| 1 | //===- NaryReassociate.cpp - Reassociate n-ary expressions ----------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This pass reassociates n-ary add expressions and eliminates the redundancy |
| 10 | // exposed by the reassociation. |
| 11 | // |
| 12 | // A motivating example: |
| 13 | // |
| 14 | // void foo(int a, int b) { |
| 15 | // bar(a + b); |
| 16 | // bar((a + 2) + b); |
| 17 | // } |
| 18 | // |
| 19 | // An ideal compiler should reassociate (a + 2) + b to (a + b) + 2 and simplify |
| 20 | // the above code to |
| 21 | // |
| 22 | // int t = a + b; |
| 23 | // bar(t); |
| 24 | // bar(t + 2); |
| 25 | // |
| 26 | // However, the Reassociate pass is unable to do that because it processes each |
| 27 | // instruction individually and believes (a + 2) + b is the best form according |
| 28 | // to its rank system. |
| 29 | // |
| 30 | // To address this limitation, NaryReassociate reassociates an expression in a |
| 31 | // form that reuses existing instructions. As a result, NaryReassociate can |
| 32 | // reassociate (a + 2) + b in the example to (a + b) + 2 because it detects that |
| 33 | // (a + b) is computed before. |
| 34 | // |
| 35 | // NaryReassociate works as follows. For every instruction in the form of (a + |
| 36 | // b) + c, it checks whether a + c or b + c is already computed by a dominating |
| 37 | // instruction. If so, it then reassociates (a + b) + c into (a + c) + b or (b + |
| 38 | // c) + a and removes the redundancy accordingly. To efficiently look up whether |
| 39 | // an expression is computed before, we store each instruction seen and its SCEV |
| 40 | // into an SCEV-to-instruction map. |
| 41 | // |
| 42 | // Although the algorithm pattern-matches only ternary additions, it |
| 43 | // automatically handles many >3-ary expressions by walking through the function |
| 44 | // in the depth-first order. For example, given |
| 45 | // |
| 46 | // (a + c) + d |
| 47 | // ((a + b) + c) + d |
| 48 | // |
| 49 | // NaryReassociate first rewrites (a + b) + c to (a + c) + b, and then rewrites |
| 50 | // ((a + c) + b) + d into ((a + c) + d) + b. |
| 51 | // |
| 52 | // Finally, the above dominator-based algorithm may need to be run multiple |
| 53 | // iterations before emitting optimal code. One source of this need is that we |
| 54 | // only split an operand when it is used only once. The above algorithm can |
| 55 | // eliminate an instruction and decrease the usage count of its operands. As a |
| 56 | // result, an instruction that previously had multiple uses may become a |
| 57 | // single-use instruction and thus eligible for split consideration. For |
| 58 | // example, |
| 59 | // |
| 60 | // ac = a + c |
| 61 | // ab = a + b |
| 62 | // abc = ab + c |
| 63 | // ab2 = ab + b |
| 64 | // ab2c = ab2 + c |
| 65 | // |
| 66 | // In the first iteration, we cannot reassociate abc to ac+b because ab is used |
| 67 | // twice. However, we can reassociate ab2c to abc+b in the first iteration. As a |
| 68 | // result, ab2 becomes dead and ab will be used only once in the second |
| 69 | // iteration. |
| 70 | // |
| 71 | // Limitations and TODO items: |
| 72 | // |
| 73 | // 1) We only considers n-ary adds and muls for now. This should be extended |
| 74 | // and generalized. |
| 75 | // |
| 76 | //===----------------------------------------------------------------------===// |
| 77 | |
| 78 | #include "llvm/Transforms/Scalar/NaryReassociate.h" |
| 79 | #include "llvm/ADT/DepthFirstIterator.h" |
| 80 | #include "llvm/ADT/SmallVector.h" |
| 81 | #include "llvm/Analysis/AssumptionCache.h" |
