1 | //===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // The LowerSwitch transformation rewrites switch instructions with a sequence |
10 | // of branches, which allows targets to get away with not implementing the |
11 | // switch instruction until it is convenient. |
12 | // |
13 | //===----------------------------------------------------------------------===// |
14 | |
15 | #include "llvm/Transforms/Utils/LowerSwitch.h" |
16 | #include "llvm/ADT/DenseMap.h" |
17 | #include "llvm/ADT/STLExtras.h" |
18 | #include "llvm/ADT/SmallPtrSet.h" |
19 | #include "llvm/ADT/SmallVector.h" |
20 | #include "llvm/Analysis/AssumptionCache.h" |
21 | #include "llvm/Analysis/LazyValueInfo.h" |
22 | #include "llvm/Analysis/ValueTracking.h" |
23 | #include "llvm/IR/BasicBlock.h" |
24 | #include "llvm/IR/CFG.h" |
25 | #include "llvm/IR/ConstantRange.h" |
26 | #include "llvm/IR/Constants.h" |
27 | #include "llvm/IR/Function.h" |
28 | #include "llvm/IR/InstrTypes.h" |
29 | #include "llvm/IR/Instructions.h" |
30 | #include "llvm/IR/PassManager.h" |
31 | #include "llvm/IR/Value.h" |
32 | #include "llvm/InitializePasses.h" |
33 | #include "llvm/Pass.h" |
34 | #include "llvm/Support/Casting.h" |
35 | #include "llvm/Support/Compiler.h" |
36 | #include "llvm/Support/Debug.h" |
37 | #include "llvm/Support/KnownBits.h" |
38 | #include "llvm/Support/raw_ostream.h" |
39 | #include "llvm/Transforms/Utils.h" |
40 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
41 | #include <cassert> |
42 | #include <iterator> |
43 | #include <vector> |
44 | |
45 | using namespace llvm; |
46 | |
47 | #define DEBUG_TYPE "lower-switch" |
48 | |
49 | namespace { |
50 | |
51 | struct IntRange { |
52 | APInt Low, High; |
53 | }; |
54 | |
55 | } // end anonymous namespace |
56 | |
57 | namespace { |
58 | // Return true iff R is covered by Ranges. |
59 | bool IsInRanges(const IntRange &R, const std::vector<IntRange> &Ranges) { |
60 | // Note: Ranges must be sorted, non-overlapping and non-adjacent. |
61 | |
62 | // Find the first range whose High field is >= R.High, |
63 | // then check if the Low field is <= R.Low. If so, we |
64 | // have a Range that covers R. |
65 | auto I = llvm::lower_bound( |
66 | Range: Ranges, Value: R, C: [](IntRange A, IntRange B) { return A.High.slt(RHS: B.High); }); |
67 | return I != Ranges.end() && I->Low.sle(RHS: R.Low); |
68 | } |
69 | |
70 | struct CaseRange { |
71 | ConstantInt *Low; |
72 | ConstantInt *High; |
73 | BasicBlock *BB; |
74 | |
75 | CaseRange(ConstantInt *low, ConstantInt *high, BasicBlock *bb) |
76 | : Low(low), High(high), BB(bb) {} |
77 | }; |
78 | |
79 | using CaseVector = std::vector<CaseRange>; |
80 | using CaseItr = std::vector<CaseRange>::iterator; |
81 | |
82 | /// The comparison function for sorting the switch case values in the vector. |
83 | /// WARNING: Case ranges should be disjoint! |
84 | struct CaseCmp { |
85 | bool operator()(const CaseRange &C1, const CaseRange &C2) { |
86 | const ConstantInt *CI1 = cast<const ConstantInt>(Val: C1.Low); |
87 | const ConstantInt *CI2 = cast<const ConstantInt>(Val: C2.High); |
88 | return CI1->getValue().slt(RHS: CI2->getValue()); |
89 | } |
90 | }; |
91 | |
92 | /// Used for debugging purposes. |
93 | LLVM_ATTRIBUTE_USED |
94 | raw_ostream &operator<<(raw_ostream &O, const CaseVector &C) { |
95 | O << "[" ; |
96 | |
