| 1 | //===- StraightLineStrengthReduce.cpp - -----------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements straight-line strength reduction (SLSR). Unlike loop |
| 10 | // strength reduction, this algorithm is designed to reduce arithmetic |
| 11 | // redundancy in straight-line code instead of loops. It has proven to be |
| 12 | // effective in simplifying arithmetic statements derived from an unrolled loop. |
| 13 | // It can also simplify the logic of SeparateConstOffsetFromGEP. |
| 14 | // |
| 15 | // There are many optimizations we can perform in the domain of SLSR. This file |
| 16 | // for now contains only an initial step. Specifically, we look for strength |
| 17 | // reduction candidates in the following forms: |
| 18 | // |
| 19 | // Form 1: B + i * S |
| 20 | // Form 2: (B + i) * S |
| 21 | // Form 3: &B[i * S] |
| 22 | // |
| 23 | // where S is an integer variable, and i is a constant integer. If we found two |
| 24 | // candidates S1 and S2 in the same form and S1 dominates S2, we may rewrite S2 |
| 25 | // in a simpler way with respect to S1. For example, |
| 26 | // |
| 27 | // S1: X = B + i * S |
| 28 | // S2: Y = B + i' * S => X + (i' - i) * S |
| 29 | // |
| 30 | // S1: X = (B + i) * S |
| 31 | // S2: Y = (B + i') * S => X + (i' - i) * S |
| 32 | // |
| 33 | // S1: X = &B[i * S] |
| 34 | // S2: Y = &B[i' * S] => &X[(i' - i) * S] |
| 35 | // |
| 36 | // Note: (i' - i) * S is folded to the extent possible. |
| 37 | // |
| 38 | // This rewriting is in general a good idea. The code patterns we focus on |
| 39 | // usually come from loop unrolling, so (i' - i) * S is likely the same |
| 40 | // across iterations and can be reused. When that happens, the optimized form |
| 41 | // takes only one add starting from the second iteration. |
| 42 | // |
| 43 | // When such rewriting is possible, we call S1 a "basis" of S2. When S2 has |
| 44 | // multiple bases, we choose to rewrite S2 with respect to its "immediate" |
| 45 | // basis, the basis that is the closest ancestor in the dominator tree. |
| 46 | // |
| 47 | // TODO: |
| 48 | // |
| 49 | // - Floating point arithmetics when fast math is enabled. |
| 50 | // |
| 51 | // - SLSR may decrease ILP at the architecture level. Targets that are very |
| 52 | // sensitive to ILP may want to disable it. Having SLSR to consider ILP is |
| 53 | // left as future work. |
| 54 | // |
| 55 | // - When (i' - i) is constant but i and i' are not, we could still perform |
| 56 | // SLSR. |
| 57 | |
| 58 | #include "llvm/Transforms/Scalar/StraightLineStrengthReduce.h" |
| 59 | #include "llvm/ADT/APInt.h" |
| 60 | #include "llvm/ADT/DepthFirstIterator.h" |
| 61 | #include "llvm/ADT/SmallVector.h" |
| 62 | #include "llvm/Analysis/ScalarEvolution.h" |
| 63 | #include "llvm/Analysis/TargetTransformInfo.h" |
| 64 | #include "llvm/Analysis/ValueTracking.h" |
| 65 | #include "llvm/IR/Constants.h" |
| 66 | #include "llvm/IR/DataLayout.h" |
| 67 | #include "llvm/IR/DerivedTypes.h" |
| 68 | #include "llvm/IR/Dominators.h" |
| 69 | #include "llvm/IR/GetElementPtrTypeIterator.h" |
| 70 | #include "llvm/IR/IRBuilder.h" |
| 71 | #include "llvm/IR/Instruction.h" |
| 72 | #include "llvm/IR/Instructions.h" |
| 73 | #include "llvm/IR/Module.h" |
| 74 | #include "llvm/IR/Operator.h" |
| 75 | #include "llvm/IR/PatternMatch.h" |
| 76 | #include "llvm/IR/Type.h" |
| 77 | #include "llvm/IR/Value.h" |
| 78 | #include "llvm/InitializePasses.h" |
| 79 | #include "llvm/Pass.h" |
| 80 | #include "llvm/Support/Casting.h" |
| 81 | #include "llvm/Support/DebugCounter.h" |
| 82 | #include "llvm/Support/ErrorHandling.h" |
| 83 | #include "llvm/Transforms/Scalar.h" |
| 84 | #include "llvm/Transforms/Utils/Local.h" |
| 85 | #include <cassert> |
| 86 | #include <cstdint> |
| 87 | #include <limits> |
| 88 | #include <list> |
| 89 | #include <vector> |
| 90 | |
| 91 | using namespace llvm; |
| 92 | using namespace PatternMatch; |
| 93 | |
| 94 | static const unsigned UnknownAddressSpace = |
| 95 | std::numeric_limits<unsigned>::max(); |
| 96 | |
| 97 | DEBUG_COUNTER(StraightLineStrengthReduceCounter, "slsr-counter" , |
| 98 | "Controls whether rewriteCandidateWithBasis is executed." ); |
| 99 | |
| 100 | namespace { |
| 101 | |
| 102 | class StraightLineStrengthReduceLegacyPass : public FunctionPass { |
