| 1 | //===- FunctionComparator.h - Function Comparator -------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the FunctionComparator and GlobalNumberState classes |
| 10 | // which are used by the MergeFunctions pass for comparing functions. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "llvm/Transforms/Utils/FunctionComparator.h" |
| 15 | #include "llvm/ADT/APFloat.h" |
| 16 | #include "llvm/ADT/APInt.h" |
| 17 | #include "llvm/ADT/ArrayRef.h" |
| 18 | #include "llvm/ADT/SmallPtrSet.h" |
| 19 | #include "llvm/ADT/SmallVector.h" |
| 20 | #include "llvm/IR/Attributes.h" |
| 21 | #include "llvm/IR/BasicBlock.h" |
| 22 | #include "llvm/IR/Constant.h" |
| 23 | #include "llvm/IR/Constants.h" |
| 24 | #include "llvm/IR/DataLayout.h" |
| 25 | #include "llvm/IR/DerivedTypes.h" |
| 26 | #include "llvm/IR/Function.h" |
| 27 | #include "llvm/IR/GlobalValue.h" |
| 28 | #include "llvm/IR/InlineAsm.h" |
| 29 | #include "llvm/IR/InstrTypes.h" |
| 30 | #include "llvm/IR/Instruction.h" |
| 31 | #include "llvm/IR/Instructions.h" |
| 32 | #include "llvm/IR/LLVMContext.h" |
| 33 | #include "llvm/IR/Metadata.h" |
| 34 | #include "llvm/IR/Module.h" |
| 35 | #include "llvm/IR/Operator.h" |
| 36 | #include "llvm/IR/Type.h" |
| 37 | #include "llvm/IR/Value.h" |
| 38 | #include "llvm/Support/Casting.h" |
| 39 | #include "llvm/Support/Compiler.h" |
| 40 | #include "llvm/Support/Debug.h" |
| 41 | #include "llvm/Support/ErrorHandling.h" |
| 42 | #include "llvm/Support/raw_ostream.h" |
| 43 | #include <cassert> |
| 44 | #include <cstddef> |
| 45 | #include <cstdint> |
| 46 | #include <utility> |
| 47 | |
| 48 | using namespace llvm; |
| 49 | |
| 50 | #define DEBUG_TYPE "functioncomparator" |
| 51 | |
| 52 | int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const { |
| 53 | if (L < R) |
| 54 | return -1; |
| 55 | if (L > R) |
| 56 | return 1; |
| 57 | return 0; |
| 58 | } |
| 59 | |
| 60 | int FunctionComparator::cmpAligns(Align L, Align R) const { |
| 61 | if (L.value() < R.value()) |
| 62 | return -1; |
| 63 | if (L.value() > R.value()) |
| 64 | return 1; |
| 65 | return 0; |
| 66 | } |
| 67 | |
| 68 | int FunctionComparator::cmpOrderings(AtomicOrdering L, AtomicOrdering R) const { |
| 69 | if ((int)L < (int)R) |
| 70 | return -1; |
| 71 | if ((int)L > (int)R) |
| 72 | return 1; |
| 73 | return 0; |
| 74 | } |
| 75 | |
| 76 | int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const { |
| 77 | if (int Res = cmpNumbers(L: L.getBitWidth(), R: R.getBitWidth())) |
| 78 | return Res; |
| 79 | if (L.ugt(RHS: R)) |
| 80 | return 1; |
| 81 | if (R.ugt(RHS: L)) |
| 82 | return -1; |
| 83 | return 0; |
| 84 | } |
| 85 | |
| 86 | int FunctionComparator::cmpConstantRanges(const ConstantRange &L, |
| 87 | const ConstantRange &R) const { |
| 88 | if (int Res = cmpAPInts(L: L.getLower(), R: R.getLower())) |
| 89 | return Res; |
| 90 | return cmpAPInts(L: L.getUpper(), R: R.getUpper()); |
| 91 | } |
| 92 | |
| 93 | int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const { |
| 94 | // Floats are ordered first by semantics (i.e. float, double, half, etc.), |
| 95 | // then by value interpreted as a bitstring (aka APInt). |
| 96 | const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics(); |
| 97 | if (int Res = cmpNumbers(L: APFloat::semanticsPrecision(SL), |
| 98 | R: APFloat::semanticsPrecision(SR))) |
| 99 | return Res; |
| 100 | if (int Res = cmpNumbers(L: APFloat::semanticsMaxExponent(SL), |
| 101 | R: APFloat::semanticsMaxExponent(SR))) |
| 102 | return Res; |
| 103 | if (int Res = cmpNumbers(L: APFloat::semanticsMinExponent(SL), |
| 104 | R: APFloat::semanticsMinExponent(SR))) |
| 105 | return Res; |
| 106 | if (int Res = cmpNumbers(L: APFloat::semanticsSizeInBits(SL), |
| 107 | R: APFloat::semanticsSizeInBits(SR))) |
| 108 | return Res; |
| 109 | return cmpAPInts(L: L.bitcastToAPInt(), R: R.bitcastToAPInt()); |
| 110 | } |
| 111 | |
| 112 | int FunctionComparator::cmpMem(StringRef L, StringRef R) const { |
| 113 | // Prevent heavy comparison, compare sizes first. |
| 114 | if (int Res = cmpNumbers(L: L.size(), R: R.size())) |
| 115 | return Res; |
| 116 | |
| 117 | // Compare strings lexicographically only when it is necessary: only when |
| 118 | // strings are equal in size. |
| 119 | return std::clamp(val: L.compare(RHS: R), lo: -1, hi: 1); |
| 120 | } |
| 121 | |
| 122 | int FunctionComparator::cmpAttrs(const AttributeList L, |
| 123 | const AttributeList R) const { |
| 124 | if (int Res = cmpNumbers(L: L.getNumAttrSets(), R: R.getNumAttrSets())) |
| 125 | return Res; |
| 126 | |
| 127 | for (unsigned i : L.indexes()) { |
| 128 | AttributeSet LAS = L.getAttributes(Index: i); |
| 129 | AttributeSet RAS = R.getAttributes(Index: i); |
| 130 | AttributeSet::iterator LI = LAS.begin(), LE = LAS.end(); |
| 131 | AttributeSet::iterator RI = RAS.begin(), RE = RAS.end(); |
| 132 | for (; LI != LE && RI != RE; ++LI, ++RI) { |
| 133 | Attribute LA = *LI; |
| 134 | Attribute RA = *RI; |
| 135 | if (LA.isTypeAttribute() && RA.isTypeAttribute()) { |
| 136 | if (LA.getKindAsEnum() != RA.getKindAsEnum()) |
| 137 | return cmpNumbers(L: LA.getKindAsEnum(), R: RA.getKindAsEnum()); |
| 138 | |
| 139 | Type *TyL = LA.getValueAsType(); |
| 140 | Type *TyR = RA.getValueAsType(); |
| 141 | if (TyL && TyR) { |
| 142 | if (int Res = cmpTypes(TyL, TyR)) |
| 143 | return Res; |
| 144 | continue; |
| 145 | } |
| 146 | |
| 147 | // Two pointers, at least one null, so the comparison result is |
| 148 | // independent of the value of a real pointer. |