97 | for (CaseVector::const_iterator B = C.begin(), E = C.end(); B != E;) { |
98 | O << "[" << B->Low->getValue() << ", " << B->High->getValue() << "]" ; |
99 | if (++B != E) |
100 | O << ", " ; |
101 | } |
102 | |
103 | return O << "]" ; |
104 | } |
105 | |
106 | /// Update the first occurrence of the "switch statement" BB in the PHI |
107 | /// node with the "new" BB. The other occurrences will: |
108 | /// |
109 | /// 1) Be updated by subsequent calls to this function. Switch statements may |
110 | /// have more than one outcoming edge into the same BB if they all have the same |
111 | /// value. When the switch statement is converted these incoming edges are now |
112 | /// coming from multiple BBs. |
113 | /// 2) Removed if subsequent incoming values now share the same case, i.e., |
114 | /// multiple outcome edges are condensed into one. This is necessary to keep the |
115 | /// number of phi values equal to the number of branches to SuccBB. |
116 | void FixPhis(BasicBlock *SuccBB, BasicBlock *OrigBB, BasicBlock *NewBB, |
117 | const APInt &NumMergedCases) { |
118 | for (auto &I : SuccBB->phis()) { |
119 | PHINode *PN = cast<PHINode>(Val: &I); |
120 | |
121 | // Only update the first occurrence if NewBB exists. |
122 | unsigned Idx = 0, E = PN->getNumIncomingValues(); |
123 | APInt LocalNumMergedCases = NumMergedCases; |
124 | for (; Idx != E && NewBB; ++Idx) { |
125 | if (PN->getIncomingBlock(i: Idx) == OrigBB) { |
126 | PN->setIncomingBlock(i: Idx, BB: NewBB); |
127 | break; |
128 | } |
129 | } |
130 | |
131 | // Skip the updated incoming block so that it will not be removed. |
132 | if (NewBB) |
133 | ++Idx; |
134 | |
135 | // Remove additional occurrences coming from condensed cases and keep the |
136 | // number of incoming values equal to the number of branches to SuccBB. |
137 | SmallVector<unsigned, 8> Indices; |
138 | for (; LocalNumMergedCases.ugt(RHS: 0) && Idx < E; ++Idx) |
139 | if (PN->getIncomingBlock(i: Idx) == OrigBB) { |
140 | Indices.push_back(Elt: Idx); |
141 | LocalNumMergedCases -= 1; |
142 | } |
143 | // Remove incoming values in the reverse order to prevent invalidating |
144 | // *successive* index. |
145 | for (unsigned III : llvm::reverse(C&: Indices)) |
146 | PN->removeIncomingValue(Idx: III); |
147 | } |
148 | } |
149 | |
150 | /// Create a new leaf block for the binary lookup tree. It checks if the |
151 | /// switch's value == the case's value. If not, then it jumps to the default |
152 | /// branch. At this point in the tree, the value can't be another valid case |
153 | /// value, so the jump to the "default" branch is warranted. |
154 | BasicBlock *NewLeafBlock(CaseRange &Leaf, Value *Val, ConstantInt *LowerBound, |
155 | ConstantInt *UpperBound, BasicBlock *OrigBlock, |
156 | BasicBlock *Default) { |
157 | Function *F = OrigBlock->getParent(); |
158 | BasicBlock *NewLeaf = BasicBlock::Create(Context&: Val->getContext(), Name: "LeafBlock" ); |
159 | F->insert(Position: ++OrigBlock->getIterator(), BB: NewLeaf); |
160 | |
161 | // Emit comparison |
162 | ICmpInst *Comp = nullptr; |
163 | if (Leaf.Low == Leaf.High) { |
164 | // Make the seteq instruction... |
165 | Comp = |
166 | new ICmpInst(NewLeaf, ICmpInst::ICMP_EQ, Val, Leaf.Low, "SwitchLeaf" ); |
167 | } else { |
168 | // Make range comparison |
169 | if (Leaf.Low == LowerBound) { |
