIsInstr = dyn_cast<Instruction>(Val: CI->getOperand(i_nocapture: 1))) |
| 5777 | DeadInsts.emplace_back(Args&: OperandIsInstr); |
| 5778 | assert(!F.BaseGV && "ICmp does not support folding a global value and " |
| 5779 | "a scale at the same time!" ); |
| 5780 | if (F.Scale == -1) { |
| 5781 | if (ICmpScaledV->getType() != OpTy) { |
| 5782 | Instruction *Cast = CastInst::Create( |
| 5783 | CastInst::getCastOpcode(Val: ICmpScaledV, SrcIsSigned: false, Ty: OpTy, DstIsSigned: false), |
| 5784 | S: ICmpScaledV, Ty: OpTy, Name: "tmp" , InsertBefore: CI->getIterator()); |
| 5785 | ICmpScaledV = Cast; |
| 5786 | } |
| 5787 | CI->setOperand(i_nocapture: 1, Val_nocapture: ICmpScaledV); |
| 5788 | } else { |
| 5789 | // A scale of 1 means that the scale has been expanded as part of the |
| 5790 | // base regs. |
| 5791 | assert((F.Scale == 0 || F.Scale == 1) && |
| 5792 | "ICmp does not support folding a global value and " |
| 5793 | "a scale at the same time!" ); |
| 5794 | Constant *C = ConstantInt::getSigned(Ty: SE.getEffectiveSCEVType(Ty: OpTy), |
| 5795 | V: -(uint64_t)Offset.getFixedValue()); |
| 5796 | if (C->getType() != OpTy) { |
| 5797 | C = ConstantFoldCastOperand( |
| 5798 | Opcode: CastInst::getCastOpcode(Val: C, SrcIsSigned: false, Ty: OpTy, DstIsSigned: false), C, DestTy: OpTy, |
| 5799 | DL: CI->getDataLayout()); |
| 5800 | assert(C && "Cast of ConstantInt should have folded" ); |
| 5801 | } |
| 5802 | |
| 5803 | CI->setOperand(i_nocapture: 1, Val_nocapture: C); |
| 5804 | } |
| 5805 | } |
| 5806 | |
| 5807 | return FullV; |
| 5808 | } |
| 5809 | |
| 5810 | /// Helper for Rewrite. PHI nodes are special because the use of their operands |
| 5811 | /// effectively happens in their predecessor blocks, so the expression may need |
| 5812 | /// to be expanded in multiple places. |
| 5813 | void LSRInstance::RewriteForPHI(PHINode *PN, const LSRUse &LU, |
| 5814 | const LSRFixup &LF, const Formula &F, |
| 5815 | SmallVectorImpl<WeakTrackingVH> &DeadInsts) { |
| 5816 | DenseMap<BasicBlock *, Value *> Inserted; |
| 5817 | |
| 5818 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) |
| 5819 | if (PN->getIncomingValue(i) == LF.OperandValToReplace) { |
| 5820 | bool needUpdateFixups = false; |
| 5821 | BasicBlock *BB = PN->getIncomingBlock(i); |
| 5822 | |
| 5823 | // If this is a critical edge, split the edge so that we do not insert |
| 5824 | // the code on all predecessor/successor paths. We do this unless this |
| 5825 | // is the canonical backedge for this loop, which complicates post-inc |
| 5826 | // users. |
| 5827 | if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && |
| 5828 | !isa<IndirectBrInst>(Val: BB->getTerminator()) && |
| 5829 | !isa<CatchSwitchInst>(Val: BB->getTerminator())) { |
| 5830 | BasicBlock *Parent = PN->getParent(); |
| 5831 | Loop *PNLoop = LI.getLoopFor(BB: Parent); |
| 5832 | if (!PNLoop || Parent != PNLoop->getHeader()) { |
| 5833 | // Split the critical edge. |
| 5834 | BasicBlock *NewBB = nullptr; |
| 5835 | if (!Parent->isLandingPad()) { |
| 5836 | NewBB = |
| 5837 | SplitCriticalEdge(Src: BB, Dst: Parent, |
| 5838 | Options: CriticalEdgeSplittingOptions(&DT, &LI, MSSAU) |
| 5839 | .setMergeIdenticalEdges() |
| 5840 | .setKeepOneInputPHIs()); |
| 5841 | } else { |
| 5842 | SmallVector<BasicBlock*, 2> NewBBs; |
| 5843 | DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); |
| 5844 | SplitLandingPadPredecessors(OrigBB: Parent, Preds: BB, Suffix: "" , Suffix2: "" , NewBBs, DTU: &DTU, LI: &LI); |
| 5845 | NewBB = NewBBs[0]; |
| 5846 | } |
| 5847 | // If NewBB==NULL, then SplitCriticalEdge refused to split because all |
| 5848 | // phi predecessors are identical. The simple thing to do is skip |
| 5849 | // splitting in this case rather than complicate the API. |
| 5850 | if (NewBB) { |
| 5851 | // If PN is outside of the loop and BB is in the loop, we want to |
| 5852 | // move the block to be immediately before the PHI block, not |
| 5853 | // immediately after BB. |
| 5854 | if (L->contains(BB) && !L->contains(Inst: PN)) |
| 5855 | NewBB->moveBefore(MovePos: PN->getParent()); |
| 5856 | |
| 5857 | // Splitting the edge can reduce the number of PHI entries we have. |
| 5858 | e = PN->getNumIncomingValues(); |
| 5859 | BB = NewBB; |
| 5860 | i = PN->getBasicBlockIndex(BB); |
| 5861 | |
| 5862 | needUpdateFixups = true; |
| 5863 | } |
| 5864 | } |
| 5865 | } |
| 5866 | |
| 5867 | std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = |
| 5868 | Inserted.try_emplace(Key: BB); |
| 5869 | if (!Pair.second) |
| 5870 | PN->setIncomingValue(i, V: Pair.first->second); |
| 5871 | else { |
| 5872 | Value *FullV = |
| 5873 | Expand(LU, LF, F, IP: BB->getTerminator()->getIterator(), DeadInsts); |
| 5874 | |
| 5875 | // If this is reuse-by-noop-cast, insert the noop cast. |
| 5876 | Type *OpTy = LF.OperandValToReplace->getType(); |
| 5877 | if (FullV->getType() != OpTy) |
| 5878 | FullV = CastInst::Create( |
| 5879 | CastInst::getCastOpcode(Val: FullV, SrcIsSigned: false, Ty: OpTy, DstIsSigned: false), S: FullV, |
| 5880 | Ty: LF.OperandValToReplace->getType(), Name: "tmp" , |
| 5881 | InsertBefore: BB->getTerminator()->getIterator()); |
| 5882 | |
| 5883 | // If the incoming block for this value is not in the loop, it means the |
| 5884 | // current PHI is not in a loop exit, so we must create a LCSSA PHI for |
| 5885 | // the inserted value. |
| 5886 | if (auto *I = dyn_cast<Instruction>(Val: FullV)) |
| 5887 | if (L->contains(Inst: I) && !L->contains(BB)) |
| 5888 | InsertedNonLCSSAInsts.insert(X: I); |
| 5889 | |
| 5890 | PN->setIncomingValue(i, V: FullV); |
| 5891 | Pair.first->second = FullV; |
| 5892 | } |
| 5893 | |
| 5894 | // If LSR splits critical edge and phi node has other pending |
| 5895 | // fixup operands, we need to update those pending fixups. Otherwise |
| 5896 | // formulae will not be implemented completely and some instructions |
| 5897 | // will not be eliminated. |
| 5898 | if (needUpdateFixups) { |
| 5899 | for (LSRUse &LU : Uses) |
| 5900 | for (LSRFixup &Fixup : LU.Fixups) |
| 5901 | // If fixup is supposed to rewrite some operand in the phi |
| 5902 | // that was just updated, it may be already moved to |
| 5903 | // another phi node. Such fixup requires update. |
| 5904 | if (Fixup.UserInst == PN) { |
| 5905 | // Check if the operand we try to replace still exists in the |
| 5906 | // original phi. |
| 5907 | bool foundInOriginalPHI = false; |
| 5908 | for (const auto &val : PN->incoming_values()) |
| 5909 | if (val == Fixup.OperandValToReplace) { |
| 5910 | foundInOriginalPHI = true; |
| 5911 | break; |
| 5912 | } |
| 5913 | |
| 5914 | // If fixup operand found in original PHI - nothing to do. |
| 5915 | if (foundInOriginalPHI) |
| 5916 | continue; |
| 5917 | |
| 5918 | // Otherwise it might be moved to another PHI and requires update. |
| 5919 | // If fixup operand not found in any of the incoming blocks that |
| 5920 | // means we have already rewritten it - nothing to do. |
| 5921 | for (const auto &Block : PN->blocks()) |
| 5922 | for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(Val: I); |
| 5923 | ++I) { |
| 5924 | PHINode *NewPN = cast<PHINode>(Val&: I); |
| 5925 | for (const auto &val : NewPN->incoming_values()) |
| 5926 | if (val == Fixup.OperandValToReplace) |
| 5927 | Fixup.UserInst = NewPN; |
| 5928 | } |
| 5929 | } |
| 5930 | } |
| 5931 | } |
| 5932 | } |
| 5933 | |
| 5934 | /// Emit instructions for the leading candidate expression for this LSRUse (this |
| 5935 | /// is called "expanding"), and update the UserInst to reference the newly |
| 5936 | /// expanded value. |
| 5937 | void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF, |
| 5938 | const Formula &F, |
| 5939 | SmallVectorImpl<WeakTrackingVH> &DeadInsts) { |