| 149 | if (int Res = cmpNumbers(L: (uint64_t)TyL, R: (uint64_t)TyR)) |
| 150 | return Res; |
| 151 | continue; |
| 152 | } else if (LA.isConstantRangeAttribute() && |
| 153 | RA.isConstantRangeAttribute()) { |
| 154 | if (LA.getKindAsEnum() != RA.getKindAsEnum()) |
| 155 | return cmpNumbers(L: LA.getKindAsEnum(), R: RA.getKindAsEnum()); |
| 156 | |
| 157 | if (int Res = cmpConstantRanges(L: LA.getRange(), R: RA.getRange())) |
| 158 | return Res; |
| 159 | continue; |
| 160 | } else if (LA.isConstantRangeListAttribute() && |
| 161 | RA.isConstantRangeListAttribute()) { |
| 162 | if (LA.getKindAsEnum() != RA.getKindAsEnum()) |
| 163 | return cmpNumbers(L: LA.getKindAsEnum(), R: RA.getKindAsEnum()); |
| 164 | |
| 165 | ArrayRef<ConstantRange> CRL = LA.getValueAsConstantRangeList(); |
| 166 | ArrayRef<ConstantRange> CRR = RA.getValueAsConstantRangeList(); |
| 167 | if (int Res = cmpNumbers(L: CRL.size(), R: CRR.size())) |
| 168 | return Res; |
| 169 | |
| 170 | for (const auto &[L, R] : zip(t&: CRL, u&: CRR)) |
| 171 | if (int Res = cmpConstantRanges(L, R)) |
| 172 | return Res; |
| 173 | continue; |
| 174 | } |
| 175 | if (LA < RA) |
| 176 | return -1; |
| 177 | if (RA < LA) |
| 178 | return 1; |
| 179 | } |
| 180 | if (LI != LE) |
| 181 | return 1; |
| 182 | if (RI != RE) |
| 183 | return -1; |
| 184 | } |
| 185 | return 0; |
| 186 | } |
| 187 | |
| 188 | int FunctionComparator::cmpMetadata(const Metadata *L, |
| 189 | const Metadata *R) const { |
| 190 | // TODO: the following routine coerce the metadata contents into constants |
| 191 | // or MDStrings before comparison. |
| 192 | // It ignores any other cases, so that the metadata nodes are considered |
| 193 | // equal even though this is not correct. |
| 194 | // We should structurally compare the metadata nodes to be perfect here. |
| 195 | |
| 196 | auto *MDStringL = dyn_cast<MDString>(Val: L); |
| 197 | auto *MDStringR = dyn_cast<MDString>(Val: R); |
| 198 | if (MDStringL && MDStringR) { |
| 199 | if (MDStringL == MDStringR) |
| 200 | return 0; |
| 201 | return MDStringL->getString().compare(RHS: MDStringR->getString()); |
| 202 | } |
| 203 | if (MDStringR) |
| 204 | return -1; |
| 205 | if (MDStringL) |
| 206 | return 1; |
| 207 | |
| 208 | auto *CL = dyn_cast<ConstantAsMetadata>(Val: L); |
| 209 | auto *CR = dyn_cast<ConstantAsMetadata>(Val: R); |
| 210 | if (CL == CR) |
| 211 | return 0; |
| 212 | if (!CL) |
| 213 | return -1; |
| 214 | if (!CR) |
| 215 | return 1; |
| 216 | return cmpConstants(L: CL->getValue(), R: CR->getValue()); |
| 217 | } |
| 218 | |
| 219 | int FunctionComparator::cmpMDNode(const MDNode *L, const MDNode *R) const { |
| 220 | if (L == R) |
| 221 | return 0; |
| 222 | if (!L) |
| 223 | return -1; |
| 224 | if (!R) |
| 225 | return 1; |
| 226 | // TODO: Note that as this is metadata, it is possible to drop and/or merge |
| 227 | // this data when considering functions to merge. Thus this comparison would |
| 228 | // return 0 (i.e. equivalent), but merging would become more complicated |
| 229 | // because the ranges would need to be unioned. It is not likely that |
| 230 | // functions differ ONLY in this metadata if they are actually the same |
| 231 | // function semantically. |
| 232 | if (int Res = cmpNumbers(L: L->getNumOperands(), R: R->getNumOperands())) |
| 233 | return Res; |
| 234 | for (size_t I = 0; I < L->getNumOperands(); ++I) |
| 235 | if (int Res = cmpMetadata(L: L->getOperand(I), R: R->getOperand(I))) |
| 236 | return Res; |
| 237 | return 0; |
| 238 | } |
| 239 | |
| 240 | int FunctionComparator::cmpInstMetadata(Instruction const *L, |
| 241 | Instruction const *R) const { |
| 242 | /// These metadata affects the other optimization passes by making assertions |
| 243 | /// or constraints. |
| 244 | /// Values that carry different expectations should be considered different. |
| 245 | SmallVector<std::pair<unsigned, MDNode *>> MDL, MDR; |
| 246 | L->getAllMetadataOtherThanDebugLoc(MDs&: MDL); |
| 247 | R->getAllMetadataOtherThanDebugLoc(MDs&: MDR); |
| 248 | if (MDL.size() > MDR.size()) |
| 249 | return 1; |
| 250 | else if (MDL.size() < MDR.size()) |
| 251 | return -1; |
| 252 | for (size_t I = 0, N = MDL.size(); I < N; ++I) { |
| 253 | auto const [KeyL, ML] = MDL[I]; |
| 254 | auto const [KeyR, MR] = MDR[I]; |
| 255 | if (int Res = cmpNumbers(L: KeyL, R: KeyR)) |
| 256 | return Res; |
| 257 | if (int Res = cmpMDNode(L: ML, R: MR)) |
| 258 | return Res; |
| 259 | } |
| 260 | return 0; |
| 261 | } |
| 262 | |
| 263 | int FunctionComparator::cmpOperandBundlesSchema(const CallBase &LCS, |
| 264 | const CallBase &RCS) const { |
| 265 | assert(LCS.getOpcode() == RCS.getOpcode() && "Can't compare otherwise!" ); |
| 266 | |
| 267 | if (int Res = |
| 268 | cmpNumbers(L: LCS.getNumOperandBundles(), R: RCS.getNumOperandBundles())) |
| 269 | return Res; |
| 270 | |
| 271 | for (unsigned I = 0, E = LCS.getNumOperandBundles(); I != E; ++I) { |
| 272 | auto OBL = LCS.getOperandBundleAt(Index: I); |
| 273 | auto OBR = RCS.getOperandBundleAt(Index: I); |
| 274 | |
| 275 | if (int Res = OBL.getTagName().compare(RHS: OBR.getTagName())) |
| 276 | return Res; |
| 277 | |
| 278 | if (int Res = cmpNumbers(L: OBL.Inputs.size(), R: OBR.Inputs.size())) |
| 279 | return Res; |
| 280 | } |
| 281 | |
| 282 | return 0; |
| 283 | } |
| 284 | |
| 285 | /// Constants comparison: |
| 286 | /// 1. Check whether type of L constant could be losslessly bitcasted to R |
| 287 | /// type. |
| 288 | /// 2. Compare constant contents. |
| 289 | /// For more details see declaration comments. |