170 | // Val >= Min && Val <= Hi --> Val <= Hi |
171 | Comp = new ICmpInst(NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High, |
172 | "SwitchLeaf" ); |
173 | } else if (Leaf.High == UpperBound) { |
174 | // Val <= Max && Val >= Lo --> Val >= Lo |
175 | Comp = new ICmpInst(NewLeaf, ICmpInst::ICMP_SGE, Val, Leaf.Low, |
176 | "SwitchLeaf" ); |
177 | } else if (Leaf.Low->isZero()) { |
178 | // Val >= 0 && Val <= Hi --> Val <=u Hi |
179 | Comp = new ICmpInst(NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High, |
180 | "SwitchLeaf" ); |
181 | } else { |
182 | // Emit V-Lo <=u Hi-Lo |
183 | Constant *NegLo = ConstantExpr::getNeg(C: Leaf.Low); |
184 | Instruction *Add = BinaryOperator::CreateAdd( |
185 | V1: Val, V2: NegLo, Name: Val->getName() + ".off" , InsertBefore: NewLeaf); |
186 | Constant *UpperBound = ConstantExpr::getAdd(C1: NegLo, C2: Leaf.High); |
187 | Comp = new ICmpInst(NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound, |
188 | "SwitchLeaf" ); |
189 | } |
190 | } |
191 | |
192 | // Make the conditional branch... |
193 | BasicBlock *Succ = Leaf.BB; |
194 | BranchInst::Create(IfTrue: Succ, IfFalse: Default, Cond: Comp, InsertBefore: NewLeaf); |
195 | |
196 | // Update the PHI incoming value/block for the default. |
197 | for (auto &I : Default->phis()) { |
198 | PHINode *PN = cast<PHINode>(Val: &I); |
199 | auto *V = PN->getIncomingValueForBlock(BB: OrigBlock); |
200 | PN->addIncoming(V, BB: NewLeaf); |
201 | } |
202 | |
203 | // If there were any PHI nodes in this successor, rewrite one entry |
204 | // from OrigBlock to come from NewLeaf. |
205 | for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(Val: I); ++I) { |
206 | PHINode *PN = cast<PHINode>(Val&: I); |
207 | // Remove all but one incoming entries from the cluster |
208 | APInt Range = Leaf.High->getValue() - Leaf.Low->getValue(); |
209 | for (APInt j(Range.getBitWidth(), 0, false); j.ult(RHS: Range); ++j) { |
210 | PN->removeIncomingValue(BB: OrigBlock); |
211 | } |
212 | |
213 | int BlockIdx = PN->getBasicBlockIndex(BB: OrigBlock); |
214 | assert(BlockIdx != -1 && "Switch didn't go to this successor??" ); |
215 | PN->setIncomingBlock(i: (unsigned)BlockIdx, BB: NewLeaf); |
216 | } |
217 | |
218 | return NewLeaf; |
219 | } |
220 | |
221 | /// Convert the switch statement into a binary lookup of the case values. |
222 | /// The function recursively builds this tree. LowerBound and UpperBound are |
223 | /// used to keep track of the bounds for Val that have already been checked by |
224 | /// a block emitted by one of the previous calls to switchConvert in the call |
225 | /// stack. |
226 | BasicBlock *SwitchConvert(CaseItr Begin, CaseItr End, ConstantInt *LowerBound, |
227 | ConstantInt *UpperBound, Value *Val, |
228 | BasicBlock *Predecessor, BasicBlock *OrigBlock, |
229 | BasicBlock *Default, |
230 | const std::vector<IntRange> &UnreachableRanges) { |
231 | assert(LowerBound && UpperBound && "Bounds must be initialized" ); |
232 | unsigned Size = End - Begin; |
233 | |
234 | if (Size == 1) { |
235 | // Check if the Case Range is perfectly squeezed in between |
236 | // already checked Upper and Lower bounds. If it is then we can avoid |
237 | // emitting the code that checks if the value actually falls in the range |
238 | // because the bounds already tell us so. |