| 5940 | // First, find an insertion point that dominates UserInst. For PHI nodes, |
| 5941 | // find the nearest block which dominates all the relevant uses. |
| 5942 | if (PHINode *PN = dyn_cast<PHINode>(Val: LF.UserInst)) { |
| 5943 | RewriteForPHI(PN, LU, LF, F, DeadInsts); |
| 5944 | } else { |
| 5945 | Value *FullV = Expand(LU, LF, F, IP: LF.UserInst->getIterator(), DeadInsts); |
| 5946 | |
| 5947 | // If this is reuse-by-noop-cast, insert the noop cast. |
| 5948 | Type *OpTy = LF.OperandValToReplace->getType(); |
| 5949 | if (FullV->getType() != OpTy) { |
| 5950 | Instruction *Cast = |
| 5951 | CastInst::Create(CastInst::getCastOpcode(Val: FullV, SrcIsSigned: false, Ty: OpTy, DstIsSigned: false), |
| 5952 | S: FullV, Ty: OpTy, Name: "tmp" , InsertBefore: LF.UserInst->getIterator()); |
| 5953 | FullV = Cast; |
| 5954 | } |
| 5955 | |
| 5956 | // Update the user. ICmpZero is handled specially here (for now) because |
| 5957 | // Expand may have updated one of the operands of the icmp already, and |
| 5958 | // its new value may happen to be equal to LF.OperandValToReplace, in |
| 5959 | // which case doing replaceUsesOfWith leads to replacing both operands |
| 5960 | // with the same value. TODO: Reorganize this. |
| 5961 | if (LU.Kind == LSRUse::ICmpZero) |
| 5962 | LF.UserInst->setOperand(i: 0, Val: FullV); |
| 5963 | else |
| 5964 | LF.UserInst->replaceUsesOfWith(From: LF.OperandValToReplace, To: FullV); |
| 5965 | } |
| 5966 | |
| 5967 | if (auto *OperandIsInstr = dyn_cast<Instruction>(Val: LF.OperandValToReplace)) |
| 5968 | DeadInsts.emplace_back(Args&: OperandIsInstr); |
| 5969 | } |
| 5970 | |
| 5971 | // Trying to hoist the IVInc to loop header if all IVInc users are in |
| 5972 | // the loop header. It will help backend to generate post index load/store |
| 5973 | // when the latch block is different from loop header block. |
| 5974 | static bool canHoistIVInc(const TargetTransformInfo &TTI, const LSRFixup &Fixup, |
| 5975 | const LSRUse &LU, Instruction *IVIncInsertPos, |
| 5976 | Loop *L) { |
| 5977 | if (LU.Kind != LSRUse::Address) |
| 5978 | return false; |
| 5979 | |
| 5980 | // For now this code do the conservative optimization, only work for |
| 5981 | // the header block. Later we can hoist the IVInc to the block post |
| 5982 | // dominate all users. |
| 5983 | BasicBlock * = L->getHeader(); |
| 5984 | if (IVIncInsertPos->getParent() == LHeader) |
| 5985 | return false; |
| 5986 | |
| 5987 | if (!Fixup.OperandValToReplace || |
| 5988 | any_of(Range: Fixup.OperandValToReplace->users(), P: [&LHeader](User *U) { |
| 5989 | Instruction *UI = cast<Instruction>(Val: U); |
| 5990 | return UI->getParent() != LHeader; |
| 5991 | })) |
| 5992 | return false; |
| 5993 | |
| 5994 | Instruction *I = Fixup.UserInst; |
| 5995 | Type *Ty = I->getType(); |
| 5996 | return (isa<LoadInst>(Val: I) && TTI.isIndexedLoadLegal(Mode: TTI.MIM_PostInc, Ty)) || |
| 5997 | (isa<StoreInst>(Val: I) && TTI.isIndexedStoreLegal(Mode: TTI.MIM_PostInc, Ty)); |
| 5998 | } |
| 5999 | |
| 6000 | /// Rewrite all the fixup locations with new values, following the chosen |
| 6001 | /// solution. |
| 6002 | void LSRInstance::ImplementSolution( |
| 6003 | const SmallVectorImpl<const Formula *> &Solution) { |
| 6004 | // Keep track of instructions we may have made dead, so that |
| 6005 | // we can remove them after we are done working. |
| 6006 | SmallVector<WeakTrackingVH, 16> DeadInsts; |
| 6007 | |
| 6008 | // Mark phi nodes that terminate chains so the expander tries to reuse them. |
| 6009 | for (const IVChain &Chain : IVChainVec) { |
| 6010 | if (PHINode *PN = dyn_cast<PHINode>(Val: Chain.tailUserInst())) |
| 6011 | Rewriter.setChainedPhi(PN); |
| 6012 | } |
| 6013 | |
| 6014 | // Expand the new value definitions and update the users. |
| 6015 | for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) |
| 6016 | for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { |
| 6017 | Instruction *InsertPos = |
| 6018 | canHoistIVInc(TTI, Fixup, LU: Uses[LUIdx], IVIncInsertPos, L) |
| 6019 | ? L->getHeader()->getTerminator() |
| 6020 | : IVIncInsertPos; |
| 6021 | Rewriter.setIVIncInsertPos(L, Pos: InsertPos); |
| 6022 | Rewrite(LU: Uses[LUIdx], LF: Fixup, F: *Solution[LUIdx], DeadInsts); |
| 6023 | Changed = true; |
| 6024 | } |
| 6025 | |
| 6026 | auto InsertedInsts = InsertedNonLCSSAInsts.takeVector(); |
| 6027 | formLCSSAForInstructions(Worklist&: InsertedInsts, DT, LI, SE: &SE); |
| 6028 | |
| 6029 | for (const IVChain &Chain : IVChainVec) { |
| 6030 | GenerateIVChain(Chain, DeadInsts); |
| 6031 | Changed = true; |
| 6032 | } |
| 6033 | |
| 6034 | for (const WeakVH &IV : Rewriter.getInsertedIVs()) |
| 6035 | if (IV && dyn_cast<Instruction>(Val: &*IV)->getParent()) |
| 6036 | ScalarEvolutionIVs.push_back(Elt: IV); |
| 6037 | |
| 6038 | // Clean up after ourselves. This must be done before deleting any |
| 6039 | // instructions. |
| 6040 | Rewriter.clear(); |
| 6041 | |
| 6042 | Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, |
| 6043 | TLI: &TLI, MSSAU); |
| 6044 | |
| 6045 | // In our cost analysis above, we assume that each addrec consumes exactly |
| 6046 | // one register, and arrange to have increments inserted just before the |
| 6047 | // latch to maximimize the chance this is true. However, if we reused |
| 6048 | // existing IVs, we now need to move the increments to match our |
| 6049 | // expectations. Otherwise, our cost modeling results in us having a |
| 6050 | // chosen a non-optimal result for the actual schedule. (And yes, this |
| 6051 | // scheduling decision does impact later codegen.) |
| 6052 | for (PHINode &PN : L->getHeader()->phis()) { |
| 6053 | BinaryOperator *BO = nullptr; |
| 6054 | Value *Start = nullptr, *Step = nullptr; |
| 6055 | if (!matchSimpleRecurrence(P: &PN, BO, Start, Step)) |
| 6056 | continue; |
| 6057 | |
| 6058 | switch (BO->getOpcode()) { |
| 6059 | case Instruction::Sub: |
| 6060 | if (BO->getOperand(i_nocapture: 0) != &PN) |
| 6061 | // sub is non-commutative - match handling elsewhere in LSR |
| 6062 | continue; |
| 6063 | break; |
| 6064 | case Instruction::Add: |
| 6065 | break; |
| 6066 | default: |
| 6067 | continue; |
| 6068 | }; |
| 6069 | |
| 6070 | if (!isa<Constant>(Val: Step)) |
| 6071 | // If not a constant step, might increase register pressure |
| 6072 | // (We assume constants have been canonicalized to RHS) |
| 6073 | continue; |
| 6074 | |
| 6075 | if (BO->getParent() == IVIncInsertPos->getParent()) |
| 6076 | // Only bother moving across blocks. Isel can handle block local case. |
| 6077 | continue; |
| 6078 | |
| 6079 | // Can we legally schedule inc at the desired point? |
| 6080 | if (!llvm::all_of(Range: BO->uses(), |
| 6081 | P: [&](Use &U) {return DT.dominates(Def: IVIncInsertPos, U);})) |
| 6082 | continue; |
| 6083 | BO->moveBefore(InsertPos: IVIncInsertPos->getIterator()); |
| 6084 | Changed = true; |
| 6085 | } |
| 6086 | |
| 6087 | |
| 6088 | } |
| 6089 | |
| 6090 | LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, |
| 6091 | DominatorTree &DT, LoopInfo &LI, |
| 6092 | const TargetTransformInfo &TTI, AssumptionCache &AC, |
| 6093 | TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU) |
| 6094 | : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), TLI(TLI), TTI(TTI), L(L), |
| 6095 | MSSAU(MSSAU), AMK(PreferredAddresingMode.getNumOccurrences() > 0 |
| 6096 | ? PreferredAddresingMode |
| 6097 | : TTI.getPreferredAddressingMode(L, SE: &SE)), |
| 6098 | Rewriter(SE, L->getHeader()->getDataLayout(), "lsr" , false), |
| 6099 | BaselineCost(L, SE, TTI, AMK) { |
| 6100 | // If LoopSimplify form is not available, stay out of trouble. |
| 6101 | if (!L->isLoopSimplifyForm()) |
| 6102 | return; |
| 6103 | |