| 103 | const DataLayout *DL = nullptr; |
| 104 | |
| 105 | public: |
| 106 | static char ID; |
| 107 | |
| 108 | StraightLineStrengthReduceLegacyPass() : FunctionPass(ID) { |
| 109 | initializeStraightLineStrengthReduceLegacyPassPass( |
| 110 | *PassRegistry::getPassRegistry()); |
| 111 | } |
| 112 | |
| 113 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 114 | AU.addRequired<DominatorTreeWrapperPass>(); |
| 115 | AU.addRequired<ScalarEvolutionWrapperPass>(); |
| 116 | AU.addRequired<TargetTransformInfoWrapperPass>(); |
| 117 | // We do not modify the shape of the CFG. |
| 118 | AU.setPreservesCFG(); |
| 119 | } |
| 120 | |
| 121 | bool doInitialization(Module &M) override { |
| 122 | DL = &M.getDataLayout(); |
| 123 | return false; |
| 124 | } |
| 125 | |
| 126 | bool runOnFunction(Function &F) override; |
| 127 | }; |
| 128 | |
| 129 | class StraightLineStrengthReduce { |
| 130 | public: |
| 131 | StraightLineStrengthReduce(const DataLayout *DL, DominatorTree *DT, |
| 132 | ScalarEvolution *SE, TargetTransformInfo *TTI) |
| 133 | : DL(DL), DT(DT), SE(SE), TTI(TTI) {} |
| 134 | |
| 135 | // SLSR candidate. Such a candidate must be in one of the forms described in |
| 136 | // the header comments. |
| 137 | struct Candidate { |
| 138 | enum Kind { |
| 139 | Invalid, // reserved for the default constructor |
| 140 | Add, // B + i * S |
| 141 | Mul, // (B + i) * S |
| 142 | GEP, // &B[..][i * S][..] |
| 143 | }; |
| 144 | |
| 145 | Candidate() = default; |
| 146 | Candidate(Kind CT, const SCEV *B, ConstantInt *Idx, Value *S, |
| 147 | Instruction *I) |
| 148 | : CandidateKind(CT), Base(B), Index(Idx), Stride(S), Ins(I) {} |
| 149 | |
| 150 | Kind CandidateKind = Invalid; |
| 151 | |
| 152 | const SCEV *Base = nullptr; |
| 153 | |
| 154 | // Note that Index and Stride of a GEP candidate do not necessarily have the |
| 155 | // same integer type. In that case, during rewriting, Stride will be |
| 156 | // sign-extended or truncated to Index's type. |
| 157 | ConstantInt *Index = nullptr; |
| 158 | |
| 159 | Value *Stride = nullptr; |
| 160 | |
| 161 | // The instruction this candidate corresponds to. It helps us to rewrite a |
| 162 | // candidate with respect to its immediate basis. Note that one instruction |
| 163 | // can correspond to multiple candidates depending on how you associate the |
| 164 | // expression. For instance, |
| 165 | // |
| 166 | // (a + 1) * (b + 2) |
| 167 | // |
| 168 | // can be treated as |
| 169 | // |
| 170 | // <Base: a, Index: 1, Stride: b + 2> |
| 171 | // |
| 172 | // or |
| 173 | // |
| 174 | // <Base: b, Index: 2, Stride: a + 1> |
| 175 | Instruction *Ins = nullptr; |
| 176 | |
| 177 | // Points to the immediate basis of this candidate, or nullptr if we cannot |
| 178 | // find any basis for this candidate. |
| 179 | Candidate *Basis = nullptr; |
| 180 | }; |
| 181 | |
| 182 | bool runOnFunction(Function &F); |
| 183 | |
| 184 | private: |
| 185 | // Returns true if Basis is a basis for C, i.e., Basis dominates C and they |
| 186 | // share the same base and stride. |
| 187 | bool isBasisFor(const Candidate &Basis, const Candidate &C); |
| 188 | |
| 189 | // Returns whether the candidate can be folded into an addressing mode. |
| 190 | bool isFoldable(const Candidate &C, TargetTransformInfo *TTI, |
| 191 | const DataLayout *DL); |
| 192 | |
| 193 | // Returns true if C is already in a simplest form and not worth being |
| 194 | // rewritten. |
| 195 | bool isSimplestForm(const Candidate &C); |
| 196 | |
| 197 | // Checks whether I is in a candidate form. If so, adds all the matching forms |
| 198 | // to Candidates, and tries to find the immediate basis for each of them. |
| 199 | void allocateCandidatesAndFindBasis(Instruction *I); |
| 200 | |
| 201 | // Allocate candidates and find bases for Add instructions. |
| 202 | void allocateCandidatesAndFindBasisForAdd(Instruction *I); |
| 203 | |
| 204 | // Given I = LHS + RHS, factors RHS into i * S and makes (LHS + i * S) a |
| 205 | // candidate. |
| 206 | void allocateCandidatesAndFindBasisForAdd(Value *LHS, Value *RHS, |
| 207 | Instruction *I); |
| 208 | // Allocate candidates and find bases for Mul instructions. |
| 209 | void allocateCandidatesAndFindBasisForMul(Instruction *I); |