| 290 | int FunctionComparator::cmpConstants(const Constant *L, |
| 291 | const Constant *R) const { |
| 292 | Type *TyL = L->getType(); |
| 293 | Type *TyR = R->getType(); |
| 294 | |
| 295 | // Check whether types are bitcastable. This part is just re-factored |
| 296 | // Type::canLosslesslyBitCastTo method, but instead of returning true/false, |
| 297 | // we also pack into result which type is "less" for us. |
| 298 | int TypesRes = cmpTypes(TyL, TyR); |
| 299 | if (TypesRes != 0) { |
| 300 | // Types are different, but check whether we can bitcast them. |
| 301 | if (!TyL->isFirstClassType()) { |
| 302 | if (TyR->isFirstClassType()) |
| 303 | return -1; |
| 304 | // Neither TyL nor TyR are values of first class type. Return the result |
| 305 | // of comparing the types |
| 306 | return TypesRes; |
| 307 | } |
| 308 | if (!TyR->isFirstClassType()) { |
| 309 | if (TyL->isFirstClassType()) |
| 310 | return 1; |
| 311 | return TypesRes; |
| 312 | } |
| 313 | |
| 314 | // Vector -> Vector conversions are always lossless if the two vector types |
| 315 | // have the same size, otherwise not. |
| 316 | unsigned TyLWidth = 0; |
| 317 | unsigned TyRWidth = 0; |
| 318 | |
| 319 | if (auto *VecTyL = dyn_cast<VectorType>(Val: TyL)) |
| 320 | TyLWidth = VecTyL->getPrimitiveSizeInBits().getFixedValue(); |
| 321 | if (auto *VecTyR = dyn_cast<VectorType>(Val: TyR)) |
| 322 | TyRWidth = VecTyR->getPrimitiveSizeInBits().getFixedValue(); |
| 323 | |
| 324 | if (TyLWidth != TyRWidth) |
| 325 | return cmpNumbers(L: TyLWidth, R: TyRWidth); |
| 326 | |
| 327 | // Zero bit-width means neither TyL nor TyR are vectors. |
| 328 | if (!TyLWidth) { |
| 329 | PointerType *PTyL = dyn_cast<PointerType>(Val: TyL); |
| 330 | PointerType *PTyR = dyn_cast<PointerType>(Val: TyR); |
| 331 | if (PTyL && PTyR) { |
| 332 | unsigned AddrSpaceL = PTyL->getAddressSpace(); |
| 333 | unsigned AddrSpaceR = PTyR->getAddressSpace(); |
| 334 | if (int Res = cmpNumbers(L: AddrSpaceL, R: AddrSpaceR)) |
| 335 | return Res; |
| 336 | } |
| 337 | if (PTyL) |
| 338 | return 1; |
| 339 | if (PTyR) |
| 340 | return -1; |
| 341 | |
| 342 | // TyL and TyR aren't vectors, nor pointers. We don't know how to |
| 343 | // bitcast them. |
| 344 | return TypesRes; |
| 345 | } |
| 346 | } |
| 347 | |
| 348 | // OK, types are bitcastable, now check constant contents. |
| 349 | |
| 350 | if (L->isNullValue() && R->isNullValue()) |
| 351 | return TypesRes; |
| 352 | if (L->isNullValue() && !R->isNullValue()) |
| 353 | return 1; |
| 354 | if (!L->isNullValue() && R->isNullValue()) |
| 355 | return -1; |
| 356 | |
| 357 | auto GlobalValueL = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(Val: L)); |
| 358 | auto GlobalValueR = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(Val: R)); |
| 359 | if (GlobalValueL && GlobalValueR) { |
| 360 | return cmpGlobalValues(L: GlobalValueL, R: GlobalValueR); |
| 361 | } |
| 362 | |
| 363 | if (int Res = cmpNumbers(L: L->getValueID(), R: R->getValueID())) |
| 364 | return Res; |
| 365 | |
| 366 | if (const auto *SeqL = dyn_cast<ConstantDataSequential>(Val: L)) { |
| 367 | const auto *SeqR = cast<ConstantDataSequential>(Val: R); |
| 368 | // This handles ConstantDataArray and ConstantDataVector. Note that we |
| 369 | // compare the two raw data arrays, which might differ depending on the host |
| 370 | // endianness. This isn't a problem though, because the endiness of a module |
| 371 | // will affect the order of the constants, but this order is the same |
| 372 | // for a given input module and host platform. |
| 373 | return cmpMem(L: SeqL->getRawDataValues(), R: SeqR->getRawDataValues()); |
| 374 | } |
| 375 | |
| 376 | switch (L->getValueID()) { |
| 377 | case Value::UndefValueVal: |
| 378 | case Value::PoisonValueVal: |
| 379 | case Value::ConstantTokenNoneVal: |
| 380 | return TypesRes; |
| 381 | case Value::ConstantIntVal: { |
| 382 | const APInt &LInt = cast<ConstantInt>(Val: L)->getValue(); |
| 383 | const APInt &RInt = cast<ConstantInt>(Val: R)->getValue(); |
| 384 | return cmpAPInts(L: LInt, R: RInt); |
| 385 | } |
| 386 | case Value::ConstantFPVal: { |
| 387 | const APFloat &LAPF = cast<ConstantFP>(Val: L)->getValueAPF(); |
| 388 | const APFloat &RAPF = cast<ConstantFP>(Val: R)->getValueAPF(); |
| 389 | return cmpAPFloats(L: LAPF, R: RAPF); |
| 390 | } |
| 391 | case Value::ConstantArrayVal: { |
| 392 | const ConstantArray *LA = cast<ConstantArray>(Val: L); |
| 393 | const ConstantArray *RA = cast<ConstantArray>(Val: R); |
| 394 | uint64_t NumElementsL = cast<ArrayType>(Val: TyL)->getNumElements(); |
| 395 | uint64_t NumElementsR = cast<ArrayType>(Val: TyR)->getNumElements(); |
| 396 | if (int Res = cmpNumbers(L: NumElementsL, R: NumElementsR)) |
| 397 | return Res; |
| 398 | for (uint64_t i = 0; i < NumElementsL; ++i) { |
| 399 | if (int Res = cmpConstants(L: cast<Constant>(Val: LA->getOperand(i_nocapture: i)), |
| 400 | R: cast<Constant>(Val: RA->getOperand(i_nocapture: i)))) |
| 401 | return Res; |
| 402 | } |
| 403 | return 0; |
| 404 | } |
| 405 | case Value::ConstantStructVal: { |
| 406 | const ConstantStruct *LS = cast<ConstantStruct>(Val: L); |
| 407 | const ConstantStruct *RS = cast<ConstantStruct>(Val: R); |
| 408 | unsigned NumElementsL = cast<StructType>(Val: TyL)->getNumElements(); |
| 409 | unsigned NumElementsR = cast<StructType>(Val: TyR)->getNumElements(); |
| 410 | if (int Res = cmpNumbers(L: NumElementsL, R: NumElementsR)) |
| 411 | return Res; |
| 412 | for (unsigned i = 0; i != NumElementsL; ++i) { |