239 | if (Begin->Low == LowerBound && Begin->High == UpperBound) { |
240 | APInt NumMergedCases = UpperBound->getValue() - LowerBound->getValue(); |
241 | FixPhis(SuccBB: Begin->BB, OrigBB: OrigBlock, NewBB: Predecessor, NumMergedCases); |
242 | return Begin->BB; |
243 | } |
244 | return NewLeafBlock(Leaf&: *Begin, Val, LowerBound, UpperBound, OrigBlock, |
245 | Default); |
246 | } |
247 | |
248 | unsigned Mid = Size / 2; |
249 | std::vector<CaseRange> LHS(Begin, Begin + Mid); |
250 | LLVM_DEBUG(dbgs() << "LHS: " << LHS << "\n" ); |
251 | std::vector<CaseRange> RHS(Begin + Mid, End); |
252 | LLVM_DEBUG(dbgs() << "RHS: " << RHS << "\n" ); |
253 | |
254 | CaseRange &Pivot = *(Begin + Mid); |
255 | LLVM_DEBUG(dbgs() << "Pivot ==> [" << Pivot.Low->getValue() << ", " |
256 | << Pivot.High->getValue() << "]\n" ); |
257 | |
258 | // NewLowerBound here should never be the integer minimal value. |
259 | // This is because it is computed from a case range that is never |
260 | // the smallest, so there is always a case range that has at least |
261 | // a smaller value. |
262 | ConstantInt *NewLowerBound = Pivot.Low; |
263 | |
264 | // Because NewLowerBound is never the smallest representable integer |
265 | // it is safe here to subtract one. |
266 | ConstantInt *NewUpperBound = ConstantInt::get(Context&: NewLowerBound->getContext(), |
267 | V: NewLowerBound->getValue() - 1); |
268 | |
269 | if (!UnreachableRanges.empty()) { |
270 | // Check if the gap between LHS's highest and NewLowerBound is unreachable. |
271 | APInt GapLow = LHS.back().High->getValue() + 1; |
272 | APInt GapHigh = NewLowerBound->getValue() - 1; |
273 | IntRange Gap = {.Low: GapLow, .High: GapHigh}; |
274 | if (GapHigh.sge(RHS: GapLow) && IsInRanges(R: Gap, Ranges: UnreachableRanges)) |
275 | NewUpperBound = LHS.back().High; |
276 | } |
277 | |
278 | LLVM_DEBUG(dbgs() << "LHS Bounds ==> [" << LowerBound->getValue() << ", " |
279 | << NewUpperBound->getValue() << "]\n" |
280 | << "RHS Bounds ==> [" << NewLowerBound->getValue() << ", " |
281 | << UpperBound->getValue() << "]\n" ); |
282 | |
283 | // Create a new node that checks if the value is < pivot. Go to the |
284 | // left branch if it is and right branch if not. |
285 | Function *F = OrigBlock->getParent(); |
286 | BasicBlock *NewNode = BasicBlock::Create(Context&: Val->getContext(), Name: "NodeBlock" ); |
287 | |
288 | ICmpInst *Comp = new ICmpInst(ICmpInst::ICMP_SLT, Val, Pivot.Low, "Pivot" ); |
289 | |
290 | BasicBlock *LBranch = |
291 | SwitchConvert(Begin: LHS.begin(), End: LHS.end(), LowerBound, UpperBound: NewUpperBound, Val, |
292 | Predecessor: NewNode, OrigBlock, Default, UnreachableRanges); |
293 | BasicBlock *RBranch = |
294 | SwitchConvert(Begin: RHS.begin(), End: RHS.end(), LowerBound: NewLowerBound, UpperBound, Val, |
295 | Predecessor: NewNode, OrigBlock, Default, UnreachableRanges); |
296 | |
297 | F->insert(Position: ++OrigBlock->getIterator(), BB: NewNode); |
298 | Comp->insertInto(ParentBB: NewNode, It: NewNode->end()); |
299 | |
300 | BranchInst::Create(IfTrue: LBranch, IfFalse: RBranch, Cond: Comp, InsertBefore: NewNode); |
301 | return NewNode; |
302 | } |
303 | |
304 | /// Transform simple list of \p SI's cases into list of CaseRange's \p Cases. |
305 | /// \post \p Cases wouldn't contain references to \p SI's default BB. |