| 210 | |
| 211 | // Splits LHS into Base + Index and, if succeeds, calls |
| 212 | // allocateCandidatesAndFindBasis. |
| 213 | void allocateCandidatesAndFindBasisForMul(Value *LHS, Value *RHS, |
| 214 | Instruction *I); |
| 215 | |
| 216 | // Allocate candidates and find bases for GetElementPtr instructions. |
| 217 | void allocateCandidatesAndFindBasisForGEP(GetElementPtrInst *GEP); |
| 218 | |
| 219 | // A helper function that scales Idx with ElementSize before invoking |
| 220 | // allocateCandidatesAndFindBasis. |
| 221 | void allocateCandidatesAndFindBasisForGEP(const SCEV *B, ConstantInt *Idx, |
| 222 | Value *S, uint64_t ElementSize, |
| 223 | Instruction *I); |
| 224 | |
| 225 | // Adds the given form <CT, B, Idx, S> to Candidates, and finds its immediate |
| 226 | // basis. |
| 227 | void allocateCandidatesAndFindBasis(Candidate::Kind CT, const SCEV *B, |
| 228 | ConstantInt *Idx, Value *S, |
| 229 | Instruction *I); |
| 230 | |
| 231 | // Rewrites candidate C with respect to Basis. |
| 232 | void rewriteCandidateWithBasis(const Candidate &C, const Candidate &Basis); |
| 233 | |
| 234 | // A helper function that factors ArrayIdx to a product of a stride and a |
| 235 | // constant index, and invokes allocateCandidatesAndFindBasis with the |
| 236 | // factorings. |
| 237 | void factorArrayIndex(Value *ArrayIdx, const SCEV *Base, uint64_t ElementSize, |
| 238 | GetElementPtrInst *GEP); |
| 239 | |
| 240 | // Emit code that computes the "bump" from Basis to C. |
| 241 | static Value *emitBump(const Candidate &Basis, const Candidate &C, |
| 242 | IRBuilder<> &Builder, const DataLayout *DL); |
| 243 | |
| 244 | const DataLayout *DL = nullptr; |
| 245 | DominatorTree *DT = nullptr; |
| 246 | ScalarEvolution *SE; |
| 247 | TargetTransformInfo *TTI = nullptr; |
| 248 | std::list<Candidate> Candidates; |
| 249 | |
| 250 | // Temporarily holds all instructions that are unlinked (but not deleted) by |
| 251 | // rewriteCandidateWithBasis. These instructions will be actually removed |
| 252 | // after all rewriting finishes. |
| 253 | std::vector<Instruction *> UnlinkedInstructions; |
| 254 | }; |
| 255 | |
| 256 | } // end anonymous namespace |
| 257 | |
| 258 | char StraightLineStrengthReduceLegacyPass::ID = 0; |
| 259 | |
| 260 | INITIALIZE_PASS_BEGIN(StraightLineStrengthReduceLegacyPass, "slsr" , |
| 261 | "Straight line strength reduction" , false, false) |
| 262 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| 263 | INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) |
| 264 | INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) |
| 265 | INITIALIZE_PASS_END(StraightLineStrengthReduceLegacyPass, "slsr" , |
| 266 | "Straight line strength reduction" , false, false) |
| 267 | |
| 268 | FunctionPass *llvm::createStraightLineStrengthReducePass() { |
| 269 | return new StraightLineStrengthReduceLegacyPass(); |
| 270 | } |
| 271 | |
| 272 | bool StraightLineStrengthReduce::isBasisFor(const Candidate &Basis, |
| 273 | const Candidate &C) { |
| 274 | return (Basis.Ins != C.Ins && // skip the same instruction |
| 275 | // They must have the same type too. Basis.Base == C.Base |
| 276 | // doesn't guarantee their types are the same (PR23975). |
| 277 | Basis.Ins->getType() == C.Ins->getType() && |
| 278 | // Basis must dominate C in order to rewrite C with respect to Basis. |
| 279 | DT->dominates(A: Basis.Ins->getParent(), B: C.Ins->getParent()) && |
| 280 | // They share the same base, stride, and candidate kind. |
| 281 | Basis.Base == C.Base && Basis.Stride == C.Stride && |
| 282 | Basis.CandidateKind == C.CandidateKind); |
| 283 | } |
| 284 | |
| 285 | static bool isGEPFoldable(GetElementPtrInst *GEP, |
| 286 | const TargetTransformInfo *TTI) { |
| 287 | SmallVector<const Value *, 4> Indices(GEP->indices()); |
| 288 | return TTI->getGEPCost(PointeeType: GEP->getSourceElementType(), Ptr: GEP->getPointerOperand(), |
| 289 | Operands: Indices) == TargetTransformInfo::TCC_Free; |
| 290 | } |
| 291 | |
| 292 | // Returns whether (Base + Index * Stride) can be folded to an addressing mode. |
| 293 | static bool isAddFoldable(const SCEV *Base, ConstantInt *Index, Value *Stride, |
| 294 | TargetTransformInfo *TTI) { |
| 295 | // Index->getSExtValue() may crash if Index is wider than 64-bit. |