| 82 | #include "llvm/Analysis/ScalarEvolution.h" |
| 83 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| 84 | #include "llvm/Analysis/TargetLibraryInfo.h" |
| 85 | #include "llvm/Analysis/TargetTransformInfo.h" |
| 86 | #include "llvm/Analysis/ValueTracking.h" |
| 87 | #include "llvm/IR/BasicBlock.h" |
| 88 | #include "llvm/IR/Constants.h" |
| 89 | #include "llvm/IR/DataLayout.h" |
| 90 | #include "llvm/IR/DerivedTypes.h" |
| 91 | #include "llvm/IR/Dominators.h" |
| 92 | #include "llvm/IR/Function.h" |
| 93 | #include "llvm/IR/GetElementPtrTypeIterator.h" |
| 94 | #include "llvm/IR/IRBuilder.h" |
| 95 | #include "llvm/IR/InstrTypes.h" |
| 96 | #include "llvm/IR/Instruction.h" |
| 97 | #include "llvm/IR/Instructions.h" |
| 98 | #include "llvm/IR/Module.h" |
| 99 | #include "llvm/IR/Operator.h" |
| 100 | #include "llvm/IR/PatternMatch.h" |
| 101 | #include "llvm/IR/Type.h" |
| 102 | #include "llvm/IR/Value.h" |
| 103 | #include "llvm/IR/ValueHandle.h" |
| 104 | #include "llvm/InitializePasses.h" |
| 105 | #include "llvm/Pass.h" |
| 106 | #include "llvm/Support/Casting.h" |
| 107 | #include "llvm/Support/ErrorHandling.h" |
| 108 | #include "llvm/Transforms/Scalar.h" |
| 109 | #include "llvm/Transforms/Utils/Local.h" |
| 110 | #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" |
| 111 | #include <cassert> |
| 112 | #include <cstdint> |
| 113 | |
| 114 | using namespace llvm; |
| 115 | using namespace PatternMatch; |
| 116 | |
| 117 | #define DEBUG_TYPE "nary-reassociate" |
| 118 | |
| 119 | namespace { |
| 120 | |
| 121 | class NaryReassociateLegacyPass : public FunctionPass { |
| 122 | public: |
| 123 | static char ID; |
| 124 | |
| 125 | NaryReassociateLegacyPass() : FunctionPass(ID) { |
| 126 | initializeNaryReassociateLegacyPassPass(*PassRegistry::getPassRegistry()); |
| 127 | } |
| 128 | |
| 129 | bool doInitialization(Module &M) override { |
| 130 | return false; |
| 131 | } |
| 132 | |
| 133 | bool runOnFunction(Function &F) override; |
| 134 | |
| 135 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 136 | AU.addPreserved<DominatorTreeWrapperPass>(); |
| 137 | AU.addPreserved<ScalarEvolutionWrapperPass>(); |
| 138 | AU.addPreserved<TargetLibraryInfoWrapperPass>(); |
| 139 | AU.addRequired<AssumptionCacheTracker>(); |
| 140 | AU.addRequired<DominatorTreeWrapperPass>(); |
| 141 | AU.addRequired<ScalarEvolutionWrapperPass>(); |
| 142 | AU.addRequired<TargetLibraryInfoWrapperPass>(); |
| 143 | AU.addRequired<TargetTransformInfoWrapperPass>(); |
| 144 | AU.setPreservesCFG(); |
| 145 | } |
| 146 | |
| 147 | private: |
| 148 | NaryReassociatePass Impl; |
| 149 | }; |
| 150 | |
| 151 | } // end anonymous namespace |
| 152 | |
| 153 | char NaryReassociateLegacyPass::ID = 0; |
| 154 | |
| 155 | INITIALIZE_PASS_BEGIN(NaryReassociateLegacyPass, "nary-reassociate" , |
| 156 | "Nary reassociation" , false, false) |
| 157 | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
| 158 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| 159 | INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) |
| 160 | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
| 161 | INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) |
| 162 | INITIALIZE_PASS_END(NaryReassociateLegacyPass, "nary-reassociate" , |
| 163 | "Nary reassociation" , false, false) |
| 164 | |
| 165 | FunctionPass *llvm::createNaryReassociatePass() { |
| 166 | return new NaryReassociateLegacyPass(); |
| 167 | } |
| 168 | |
| 169 | bool NaryReassociateLegacyPass::runOnFunction(Function &F) { |
| 170 | if (skipFunction(F)) |
| 171 | return false; |
| 172 | |
| 173 | auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); |