306 | /// \returns Number of \p SI's cases that do not reference \p SI's default BB. |
307 | unsigned Clusterify(CaseVector &Cases, SwitchInst *SI) { |
308 | unsigned NumSimpleCases = 0; |
309 | |
310 | // Start with "simple" cases |
311 | for (auto Case : SI->cases()) { |
312 | if (Case.getCaseSuccessor() == SI->getDefaultDest()) |
313 | continue; |
314 | Cases.push_back(x: CaseRange(Case.getCaseValue(), Case.getCaseValue(), |
315 | Case.getCaseSuccessor())); |
316 | ++NumSimpleCases; |
317 | } |
318 | |
319 | llvm::sort(C&: Cases, Comp: CaseCmp()); |
320 | |
321 | // Merge case into clusters |
322 | if (Cases.size() >= 2) { |
323 | CaseItr I = Cases.begin(); |
324 | for (CaseItr J = std::next(x: I), E = Cases.end(); J != E; ++J) { |
325 | const APInt &nextValue = J->Low->getValue(); |
326 | const APInt ¤tValue = I->High->getValue(); |
327 | BasicBlock *nextBB = J->BB; |
328 | BasicBlock *currentBB = I->BB; |
329 | |
330 | // If the two neighboring cases go to the same destination, merge them |
331 | // into a single case. |
332 | assert(nextValue.sgt(currentValue) && |
333 | "Cases should be strictly ascending" ); |
334 | if ((nextValue == currentValue + 1) && (currentBB == nextBB)) { |
335 | I->High = J->High; |
336 | // FIXME: Combine branch weights. |
337 | } else if (++I != J) { |
338 | *I = *J; |
339 | } |
340 | } |
341 | Cases.erase(first: std::next(x: I), last: Cases.end()); |
342 | } |
343 | |
344 | return NumSimpleCases; |
345 | } |
346 | |
347 | /// Replace the specified switch instruction with a sequence of chained if-then |
348 | /// insts in a balanced binary search. |
349 | void ProcessSwitchInst(SwitchInst *SI, |
350 | SmallPtrSetImpl<BasicBlock *> &DeleteList, |
351 | AssumptionCache *AC, LazyValueInfo *LVI) { |
352 | BasicBlock *OrigBlock = SI->getParent(); |
353 | Function *F = OrigBlock->getParent(); |
354 | Value *Val = SI->getCondition(); // The value we are switching on... |
355 | BasicBlock *Default = SI->getDefaultDest(); |
356 | |
357 | // Don't handle unreachable blocks. If there are successors with phis, this |
358 | // would leave them behind with missing predecessors. |
359 | if ((OrigBlock != &F->getEntryBlock() && pred_empty(BB: OrigBlock)) || |
360 | OrigBlock->getSinglePredecessor() == OrigBlock) { |
361 | DeleteList.insert(Ptr: OrigBlock); |
362 | return; |
363 | } |
364 | |
365 | // Prepare cases vector. |
366 | CaseVector Cases; |
367 | const unsigned NumSimpleCases = Clusterify(Cases, SI); |
368 | IntegerType *IT = cast<IntegerType>(Val: SI->getCondition()->getType()); |
369 | const unsigned BitWidth = IT->getBitWidth(); |
370 | // Explicitly use higher precision to prevent unsigned overflow where |
371 | // `UnsignedMax - 0 + 1 == 0` |
372 | APInt UnsignedZero(BitWidth + 1, 0); |
373 | APInt UnsignedMax = APInt::getMaxValue(numBits: BitWidth); |
374 | LLVM_DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() |
375 | << ". Total non-default cases: " << NumSimpleCases |
376 | << "\nCase clusters: " << Cases << "\n" ); |
377 | |
378 | // If there is only the default destination, just branch. |
379 | if (Cases.empty()) { |
380 | BranchInst::Create(IfTrue: Default, InsertBefore: OrigBlock); |
381 | // Remove all the references from Default's PHIs to OrigBlock, but one. |
382 | FixPhis(SuccBB: Default, OrigBB: OrigBlock, NewBB: OrigBlock, NumMergedCases: UnsignedMax); |