| 296 | return Index->getBitWidth() <= 64 && |
| 297 | TTI->isLegalAddressingMode(Ty: Base->getType(), BaseGV: nullptr, BaseOffset: 0, HasBaseReg: true, |
| 298 | Scale: Index->getSExtValue(), AddrSpace: UnknownAddressSpace); |
| 299 | } |
| 300 | |
| 301 | bool StraightLineStrengthReduce::isFoldable(const Candidate &C, |
| 302 | TargetTransformInfo *TTI, |
| 303 | const DataLayout *DL) { |
| 304 | if (C.CandidateKind == Candidate::Add) |
| 305 | return isAddFoldable(Base: C.Base, Index: C.Index, Stride: C.Stride, TTI); |
| 306 | if (C.CandidateKind == Candidate::GEP) |
| 307 | return isGEPFoldable(GEP: cast<GetElementPtrInst>(Val: C.Ins), TTI); |
| 308 | return false; |
| 309 | } |
| 310 | |
| 311 | // Returns true if GEP has zero or one non-zero index. |
| 312 | static bool hasOnlyOneNonZeroIndex(GetElementPtrInst *GEP) { |
| 313 | unsigned NumNonZeroIndices = 0; |
| 314 | for (Use &Idx : GEP->indices()) { |
| 315 | ConstantInt *ConstIdx = dyn_cast<ConstantInt>(Val&: Idx); |
| 316 | if (ConstIdx == nullptr || !ConstIdx->isZero()) |
| 317 | ++NumNonZeroIndices; |
| 318 | } |
| 319 | return NumNonZeroIndices <= 1; |
| 320 | } |
| 321 | |
| 322 | bool StraightLineStrengthReduce::isSimplestForm(const Candidate &C) { |
| 323 | if (C.CandidateKind == Candidate::Add) { |
| 324 | // B + 1 * S or B + (-1) * S |
| 325 | return C.Index->isOne() || C.Index->isMinusOne(); |
| 326 | } |
| 327 | if (C.CandidateKind == Candidate::Mul) { |
| 328 | // (B + 0) * S |
| 329 | return C.Index->isZero(); |
| 330 | } |
| 331 | if (C.CandidateKind == Candidate::GEP) { |
| 332 | // (char*)B + S or (char*)B - S |
| 333 | return ((C.Index->isOne() || C.Index->isMinusOne()) && |
| 334 | hasOnlyOneNonZeroIndex(GEP: cast<GetElementPtrInst>(Val: C.Ins))); |
| 335 | } |
| 336 | return false; |
| 337 | } |
| 338 | |
| 339 | // TODO: We currently implement an algorithm whose time complexity is linear in |
| 340 | // the number of existing candidates. However, we could do better by using |
| 341 | // ScopedHashTable. Specifically, while traversing the dominator tree, we could |
| 342 | // maintain all the candidates that dominate the basic block being traversed in |
| 343 | // a ScopedHashTable. This hash table is indexed by the base and the stride of |
| 344 | // a candidate. Therefore, finding the immediate basis of a candidate boils down |
| 345 | // to one hash-table look up. |
| 346 | void StraightLineStrengthReduce::allocateCandidatesAndFindBasis( |
| 347 | Candidate::Kind CT, const SCEV *B, ConstantInt *Idx, Value *S, |
| 348 | Instruction *I) { |
| 349 | Candidate C(CT, B, Idx, S, I); |
| 350 | // SLSR can complicate an instruction in two cases: |
| 351 | // |
| 352 | // 1. If we can fold I into an addressing mode, computing I is likely free or |
| 353 | // takes only one instruction. |
| 354 | // |
| 355 | // 2. I is already in a simplest form. For example, when |
| 356 | // X = B + 8 * S |
| 357 | // Y = B + S, |
| 358 | // rewriting Y to X - 7 * S is probably a bad idea. |
| 359 | // |
| 360 | // In the above cases, we still add I to the candidate list so that I can be |
| 361 | // the basis of other candidates, but we leave I's basis blank so that I |
| 362 | // won't be rewritten. |
| 363 | if (!isFoldable(C, TTI, DL) && !isSimplestForm(C)) { |
| 364 | // Try to compute the immediate basis of C. |
| 365 | unsigned NumIterations = 0; |
| 366 | // Limit the scan radius to avoid running in quadratice time. |
| 367 | static const unsigned MaxNumIterations = 50; |
| 368 | for (auto Basis = Candidates.rbegin(); |
| 369 | Basis != Candidates.rend() && NumIterations < MaxNumIterations; |
| 370 | ++Basis, ++NumIterations) { |
| 371 | if (isBasisFor(Basis: *Basis, C)) { |
| 372 | C.Basis = &(*Basis); |
| 373 | break; |
| 374 | } |
| 375 | } |
| 376 | } |
| 377 | // Regardless of whether we find a basis for C, we need to push C to the |
| 378 | // candidate list so that it can be the basis of other candidates. |
| 379 | Candidates.push_back(x: C); |
| 380 | } |
| 381 | |
| 382 | void StraightLineStrengthReduce::allocateCandidatesAndFindBasis( |
| 383 | Instruction *I) { |
| 384 | switch (I->getOpcode()) { |
| 385 | case Instruction::Add: |
| 386 | allocateCandidatesAndFindBasisForAdd(I); |