| 174 | auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| 175 | auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); |
| 176 | auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); |
| 177 | auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); |
| 178 | |
| 179 | return Impl.runImpl(F, AC_: AC, DT_: DT, SE_: SE, TLI_: TLI, TTI_: TTI); |
| 180 | } |
| 181 | |
| 182 | PreservedAnalyses NaryReassociatePass::run(Function &F, |
| 183 | FunctionAnalysisManager &AM) { |
| 184 | auto *AC = &AM.getResult<AssumptionAnalysis>(IR&: F); |
| 185 | auto *DT = &AM.getResult<DominatorTreeAnalysis>(IR&: F); |
| 186 | auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(IR&: F); |
| 187 | auto *TLI = &AM.getResult<TargetLibraryAnalysis>(IR&: F); |
| 188 | auto *TTI = &AM.getResult<TargetIRAnalysis>(IR&: F); |
| 189 | |
| 190 | if (!runImpl(F, AC_: AC, DT_: DT, SE_: SE, TLI_: TLI, TTI_: TTI)) |
| 191 | return PreservedAnalyses::all(); |
| 192 | |
| 193 | PreservedAnalyses PA; |
| 194 | PA.preserveSet<CFGAnalyses>(); |
| 195 | PA.preserve<ScalarEvolutionAnalysis>(); |
| 196 | return PA; |
| 197 | } |
| 198 | |
| 199 | bool NaryReassociatePass::runImpl(Function &F, AssumptionCache *AC_, |
| 200 | DominatorTree *DT_, ScalarEvolution *SE_, |
| 201 | TargetLibraryInfo *TLI_, |
| 202 | TargetTransformInfo *TTI_) { |
| 203 | AC = AC_; |
| 204 | DT = DT_; |
| 205 | SE = SE_; |
| 206 | TLI = TLI_; |
| 207 | TTI = TTI_; |
| 208 | DL = &F.getDataLayout(); |
| 209 | |
| 210 | bool Changed = false, ChangedInThisIteration; |
| 211 | do { |
| 212 | ChangedInThisIteration = doOneIteration(F); |
| 213 | Changed |= ChangedInThisIteration; |
| 214 | } while (ChangedInThisIteration); |
| 215 | return Changed; |
| 216 | } |
| 217 | |
| 218 | bool NaryReassociatePass::doOneIteration(Function &F) { |
| 219 | bool Changed = false; |
| 220 | SeenExprs.clear(); |
| 221 | // Process the basic blocks in a depth first traversal of the dominator |
| 222 | // tree. This order ensures that all bases of a candidate are in Candidates |
| 223 | // when we process it. |
| 224 | SmallVector<WeakTrackingVH, 16> DeadInsts; |
| 225 | for (const auto Node : depth_first(G: DT)) { |
| 226 | BasicBlock *BB = Node->getBlock(); |
| 227 | for (Instruction &OrigI : *BB) { |
| 228 | const SCEV *OrigSCEV = nullptr; |
| 229 | if (Instruction *NewI = tryReassociate(I: &OrigI, OrigSCEV)) { |
| 230 | Changed = true; |
| 231 | OrigI.replaceAllUsesWith(V: NewI); |
| 232 | |
| 233 | // Add 'OrigI' to the list of dead instructions. |
| 234 | DeadInsts.push_back(Elt: WeakTrackingVH(&OrigI)); |
| 235 | // Add the rewritten instruction to SeenExprs; the original |
| 236 | // instruction is deleted. |
| 237 | const SCEV *NewSCEV = SE->getSCEV(V: NewI); |
| 238 | SeenExprs[NewSCEV].push_back(Elt: WeakTrackingVH(NewI)); |
| 239 | |
| 240 | // Ideally, NewSCEV should equal OldSCEV because tryReassociate(I) |
| 241 | // is equivalent to I. However, ScalarEvolution::getSCEV may |
| 242 | // weaken nsw causing NewSCEV not to equal OldSCEV. For example, |
| 243 | // suppose we reassociate |
| 244 | // I = &a[sext(i +nsw j)] // assuming sizeof(a[0]) = 4 |
| 245 | // to |
| 246 | // NewI = &a[sext(i)] + sext(j). |
| 247 | // |
| 248 | // ScalarEvolution computes |
| 249 | // getSCEV(I) = a + 4 * sext(i + j) |
| 250 | // getSCEV(newI) = a + 4 * sext(i) + 4 * sext(j) |
| 251 | // which are different SCEVs. |
| 252 | // |
| 253 | // To alleviate this issue of ScalarEvolution not always capturing |
| 254 | // equivalence, we add I to SeenExprs[OldSCEV] as well so that we can |