| 413 | if (int Res = cmpConstants(L: cast<Constant>(Val: LS->getOperand(i_nocapture: i)), |
| 414 | R: cast<Constant>(Val: RS->getOperand(i_nocapture: i)))) |
| 415 | return Res; |
| 416 | } |
| 417 | return 0; |
| 418 | } |
| 419 | case Value::ConstantVectorVal: { |
| 420 | const ConstantVector *LV = cast<ConstantVector>(Val: L); |
| 421 | const ConstantVector *RV = cast<ConstantVector>(Val: R); |
| 422 | unsigned NumElementsL = cast<FixedVectorType>(Val: TyL)->getNumElements(); |
| 423 | unsigned NumElementsR = cast<FixedVectorType>(Val: TyR)->getNumElements(); |
| 424 | if (int Res = cmpNumbers(L: NumElementsL, R: NumElementsR)) |
| 425 | return Res; |
| 426 | for (uint64_t i = 0; i < NumElementsL; ++i) { |
| 427 | if (int Res = cmpConstants(L: cast<Constant>(Val: LV->getOperand(i_nocapture: i)), |
| 428 | R: cast<Constant>(Val: RV->getOperand(i_nocapture: i)))) |
| 429 | return Res; |
| 430 | } |
| 431 | return 0; |
| 432 | } |
| 433 | case Value::ConstantExprVal: { |
| 434 | const ConstantExpr *LE = cast<ConstantExpr>(Val: L); |
| 435 | const ConstantExpr *RE = cast<ConstantExpr>(Val: R); |
| 436 | if (int Res = cmpNumbers(L: LE->getOpcode(), R: RE->getOpcode())) |
| 437 | return Res; |
| 438 | unsigned NumOperandsL = LE->getNumOperands(); |
| 439 | unsigned NumOperandsR = RE->getNumOperands(); |
| 440 | if (int Res = cmpNumbers(L: NumOperandsL, R: NumOperandsR)) |
| 441 | return Res; |
| 442 | for (unsigned i = 0; i < NumOperandsL; ++i) { |
| 443 | if (int Res = cmpConstants(L: cast<Constant>(Val: LE->getOperand(i_nocapture: i)), |
| 444 | R: cast<Constant>(Val: RE->getOperand(i_nocapture: i)))) |
| 445 | return Res; |
| 446 | } |
| 447 | if (auto *GEPL = dyn_cast<GEPOperator>(Val: LE)) { |
| 448 | auto *GEPR = cast<GEPOperator>(Val: RE); |
| 449 | if (int Res = cmpTypes(TyL: GEPL->getSourceElementType(), |
| 450 | TyR: GEPR->getSourceElementType())) |
| 451 | return Res; |
| 452 | if (int Res = cmpNumbers(L: GEPL->getNoWrapFlags().getRaw(), |
| 453 | R: GEPR->getNoWrapFlags().getRaw())) |
| 454 | return Res; |
| 455 | |
| 456 | std::optional<ConstantRange> InRangeL = GEPL->getInRange(); |
| 457 | std::optional<ConstantRange> InRangeR = GEPR->getInRange(); |
| 458 | if (InRangeL) { |
| 459 | if (!InRangeR) |
| 460 | return 1; |
| 461 | if (int Res = cmpConstantRanges(L: *InRangeL, R: *InRangeR)) |
| 462 | return Res; |
| 463 | } else if (InRangeR) { |
| 464 | return -1; |
| 465 | } |
| 466 | } |
| 467 | if (auto *OBOL = dyn_cast<OverflowingBinaryOperator>(Val: LE)) { |
| 468 | auto *OBOR = cast<OverflowingBinaryOperator>(Val: RE); |
| 469 | if (int Res = |
| 470 | cmpNumbers(L: OBOL->hasNoUnsignedWrap(), R: OBOR->hasNoUnsignedWrap())) |
| 471 | return Res; |
| 472 | if (int Res = |
| 473 | cmpNumbers(L: OBOL->hasNoSignedWrap(), R: OBOR->hasNoSignedWrap())) |
| 474 | return Res; |
| 475 | } |
| 476 | return 0; |
| 477 | } |
| 478 | case Value::BlockAddressVal: { |
| 479 | const BlockAddress *LBA = cast<BlockAddress>(Val: L); |
| 480 | const BlockAddress *RBA = cast<BlockAddress>(Val: R); |
| 481 | if (int Res = cmpValues(L: LBA->getFunction(), R: RBA->getFunction())) |
| 482 | return Res; |
| 483 | if (LBA->getFunction() == RBA->getFunction()) { |
| 484 | // They are BBs in the same function. Order by which comes first in the |
| 485 | // BB order of the function. This order is deterministic. |
| 486 | Function *F = LBA->getFunction(); |
| 487 | BasicBlock *LBB = LBA->getBasicBlock(); |
| 488 | BasicBlock *RBB = RBA->getBasicBlock(); |
| 489 | if (LBB == RBB) |
| 490 | return 0; |
| 491 | for (BasicBlock &BB : *F) { |
| 492 | if (&BB == LBB) { |
| 493 | assert(&BB != RBB); |
| 494 | return -1; |
| 495 | } |
| 496 | if (&BB == RBB) |
| 497 | return 1; |
| 498 | } |
| 499 | llvm_unreachable("Basic Block Address does not point to a basic block in " |
| 500 | "its function." ); |
| 501 | return -1; |
| 502 | } else { |
| 503 | // cmpValues said the functions are the same. So because they aren't |
| 504 | // literally the same pointer, they must respectively be the left and |
| 505 | // right functions. |
| 506 | assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR); |
| 507 | // cmpValues will tell us if these are equivalent BasicBlocks, in the |
| 508 | // context of their respective functions. |
| 509 | return cmpValues(L: LBA->getBasicBlock(), R: RBA->getBasicBlock()); |
| 510 | } |
| 511 | } |
| 512 | case Value::DSOLocalEquivalentVal: { |
| 513 | // dso_local_equivalent is functionally equivalent to whatever it points to. |
| 514 | // This means the behavior of the IR should be the exact same as if the |
| 515 | // function was referenced directly rather than through a |
| 516 | // dso_local_equivalent. |
| 517 | const auto *LEquiv = cast<DSOLocalEquivalent>(Val: L); |
| 518 | const auto *REquiv = cast<DSOLocalEquivalent>(Val: R); |
| 519 | return cmpGlobalValues(L: LEquiv->getGlobalValue(), R: REquiv->getGlobalValue()); |
| 520 | } |
| 521 | default: // Unknown constant, abort. |
| 522 | LLVM_DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n" ); |
| 523 | llvm_unreachable("Constant ValueID not recognized." ); |
| 524 | return -1; |
| 525 | } |
| 526 | } |
| 527 | |
| 528 | int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue *R) const { |
| 529 | uint64_t LNumber = GlobalNumbers->getNumber(Global: L); |
| 530 | uint64_t RNumber = GlobalNumbers->getNumber(Global: R); |
| 531 | return cmpNumbers(L: LNumber, R: RNumber); |
| 532 | } |
| 533 | |
| 534 | /// cmpType - compares two types, |
| 535 | /// defines total ordering among the types set. |