| 387 | break; |
| 388 | case Instruction::Mul: |
| 389 | allocateCandidatesAndFindBasisForMul(I); |
| 390 | break; |
| 391 | case Instruction::GetElementPtr: |
| 392 | allocateCandidatesAndFindBasisForGEP(GEP: cast<GetElementPtrInst>(Val: I)); |
| 393 | break; |
| 394 | } |
| 395 | } |
| 396 | |
| 397 | void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd( |
| 398 | Instruction *I) { |
| 399 | // Try matching B + i * S. |
| 400 | if (!isa<IntegerType>(Val: I->getType())) |
| 401 | return; |
| 402 | |
| 403 | assert(I->getNumOperands() == 2 && "isn't I an add?" ); |
| 404 | Value *LHS = I->getOperand(i: 0), *RHS = I->getOperand(i: 1); |
| 405 | allocateCandidatesAndFindBasisForAdd(LHS, RHS, I); |
| 406 | if (LHS != RHS) |
| 407 | allocateCandidatesAndFindBasisForAdd(LHS: RHS, RHS: LHS, I); |
| 408 | } |
| 409 | |
| 410 | void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd( |
| 411 | Value *LHS, Value *RHS, Instruction *I) { |
| 412 | Value *S = nullptr; |
| 413 | ConstantInt *Idx = nullptr; |
| 414 | if (match(V: RHS, P: m_Mul(L: m_Value(V&: S), R: m_ConstantInt(CI&: Idx)))) { |
| 415 | // I = LHS + RHS = LHS + Idx * S |
| 416 | allocateCandidatesAndFindBasis(CT: Candidate::Add, B: SE->getSCEV(V: LHS), Idx, S, I); |
| 417 | } else if (match(V: RHS, P: m_Shl(L: m_Value(V&: S), R: m_ConstantInt(CI&: Idx)))) { |
| 418 | // I = LHS + RHS = LHS + (S << Idx) = LHS + S * (1 << Idx) |
| 419 | APInt One(Idx->getBitWidth(), 1); |
| 420 | Idx = ConstantInt::get(Context&: Idx->getContext(), V: One << Idx->getValue()); |
| 421 | allocateCandidatesAndFindBasis(CT: Candidate::Add, B: SE->getSCEV(V: LHS), Idx, S, I); |
| 422 | } else { |
| 423 | // At least, I = LHS + 1 * RHS |
| 424 | ConstantInt *One = ConstantInt::get(Ty: cast<IntegerType>(Val: I->getType()), V: 1); |
| 425 | allocateCandidatesAndFindBasis(CT: Candidate::Add, B: SE->getSCEV(V: LHS), Idx: One, S: RHS, |
| 426 | I); |
| 427 | } |
| 428 | } |
| 429 | |
| 430 | // Returns true if A matches B + C where C is constant. |
| 431 | static bool matchesAdd(Value *A, Value *&B, ConstantInt *&C) { |
| 432 | return match(V: A, P: m_c_Add(L: m_Value(V&: B), R: m_ConstantInt(CI&: C))); |
| 433 | } |
| 434 | |
| 435 | // Returns true if A matches B | C where C is constant. |
| 436 | static bool matchesOr(Value *A, Value *&B, ConstantInt *&C) { |
| 437 | return match(V: A, P: m_c_Or(L: m_Value(V&: B), R: m_ConstantInt(CI&: C))); |
| 438 | } |
| 439 | |
| 440 | void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul( |
| 441 | Value *LHS, Value *RHS, Instruction *I) { |
| 442 | Value *B = nullptr; |
| 443 | ConstantInt *Idx = nullptr; |
| 444 | if (matchesAdd(A: LHS, B, C&: Idx)) { |
| 445 | // If LHS is in the form of "Base + Index", then I is in the form of |
| 446 | // "(Base + Index) * RHS". |
| 447 | allocateCandidatesAndFindBasis(CT: Candidate::Mul, B: SE->getSCEV(V: B), Idx, S: RHS, I); |
| 448 | } else if (matchesOr(A: LHS, B, C&: Idx) && haveNoCommonBitsSet(LHSCache: B, RHSCache: Idx, SQ: *DL)) { |
| 449 | // If LHS is in the form of "Base | Index" and Base and Index have no common |
| 450 | // bits set, then |
| 451 | // Base | Index = Base + Index |
| 452 | // and I is thus in the form of "(Base + Index) * RHS". |
| 453 | allocateCandidatesAndFindBasis(CT: Candidate::Mul, B: SE->getSCEV(V: B), Idx, S: RHS, I); |
| 454 | } else { |
| 455 | // Otherwise, at least try the form (LHS + 0) * RHS. |
| 456 | ConstantInt *Zero = ConstantInt::get(Ty: cast<IntegerType>(Val: I->getType()), V: 0); |
| 457 | allocateCandidatesAndFindBasis(CT: Candidate::Mul, B: SE->getSCEV(V: LHS), Idx: Zero, S: RHS, |
| 458 | I); |
| 459 | } |
| 460 | } |
| 461 | |
| 462 | void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul( |
| 463 | Instruction *I) { |
| 464 | // Try matching (B + i) * S. |
| 465 | // TODO: we could extend SLSR to float and vector types. |
| 466 | if (!isa<IntegerType>(Val: I->getType())) |
| 467 | return; |
| 468 | |
| 469 | assert(I->getNumOperands() == 2 && "isn't I a mul?" ); |
| 470 | Value *LHS = I->getOperand(i: 0), *RHS = I->getOperand(i: 1); |
| 471 | allocateCandidatesAndFindBasisForMul(LHS, RHS, I); |
| 472 | if (LHS != RHS) { |
| 473 | // Symmetrically, try to split RHS to Base + Index. |