| 255 | // map both SCEV before and after tryReassociate(I) to I. |
| 256 | // |
| 257 | // This improvement is exercised in @reassociate_gep_nsw in |
| 258 | // nary-gep.ll. |
| 259 | if (NewSCEV != OrigSCEV) |
| 260 | SeenExprs[OrigSCEV].push_back(Elt: WeakTrackingVH(NewI)); |
| 261 | } else if (OrigSCEV) |
| 262 | SeenExprs[OrigSCEV].push_back(Elt: WeakTrackingVH(&OrigI)); |
| 263 | } |
| 264 | } |
| 265 | // Delete all dead instructions from 'DeadInsts'. |
| 266 | // Please note ScalarEvolution is updated along the way. |
| 267 | RecursivelyDeleteTriviallyDeadInstructionsPermissive( |
| 268 | DeadInsts, TLI, MSSAU: nullptr, AboutToDeleteCallback: [this](Value *V) { SE->forgetValue(V); }); |
| 269 | |
| 270 | return Changed; |
| 271 | } |
| 272 | |
| 273 | template <typename PredT> |
| 274 | Instruction * |
| 275 | NaryReassociatePass::matchAndReassociateMinOrMax(Instruction *I, |
| 276 | const SCEV *&OrigSCEV) { |
| 277 | Value *LHS = nullptr; |
| 278 | Value *RHS = nullptr; |
| 279 | |
| 280 | auto MinMaxMatcher = |
| 281 | MaxMin_match<ICmpInst, bind_ty<Value>, bind_ty<Value>, PredT>( |
| 282 | m_Value(V&: LHS), m_Value(V&: RHS)); |
| 283 | if (match(I, MinMaxMatcher)) { |
| 284 | OrigSCEV = SE->getSCEV(V: I); |
| 285 | if (auto *NewMinMax = dyn_cast_or_null<Instruction>( |
| 286 | tryReassociateMinOrMax(I, MinMaxMatcher, LHS, RHS))) |
| 287 | return NewMinMax; |
| 288 | if (auto *NewMinMax = dyn_cast_or_null<Instruction>( |
| 289 | tryReassociateMinOrMax(I, MinMaxMatcher, RHS, LHS))) |
| 290 | return NewMinMax; |
| 291 | } |
| 292 | return nullptr; |
| 293 | } |
| 294 | |
| 295 | Instruction *NaryReassociatePass::tryReassociate(Instruction * I, |
| 296 | const SCEV *&OrigSCEV) { |
| 297 | |
| 298 | if (!SE->isSCEVable(Ty: I->getType())) |
| 299 | return nullptr; |
| 300 | |
| 301 | switch (I->getOpcode()) { |
| 302 | case Instruction::Add: |
| 303 | case Instruction::Mul: |
| 304 | OrigSCEV = SE->getSCEV(V: I); |
| 305 | return tryReassociateBinaryOp(I: cast<BinaryOperator>(Val: I)); |
| 306 | case Instruction::GetElementPtr: |
| 307 | OrigSCEV = SE->getSCEV(V: I); |
| 308 | return tryReassociateGEP(GEP: cast<GetElementPtrInst>(Val: I)); |
| 309 | default: |
| 310 | break; |
| 311 | } |
| 312 | |
| 313 | // Try to match signed/unsigned Min/Max. |
| 314 | Instruction *ResI = nullptr; |
| 315 | // TODO: Currently min/max reassociation is restricted to integer types only |
| 316 | // due to use of SCEVExpander which my introduce incompatible forms of min/max |
| 317 | // for pointer types. |
| 318 | if (I->getType()->isIntegerTy()) |
| 319 | if ((ResI = matchAndReassociateMinOrMax<umin_pred_ty>(I, OrigSCEV)) || |
| 320 | (ResI = matchAndReassociateMinOrMax<smin_pred_ty>(I, OrigSCEV)) || |
| 321 | (ResI = matchAndReassociateMinOrMax<umax_pred_ty>(I, OrigSCEV)) || |
| 322 | (ResI = matchAndReassociateMinOrMax<smax_pred_ty>(I, OrigSCEV))) |
| 323 | return ResI; |
| 324 | |
| 325 | return nullptr; |
| 326 | } |
| 327 | |
| 328 | static bool isGEPFoldable(GetElementPtrInst *GEP, |
| 329 | const TargetTransformInfo *TTI) { |
| 330 | SmallVector<const Value *, 4> Indices(GEP->indices()); |
| 331 | return TTI->getGEPCost(PointeeType: GEP->getSourceElementType(), Ptr: GEP->getPointerOperand(), |
| 332 | Operands: Indices) == TargetTransformInfo::TCC_Free; |
| 333 | } |
| 334 | |
| 335 | Instruction *NaryReassociatePass::tryReassociateGEP(GetElementPtrInst *GEP) { |
| 336 | // Not worth reassociating GEP if it is foldable. |
| 337 | if (isGEPFoldable(GEP, TTI)) |
| 338 | return nullptr; |
| 339 | |
| 340 | gep_type_iterator GTI = gep_type_begin(GEP: *GEP); |