| 6104 | // If there's no interesting work to be done, bail early. |
| 6105 | if (IU.empty()) return; |
| 6106 | |
| 6107 | // If there's too much analysis to be done, bail early. We won't be able to |
| 6108 | // model the problem anyway. |
| 6109 | unsigned NumUsers = 0; |
| 6110 | for (const IVStrideUse &U : IU) { |
| 6111 | if (++NumUsers > MaxIVUsers) { |
| 6112 | (void)U; |
| 6113 | LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U |
| 6114 | << "\n" ); |
| 6115 | return; |
| 6116 | } |
| 6117 | // Bail out if we have a PHI on an EHPad that gets a value from a |
| 6118 | // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is |
| 6119 | // no good place to stick any instructions. |
| 6120 | if (auto *PN = dyn_cast<PHINode>(Val: U.getUser())) { |
| 6121 | auto FirstNonPHI = PN->getParent()->getFirstNonPHIIt(); |
| 6122 | if (isa<FuncletPadInst>(Val: FirstNonPHI) || |
| 6123 | isa<CatchSwitchInst>(Val: FirstNonPHI)) |
| 6124 | for (BasicBlock *PredBB : PN->blocks()) |
| 6125 | if (isa<CatchSwitchInst>(Val: PredBB->getFirstNonPHIIt())) |
| 6126 | return; |
| 6127 | } |
| 6128 | } |
| 6129 | |
| 6130 | LLVM_DEBUG(dbgs() << "\nLSR on loop " ; |
| 6131 | L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); |
| 6132 | dbgs() << ":\n" ); |
| 6133 | |
| 6134 | // Configure SCEVExpander already now, so the correct mode is used for |
| 6135 | // isSafeToExpand() checks. |
| 6136 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS |
| 6137 | Rewriter.setDebugType(DEBUG_TYPE); |
| 6138 | #endif |
| 6139 | Rewriter.disableCanonicalMode(); |
| 6140 | Rewriter.enableLSRMode(); |
| 6141 | |
| 6142 | // First, perform some low-level loop optimizations. |
| 6143 | OptimizeShadowIV(); |
| 6144 | OptimizeLoopTermCond(); |
| 6145 | |
| 6146 | // If loop preparation eliminates all interesting IV users, bail. |
| 6147 | if (IU.empty()) return; |
| 6148 | |
| 6149 | // Skip nested loops until we can model them better with formulae. |
| 6150 | if (!L->isInnermost()) { |
| 6151 | LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n" ); |
| 6152 | return; |
| 6153 | } |
| 6154 | |
| 6155 | // Start collecting data and preparing for the solver. |
| 6156 | // If number of registers is not the major cost, we cannot benefit from the |
| 6157 | // current profitable chain optimization which is based on number of |
| 6158 | // registers. |
| 6159 | // FIXME: add profitable chain optimization for other kinds major cost, for |
| 6160 | // example number of instructions. |
| 6161 | if (TTI.isNumRegsMajorCostOfLSR() || StressIVChain) |
| 6162 | CollectChains(); |
| 6163 | CollectInterestingTypesAndFactors(); |
| 6164 | CollectFixupsAndInitialFormulae(); |
| 6165 | CollectLoopInvariantFixupsAndFormulae(); |
| 6166 | |
| 6167 | if (Uses.empty()) |
| 6168 | return; |
| 6169 | |
| 6170 | LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n" ; |
| 6171 | print_uses(dbgs())); |
| 6172 | LLVM_DEBUG(dbgs() << "The baseline solution requires " ; |
| 6173 | BaselineCost.print(dbgs()); dbgs() << "\n" ); |
| 6174 | |
| 6175 | // Now use the reuse data to generate a bunch of interesting ways |
| 6176 | // to formulate the values needed for the uses. |
| 6177 | GenerateAllReuseFormulae(); |
| 6178 | |
| 6179 | FilterOutUndesirableDedicatedRegisters(); |
| 6180 | NarrowSearchSpaceUsingHeuristics(); |
| 6181 | |
| 6182 | SmallVector<const Formula *, 8> Solution; |
| 6183 | Solve(Solution); |
| 6184 | |
| 6185 | // Release memory that is no longer needed. |
| 6186 | Factors.clear(); |
| 6187 | Types.clear(); |
| 6188 | RegUses.clear(); |
| 6189 | |
| 6190 | if (Solution.empty()) |
| 6191 | return; |
| 6192 | |
| 6193 | #ifndef NDEBUG |
| 6194 | // Formulae should be legal. |
| 6195 | for (const LSRUse &LU : Uses) { |
| 6196 | for (const Formula &F : LU.Formulae) |
| 6197 | assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, |
| 6198 | F) && "Illegal formula generated!" ); |
| 6199 | }; |
| 6200 | #endif |
| 6201 | |
| 6202 | // Now that we've decided what we want, make it so. |
| 6203 | ImplementSolution(Solution); |
| 6204 | } |
| 6205 | |
| 6206 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 6207 | void LSRInstance::print_factors_and_types(raw_ostream &OS) const { |
| 6208 | if (Factors.empty() && Types.empty()) return; |
| 6209 | |
| 6210 | OS << "LSR has identified the following interesting factors and types: " ; |
| 6211 | bool First = true; |
| 6212 | |
| 6213 | for (int64_t Factor : Factors) { |
| 6214 | if (!First) OS << ", " ; |
| 6215 | First = false; |
| 6216 | OS << '*' << Factor; |
| 6217 | } |
| 6218 | |
| 6219 | for (Type *Ty : Types) { |
| 6220 | if (!First) OS << ", " ; |
| 6221 | First = false; |
| 6222 | OS << '(' << *Ty << ')'; |
| 6223 | } |
| 6224 | OS << '\n'; |
| 6225 | } |
| 6226 | |
| 6227 | void LSRInstance::print_fixups(raw_ostream &OS) const { |
| 6228 | OS << "LSR is examining the following fixup sites:\n" ; |
| 6229 | for (const LSRUse &LU : Uses) |
| 6230 | for (const LSRFixup &LF : LU.Fixups) { |
| 6231 | dbgs() << " " ; |
| 6232 | LF.print(OS); |
| 6233 | OS << '\n'; |
| 6234 | } |
| 6235 | } |
| 6236 | |
| 6237 | void LSRInstance::print_uses(raw_ostream &OS) const { |
| 6238 | OS << "LSR is examining the following uses:\n" ; |
| 6239 | for (const LSRUse &LU : Uses) { |
| 6240 | dbgs() << " " ; |
| 6241 | LU.print(OS); |
| 6242 | OS << '\n'; |
| 6243 | for (const Formula &F : LU.Formulae) { |
| 6244 | OS << " " ; |
| 6245 | F.print(OS); |
| 6246 | OS << '\n'; |
| 6247 | } |
| 6248 | } |
| 6249 | } |
| 6250 | |
| 6251 | void LSRInstance::print(raw_ostream &OS) const { |
| 6252 | print_factors_and_types(OS); |
| 6253 | print_fixups(OS); |
| 6254 | print_uses(OS); |
| 6255 | } |
| 6256 | |
| 6257 | LLVM_DUMP_METHOD void LSRInstance::dump() const { |
| 6258 | print(errs()); errs() << '\n'; |
| 6259 | } |
| 6260 | #endif |
| 6261 | |
| 6262 | namespace { |
| 6263 | |
| 6264 | class LoopStrengthReduce : public LoopPass { |
| 6265 | public: |
| 6266 | static char ID; // Pass ID, replacement for typeid |
| 6267 | |
| 6268 | LoopStrengthReduce(); |
| 6269 | |
| 6270 | private: |
| 6271 | bool runOnLoop(Loop *L, LPPassManager &LPM) override; |
| 6272 | void getAnalysisUsage(AnalysisUsage &AU) const override; |
| 6273 | }; |
| 6274 | |
| 6275 | } // end anonymous namespace |
| 6276 | |
| 6277 | LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { |
| 6278 | initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); |
| 6279 | } |
| 6280 | |
| 6281 | void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { |
| 6282 | // We split critical edges, so we change the CFG. However, we do update |
| 6283 | // many analyses if they are around. |
| 6284 | AU.addPreservedID(ID&: LoopSimplifyID); |
| 6285 | |
| 6286 | AU.addRequired<LoopInfoWrapperPass>(); |
| 6287 | AU.addPreserved<LoopInfoWrapperPass>(); |
| 6288 | AU.addRequiredID(ID&: LoopSimplifyID); |
| 6289 | AU.addRequired<DominatorTreeWrapperPass>(); |
| 6290 | AU.addPreserved<DominatorTreeWrapperPass>(); |
| 6291 | AU.addRequired<ScalarEvolutionWrapperPass>(); |
| 6292 | AU.addPreserved<ScalarEvolutionWrapperPass>(); |
| 6293 | AU.addRequired<AssumptionCacheTracker>(); |
| 6294 | AU.addRequired<TargetLibraryInfoWrapperPass>(); |
| 6295 | // Requiring LoopSimplify a second time here prevents IVUsers from running |
| 6296 | // twice, since LoopSimplify was invalidated by running ScalarEvolution. |
| 6297 | AU.addRequiredID(ID&: LoopSimplifyID); |
| 6298 | AU.addRequired<IVUsersWrapperPass>(); |
| 6299 | AU.addPreserved<IVUsersWrapperPass>(); |
| 6300 | AU.addRequired<TargetTransformInfoWrapperPass>(); |
| 6301 | AU.addPreserved<MemorySSAWrapperPass>(); |
| 6302 | } |
| 6303 | |
| 6304 | namespace { |
| 6305 | |
| 6306 | /// Enables more convenient iteration over a DWARF expression vector. |