| 474 | allocateCandidatesAndFindBasisForMul(LHS: RHS, RHS: LHS, I); |
| 475 | } |
| 476 | } |
| 477 | |
| 478 | void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP( |
| 479 | const SCEV *B, ConstantInt *Idx, Value *S, uint64_t ElementSize, |
| 480 | Instruction *I) { |
| 481 | // I = B + sext(Idx *nsw S) * ElementSize |
| 482 | // = B + (sext(Idx) * sext(S)) * ElementSize |
| 483 | // = B + (sext(Idx) * ElementSize) * sext(S) |
| 484 | // Casting to IntegerType is safe because we skipped vector GEPs. |
| 485 | IntegerType *PtrIdxTy = cast<IntegerType>(Val: DL->getIndexType(PtrTy: I->getType())); |
| 486 | ConstantInt *ScaledIdx = ConstantInt::get( |
| 487 | Ty: PtrIdxTy, V: Idx->getSExtValue() * (int64_t)ElementSize, IsSigned: true); |
| 488 | allocateCandidatesAndFindBasis(CT: Candidate::GEP, B, Idx: ScaledIdx, S, I); |
| 489 | } |
| 490 | |
| 491 | void StraightLineStrengthReduce::factorArrayIndex(Value *ArrayIdx, |
| 492 | const SCEV *Base, |
| 493 | uint64_t ElementSize, |
| 494 | GetElementPtrInst *GEP) { |
| 495 | // At least, ArrayIdx = ArrayIdx *nsw 1. |
| 496 | allocateCandidatesAndFindBasisForGEP( |
| 497 | B: Base, Idx: ConstantInt::get(Ty: cast<IntegerType>(Val: ArrayIdx->getType()), V: 1), |
| 498 | S: ArrayIdx, ElementSize, I: GEP); |
| 499 | Value *LHS = nullptr; |
| 500 | ConstantInt *RHS = nullptr; |
| 501 | // One alternative is matching the SCEV of ArrayIdx instead of ArrayIdx |
| 502 | // itself. This would allow us to handle the shl case for free. However, |
| 503 | // matching SCEVs has two issues: |
| 504 | // |
| 505 | // 1. this would complicate rewriting because the rewriting procedure |
| 506 | // would have to translate SCEVs back to IR instructions. This translation |
| 507 | // is difficult when LHS is further evaluated to a composite SCEV. |
| 508 | // |
| 509 | // 2. ScalarEvolution is designed to be control-flow oblivious. It tends |
| 510 | // to strip nsw/nuw flags which are critical for SLSR to trace into |
| 511 | // sext'ed multiplication. |
| 512 | if (match(V: ArrayIdx, P: m_NSWMul(L: m_Value(V&: LHS), R: m_ConstantInt(CI&: RHS)))) { |
| 513 | // SLSR is currently unsafe if i * S may overflow. |
| 514 | // GEP = Base + sext(LHS *nsw RHS) * ElementSize |
| 515 | allocateCandidatesAndFindBasisForGEP(B: Base, Idx: RHS, S: LHS, ElementSize, I: GEP); |
| 516 | } else if (match(V: ArrayIdx, P: m_NSWShl(L: m_Value(V&: LHS), R: m_ConstantInt(CI&: RHS)))) { |
| 517 | // GEP = Base + sext(LHS <<nsw RHS) * ElementSize |
| 518 | // = Base + sext(LHS *nsw (1 << RHS)) * ElementSize |
| 519 | APInt One(RHS->getBitWidth(), 1); |
| 520 | ConstantInt *PowerOf2 = |
| 521 | ConstantInt::get(Context&: RHS->getContext(), V: One << RHS->getValue()); |
| 522 | allocateCandidatesAndFindBasisForGEP(B: Base, Idx: PowerOf2, S: LHS, ElementSize, I: GEP); |
| 523 | } |
| 524 | } |
| 525 | |
| 526 | void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP( |
| 527 | GetElementPtrInst *GEP) { |
| 528 | // TODO: handle vector GEPs |
| 529 | if (GEP->getType()->isVectorTy()) |
| 530 | return; |
| 531 | |
| 532 | SmallVector<const SCEV *, 4> IndexExprs; |
| 533 | for (Use &Idx : GEP->indices()) |
| 534 | IndexExprs.push_back(Elt: SE->getSCEV(V: Idx)); |
| 535 | |
| 536 | gep_type_iterator GTI = gep_type_begin(GEP); |
| 537 | for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) { |
| 538 | if (GTI.isStruct()) |
| 539 | continue; |
| 540 | |
| 541 | const SCEV *OrigIndexExpr = IndexExprs[I - 1]; |
| 542 | IndexExprs[I - 1] = SE->getZero(Ty: OrigIndexExpr->getType()); |
| 543 | |
| 544 | // The base of this candidate is GEP's base plus the offsets of all |
| 545 | // indices except this current one. |
| 546 | const SCEV *BaseExpr = SE->getGEPExpr(GEP: cast<GEPOperator>(Val: GEP), IndexExprs); |
| 547 | Value *ArrayIdx = GEP->getOperand(i_nocapture: I); |
| 548 | uint64_t ElementSize = GTI.getSequentialElementStride(DL: *DL); |
| 549 | if (ArrayIdx->getType()->getIntegerBitWidth() <= |
| 550 | DL->getIndexSizeInBits(AS: GEP->getAddressSpace())) { |
| 551 | // Skip factoring if ArrayIdx is wider than the index size, because |
| 552 | // ArrayIdx is implicitly truncated to the index size. |
| 553 | factorArrayIndex(ArrayIdx, Base: BaseExpr, ElementSize, GEP); |
| 554 | } |