| 341 | for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) { |
| 342 | if (GTI.isSequential()) { |
| 343 | if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I: I - 1, |
| 344 | IndexedType: GTI.getIndexedType())) { |
| 345 | return NewGEP; |
| 346 | } |
| 347 | } |
| 348 | } |
| 349 | return nullptr; |
| 350 | } |
| 351 | |
| 352 | bool NaryReassociatePass::requiresSignExtension(Value *Index, |
| 353 | GetElementPtrInst *GEP) { |
| 354 | unsigned IndexSizeInBits = |
| 355 | DL->getIndexSizeInBits(AS: GEP->getType()->getPointerAddressSpace()); |
| 356 | return cast<IntegerType>(Val: Index->getType())->getBitWidth() < IndexSizeInBits; |
| 357 | } |
| 358 | |
| 359 | GetElementPtrInst * |
| 360 | NaryReassociatePass::tryReassociateGEPAtIndex(GetElementPtrInst *GEP, |
| 361 | unsigned I, Type *IndexedType) { |
| 362 | SimplifyQuery SQ(*DL, DT, AC, GEP); |
| 363 | Value *IndexToSplit = GEP->getOperand(i_nocapture: I + 1); |
| 364 | if (SExtInst *SExt = dyn_cast<SExtInst>(Val: IndexToSplit)) { |
| 365 | IndexToSplit = SExt->getOperand(i_nocapture: 0); |
| 366 | } else if (ZExtInst *ZExt = dyn_cast<ZExtInst>(Val: IndexToSplit)) { |
| 367 | // zext can be treated as sext if the source is non-negative. |
| 368 | if (isKnownNonNegative(V: ZExt->getOperand(i_nocapture: 0), SQ)) |
| 369 | IndexToSplit = ZExt->getOperand(i_nocapture: 0); |
| 370 | } |
| 371 | |
| 372 | if (AddOperator *AO = dyn_cast<AddOperator>(Val: IndexToSplit)) { |
| 373 | // If the I-th index needs sext and the underlying add is not equipped with |
| 374 | // nsw, we cannot split the add because |
| 375 | // sext(LHS + RHS) != sext(LHS) + sext(RHS). |
| 376 | if (requiresSignExtension(Index: IndexToSplit, GEP) && |
| 377 | computeOverflowForSignedAdd(Add: AO, SQ) != OverflowResult::NeverOverflows) |
| 378 | return nullptr; |
| 379 | |
| 380 | Value *LHS = AO->getOperand(i_nocapture: 0), *RHS = AO->getOperand(i_nocapture: 1); |
| 381 | // IndexToSplit = LHS + RHS. |
| 382 | if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I, LHS, RHS, IndexedType)) |
| 383 | return NewGEP; |
| 384 | // Symmetrically, try IndexToSplit = RHS + LHS. |
| 385 | if (LHS != RHS) { |
| 386 | if (auto *NewGEP = |
| 387 | tryReassociateGEPAtIndex(GEP, I, LHS: RHS, RHS: LHS, IndexedType)) |
| 388 | return NewGEP; |
| 389 | } |
| 390 | } |
| 391 | return nullptr; |
| 392 | } |
| 393 | |
| 394 | GetElementPtrInst * |
| 395 | NaryReassociatePass::tryReassociateGEPAtIndex(GetElementPtrInst *GEP, |
| 396 | unsigned I, Value *LHS, |
| 397 | Value *RHS, Type *IndexedType) { |
| 398 | // Look for GEP's closest dominator that has the same SCEV as GEP except that |
| 399 | // the I-th index is replaced with LHS. |
| 400 | SmallVector<const SCEV *, 4> IndexExprs; |
| 401 | for (Use &Index : GEP->indices()) |
| 402 | IndexExprs.push_back(Elt: SE->getSCEV(V: Index)); |
| 403 | // Replace the I-th index with LHS. |
| 404 | IndexExprs[I] = SE->getSCEV(V: LHS); |
| 405 | Type *GEPArgType = SE->getEffectiveSCEVType(Ty: GEP->getOperand(i_nocapture: I)->getType()); |
| 406 | Type *LHSType = SE->getEffectiveSCEVType(Ty: LHS->getType()); |
| 407 | size_t LHSSize = DL->getTypeSizeInBits(Ty: LHSType).getFixedValue(); |
| 408 | size_t GEPArgSize = DL->getTypeSizeInBits(Ty: GEPArgType).getFixedValue(); |
| 409 | if (isKnownNonNegative(V: LHS, SQ: SimplifyQuery(*DL, DT, AC, GEP)) && |
| 410 | LHSSize < GEPArgSize) { |
| 411 | // Zero-extend LHS if it is non-negative. InstCombine canonicalizes sext to |
| 412 | // zext if the source operand is proved non-negative. We should do that |
| 413 | // consistently so that CandidateExpr more likely appears before. See |