| 536 | /// See method declaration comments for more details. |
| 537 | int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const { |
| 538 | PointerType *PTyL = dyn_cast<PointerType>(Val: TyL); |
| 539 | PointerType *PTyR = dyn_cast<PointerType>(Val: TyR); |
| 540 | |
| 541 | const DataLayout &DL = FnL->getDataLayout(); |
| 542 | if (PTyL && PTyL->getAddressSpace() == 0) |
| 543 | TyL = DL.getIntPtrType(TyL); |
| 544 | if (PTyR && PTyR->getAddressSpace() == 0) |
| 545 | TyR = DL.getIntPtrType(TyR); |
| 546 | |
| 547 | if (TyL == TyR) |
| 548 | return 0; |
| 549 | |
| 550 | if (int Res = cmpNumbers(L: TyL->getTypeID(), R: TyR->getTypeID())) |
| 551 | return Res; |
| 552 | |
| 553 | switch (TyL->getTypeID()) { |
| 554 | default: |
| 555 | llvm_unreachable("Unknown type!" ); |
| 556 | case Type::IntegerTyID: |
| 557 | return cmpNumbers(L: cast<IntegerType>(Val: TyL)->getBitWidth(), |
| 558 | R: cast<IntegerType>(Val: TyR)->getBitWidth()); |
| 559 | // TyL == TyR would have returned true earlier, because types are uniqued. |
| 560 | case Type::VoidTyID: |
| 561 | case Type::FloatTyID: |
| 562 | case Type::DoubleTyID: |
| 563 | case Type::X86_FP80TyID: |
| 564 | case Type::FP128TyID: |
| 565 | case Type::PPC_FP128TyID: |
| 566 | case Type::LabelTyID: |
| 567 | case Type::MetadataTyID: |
| 568 | case Type::TokenTyID: |
| 569 | return 0; |
| 570 | |
| 571 | case Type::PointerTyID: |
| 572 | assert(PTyL && PTyR && "Both types must be pointers here." ); |
| 573 | return cmpNumbers(L: PTyL->getAddressSpace(), R: PTyR->getAddressSpace()); |
| 574 | |
| 575 | case Type::StructTyID: { |
| 576 | StructType *STyL = cast<StructType>(Val: TyL); |
| 577 | StructType *STyR = cast<StructType>(Val: TyR); |
| 578 | if (STyL->getNumElements() != STyR->getNumElements()) |
| 579 | return cmpNumbers(L: STyL->getNumElements(), R: STyR->getNumElements()); |
| 580 | |
| 581 | if (STyL->isPacked() != STyR->isPacked()) |
| 582 | return cmpNumbers(L: STyL->isPacked(), R: STyR->isPacked()); |
| 583 | |
| 584 | for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) { |
| 585 | if (int Res = cmpTypes(TyL: STyL->getElementType(N: i), TyR: STyR->getElementType(N: i))) |
| 586 | return Res; |
| 587 | } |
| 588 | return 0; |
| 589 | } |
| 590 | |
| 591 | case Type::FunctionTyID: { |
| 592 | FunctionType *FTyL = cast<FunctionType>(Val: TyL); |
| 593 | FunctionType *FTyR = cast<FunctionType>(Val: TyR); |
| 594 | if (FTyL->getNumParams() != FTyR->getNumParams()) |
| 595 | return cmpNumbers(L: FTyL->getNumParams(), R: FTyR->getNumParams()); |
| 596 | |
| 597 | if (FTyL->isVarArg() != FTyR->isVarArg()) |
| 598 | return cmpNumbers(L: FTyL->isVarArg(), R: FTyR->isVarArg()); |
| 599 | |
| 600 | if (int Res = cmpTypes(TyL: FTyL->getReturnType(), TyR: FTyR->getReturnType())) |
| 601 | return Res; |
| 602 | |
| 603 | for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) { |
| 604 | if (int Res = cmpTypes(TyL: FTyL->getParamType(i), TyR: FTyR->getParamType(i))) |
| 605 | return Res; |
| 606 | } |
| 607 | return 0; |
| 608 | } |
| 609 | |
| 610 | case Type::ArrayTyID: { |
| 611 | auto *STyL = cast<ArrayType>(Val: TyL); |
| 612 | auto *STyR = cast<ArrayType>(Val: TyR); |
| 613 | if (STyL->getNumElements() != STyR->getNumElements()) |
| 614 | return cmpNumbers(L: STyL->getNumElements(), R: STyR->getNumElements()); |
| 615 | return cmpTypes(TyL: STyL->getElementType(), TyR: STyR->getElementType()); |
| 616 | } |
| 617 | case Type::FixedVectorTyID: |
| 618 | case Type::ScalableVectorTyID: { |
| 619 | auto *STyL = cast<VectorType>(Val: TyL); |
| 620 | auto *STyR = cast<VectorType>(Val: TyR); |
| 621 | if (STyL->getElementCount().isScalable() != |
| 622 | STyR->getElementCount().isScalable()) |
| 623 | return cmpNumbers(L: STyL->getElementCount().isScalable(), |
| 624 | R: STyR->getElementCount().isScalable()); |
| 625 | if (STyL->getElementCount() != STyR->getElementCount()) |
| 626 | return cmpNumbers(L: STyL->getElementCount().getKnownMinValue(), |
| 627 | R: STyR->getElementCount().getKnownMinValue()); |
| 628 | return cmpTypes(TyL: STyL->getElementType(), TyR: STyR->getElementType()); |
| 629 | } |
| 630 | } |
| 631 | } |
| 632 | |
| 633 | // Determine whether the two operations are the same except that pointer-to-A |
| 634 | // and pointer-to-B are equivalent. This should be kept in sync with |
| 635 | // Instruction::isSameOperationAs. |
| 636 | // Read method declaration comments for more details. |
| 637 | int FunctionComparator::cmpOperations(const Instruction *L, |
| 638 | const Instruction *R, |
| 639 | bool &needToCmpOperands) const { |
| 640 | needToCmpOperands = true; |
| 641 | if (int Res = cmpValues(L, R)) |
| 642 | return Res; |
| 643 | |
| 644 | // Differences from Instruction::isSameOperationAs: |
| 645 | // * replace type comparison with calls to cmpTypes. |
| 646 | // * we test for I->getRawSubclassOptionalData (nuw/nsw/tail) at the top. |
| 647 | // * because of the above, we don't test for the tail bit on calls later on. |
| 648 | if (int Res = cmpNumbers(L: L->getOpcode(), R: R->getOpcode())) |
| 649 | return Res; |
| 650 | |
| 651 | if (const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(Val: L)) { |
| 652 | needToCmpOperands = false; |
| 653 | const GetElementPtrInst *GEPR = cast<GetElementPtrInst>(Val: R); |
| 654 | if (int Res = |
| 655 | cmpValues(L: GEPL->getPointerOperand(), R: GEPR->getPointerOperand())) |
| 656 | return Res; |
| 657 | return cmpGEPs(GEPL, GEPR); |
| 658 | } |
| 659 | |