| 6307 | static iterator_range<llvm::DIExpression::expr_op_iterator> |
| 6308 | ToDwarfOpIter(SmallVectorImpl<uint64_t> &Expr) { |
| 6309 | llvm::DIExpression::expr_op_iterator Begin = |
| 6310 | llvm::DIExpression::expr_op_iterator(Expr.begin()); |
| 6311 | llvm::DIExpression::expr_op_iterator End = |
| 6312 | llvm::DIExpression::expr_op_iterator(Expr.end()); |
| 6313 | return {Begin, End}; |
| 6314 | } |
| 6315 | |
| 6316 | struct SCEVDbgValueBuilder { |
| 6317 | SCEVDbgValueBuilder() = default; |
| 6318 | SCEVDbgValueBuilder(const SCEVDbgValueBuilder &Base) { clone(Base); } |
| 6319 | |
| 6320 | void clone(const SCEVDbgValueBuilder &Base) { |
| 6321 | LocationOps = Base.LocationOps; |
| 6322 | Expr = Base.Expr; |
| 6323 | } |
| 6324 | |
| 6325 | void clear() { |
| 6326 | LocationOps.clear(); |
| 6327 | Expr.clear(); |
| 6328 | } |
| 6329 | |
| 6330 | /// The DIExpression as we translate the SCEV. |
| 6331 | SmallVector<uint64_t, 6> Expr; |
| 6332 | /// The location ops of the DIExpression. |
| 6333 | SmallVector<Value *, 2> LocationOps; |
| 6334 | |
| 6335 | void pushOperator(uint64_t Op) { Expr.push_back(Elt: Op); } |
| 6336 | void pushUInt(uint64_t Operand) { Expr.push_back(Elt: Operand); } |
| 6337 | |
| 6338 | /// Add a DW_OP_LLVM_arg to the expression, followed by the index of the value |
| 6339 | /// in the set of values referenced by the expression. |
| 6340 | void pushLocation(llvm::Value *V) { |
| 6341 | Expr.push_back(Elt: llvm::dwarf::DW_OP_LLVM_arg); |
| 6342 | auto *It = llvm::find(Range&: LocationOps, Val: V); |
| 6343 | unsigned ArgIndex = 0; |
| 6344 | if (It != LocationOps.end()) { |
| 6345 | ArgIndex = std::distance(first: LocationOps.begin(), last: It); |
| 6346 | } else { |
| 6347 | ArgIndex = LocationOps.size(); |
| 6348 | LocationOps.push_back(Elt: V); |
| 6349 | } |
| 6350 | Expr.push_back(Elt: ArgIndex); |
| 6351 | } |
| 6352 | |
| 6353 | void pushValue(const SCEVUnknown *U) { |
| 6354 | llvm::Value *V = cast<SCEVUnknown>(Val: U)->getValue(); |
| 6355 | pushLocation(V); |
| 6356 | } |
| 6357 | |
| 6358 | bool pushConst(const SCEVConstant *C) { |
| 6359 | if (C->getAPInt().getSignificantBits() > 64) |
| 6360 | return false; |
| 6361 | Expr.push_back(Elt: llvm::dwarf::DW_OP_consts); |
| 6362 | Expr.push_back(Elt: C->getAPInt().getSExtValue()); |
| 6363 | return true; |
| 6364 | } |
| 6365 | |
| 6366 | // Iterating the expression as DWARF ops is convenient when updating |
| 6367 | // DWARF_OP_LLVM_args. |
| 6368 | iterator_range<llvm::DIExpression::expr_op_iterator> expr_ops() { |
| 6369 | return ToDwarfOpIter(Expr); |
| 6370 | } |
| 6371 | |
| 6372 | /// Several SCEV types are sequences of the same arithmetic operator applied |
| 6373 | /// to constants and values that may be extended or truncated. |
| 6374 | bool pushArithmeticExpr(const llvm::SCEVCommutativeExpr *CommExpr, |
| 6375 | uint64_t DwarfOp) { |
| 6376 | assert((isa<llvm::SCEVAddExpr>(CommExpr) || isa<SCEVMulExpr>(CommExpr)) && |
| 6377 | "Expected arithmetic SCEV type" ); |
| 6378 | bool Success = true; |
| 6379 | unsigned EmitOperator = 0; |
| 6380 | for (const auto &Op : CommExpr->operands()) { |
| 6381 | Success &= pushSCEV(S: Op); |
| 6382 | |
| 6383 | if (EmitOperator >= 1) |
| 6384 | pushOperator(Op: DwarfOp); |
| 6385 | ++EmitOperator; |
| 6386 | } |
| 6387 | return Success; |
| 6388 | } |
| 6389 | |
| 6390 | // TODO: Identify and omit noop casts. |
| 6391 | bool pushCast(const llvm::SCEVCastExpr *C, bool IsSigned) { |
| 6392 | const llvm::SCEV *Inner = C->getOperand(i: 0); |
| 6393 | const llvm::Type *Type = C->getType(); |
| 6394 | uint64_t ToWidth = Type->getIntegerBitWidth(); |
| 6395 | bool Success = pushSCEV(S: Inner); |
| 6396 | uint64_t CastOps[] = {dwarf::DW_OP_LLVM_convert, ToWidth, |
| 6397 | IsSigned ? llvm::dwarf::DW_ATE_signed |
| 6398 | : llvm::dwarf::DW_ATE_unsigned}; |
| 6399 | for (const auto &Op : CastOps) |
| 6400 | pushOperator(Op); |
| 6401 | return Success; |
| 6402 | } |
| 6403 | |
| 6404 | // TODO: MinMax - although these haven't been encountered in the test suite. |
| 6405 | bool pushSCEV(const llvm::SCEV *S) { |
| 6406 | bool Success = true; |
| 6407 | if (const SCEVConstant *StartInt = dyn_cast<SCEVConstant>(Val: S)) { |
| 6408 | Success &= pushConst(C: StartInt); |
| 6409 | |
| 6410 | } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Val: S)) { |
| 6411 | if (!U->getValue()) |
| 6412 | return false; |
| 6413 | pushLocation(V: U->getValue()); |
| 6414 | |
| 6415 | } else if (const SCEVMulExpr *MulRec = dyn_cast<SCEVMulExpr>(Val: S)) { |
| 6416 | Success &= pushArithmeticExpr(CommExpr: MulRec, DwarfOp: llvm::dwarf::DW_OP_mul); |
| 6417 | |
| 6418 | } else if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(Val: S)) { |
| 6419 | Success &= pushSCEV(S: UDiv->getLHS()); |
| 6420 | Success &= pushSCEV(S: UDiv->getRHS()); |
| 6421 | pushOperator(Op: llvm::dwarf::DW_OP_div); |
| 6422 | |
| 6423 | } else if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(Val: S)) { |
| 6424 | // Assert if a new and unknown SCEVCastEXpr type is encountered. |
| 6425 | assert((isa<SCEVZeroExtendExpr>(Cast) || isa<SCEVTruncateExpr>(Cast) || |
| 6426 | isa<SCEVPtrToIntExpr>(Cast) || isa<SCEVSignExtendExpr>(Cast)) && |
| 6427 | "Unexpected cast type in SCEV." ); |
| 6428 | Success &= pushCast(C: Cast, IsSigned: (isa<SCEVSignExtendExpr>(Val: Cast))); |
| 6429 | |
| 6430 | } else if (const SCEVAddExpr *AddExpr = dyn_cast<SCEVAddExpr>(Val: S)) { |
| 6431 | Success &= pushArithmeticExpr(CommExpr: AddExpr, DwarfOp: llvm::dwarf::DW_OP_plus); |
| 6432 | |
| 6433 | } else if (isa<SCEVAddRecExpr>(Val: S)) { |
| 6434 | // Nested SCEVAddRecExpr are generated by nested loops and are currently |
| 6435 | // unsupported. |
| 6436 | return false; |
| 6437 | |
| 6438 | } else { |
| 6439 | return false; |
| 6440 | } |
| 6441 | return Success; |
| 6442 | } |
| 6443 | |
| 6444 | /// Return true if the combination of arithmetic operator and underlying |
| 6445 | /// SCEV constant value is an identity function. |
| 6446 | bool isIdentityFunction(uint64_t Op, const SCEV *S) { |
| 6447 | if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Val: S)) { |
| 6448 | if (C->getAPInt().getSignificantBits() > 64) |
| 6449 | return false; |
| 6450 | int64_t I = C->getAPInt().getSExtValue(); |
| 6451 | switch (Op) { |
| 6452 | case llvm::dwarf::DW_OP_plus: |
| 6453 | case llvm::dwarf::DW_OP_minus: |
| 6454 | return I == 0; |
| 6455 | case llvm::dwarf::DW_OP_mul: |
| 6456 | case llvm::dwarf::DW_OP_div: |
| 6457 | return I == 1; |
| 6458 | } |
| 6459 | } |
| 6460 | return false; |
| 6461 | } |
| 6462 | |
| 6463 | /// Convert a SCEV of a value to a DIExpression that is pushed onto the |
| 6464 | /// builder's expression stack. The stack should already contain an |
| 6465 | /// expression for the iteration count, so that it can be multiplied by |
| 6466 | /// the stride and added to the start. |
| 6467 | /// Components of the expression are omitted if they are an identity function. |
| 6468 | /// Chain (non-affine) SCEVs are not supported. |
| 6469 | bool SCEVToValueExpr(const llvm::SCEVAddRecExpr &SAR, ScalarEvolution &SE) { |
| 6470 | assert(SAR.isAffine() && "Expected affine SCEV" ); |
| 6471 | const SCEV *Start = SAR.getStart(); |
| 6472 | const SCEV *Stride = SAR.getStepRecurrence(SE); |
| 6473 | |
| 6474 | // Skip pushing arithmetic noops. |
| 6475 | if (!isIdentityFunction(Op: llvm::dwarf::DW_OP_mul, S: Stride)) { |
| 6476 | if (!pushSCEV(S: Stride)) |
| 6477 | return false; |
| 6478 | pushOperator(Op: llvm::dwarf::DW_OP_mul); |
| 6479 | } |
| 6480 | if (!isIdentityFunction(Op: llvm::dwarf::DW_OP_plus, S: Start)) { |
| 6481 | if (!pushSCEV(S: Start)) |
| 6482 | return false; |
| 6483 | pushOperator(Op: llvm::dwarf::DW_OP_plus); |