| 555 | // When ArrayIdx is the sext of a value, we try to factor that value as |
| 556 | // well. Handling this case is important because array indices are |
| 557 | // typically sign-extended to the pointer index size. |
| 558 | Value *TruncatedArrayIdx = nullptr; |
| 559 | if (match(V: ArrayIdx, P: m_SExt(Op: m_Value(V&: TruncatedArrayIdx))) && |
| 560 | TruncatedArrayIdx->getType()->getIntegerBitWidth() <= |
| 561 | DL->getIndexSizeInBits(AS: GEP->getAddressSpace())) { |
| 562 | // Skip factoring if TruncatedArrayIdx is wider than the pointer size, |
| 563 | // because TruncatedArrayIdx is implicitly truncated to the pointer size. |
| 564 | factorArrayIndex(ArrayIdx: TruncatedArrayIdx, Base: BaseExpr, ElementSize, GEP); |
| 565 | } |
| 566 | |
| 567 | IndexExprs[I - 1] = OrigIndexExpr; |
| 568 | } |
| 569 | } |
| 570 | |
| 571 | // A helper function that unifies the bitwidth of A and B. |
| 572 | static void unifyBitWidth(APInt &A, APInt &B) { |
| 573 | if (A.getBitWidth() < B.getBitWidth()) |
| 574 | A = A.sext(width: B.getBitWidth()); |
| 575 | else if (A.getBitWidth() > B.getBitWidth()) |
| 576 | B = B.sext(width: A.getBitWidth()); |
| 577 | } |
| 578 | |
| 579 | Value *StraightLineStrengthReduce::emitBump(const Candidate &Basis, |
| 580 | const Candidate &C, |
| 581 | IRBuilder<> &Builder, |
| 582 | const DataLayout *DL) { |
| 583 | APInt Idx = C.Index->getValue(), BasisIdx = Basis.Index->getValue(); |
| 584 | unifyBitWidth(A&: Idx, B&: BasisIdx); |
| 585 | APInt IndexOffset = Idx - BasisIdx; |
| 586 | |
| 587 | // Compute Bump = C - Basis = (i' - i) * S. |
| 588 | // Common case 1: if (i' - i) is 1, Bump = S. |
| 589 | if (IndexOffset == 1) |
| 590 | return C.Stride; |
| 591 | // Common case 2: if (i' - i) is -1, Bump = -S. |
| 592 | if (IndexOffset.isAllOnes()) |
| 593 | return Builder.CreateNeg(V: C.Stride); |
| 594 | |
| 595 | // Otherwise, Bump = (i' - i) * sext/trunc(S). Note that (i' - i) and S may |
| 596 | // have different bit widths. |
| 597 | IntegerType *DeltaType = |
| 598 | IntegerType::get(C&: Basis.Ins->getContext(), NumBits: IndexOffset.getBitWidth()); |
| 599 | Value *ExtendedStride = Builder.CreateSExtOrTrunc(V: C.Stride, DestTy: DeltaType); |
| 600 | if (IndexOffset.isPowerOf2()) { |
| 601 | // If (i' - i) is a power of 2, Bump = sext/trunc(S) << log(i' - i). |
| 602 | ConstantInt *Exponent = ConstantInt::get(Ty: DeltaType, V: IndexOffset.logBase2()); |
| 603 | return Builder.CreateShl(LHS: ExtendedStride, RHS: Exponent); |
| 604 | } |
| 605 | if (IndexOffset.isNegatedPowerOf2()) { |
| 606 | // If (i - i') is a power of 2, Bump = -sext/trunc(S) << log(i' - i). |
| 607 | ConstantInt *Exponent = |
| 608 | ConstantInt::get(Ty: DeltaType, V: (-IndexOffset).logBase2()); |
| 609 | return Builder.CreateNeg(V: Builder.CreateShl(LHS: ExtendedStride, RHS: Exponent)); |
| 610 | } |
| 611 | Constant *Delta = ConstantInt::get(Ty: DeltaType, V: IndexOffset); |
| 612 | return Builder.CreateMul(LHS: ExtendedStride, RHS: Delta); |
| 613 | } |
| 614 | |
| 615 | void StraightLineStrengthReduce::rewriteCandidateWithBasis( |
| 616 | const Candidate &C, const Candidate &Basis) { |
| 617 | if (!DebugCounter::shouldExecute(CounterName: StraightLineStrengthReduceCounter)) |
| 618 | return; |
| 619 | |
| 620 | assert(C.CandidateKind == Basis.CandidateKind && C.Base == Basis.Base && |
| 621 | C.Stride == Basis.Stride); |
| 622 | // We run rewriteCandidateWithBasis on all candidates in a post-order, so the |
| 623 | // basis of a candidate cannot be unlinked before the candidate. |
| 624 | assert(Basis.Ins->getParent() != nullptr && "the basis is unlinked" ); |
| 625 | |
| 626 | // An instruction can correspond to multiple candidates. Therefore, instead of |
| 627 | // simply deleting an instruction when we rewrite it, we mark its parent as |
| 628 | // nullptr (i.e. unlink it) so that we can skip the candidates whose |
| 629 | // instruction is already rewritten. |
| 630 | if (!C.Ins->getParent()) |
| 631 | return; |
| 632 | |
| 633 | IRBuilder<> Builder(C.Ins); |
| 634 | Value *Bump = emitBump(Basis, C, Builder, DL); |
| 635 | Value *Reduced = nullptr; // equivalent to but weaker than C.Ins |
| 636 | switch (C.CandidateKind) { |
| 637 | case Candidate::Add: |
| 638 | case Candidate::Mul: { |
| 639 | // C = Basis + Bump |