| 660 | if (int Res = cmpNumbers(L: L->getNumOperands(), R: R->getNumOperands())) |
| 661 | return Res; |
| 662 | |
| 663 | if (int Res = cmpTypes(TyL: L->getType(), TyR: R->getType())) |
| 664 | return Res; |
| 665 | |
| 666 | if (int Res = cmpNumbers(L: L->getRawSubclassOptionalData(), |
| 667 | R: R->getRawSubclassOptionalData())) |
| 668 | return Res; |
| 669 | |
| 670 | // We have two instructions of identical opcode and #operands. Check to see |
| 671 | // if all operands are the same type |
| 672 | for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) { |
| 673 | if (int Res = |
| 674 | cmpTypes(TyL: L->getOperand(i)->getType(), TyR: R->getOperand(i)->getType())) |
| 675 | return Res; |
| 676 | } |
| 677 | |
| 678 | // Check special state that is a part of some instructions. |
| 679 | if (const AllocaInst *AI = dyn_cast<AllocaInst>(Val: L)) { |
| 680 | if (int Res = cmpTypes(TyL: AI->getAllocatedType(), |
| 681 | TyR: cast<AllocaInst>(Val: R)->getAllocatedType())) |
| 682 | return Res; |
| 683 | return cmpAligns(L: AI->getAlign(), R: cast<AllocaInst>(Val: R)->getAlign()); |
| 684 | } |
| 685 | if (const LoadInst *LI = dyn_cast<LoadInst>(Val: L)) { |
| 686 | if (int Res = cmpNumbers(L: LI->isVolatile(), R: cast<LoadInst>(Val: R)->isVolatile())) |
| 687 | return Res; |
| 688 | if (int Res = cmpAligns(L: LI->getAlign(), R: cast<LoadInst>(Val: R)->getAlign())) |
| 689 | return Res; |
| 690 | if (int Res = |
| 691 | cmpOrderings(L: LI->getOrdering(), R: cast<LoadInst>(Val: R)->getOrdering())) |
| 692 | return Res; |
| 693 | if (int Res = cmpNumbers(L: LI->getSyncScopeID(), |
| 694 | R: cast<LoadInst>(Val: R)->getSyncScopeID())) |
| 695 | return Res; |
| 696 | return cmpInstMetadata(L, R); |
| 697 | } |
| 698 | if (const StoreInst *SI = dyn_cast<StoreInst>(Val: L)) { |
| 699 | if (int Res = |
| 700 | cmpNumbers(L: SI->isVolatile(), R: cast<StoreInst>(Val: R)->isVolatile())) |
| 701 | return Res; |
| 702 | if (int Res = cmpAligns(L: SI->getAlign(), R: cast<StoreInst>(Val: R)->getAlign())) |
| 703 | return Res; |
| 704 | if (int Res = |
| 705 | cmpOrderings(L: SI->getOrdering(), R: cast<StoreInst>(Val: R)->getOrdering())) |
| 706 | return Res; |
| 707 | return cmpNumbers(L: SI->getSyncScopeID(), |
| 708 | R: cast<StoreInst>(Val: R)->getSyncScopeID()); |
| 709 | } |
| 710 | if (const CmpInst *CI = dyn_cast<CmpInst>(Val: L)) |
| 711 | return cmpNumbers(L: CI->getPredicate(), R: cast<CmpInst>(Val: R)->getPredicate()); |
| 712 | if (auto *CBL = dyn_cast<CallBase>(Val: L)) { |
| 713 | auto *CBR = cast<CallBase>(Val: R); |
| 714 | if (int Res = cmpNumbers(L: CBL->getCallingConv(), R: CBR->getCallingConv())) |
| 715 | return Res; |
| 716 | if (int Res = cmpAttrs(L: CBL->getAttributes(), R: CBR->getAttributes())) |
| 717 | return Res; |
| 718 | if (int Res = cmpOperandBundlesSchema(LCS: *CBL, RCS: *CBR)) |
| 719 | return Res; |
| 720 | if (const CallInst *CI = dyn_cast<CallInst>(Val: L)) |
| 721 | if (int Res = cmpNumbers(L: CI->getTailCallKind(), |
| 722 | R: cast<CallInst>(Val: R)->getTailCallKind())) |
| 723 | return Res; |
| 724 | return cmpMDNode(L: L->getMetadata(KindID: LLVMContext::MD_range), |
| 725 | R: R->getMetadata(KindID: LLVMContext::MD_range)); |
| 726 | } |
| 727 | if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Val: L)) { |
| 728 | ArrayRef<unsigned> LIndices = IVI->getIndices(); |
| 729 | ArrayRef<unsigned> RIndices = cast<InsertValueInst>(Val: R)->getIndices(); |
| 730 | if (int Res = cmpNumbers(L: LIndices.size(), R: RIndices.size())) |
| 731 | return Res; |
| 732 | for (size_t i = 0, e = LIndices.size(); i != e; ++i) { |
| 733 | if (int Res = cmpNumbers(L: LIndices[i], R: RIndices[i])) |
| 734 | return Res; |
| 735 | } |
| 736 | return 0; |
| 737 | } |
| 738 | if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Val: L)) { |
| 739 | ArrayRef<unsigned> LIndices = EVI->getIndices(); |
| 740 | ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(Val: R)->getIndices(); |
| 741 | if (int Res = cmpNumbers(L: LIndices.size(), R: RIndices.size())) |
| 742 | return Res; |
| 743 | for (size_t i = 0, e = LIndices.size(); i != e; ++i) { |
| 744 | if (int Res = cmpNumbers(L: LIndices[i], R: RIndices[i])) |
| 745 | return Res; |
| 746 | } |
| 747 | } |
| 748 | if (const FenceInst *FI = dyn_cast<FenceInst>(Val: L)) { |
| 749 | if (int Res = |
| 750 | cmpOrderings(L: FI->getOrdering(), R: cast<FenceInst>(Val: R)->getOrdering())) |
| 751 | return Res; |
| 752 | return cmpNumbers(L: FI->getSyncScopeID(), |
| 753 | R: cast<FenceInst>(Val: R)->getSyncScopeID()); |
| 754 | } |
| 755 | if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(Val: L)) { |
| 756 | if (int Res = cmpNumbers(L: CXI->isVolatile(), |
| 757 | R: cast<AtomicCmpXchgInst>(Val: R)->isVolatile())) |
| 758 | return Res; |
| 759 | if (int Res = |
| 760 | cmpNumbers(L: CXI->isWeak(), R: cast<AtomicCmpXchgInst>(Val: R)->isWeak())) |
| 761 | return Res; |
| 762 | if (int Res = |
| 763 | cmpOrderings(L: CXI->getSuccessOrdering(), |
| 764 | R: cast<AtomicCmpXchgInst>(Val: R)->getSuccessOrdering())) |
| 765 | return Res; |
| 766 | if (int Res = |
| 767 | cmpOrderings(L: CXI->getFailureOrdering(), |
| 768 | R: cast<AtomicCmpXchgInst>(Val: R)->getFailureOrdering())) |
| 769 | return Res; |
| 770 | return cmpNumbers(L: CXI->getSyncScopeID(), |
| 771 | R: cast<AtomicCmpXchgInst>(Val: R)->getSyncScopeID()); |
| 772 | } |
| 773 | if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(Val: L)) { |
| 774 | if (int Res = cmpNumbers(L: RMWI->getOperation(), |
| 775 | R: cast<AtomicRMWInst>(Val: R)->getOperation())) |