| 6484 | } |
| 6485 | return true; |
| 6486 | } |
| 6487 | |
| 6488 | /// Create an expression that is an offset from a value (usually the IV). |
| 6489 | void createOffsetExpr(int64_t Offset, Value *OffsetValue) { |
| 6490 | pushLocation(V: OffsetValue); |
| 6491 | DIExpression::appendOffset(Ops&: Expr, Offset); |
| 6492 | LLVM_DEBUG( |
| 6493 | dbgs() << "scev-salvage: Generated IV offset expression. Offset: " |
| 6494 | << std::to_string(Offset) << "\n" ); |
| 6495 | } |
| 6496 | |
| 6497 | /// Combine a translation of the SCEV and the IV to create an expression that |
| 6498 | /// recovers a location's value. |
| 6499 | /// returns true if an expression was created. |
| 6500 | bool createIterCountExpr(const SCEV *S, |
| 6501 | const SCEVDbgValueBuilder &IterationCount, |
| 6502 | ScalarEvolution &SE) { |
| 6503 | // SCEVs for SSA values are most frquently of the form |
| 6504 | // {start,+,stride}, but sometimes they are ({start,+,stride} + %a + ..). |
| 6505 | // This is because %a is a PHI node that is not the IV. However, these |
| 6506 | // SCEVs have not been observed to result in debuginfo-lossy optimisations, |
| 6507 | // so its not expected this point will be reached. |
| 6508 | if (!isa<SCEVAddRecExpr>(Val: S)) |
| 6509 | return false; |
| 6510 | |
| 6511 | LLVM_DEBUG(dbgs() << "scev-salvage: Location to salvage SCEV: " << *S |
| 6512 | << '\n'); |
| 6513 | |
| 6514 | const auto *Rec = cast<SCEVAddRecExpr>(Val: S); |
| 6515 | if (!Rec->isAffine()) |
| 6516 | return false; |
| 6517 | |
| 6518 | if (S->getExpressionSize() > MaxSCEVSalvageExpressionSize) |
| 6519 | return false; |
| 6520 | |
| 6521 | // Initialise a new builder with the iteration count expression. In |
| 6522 | // combination with the value's SCEV this enables recovery. |
| 6523 | clone(Base: IterationCount); |
| 6524 | if (!SCEVToValueExpr(SAR: *Rec, SE)) |
| 6525 | return false; |
| 6526 | |
| 6527 | return true; |
| 6528 | } |
| 6529 | |
| 6530 | /// Convert a SCEV of a value to a DIExpression that is pushed onto the |
| 6531 | /// builder's expression stack. The stack should already contain an |
| 6532 | /// expression for the iteration count, so that it can be multiplied by |
| 6533 | /// the stride and added to the start. |
| 6534 | /// Components of the expression are omitted if they are an identity function. |
| 6535 | bool SCEVToIterCountExpr(const llvm::SCEVAddRecExpr &SAR, |
| 6536 | ScalarEvolution &SE) { |
| 6537 | assert(SAR.isAffine() && "Expected affine SCEV" ); |
| 6538 | const SCEV *Start = SAR.getStart(); |
| 6539 | const SCEV *Stride = SAR.getStepRecurrence(SE); |
| 6540 | |
| 6541 | // Skip pushing arithmetic noops. |
| 6542 | if (!isIdentityFunction(Op: llvm::dwarf::DW_OP_minus, S: Start)) { |
| 6543 | if (!pushSCEV(S: Start)) |
| 6544 | return false; |
| 6545 | pushOperator(Op: llvm::dwarf::DW_OP_minus); |
| 6546 | } |
| 6547 | if (!isIdentityFunction(Op: llvm::dwarf::DW_OP_div, S: Stride)) { |
| 6548 | if (!pushSCEV(S: Stride)) |
| 6549 | return false; |
| 6550 | pushOperator(Op: llvm::dwarf::DW_OP_div); |
| 6551 | } |
| 6552 | return true; |
| 6553 | } |
| 6554 | |
| 6555 | // Append the current expression and locations to a location list and an |
| 6556 | // expression list. Modify the DW_OP_LLVM_arg indexes to account for |
| 6557 | // the locations already present in the destination list. |
| 6558 | void appendToVectors(SmallVectorImpl<uint64_t> &DestExpr, |
| 6559 | SmallVectorImpl<Value *> &DestLocations) { |
| 6560 | assert(!DestLocations.empty() && |
| 6561 | "Expected the locations vector to contain the IV" ); |
| 6562 | // The DWARF_OP_LLVM_arg arguments of the expression being appended must be |
| 6563 | // modified to account for the locations already in the destination vector. |
| 6564 | // All builders contain the IV as the first location op. |
| 6565 | assert(!LocationOps.empty() && |
| 6566 | "Expected the location ops to contain the IV." ); |
| 6567 | // DestIndexMap[n] contains the index in DestLocations for the nth |
| 6568 | // location in this SCEVDbgValueBuilder. |
| 6569 | SmallVector<uint64_t, 2> DestIndexMap; |
| 6570 | for (const auto &Op : LocationOps) { |
| 6571 | auto It = find(Range&: DestLocations, Val: Op); |
| 6572 | if (It != DestLocations.end()) { |
| 6573 | // Location already exists in DestLocations, reuse existing ArgIndex. |
| 6574 | DestIndexMap.push_back(Elt: std::distance(first: DestLocations.begin(), last: It)); |
| 6575 | continue; |
| 6576 | } |
| 6577 | // Location is not in DestLocations, add it. |
| 6578 | DestIndexMap.push_back(Elt: DestLocations.size()); |
| 6579 | DestLocations.push_back(Elt: Op); |
| 6580 | } |
| 6581 | |
| 6582 | for (const auto &Op : expr_ops()) { |
| 6583 | if (Op.getOp() != dwarf::DW_OP_LLVM_arg) { |
| 6584 | Op.appendToVector(V&: DestExpr); |
| 6585 | continue; |
| 6586 | } |
| 6587 | |
| 6588 | DestExpr.push_back(Elt: dwarf::DW_OP_LLVM_arg); |
| 6589 | // `DW_OP_LLVM_arg n` represents the nth LocationOp in this SCEV, |
| 6590 | // DestIndexMap[n] contains its new index in DestLocations. |
| 6591 | uint64_t NewIndex = DestIndexMap[Op.getArg(I: 0)]; |
| 6592 | DestExpr.push_back(Elt: NewIndex); |
| 6593 | } |
| 6594 | } |
| 6595 | }; |
| 6596 | |
| 6597 | /// Holds all the required data to salvage a dbg.value using the pre-LSR SCEVs |
| 6598 | /// and DIExpression. |
| 6599 | struct DVIRecoveryRec { |
| 6600 | DVIRecoveryRec(DbgValueInst *DbgValue) |
| 6601 | : DbgRef(DbgValue), Expr(DbgValue->getExpression()), |
| 6602 | HadLocationArgList(false) {} |
| 6603 | DVIRecoveryRec(DbgVariableRecord *DVR) |
| 6604 | : DbgRef(DVR), Expr(DVR->getExpression()), HadLocationArgList(false) {} |
| 6605 | |
| 6606 | PointerUnion<DbgValueInst *, DbgVariableRecord *> DbgRef; |
| 6607 | DIExpression *Expr; |
| 6608 | bool HadLocationArgList; |
| 6609 | SmallVector<WeakVH, 2> LocationOps; |
| 6610 | SmallVector<const llvm::SCEV *, 2> SCEVs; |
| 6611 | SmallVector<std::unique_ptr<SCEVDbgValueBuilder>, 2> RecoveryExprs; |
| 6612 | |
| 6613 | void clear() { |
| 6614 | for (auto &RE : RecoveryExprs) |
| 6615 | RE.reset(); |
| 6616 | RecoveryExprs.clear(); |
| 6617 | } |
| 6618 | |
| 6619 | ~DVIRecoveryRec() { clear(); } |
| 6620 | }; |
| 6621 | } // namespace |
| 6622 | |
| 6623 | /// Returns the total number of DW_OP_llvm_arg operands in the expression. |
| 6624 | /// This helps in determining if a DIArglist is necessary or can be omitted from |
| 6625 | /// the dbg.value. |
| 6626 | static unsigned numLLVMArgOps(SmallVectorImpl<uint64_t> &Expr) { |
| 6627 | auto expr_ops = ToDwarfOpIter(Expr); |
| 6628 | unsigned Count = 0; |
| 6629 | for (auto Op : expr_ops) |
| 6630 | if (Op.getOp() == dwarf::DW_OP_LLVM_arg) |
| 6631 | Count++; |
| 6632 | return Count; |
| 6633 | } |
| 6634 | |
| 6635 | /// Overwrites DVI with the location and Ops as the DIExpression. This will |
| 6636 | /// create an invalid expression if Ops has any dwarf::DW_OP_llvm_arg operands, |
| 6637 | /// because a DIArglist is not created for the first argument of the dbg.value. |
| 6638 | template <typename T> |
| 6639 | static void updateDVIWithLocation(T &DbgVal, Value *Location, |
| 6640 | SmallVectorImpl<uint64_t> &Ops) { |
| 6641 | assert(numLLVMArgOps(Ops) == 0 && "Expected expression that does not " |
| 6642 | "contain any DW_OP_llvm_arg operands." ); |
| 6643 | DbgVal.setRawLocation(ValueAsMetadata::get(V: Location)); |
| 6644 | DbgVal.setExpression(DIExpression::get(Context&: DbgVal.getContext(), Elements: Ops)); |
| 6645 | DbgVal.setExpression(DIExpression::get(Context&: DbgVal.getContext(), Elements: Ops)); |
| 6646 | } |
| 6647 | |
| 6648 | /// Overwrite DVI with locations placed into a DIArglist. |
| 6649 | template <typename T> |
| 6650 | static void updateDVIWithLocations(T &DbgVal, |