| 640 | Value *NegBump; |
| 641 | if (match(V: Bump, P: m_Neg(V: m_Value(V&: NegBump)))) { |
| 642 | // If Bump is a neg instruction, emit C = Basis - (-Bump). |
| 643 | Reduced = Builder.CreateSub(LHS: Basis.Ins, RHS: NegBump); |
| 644 | // We only use the negative argument of Bump, and Bump itself may be |
| 645 | // trivially dead. |
| 646 | RecursivelyDeleteTriviallyDeadInstructions(V: Bump); |
| 647 | } else { |
| 648 | // It's tempting to preserve nsw on Bump and/or Reduced. However, it's |
| 649 | // usually unsound, e.g., |
| 650 | // |
| 651 | // X = (-2 +nsw 1) *nsw INT_MAX |
| 652 | // Y = (-2 +nsw 3) *nsw INT_MAX |
| 653 | // => |
| 654 | // Y = X + 2 * INT_MAX |
| 655 | // |
| 656 | // Neither + and * in the resultant expression are nsw. |
| 657 | Reduced = Builder.CreateAdd(LHS: Basis.Ins, RHS: Bump); |
| 658 | } |
| 659 | break; |
| 660 | } |
| 661 | case Candidate::GEP: { |
| 662 | bool InBounds = cast<GetElementPtrInst>(Val: C.Ins)->isInBounds(); |
| 663 | // C = (char *)Basis + Bump |
| 664 | Reduced = Builder.CreatePtrAdd(Ptr: Basis.Ins, Offset: Bump, Name: "" , NW: InBounds); |
| 665 | break; |
| 666 | } |
| 667 | default: |
| 668 | llvm_unreachable("C.CandidateKind is invalid" ); |
| 669 | }; |
| 670 | Reduced->takeName(V: C.Ins); |
| 671 | C.Ins->replaceAllUsesWith(V: Reduced); |
| 672 | // Unlink C.Ins so that we can skip other candidates also corresponding to |
| 673 | // C.Ins. The actual deletion is postponed to the end of runOnFunction. |
| 674 | C.Ins->removeFromParent(); |
| 675 | UnlinkedInstructions.push_back(x: C.Ins); |
| 676 | } |
| 677 | |
| 678 | bool StraightLineStrengthReduceLegacyPass::runOnFunction(Function &F) { |
| 679 | if (skipFunction(F)) |
| 680 | return false; |
| 681 | |
| 682 | auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); |
| 683 | auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| 684 | auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); |
| 685 | return StraightLineStrengthReduce(DL, DT, SE, TTI).runOnFunction(F); |
| 686 | } |
| 687 | |
| 688 | bool StraightLineStrengthReduce::runOnFunction(Function &F) { |
| 689 | // Traverse the dominator tree in the depth-first order. This order makes sure |
| 690 | // all bases of a candidate are in Candidates when we process it. |
| 691 | for (const auto Node : depth_first(G: DT)) |
| 692 | for (auto &I : *(Node->getBlock())) |
| 693 | allocateCandidatesAndFindBasis(I: &I); |
| 694 | |
| 695 | // Rewrite candidates in the reverse depth-first order. This order makes sure |
| 696 | // a candidate being rewritten is not a basis for any other candidate. |
| 697 | while (!Candidates.empty()) { |
| 698 | const Candidate &C = Candidates.back(); |
| 699 | if (C.Basis != nullptr) { |
| 700 | rewriteCandidateWithBasis(C, Basis: *C.Basis); |
| 701 | } |
| 702 | Candidates.pop_back(); |
| 703 | } |
| 704 | |
| 705 | // Delete all unlink instructions. |
| 706 | for (auto *UnlinkedInst : UnlinkedInstructions) { |
| 707 | for (unsigned I = 0, E = UnlinkedInst->getNumOperands(); I != E; ++I) { |
| 708 | Value *Op = UnlinkedInst->getOperand(i: I); |
| 709 | UnlinkedInst->setOperand(i: I, Val: nullptr); |
| 710 | RecursivelyDeleteTriviallyDeadInstructions(V: Op); |
| 711 | } |
| 712 | UnlinkedInst->deleteValue(); |
| 713 | } |
| 714 | bool Ret = !UnlinkedInstructions.empty(); |
| 715 | UnlinkedInstructions.clear(); |
| 716 | return Ret; |
| 717 | } |
| 718 | |
| 719 | namespace llvm { |
| 720 | |
| 721 | PreservedAnalyses |
| 722 | StraightLineStrengthReducePass::run(Function &F, FunctionAnalysisManager &AM) { |
| 723 | const DataLayout *DL = &F.getDataLayout(); |
| 724 | auto *DT = &AM.getResult<DominatorTreeAnalysis>(IR&: F); |
| 725 | auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(IR&: F); |
| 726 | auto *TTI = &AM.getResult<TargetIRAnalysis>(IR&: F); |
| 727 | |
| 728 | if (!StraightLineStrengthReduce(DL, DT, SE, TTI).runOnFunction(F)) |
| 729 | return PreservedAnalyses::all(); |
| 730 | |
| 731 | PreservedAnalyses PA; |
| 732 | PA.preserveSet<CFGAnalyses>(); |
| 733 | PA.preserve<DominatorTreeAnalysis>(); |
| 734 | PA.preserve<ScalarEvolutionAnalysis>(); |
| 735 | PA.preserve<TargetIRAnalysis>(); |
| 736 | return PA; |
| 737 | } |
| 738 | |
| 739 | } // namespace llvm |
| 740 | |