| 776 | return Res; |
| 777 | if (int Res = cmpNumbers(L: RMWI->isVolatile(), |
| 778 | R: cast<AtomicRMWInst>(Val: R)->isVolatile())) |
| 779 | return Res; |
| 780 | if (int Res = cmpOrderings(L: RMWI->getOrdering(), |
| 781 | R: cast<AtomicRMWInst>(Val: R)->getOrdering())) |
| 782 | return Res; |
| 783 | return cmpNumbers(L: RMWI->getSyncScopeID(), |
| 784 | R: cast<AtomicRMWInst>(Val: R)->getSyncScopeID()); |
| 785 | } |
| 786 | if (const ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Val: L)) { |
| 787 | ArrayRef<int> LMask = SVI->getShuffleMask(); |
| 788 | ArrayRef<int> RMask = cast<ShuffleVectorInst>(Val: R)->getShuffleMask(); |
| 789 | if (int Res = cmpNumbers(L: LMask.size(), R: RMask.size())) |
| 790 | return Res; |
| 791 | for (size_t i = 0, e = LMask.size(); i != e; ++i) { |
| 792 | if (int Res = cmpNumbers(L: LMask[i], R: RMask[i])) |
| 793 | return Res; |
| 794 | } |
| 795 | } |
| 796 | if (const PHINode *PNL = dyn_cast<PHINode>(Val: L)) { |
| 797 | const PHINode *PNR = cast<PHINode>(Val: R); |
| 798 | // Ensure that in addition to the incoming values being identical |
| 799 | // (checked by the caller of this function), the incoming blocks |
| 800 | // are also identical. |
| 801 | for (unsigned i = 0, e = PNL->getNumIncomingValues(); i != e; ++i) { |
| 802 | if (int Res = |
| 803 | cmpValues(L: PNL->getIncomingBlock(i), R: PNR->getIncomingBlock(i))) |
| 804 | return Res; |
| 805 | } |
| 806 | } |
| 807 | return 0; |
| 808 | } |
| 809 | |
| 810 | // Determine whether two GEP operations perform the same underlying arithmetic. |
| 811 | // Read method declaration comments for more details. |
| 812 | int FunctionComparator::cmpGEPs(const GEPOperator *GEPL, |
| 813 | const GEPOperator *GEPR) const { |
| 814 | unsigned int ASL = GEPL->getPointerAddressSpace(); |
| 815 | unsigned int ASR = GEPR->getPointerAddressSpace(); |
| 816 | |
| 817 | if (int Res = cmpNumbers(L: ASL, R: ASR)) |
| 818 | return Res; |
| 819 | |
| 820 | // When we have target data, we can reduce the GEP down to the value in bytes |
| 821 | // added to the address. |
| 822 | const DataLayout &DL = FnL->getDataLayout(); |
| 823 | unsigned OffsetBitWidth = DL.getIndexSizeInBits(AS: ASL); |
| 824 | APInt OffsetL(OffsetBitWidth, 0), OffsetR(OffsetBitWidth, 0); |
| 825 | if (GEPL->accumulateConstantOffset(DL, Offset&: OffsetL) && |
| 826 | GEPR->accumulateConstantOffset(DL, Offset&: OffsetR)) |
| 827 | return cmpAPInts(L: OffsetL, R: OffsetR); |
| 828 | if (int Res = |
| 829 | cmpTypes(TyL: GEPL->getSourceElementType(), TyR: GEPR->getSourceElementType())) |
| 830 | return Res; |
| 831 | |
| 832 | if (int Res = cmpNumbers(L: GEPL->getNumOperands(), R: GEPR->getNumOperands())) |
| 833 | return Res; |
| 834 | |
| 835 | for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) { |
| 836 | if (int Res = cmpValues(L: GEPL->getOperand(i_nocapture: i), R: GEPR->getOperand(i_nocapture: i))) |
| 837 | return Res; |
| 838 | } |
| 839 | |
| 840 | return 0; |
| 841 | } |
| 842 | |
| 843 | int FunctionComparator::cmpInlineAsm(const InlineAsm *L, |
| 844 | const InlineAsm *R) const { |
| 845 | // InlineAsm's are uniqued. If they are the same pointer, obviously they are |
| 846 | // the same, otherwise compare the fields. |
| 847 | if (L == R) |
| 848 | return 0; |
| 849 | if (int Res = cmpTypes(TyL: L->getFunctionType(), TyR: R->getFunctionType())) |
| 850 | return Res; |
| 851 | if (int Res = cmpMem(L: L->getAsmString(), R: R->getAsmString())) |
| 852 | return Res; |
| 853 | if (int Res = cmpMem(L: L->getConstraintString(), R: R->getConstraintString())) |
| 854 | return Res; |
| 855 | if (int Res = cmpNumbers(L: L->hasSideEffects(), R: R->hasSideEffects())) |
| 856 | return Res; |
| 857 | if (int Res = cmpNumbers(L: L->isAlignStack(), R: R->isAlignStack())) |
| 858 | return Res; |
| 859 | if (int Res = cmpNumbers(L: L->getDialect(), R: R->getDialect())) |
| 860 | return Res; |
| 861 | assert(L->getFunctionType() != R->getFunctionType()); |
| 862 | return 0; |
| 863 | } |
| 864 | |
| 865 | /// Compare two values used by the two functions under pair-wise comparison. If |
| 866 | /// this is the first time the values are seen, they're added to the mapping so |
| 867 | /// that we will detect mismatches on next use. |
| 868 | /// See comments in declaration for more details. |
| 869 | int FunctionComparator::cmpValues(const Value *L, const Value *R) const { |
| 870 | // Catch self-reference case. |
| 871 | if (L == FnL) { |
| 872 | if (R == FnR) |
| 873 | return 0; |
| 874 | return -1; |
| 875 | } |
| 876 | if (R == FnR) { |
| 877 | if (L == FnL) |
| 878 | return 0; |
| 879 | return 1; |
| 880 | } |
| 881 | |
| 882 | const Constant *ConstL = dyn_cast<Constant>(Val: L); |
| 883 | const Constant *ConstR = dyn_cast<Constant>(Val: R); |
| 884 | if (ConstL && ConstR) { |
| 885 | if (L == R) |
| 886 | return 0; |
| 887 | return cmpConstants(L: ConstL, R: ConstR); |
| 888 | } |
| 889 | |
| 890 | if (ConstL) |
| 891 | return 1; |
| 892 | if (ConstR) |
| 893 | return -1; |
| 894 | |
| 895 | const MetadataAsValue *MetadataValueL = dyn_cast<MetadataAsValue>(Val: L); |
| 896 | const MetadataAsValue *MetadataValueR = dyn_cast<MetadataAsValue>(Val: R); |
| 897 | if (MetadataValueL && MetadataValueR) { |
| 898 | if (MetadataValueL == MetadataValueR) |
| 899 | return 0; |
| 900 | |
| 901 | return cmpMetadata(L: MetadataValueL->getMetadata(), |
| 902 | R: MetadataValueR->getMetadata()); |
| 903 | } |
| 904 | |
| 905 | if (MetadataValueL) |
| 906 | return 1; |