| 6651 | SmallVectorImpl<Value *> &Locations, |
| 6652 | SmallVectorImpl<uint64_t> &Ops) { |
| 6653 | assert(numLLVMArgOps(Ops) != 0 && |
| 6654 | "Expected expression that references DIArglist locations using " |
| 6655 | "DW_OP_llvm_arg operands." ); |
| 6656 | SmallVector<ValueAsMetadata *, 3> MetadataLocs; |
| 6657 | for (Value *V : Locations) |
| 6658 | MetadataLocs.push_back(Elt: ValueAsMetadata::get(V)); |
| 6659 | auto ValArrayRef = llvm::ArrayRef<llvm::ValueAsMetadata *>(MetadataLocs); |
| 6660 | DbgVal.setRawLocation(llvm::DIArgList::get(Context&: DbgVal.getContext(), Args: ValArrayRef)); |
| 6661 | DbgVal.setExpression(DIExpression::get(Context&: DbgVal.getContext(), Elements: Ops)); |
| 6662 | } |
| 6663 | |
| 6664 | /// Write the new expression and new location ops for the dbg.value. If possible |
| 6665 | /// reduce the szie of the dbg.value intrinsic by omitting DIArglist. This |
| 6666 | /// can be omitted if: |
| 6667 | /// 1. There is only a single location, refenced by a single DW_OP_llvm_arg. |
| 6668 | /// 2. The DW_OP_LLVM_arg is the first operand in the expression. |
| 6669 | static void UpdateDbgValueInst(DVIRecoveryRec &DVIRec, |
| 6670 | SmallVectorImpl<Value *> &NewLocationOps, |
| 6671 | SmallVectorImpl<uint64_t> &NewExpr) { |
| 6672 | auto UpdateDbgValueInstImpl = [&](auto *DbgVal) { |
| 6673 | unsigned NumLLVMArgs = numLLVMArgOps(Expr&: NewExpr); |
| 6674 | if (NumLLVMArgs == 0) { |
| 6675 | // Location assumed to be on the stack. |
| 6676 | updateDVIWithLocation(*DbgVal, NewLocationOps[0], NewExpr); |
| 6677 | } else if (NumLLVMArgs == 1 && NewExpr[0] == dwarf::DW_OP_LLVM_arg) { |
| 6678 | // There is only a single DW_OP_llvm_arg at the start of the expression, |
| 6679 | // so it can be omitted along with DIArglist. |
| 6680 | assert(NewExpr[1] == 0 && |
| 6681 | "Lone LLVM_arg in a DIExpression should refer to location-op 0." ); |
| 6682 | llvm::SmallVector<uint64_t, 6> ShortenedOps(llvm::drop_begin(RangeOrContainer&: NewExpr, N: 2)); |
| 6683 | updateDVIWithLocation(*DbgVal, NewLocationOps[0], ShortenedOps); |
| 6684 | } else { |
| 6685 | // Multiple DW_OP_llvm_arg, so DIArgList is strictly necessary. |
| 6686 | updateDVIWithLocations(*DbgVal, NewLocationOps, NewExpr); |
| 6687 | } |
| 6688 | |
| 6689 | // If the DIExpression was previously empty then add the stack terminator. |
| 6690 | // Non-empty expressions have only had elements inserted into them and so |
| 6691 | // the terminator should already be present e.g. stack_value or fragment. |
| 6692 | DIExpression *SalvageExpr = DbgVal->getExpression(); |
| 6693 | if (!DVIRec.Expr->isComplex() && SalvageExpr->isComplex()) { |
| 6694 | SalvageExpr = |
| 6695 | DIExpression::append(Expr: SalvageExpr, Ops: {dwarf::DW_OP_stack_value}); |
| 6696 | DbgVal->setExpression(SalvageExpr); |
| 6697 | } |
| 6698 | }; |
| 6699 | if (isa<DbgValueInst *>(Val: DVIRec.DbgRef)) |
| 6700 | UpdateDbgValueInstImpl(cast<DbgValueInst *>(Val&: DVIRec.DbgRef)); |
| 6701 | else |
| 6702 | UpdateDbgValueInstImpl(cast<DbgVariableRecord *>(Val&: DVIRec.DbgRef)); |
| 6703 | } |
| 6704 | |
| 6705 | /// Cached location ops may be erased during LSR, in which case a poison is |
| 6706 | /// required when restoring from the cache. The type of that location is no |
| 6707 | /// longer available, so just use int8. The poison will be replaced by one or |
| 6708 | /// more locations later when a SCEVDbgValueBuilder selects alternative |
| 6709 | /// locations to use for the salvage. |
| 6710 | static Value *getValueOrPoison(WeakVH &VH, LLVMContext &C) { |
| 6711 | return (VH) ? VH : PoisonValue::get(T: llvm::Type::getInt8Ty(C)); |
| 6712 | } |
| 6713 | |
| 6714 | /// Restore the DVI's pre-LSR arguments. Substitute undef for any erased values. |
| 6715 | static void restorePreTransformState(DVIRecoveryRec &DVIRec) { |
| 6716 | auto RestorePreTransformStateImpl = [&](auto *DbgVal) { |
| 6717 | LLVM_DEBUG(dbgs() << "scev-salvage: restore dbg.value to pre-LSR state\n" |
| 6718 | << "scev-salvage: post-LSR: " << *DbgVal << '\n'); |
| 6719 | assert(DVIRec.Expr && "Expected an expression" ); |
| 6720 | DbgVal->setExpression(DVIRec.Expr); |
| 6721 | |
| 6722 | // Even a single location-op may be inside a DIArgList and referenced with |
| 6723 | // DW_OP_LLVM_arg, which is valid only with a DIArgList. |
| 6724 | if (!DVIRec.HadLocationArgList) { |
| 6725 | assert(DVIRec.LocationOps.size() == 1 && |
| 6726 | "Unexpected number of location ops." ); |
| 6727 | // LSR's unsuccessful salvage attempt may have added DIArgList, which in |
| 6728 | // this case was not present before, so force the location back to a |
| 6729 | // single uncontained Value. |
| 6730 | Value *CachedValue = |
| 6731 | getValueOrPoison(DVIRec.LocationOps[0], DbgVal->getContext()); |
| 6732 | DbgVal->setRawLocation(ValueAsMetadata::get(V: CachedValue)); |
| 6733 | } else { |
| 6734 | SmallVector<ValueAsMetadata *, 3> MetadataLocs; |
| 6735 | for (WeakVH VH : DVIRec.LocationOps) { |
| 6736 | Value *CachedValue = getValueOrPoison(VH, DbgVal->getContext()); |
| 6737 | MetadataLocs.push_back(Elt: ValueAsMetadata::get(V: CachedValue)); |
| 6738 | } |
| 6739 | auto ValArrayRef = llvm::ArrayRef<llvm::ValueAsMetadata *>(MetadataLocs); |
| 6740 | DbgVal->setRawLocation( |
| 6741 | llvm::DIArgList::get(Context&: DbgVal->getContext(), Args: ValArrayRef)); |
| 6742 | } |
| 6743 | LLVM_DEBUG(dbgs() << "scev-salvage: pre-LSR: " << *DbgVal << '\n'); |
| 6744 | }; |
| 6745 | if (isa<DbgValueInst *>(Val: DVIRec.DbgRef)) |
| 6746 | RestorePreTransformStateImpl(cast<DbgValueInst *>(Val&: DVIRec.DbgRef)); |
| 6747 | else |
| 6748 | RestorePreTransformStateImpl(cast<DbgVariableRecord *>(Val&: DVIRec.DbgRef)); |
| 6749 | } |
| 6750 | |
| 6751 | static bool SalvageDVI(llvm::Loop *L, ScalarEvolution &SE, |
| 6752 | llvm::PHINode *LSRInductionVar, DVIRecoveryRec &DVIRec, |
| 6753 | const SCEV *SCEVInductionVar, |
| 6754 | SCEVDbgValueBuilder IterCountExpr) { |
| 6755 | |
| 6756 | if (isa<DbgValueInst *>(Val: DVIRec.DbgRef) |
| 6757 | ? !cast<DbgValueInst *>(Val&: DVIRec.DbgRef)->isKillLocation() |
| 6758 | : !cast<DbgVariableRecord *>(Val&: DVIRec.DbgRef)->isKillLocation()) |
| 6759 | return false; |
| 6760 | |
| 6761 | // LSR may have caused several changes to the dbg.value in the failed salvage |
| 6762 | // attempt. So restore the DIExpression, the location ops and also the |
| 6763 | // location ops format, which is always DIArglist for multiple ops, but only |
| 6764 | // sometimes for a single op. |
| 6765 | restorePreTransformState(DVIRec); |
| 6766 | |
| 6767 | // LocationOpIndexMap[i] will store the post-LSR location index of |
| 6768 | // the non-optimised out location at pre-LSR index i. |
| 6769 | SmallVector<int64_t, 2> LocationOpIndexMap; |
| 6770 | LocationOpIndexMap.assign(NumElts: DVIRec.LocationOps.size(), Elt: -1); |
| 6771 | SmallVector<Value *, 2> NewLocationOps; |
| 6772 | NewLocationOps.push_back(Elt: LSRInductionVar); |
| 6773 | |
| 6774 | for (unsigned i = 0; i < DVIRec.LocationOps.size(); i++) { |
| 6775 | WeakVH VH = DVIRec.LocationOps[i]; |
| 6776 | // Place the locations not optimised out in the list first, avoiding |
| 6777 | // inserts later. The map is used to update the DIExpression's |
| 6778 | // DW_OP_LLVM_arg arguments as the expression is updated. |
| 6779 | if (VH && !isa<UndefValue>(Val: VH)) { |
| 6780 | NewLocationOps.push_back(Elt: VH); |
| 6781 | LocationOpIndexMap[i] = NewLocationOps.size() - 1; |
| 6782 | LLVM_DEBUG(dbgs() << "scev-salvage: Location index " << i |
| 6783 | << " now at index " << LocationOpIndexMap[i] << "\n" ); |
| 6784 | continue; |
| 6785 | } |
| 6786 | |
| 6787 | // It's possible that a value referred to in the SCEV may have been |