383 | SI->eraseFromParent(); |
384 | return; |
385 | } |
386 | |
387 | ConstantInt *LowerBound = nullptr; |
388 | ConstantInt *UpperBound = nullptr; |
389 | bool DefaultIsUnreachableFromSwitch = false; |
390 | |
391 | if (SI->defaultDestUnreachable()) { |
392 | // Make the bounds tightly fitted around the case value range, because we |
393 | // know that the value passed to the switch must be exactly one of the case |
394 | // values. |
395 | LowerBound = Cases.front().Low; |
396 | UpperBound = Cases.back().High; |
397 | DefaultIsUnreachableFromSwitch = true; |
398 | } else { |
399 | // Constraining the range of the value being switched over helps eliminating |
400 | // unreachable BBs and minimizing the number of `add` instructions |
401 | // newLeafBlock ends up emitting. Running CorrelatedValuePropagation after |
402 | // LowerSwitch isn't as good, and also much more expensive in terms of |
403 | // compile time for the following reasons: |
404 | // 1. it processes many kinds of instructions, not just switches; |
405 | // 2. even if limited to icmp instructions only, it will have to process |
406 | // roughly C icmp's per switch, where C is the number of cases in the |
407 | // switch, while LowerSwitch only needs to call LVI once per switch. |
408 | const DataLayout &DL = F->getDataLayout(); |
409 | KnownBits Known = computeKnownBits(V: Val, DL, AC, CxtI: SI); |
410 | // TODO Shouldn't this create a signed range? |
411 | ConstantRange KnownBitsRange = |
412 | ConstantRange::fromKnownBits(Known, /*IsSigned=*/false); |
413 | const ConstantRange LVIRange = |
414 | LVI->getConstantRange(V: Val, CxtI: SI, /*UndefAllowed*/ false); |
415 | ConstantRange ValRange = KnownBitsRange.intersectWith(CR: LVIRange); |
416 | // We delegate removal of unreachable non-default cases to other passes. In |
417 | // the unlikely event that some of them survived, we just conservatively |
418 | // maintain the invariant that all the cases lie between the bounds. This |
419 | // may, however, still render the default case effectively unreachable. |
420 | const APInt &Low = Cases.front().Low->getValue(); |
421 | const APInt &High = Cases.back().High->getValue(); |
422 | APInt Min = APIntOps::smin(A: ValRange.getSignedMin(), B: Low); |
423 | APInt Max = APIntOps::smax(A: ValRange.getSignedMax(), B: High); |
424 | |
425 | LowerBound = ConstantInt::get(Context&: SI->getContext(), V: Min); |
426 | UpperBound = ConstantInt::get(Context&: SI->getContext(), V: Max); |
427 | DefaultIsUnreachableFromSwitch = (Min + (NumSimpleCases - 1) == Max); |
428 | } |
429 | |
430 | std::vector<IntRange> UnreachableRanges; |
431 | |
432 | if (DefaultIsUnreachableFromSwitch) { |
433 | DenseMap<BasicBlock *, APInt> Popularity; |
434 | APInt MaxPop(UnsignedZero); |
435 | BasicBlock *PopSucc = nullptr; |
436 | |
437 | APInt SignedMax = APInt::getSignedMaxValue(numBits: BitWidth); |
438 | APInt SignedMin = APInt::getSignedMinValue(numBits: BitWidth); |
439 | IntRange R = {.Low: SignedMin, .High: SignedMax}; |
440 | UnreachableRanges.push_back(x: R); |
441 | for (const auto &I : Cases) { |
442 | const APInt &Low = I.Low->getValue(); |
443 | const APInt &High = I.High->getValue(); |
444 | |
445 | IntRange &LastRange = UnreachableRanges.back(); |
446 | if (LastRange.Low.eq(RHS: Low)) { |
447 | // There is nothing left of the previous range. |