| 414 | // @reassociate_gep_assume for an example of this canonicalization. |
| 415 | IndexExprs[I] = SE->getZeroExtendExpr(Op: IndexExprs[I], Ty: GEPArgType); |
| 416 | } |
| 417 | const SCEV *CandidateExpr = SE->getGEPExpr(GEP: cast<GEPOperator>(Val: GEP), |
| 418 | IndexExprs); |
| 419 | |
| 420 | Value *Candidate = findClosestMatchingDominator(CandidateExpr, Dominatee: GEP); |
| 421 | if (Candidate == nullptr) |
| 422 | return nullptr; |
| 423 | |
| 424 | IRBuilder<> Builder(GEP); |
| 425 | // Candidate should have the same pointer type as GEP. |
| 426 | assert(Candidate->getType() == GEP->getType()); |
| 427 | |
| 428 | // NewGEP = (char *)Candidate + RHS * sizeof(IndexedType) |
| 429 | uint64_t IndexedSize = DL->getTypeAllocSize(Ty: IndexedType); |
| 430 | Type *ElementType = GEP->getResultElementType(); |
| 431 | uint64_t ElementSize = DL->getTypeAllocSize(Ty: ElementType); |
| 432 | // Another less rare case: because I is not necessarily the last index of the |
| 433 | // GEP, the size of the type at the I-th index (IndexedSize) is not |
| 434 | // necessarily divisible by ElementSize. For example, |
| 435 | // |
| 436 | // #pragma pack(1) |
| 437 | // struct S { |
| 438 | // int a[3]; |
| 439 | // int64 b[8]; |
| 440 | // }; |
| 441 | // #pragma pack() |
| 442 | // |
| 443 | // sizeof(S) = 100 is indivisible by sizeof(int64) = 8. |
| 444 | // |
| 445 | // TODO: bail out on this case for now. We could emit uglygep. |
| 446 | if (IndexedSize % ElementSize != 0) |
| 447 | return nullptr; |
| 448 | |
| 449 | // NewGEP = &Candidate[RHS * (sizeof(IndexedType) / sizeof(Candidate[0]))); |
| 450 | Type *PtrIdxTy = DL->getIndexType(PtrTy: GEP->getType()); |
| 451 | if (RHS->getType() != PtrIdxTy) |
| 452 | RHS = Builder.CreateSExtOrTrunc(V: RHS, DestTy: PtrIdxTy); |
| 453 | if (IndexedSize != ElementSize) { |
| 454 | RHS = Builder.CreateMul( |
| 455 | LHS: RHS, RHS: ConstantInt::get(Ty: PtrIdxTy, V: IndexedSize / ElementSize)); |
| 456 | } |
| 457 | GetElementPtrInst *NewGEP = cast<GetElementPtrInst>( |
| 458 | Val: Builder.CreateGEP(Ty: GEP->getResultElementType(), Ptr: Candidate, IdxList: RHS)); |
| 459 | NewGEP->setIsInBounds(GEP->isInBounds()); |
| 460 | NewGEP->takeName(V: GEP); |
| 461 | return NewGEP; |
| 462 | } |
| 463 | |
| 464 | Instruction *NaryReassociatePass::tryReassociateBinaryOp(BinaryOperator *I) { |
| 465 | Value *LHS = I->getOperand(i_nocapture: 0), *RHS = I->getOperand(i_nocapture: 1); |
| 466 | // There is no need to reassociate 0. |
| 467 | if (SE->getSCEV(V: I)->isZero()) |
| 468 | return nullptr; |
| 469 | if (auto *NewI = tryReassociateBinaryOp(LHS, RHS, I)) |
| 470 | return NewI; |
| 471 | if (auto *NewI = tryReassociateBinaryOp(LHS: RHS, RHS: LHS, I)) |
| 472 | return NewI; |
| 473 | return nullptr; |
| 474 | } |
| 475 | |
| 476 | Instruction *NaryReassociatePass::tryReassociateBinaryOp(Value *LHS, Value *RHS, |
| 477 | BinaryOperator *I) { |
| 478 | Value *A = nullptr, *B = nullptr; |
| 479 | // To be conservative, we reassociate I only when it is the only user of (A op |
| 480 | // B). |
| 481 | if (LHS->hasOneUse() && matchTernaryOp(I, V: LHS, Op1&: A, Op2&: B)) { |
| 482 | // I = (A op B) op RHS |
| 483 | // = (A op RHS) op B or (B op RHS) op A |
| 484 | const SCEV *AExpr = SE->getSCEV(V: A), *BExpr = SE->getSCEV(V: B); |
| 485 | const SCEV *RHSExpr = SE->getSCEV(V: RHS); |
| 486 | if (BExpr != RHSExpr) { |
| 487 | if (auto *NewI = |
| 488 | tryReassociatedBinaryOp(LHS: getBinarySCEV(I, LHS: AExpr, RHS: RHSExpr), RHS: B, I)) |
| 489 | return NewI; |
| 490 | } |
| 491 | if (AExpr != RHSExpr) { |