| 6788 | // optimised out by LSR. |
| 6789 | if (SE.containsErasedValue(S: DVIRec.SCEVs[i]) || |
| 6790 | SE.containsUndefs(S: DVIRec.SCEVs[i])) { |
| 6791 | LLVM_DEBUG(dbgs() << "scev-salvage: SCEV for location at index: " << i |
| 6792 | << " refers to a location that is now undef or erased. " |
| 6793 | "Salvage abandoned.\n" ); |
| 6794 | return false; |
| 6795 | } |
| 6796 | |
| 6797 | LLVM_DEBUG(dbgs() << "scev-salvage: salvaging location at index " << i |
| 6798 | << " with SCEV: " << *DVIRec.SCEVs[i] << "\n" ); |
| 6799 | |
| 6800 | DVIRec.RecoveryExprs[i] = std::make_unique<SCEVDbgValueBuilder>(); |
| 6801 | SCEVDbgValueBuilder *SalvageExpr = DVIRec.RecoveryExprs[i].get(); |
| 6802 | |
| 6803 | // Create an offset-based salvage expression if possible, as it requires |
| 6804 | // less DWARF ops than an iteration count-based expression. |
| 6805 | if (std::optional<APInt> Offset = |
| 6806 | SE.computeConstantDifference(LHS: DVIRec.SCEVs[i], RHS: SCEVInductionVar)) { |
| 6807 | if (Offset->getSignificantBits() <= 64) |
| 6808 | SalvageExpr->createOffsetExpr(Offset: Offset->getSExtValue(), OffsetValue: LSRInductionVar); |
| 6809 | else |
| 6810 | return false; |
| 6811 | } else if (!SalvageExpr->createIterCountExpr(S: DVIRec.SCEVs[i], IterationCount: IterCountExpr, |
| 6812 | SE)) |
| 6813 | return false; |
| 6814 | } |
| 6815 | |
| 6816 | // Merge the DbgValueBuilder generated expressions and the original |
| 6817 | // DIExpression, place the result into an new vector. |
| 6818 | SmallVector<uint64_t, 3> NewExpr; |
| 6819 | if (DVIRec.Expr->getNumElements() == 0) { |
| 6820 | assert(DVIRec.RecoveryExprs.size() == 1 && |
| 6821 | "Expected only a single recovery expression for an empty " |
| 6822 | "DIExpression." ); |
| 6823 | assert(DVIRec.RecoveryExprs[0] && |
| 6824 | "Expected a SCEVDbgSalvageBuilder for location 0" ); |
| 6825 | SCEVDbgValueBuilder *B = DVIRec.RecoveryExprs[0].get(); |
| 6826 | B->appendToVectors(DestExpr&: NewExpr, DestLocations&: NewLocationOps); |
| 6827 | } |
| 6828 | for (const auto &Op : DVIRec.Expr->expr_ops()) { |
| 6829 | // Most Ops needn't be updated. |
| 6830 | if (Op.getOp() != dwarf::DW_OP_LLVM_arg) { |
| 6831 | Op.appendToVector(V&: NewExpr); |
| 6832 | continue; |
| 6833 | } |
| 6834 | |
| 6835 | uint64_t LocationArgIndex = Op.getArg(I: 0); |
| 6836 | SCEVDbgValueBuilder *DbgBuilder = |
| 6837 | DVIRec.RecoveryExprs[LocationArgIndex].get(); |
| 6838 | // The location doesn't have s SCEVDbgValueBuilder, so LSR did not |
| 6839 | // optimise it away. So just translate the argument to the updated |
| 6840 | // location index. |
| 6841 | if (!DbgBuilder) { |
| 6842 | NewExpr.push_back(Elt: dwarf::DW_OP_LLVM_arg); |
| 6843 | assert(LocationOpIndexMap[Op.getArg(0)] != -1 && |
| 6844 | "Expected a positive index for the location-op position." ); |
| 6845 | NewExpr.push_back(Elt: LocationOpIndexMap[Op.getArg(I: 0)]); |
| 6846 | continue; |
| 6847 | } |
| 6848 | // The location has a recovery expression. |
| 6849 | DbgBuilder->appendToVectors(DestExpr&: NewExpr, DestLocations&: NewLocationOps); |
| 6850 | } |
| 6851 | |
| 6852 | UpdateDbgValueInst(DVIRec, NewLocationOps, NewExpr); |
| 6853 | if (isa<DbgValueInst *>(Val: DVIRec.DbgRef)) |
| 6854 | LLVM_DEBUG(dbgs() << "scev-salvage: Updated DVI: " |
| 6855 | << *cast<DbgValueInst *>(DVIRec.DbgRef) << "\n" ); |
| 6856 | else |
| 6857 | LLVM_DEBUG(dbgs() << "scev-salvage: Updated DVI: " |
| 6858 | << *cast<DbgVariableRecord *>(DVIRec.DbgRef) << "\n" ); |
| 6859 | return true; |
| 6860 | } |
| 6861 | |
| 6862 | /// Obtain an expression for the iteration count, then attempt to salvage the |
| 6863 | /// dbg.value intrinsics. |
| 6864 | static void DbgRewriteSalvageableDVIs( |
| 6865 | llvm::Loop *L, ScalarEvolution &SE, llvm::PHINode *LSRInductionVar, |
| 6866 | SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> &DVIToUpdate) { |
| 6867 | if (DVIToUpdate.empty()) |
| 6868 | return; |
| 6869 | |
| 6870 | const llvm::SCEV *SCEVInductionVar = SE.getSCEV(V: LSRInductionVar); |
| 6871 | assert(SCEVInductionVar && |
| 6872 | "Anticipated a SCEV for the post-LSR induction variable" ); |
| 6873 | |
| 6874 | if (const SCEVAddRecExpr *IVAddRec = |
| 6875 | dyn_cast<SCEVAddRecExpr>(Val: SCEVInductionVar)) { |
| 6876 | if (!IVAddRec->isAffine()) |
| 6877 | return; |
| 6878 | |
| 6879 | // Prevent translation using excessive resources. |
| 6880 | if (IVAddRec->getExpressionSize() > MaxSCEVSalvageExpressionSize) |
| 6881 | return; |
| 6882 | |
| 6883 | // The iteration count is required to recover location values. |
| 6884 | SCEVDbgValueBuilder IterCountExpr; |
| 6885 | IterCountExpr.pushLocation(V: LSRInductionVar); |
| 6886 | if (!IterCountExpr.SCEVToIterCountExpr(SAR: *IVAddRec, SE)) |
| 6887 | return; |
| 6888 | |
| 6889 | LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV: " << *SCEVInductionVar |
| 6890 | << '\n'); |
| 6891 | |
| 6892 | for (auto &DVIRec : DVIToUpdate) { |
| 6893 | SalvageDVI(L, SE, LSRInductionVar, DVIRec&: *DVIRec, SCEVInductionVar, |
| 6894 | IterCountExpr); |
| 6895 | } |
| 6896 | } |
| 6897 | } |
| 6898 | |
| 6899 | /// Identify and cache salvageable DVI locations and expressions along with the |
| 6900 | /// corresponding SCEV(s). Also ensure that the DVI is not deleted between |
| 6901 | /// cacheing and salvaging. |
| 6902 | static void DbgGatherSalvagableDVI( |
| 6903 | Loop *L, ScalarEvolution &SE, |
| 6904 | SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> &SalvageableDVISCEVs, |
| 6905 | SmallSet<AssertingVH<DbgValueInst>, 2> &DVIHandles) { |
| 6906 | for (const auto &B : L->getBlocks()) { |
| 6907 | for (auto &I : *B) { |
| 6908 | auto ProcessDbgValue = [&](auto *DbgVal) -> bool { |
| 6909 | // Ensure that if any location op is undef that the dbg.vlue is not |
| 6910 | // cached. |
| 6911 | if (DbgVal->isKillLocation()) |
| 6912 | return false; |
| 6913 | |
| 6914 | // Check that the location op SCEVs are suitable for translation to |
| 6915 | // DIExpression. |
| 6916 | const auto &HasTranslatableLocationOps = |
| 6917 | [&](const auto *DbgValToTranslate) -> bool { |
| 6918 | for (const auto LocOp : DbgValToTranslate->location_ops()) { |
| 6919 | if (!LocOp) |
| 6920 | return false; |
| 6921 | |
| 6922 | if (!SE.isSCEVable(Ty: LocOp->getType())) |
| 6923 | return false; |
| 6924 | |
| 6925 | const SCEV *S = SE.getSCEV(V: LocOp); |
| 6926 | if (SE.containsUndefs(S)) |
| 6927 | return false; |
| 6928 | } |
| 6929 | return true; |
| 6930 | }; |
| 6931 | |
| 6932 | if (!HasTranslatableLocationOps(DbgVal)) |
| 6933 | return false; |
| 6934 | |
| 6935 | std::unique_ptr<DVIRecoveryRec> NewRec = |
| 6936 | std::make_unique<DVIRecoveryRec>(DbgVal); |
| 6937 | // Each location Op may need a SCEVDbgValueBuilder in order to recover |
| 6938 | // it. Pre-allocating a vector will enable quick lookups of the builder |
| 6939 | // later during the salvage. |
| 6940 | NewRec->RecoveryExprs.resize(DbgVal->getNumVariableLocationOps()); |
| 6941 | for (const auto LocOp : DbgVal->location_ops()) { |
| 6942 | NewRec->SCEVs.push_back(Elt: SE.getSCEV(V: LocOp)); |
| 6943 | NewRec->LocationOps.push_back(LocOp); |
| 6944 | NewRec->HadLocationArgList = DbgVal->hasArgList(); |
| 6945 | } |
| 6946 | SalvageableDVISCEVs.push_back(Elt: std::move(NewRec)); |
| 6947 | return true; |
| 6948 | }; |
| 6949 | for (DbgVariableRecord &DVR : filterDbgVars(R: I.getDbgRecordRange())) { |
| 6950 | if (DVR.isDbgValue() || DVR.isDbgAssign()) |
| 6951 | ProcessDbgValue(&DVR); |
| 6952 | } |
| 6953 | auto DVI = dyn_cast<DbgValueInst>(Val: &I); |
| 6954 | if (!DVI) |
| 6955 | continue; |
| 6956 | if (ProcessDbgValue(DVI)) |
| 6957 | DVIHandles.insert(V: DVI); |
| 6958 | } |
| 6959 | } |
| 6960 | } |
| 6961 | |