448 | UnreachableRanges.pop_back(); |
449 | } else { |
450 | // Terminate the previous range. |
451 | assert(Low.sgt(LastRange.Low)); |
452 | LastRange.High = Low - 1; |
453 | } |
454 | if (High.ne(RHS: SignedMax)) { |
455 | IntRange R = {.Low: High + 1, .High: SignedMax}; |
456 | UnreachableRanges.push_back(x: R); |
457 | } |
458 | |
459 | // Count popularity. |
460 | assert(High.sge(Low) && "Popularity shouldn't be negative." ); |
461 | APInt N = High.sext(width: BitWidth + 1) - Low.sext(width: BitWidth + 1) + 1; |
462 | // Explict insert to make sure the bitwidth of APInts match |
463 | APInt &Pop = Popularity.insert(KV: {I.BB, APInt(UnsignedZero)}).first->second; |
464 | if ((Pop += N).ugt(RHS: MaxPop)) { |
465 | MaxPop = Pop; |
466 | PopSucc = I.BB; |
467 | } |
468 | } |
469 | #ifndef NDEBUG |
470 | /* UnreachableRanges should be sorted and the ranges non-adjacent. */ |
471 | for (auto I = UnreachableRanges.begin(), E = UnreachableRanges.end(); |
472 | I != E; ++I) { |
473 | assert(I->Low.sle(I->High)); |
474 | auto Next = I + 1; |
475 | if (Next != E) { |
476 | assert(Next->Low.sgt(I->High)); |
477 | } |
478 | } |
479 | #endif |
480 | |
481 | // As the default block in the switch is unreachable, update the PHI nodes |
482 | // (remove all of the references to the default block) to reflect this. |
483 | const unsigned NumDefaultEdges = SI->getNumCases() + 1 - NumSimpleCases; |
484 | for (unsigned I = 0; I < NumDefaultEdges; ++I) |
485 | Default->removePredecessor(Pred: OrigBlock); |
486 | |
487 | // Use the most popular block as the new default, reducing the number of |
488 | // cases. |
489 | Default = PopSucc; |
490 | llvm::erase_if(C&: Cases, |
491 | P: [PopSucc](const CaseRange &R) { return R.BB == PopSucc; }); |
492 | |
493 | // If there are no cases left, just branch. |
494 | if (Cases.empty()) { |
495 | BranchInst::Create(IfTrue: Default, InsertBefore: OrigBlock); |
496 | SI->eraseFromParent(); |
497 | // As all the cases have been replaced with a single branch, only keep |
498 | // one entry in the PHI nodes. |
499 | if (!MaxPop.isZero()) |
500 | for (APInt I(UnsignedZero); I.ult(RHS: MaxPop - 1); ++I) |
501 | PopSucc->removePredecessor(Pred: OrigBlock); |
502 | return; |
503 | } |
504 | |
505 | // If the condition was a PHI node with the switch block as a predecessor |
506 | // removing predecessors may have caused the condition to be erased. |
507 | // Getting the condition value again here protects against that. |
508 | Val = SI->getCondition(); |
509 | } |
510 | |
511 | BasicBlock *SwitchBlock = |
512 | SwitchConvert(Begin: Cases.begin(), End: Cases.end(), LowerBound, UpperBound, Val, |
513 | Predecessor: OrigBlock, OrigBlock, Default, UnreachableRanges); |
514 | |
515 | // We have added incoming values for newly-created predecessors in |
516 | // NewLeafBlock(). The only meaningful work we offload to FixPhis() is to |
517 | // remove the incoming values from OrigBlock. There might be a special case |
518 | // that SwitchBlock is the same as Default, under which the PHIs in Default |
519 | // are fixed inside SwitchConvert(). |
520 | if (SwitchBlock != Default) |
521 | FixPhis(SuccBB: Default, OrigBB: OrigBlock, NewBB: nullptr, NumMergedCases: UnsignedMax); |
522 | |
523 | // Branch to our shiny new if-then stuff... |