| 492 | if (auto *NewI = |
| 493 | tryReassociatedBinaryOp(LHS: getBinarySCEV(I, LHS: BExpr, RHS: RHSExpr), RHS: A, I)) |
| 494 | return NewI; |
| 495 | } |
| 496 | } |
| 497 | return nullptr; |
| 498 | } |
| 499 | |
| 500 | Instruction *NaryReassociatePass::tryReassociatedBinaryOp(const SCEV *LHSExpr, |
| 501 | Value *RHS, |
| 502 | BinaryOperator *I) { |
| 503 | // Look for the closest dominator LHS of I that computes LHSExpr, and replace |
| 504 | // I with LHS op RHS. |
| 505 | auto *LHS = findClosestMatchingDominator(CandidateExpr: LHSExpr, Dominatee: I); |
| 506 | if (LHS == nullptr) |
| 507 | return nullptr; |
| 508 | |
| 509 | Instruction *NewI = nullptr; |
| 510 | switch (I->getOpcode()) { |
| 511 | case Instruction::Add: |
| 512 | NewI = BinaryOperator::CreateAdd(V1: LHS, V2: RHS, Name: "" , InsertBefore: I->getIterator()); |
| 513 | break; |
| 514 | case Instruction::Mul: |
| 515 | NewI = BinaryOperator::CreateMul(V1: LHS, V2: RHS, Name: "" , InsertBefore: I->getIterator()); |
| 516 | break; |
| 517 | default: |
| 518 | llvm_unreachable("Unexpected instruction." ); |
| 519 | } |
| 520 | NewI->setDebugLoc(I->getDebugLoc()); |
| 521 | NewI->takeName(V: I); |
| 522 | return NewI; |
| 523 | } |
| 524 | |
| 525 | bool NaryReassociatePass::matchTernaryOp(BinaryOperator *I, Value *V, |
| 526 | Value *&Op1, Value *&Op2) { |
| 527 | switch (I->getOpcode()) { |
| 528 | case Instruction::Add: |
| 529 | return match(V, P: m_Add(L: m_Value(V&: Op1), R: m_Value(V&: Op2))); |
| 530 | case Instruction::Mul: |
| 531 | return match(V, P: m_Mul(L: m_Value(V&: Op1), R: m_Value(V&: Op2))); |
| 532 | default: |
| 533 | llvm_unreachable("Unexpected instruction." ); |
| 534 | } |
| 535 | return false; |
| 536 | } |
| 537 | |
| 538 | const SCEV *NaryReassociatePass::getBinarySCEV(BinaryOperator *I, |
| 539 | const SCEV *LHS, |
| 540 | const SCEV *RHS) { |
| 541 | switch (I->getOpcode()) { |
| 542 | case Instruction::Add: |
| 543 | return SE->getAddExpr(LHS, RHS); |
| 544 | case Instruction::Mul: |
| 545 | return SE->getMulExpr(LHS, RHS); |
| 546 | default: |
| 547 | llvm_unreachable("Unexpected instruction." ); |
| 548 | } |
| 549 | return nullptr; |
| 550 | } |
| 551 | |
| 552 | Instruction * |
| 553 | NaryReassociatePass::findClosestMatchingDominator(const SCEV *CandidateExpr, |
| 554 | Instruction *Dominatee) { |
| 555 | auto Pos = SeenExprs.find(Val: CandidateExpr); |
| 556 | if (Pos == SeenExprs.end()) |
| 557 | return nullptr; |
| 558 | |
| 559 | auto &Candidates = Pos->second; |
| 560 | // Because we process the basic blocks in pre-order of the dominator tree, a |
| 561 | // candidate that doesn't dominate the current instruction won't dominate any |
| 562 | // future instruction either. Therefore, we pop it out of the stack. This |
| 563 | // optimization makes the algorithm O(n). |
| 564 | while (!Candidates.empty()) { |
| 565 | // Candidates stores WeakTrackingVHs, so a candidate can be nullptr if it's |
| 566 | // removed during rewriting. |
| 567 | if (Value *Candidate = Candidates.pop_back_val()) { |
| 568 | Instruction *CandidateInstruction = cast<Instruction>(Val: Candidate); |
| 569 | if (!DT->dominates(Def: CandidateInstruction, User: Dominatee)) |
| 570 | continue; |
| 571 | |
| 572 | // Make sure that the instruction is safe to reuse without introducing |
| 573 | // poison. |
| 574 | SmallVector<Instruction *> DropPoisonGeneratingInsts; |
| 575 | if (!SE->canReuseInstruction(S: CandidateExpr, I: CandidateInstruction, |
| 576 | DropPoisonGeneratingInsts)) |
| 577 | continue; |
| 578 | |
| 579 | for (Instruction *I : DropPoisonGeneratingInsts) |