| 6962 | /// Ideally pick the PHI IV inserted by ScalarEvolutionExpander. As a fallback |
| 6963 | /// any PHi from the loop header is usable, but may have less chance of |
| 6964 | /// surviving subsequent transforms. |
| 6965 | static llvm::PHINode *GetInductionVariable(const Loop &L, ScalarEvolution &SE, |
| 6966 | const LSRInstance &LSR) { |
| 6967 | |
| 6968 | auto IsSuitableIV = [&](PHINode *P) { |
| 6969 | if (!SE.isSCEVable(Ty: P->getType())) |
| 6970 | return false; |
| 6971 | if (const SCEVAddRecExpr *Rec = dyn_cast<SCEVAddRecExpr>(Val: SE.getSCEV(V: P))) |
| 6972 | return Rec->isAffine() && !SE.containsUndefs(S: SE.getSCEV(V: P)); |
| 6973 | return false; |
| 6974 | }; |
| 6975 | |
| 6976 | // For now, just pick the first IV that was generated and inserted by |
| 6977 | // ScalarEvolution. Ideally pick an IV that is unlikely to be optimised away |
| 6978 | // by subsequent transforms. |
| 6979 | for (const WeakVH &IV : LSR.getScalarEvolutionIVs()) { |
| 6980 | if (!IV) |
| 6981 | continue; |
| 6982 | |
| 6983 | // There should only be PHI node IVs. |
| 6984 | PHINode *P = cast<PHINode>(Val: &*IV); |
| 6985 | |
| 6986 | if (IsSuitableIV(P)) |
| 6987 | return P; |
| 6988 | } |
| 6989 | |
| 6990 | for (PHINode &P : L.getHeader()->phis()) { |
| 6991 | if (IsSuitableIV(&P)) |
| 6992 | return &P; |
| 6993 | } |
| 6994 | return nullptr; |
| 6995 | } |
| 6996 | |
| 6997 | static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, |
| 6998 | DominatorTree &DT, LoopInfo &LI, |
| 6999 | const TargetTransformInfo &TTI, |
| 7000 | AssumptionCache &AC, TargetLibraryInfo &TLI, |
| 7001 | MemorySSA *MSSA) { |
| 7002 | |
| 7003 | // Debug preservation - before we start removing anything identify which DVI |
| 7004 | // meet the salvageable criteria and store their DIExpression and SCEVs. |
| 7005 | SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> SalvageableDVIRecords; |
| 7006 | SmallSet<AssertingVH<DbgValueInst>, 2> DVIHandles; |
| 7007 | DbgGatherSalvagableDVI(L, SE, SalvageableDVISCEVs&: SalvageableDVIRecords, DVIHandles); |
| 7008 | |
| 7009 | bool Changed = false; |
| 7010 | std::unique_ptr<MemorySSAUpdater> MSSAU; |
| 7011 | if (MSSA) |
| 7012 | MSSAU = std::make_unique<MemorySSAUpdater>(args&: MSSA); |
| 7013 | |
| 7014 | // Run the main LSR transformation. |
| 7015 | const LSRInstance &Reducer = |
| 7016 | LSRInstance(L, IU, SE, DT, LI, TTI, AC, TLI, MSSAU.get()); |
| 7017 | Changed |= Reducer.getChanged(); |
| 7018 | |
| 7019 | // Remove any extra phis created by processing inner loops. |
| 7020 | Changed |= DeleteDeadPHIs(BB: L->getHeader(), TLI: &TLI, MSSAU: MSSAU.get()); |
| 7021 | if (EnablePhiElim && L->isLoopSimplifyForm()) { |
| 7022 | SmallVector<WeakTrackingVH, 16> DeadInsts; |
| 7023 | const DataLayout &DL = L->getHeader()->getDataLayout(); |
| 7024 | SCEVExpander Rewriter(SE, DL, "lsr" , false); |
| 7025 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS |
| 7026 | Rewriter.setDebugType(DEBUG_TYPE); |
| 7027 | #endif |
| 7028 | unsigned numFolded = Rewriter.replaceCongruentIVs(L, DT: &DT, DeadInsts, TTI: &TTI); |
| 7029 | Rewriter.clear(); |
| 7030 | if (numFolded) { |
| 7031 | Changed = true; |
| 7032 | RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, TLI: &TLI, |
| 7033 | MSSAU: MSSAU.get()); |
| 7034 | DeleteDeadPHIs(BB: L->getHeader(), TLI: &TLI, MSSAU: MSSAU.get()); |
| 7035 | } |
| 7036 | } |
| 7037 | // LSR may at times remove all uses of an induction variable from a loop. |
| 7038 | // The only remaining use is the PHI in the exit block. |
| 7039 | // When this is the case, if the exit value of the IV can be calculated using |
| 7040 | // SCEV, we can replace the exit block PHI with the final value of the IV and |
| 7041 | // skip the updates in each loop iteration. |
| 7042 | if (L->isRecursivelyLCSSAForm(DT, LI) && L->getExitBlock()) { |
| 7043 | SmallVector<WeakTrackingVH, 16> DeadInsts; |
| 7044 | const DataLayout &DL = L->getHeader()->getDataLayout(); |
| 7045 | SCEVExpander Rewriter(SE, DL, "lsr" , true); |
| 7046 | int Rewrites = rewriteLoopExitValues(L, LI: &LI, TLI: &TLI, SE: &SE, TTI: &TTI, Rewriter, DT: &DT, |
| 7047 | ReplaceExitValue: UnusedIndVarInLoop, DeadInsts); |
| 7048 | Rewriter.clear(); |
| 7049 | if (Rewrites) { |
| 7050 | Changed = true; |
| 7051 | RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, TLI: &TLI, |
| 7052 | MSSAU: MSSAU.get()); |
| 7053 | DeleteDeadPHIs(BB: L->getHeader(), TLI: &TLI, MSSAU: MSSAU.get()); |
| 7054 | } |
| 7055 | } |
| 7056 | |
| 7057 | if (SalvageableDVIRecords.empty()) |
| 7058 | return Changed; |
| 7059 | |
| 7060 | // Obtain relevant IVs and attempt to rewrite the salvageable DVIs with |
| 7061 | // expressions composed using the derived iteration count. |
| 7062 | // TODO: Allow for multiple IV references for nested AddRecSCEVs |
| 7063 | for (const auto &L : LI) { |
| 7064 | if (llvm::PHINode *IV = GetInductionVariable(L: *L, SE, LSR: Reducer)) |
| 7065 | DbgRewriteSalvageableDVIs(L, SE, LSRInductionVar: IV, DVIToUpdate&: SalvageableDVIRecords); |
| 7066 | else { |
| 7067 | LLVM_DEBUG(dbgs() << "scev-salvage: SCEV salvaging not possible. An IV " |
| 7068 | "could not be identified.\n" ); |
| 7069 | } |
| 7070 | } |
| 7071 | |
| 7072 | for (auto &Rec : SalvageableDVIRecords) |
| 7073 | Rec->clear(); |
| 7074 | SalvageableDVIRecords.clear(); |
| 7075 | DVIHandles.clear(); |
| 7076 | return Changed; |
| 7077 | } |
| 7078 | |
| 7079 | bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { |
| 7080 | if (skipLoop(L)) |
| 7081 | return false; |
| 7082 | |
| 7083 | auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); |
| 7084 | auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); |
| 7085 | auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| 7086 | auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
| 7087 | const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( |
| 7088 | F: *L->getHeader()->getParent()); |
| 7089 | auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache( |
| 7090 | F&: *L->getHeader()->getParent()); |
| 7091 | auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( |
| 7092 | F: *L->getHeader()->getParent()); |
| 7093 | auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); |
| 7094 | MemorySSA *MSSA = nullptr; |
| 7095 | if (MSSAAnalysis) |
| 7096 | MSSA = &MSSAAnalysis->getMSSA(); |
| 7097 | return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, TLI, MSSA); |
| 7098 | } |
| 7099 | |
| 7100 | PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM, |
| 7101 | LoopStandardAnalysisResults &AR, |
| 7102 | LPMUpdater &) { |
| 7103 | if (!ReduceLoopStrength(L: &L, IU&: AM.getResult<IVUsersAnalysis>(IR&: L, ExtraArgs&: AR), SE&: AR.SE, |
| 7104 | DT&: AR.DT, LI&: AR.LI, TTI: AR.TTI, AC&: AR.AC, TLI&: AR.TLI, MSSA: AR.MSSA)) |
| 7105 | return PreservedAnalyses::all(); |
| 7106 | |
| 7107 | auto PA = getLoopPassPreservedAnalyses(); |
| 7108 | if (AR.MSSA) |
| 7109 | PA.preserve<MemorySSAAnalysis>(); |
| 7110 | return PA; |
| 7111 | } |
| 7112 | |
| 7113 | char LoopStrengthReduce::ID = 0; |
| 7114 | |
| 7115 | INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce" , |
| 7116 | "Loop Strength Reduction" , false, false) |
| 7117 | INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) |
| 7118 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| 7119 | INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) |
| 7120 | INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) |
| 7121 | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) |
| 7122 | INITIALIZE_PASS_DEPENDENCY(LoopSimplify) |
| 7123 | INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce" , |
| 7124 | "Loop Strength Reduction" , false, false) |
| 7125 | |
| 7126 | Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } |
| 7127 | |