524 | BranchInst::Create(IfTrue: SwitchBlock, InsertBefore: OrigBlock); |
525 | |
526 | // We are now done with the switch instruction, delete it. |
527 | BasicBlock *OldDefault = SI->getDefaultDest(); |
528 | SI->eraseFromParent(); |
529 | |
530 | // If the Default block has no more predecessors just add it to DeleteList. |
531 | if (pred_empty(BB: OldDefault)) |
532 | DeleteList.insert(Ptr: OldDefault); |
533 | } |
534 | |
535 | bool LowerSwitch(Function &F, LazyValueInfo *LVI, AssumptionCache *AC) { |
536 | bool Changed = false; |
537 | SmallPtrSet<BasicBlock *, 8> DeleteList; |
538 | |
539 | // We use make_early_inc_range here so that we don't traverse new blocks. |
540 | for (BasicBlock &Cur : llvm::make_early_inc_range(Range&: F)) { |
541 | // If the block is a dead Default block that will be deleted later, don't |
542 | // waste time processing it. |
543 | if (DeleteList.count(Ptr: &Cur)) |
544 | continue; |
545 | |
546 | if (SwitchInst *SI = dyn_cast<SwitchInst>(Val: Cur.getTerminator())) { |
547 | Changed = true; |
548 | ProcessSwitchInst(SI, DeleteList, AC, LVI); |
549 | } |
550 | } |
551 | |
552 | for (BasicBlock *BB : DeleteList) { |
553 | LVI->eraseBlock(BB); |
554 | DeleteDeadBlock(BB); |
555 | } |
556 | |
557 | return Changed; |
558 | } |
559 | |
560 | /// Replace all SwitchInst instructions with chained branch instructions. |
561 | class LowerSwitchLegacyPass : public FunctionPass { |
562 | public: |
563 | // Pass identification, replacement for typeid |
564 | static char ID; |
565 | |
566 | LowerSwitchLegacyPass() : FunctionPass(ID) { |
567 | initializeLowerSwitchLegacyPassPass(*PassRegistry::getPassRegistry()); |
568 | } |
569 | |
570 | bool runOnFunction(Function &F) override; |
571 | |
572 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
573 | AU.addRequired<LazyValueInfoWrapperPass>(); |
574 | } |
575 | }; |
576 | |
577 | } // end anonymous namespace |
578 | |
579 | char LowerSwitchLegacyPass::ID = 0; |
580 | |
581 | // Publicly exposed interface to pass... |
582 | char &llvm::LowerSwitchID = LowerSwitchLegacyPass::ID; |
583 | |
584 | INITIALIZE_PASS_BEGIN(LowerSwitchLegacyPass, "lowerswitch" , |
585 | "Lower SwitchInst's to branches" , false, false) |
586 | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
587 | INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) |
588 | INITIALIZE_PASS_END(LowerSwitchLegacyPass, "lowerswitch" , |
589 | "Lower SwitchInst's to branches" , false, false) |
590 | |
591 | // createLowerSwitchPass - Interface to this file... |
592 | FunctionPass *llvm::createLowerSwitchPass() { |
593 | return new LowerSwitchLegacyPass(); |
594 | } |
595 | |
596 | bool LowerSwitchLegacyPass::runOnFunction(Function &F) { |
597 | LazyValueInfo *LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); |
598 | auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>(); |
599 | AssumptionCache *AC = ACT ? &ACT->getAssumptionCache(F) : nullptr; |
600 | return LowerSwitch(F, LVI, AC); |
601 | } |
602 | |
603 | PreservedAnalyses LowerSwitchPass::run(Function &F, |
604 | FunctionAnalysisManager &AM) { |
605 | LazyValueInfo *LVI = &AM.getResult<LazyValueAnalysis>(IR&: F); |
606 | AssumptionCache *AC = AM.getCachedResult<AssumptionAnalysis>(IR&: F); |
607 | return LowerSwitch(F, LVI, AC) ? PreservedAnalyses::none() |
608 | : PreservedAnalyses::all(); |
609 | } |
610 | |