| 580 | I->dropPoisonGeneratingAnnotations(); |
| 581 | |
| 582 | return CandidateInstruction; |
| 583 | } |
| 584 | } |
| 585 | return nullptr; |
| 586 | } |
| 587 | |
| 588 | template <typename MaxMinT> static SCEVTypes convertToSCEVype(MaxMinT &MM) { |
| 589 | if (std::is_same_v<smax_pred_ty, typename MaxMinT::PredType>) |
| 590 | return scSMaxExpr; |
| 591 | else if (std::is_same_v<umax_pred_ty, typename MaxMinT::PredType>) |
| 592 | return scUMaxExpr; |
| 593 | else if (std::is_same_v<smin_pred_ty, typename MaxMinT::PredType>) |
| 594 | return scSMinExpr; |
| 595 | else if (std::is_same_v<umin_pred_ty, typename MaxMinT::PredType>) |
| 596 | return scUMinExpr; |
| 597 | |
| 598 | llvm_unreachable("Can't convert MinMax pattern to SCEV type" ); |
| 599 | return scUnknown; |
| 600 | } |
| 601 | |
| 602 | // Parameters: |
| 603 | // I - instruction matched by MaxMinMatch matcher |
| 604 | // MaxMinMatch - min/max idiom matcher |
| 605 | // LHS - first operand of I |
| 606 | // RHS - second operand of I |
| 607 | template <typename MaxMinT> |
| 608 | Value *NaryReassociatePass::tryReassociateMinOrMax(Instruction *I, |
| 609 | MaxMinT MaxMinMatch, |
| 610 | Value *LHS, Value *RHS) { |
| 611 | Value *A = nullptr, *B = nullptr; |
| 612 | MaxMinT m_MaxMin(m_Value(V&: A), m_Value(V&: B)); |
| 613 | |
| 614 | if (!match(LHS, m_MaxMin)) |
| 615 | return nullptr; |
| 616 | |
| 617 | if (LHS->hasNUsesOrMore(N: 3) || |
| 618 | // The optimization is profitable only if LHS can be removed in the end. |
| 619 | // In other words LHS should be used (directly or indirectly) by I only. |
| 620 | llvm::any_of(LHS->users(), [&](auto *U) { |
| 621 | return U != I && !(U->hasOneUser() && *U->users().begin() == I); |
| 622 | })) |
| 623 | return nullptr; |
| 624 | |
| 625 | auto tryCombination = [&](Value *A, const SCEV *AExpr, Value *B, |
| 626 | const SCEV *BExpr, Value *C, |
| 627 | const SCEV *CExpr) -> Value * { |
| 628 | SmallVector<const SCEV *, 2> Ops1{BExpr, AExpr}; |
| 629 | const SCEVTypes SCEVType = convertToSCEVype(m_MaxMin); |
| 630 | const SCEV *R1Expr = SE->getMinMaxExpr(Kind: SCEVType, Operands&: Ops1); |
| 631 | |
| 632 | Instruction *R1MinMax = findClosestMatchingDominator(CandidateExpr: R1Expr, Dominatee: I); |
| 633 | |
| 634 | if (!R1MinMax) |
| 635 | return nullptr; |
| 636 | |
| 637 | LLVM_DEBUG(dbgs() << "NARY: Found common sub-expr: " << *R1MinMax << "\n" ); |
| 638 | |
| 639 | SmallVector<const SCEV *, 2> Ops2{SE->getUnknown(V: C), |
| 640 | SE->getUnknown(V: R1MinMax)}; |
| 641 | const SCEV *R2Expr = SE->getMinMaxExpr(Kind: SCEVType, Operands&: Ops2); |
| 642 | |
| 643 | SCEVExpander Expander(*SE, *DL, "nary-reassociate" ); |
| 644 | Value *NewMinMax = Expander.expandCodeFor(SH: R2Expr, Ty: I->getType(), I); |
| 645 | NewMinMax->setName(Twine(I->getName()).concat(Suffix: ".nary" )); |
| 646 | |
| 647 | LLVM_DEBUG(dbgs() << "NARY: Deleting: " << *I << "\n" |
| 648 | << "NARY: Inserting: " << *NewMinMax << "\n" ); |
| 649 | return NewMinMax; |
| 650 | }; |
| 651 | |
| 652 | const SCEV *AExpr = SE->getSCEV(V: A); |
| 653 | const SCEV *BExpr = SE->getSCEV(V: B); |
| 654 | const SCEV *RHSExpr = SE->getSCEV(V: RHS); |
| 655 | |
| 656 | if (BExpr != RHSExpr) { |
| 657 | // Try (A op RHS) op B |
| 658 | if (auto *NewMinMax = tryCombination(A, AExpr, RHS, RHSExpr, B, BExpr)) |
| 659 | return NewMinMax; |
| 660 | } |
| 661 | |
| 662 | if (AExpr != RHSExpr) { |
| 663 | // Try (RHS op B) op A |
| 664 | if (auto *NewMinMax = tryCombination(RHS, RHSExpr, B, BExpr, A, AExpr)) |
| 665 | return NewMinMax; |
| 666 | } |
| 667 | |
| 668 | return nullptr; |
| 669 | } |
| 670 | |