| 907 | if (MetadataValueR) |
| 908 | return -1; |
| 909 | |
| 910 | const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(Val: L); |
| 911 | const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(Val: R); |
| 912 | |
| 913 | if (InlineAsmL && InlineAsmR) |
| 914 | return cmpInlineAsm(L: InlineAsmL, R: InlineAsmR); |
| 915 | if (InlineAsmL) |
| 916 | return 1; |
| 917 | if (InlineAsmR) |
| 918 | return -1; |
| 919 | |
| 920 | auto LeftSN = sn_mapL.insert(KV: std::make_pair(x&: L, y: sn_mapL.size())), |
| 921 | RightSN = sn_mapR.insert(KV: std::make_pair(x&: R, y: sn_mapR.size())); |
| 922 | |
| 923 | return cmpNumbers(L: LeftSN.first->second, R: RightSN.first->second); |
| 924 | } |
| 925 | |
| 926 | // Test whether two basic blocks have equivalent behaviour. |
| 927 | int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL, |
| 928 | const BasicBlock *BBR) const { |
| 929 | BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end(); |
| 930 | BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end(); |
| 931 | |
| 932 | do { |
| 933 | bool needToCmpOperands = true; |
| 934 | if (int Res = cmpOperations(L: &*InstL, R: &*InstR, needToCmpOperands)) |
| 935 | return Res; |
| 936 | if (needToCmpOperands) { |
| 937 | assert(InstL->getNumOperands() == InstR->getNumOperands()); |
| 938 | |
| 939 | for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) { |
| 940 | Value *OpL = InstL->getOperand(i); |
| 941 | Value *OpR = InstR->getOperand(i); |
| 942 | if (int Res = cmpValues(L: OpL, R: OpR)) |
| 943 | return Res; |
| 944 | // cmpValues should ensure this is true. |
| 945 | assert(cmpTypes(OpL->getType(), OpR->getType()) == 0); |
| 946 | } |
| 947 | } |
| 948 | |
| 949 | ++InstL; |
| 950 | ++InstR; |
| 951 | } while (InstL != InstLE && InstR != InstRE); |
| 952 | |
| 953 | if (InstL != InstLE && InstR == InstRE) |
| 954 | return 1; |
| 955 | if (InstL == InstLE && InstR != InstRE) |
| 956 | return -1; |
| 957 | return 0; |
| 958 | } |
| 959 | |
| 960 | int FunctionComparator::compareSignature() const { |
| 961 | if (int Res = cmpAttrs(L: FnL->getAttributes(), R: FnR->getAttributes())) |
| 962 | return Res; |
| 963 | |
| 964 | if (int Res = cmpNumbers(L: FnL->hasGC(), R: FnR->hasGC())) |
| 965 | return Res; |
| 966 | |
| 967 | if (FnL->hasGC()) { |
| 968 | if (int Res = cmpMem(L: FnL->getGC(), R: FnR->getGC())) |
| 969 | return Res; |
| 970 | } |
| 971 | |
| 972 | if (int Res = cmpNumbers(L: FnL->hasSection(), R: FnR->hasSection())) |
| 973 | return Res; |
| 974 | |
| 975 | if (FnL->hasSection()) { |
| 976 | if (int Res = cmpMem(L: FnL->getSection(), R: FnR->getSection())) |
| 977 | return Res; |
| 978 | } |
| 979 | |
| 980 | if (int Res = cmpNumbers(L: FnL->isVarArg(), R: FnR->isVarArg())) |
| 981 | return Res; |
| 982 | |
| 983 | // TODO: if it's internal and only used in direct calls, we could handle this |
| 984 | // case too. |
| 985 | if (int Res = cmpNumbers(L: FnL->getCallingConv(), R: FnR->getCallingConv())) |
| 986 | return Res; |
| 987 | |
| 988 | if (int Res = cmpTypes(TyL: FnL->getFunctionType(), TyR: FnR->getFunctionType())) |
| 989 | return Res; |
| 990 | |
| 991 | assert(FnL->arg_size() == FnR->arg_size() && |
| 992 | "Identically typed functions have different numbers of args!" ); |
| 993 | |
| 994 | // Visit the arguments so that they get enumerated in the order they're |
| 995 | // passed in. |
| 996 | for (Function::const_arg_iterator ArgLI = FnL->arg_begin(), |
| 997 | ArgRI = FnR->arg_begin(), |
| 998 | ArgLE = FnL->arg_end(); |
| 999 | ArgLI != ArgLE; ++ArgLI, ++ArgRI) { |
| 1000 | if (cmpValues(L: &*ArgLI, R: &*ArgRI) != 0) |
| 1001 | llvm_unreachable("Arguments repeat!" ); |
| 1002 | } |
| 1003 | return 0; |
| 1004 | } |
| 1005 | |
| 1006 | // Test whether the two functions have equivalent behaviour. |
| 1007 | int FunctionComparator::compare() { |
| 1008 | beginCompare(); |
| 1009 | |
| 1010 | if (int Res = compareSignature()) |
| 1011 | return Res; |
| 1012 | |
| 1013 | // We do a CFG-ordered walk since the actual ordering of the blocks in the |
| 1014 | // linked list is immaterial. Our walk starts at the entry block for both |
| 1015 | // functions, then takes each block from each terminator in order. As an |
| 1016 | // artifact, this also means that unreachable blocks are ignored. |
| 1017 | SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs; |
| 1018 | SmallPtrSet<const BasicBlock *, 32> VisitedBBs; // in terms of F1. |
| 1019 | |
| 1020 | FnLBBs.push_back(Elt: &FnL->getEntryBlock()); |
| 1021 | FnRBBs.push_back(Elt: &FnR->getEntryBlock()); |
| 1022 | |
| 1023 | VisitedBBs.insert(Ptr: FnLBBs[0]); |
| 1024 | while (!FnLBBs.empty()) { |
| 1025 | const BasicBlock *BBL = FnLBBs.pop_back_val(); |
| 1026 | const BasicBlock *BBR = FnRBBs.pop_back_val(); |
| 1027 | |
| 1028 | if (int Res = cmpValues(L: BBL, R: BBR)) |
| 1029 | return Res; |
| 1030 | |
| 1031 | if (int Res = cmpBasicBlocks(BBL, BBR)) |
| 1032 | return Res; |
| 1033 | |
| 1034 | const Instruction *TermL = BBL->getTerminator(); |
| 1035 | const Instruction *TermR = BBR->getTerminator(); |
| 1036 | |
| 1037 | assert(TermL->getNumSuccessors() == TermR->getNumSuccessors()); |
| 1038 | for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) { |
| 1039 | if (!VisitedBBs.insert(Ptr: TermL->getSuccessor(Idx: i)).second) |
| 1040 | continue; |
| 1041 | |
| 1042 | FnLBBs.push_back(Elt: TermL->getSuccessor(Idx: i)); |
| 1043 | FnRBBs.push_back(Elt: TermR->getSuccessor(Idx: i)); |
| 1044 | } |
| 1045 | } |
| 1046 | return 0; |
| 1047 | } |
| 1048 | |